National Library of Energy BETA

Sample records for aeo residential sector

  1. Price Responsiveness in the AEO2003 NEMS Residential and Commercial Buildings Sector Models

    Reports and Publications (EIA)

    2003-01-01

    This paper describes the demand responses to changes in energy prices in the Annual Energy Outlook 2003 versions of the Residential and Commercial Demand Modules of the National Energy Modeling System (NEMS). It updates a similar paper completed for the Annual Energy Outlook 1999 version of the NEMS.

  2. AEO2017 Modeling updates in the transportation sector

    U.S. Energy Information Administration (EIA) Indexed Site

    7 For AEO2017 Transportation Working Group August 31, 2016 | Washington, DC By Melissa Lynes, John Maples, Mark Schipper, and David Stone Office of Energy Consumption and Efficiency Analysis Modeling updates in the transportation sector Updates to the Annual Energy Outlook 2017 * Transportation demand model highlights - 10-year extension of last-year projection, AEO2016 is 2040 and AEO2017 is 2050 - Battery costs for electric vehicles - Phase 2 greenhouse gas and fuel efficiency standards for

  3. Second AEO2016 Buildings Sector Workingb Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES ONLY DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE June 10, 2016 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Paul Holtberg Team Leader, Analysis Integration Team James Turnure Director, Office of Energy Consumption & Efficiency Analysis FROM: Buildings Consumption & Efficiency Analysis Team Subject: Second AEO2016 Buildings Sector Working Group Meeting Summary, workshop held on February 18, 2016

  4. AEO2011: Energy Consumption by Sector and Source - Mountain ...

    Open Energy Info (EERE)

    comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 8, and contains only the reference...

  5. Buildings Working Group Meeting AEO2016 Preliminary Results

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings Working Group Meeting Office of Energy Consumption and Efficiency Analysis February 18, 2016 | Washington, DC By Buildings Energy Analysis Team AEO2016 Preliminary Results Discussion purposes only - do not cite or circulate Overview * Key policies - Clean Power Plan - Federal standards and ENERGY STAR specifications * Sector drivers - Fuel prices - Weather - Commercial floorspace * Distributed generation * Residential and commercial consumption AEO2016 Buildings Working Group,

  6. AEO2014 Preliminary Results

    U.S. Energy Information Administration (EIA) Indexed Site

    September 26, 2013 AEO2014 Preliminary Results For discussion purposes only Not for citation Overview 2 * Residential projects - RECS update - Housing stock formation and decay - Lighting model - ENERGY STAR homes benchmarking - Weather elasticities * Commercial projects - Major end-use capacity factors - Data center servers - ENERGY STAR buildings - Hurdle rate floor * Both sectors - Usual annual updates - Miscellaneous end-use technology assumptions updates - Distributed generation * Contract

  7. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  8. Behavioral Assumptions Underlying California Residential Sector Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Programs (2009 CIEE Report) | Department of Energy Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report) Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report) This paper examines the behavioral assumptions that underlie California's residential sector energy efficiency programs and recommends improvements that will help to advance the state's ambitious greenhouse gas

  9. Miscellaneous Electricity Services in the Buildings Sector (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Residential and commercial electricity consumption for miscellaneous services has grown significantly in recent years and currently accounts for more electricity use than any single major end-use service in either sector (including space heating, space cooling, water heating, and lighting). In the residential sector, a proliferation of consumer electronics and information technology equipment has driven much of the growth. In the commercial sector, telecommunications and network equipment and new advances in medical imaging have contributed to recent growth in miscellaneous electricity use.

  10. Behavioral Assumptions Underlying California Residential Sector...

    Broader source: Energy.gov (indexed) [DOE]

    paper examines the behavioral assumptions that underlie California's residential sector energy efficiency programs and recommends improvements that will help to advance the state's ...

  11. Solar Photovoltaic Financing: Residential Sector Deployment ...

    Broader source: Energy.gov (indexed) [DOE]

    Date March 2009 Topic Financing, Incentives & Market Analysis Subprogram Soft Costs Author National Renewable Energy Laboratory Solar Photovoltaic Financing: Residential Sector ...

  12. EIA Energy Efficiency-Residential Sector Energy Intensities,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Sector Energy Intensities RESIDENTIAL SECTOR ENERGY INTENSITIES: 1978-2005 Released Date: August 2004 Page Last Modified:June 2009 These tables provide estimates of...

  13. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  14. Solar Photovoltaic Financing: Residential Sector Deployment

    SciTech Connect (OSTI)

    Coughlin, J.; Cory, K.

    2009-03-01

    This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

  15. Solar Photovoltaic Financing: Residential Sector Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6A2-44853 March 2009 Solar Photovoltaic Financing: Residential Sector Deployment Jason Coughlin and Karlynn Cory National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-44853 March 2009 Solar Photovoltaic Financing:

  16. AEO2016 Electricity Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    Office of Electricity, Coal, Nuclear, and Renewables Analysis December 8, 2015 | Washington, DC AEO2016 Electricity Working Group WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE What to look for: Electricity sector in AEO2016 * Inclusion of EPA final Clean Power Plan in Reference Case * Updated cost estimates for new generating technologies * Major data update on existing coal plant status: MATS- compliant technology or retirement

  17. Electricity savings potentials in the residential sector of Bahrain

    SciTech Connect (OSTI)

    Akbari, H.; Morsy, M.G.; Al-Baharna, N.S.

    1996-08-01

    Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

  18. Assessing National Employment Impacts of Investment in Residential and Commercial Sector Energy Efficiency: Review and Example Analysis

    SciTech Connect (OSTI)

    Anderson, David M.; Belzer, David B.; Livingston, Olga V.; Scott, Michael J.

    2014-06-18

    Pacific Northwest National Laboratory (PNNL) modeled the employment impacts of a major national initiative to accelerate energy efficiency trends at one of two levels: • 15 percent savings by 2030. In this scenario, efficiency activities save about 15 percent of the Annual Energy Outlook (AEO) Reference Case electricity consumption by 2030. It is assumed that additional energy savings in both the residential and commercial sectors begin in 2015 at zero, and then increase in an S-shaped market penetration curve, with the level of savings equal to about 7.0 percent of the AEO 2014 U.S. national residential and commercial electricity consumption saved by 2020, 14.8 percent by 2025, and 15 percent by 2030. • 10 percent savings by 2030. In this scenario, additional savings begin at zero in 2015, increase to 3.8 percent in 2020, 9.8 percent by 2025, and 10 percent of the AEO reference case value by 2030. The analysis of the 15 percent case indicates that by 2030 more than 300,000 new jobs would likely result from such policies, including an annual average of more than 60,000 jobs directly supporting the installation and maintenance of energy efficiency measures and practices. These are new jobs resulting initially from the investment associated with the construction of more energy-efficient new buildings or the retrofit of existing buildings and would be sustained for as long as the investment continues. Based on what is known about the current level of building-sector energy efficiency jobs, this would represent an increase of more than 10 percent from the current estimated level of over 450,000 such jobs. The more significant and longer-lasting effect comes from the redirection of energy bill savings toward the purchase of other goods and services in the general economy, with its attendant influence on increasing the total number of jobs. This example analysis utilized PNNL’s ImSET model, a modeling framework that PNNL has used over the past two decades to assess

  19. Biofuels in the U.S. Transportation Sector (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Sustained high world oil prices and the passage of the Energy Policy Act 2005 (EPACT) have encouraged the use of agriculture-based ethanol and biodiesel in the transportation sector; however, both the continued growth of the biofuels industry and the long-term market potential for biofuels depend on the resolution of critical issues that influence the supply of and demand for biofuels. For each of the major biofuelscorn-based ethanol, cellulosic ethanol, and biodieselresolution of technical, economic, and regulatory issues remains critical to further development of biofuels in the United States.

  20. Efficient Engine-Driven Heat Pump for the Residential Sector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient Engine-Driven Heat Pump for the Residential Sector Introduction Building on previous work on an 11-ton packaged natural gas heat pump, this project developed hardware and software for en- gine and system controls for a residential gas heat pump system that provides space cooling, heating, and hot water. Various electric heat pump systems are used to provide heating and cooling for a wide range of buildings, from commercial facilities to single family homes. The market for heat pumps is

  1. AEO2015 BWG

    U.S. Energy Information Administration (EIA) Indexed Site

    Behjat Hojjati Kevin Jarzomski David Peterson Steve Wade Owen Comstock (currently on detail) August 7, 2014 AEO2015 Model Updates Discussion purposes only - do not cite or circulate Overview AEO2015 Builldings Working Group Washington, D.C., August 7, 2014 2 * Shorter AEO this year * Federal standards * End-use technology characterizations * Historical updates * Discussion Discussion purposes only - do not cite or circulate Federal standards AEO2015 Builldings Working Group Washington, D.C.,

  2. Energy data sourcebook for the US residential sector

    SciTech Connect (OSTI)

    Wenzel, T.P.; Koomey, J.G.; Sanchez, M.

    1997-09-01

    Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous report, compiles these input data into a single location. The data provided include information on end-use unit energy consumption (UEC) values of appliances and equipment efficiency; historical and current appliance and equipment market shares; appliances and equipment efficiency and sales trends; appliance and equipment efficiency standards; cost vs. efficiency data for appliances and equipment; product lifetime estimates; thermal shell characteristics of buildings; heating and cooling loads; shell measure cost data for new and retrofit buildings; baseline housing stocks; forecasts of housing starts; and forecasts of energy prices and other economic drivers. This report is the essential sourcebook for policy analysts interested in residential sector energy use. The report can be downloaded from the Web at http://enduse.lbl. gov/Projects/RED.html. Future updates to the report, errata, and related links, will also be posted at this address.

  3. Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven Heat Pump for the Residential Sector- Fact Sheet, 2016

    Office of Energy Efficiency and Renewable Energy (EERE)

    Fact sheet overview of a natural gas heat pump system for the residential sector that will incorporate an internal combustion engine that drives a vapor-compression heat pump

  4. AEO2016 Electricity Working Group

    Gasoline and Diesel Fuel Update (EIA)

    in Reference Case: coal ash, cooling water intake, effluent limits (under ... Regulation AEO2015 Assumption AEO2016 Assumption Comment Cooling Water Intakes (Clean ...

  5. Modeling diffusion of electrical appliances in the residential sector

    SciTech Connect (OSTI)

    McNeil, Michael A.; Letschert, Virginie E.

    2009-11-22

    This paper presents a methodology for modeling residential appliance uptake as a function of root macroeconomic drivers. The analysis concentrates on four major energy end uses in the residential sector: refrigerators, washing machines, televisions and air conditioners. The model employs linear regression analysis to parameterize appliance ownership in terms of household income, urbanization and electrification rates according to a standard binary choice (logistic) function. The underlying household appliance ownership data are gathered from a variety of sources including energy consumption and more general standard of living surveys. These data span a wide range of countries, including many developing countries for which appliance ownership is currently low, but likely to grow significantly over the next decades as a result of economic development. The result is a 'global' parameterization of appliance ownership rates as a function of widely available macroeconomic variables for the four appliances studied, which provides a reliable basis for interpolation where data are not available, and forecasting of ownership rates on a global scale. The main value of this method is to form the foundation of bottom-up energy demand forecasts, project energy-related greenhouse gas emissions, and allow for the construction of detailed emissions mitigation scenarios.

  6. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    4 Cost of a Generic Quad Used in the Residential Sector ($2010 Billion) (1) Residential 1980 10.45 1981 11.20 1982 11.58 1983 11.85 1984 11.65 1985 11.43 1986 10.90 1987 10.55 1988 10.18 1989 9.98 1990 10.12 1991 9.94 1992 9.78 1993 9.77 1994 9.78 1995 9.44 1996 9.44 1997 9.59 1998 9.23 1999 8.97 2000 9.57 2001 10.24 2002 9.33 2003 10.00 2004 10.32 2005 11.10 2006 11.60 2007 11.61 2008 12.29 2009 11.65 2010 9.98 2011 9.99 2012 9.87 2013 9.77 2014 9.76 2015 9.88 2016 9.85 2017 9.83 2018 9.86 2019

  7. World Oil Prices in AEO2007 (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Over the long term, the Annual Energy Outlook 2007 (AEO) projection for world oil prices -- defined as the average price of imported low-sulfur, light crude oil to U.S. refiners -- is similar to the AEO2006 projection. In the near term, however, AEO2007 projects prices that are $8 to $10 higher than those in AEO2006.

  8. Table 8 U.S. Carbon Dioxide Emissions from Residential Sector...

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Carbon Dioxide Emissions from Residential Sector Energy Consumption, 1990-2009" " (Million Metric Tons of Carbon Diioxide)" ,,1990,1991,1992,1993,1994,1995,1996,1997,1998,199...

  9. Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

  10. Major models and data sources for residential and commercial sector energy conservation analysis. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    Major models and data sources are reviewed that can be used for energy-conservation analysis in the residential and commercial sectors to provide an introduction to the information that can or is available to DOE in order to further its efforts in analyzing and quantifying their policy and program requirements. Models and data sources examined in the residential sector are: ORNL Residential Energy Model; BECOM; NEPOOL; MATH/CHRDS; NIECS; Energy Consumption Data Base: Household Sector; Patterns of Energy Use by Electrical Appliances Data Base; Annual Housing Survey; 1970 Census of Housing; AIA Research Corporation Data Base; RECS; Solar Market Development Model; and ORNL Buildings Energy Use Data Book. Models and data sources examined in the commercial sector are: ORNL Commercial Sector Model of Energy Demand; BECOM; NEPOOL; Energy Consumption Data Base: Commercial Sector; F.W. Dodge Data Base; NFIB Energy Report for Small Businesses; ADL Commercial Sector Energy Use Data Base; AIA Research Corporation Data Base; Nonresidential Buildings Surveys of Energy Consumption; General Electric Co: Commercial Sector Data Base; The BOMA Commercial Sector Data Base; The Tishman-Syska and Hennessy Data Base; The NEMA Commercial Sector Data Base; ORNL Buildings Energy Use Data Book; and Solar Market Development Model. Purpose; basis for model structure; policy variables and parameters; level of regional, sectoral, and fuels detail; outputs; input requirements; sources of data; computer accessibility and requirements; and a bibliography are provided for each model and data source.

  11. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    SciTech Connect (OSTI)

    Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy

    2011-04-15

    This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

  12. Efficient Engine-Driven Heat Pump for the Residential Sector

    Broader source: Energy.gov (indexed) [DOE]

    The market for heat pumps is signifcant. According to the U.S. Energy Information Administration's 2009 Residential Energy Consumption Survey, 9.8 million American homes are heated ...

  13. Efficient Engine-Driven Heat Pump for the Residential Sector

    Office of Energy Efficiency and Renewable Energy (EERE)

    Building on previous work on an 11-ton packaged natural gas heat pump, this project will develop hardware and software for engine and system controls for a residential gas heat pump system that...

  14. Buildings Energy Data Book: 2.2 Residential Sector Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Total U.S. Homes (millions) U.S. Average 1) Average home sizes include both heated and unheated floor space, including garages. EIA, 2005 Residential Energy Consumption Survey, ...

  15. Buildings Energy Data Book: 2.2 Residential Sector Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Note(s): Source(s): 1) Total Square footage includes attic, garage, and basement square footage. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008. Share of Average Home ...

  16. Model documentation report: Residential sector demand module of the national energy modeling system

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This reference document provides a detailed description for energy analysts, other users, and the public. The NEMS Residential Sector Demand Module is currently used for mid-term forecasting purposes and energy policy analysis over the forecast horizon of 1993 through 2020. The model generates forecasts of energy demand for the residential sector by service, fuel, and Census Division. Policy impacts resulting from new technologies, market incentives, and regulatory changes can be estimated using the module. 26 refs., 6 figs., 5 tabs.

  17. Buildings Energy Data Book: 2.2 Residential Sector Characteristics

    Buildings Energy Data Book [EERE]

    6.9% 5 or more units 2.1% 13.0% 15.0% Mobile Homes 5.1% 1.1% 6.2% Total 70.3% 29.6% 100% Source(s): EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table HC3-1 and HC4

  18. Buildings Energy Data Book: 2.2 Residential Sector Characteristics

    Buildings Energy Data Book [EERE]

    3.4% 3.3% 3.1% 1.8% 0.6% 15.0% United States 19.9% 22.5% 17.0% 16.7% 15.6% 8.3% 100% Source(s): All Vintages EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table HC10

  19. Buildings Energy Data Book: 2.2 Residential Sector Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to 1,499 24% 1,500 to 1,999 16% 2,000 to 2,499 9% 2,500 to 2,999 7% 3,000 or more 11% Total 100% Source(s): EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table HC1-3.

  20. Local Option- Residential Energy Efficiency Loan Loss Reserve Program

    Broader source: Energy.gov [DOE]

    Arkansas Energy Office (AEO) offers a loan loss reserve program that the utilities can participate in to subsidize their energy efficiency loans to its residential customers. Municipal utility...

  1. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    3 2005 Average Household Expenditures, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Other expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other categories are calculated from the

  2. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    4 2005 Average Household Expenditures as Percent of Annual Income, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Average Annual Expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other

  3. World Oil Prices in AEO2006 (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    World oil prices in the Annual Energy Outlook 2006 (AEO) reference case are substantially higher than those in the AEO2005 reference case. In the AEO2006 reference case, world crude oil prices, in terms of the average price of imported low-sulfur, light crude oil to U.S. refiners, decline from current levels to about $47 per barrel (2004 dollars) in 2014, then rise to $54 per barrel in 2025 and $57 per barrel in 2030. The price in 2025 is approximately $21 per barrel higher than the corresponding price projection in the AEO2005 reference case.

  4. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    0 2005 Energy End-Use Expenditures for an Average Household, by Region ($2010) Northeast Midwest South West National Space Heating 1,050 721 371 352 575 Air-Conditioning 199 175 456 262 311 Water Heating 373 294 313 318 320 Refrigerators 194 145 146 154 157 Other Appliances and Lighting 827 665 715 716 725 Total (1) 2,554 1,975 1,970 1,655 2,003 Note(s): 1) Due to rounding, end-uses do not sum to totals. Source(s): EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-15; EIA,

  5. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    1 2005 Energy Expenditures per Household, by Housing Type and Square Footage ($2010) Per Household Single-Family 1.16 Detached 1.16 Attached 1.20 Multi-Family 1.66 2 to 4 units 1.90 5 or more units 1.53 Mobile Home 1.76 All Homes 1.12 Note(s): Source(s): 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was

  6. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    2 2005 Household Energy Expenditures, by Vintage ($2010) | Year | Prior to 1950 887 | 22% 1950 to 1969 771 | 22% 1970 to 1979 736 | 16% 1980 to 1989 741 | 16% 1990 to 1999 752 | 16% 2000 to 2005 777 | 9% | Average 780 | Total 100% Note(s): Source(s): 1.24 2,003 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the

  7. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    3 Residential Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Total 1980 158.5 1981 164.0 1982 172.3 1983 176.1 1984 178.5 1985 176.8 1986 169.2 1987 167.1 1988 170.1 1989 172.8 1990 168.2 1991 169.9 1992 166.7 1993 175.6 1994 174.9 1995 172.7 1996 181.8 1997 180.0 1998 173.5 1999 174.0 2000 192.8 2001 203.3 2002 192.1 2003 208.8 2004 215.1 2005 236.7 2006 240.0 2007 246.1 2008 259.6 2009 241.6 2010 251.8 2011 251.3 2012 247.1 2013 240.3 2014 239.4 2015

  8. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    7 Range 10 4 48 Clothes Dryer 359 (2) 4 49 Water Heating Water Heater-Family of 4 40 64 (3) 26 294 Water Heater-Family of 2 40 32 (3) 12 140 Note(s): Source(s): 1) $1.139/therm. 2) Cycles/year. 3) Gallons/day. A.D. Little, EIA-Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case, Sept. 2, 1998, p. 30 for range and clothes dryer; LBNL, Energy Data Sourcebook for the U.S. Residential Sector, LBNL-40297, Sept. 1997, p. 62-67 for water heating; GAMA,

  9. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    Residential Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Electricity Natural Gas Petroleum (1) Avg. 1980 36.40 8.35 16.77 17.64 1981 38.50 8.88 18.35 19.09 1982 40.15 10.08 17.28 19.98 1983 40.43 11.30 16.08 21.00 1984 38.80 11.02 15.61 20.20 1985 38.92 10.68 14.61 20.10 1986 38.24 9.98 11.88 19.38 1987 37.29 9.22 11.23 18.73 1988 36.22 8.80 10.83 18.02 1989 35.67 8.71 11.96 17.93 1990 35.19 8.63 13.27 18.64 1991 34.88 8.38 12.49 18.31 1992 34.79 8.28 11.23 17.76 1993

  10. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    2 Residential Energy Prices, by Year and Fuel Type ($2010) LPG ($/gal) 1980 2.24 1981 2.51 1982 2.30 1983 2.14 1984 2.10 1985 1.96 1986 1.54 1987 1.42 1988 1.39 1989 1.48 1990 1.69 1991 1.56 1992 1.40 1993 1.33 1994 1.27 1995 1.22 1996 1.37 1997 1.34 1998 1.15 1999 1.16 2000 1.70 2001 1.59 2002 1.42 2003 1.67 2004 1.84 2005 2.36 2006 2.64 2007 2.81 2008 3.41 2009 2.52 2010 2.92 2011 3.62 2012 3.65 2013 3.43 2014 3.60 2015 3.74 2016 3.79 2017 3.86 2018 3.89 2019 3.92 2020 3.96 2021 3.99 2022 4.02

  11. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    5 2010 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 38.7 11.2 8.0 19.8 0.0 14.3 72.9 28.9% Space Cooling (3) 0.0 35.4 35.4 14.0% Water Heating (4) 14.3 2.1 2.0 4.0 14.2 32.6 12.9% Lighting 22.6 22.6 9.0% Refrigeration (5) 14.9 14.9 5.9% Electronics (6) 17.8 17.8 7.1% Cooking 2.4 0.8 0.8 6.0 9.2 3.7% Wet Cleaning (7) 0.6 10.7 11.3 4.5% Computers 5.6 5.6 2.2% Other

  12. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    6 2015 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 35.0 13.0 8.1 21.6 0.0 14.0 70.6 29.2% Space Cooling (3) 0.0 33.8 33.8 14.0% Water Heating 13.5 1.9 1.5 3.4 15.8 32.7 13.5% Lighting 17.6 17.6 7.3% Refrigeration (4) 15.0 15.0 6.2% Electronics (5) 10.9 10.9 4.5% Wet Cleaning (6) 0.6 10.8 11.4 4.7% Cooking 2.2 0.9 0.9 3.8 6.8 2.8% Computers 6.3 6.3 2.6% Other (7)

  13. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    7 2025 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 39.7 11.5 7.8 19.9 0.0 15.0 74.5 28.6% Space Cooling (3) 0.0 36.2 36.2 13.9% Water Heating 16.0 1.4 1.3 2.7 17.1 35.9 13.8% Lighting 15.2 15.2 5.8% Refrigeration (4) 15.5 15.5 6.0% Electronics (5) 12.0 12.0 4.6% Wet Cleaning (6) 0.8 9.8 10.5 4.1% Cooking 2.7 0.8 0.8 4.3 7.8 3.0% Computers 7.7 7.7 2.9% Other (7)

  14. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    8 2035 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 44.3 10.3 7.7 18.6 0.0 16.0 79.0 27.4% Space Cooling (3) 0.0 40.6 40.6 14.1% Water Heating 17.6 1.2 1.2 2.3 17.7 37.6 13.0% Lighting 15.5 15.5 5.4% Refrigeration (4) 17.0 17.0 5.9% Electronics (5) 14.2 14.2 4.9% Wet Cleaning (6) 0.9 10.4 11.3 3.9% Cooking 3.2 0.8 0.8 4.8 8.9 3.1% Computers 8.7 8.7 3.0% Other (7)

  15. Baseline data for the residential sector and development of a residential forecasting database

    SciTech Connect (OSTI)

    Hanford, J.W.; Koomey, J.G.; Stewart, L.E.; Lecar, M.E.; Brown, R.E.; Johnson, F.X.; Hwang, R.J.; Price, L.K.

    1994-05-01

    This report describes the Lawrence Berkeley Laboratory (LBL) residential forecasting database. It provides a description of the methodology used to develop the database and describes the data used for heating and cooling end-uses as well as for typical household appliances. This report provides information on end-use unit energy consumption (UEC) values of appliances and equipment historical and current appliance and equipment market shares, appliance and equipment efficiency and sales trends, cost vs efficiency data for appliances and equipment, product lifetime estimates, thermal shell characteristics of buildings, heating and cooling loads, shell measure cost data for new and retrofit buildings, baseline housing stocks, forecasts of housing starts, and forecasts of energy prices and other economic drivers. Model inputs and outputs, as well as all other information in the database, are fully documented with the source and an explanation of how they were derived.

  16. Residential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  17. Industrial Plans for AEO2014

    U.S. Energy Information Administration (EIA) Indexed Site

    30, 2013 | Washington, DC WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Industrial team plans for AEO2014 Overview -- AEO2014 * Process flow status & updates * Other model updates * Major data updates * CHP updates 2 Industrial Team Washington DC, July 30, 2013 WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Process flow models * General: - Replace energy consumption based on

  18. Buildings Working Group Meeting AEO2016 Preliminary Results

    U.S. Energy Information Administration (EIA) Indexed Site

    - Federal standards and ENERGY STAR specifications * Sector drivers - Fuel prices - Weather - Commercial floorspace * Distributed generation * Residential and commercial ...

  19. Renewable Electricity in the Annual Energy Outlook (AEO)

    U.S. Energy Information Administration (EIA) Indexed Site

    For Renewable Electricity Working Group July 24, 2014 Christopher Namovicz and Gwen Bredehoeft Renewable Electricity Analysis Team AEO2014 results and status updates for the AEO2015 Agenda Renewable Electricity Analysis Team July 24, 2014 2 * Review of AEO2014 - Changes made for AEO2014 - Review of Results * Status of AEO2015 * Updates planned for AEO2015 WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Updates included in the AEO2014

  20. Annual Energy Outlook (AEO) 2006 - Supplemental Tables - All Tables

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing regional energy consumption and prices by sector; residential, commercial, and industrial demand sector data; transportation demand sector; electricity and renewable fuel; and petroleum, natural gas, and coal data.

  1. Model documentation report: Residential sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document that provides a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  2. Buildings Energy Data Book: 1.2 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    Residential Sector Energy Consumption March 2012 1.2.9 Implicit Price Deflators (2005 = 1.00) Year Year Year 1980 0.48 1990 0.72 2000 0.89 1981 0.52 1991 0.75 2001 0.91 1982 0.55 1992 0.77 2002 0.92 1983 0.58 1993 0.78 2003 0.94 1984 0.60 1994 0.80 2004 0.97 1985 0.62 1995 0.82 2005 1.00 1986 0.63 1996 0.83 2006 1.03 1987 0.65 1997 0.85 2007 1.06 1988 0.67 1998 0.86 2008 1.09 1989 0.70 1999 0.87 2009 1.10 2010 1.11 Source(s): EIA, Annual Energy Review 2010, August 2011, Appendix D, p. 353.

  3. First AEO2014 Macro-Industrial Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    In comparing the AEO2014 macro industrial forecast with the AEO2013, the presenters ... on the status of ongoing process flow project, which replaces energy consumption models ...

  4. Development and Demonstration of the Open Automated Demand Response Standard for the Residential Sector

    SciTech Connect (OSTI)

    Herter, Karen; Rasin, Josh; Perry, Tim

    2009-11-30

    The goal of this study was to demonstrate a demand response system that can signal nearly every customer in all sectors through the integration of two widely available and non- proprietary communications technologies--Open Automated Demand Response (OpenADR) over lnternet protocol and Utility Messaging Channel (UMC) over FM radio. The outcomes of this project were as follows: (1) a software bridge to allow translation of pricing signals from OpenADR to UMC; and (2) a portable demonstration unit with an lnternet-connected notebook computer, a portfolio of DR-enabling technologies, and a model home. The demonstration unit provides visitors the opportunity to send electricity-pricing information over the lnternet (through OpenADR and UMC) and then watch as the model appliances and lighting respond to the signals. The integration of OpenADR and UMC completed and demonstrated in this study enables utilities to send hourly or sub-hourly electricity pricing information simultaneously to the residential, commercial and industrial sectors.

  5. Federal Fuels Taxes and Tax Credits (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    The Annual Energy Outlook 2007 (AEO) reference case and alternative cases generally assume compliance with current laws and regulations affecting the energy sector. Some provisions of the U.S. Tax Code are scheduled to expire, or may be subject to adjustment, before the end of the projection period. In general, scheduled expirations and adjustments provided in legislation or regulations are assumed to occur, unless there is significant historical evidence to support an alternative assumption. This section examines the AEO2007 treatment of three provisions that could have significant impacts on U.S. energy markets: the gasoline excise tax, biofuel (ethanol and biodiesel) tax credits, and the production tax credit for electricity generation from certain renewable resources.

  6. Changing Trends in the Bulk Chemicals and Pulp and Paper Industries (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    Compared with the experience of the 1990s, rising energy prices in recent years have led to questions about expectations of growth in industrial output, particularly in energy-intensive industries. Given the higher price trends, a review of expected growth trends in selected industries was undertaken as part of the production of Annual Energy Outlook 2005 (AEO). In addition, projections for the industrial value of shipments, which were based on the Standard Industrial Classification (SIC) system in AEO2004, are based on the North American Industry Classification System (NAICS) in AEO2005. The change in industrial classification leads to lower historical growth rates for many industrial sectors. The impacts of these two changes are highlighted in this section for two of the largest energy-consuming industries in the U.S. industrial sector-bulk chemicals and pulp and paper.

  7. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption ...

  8. Potential Impact of Adopting Maximum Technologies as Minimum Efficiency Performance Standards in the U.S. Residential Sector

    SciTech Connect (OSTI)

    Letschert, Virginie; Desroches, Louis-Benoit; McNeil, Michael; Saheb, Yamina

    2010-05-03

    The US Department of Energy (US DOE) has placed lighting and appliance standards at a very high priority of the U.S. energy policy. However, the maximum energy savings and CO2 emissions reduction achievable via minimum efficiency performance standards (MEPS) has not yet been fully characterized. The Bottom Up Energy Analysis System (BUENAS), first developed in 2007, is a global, generic, and modular tool designed to provide policy makers with estimates of potential impacts resulting from MEPS for a variety of products, at the international and/or regional level. Using the BUENAS framework, we estimated potential national energy savings and CO2 emissions mitigation in the US residential sector that would result from the most aggressive policy foreseeable: standards effective in 2014 set at the current maximum technology (Max Tech) available on the market. This represents the most likely characterization of what can be maximally achieved through MEPS in the US. The authors rely on the latest Technical Support Documents and Analytical Tools published by the U.S. Department of Energy as a source to determine appliance stock turnover and projected efficiency scenarios of what would occur in the absence of policy. In our analysis, national impacts are determined for the following end uses: lighting, television, refrigerator-freezers, central air conditioning, room air conditioning, residential furnaces, and water heating. The analyzed end uses cover approximately 65percent of site energy consumption in the residential sector (50percent of the electricity consumption and 80percent of the natural gas and LPG consumption). This paper uses this BUENAS methodology to calculate that energy savings from Max Tech for the U.S. residential sector products covered in this paper will reach an 18percent reduction in electricity demand compared to the base case and 11percent in Natural Gas and LPG consumption by 2030 The methodology results in reductions in CO2 emissions of a similar

  9. AEO2017 Preliminary Macroeconomic Results

    U.S. Energy Information Administration (EIA) Indexed Site

    AEO2017 Preliminary Macroeconomic Results For Macroeconomic Working Group July 28, 2016 | Washington, DC By Vipin Arora, Elizabeth Sendich, and Russ Tarver Macroeconomic Analysis Team Economic growth in major trading partners slows over the projection period while the dollar gradually depreciates Macroeconomic Working Group, Washington DC, July 28, 2016 2 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 1989 1994 1999 2004 2009 2014 2019 2024 2029 2034 2039 real trade-weighted GDP of major trading

  10. Residential sector end-use forecasting with EPRI-Reeps 2.1: Summary input assumptions and results

    SciTech Connect (OSTI)

    Koomey, J.G.; Brown, R.E.; Richey, R.

    1995-12-01

    This paper describes current and projected future energy use by end-use and fuel for the U.S. residential sector, and assesses which end-uses are growing most rapidly over time. The inputs to this forecast are based on a multi-year data compilation effort funded by the U.S. Department of Energy. We use the Electric Power Research Institute`s (EPRI`s) REEPS model, as reconfigured to reflect the latest end-use technology data. Residential primary energy use is expected to grow 0.3% per year between 1995 and 2010, while electricity demand is projected to grow at about 0.7% per year over this period. The number of households is expected to grow at about 0.8% per year, which implies that the overall primary energy intensity per household of the residential sector is declining, and the electricity intensity per household is remaining roughly constant over the forecast period. These relatively low growth rates are dependent on the assumed growth rate for miscellaneous electricity, which is the single largest contributor to demand growth in many recent forecasts.

  11. Models for residential- and commercial-sector energy-conservation analysis: applications, limitations, and future potential. Final report

    SciTech Connect (OSTI)

    Cole, Henry E.; Fullen, Robert E.

    1980-09-01

    This report reviews four of the major models used by the Department of Energy (DOE) for energy conservation analyses in the residential- and commercial-building sectors. The objective is to provide a critical analysis of how these models can serve as tools for DOE and its Conservation Policy Office in evaluating and quantifying their policy and program requirements. For this, the study brings together information on the models' analytical structure and their strengths and limitations in policy applications these are then employed to assess the most-effective role for each model in addressing future issues of buildings energy-conservation policy and analysis. The four models covered are: Oak Ridge Residential Energy Model; Micro Analysis of Transfers to Households/Comprehensive Human Resources Data System (MATH/CHRDS) Model; Oak Ridge Commercial Energy Model; and Brookhaven Buildings Energy Conservation Optimization Model (BECOM).

  12. 2017 Levelized Costs AEO 2012 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    202-586-6419 Vishakh Mantri, Ph.D, P.E. Chemical Engineer, Energy Information ... tcapehart@ers.usda.gov 202-694-5313 Chemical Production in the AEO Peter Gross Energy ...

  13. AEO2014 Renewables Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    FOR: John Conti Assistant Administrator for Energy Analysis Alan Beamon Office Director, Office of Electricity, Coal, Nuclear, and Renewables Analysis FROM: Chris Namovicz, Renewable Electricity Analysis Team SUBJECT: AEO2014 Renewables Working Group Meeting This Renewables Working Group meeting on July 9, 2013 was the first of two, and focused on the assumptions and modeling efforts that EIA plans on using as the starting point for its AEO 2014 renewable electricity projections. The meeting was

  14. File:AEO2012earlyrelease.pdf | Open Energy Information

    Open Energy Info (EERE)

    AEO2012earlyrelease.pdf Jump to: navigation, search File File history File usage File:AEO2012earlyrelease.pdf Size of this preview: 463 599 pixels. Other resolution: 464 600...

  15. First AEO2015 Oil and Gas Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    GAS MARKETS TEAMS SUBJECT: First AEO2015 Oil and Gas Working Group Meeting Summary ... The shorter AEO2015 will have 6 cases - Reference case, HighLow Oil Price cases, HighLow ...

  16. Comparing Efficiency Projections (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Realized improvements in energy efficiency generally rely on a combination of technology and economics. The figure below illustrates the role of technology assumptions in the Annual Energy Outlook 2010 projections for energy efficiency in the residential and commercial buildings sector. Projected energy consumption in the Reference case is compared with projections in the Best Available Technology, High Technology, and 2009 Technology cases and an estimate based on an assumption of no change in efficiency for building shells and equipment.

  17. Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices

    SciTech Connect (OSTI)

    James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

    2011-11-01

    For more than 30 years, there have been strong efforts to accelerate the deployment of solar-electric systems by developing photovoltaic (PV) products that are fully integrated with building materials. This report examines the status of building-integrated PV (BIPV), with a focus on the cost drivers of residential rooftop systems, and explores key opportunities and challenges in the marketplace.

  18. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    9 Total Residential Industry Electric Gen. Transportation Residential Industry Transportation (quads) 1980 24% 41% 19% 3% | 30% 49% 3% 20.22 1981 23% 42% 19% 3% | 30% 49% 3% 19.74 1982 26% 39% 18% 3% | 32% 45% 3% 18.36 1983 26% 39% 17% 3% | 32% 46% 3% 17.20 1984 25% 40% 17% 3% | 31% 47% 3% 18.38 1985 25% 40% 18% 3% | 32% 46% 3% 17.70 1986 26% 40% 16% 3% | 32% 46% 3% 16.59 1987 25% 41% 17% 3% | 31% 47% 3% 17.63 1988 26% 42% 15% 3% | 31% 47% 3% 18.44 1989 25% 41% 16% 3% | 30% 47% 3% 19.56 1990 23%

  19. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    20 Site Consumption Primary Consumption Total Residential Industry Electric Gen. Transportation Residential Industry Transportation (quads) 1980 5% 28% 8% 56% | 8% 31% 56% 34.2 1981 5% 26% 7% 59% | 7% 29% 59% 31.9 1982 5% 26% 5% 61% | 6% 28% 61% 30.2 1983 4% 25% 5% 62% | 6% 27% 62% 30.1 1984 5% 26% 4% 61% | 6% 27% 61% 31.1 1985 5% 25% 4% 63% | 6% 26% 63% 30.9 1986 5% 24% 5% 63% | 6% 26% 63% 32.2 1987 5% 25% 4% 63% | 6% 26% 63% 32.9 1988 5% 24% 5% 63% | 6% 26% 63% 34.2 1989 5% 24% 5% 63% | 7% 25%

  20. Buildings Energy Data Book: 8.2 Residential Sector Water Consumption

    Buildings Energy Data Book [EERE]

    1 Residential Water Use by Source (Million Gallons per Day) Year 1980 3,400 1985 3,320 1990 3,390 1995 3,390 2000 (3) (3) 3,590 2005 3,830 Note(s): Source(s): 29,430 25,600 1) Public supply water use: water withdrawn by public and private water suppliers that furnish water to at least 25 people or have a minimum of 15 connections. 2) Self-supply water use: Water withdrawn from a groundwater or surface-water source by a user rather than being obtained from a public supply. 3) USGS did not provide

  1. Buildings Energy Data Book: 8.2 Residential Sector Water Consumption

    Buildings Energy Data Book [EERE]

    6 Residential Water Billing Rate Structures for Community Water Systems Rate Structure Uniform Rates Declining Block Rate Increasing Block Rate Peak Period or Seasonal Rate Separate Flat Fee Annual Connection Fee Combined Flat Fee Other Rate Structures Note(s): Source(s): 3.0% 9.0% 1) Systems serving more than 10,000 users provide service to 82% of the population served by community water systems. Columns do not sum to 100% because some systems use more than one rate structure. 2) Uniform rates

  2. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.

    2008-05-13

    With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy

  3. Is Efficiency Enough? Towards a New Framework for Carbon Savingsin the California Residential Sector

    SciTech Connect (OSTI)

    Moezzi, Mithra; Diamond, Rick

    2005-10-01

    The overall implementation of energy efficiency in the United States is not adequately aligned with the environmental benefits claimed for efficiency, because it does not consider absolute levels of energy use, pollutant emissions, or consumption. In some ways, promoting energy efficiency may even encourage consumption. A more effective basis for environmental policy could be achieved by recognizing the degree and nature of the synchronization between environmental objectives and efficiency. This research seeks to motivate and initiate exploration of alternative ways of defining efficiency or otherwise moderating energy use toward reaching environmental objectives, as applicable to residential electricity use in California. The report offers three main recommendations: (1) produce definitions of efficiency that better integrate absolute consumption, (2) attend to the deeper social messages of energy efficiency communications, and (3) develop a more critical perspective on benefits and limitations of energy efficiency for delivering environmental benefits. In keeping with the exploratory nature of this project, the report also identifies ten questions for further investigation.

  4. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    1 Type (1) Single-Family: 55.4 106.6 39.4 80.5% Detached 55.0 108.4 39.8 73.9% Attached 60.5 89.3 36.1 6.6% Multi-Family: 78.3 64.1 29.7 14.9% 2 to 4 units 94.3 85.0 35.2 6.3% 5 or more units 69.8 54.4 26.7 8.6% Mobile Homes 74.6 70.4 28.5 4.6% All Housing Types 58.7 95.0 37.0 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average

  5. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    2 Year Built (1) Prior to 1950 74.5 114.9 46.8 24% 1950 to 1969 66.0 96.6 38.1 23% 1970 to 1979 59.4 83.4 33.5 15% 1980 to 1989 51.9 81.4 32.3 14% 1990 to 1999 48.2 94.4 33.7 16% 2000 to 2005 44.7 94.7 34.3 8% Average 58.7 95.0 40.0 Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was

  6. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    5 Load (quads) and Percent of Total Load Component Heating Cooling Roof -0.65 12% 0.16 14% Walls -1.00 19% 0.11 10% Foundation -0.76 15% -0.07 - Infiltration -1.47 28% 0.19 16% Windows (conduction) -1.34 26% 0.01 1% Windows (solar gain) 0.43 - 0.37 32% Internal Gains 0.79 - 0.31 27% Net Load -3.99 100% 1.08 100% Note(s): Source(s): Aggregate Residential Building Component Loads as of 1998 (1) 1) "Load" represents the thermal energy losses/gains that when combined will be offset by a

  7. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    8 2009 Annual Natural Gas Consumption per Appliance by Census Division Census Division New England Middle Atlantic East North Central West North Central South Atlantic East South Central West South Central Mountain Pacific United States Average Total Source(s): 515,657 208,173 43,648 42,723 90,171 American Gas Association, Residential Natural Gas Market Survey, Jan. 2011, Table 10-1. 61,928 23,005 5,238 5,135 10,270 44,675 20,232 3,286 3,286 29,064 33,891 24,648 3,595 3,081 5,135 58,334 26,702

  8. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    9 Northeast Midwest South West National Space Heating 70.3 56.6 20.4 23.8 38.7 Space Cooling 3.6 5.6 13.9 4.0 7.9 Water Heating 21.1 20.4 15.8 21.2 19.0 Refrigerator 5.4 7.0 6.6 5.7 6.3 Other Appliances & Lighting 23.0 25.9 25.0 24.1 24.7 Total (1) 79.9 77.4 95.0 Note(s): Source(s): 2005 Delivered Energy End-Uses for an Average Household, by Region (Million Btu per Household) 122.2 113.5 1) Due to rounding, sums do not add up to totals. EIA, 2005 Residential Energy Consumption Survey, Oct.

  9. U.S. Energy Information Administration (EIA) - Sector

    U.S. Energy Information Administration (EIA) Indexed Site

    2006 2005 2004 Transportation Sector 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 The National Energy Modeling System: An Overview 2009 See most recent version of AEO

  10. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    3 Building Type Pre-1995 1995-2005 Pre-1995 1995-2005 Pre-1995 1995-2005 Single-Family 38.4 44.9 102.7 106.2 38.5 35.5 Detached 37.9 44.7 104.5 107.8 38.8 35.4 Attached 43.8 55.5 86.9 85.1 34.2 37.6 Multi-Family 63.8 58.7 58.3 49.2 27.2 24.3 2 to 4 units 69.0 55.1 70.7 59.4 29.5 25.0 5 or more units 61.5 59.6 53.6 47.2 26.3 24.2 Mobile Homes 82.4 57.1 69.6 74.5 29.7 25.2 Note(s): Source(s): 2005 Residential Delivered Energy Consumption Intensities, by Principal Building Type and Vintage Per

  11. Summary of AEO2015 Renewable Electricity Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    August 13, 2014 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Jim Diefenderfer Office Director Office of Electricity, Coal, Nuclear, and Renewables Analysis Paul Holtberg Team Leader Analysis Integration Team FROM: Renewable Electricity Analysis Team SUBJECT: Summary of AEO2015 Renewable Electricity Working Group Meeting held on July 24, 2014 Presenters: Chris Namovicz, Gwen Bredehoeft Topics included AEO2014 model and data updates, a summary of AEO2014 model results,

  12. First AEO2015 Macro-Industrial Working Group Meeting Summary

    Gasoline and Diesel Fuel Update (EIA)

    forecast, with EIA's preliminary energy prices. Important model enhancements implemented for AEO2015, such as updated supply and demand relationships used to project ...

  13. First AEO2015 Liquid Fuels Markets Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    AEO2016: revise refinery process units costs; non-petroleum process study to inform ... Factors influencing crude oil or condensate exports include logistics and the different ...

  14. World Oil Prices and Production Trends in AEO2009 (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    The oil prices reported in Annual Energy Outlook 2009 (AEO) represent the price of light, low-sulfur crude oil in 2007 dollars. Projections of future supply and demand are made for "liquids," a term used to refer to those liquids that after processing and refining can be used interchangeably with petroleum products. In AEO2009, liquids include conventional petroleum liquids -- such as conventional crude oil and natural gas plant liquids -- in addition to unconventional liquids, such as biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

  15. Energy Technologies on the Horizon (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    A key issue in mid-term forecasting is the representation of changing and developing technologies. How existing technologies will evolve, and what new technologies might emerge, cannot be known with certainty. The issue is of particular importance in Annual Energy Outlook 2006 (AEO), the first AEO with projections out to 2030.

  16. Impacts of Temperature Variation on Energy Demand in Buildings (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    In the residential and commercial sectors, heating and cooling account for more than 40% of end-use energy demand. As a result, energy consumption in those sectors can vary significantly from year to year, depending on yearly average temperatures.

  17. World Oil Prices and Production Trends in AEO2008 (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    Annual Energy Outlook 2008 (AEO) defines the world oil price as the price of light, low-sulfur crude oil delivered in Cushing, Oklahoma. Since 2003, both "above ground" and "below ground" factors have contributed to a sustained rise in nominal world oil prices, from $31 per barrel in 2003 to $69 per barrel in 2007. The AEO2008 reference case outlook for world oil prices is higher than in the AEO2007 reference case. The main reasons for the adoption of a higher reference case price outlook include continued significant expansion of world demand for liquids, particularly in non-OECD (Organization for Economic Cooperation and Development) countries, which include China and India; the rising costs of conventional non-OPEC (Organization of the Petroleum Exporting Countries) supply and unconventional liquids production; limited growth in non-OPEC supplies despite higher oil prices; and the inability or unwillingness of OPEC member countries to increase conventional crude oil production to levels that would be required for maintaining price stability. The Energy Information Administration will continue to monitor world oil price trends and may need to make further adjustments in future AEOs.

  18. Residential Geothermal Systems Credit | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential Low Income Residential Savings Category Geothermal Heat Pumps Geothermal Direct-Use Maximum Rebate 1,500 Program Info Sector Name State Administrator Montana...

  19. Better Buildings Residential Network Orientation Webinar, Call...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BBNP Grantee Sectors 9 BBNP Accomplishments 10 Better Buildings Residential Network Better Buildings Residential Network: Connects energy efficiency programs and partners to ...

  20. National Residential Efficiency Measures Database | Department...

    Broader source: Energy.gov (indexed) [DOE]

    It is intended to provide consistent, vetted data for use in public- and private-sector residential energy audit software tools, as well as residential energy efficiency programs ...

  1. A Survey of State and Local PV Program Response to Financial Innovation and Disparate Federal Tax Treatment in the Residential PV Sector

    SciTech Connect (OSTI)

    Bolinger, Mark; Holt, Edward

    2015-06-01

    High up-front costs and a lack of financing options have historically been the primary barriers to the adoption of photovoltaics (PV) in the residential sector. State clean energy funds, which emerged in a number of states from the restructuring of the electricity industry in the mid-to-late 1990s, have for many years attempted to overcome these barriers through PV rebate and, in some cases, loan programs. While these programs (rebate programs in particular) have been popular, the residential PV market in the United States only started to achieve significant scale in the last five years – driven in large part by an initial wave of financial innovation that led to the rise of third-party ownership.

  2. Residential Sector Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    Stoves Geothermal Heat Pump Natural Gas Heat Pump Variables: HSYSSHR 2002-5,eg,b,r Benchmarking Data from Short-Term Energy Outlook Definition: Household energy consumption by...

  3. Annual Energy Outlook 2016: Electricity Sector Preliminary Results

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Sector Preliminary Results For Electricity AEO2016 Working Group February 10, 2016| Washington, DC By EIA, Office of Electricity, Coal, Nuclear & Renewables Analysis WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Summary 2 Electricity Analysis Team February 10, 2016 * Address issues raised by stakeholders * Discuss recent developments- updates to generator status and capital costs * Present preliminary AEO2016 forecast

  4. Buildings Energy Data Book: 2.4 Residential Environmental Data

    Buildings Energy Data Book [EERE]

    2 2005 End-Use Carbon Dioxide Emissions Splits for an Average Household, by Region (Pounds of CO2) Northeast Midwest South West National Space Heating Space Cooling Water Heating Refrigerator Other Appliances & Lighting Total Source(s): EIA, A Look at Residential Energy Consumption in 2005, Jul. 2008, Tables CE(2-5)-(9-12)c; EIA, Assumptions to the AEO 2011, July 2011, Table 2, p. 12 for coefficients; EIA, AEO 2012 Early Release, Jan. 2012, Tables 2 and 18. 8,673 10,421 10,722 9,219 9,945

  5. Clean Air Interstate Rule: Changes and Modeling in AEO2010 (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    On December 23, 2008, the D.C. Circuit Court remanded but did not vacate the Clean Air Interstate Rule (CAIR), overriding its previous decision on February 8, 2008, to remand and vacate CAIR. The December decision, which is reflected in Annual Energy Outlook 2010 (AEO) , allows CAIR to remain in effect, providing time for the Environmental Protection Agency to modify the rule in order to address objections raised by the Court in its earlier decision. A similar rule, referred to as the Clean Air Mercury Rule (CAMR), which was to set up a cap-and-trade system for reducing mercury emissions by approximately 70%, is not represented in the AEO2010 projections, because it was vacated by the D.C. Circuit Court in February 2008.

  6. AEO2011:Total Energy Supply, Disposition, and Price Summary ...

    Open Energy Info (EERE)

    case. The dataset uses quadrillion Btu and the U.S. Dollar. The data is broken down into production, imports, exports, consumption and price. Data and Resources AEO2011:Total...

  7. Summary of First AEO2015 Electricity Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    The presentation included a discussion of regulations, centered on AEO2015 updates to include the Cross State Air Pollution Rule (if the D.C. Circuit Court lifts the stay on the ...

  8. Summary of AEO2016 Electricity Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    ... participant asked if EIA will still include a 3% premium to the capital cost for coal-fired. ... The AEO 2016 will include 3 GW of potential accelerated nuclear power plant retirements ...

  9. EPACT2005: Status of Provisions (Update) (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    The Energy Policy Act 2005 (EPACT) was signed into law by President Bush on August 8, 2005, and became Public Law 109-058. A number of provisions from EPACT2005 were included in the Annual Energy Outlook 2006 (AEO) projections. Many others were not considered in AEO2006particularly, those that require funding appropriations or further specification by federal agencies or Congress before implementation.

  10. Summary of Second AEO 2015 Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    November 7, 2014 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Paul Holtberg Team Leader Analysis Integration Team FROM: Office of Electricity, Coal, Nuclear, and Renewables Analysis SUBJECT: Summary of Second AEO 2015 Working Group Meeting held on September 15, 2014 ATTENDEES: 21 EIA, 68 external (list provided following meeting summary) Presentation topics included a review of the AEO2015 publication schedule and contents, an overview of model assumptions updates in

  11. Second AEO2016 Buildings Sector Workingb Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Paul Holtberg Team Leader, Analysis Integration Team James Turnure Director, Office of ... expectation of lower electricity and natural gas prices; the substitution of ...

  12. Second AEO2014 Buildings Sector Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Stephanie (IMT) Carmichael, Robert (Navigant) Carroll, Ryan (Alliance for Green Heat) Chase, Alex (Energy Solutions) Cogan, Jonathan (EIA OC) Conti, John (EIA OEA) Cureg, Edgardo ...

  13. First AEO2014 Buildings Sector Working Group Meeting Summary

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Stephanie (IMT) Carmichael, Robert (Navigant) Carroll, Ryan (Alliance for Green Heat) Chase, Alex (Energy Solutions) Cogan, Jonathan (EIA OC) Conti, John (EIA OEA) Cureg, Edgardo ...

  14. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

  15. Distributed Generation in Buildings (released in AEO2005)

    Reports and Publications (EIA)

    2008-01-01

    Currently, distributed generation provides a very small share of residential and commercial electricity requirements in the United States. The Annual Energy Outlook 2005 reference case projects a significant increase in electricity generation in the buildings sector, but distributed generation is expected to remain a small contributor to the sectors energy needs. Although the advent of higher energy prices or more rapid improvement in technology could increase the use of distributed generation relative to the reference case projection, the vast majority of electricity used in buildings is projected to continue to be purchased from the grid.

  16. About Residential | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    a roadmap of our strategies and goals for significantly reducing building energy use intensity. Residential Sector Activities Include: Demonstrating to builders and remodelers how ...

  17. 2017 Levelized Costs AEO 2012 Early Release

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Energy Consumption Survey (RECS) End-Use Models FAQs 1 February 2013 Residential Energy Consumption Survey (RECS) End-Use Models FAQs What is an end-use model? An end-use model is a set of equations designed to disaggregate a RECS sample household's total annual fuel consumption into end uses such as space heating, air conditioning, water heating, refrigeration, and so on. These disaggregated values are then weighted up to produce population estimates of total and average energy end

  18. California's Move Toward E10 (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    In Annual Energy Outlook 2009, (AEO) E10a gasoline blend containing 10% ethanolis assumed to be the maximum ethanol blend allowed in California erformulated gasoline (RFG), as opposed to the 5.7% blend assumed in earlier AEOs. The 5.7% blend had reflected decisions made when California decided to phase out use of the additive methyl tertiary butyl ether in its RFG program in 2003, opting instead to use ethanol in the minimum amount that would meet the requirement for 2.0% oxygen content under the Clean Air Act provisions in effect at that time.

  19. Residential | Open Energy Information

    Open Energy Info (EERE)

    used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy consumption. The residential sector accounted for 57 percent of that energy use and the...

  20. 2017 Levelized Costs AEO 2012 Early Release

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Table 7d), electricity generation fuel consumption (Table 7e), and renewable energy (Table 8). ... industrial sectors into a single "end use" sector. 1 Table 7a will now ...

  1. Table 7a. Natural Gas Price, Electric Power Sector, Actual vs. Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Natural Gas Price, Electric Power Sector, Actual vs. Projected Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 2.44 2.48 2.57 2.66 2.70 2.79 2.84 2.92 3.04 3.16 3.25 3.36 3.51 3.60 3.77 3.91 3.97 4.08 AEO 1995 1993 2.39 2.48 2.42 2.45 2.45 2.53 2.59 2.78 2.91 3.10 3.24 3.38 3.47 3.53 3.61 3.68

  2. State Renewable Energy Requirements and Goals: Update Through 2007 (Update) (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    In recent years, the Annual Energy Outlook (AEO) has tracked the growing number of states that have adopted requirements or goals for renewable energy. While there is no federal renewable generation mandate, the states have been adopting such standards for some time. AEO2005 provided a summary of all existing programs in effect at that time, and subsequent AEOs have examined new policies or changes to existing ones. Since the publication of AEO2007, four states have enacted new renewable portfolio standards (RPS) legislation, and five others have strengthened their existing RPS programs. In total, 25 states and the District of Columbia.

  3. Microsoft Word - AEO2012 SENR final markup 1 31 12 _2_.docx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nonpetroleum liquids, net petroleum imports make up a smaller share of total liquids consumption: U.S. dependence on imported petroleum liquids declines in the AEO2012 Reference...

  4. AEO2016 - Issues in Focus articles - U.S. Energy Information...

    Gasoline and Diesel Fuel Update (EIA)

    Analysis & Projections Annual Energy Outlook 2016 Full Release Date: Mid September ... Changing environment for fuel use in electricity generation Nuclear power in AEO2012 Cost ...

  5. State Appliance Standards (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    State appliance standards have existed for decades, starting with Californias enforcement of minimum efficiency requirements for refrigerators and several other products in 1979. In 1987, recognizing that different efficiency standards for the same products in different states could create problems for manufacturers, Congress enacted the National Appliance Energy Conservation Act (NAECA), which initially covered 12 products. The Energy Policy Act of 1992 (EPACT92), EPACT2005, and EISA2007 added additional residential and commercial products to the 12 products originally specified under NAECA.

  6. Annual Energy Outlook Report | Open Energy Information

    Open Energy Info (EERE)

    Report Jump to: navigation, search Topics in AEO 2011 Energy Sources OilLiquids Natural Gas Coal Electricity RenewableAlternative Nuclear Sectors Residential Commercial...

  7. AEO 2013 Liquid Fuels Markets Working Group 2

    U.S. Energy Information Administration (EIA) Indexed Site

    2 October 4, 2012 Attendance (In Person) Beth May, Mike Cole, Arup Mallik, Vish Mantri, Irene Olson, Julie Harris, Michael Schaal, Andy Kydes, Tom White, Adrian Geagla, Jennifer Li. Attendance (WebEx) Mac Statton, Dave Schmalzer, Jarrod Brown, John Prydol, Russ Smith, Rodney Geisbrecht, Dallas Burkholder, Kristen King Notes by Slide Slide 2 The reference case in 2013 has a lower oil price compared to last year's AEO out to 2040. Slide 10 - Includes modeling of pyrolysis oils Slide 11 - This

  8. AEO 2014 Renewable Electricity Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    DATE: September 30, 2013 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Office of Energy Analysis Alan Beamon Office Director Office of Electricity, Coal, Nuclear, and Renewables Analysis FROM: Renewable Electricity Analysis Team SUBJECT: AEO 2014 Renewable Electricity Working Group Meeting Summary ATTENDEES: In person John Conti Alan Beamon Bob Eynon Chris Namovicz Danielle Lowenthal-Savy Erin Boedecker Gwen Bredehoeft Jim Diefenderfer Marie Rinkoski Spangler Michael

  9. AEO2014 Coal Working Group Meeting I Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    July 22, 2013 MEMORANDUM TO: John Conti Assistant Administrator for Energy Analysis Alan Beamon Director, Office of Electricity, Coal, Nuclear, and Renewables Analysis FROM: Coal and Uranium Analysis Team SUBJECT: AEO2014 Coal Working Group Meeting I Summary Attendees (41) Name Affiliation Greg Adams (Moderator) US DOE: EIA Vlad Dorjets Bob Eynon Karen Freedman Tyler Hodge Paul Holtberg Elias Johnson Ayaka Jones Diane Kearney Mike Leff Mike Mellish Carrie Milton Nick Paduano Margaret Cook US

  10. AEO2014 Liquid Fuels Markets Working Group Meeting 1

    U.S. Energy Information Administration (EIA) Indexed Site

    2 AEO2014 Liquid Fuels Markets Working Group Meeting 1 July 24, 2013 Attendance (In Person) (EIA) John Powell, Mindi Farber-DeAnda, Mike Cole, Beth May, Adrian Geagla, Vish Mantri, Tony Radich, Irene Olson, Julie Harris (non-EIA) Jeff Meyer (HIS CERA, Oil Market Analyst), Adam Christensen (Johns Hopkin) Attendance (WebEx) Dave Schmalzer, Seth Snyder (Argonne National Laboratory), Donald Hanson (Argonne National Laboratory), Wyatt Thompson (FAPRI, University of Missouri), Jarrett Whistance

  11. AEO2014 Oil and Gas Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    9 August 12, 2013 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS FROM: ANGELINA LAROSE TEAM LEAD NATURAL GAS MARKETS TEAM JOHN STAUB TEAM LEAD EXPLORATION AND PRODUCTION ANALYSIS TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: First AEO2014 Oil and Gas Working Group Meeting Summary (presented on July 25, 2013) Attendees: Anas Alhajji (NGP)* Samuel Andrus (IHS)* Emil Attanasi (USGS)* Andre Barbe (Rice University) David J. Barden (self) Joseph

  12. AEO2015 Liquid Fuels Markets Working Group Presentation

    U.S. Energy Information Administration (EIA) Indexed Site

    Assumptions for Annual Energy Outlook 2015: Liquid Fuels Markets Working Group AEO2015 Liquid Fuels Markets Working Group Meeting Office of Petroleum, Natural Gas & Biofuels Analysis July 17, 2014 | Washington, DC WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Discussion topics Office of Petroleum, Natural Gas, & Biofuels Analysis Working Group Presentation for Discussion Purposes Washington DC, July 17, 2014 DO NOT QUOTE OR CITE

  13. Second AEO2014 Liquids Fuels Markets Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2013 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS JOHN POWELL TEAM LEADER LIQUID FUELS MARKET TEAM MICHAEL SCHAAL DIRECTOR OFFICE OF ENERGY ANALYSIS FROM: LIQUID FUELS MARKET TEAM SUBJECT: Second AEO2014 Liquid Fuels Markets Working Group Meeting Summary (presented on 09-19-2013) Attendees: (EIA) John Powell, Mindi Farber-DeAnda, Mike Cole, Beth May, Adrian Geagla, Vishakh Mantri, Tony Radich, Irene Olson, Julie Harris, Arup Mallik, Mike Bredehoeft Seth Meyer (USDA)

  14. Second AEO2014 Macro-Industrial Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2013 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS PAUL HOLTBERG TEAM LEADER ANALYSIS INTEGRATION TEAM JAMES TURNURE DIRECTOR OFFICE OF ENERGY CONSUMPTION & EFFICIENCY ANALYSIS LYNN WESTFALL DIRECTOR OFFICE OF ENERGY MARKETS & FINANCIAL ANALYSIS FROM: MACROECONOMIC & INDUSTRIAL ENERGY CONSUMPTION & EFFICIENCY ANALYSIS TEAMS SUBJECT: Second AEO2014 Macro-Industrial Working Group Meeting Summary (presented on 09-26-2013) Attendees: Bob Adler (EIA) Robert

  15. Second AEO2014 Oil and Gas Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    7 November 12, 2013 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS FROM: ANGELINA LAROSE TEAM LEAD NATURAL GAS MARKETS TEAM JOHN STAUB TEAM LEAD EXPLORATION AND PRODUCTION ANALYSIS TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: Second AEO2014 Oil and Gas Working Group Meeting Summary (presented September 26, 2013) Attendees: Robert Anderson (DOE) Peter Balash (NETL)* David Bardin (self) Joe Benneche (EIA) Philip Budzik (EIA) Kara Callahan

  16. Second AEO2014 Transportation Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    , 2013 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS PAUL HOLTBERG TEAM LEADER ANALYSIS INTEGRATION TEAM JIM TURNURE DIRECTOR OFFICE OF ENERGY CONSUMPTION AND EFFICIENCY ANALYSIS FROM: TRANSPORTATION CONSUMPTION & EFFICIENCY ANALYSIS TEAM SUBJECT: Second AEO2014 Transportation Working Group Meeting Summary (presented on 09-25-2013) Attendees: Nicholas Chase (EIA/OECEA) Carrie Hughes-Cromwick (EIA/OES) Paul Holtberg (EIA/OEA) Trisha Hutchins (EIA/OECEA) Jim Kliesch

  17. Second AEO2016 Macro-Induistrial Working Group Meeting summary

    U.S. Energy Information Administration (EIA) Indexed Site

    March 21, 2016 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS PAUL HOLTBERG TEAM LEADER ANALYSIS INTEGRATION TEAM JAMES TURNURE DIRECTOR OFFICE OF ENERGY CONSUMPTION & EFFICIENCY ANALYSIS LYNN WESTFALL DIRECTOR OFFICE OF ENERGY MARKETS & FINANCIAL ANALYSIS FROM: MACROECONOMIC & INDUSTRIAL ENERGY CONSUMPTION & EFFICIENCY ANALYSIS TEAMS SUBJECT: Second AEO2016 Macro-Industrial Working Group Meeting Summary, presented on 02-18-2016 Attendees: Nate Aden

  18. Summary of AEO2015 Renewable Electricity Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE February 29, 2016 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Jim Diefenderfer Office Director Office of Electricity, Coal, Nuclear, and Renewables Analysis Paul Holtberg Team Leader Analysis Integration Team FROM: Renewable Electricity Analysis Team SUBJECT: Summary of AEO2015 Renewable Electricity Working Group Meeting held on February 9, 2016 Presenter: Chris

  19. Summary of AEO2016 Electricity Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE February 10, 2016 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Jim Diefenderfer Office Director Office of Electricity, Coal, Nuclear, and Renewables Analysis Paul Holtberg Team Leader Analysis Integration Team FROM: Chris Namovicz Acting Team Leader for Electricity Analysis Team SUBJECT: Summary of AEO2016 Electricity Working Group Meeting held on February 10, 2016

  20. Summary of First AEO2014 Electricity Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2013 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Alan Beamon Office Director Office of Electricity, Coal, Nuclear, and Renewables Analysis Paul Holtberg Team Leader Analysis Integration Team FROM: Electricity Analysis Team SUBJECT: Summary of First AEO 2014 Electricity Working Group Meeting held on July 24, 2013 ATTENDEES: Diefenderfer, Jim Aniti, Lori Milton, Carrie Jones, Jeff Martin, Laura Bredehoeft, Gwendolyn Eynon, Bob Leff, Mike Mellish, Mike Kearney, Diane

  1. Summary of Second AEO 2014 Electricity Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2013 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Alan Beamon Office Director Office of Electricity, Coal, Nuclear, and Renewables Analysis Paul Holtberg Team Leader Analysis Integration Team FROM: Electricity Analysis Team SUBJECT: Summary of Second AEO 2014 Electricity Working Group Meeting held on September 25, 2013 ATTENDEES: Adams, Greg (EIA OEA) Aniti, Lori (EIA OEA) Bredehoeft, Gwendolyn (EIA OEA) Crozat, Matthew P. (US DOE: Office of Nuclear Energy)

  2. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  3. Federal Fuels Taxes and Tax Credits (Update) (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    The Annual Energy Outlook 2008 (AEO) reference case incorporates current regulations that pertain to the energy industry. This section describes the handling of federal taxes and tax credits in AEO2008, focusing primarily on areas where regulations have changed or the handling of taxes or tax credits has been updated.

  4. Energy Demand (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Growth in U.S. energy use is linked to population growth through increases in demand for housing, commercial floorspace, transportation, manufacturing, and services. This affects not only the level of energy use, but also the mix of fuels and consumption by sector.

  5. Tampa Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Tampa Electric provides a variety of financial incentives to promote energy efficiency in the residential sector. The Ductwork Rebate Program gives Tampa Electric customers the opportunity to have...

  6. South Alabama Electric Cooperative - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility Residential Savings Category Geothermal Heat Pumps Heat Pumps Building Insulation Windows Doors Program Info Sector Name Utility Administrator South Alabama...

  7. Longmont Power & Communications - Residential and Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    50 per appliance Residential: 1 clothes washer and 1 dishwasher per year Commercial: 3 clothes washers and 3 dishwashers per year Program Info Sector Name Utility...

  8. NEMS Buildings Sector Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    NEMS Buildings Sector Working Group Meeting Erin Boedecker Owen Comstock Behjat Hojjati Kevin Jarzomski David Peterson Steve Wade October 4, 2012 | Washington, D.C. AEO2013 Preliminary Results WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Overview Buildings Working Group Forrestal 2E-069 | October 4, 2012 2 * Recap of project list

  9. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  10. Residential Weatherization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  11. Residential Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  12. CONTINATION HEETIREFERENCE NO. OF DOCUMENT BEING CONTINUED AEO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOCUMENT BEING CONTINUED AEO COTIUTINSHE DE-AC27-08RV14800/044 2AG OF NAME OF OFFEROR OR CONTRACTOR WASHINGTON RIVER PROTECTION SOLUTIONS LLC ITEM NO. SUPPLIES/SERVICES QUANTITY UNIT UNIT PRICE AMOUNT (A) (B) (C) (D) (E) (F) Account code: ARRA Appr Year 2009 Allottee 3 Reporting Entity 421301 Object Class 31003 Program 11113 70 Project 2002110 WFO 0000000 Local Use 0420660 TAS Agency Code 89 TAS Account Code 0253 TAS Subaccount Code Amount: -$100,000.00 Delivery Location Code: 010601 Richland

  13. CONTINATION HEETIREFERENCE NO. OF DOCUMENT BEING CONTINUED AEO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOCUMENT BEING CONTINUED AEO COTIUAIN IET DE-AC27--08RV14800/046 2G OF NAME OF OFFEROR OR CONTRACTOR WASHINGTON RIVER PROTECTION SOLUTIONS LLC ITEM NO. SUPPLIES/SERVICES QUANTITY UNIT UNIT PRICE AMOUNT (A) (B) (C) (D) (E) (F) ORP-00014 TOO Funds Fund 01250 Appr Year 2010 Allottee 34 Reportng Enity 4231.11 Object Class 25200 Program 1111412 Project 0004262 WFO 0000000 Local Use 0000000 Amount: $1,200,000.00 ORP 0014 TOO Fund 01250 AppL Ye~ir 2010 Reporting Entity 421301 Object Class 25200

  14. CONTINATION HEETIREFERENCE NO. OF DOCUMENT BEING CONTINUED AEO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NO. OF DOCUMENT BEING CONTINUED AEO COTIUAIN HETDE-AC27-08RV14800/052 2A OF NAME OF OFFEROR OR CONTRACTOR WASHINGTON RIVER PROTECTION SOLUTIONS LLC ITEM NO. SUPPLIES/SERVICES QUANTITY UNITI UNIT PRICE AMOUNT (A) (B) (C) (D) (E) (F) Fund 01250 Appr Year 2010 Allottee 34 Reporting Entity 421301 Object Class 25200 Program 1110462 Project 0001539 WFO 0000000 Local Use 0420149 Amount: $10,214.00 Delivery Location Code: 00601 RichandOperations Office U.S Dep~artment of Energy Richland Operations

  15. CONTINUATION S EFIIERENCE NO OF DOCUMENT BEING CONTINUED AEO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTINUATION S EFIIERENCE NO OF DOCUMENT BEING CONTINUED AEO CONINUTIO SHETDE-AC27-08RV148OO/095 rG NAME OF OFFEROR OR CONTRACTOR WASH-INGTON RIVER PROTECTION SOLUTIONS LLC- ITEM NO SUPPLIES/SERVICES QUANTITY UNIT UNIT PRICE AMOUNT (A) (B) (C) (D) )/F New Total Amount for this Award: $7,094,451,000.00 Obligated Amount for this Modification: $30, 952, 500.00 New Total Obligated Amount for this Award: $1, 353,766,560.39 Incremental Funded Amount changed: from $1,293,125,180.69 to $1,323,766,560.39

  16. CONTINUATON SHEETREFERENCE NO. OF DOCUMENT BEING CONTINUED AEO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTINUATON SHEETREFERENCE NO. OF DOCUMENT BEING CONTINUED AEO COTNUTO SETDE-AC27-08RV14800/070 2AG OF NAME OF OFFEROR OR CONTRACTOR WASHINGTON RIVER PROTECTION SOLUTIONS LLC ITEM NO. SUPPLIES/SERVICES QUANTITY UNIT UNIT PRICE AMOUNT (A) (B) (C) (D) (E) (F) De-obligating WEPS TDD funds for ATL Aluminum Solubility Sample Analysis Fund 01250 Appr Year 2009 Allottee 34 Reporting Entity 421301 Object Class 25200 Program 1110676 Project 0004022 WFO 0000000 Local Use 0000000 Amount: -$3,155.93

  17. CONTIUATIN SHET IREFERENCE NO. OF DOCUMENT BEING CONTINUED AEO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTIUATIN SHET IREFERENCE NO. OF DOCUMENT BEING CONTINUED AEO COTNUTO SETDE-AC27-08RVI4800/055 2AG OF NAME OF OFFEROR OR CONTRACTOR WASHINGTON RIVER PROTECTION SOLUTIONS LLC ITEM NO. SUPPLIESISERVICES QUANTITY NIT UNIT PRICE AMOUNT (A) (B) (C) (D) (E) (F) Total Amount changed from $7,066,503,000.00 to $7,066,500,000.00 Obligated Amount for this modification: $140, 000.00 Incremental Funded Amount changed from $1,102, 822,315.05 to $1,102,962,315.05 NEW ACCOUNTING CODE ADDED: Account code: WTP

  18. U.S. Energy Information Administration (EIA) - Sector

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    RenewableAlternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication...

  19. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  20. Irregular access to the power distribution network in Brazil's residential sector: a delinquent payment problem, or the quest for a right beyond the law?

    SciTech Connect (OSTI)

    da Silva, Neilton Fidelis; Rosa, Luiz Pinguelli

    2008-08-15

    Clandestine residential consumers should not be rubber-stamped as criminals. Siphoning off electricity does not constitute an illegal action, but is rather the only alternative open to marginalized layers of society who rate electricity in their homes as a right to which they should have access. (author)

  1. Energy Independence and Security Act of 2007: Summary of Provisions (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    The Energy Independence and Security Act of 2007 was signed into law on December 19, 2007, and became Public Law 110-140. Provisions in EISA2007 that require funding appropriations to be implemented, whose impact is highly uncertain, or that require further specification by federal agencies or Congress are not included in Annual Energy Outlook 2008 (AEO). For example, the Energy Information Administration (EIA) does not try to anticipate policy responses to the many studies required by EISA2007, nor to predict the impact of research and development (R&D) funding authorizations included in the bill. Moreover, AEO2008 does not include any provision that addresses a level of detail beyond that modeled in the National Energy Modeling System (NEMS), which was used to develop the AEO2008 projections. AEO2008 addresses only those provisions in EISA2007 that establish specific tax credits, incentives, or standards.

  2. AEO2014 - Issues in Focus articles - U.S. Energy Information...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Past AEO analyses that remain relevant 2013 2012 2011 U.S. reliance on imported liquid fuels in alternative scenarios Competition between coal and natural gas in the electric...

  3. Assumptions to the Annual Energy Outlook 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    00 Appendix A: Handling of federal and selected state legislation and regulations in the AEO Residential sector Legislation Brief description AEO handling Basis A. National Appliance Energy Conservation Act of 1987 (NAECA87) Requires Secretary of Energy to set minimum efficiency standards for various appliance categories with periodic updates Include categories represented in the AEO residential sector forecast Public Law 100-12 a. Room air conditioners Sets standards for room air conditioners

  4. Future Air Conditioning Energy Consumption in Developing Countriesand what can be done about it: The Potential of Efficiency in theResidential Sector

    SciTech Connect (OSTI)

    McNeil, Michael A.; Letschert, Virginie E.

    2007-05-01

    The dynamics of air conditioning are of particular interestto energy analysts, both because of the high energy consumption of thisproduct, but also its disproportionate impact on peak load. This paperaddresses the special role of this end use as a driver of residentialelectricity consumption in rapidly developing economies. Recent historyhas shown that air conditioner ownership can grow grows more rapidly thaneconomic growth in warm-climate countries. In 1990, less than a percentof urban Chinese households owned an air conditioner; by 2003 this numberrose to 62 percent. The evidence suggests a similar explosion of airconditioner use in many other countries is not far behind. Room airconditioner purchases in India are currently growing at 20 percent peryear, with about half of these purchases attributed to the residentialsector. This paper draws on two distinct methodological elements toassess future residential air conditioner 'business as usual' electricityconsumption by country/region and to consider specific alternative 'highefficiency' scenarios. The first component is an econometric ownershipand use model based on household income, climate and demographicparameters. The second combines ownership forecasts and stock accountingwith geographically specific efficiency scenarios within a uniqueanalysis framework (BUENAS) developed by LBNL. The efficiency scenariomodule considers current efficiency baselines, available technologies,and achievable timelines for development of market transformationprograms, such as minimum efficiency performance standards (MEPS) andlabeling programs. The result is a detailed set of consumption andemissions scenarios for residential air conditioning.

  5. Otter Tail Power Company - Residential Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    Residential Savings Category Geothermal Heat Pumps Water Heaters Heat Pumps Energy Mgmt. SystemsBuilding Controls Motors Other EE Program Info Sector Name Utility Administrator...

  6. Ashland Electric Utility- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Ashland Conservation District also encourages energy efficiency within the residential sector through the Energy Conservation Programs. Among the services offered through these programs, reside...

  7. Marblehead Municipal Light Department- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Marblehead Municipal Light Department encourages conservation within the residential sector through the Energy Efficiency Rebate Program. Rebates are available for energy efficient appliances,...

  8. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Are there other questions related to smart home technology in the residential energy efficiency sector? Closing Poll and Upcoming Call Schedule 3 Poll 1: ...

  9. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    SciTech Connect (OSTI)

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-02-09

    This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003 and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.

  10. Hawaii demand-side management resource assessment. Final report, Reference Volume 3 -- Residential and commercial sector DSM analyses: Detailed results from the DBEDT DSM assessment model; Part 1, Technical potential

    SciTech Connect (OSTI)

    1995-04-01

    The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. Numerous tables and figures illustrating the technical potential for demand-side management are included.

  11. State Renewable Energy Requirements and Goals: Update through 2009 (Update) (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    To the extent possible,Annual Energy Outlook 2010 (AEO) incorporates the impacts of state laws requiring the addition of renewable generation or capacity by utilities doing business in the states. Currently, 30 states and the District of Columbia have enforceable renewable portfolio standards (RPS) or similar laws). Under such standards, each state determines its own levels of generation, eligible technologies, and noncompliance penalties. AEO2010 includes the impacts of all laws in effect as of September 2009 (with the exception of Hawaii, because the National Energy Modeling System provides electricity market projections for the continental United States only).

  12. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark A.; Wiser, Ryan H.

    2010-01-04

    On December 14, 2009, the reference-case projections from Annual Energy Outlook 2010 were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in itigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings.

  13. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX FuturesPrices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2005-12-19

    On December 12, 2005, the reference case projections from ''Annual Energy Outlook 2006'' (AEO 2006) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past five years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past five years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2006. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past five AEO releases (AEO 2001-AEO

  14. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX FuturesPrices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2006-12-06

    On December 5, 2006, the reference case projections from 'Annual Energy Outlook 2007' (AEO 2007) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past six years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past six years at least, levelized cost comparisons of fixed-price renewable generation with variable-price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are 'biased' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2007. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past six AEO releases (AEO 2001-AEO 2006), we

  15. Residential Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2009 10:18 AM http:www.eia.govconsumptioncommercialdataarchivecbecspba99residential.html If you are having any technical problems with this site, please contact the EIA...

  16. Trends in Heating and Cooling Degree Days: Implications for Energy Demand Issues (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    Weather-related energy use, in the form of heating, cooling, and ventilation, accounted for more than 40% of all delivered energy use in residential and commercial buildings in 2006. Given the relatively large amount of energy affected by ambient temperature in the buildings sector, the Energy Information Administration has reevaluated what it considers normal weather for purposes of projecting future energy use for heating, cooling, and ventilation. The Annual Energy Outlook 2008, estimates of normal heating and cooling degree-days are based on the population-weighted average for the 10-year period from 1997 through 2006.

  17. Better Buildings Summit Residential Sessions Engage Energy Pros |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Better Buildings Summit Residential Sessions Engage Energy Pros Better Buildings Summit Residential Sessions Engage Energy Pros This year's DOE Better Buildings Summit, taking place May 27 to 29, 2015, will be the first to engage the residential sector with targeted sessions for home performance professionals. Join us in Washington, D.C., to network with other Better Buildings Residential Network members and discuss a vision for the coming year, including how to overcome

  18. Greenhouse Gas Concerns and Power Sector Planning (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Concerns about potential climate change driven by rising atmospheric concentrations of Greenhouse Gases (GHG) have grown over the past two decades, both domestically and abroad. In the United States, potential policies to limit or reduce GHG emissions are in various stages of development at the state, regional, and federal levels. In addition to ongoing uncertainty with respect to future growth in energy demand and the costs of fuel, labor, and new plant construction, U.S. electric power companies must consider the effects of potential policy changes to limit or reduce GHG emissions that would significantly alter their planning and operating decisions. The possibility of such changes may already be affecting planning decisions for new generating capacity.

  19. Microsoft Word - Final AEO2007 Commercial Doc.doc

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  20. AEO 2015 Electricity, Coal, Nuclear and Renewables Preliminary...

    Gasoline and Diesel Fuel Update (EIA)

    arrangements for coal plants upon expiration - ... - Retire Intermountain plant in 2025 * California ... power sector natural gas-fired generation is lower in ...

  1. Data: Better Buildings Residential Network Members

    Office of Energy Efficiency and Renewable Energy (EERE)

    Better Buildings Residential Network members come from all sectors of the energy efficiency industry to leverage one another's experiences and expertise in an effort to accelerate the pace of energy upgrades in existing homes. Members include state and local governments, nonprofit organizations, utilities, financial institutions, and private-sector companies involved in energy efficiency programs in their locality.

  2. Residential Energy Efficiency Messaging

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Residential Energy Efficiency Messaging, call slides and discussion summary, April 9, 2015.

  3. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2004-12-13

    On December 9, the reference case projections from ''Annual Energy Outlook 2005 (AEO 2005)'' were posted on the Energy Information Administration's (EIA) web site. As some of you may be aware, we at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk. As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past four years, forward natural gas contracts (e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past four years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation (presuming that long-term price stability is valued). In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2005. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or, more recently (and briefly), http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past four AEO releases (AEO 2001-AE0 2004), we once again find that the AEO 2005 reference case gas price forecast falls well below

  4. Analysis & Projections - Pub - U.S. Energy Information Administration...

    U.S. Energy Information Administration (EIA) Indexed Site

    ResidentialCommercial Buildings AEO2016 Meetings First AEO2016 Meeting (December 8, 2015) Summary of meeting Presentation Second AEO2016 Meeting (February 18, 2016) Summary of ...

  5. WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES. DO NOT QUOTE OR CITE AS AEO2016

    U.S. Energy Information Administration (EIA) Indexed Site

    February 1, 2016 MEMORANDUM TO: John Conti Assistant Administrator for Energy Analysis Jim Diefenderfer Director, Office of Electricity, Coal, Nuclear, and Renewables Analysis FROM: Coal and Uranium Analysis Team SUBJECT: Notes from the First AEO2016 Coal Working Group Meeting workshop held on December 1, 2015 Attendees (47) Name Affiliation Ross, Joey Alliance Resource Partners, L.P. Alfaro, Jose L. Alpha Natural Resources Blumenfeld, Andy Arch Coal, Inc. Lewandowski, David Clean Energy James,

  6. WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES. DO NOT QUOTE OR CITE AS AEO2016

    U.S. Energy Information Administration (EIA) Indexed Site

    March 10, 2016 MEMORANDUM TO: John Conti Assistant Administrator for Energy Analysis Jim Diefenderfer Director, Office of Electricity, Coal, Nuclear, and Renewables Analysis FROM: Coal and Uranium Analysis Team SUBJECT: Notes from the Second AEO2016 Coal Working Group Meeting workshop held on February 9, 2016 Attendees (30) Name Affiliation Adams, Greg U.S. DOE: EIA Coleman, Leslie National Mining Association Diefenderfer, Jim U.S. DOE: EIA DiGiantommaso, Jennifer U.S. Department of Labor

  7. Summary of AEO2016 Electricity Working Group Meeting held on December 8, 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    January7, 2016 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Jim Diefenderfer Director, Office of Electricity, Coal, Nuclear, and Renewables Analysis Paul Holtberg Team Leader Analysis Integration Team Office of Integrated and International Energy Analysis FROM: Chris Namovicz Team Leader for Electricity Analysis (acting) And Thad Huetteman, Electricity Analysis Team SUBJECT: Summary of AEO2016 Electricity Working Group Meeting held on December 8, 2015 Presenters: Chris

  8. Model Documentation Report: Residential Sector Demand Module...

    Gasoline and Diesel Fuel Update (EIA)

    The penetration rate for central air-conditioning is estimated by means of time series analysis of RECS survey data. Water Heating: Solar Water Heaters Market shares for solar...

  9. Model Documentation Report: Residential Sector Demand Module...

    Gasoline and Diesel Fuel Update (EIA)

    Stoves Geothermal Heat Pump Natural Gas Heat Pump Variables: HSYSSHR 2006,eg,b,r Benchmarking Data from Short-Term Energy Outlook Definition: Household energy consumption by...

  10. Model Documentation Report: Residential Sector Demand Module...

    Gasoline and Diesel Fuel Update (EIA)

    Stoves Geothermal Heat Pump Natural Gas Heat Pump Variables: HSYSSHR 2001,eg,b,r Benchmarking Data from Short-Term Energy Outlook Definition: Household energy consumption by...

  11. Behavioral Assumptions Underlying California Residential Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... be carefully controlled in terms of treatment delivery ... Knowledge gaps exist before we enter a market and they need ... provides for a broad-based search for relevant articles, as ...

  12. Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient Engine-Driven Heat Pump for the Residential Sector Introduction Building on ... controls and appropriate control algorithms for the multi-function heat pump system ...

  13. Pearl River Valley Electric Power Association- Residential Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the residential sector. Rebates are available for heat...

  14. Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven...

    Office of Environmental Management (EM)

    Engine-Driven Heat Pump for the Residential Sector - Fact Sheet, 2016 Southwest Gas Corporation, in collaboration with IntelliChoice Energy and Oak Ridge National Laboratory, ...

  15. Analysis methods for fast impurity ion dynamics data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Residential/Commercial Buildings AEO2016 Meetings First AEO2016 Meeting (December 8, 2015) Summary of meeting Presentation Second AEO2016 Meeting (February 18, 2016) Summary of meeting Presentation AEO2015 Meetings First AEO2015 Meeting (August 7, 2014) Summary of meeting Presentation AEO2014 Meetings First AEO2014 Meeting (July 22, 2013) Summary of meeting Presentation Second AEO2014 Meeting (September 26, 2013) Summary of meeting Presentation AEO2013 Meetings First AEO2013 Assumptions Meeting

  16. Residential Marketing Toolkit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  17. Optional Residential Program Benchmarking

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Data and Evaluation Peer Exchange Call Series: Optional Residential Program Benchmarking, Call Slides and Discussion Summary, January 23, 2014.

  18. residential-lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Progress Report Evaluation Utility Toolkit Residential Lighting Market Research The Residential Lighting Market Research Project will estimate market savings from...

  19. Residential Absorption Water Heater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Absorption Water Heater 2014 Building Technologies Office Peer Review Kyle ... Target MarketAudience: Residential gas water heating Key Partners: GE CRADA partner SRA ...

  20. Overview of Levelized Cost of Energy in the AEO

    U.S. Energy Information Administration (EIA) Indexed Site

    Presented to the EIA Energy Conference June 17, 2013 Chris Namovicz Assessing the Economic Value of New Utility-Scale Renewable Generation Projects Overview * Levelized cost of energy (LCOE) has been used by planners, analysts, policymakers, advocates and others to assess the economic competitiveness of technology options in the electric power sector * While of limited usefulness in the analysis of "conventional" utility systems, this approach is not generally appropriate when

  1. Better Buildings Residential Network | Department of Energy

    Energy Savers [EERE]

    Residential Buildings Better Buildings Residential Network Better Buildings Residential Network Better Buildings Residential Network Explore Latest Peer Exchange Call Summaries ...

  2. Energy Intensity Indicators: Indicators for Major Sectors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy for Major Sectors Energy Intensity Indicators: Indicators for Major Sectors This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors - transportation, industry, commercial, and residential, as well as the electric power sector. These sectors are shown in Figure 1. Please go to the menu below the figure to see a more detailed discussion of historical trends in the energy intensity indicator for a particular sector.

  3. Estimated United States Residential Energy Use in 2005

    SciTech Connect (OSTI)

    Smith, C A; Johnson, D M; Simon, A J; Belles, R D

    2011-12-12

    A flow chart depicting energy flow in the residential sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 11,000 trillion British Thermal Units (trBTUs) of electricity and fuels were used throughout the United States residential sector in lighting, electronics, air conditioning, space heating, water heating, washing appliances, cooking appliances, refrigerators, and other appliances. The residential sector is powered mainly by electricity and natural gas. Other fuels used include petroleum products (fuel oil, liquefied petroleum gas and kerosene), biomass (wood), and on-premises solar, wind, and geothermal energy. The flow patterns represent a comprehensive systems view of energy used within the residential sector.

  4. Clean Energy Finance Guide for Residential and Commercial Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... What is the size of individual loans to homeowners? FIs need to understand that most lending in the residential sector for energy efficiency projects involves small loans that are ...

  5. Federal Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events Skip navigation links Residential Commercial Industrial Federal Agriculture About five percent of BPA's total electric supply goes to power facilities around...

  6. Average Residential Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Average Residential Price Residential Price - Local Distribution Companies Residential Price - Marketers Residential % Sold by Local Distribution Companies Average Commercial Price Commercial Price - Local Distribution Companies Commerical Price - Marketers Commercial % Sold by Local Distribution Companies Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011

  7. A sensitivity analysis of the treatment of wind energy in the AEO99 version of NEMS

    SciTech Connect (OSTI)

    Osborn, Julie G; Wood, Frances; Richey, Cooper; Sanders, Sandy; Short, Walter; Koomey, Jonathan

    2001-01-01

    Each year, the U.S. Department of Energy's Energy Information Administration (EIA) publishes a forecast of the domestic energy economy in the Annual Energy Outlook (AEO). During the forecast period of the AEO (currently through 2020), renewable energy technologies have typically not achieved significant growth. The contribution of renewable technologies as electric generators becomes more important, however, in scenarios analyzing greenhouse gas emissions reductions or significant technological advancements. We examined the economic assumptions about wind power used for producing forecasts with the National Energy Modeling System (NEMS) to determine their influence on the projected capacity expansion of this technology. This analysis should help illustrate to policymakers what types of issues may affect wind development, and improve the general understanding of the NEMS model itself. Figure 1 illustrates the model structure and factors relevant to wind deployment. We found that NEMS uses various cost multipliers and constraints to represent potential physical and economic limitations to growth in wind capacity, such as resource depletion, costs associated with rapid manufacturing expansion, and grid stability with high levels of capacity from intermittent resources. The model's flexibility allows the user to make alternative assumptions about the magnitude of these factors. While these assumptions have little effect on the Reference Case forecast for the 1999 edition of the AEO, they can make a dramatic difference when wind is more attractive, such as under a carbon permit trading system. With $100/ton carbon permits, the wind capacity projection for 2020 ranges from 15 GW in the unaltered model (AEO99 Reference Case) to 168 GW in the extreme case when all the multipliers and constraints examined in this study are removed. Furthermore, if modifications are made to the model allowing inter-regional transmission of electricity, wind capacity is forecast to reach 214

  8. Mercury Emissions Control Technologies (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    The Annual Energy Outlook 2006 reference case assumes that states will comply with the requirements of the Environmental Protection Agency's new Clean Air Mercury Rule (CAMR) regulation. CAMR is a two-phase program, with a Phase I cap of 38 tons of mercury emitted from all U.S. power plants in 2010 and a Phase II cap of 15 tons in 2018. Mercury emissions in the electricity generation sector in 2003 are estimated at around 50 tons. Generators have a variety of options to meet the mercury limits, such as: switching to coal with a lower mercury content, relying on flue gas desulfurization or selective catalytic reduction equipment to reduce mercury emissions, or installing conventional activated carbon injection (ACI) technology.

  9. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Puget Sound Energy Inc","Investor-owned",20568948...

  10. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-ow...

  11. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-owned...

  12. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"MidAmerican Energy Co","Investor-owned",20585461,570529...

  13. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"NorthWestern Energy LLC - (MT)","Investor-owned",597...

  14. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Westar Energy Inc","Investor-owned",9973395,3434301,4...

  15. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Duke Energy Carolinas, LLC","Investor-owned",567506...

  16. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"First Energy Solutions Corp.","Investor-owned",41994756...

  17. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"First Energy Solutions Corp.","Investor-owned",...

  18. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Duke Energy Indiana Inc","Investor-owned",28224148,9...

  19. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Reliant Energy Retail Services","Investor-owned",38670...

  20. Table 7b. Natural Gas Price, Electric Power Sector, Actual vs. Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Natural Gas Price, Electric Power Sector, Actual vs. Projected Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2.49 2.60 2.76 2.93 3.05 3.24 3.39 3.60 3.86 4.15 4.40 4.70 5.08 5.39 5.85 6.27 6.59 7.01 AEO 1995 2.44 2.61 2.61 2.70 2.78 2.95 3.11 3.44 3.72 4.10 4.43 4.78 5.07 5.33 5.64 5.95 6.23 AEO 1996 2.08 2.19 2.20 2.39 2.47 2.54 2.64 2.74 2.84 2.95 3.09

  1. Residential Solar Investment Program

    Broader source: Energy.gov [DOE]

    In March 2012, the CT Green Bank* unveiled its solar photovoltaic residential investment program with the ultimate goal to support 30 megawatts of residential solar photovoltaics (PV). HB 6838...

  2. Leasing Residential PV Systems

    SciTech Connect (OSTI)

    Rutberg, Michael; Bouza, Antonio

    2013-11-01

    The article discusses the adoption, consequences and current market status of the leasing of residential photovoltaic systems. It addresses attributed energy savings and market potential of residential system leasing.

  3. Residential propane price decreases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    05, 2014 Residential propane price decreases The average retail price for propane fell to 2.40 per gallon, down 1.2 cents from a week ago, based on the residential heating fuel ...

  4. Residential propane price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    6, 2014 Residential propane price decreases The average retail price for propane fell to 3.48 per gallon, down 15.9 cents from a week ago, based on the residential heating fuel ...

  5. Residential propane price decreases

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8, 2015 Residential propane price decreases The average retail price for propane is 2.34 per gallon, down 1.7 cents from last week, based on the residential heating fuel survey by ...

  6. Residential propane prices available

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4, 2015 Residential propane price increases The average retail price for propane is 1.92 per gallon, up 1.4 cents from last week, based on the residential heating fuel survey by ...

  7. Residential propane price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential propane price decreases The average retail price for propane is 2.03 per gallon, down 2-tenths of a cent from last week, based on the residential heating fuel survey ...

  8. Residential propane prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    8, 2015 Residential propane price increases The average retail price for propane is 1.91 per gallon, up 1.4 cents from last week, based on the residential heating fuel survey by ...

  9. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    5, 2014 Residential propane price decreases The average retail price for propane fell to 3.30 per gallon, down 17.5 cents from a week ago, based on the residential heating fuel ...

  10. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is 2.02 per gallon, down 5-tenths of a cent from last week, based on the residential heating fuel survey ...

  11. Residential propane prices decreases

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5, 2014 Residential propane prices decreases The average retail price for propane fell to 3.89 per gallon, that's down 11.9 cents from a week ago, based on the residential heating ...

  12. Residential propane prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential propane price decreases The average retail price for propane is 1.91 per gallon, down 6.7 cents from last week, based on the residential heating fuel survey by the ...

  13. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    2, 2014 Residential propane price decreases The average retail price for propane fell to 3.17 per gallon, down 13.1 cents from a week ago, based on the residential heating fuel ...

  14. Residential propane price increases

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Residential propane virtually unchanged The average retail price for propane is 2.02 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel survey ...

  15. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    8, 2015 Residential propane price increases The average retail price for propane is 1.94 per gallon, up 2 cents from last week, based on the residential heating fuel survey by the ...

  16. Residential propane prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential propane price decreases The average retail price for propane is 1.92 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey ...

  17. Residential propane prices available

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1, 2015 Residential propane price increases The average retail price for propane is 1.90 per gallon, up 2-tenths of a cent from last week, based on the residential heating fuel ...

  18. Residential propane price increases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Residential propane price decreases The average retail price for propane is 2.01 per gallon, down 8-tenths of a cent from last week, based on the residential heating fuel survey ...

  19. Residential propane prices surges

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2014 Residential propane price decreases The average retail price for propane fell to 3.08 per gallon, down 8.6 cents from a week ago, based on the residential heating fuel ...

  20. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is 2.03 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey ...

  1. Residential propane price increases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2015 Residential propane price increases The average retail price for propane is 2.36 per gallon, up half of a cent from last week, based on the residential heating fuel survey ...

  2. Residential propane price increases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Residential propane price virtually unchanged The average retail price for propane is 2.03 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel ...

  3. Residential Buildings Integration Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Program Existing Homes HUD The residential program is grounded on technology and research. ... * Quantitative (reporting) * Qualitative (account management, peer exchange ...

  4. Residential Energy Consumption Survey:

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... ...*...,,.<,<,...,,.,,.,,. 97 Table 6. Residential Fuel Oil and Kerosene Consumption and Expenditures April 1979 Through March 1980 Northeast...

  5. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark A; Bolinger, Mark; Wiser, Ryan

    2008-01-07

    On December 12, 2007, the reference-case projections from Annual Energy Outlook 2008 (AEO 2008) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof) or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers (though its appeal has diminished somewhat as prices have increased); and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal and

  6. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2009-01-28

    On December 17, 2008, the reference-case projections from Annual Energy Outlook 2009 (AEO 2009) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof), differences in capital costs and O&M expenses, or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired or nuclear generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers; and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal, uranium, and

  7. National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    This technical highlight describes NREL research to develop a publicly available database of energy retrofit measures containing performance characteristics and cost estimates for nearly 3,000 measures. Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost-effective retrofit measures to improve the energy efficiency of residential buildings. The database provides a single, consistent source of current data for DOE and private-sector energy audit and simulation software tools and the retrofit industry. The database will reduce risk for residential retrofit industry stakeholders by providing a central, publicly vetted source of up-to-date information.

  8. National Grid (Electric) - Residential Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility Residential InstallersContractors Multifamily Residential Low Income Residential Savings Category RefrigeratorsFreezers Equipment Insulation Water Heaters...

  9. National Grid (Electric) - Residential Energy Efficiency Incentive...

    Broader source: Energy.gov (indexed) [DOE]

    Construction Residential Multifamily Residential Low Income Residential Savings Category RefrigeratorsFreezers Dehumidifiers Water Heaters Lighting Heat Pumps Air conditioners...

  10. Residential Energy Efficiency Messaging | Department of Energy

    Energy Savers [EERE]

    Messaging Residential Energy Efficiency Messaging Better Buildings Residential Network Peer Exchange Call Series: Residential Energy Efficiency Messaging, call slides and ...