Sample records for aecl atomic energy

  1. Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation

    E-Print Network [OSTI]

    Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

    1998-01-01T23:59:59.000Z

    D. Sullivan, D. S. Cox, "AECL's Progress in developing theFuel Fabrication Process," AECL, Chalk River Laboratory,Atomic Energy of Canada, Limited (AECL) on July 12, 1996 for

  2. L'Institut de Gnie Nuclaire de l'cole Polytechnique a obtenue une importante subvention de recherche, en partenariat avec l'Atomic Energy of Canada Limited

    E-Print Network [OSTI]

    Meunier, Michel

    de recherche, en partenariat avec l'Atomic Energy of Canada Limited (AECL), portant sur la mise au sera réalisé en partenariat étroit avec l'AECL, ce qui favorisera l'intégration futur du candidat dans recherche de l'AECL) en géométrie hexagonale. Contact Tout candidat à cette offre est invité à transmettre

  3. Radiochemistry Lab Decommissioning and Dismantlement. AECL, Chalk River Labs, Ontario, Canada

    SciTech Connect (OSTI)

    Kenny, Stephen [Acting Director of Waste Management and Decommissioning Operations, AECL, Chalk River Labs, Chalk River, Ont. (Canada)

    2008-01-15T23:59:59.000Z

    Atomic Energy of Canada (AECL) was originally founded in the mid 1940's to perform research in radiation and nuclear areas under the Canadian Defense Department. In the mid 50's The Canadian government embarked on several research and development programs for the development of the Candu Reactor. AECL was initially built as a temporary site and is now faced with many redundant buildings. Prior to 2004 small amounts of Decommissioning work was in progress. Many reasons for deferring decommissioning activities were used with the predominant ones being: 1. Reduction in radiation doses to workers during the final dismantlement, 2. Development of a long-term solution for the management of radioactive wastes in Canada, 3. Financial constraints presented by the number of facilities shutdown that would require decommissioning funds and the absence of an approved funding strategy. This has led to the development of a comprehensive decommissioning plan that is all inclusive of AECL's current and legacy liabilities. Canada does not have a long-term disposal site; therefore waste minimization becomes the driving factor behind decontamination for decommissioning before and during dismantlement. This decommissioning job was a great learning experience for decommissioning and the associated contractors who worked on this project. Throughout the life of the project there was a constant focus on waste minimization. This focus was constantly in conflict with regulatory compliance primarily with respect to fire regulations and protecting the facility along with adjacent facilities during the decommissioning activities. Discrepancies in historical documents forced the project to treat every space as a contaminated space until proven differently. Decommissioning and dismantlement within an operating site adds to the complexity of the tasks especially when it is being conducted in the heart of the plant. This project was very successful with no lost time accidents in over one hundred thousand hours worked, on schedule and under budget despite some significant changes throughout the decommissioning phases. The actual cost to decommission this building will come in under 9 million dollars vs. an estimated 14.5 million dollars. This paper will cover some of the unique aspects of dismantling a radioactive building that has seen pretty much every element of the periodic table pass through it with the client requirement focused on minimization of radioactive waste volumes.

  4. Waste Management Improvement Initiatives at Atomic Energy of Canada Limited - 13091

    SciTech Connect (OSTI)

    Chan, Nicholas; Adams, Lynne; Wong, Pierre [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)] [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

    2013-07-01T23:59:59.000Z

    Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) has been in operation for over 60 years. Radioactive, mixed, hazardous and non-hazardous wastes have been and continue to be generated at CRL as a result of research and development, radioisotope production, reactor operation and facility decommissioning activities. AECL has implemented several improvement initiatives at CRL to simplify the interface between waste generators and waste receivers: - Introduction of trained Waste Officers representing their facilities or activities at CRL; - Establishment of a Waste Management Customer Support Service as a Single-Point of Contact to provide guidance to waste generators for all waste management processes; and - Implementation of a streamlined approach for waste identification with emphasis on early identification of waste types and potential disposition paths. As a result of implementing these improvement initiatives, improvements in waste management and waste transfer efficiencies have been realized at CRL. These included: 1) waste generators contacting the Customer Support Service for information or guidance instead of various waste receivers; 2) more clear and consistent guidance provided to waste generators for waste management through the Customer Support Service; 3) more consistent and correct waste information provided to waste receivers through Waste Officers, resulting in reduced time and resources required for waste management (i.e., overall cost); 4) improved waste minimization and segregation approaches, as identified by in-house Waste Officers; and 5) enhanced communication between waste generators and waste management groups. (authors)

  5. E-Print Network 3.0 - aecl whiteshell laboratories Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Canada Limited (AECL), a federal crown... to save AECL's unique CANDU (CANada Deuterium Uranium) technology be- cause that technology is based... on the use of "heavy water,"...

  6. ATOMIC ENERGY COMMISSION

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r. aw wL2--\ AP R

  7. ATOMIC ENERGY COMMISSION C

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)Productssondeadjustsondeadjust DocumentationARMStreamsUSBudget AdvancedASSESSING AND9NOV98 ExpCOMMISSION

  8. General Atomics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County, Ohio: Energy Resources Jump to:GenabilityAtomics Jump

  9. Atomic Energy Commission Takes Over Responsibility for all Atomic...

    National Nuclear Security Administration (NNSA)

    Takes Over Responsibility for all Atomic Energy Programs | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  10. Atomic Energy and Nuclear Materials Program (Tennessee)

    Broader source: Energy.gov [DOE]

    The Atomic Energy and Nuclear Materials section of the Tennessee Code covers all of the regulations, licenses, permits, siting requirements, and practices relevant to a nuclear energy development. ...

  11. THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES

    E-Print Network [OSTI]

    Wang, J.S.Y.

    2013-01-01T23:59:59.000Z

    FINI KBS, repository; AECL, repository CFEST Sutter Basin,Energy of Canada 0 Limited (AECL) project for a granitedirection implicit method AECL Atomic Energy of Canada,

  12. US DOE-AECL cooperative program for development of high-level radioactive waste container fabrication, closure, and inspection techniques

    SciTech Connect (OSTI)

    Russell, E.W.

    1990-06-01T23:59:59.000Z

    The US Department of Energy (DOE) and Atomic Energy of Canada Limited (AECL) plan to initiate a cooperative research program on development of manufacturing processes for high-level radioactive waste containers. This joint program will benefit both countries in the development of processes for the fabrication, final closure in a hot-cell, and certification of the containers. Program activity objectives can be summarized as follows: to support the selection of suitable container fabrication, final closure, and inspection techniques for the candidate materials and container designs that are under development or are being considered in the US and Canadian repository programs; and to investigate these techniques for alternate materials and/or container designs, to be determined in future optimization studies relating to long-term performance of the waste packages. The program participants will carry out this work in a conditional phased approach, and the scope of work for subsequent years will evolve subject to developments in earlier years. The overall term of this cooperative program is planned to run roughly three years. 5 refs., 2 tabs.

  13. so Ris Report * Danish Atomic Energy Commission

    E-Print Network [OSTI]

    in Bitumen of Low-Level Radioactive Waste Water Evaporator Concentrate at the Danish Atomic Energy Com Incorporation in Bitumen of Low-Level Radioactive Waste Water Evaporator Concentrate at the Danish Atomic Energy Risø Chemistry Department Abstract The plant for evaporation of radioactive waste water at the Research

  14. Office of Science and Technology & International Year End Report - 2005

    E-Print Network [OSTI]

    Bodvarsson, G.S.

    2005-01-01T23:59:59.000Z

    Atomic Energy of Canada Limited (AECL). The Director of thesolutions (see Ikeda, AECL) Figure 2. Analytical model forof chlo- ride concentration. AECL-10971, COG-95-279, 1996.

  15. Ps-atom scattering at low energies

    E-Print Network [OSTI]

    Fabrikant, I I

    2015-01-01T23:59:59.000Z

    A pseudopotential for positronium-atom interaction, based on electron-atom and positron-atom phase shifts, is constructed, and the phase shifts for Ps-Kr and Ps-Ar scattering are calculated. This approach allows us to extend the Ps-atom cross sections, obtained previously in the impulse approximation [Phys. Rev. Lett. 112, 243201 (2014)], to energies below the Ps ionization threshold. Although experimental data are not available in this low-energy region, our results describe well the tendency of the measured cross sections to drop with decreasing velocity at $venergy region, in contrast to the inter...

  16. Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions...

    National Nuclear Security Administration (NNSA)

    Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline Atomic Energy Commission Explores Peaceful Uses of ... Atomic Energy Commission Explores Peaceful...

  17. The Future of Atomic Energy

    DOE R&D Accomplishments [OSTI]

    Fermi, E.

    1946-05-27T23:59:59.000Z

    There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

  18. E-Print Network 3.0 - aecl Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deuterium Uranium) technology be- cause that technology is based... on the use of "heavy water," whereas AECL's major global competitors use "light-wa- ter" technology.2 If...

  19. 5 1 Danish Atomic Energy Commission 3 Research Establishment Ris

    E-Print Network [OSTI]

    Sponsored by The Danish Atomic Energy Commission and International Atomic Energy Agency Editor V. MejdahlSK S I§ 5 1 Danish Atomic Energy Commission 3 § Research Establishment Risø Risø Report No. 249 P u at the Danish AEC Research Establishment Risø 11-14 October 1971 Sponsored by The Danish Atomic Energy Commit

  20. Budget Atomization | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy andNews and updatesStudyEnergy9:00PM EST toHoward

  1. U. S. Atomic Energy Commission

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO: FILE FROM:DEC. i_

  2. U. S. Atomic Energy Commission

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO: FILE FROM:DEC. i_Commission

  3. UNITED STATES ATOMIC ENERGY COMMISSION

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO: FILE FROM:DEC.lpx--., * : .

  4. UNITED STATES ATOMIC ENERGY COMMISSION

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO: FILE FROM:DEC.lpx--., * :

  5. UNITED STATES ATOMIC ENERGY COMMISSION

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO: FILE FROM:DEC.lpx--., * :I(S.0

  6. u. S. Atomic Energy Commission

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_ ,' .'41 November

  7. Atomic Energy Commission Takes Over Responsibility for all Atomic Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience Program Cumulus Humilis Aerosol ProcessingPrograms | National

  8. ATOMIC ENERGY ACT OF 1946

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects of GlobalASCR UserProgramI -ATHENA could ATLASACT

  9. The Future of Atomic Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2DifferentThe Five FastestFuture is bright

  10. Pionic atoms and low energy elastic scattering

    SciTech Connect (OSTI)

    Stricker, K.; Carr, J.A.; McManus, H.

    1980-11-01T23:59:59.000Z

    A fit to pionic atom data is used to determine four of the parameters of the low energy pion-nucleus optical potential, while the other parameters are taken from theory. The resulting potential is used to predict elastic scattering from 30 --50 MeV pions. The effects of extrapolating the parameters to 50 MeV with a simple energy dependence are examined.

  11. Probing Dark Energy with Atom Interferometry

    E-Print Network [OSTI]

    Clare Burrage; Edmund J. Copeland; E. A. Hinds

    2014-08-06T23:59:59.000Z

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  12. On the energy of electric field in hydrogen atom

    E-Print Network [OSTI]

    Yuri Kornyushin

    2009-07-30T23:59:59.000Z

    It is shown that hydrogen atom is a unique object in physics having negative energy of electric field, which is present in the atom. This refers also to some hydrogen-type atoms: hydrogen anti-atom, atom composed of proton and antiproton, and positronium.

  13. atomic energy levels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atomic energy levels A. Yilmaz; G. Hacibekiroglu; E. Bolcal; Y. Polatoglu 2008-04-01 2 Energy Levels of "Hydrogen Atom" in Discrete Time Dynamics Quantum Physics (arXiv)...

  14. Low energy neutral atom imaging techniques

    SciTech Connect (OSTI)

    Funsten, H.O. McComas, D.J.; Scime, E.E.

    1993-01-01T23:59:59.000Z

    The potential scientific return from low energy neutral atom (LENA) imaging of the magnetosphere is extraordinary. The technical challenges of LENA detection include (1) removal of LENAs from the tremendous ambient UV without losing information of their incident trajectories, (2) quantification of their trajectories, and (3) obtaining high sensitivity measurements. Two techniques that have been proposed for this purpose are based on fundamentally different atomic interaction mechanisms between LENAs and a solid: LENA transmission through an ultrathin foil and LENA reflection from a solid surface. Both of these methods provide LENA ionization (for subsequent removal from the UV by electrostatic deflection) and secondary electron emission (for start pulse generation for time-of-flight and/or coincidence). We present a comparative study of the transmission and reflection techniques based on differences in atomic interactions with solids and surfaces. We show that transmission methods yield an order of magnitude greater secondary electron emission than reflection methods. Transmission methods are shown to be sufficient for LENA energies of approximately 1 keV to greater than 30 keV. Reflection methods using low work function surfaces could be employed for LENA ionization for energies less than several keV.

  15. The Atomic Energy Commission By Alice Buck

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy TechnicalFlow RoomTexas(EAP)Atomic Energy Commission

  16. THERMODYNAMIC TABLES FOR NUCLEAR WASTE ISOLATION, V.1: AQUEOUS SOLUTIONS DATABASE

    E-Print Network [OSTI]

    Phillips, S.L.; Hale, F.V.; Silvester, L.F.

    2008-01-01T23:59:59.000Z

    Groundwaters from 25 to 150C", AECL-7817, Atomic Energy ofUranium-Water System". AECL-9549, Atomic Energy of Canada

  17. atomic energy community: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to help small communities develop new energy use and production models centered around "green Walter, M.Todd 3 Atomic Energy for Military Purposes Biology and Medicine Websites...

  18. Theoretical investigation of energy-trapping mechanism by atomic systems

    E-Print Network [OSTI]

    Srivastava, Rajendra P.

    1978-06-01T23:59:59.000Z

    The theoretical results are presented here in detail for the atomic device proposed earlier by the author. This device absorbs energy from a continuous radiation source and stores some of it with atoms in metastable states ...

  19. Atoms for peace and war, 1953-1961: Eisenhower and the Atomic Energy Commission

    SciTech Connect (OSTI)

    Hewlett, Richard G.; Holl, Jack M.

    1989-12-01T23:59:59.000Z

    This third volume in the official history of the U.S. Atomic Energy Commission covers the years of the Eisenhower Administration.

  20. Atom-interferometry constraints on dark energy

    E-Print Network [OSTI]

    Hamilton, Paul; Haslinger, Philipp; Simmons, Quinn; Mller, Holger; Khoury, Justin

    2015-01-01T23:59:59.000Z

    If dark energy---which drives the accelerated expansion of the universe---consists of a new light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. There has, however, been much theoretical progress in developing theories with screening mechanisms, which can evade detection by suppressing forces in regions of high density, such as the laboratory. One prominent example is the chameleon field. We reduce the effect of this screening mechanism by probing the chameleon with individual atoms rather than bulk matter. Using a cesium matter-wave interferometer near a spherical mass in an ultra-high vacuum chamber, we constrain a wide class of dynamical dark energy theories. Our experiment excludes a range of chameleon theories that reproduce the observed cosmic acceleration.

  1. DEMONSTRATION SOLIDIFICATION TESTS CONDUCTED ON RADIOACTIVELY CONTAMINATED ORGANIC LIQUIDS AT THE AECL WHITESHELL LABORATORIES

    SciTech Connect (OSTI)

    Ryz, R. A.; Brunkow, W. G.; Govers, R.; Campbell, D.; Krause, D.

    2002-02-25T23:59:59.000Z

    The AECL, Whiteshell Laboratory (WL) near Pinawa Manitoba, Canada, was established in the early 1960's to carry out AECL research and development activities for higher temperature versions of the CANDU{reg_sign} reactor. The initial focus of the research program was the Whiteshell Reactor-1 (WR-1) Organic Cooled Reactor (OCR) that began operation in 1965. The OCR program was discontinued in the early 1970's in favor of the successful heavy-water-cooled CANDU system. WR-1 continued to operate until 1985 in support of AECL nuclear research programs. A consequence of the Federal government's recent program review process was AECL's business decision to discontinue research programs and operations at the Whiteshell Laboratories and to consolidate its' activities at the Chalk River Laboratories. As a result, AECL received government concurrence in 1998 to proceed to plan actions to achieve closure of WL. The planning actions now in progress address the need to safely and effectively transition the WL site from an operational state, in support of AECL's business, to a shutdown and decommissioned state that meets the regulatory requirements for a licensed nuclear site. The decommissioning program that will be required at WL is unique within AECL and Canada since it will need to address the entire research site rather than individual facilities declared redundant. Accordingly, the site nuclear facilities are being systematically placed in a safe shutdown state and planning for the decommissioning work to place the facilities in a secure monitoring and surveillance state is in progress. One aspect of the shutdown activities is to deal with the legacy of radioactively contaminated organic liquid wastes. Use of a polymer powder to solidify these organic wastes was identified as one possibility for improved interim storage of this material pending final disposition.

  2. atomic energy program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atomic energy program First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Atomizer: A Dynamic Atomicity...

  3. australian atomic energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wood begins his narrative on the pioneering years of solar 9 International Atomic Energy Agency CiteSeer Summary: Global warming is acknowledged as a major crisis facing...

  4. UNITED STATES ATOMIC ENERGY COMMISSION CHICAGO OPERATIONS OFFICE

    Office of Legacy Management (LM)

    ,, . UNITED STATES ATOMIC ENERGY COMMISSION CHICAGO OPERATIONS OFFICE TELEPHONE 9600 SOUTH CASS AVENUE (312) 739-7711 ARCONNE. ILLINOIS 60439 ," . i ' > ;.:a c. JAN 17 1975...

  5. R6 Report No. 245 Danish Atomic Energy Commission

    E-Print Network [OSTI]

    I Rå6 Report No. 245 Danish Atomic Energy Commission Research Establishment Riso Environmental'O by A. Aarkrog and J. Lippert The Danish Atomic Energy Commission Research Establishment RisS HealthDenmark in 1970. Sr-90 was determined in samples from all over the country of precipitation, soil, ground water

  6. ) Ris6-M-137A Danish Atomic Energy Commission

    E-Print Network [OSTI]

    *n ) Ris6-M-137A SM Wim^^^^ Danish Atomic Energy Commission Research Establishment faiso #12;7^TE7K by two fault tree methods used in a combined way to deter- mine the logical connections between from the Library of the Danish Atomic Energy Commission (Atomenergikommissionens Bibliotek), Risø

  7. Riv Report No. 200 Danish Atomic Energy Commission

    E-Print Network [OSTI]

    i Riv Report No. 200 Danish Atomic Energy Commission Research Establishment Ris Studies-1307 CoptnlHfm K, Damuk Avalhblt on rxchange from: Litary, DMU* Atomic Energy RiM, DK-4000 Rnk Species 78 35.4. Root Crops 81 3.2.5. Wild Plants 81 3.2.6. Allium Species 82 3.2.7. Comparison

  8. Ris6 Report No. 145 Danish Atomic Energy Commission

    E-Print Network [OSTI]

    -29 June, 1966, in the Sagamore, Lake George, New York. #12;- 2 - CONTENTS Page Abstract 1 1. IntroductionRis6 Report No. 145 Danish Atomic Energy Commission Research Establishment Riso Joining Methods App. Gjellerup, »7, Sølvgade, Copenhagen K, Denmark Araltabl* m txehwi$t from: Library, Danish Atomic Energy

  9. atomic energy agency: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atomic energy agency First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 International Atomic Energy Agency...

  10. atomic energy commission: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atomic energy commission First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Danish Atomic Energy...

  11. The Ground State Energy of Heavy Atoms: the Leading Correction

    E-Print Network [OSTI]

    Michael Handrek; Heinz Siedentop

    2014-11-21T23:59:59.000Z

    For heavy atoms (large atomic number $Z$) described by no-pair operators in the Furry picture we find the ground state's leading energy correction. We compare the result with (semi-)empirical values and Schwinger's prediction showing more than qualitative agreement.

  12. atomic energy research establishment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atomic energy research establishment First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Danish Atomic...

  13. atomic energy programs: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy programs First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Atomizer: A Dynamic Atomicity Checker...

  14. Energy Levels of "Hydrogen Atom" in Discrete Time Dynamics

    E-Print Network [OSTI]

    Andrei Khrennikov; Yaroslav Volovich

    2006-04-27T23:59:59.000Z

    We analyze dynamical consequences of a conjecture that there exists a fundamental (indivisible) quant of time. In particular we study the problem of discrete energy levels of hydrogen atom. We are able to reconstruct potential which in discrete time formalism leads to energy levels of unperturbed hydrogen atom. We also consider linear energy levels of quantum harmonic oscillator and show how they are produced in the discrete time formalism. More generally, we show that in discrete time formalism finite motion in central potential leads to discrete energy spectrum, the property which is common for quantum mechanical theory. Thus deterministic (but discrete time!) dynamics is compatible with discrete energy levels.

  15. atom kinetic energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    .self-consistent Thomas Fermi TF atom discussed w Kais, Sabre 3 Towards an exact orbital-free single-particle kinetic energy density for the inhomogeneous electron liquid in the...

  16. Part 810-ASSISTANCE TO FOREIGN ATOMIC ENERGY ACTIVITIES Sec.

    National Nuclear Security Administration (NNSA)

    Final Rule (effective March 25, 2015) Comments Part 810-ASSISTANCE TO FOREIGN ATOMIC ENERGY ACTIVITIES Sec. 810.1 Purpose. 810.2 Scope. 810.3 Definitions. 810.4 Communications....

  17. Atomic Energy and Radiation Control Act (South Carolina)

    Broader source: Energy.gov [DOE]

    The Division of State Development within the Department of Commerce is responsible for the promotion and development of atomic energy in the state, and is authorized to enact relevant rules and...

  18. E-Print Network 3.0 - atomic energy field Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    time, the ... Source: Experimental High Energy Physics Collection: Plasma Physics and Fusion ; Physics 2 Atomic physics 1. Mass and size of atoms Summary: energy are detected...

  19. The Harnessed Atom | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergy SecretarySeries |EnergyTitan 1

  20. KAIST {jmcho, yjoh, jbyoo, cha}@salmosa.kaist.ac.kr

    E-Print Network [OSTI]

    System . 2.2. 2.3.4 , AECL(The Atomic Energy of Cnanda Limited) . [2] AECL FRS for Nuclear Domain) . KSSAN AECL . ACEL DFD FOD(Function Overview Diagrams) condition-event SDT

  1. Proceedings of the Second International Symposium on Dynamics of Fluids in Fractured Rock

    E-Print Network [OSTI]

    Faybishenko, Boris; Witherspoon, Paul A.

    2004-01-01T23:59:59.000Z

    and 1996, Atomic Energy of Canada (AECL) took a lead role inProgram. Starting in 1982, AECL constructed the URL atand was in close contact with the AECL in Canada, which was

  2. Ri* Report No. 139 Danish Atomic Energy Commission

    E-Print Network [OSTI]

    I 3 Ri* Report No. 139 Danish Atomic Energy Commission Research Establishment Riso Metallurgy Energy Commission Research Establishment Riso METALLURGY DEPARTMENT ANNUAL PROGRESS REPORT for th* Period, the Central Welding Institution and the Metallurgy Department has begun an evaluation of what research

  3. Ris Report No. 285 Danish Atomic Energy Commission

    E-Print Network [OSTI]

    X / Risø Report No. 285 c Danish Atomic Energy Commission Research Establishment Risø On the Kinetic Energy Spectrum of Atmospheric Motions in the Planetary Boundary Layer by Erik Lundtarg Petersen January 1975 Sola (Uitrlpuon: ivA. OJfttorap, 17, M v p * , DK-1W7 Afotloblt on txekangtfrom: Library, Dtt

  4. atom energy distributions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atom energy distributions First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Energy distribution and...

  5. atom energy transfer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atom energy transfer First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Low-energy charge transfer for...

  6. atomic energy research: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy research First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Danish Atomic Energy Commission...

  7. atomic energy project: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy project First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 International Atomic Energy Agency...

  8. Assistance to Foreign Atomic Energy Activities

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77 Sandia

  9. Assistance to Foreign Atomic Energy Activities

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77 SandiaGuidance to the Revised Part 810

  10. Sandia National Laboratories: International Atomic Energy Agency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit atVehicleEnergyPolydots Internal Correlations

  11. Danish Atomic Energy Commission Research Establishment Ris

    E-Print Network [OSTI]

    , of steel pressure ves- sels for nuclear plants. During proof testing it is evident that the location This report was prepared for the Commission of European Commu- nities - Nuclear EnergyAgency (NEA - CREST in Nuclear Plants. It continues the report Risø-M-1429 under the same title. The present report is based

  12. Atom-split it for nuclear energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience Program Cumulus Humilis Aerosol Processing Study

  13. United Nations Atomic Energy Commission stalls out

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear23,Diversity part 2using StatesNations

  14. United States Atomic Energy Commission formed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear23,Diversity part 2usingStatesofformed

  15. Preliminary steps to the Atomic Energy Commission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point07.06 Agenda 2006Uptake Propertiessteps to

  16. Moving closer to the Atomic Energy Commission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface1 EEnergy,Moving Toward a

  17. FttsWd-1679 Danrsh Atomic Energy Commission

    E-Print Network [OSTI]

    . .Jacobsen Dr. N.W. Holm Metallurgy Dept. (40) #12;CONTENTS 1. Introduction i 2. Formulation of the problem During IMeV Electron Irradiation by B.N. Singh Metallurgy Department, Danish Atomic Energy Commission Research Establishment Ris, Roskilde, Denmark. and A . J . E . Foreman Metallurgy Division, U. K. A. E. A

  18. ^t-Ris Report No. 274 ^ Danish Atomic Energy Commission

    E-Print Network [OSTI]

    mmmimmmm Metallurgy Department Progress Report for the Period 1 April 1971 to 31 December 1972 March 1973;March 1 973 Ris Report No. 274 Danish Atomic Energy Commission Research Establishment Ris METALLURGY;INTRODUCTION This report represents a new style of Metallurgy Department an- nual reports. A general view

  19. RisoRepoitNo. 1SS Danish Atomic Energy Commission

    E-Print Network [OSTI]

    . In: Balkan Meeting on Food Irradiation (International Atomic Energy Agency, Vienna). N. W. Halm (1968 with 60 Co irradiation and with electron irradia- tion by means of a pulsed linear accelerator in Irradiation Processing and Radiosterilization of Medical Products I Dosimetry in Industrial Processing

  20. Safeguards Agreement and Protocol with the International Atomic Energy Agency

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-01-07T23:59:59.000Z

    To ensure that DOE complies with the Agreement Between the United States of America and the International Atomic Energy Agency for the Application of Safeguards in the United States, the Protocol to the Agreement, and the subsidiary arrangements to the Agreement. Canceled by DOE O 142.2A. Cancels DOE 1270.2B.

  1. atomic energy laws: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atomic energy laws First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Topological quantum correction to an...

  2. atomic energy law: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atomic energy law First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Topological quantum correction to an...

  3. vo Ris Report No. 266 & Danish Atomic Energy Commission

    E-Print Network [OSTI]

    vo Risø Report No. 266 v© i o & Danish Atomic Energy Commission $ 2 Research Establishment Risø Environmental Radioactivity in the Faroes in 1971 by A. Aarkrog and J. Lippert July 1972 Sola ditirlbuiors: Jul Energy Commiuion, Risø, DK-4000 Roikilde, Denmark #12;U.D.C. 614.73(489) July 1 972 Risp Report No. 2GG

  4. E-Print Network 3.0 - atomic energy society Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes Summary: of minimal energy. For a system of N atoms, the total energy in the...

  5. E-Print Network 3.0 - atomic energy review Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes Summary: of minimal energy. For a system of N atoms, the total energy in the...

  6. Riso Report No. 128 u Danish Atomic Energy Commission

    E-Print Network [OSTI]

    Dynamic Aspects of Boiling-Heavy-Water Nuclear Reactors Parti by Niels Kjær-Pedersen August, 1966 5a of Boiling-Heavy-Water Nuclear Reactors P a r t i by ·Niels Kjær-Pedersen The Danish Atomic Energy Commission. In the third chapter a linearized transfer-function model of a cooling channel of a boiling-heavy-water reactor

  7. News Release: Energy Department and International Atomic Energy Agency to

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2EnergyDepartment of

  8. August 1, 1946: Atomic Energy Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE BlogAttachmentFlash2011-21 Audit Letter6-0136Year 20151946: Atomic

  9. International Atomic Energy Agency - General Session | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusinessDepartment of EnergyDr.MD,ITRATIOAL

  10. U.S. Energy Secretary Addresses International Atomic Energy Agency...

    Energy Savers [EERE]

    the world. Its role grows more valuable as we confront a changing climate, increasing energy demand, and a struggling global economy... The United States recently announced the...

  11. E-Print Network 3.0 - atomic energy licensing Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the Nuclear Energy... : - Canada (CNS Canada 2001) o There are 6 main laws (Atomic Energy Control Act, Nuclear Safety and Control... A Comparison of International Regulatory...

  12. E-Print Network 3.0 - atomic binding energy Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic binding energy Page: << < 1 2 3 4 5 > >> 1 Extended Xray Absorption Fine Structure...

  13. E-Print Network 3.0 - atomic energy india Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Atomic Energy Department of Science... Council of Medical Research Solar Energy - Two multimillion pound collaborative UK-India projects aimed... and India,...

  14. A History of the Atomic Energy Commission | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OF THE DEPARTMENT OF ENERGY AAA

  15. US Energy Secretary Samuel Bodman and Russian Atomic Energy Director

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research Petroleum ReserveDepartment of Energy AtNoticeMotor Company |

  16. The role of correlation in the ground state energy of confined helium atom

    SciTech Connect (OSTI)

    Aquino, N. [Departamento de Fsica, Universidad Autnoma Metropolitana-Iztapalapa, Apartado Postal 55-534, 09340 Mxico Distrito Federal (Mexico)

    2014-01-14T23:59:59.000Z

    We analyze the ground state energy of helium atom confined by spherical impenetrable walls, and the role of the correlation energy in the total energy. The confinement of an atom in a cavity is one way in which we can model the effect of the external pressure on an atom. The calculations of energy of the system are carried out by the variational method. We find that the correlation energy remains almost constant for a range values of size of the boxes analyzed.

  17. Lesson 3 - Atoms and Isotopes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJenniferLeslie Pezzullo: ... Biomass Program Webinar3 - Atoms

  18. International Atomic Energy Agency (IAEA) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard"Starting aLianheStudies

  19. News Release: Energy Department and International Atomic Energy Agency to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNationalMarketsMillionNewberryProject | Department

  20. Energy Department and French Commission on Atomic Energy and Alternative

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department ofto CellulosicGeothermalEfficiency |

  1. TECHNICAL REPORT A USER GUIDE FOR DRAGON VERSION4

    E-Print Network [OSTI]

    Meunier, Michel

    of Canada (NSERC), Atomic Energy of Canada limited (AECL) and the CANDU Owners Group (COG). The code DRAGON­Qu´ebec, Atomic Energy of Canada limited (AECL) and the CANDU Owners Group (COG). #12;IGE­294 iv SUMMARY

  2. TECHNICAL REPORT A USER GUIDE FOR DRAGON VERSION5

    E-Print Network [OSTI]

    Meunier, Michel

    of Canada (NSERC), Atomic Energy of Canada limited (AECL) and the CANDU Owners Group (COG). The code DRAGON­Qu´ebec, Atomic Energy of Canada limited (AECL) and the CANDU Owners Group (COG). #12;IGE­335 iv SUMMARY

  3. TECHNICAL REPORT A USER GUIDE FOR TRIVAC VERSION4

    E-Print Network [OSTI]

    Meunier, Michel

    ), Atomic Energy of Canada limited (AECL) and the CANDU Owners Group (COG). The code TRIVAC and its users and Engineering Research Council of Canada (NSERC), Hydro­Qu´ebec and Atomic Energy of Canada Limited (AECL). #12

  4. Atomic energy as an humane endeavor: Retrospective on its development

    SciTech Connect (OSTI)

    Seaborg, G.T.; Stahlkopf, K.E.

    1989-01-01T23:59:59.000Z

    This report is a speech delivered in Tokyo, Japan, by the author. It covers the historical aspects of atomic energy, from the pre-fission days until present. Such pioneer experiments conducted by O. Hahn, L. Meitner, and F. Strassmann to describe barium isotopes as the result of bombardment of uranium with neutrons are discussed. The author also discussed in detail the pre-war nuclear research at Berkeley, a leading center of nuclear research. Such important events as the synthesis and identification of cobalt-60, iodine-131, and technetium-99m are also discussed. The author discussed the nuclear power as a source of electricity and the perspective on the future of nuclear power. 32 refs., 19 figs., 5 tabs.

  5. The Russian Federation's Ministry of Atomic Energy: Programs and Developments

    SciTech Connect (OSTI)

    Johnson, Craig M.

    2000-07-24T23:59:59.000Z

    The Ministry of Atomic Energy of the Russian Federation (Minatom) is one of Russia's largest and most influential federal bodies. Throughout 1999 its head, Yevgeny Adamov, has worked to increase the Ministry's commercial competitiveness by consolidating redundant facilities and tightening control over subsidiary organizations. Economic difficulties and budget constraints, however, have hindered Minatom's ability to achieve many of its programs and goals. As a result, the Ministry has continued, renewed or initiated contracts with several countries possessing questionable commitments to nonproliferation and has sought to expand its role in international nuclear waste management and spent fuel reprocessing in order to raise new sources of revenue. While many of these programs are not likely to come to fruition, others raise significant nonproliferation and environmental concerns. This paper reviews select programs driving Minatom's efforts to raise funds, comments on their potential viability, and highlights areas likely to be of particular concern for the United States over the next three to five years.

  6. Atomic Physics in the Quest for Fusion Energy and ITER

    SciTech Connect (OSTI)

    Charles H. Skinner

    2008-02-27T23:59:59.000Z

    The urgent quest for new energy sources has led developed countries, representing over half of the world population, to collaborate on demonstrating the scientific and technological feasibility of magnetic fusion through the construction and operation of ITER. Data on high-Z ions will be important in this quest. Tungsten plasma facing components have the necessary low erosion rates and low tritium retention but the high radiative efficiency of tungsten ions leads to stringent restrictions on the concentration of tungsten ions in the burning plasma. The influx of tungsten to the burning plasma will need to be diagnosed, understood and stringently controlled. Expanded knowledge of the atomic physics of neutral and ionized tungsten will be important to monitor impurity influxes and derive tungsten concentrations. Also, inert gases such as argon and xenon will be used to dissipate the heat flux flowing to the divertor. This article will summarize the spectroscopic diagnostics planned for ITER and outline areas where additional data is needed.

  7. Estimating ProteinLigand Binding Free Energy: Atomic Solvation Parameters for Partition Coefficient and

    E-Print Network [OSTI]

    Luhua, Lai

    on the assumption that the overall solvation free energy is the sum of all atomic solvation contributions: Gs iAi (1Estimating Protein­Ligand Binding Free Energy: Atomic Solvation Parameters for Partition Coefficient and Solvation Free Energy Calculation Jianfeng Pei,1,2 Qi Wang,1,2 Jiaju Zhou,3 and Luhua Lai1

  8. Conception, numerical prediction and optimization of geomechanical measurements related to a vertical Mine-by-Test at the Meuse/Haute-

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    laboratory of the AECL (Atomic Energy off Canada Ltd, [10, 12, 13]). This technique was evaluated by Andra

  9. A Formal Software Requirements Specification Method for Digital Plants Protection Systems

    E-Print Network [OSTI]

    was proposed by AECL(Atomic Energy of Canada Limited) and was used for the for- mal software requirements

  10. Appl. Phys. A 74 [Suppl.], S1188S1191 (2002) / Digital Object Identifier (DOI) 10.1007/s003390201872 Applied Physics A

    E-Print Network [OSTI]

    Medraj, Mamoun

    diffractometer, C2, at the NRU reactor of Atomic Energy of Canada Limited (AECL), Chalk River Laborato- ries

  11. Atomic Energy Act and Related Legislation. Environmental Guidance Program Reference Book: Revision 6

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    This report presents information related to the Atomic Energy Act and related legislation. Sections are presented pertaining to legislative history and statutes, implementing regulations, and updates.

  12. E-Print Network 3.0 - atomic energy congress Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    phenomena controlling the emitted vapor atom and reflected neutral fluxes in the low energy... nickel surfaces are reported. The sputtering yield, ... Source: Wadley, Haydn -...

  13. A history of the United States Atomic Energy Commission, 1952-1960: Volume 3

    SciTech Connect (OSTI)

    Hewlett, R.G.; Holl, J.M.

    1987-01-01T23:59:59.000Z

    This is a detailed historical account of the activities and policies of the Atomic Energy Commission during the Eisenhower and Kennedy administrations. 6 figs. (DWL)

  14. E-Print Network 3.0 - atomic energy corporation Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | General Atomics | General Electric | Global Solar Energy | GrafTech International | Green... . A strong manufacturing base is vital for a balanced economy and critical to our...

  15. E-Print Network 3.0 - atomic energy of canada ltd Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    can add your company Summary: Boveri Inc. ASI Group Ltd. Aspen Technology Canada Atomic Energy of Canada Limited Bantrel, Inc. Bayer... Incorporated Collins & Aikman Plastics...

  16. E-Print Network 3.0 - arab atomic energy agency Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Program Prospects in North Africa and the Summary: in the Arab Republic of Egypt. International Atomic Energy Agency, September 2005. Accessed 5 April 2007. http... 's...

  17. g5 Ris Report No. 278 S-Danish Atomic Energy Commission

    E-Print Network [OSTI]

    and New York, 1966. IV Andersen, A. J . , 1967. Investigations on the plant uptake of fission productsg5 Risø Report No. 278 * O Z o S- Danish Atomic Energy Commission os Research Establishment Risø-1307 Copenhagen K, Denmark Arollabk on exchange from: Library, Danish Atomic Energy Commission MM, DK-4

  18. Ris6-M-17G7 r-* Danish Atomic Energy Commission

    E-Print Network [OSTI]

    Ris6-M-17G7 r-* Danish Atomic Energy Commission ? Research Establishment Riso ··o if ELECTRONICS of the Danish Atomic Energy Commission (Atomenergikommissionens Bibliotek), Rise, DK-4000 Roskilde, Denmark.".aly:;is failure r.ode and effects analysis, and fault tree analy.si:., are two established techniques for studyinp

  19. Benchmark quality total atomization energies of small polyatomic Jan M. L. Martin

    E-Print Network [OSTI]

    Martin, Jan M.L.

    Benchmark quality total atomization energies of small polyatomic molecules Jan M. L. Martin Successive coupled-cluster CCSD T calculations in basis sets of spdf, spdfg, and spdfgh quality, combined, permit the calculations of molecular total atomization energies TAEs with a mean absolute error of as low

  20. Energy and momentum transfer of He atoms scattered from a lithium fluoride crystal surface

    E-Print Network [OSTI]

    Manson, Joseph R.

    Energy and momentum transfer of He atoms scattered from a lithium fluoride crystal surface H. Leggesurface inter- action is usually described in terms of averaged properties such as the average energy exchange interaction potential has been extensivel

  1. E-Print Network 3.0 - atomic excitation energies Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L E T T E R S 3 JUNE 2002 Direct Observation of the Phonon Energy in a Bose-Einstein Condensate Summary: , the excitation energy is seen to be carried by the same atoms that carry...

  2. Process monitoring in support of International Atomic Energy Agency safeguards

    SciTech Connect (OSTI)

    Ehinger, M.H.; Wachter, J.W.; Hebble, T.L.; Kerr, H.T.

    1987-08-01T23:59:59.000Z

    A review of previous efforts in process monitoring for safeguards was conducted. Previous efforts touched on various concepts and a few specific applications, but none was comprehensive in addressing all aspects of a process monitoring application for safeguards. This report develops prototypical process monitoring concepts that can be incorporated into the International Atomic Energy Agency's (IAEA's) general safeguards approach for fuel reprocessing plants. This effort considers existing approaches, recognizing limitations and needed improvements. Prototypical process monitoring applications are developed and proposed for implementation and demonstration in the Integrated Equipment Test facility, which is located at the Oak Ridge National Laboratory. The specific information needed to accomplish the process monitoring objectives are defined, and the mechanics for obtaining that information are described. Effort is given to the identification and assessment of potential impacts and benefits associated with process monitoring concepts, with particular attention to IAEA, state, and plant operator interests. The historical development of process monitoring is described and the implications of using process monitoring in international safeguards are discussed. Specific process process monitoring applications for demonstration in the IET facility are developed in Sects. 6 through 14. 1 fig.

  3. JET Papers Presented at International Atomic Energy Agency 10th International Conference on Plasma Physics and Controlled Nuclear Research

    E-Print Network [OSTI]

    JET Papers Presented at International Atomic Energy Agency 10th International Conference on Plasma Physics and Controlled Nuclear Research

  4. Safety Reports Series No. 11, Developing Safety Culture in Nuclear Activities: Practical Suggestions to Assist Progress, International Atomic Energy Agency

    Broader source: Energy.gov [DOE]

    Safety Reports Series No. 11, Developing Safety Culture in Nuclear Activities: Practical Suggestions to Assist Progress, International Atomic Energy Agency

  5. Alternate Funding Sources for the International Atomic Energy Agency

    SciTech Connect (OSTI)

    Toomey, Christopher; Wyse, Evan T.; Kurzrok, Andrew J.; Swarthout, Jordan M.

    2012-09-04T23:59:59.000Z

    Since 1957, the International Atomic Energy Agency (IAEA) has worked to ensure the safe and responsible promotion of nuclear technology throughout the world. The IAEA operates at the intersection of the Nuclear Nonproliferation Treatys (NPT) fourth and third articles, which guarantee Parties to the Treaty the right to peaceful uses of nuclear technology, provided those activities are placed under safeguards verified by the IAEA. However, while the IAEA has enjoyed substantial success and prestige in the international community, there is a concern that its resources are being stretched to a point where it may no longer be possible to execute its multifaceted mission in its entirety. As noted by the Director General (DG) in 2008, demographics suggest that every aspect of the IAEAs operations will be in higher demand due to increasing reliance on non-carbon-based energy and the concomitant nonproliferation, safety, and security risks that growth entails. In addition to these nuclear energy concerns, the demand for technical developmental assistance in the fields of food security, resource conservation, and human health is also predicted to increase as the rest of the world develops. Even with a 100% value-for-money rating by the U.S. Office of Management and Budget (OMB) and being described as an extraordinary bargain by the United Nations Secretary-Generals High-level Panel on Threats, Challenges and Change, real budget growth at the Agency has been limited to zero-real growth for a better part of the last two decades. Although the 2012 regular budget (RB) received a small increase for most programs, the 2013 RB has been set at zero-real growth. As a result, the IAEA has had to defer infrastructure investments, which has hindered its ability to provide the public goods its Members seek, decreased global security and development opportunities, and functionally transformed the IAEA into a charity, dependent on extrabudgetary (EB) contributions to sustain its mission and capabilities. To resolve these resource constraints, we recommend the creation of an endowment, funded entirely through private contributions. Our initial estimates for the endowment are that a 2B principal. This level of capitalization could provide significant support to all aspects of the IAEAs mission, including Capital Investment and Innovation; Technical Cooperation; as well as incentivizing the policy and technology entrepreneurship that will be necessary for the future health of the nonproliferation regime. Given this potential, our future efforts will focus on a more rigorous assessment of the financial requirements, while simultaneously creating the beginnings of a functional organization. These include: organizational structure, metrics for grant-making and performance evaluation, and outreach and fundraising strategies. At the end of this process, there should be sufficient information and engagement to begin to operationalize the endowment through external funding sources.

  6. The Russian Federation's Ministry of Atomic Energy: Programs and Developments

    SciTech Connect (OSTI)

    CM Johnson

    2000-07-24T23:59:59.000Z

    This paper reviews select programs driving the Ministry of Atomic Energy of the Russian Federation's (Minatom) efforts to raise funds, comments on their potential viability, and highlights areas likely to be of particular concern for the US over the next three to five years. The paper's findings are: (1) Despite numerous cabinet displacements throughout the Yeltsin administration, Yevgeny Adamov was reappointed Minister on four occasions. With Boris Yeltsin's January 1, 2000 resignation, Adamov's long-term position as the head of the Ministry is more tenuous, but he will likely retain his position until at least the March 2000 elections. Acting President Vladimir Putin is unlikely to reorganize his cabinet prior to that date and there are no signs that Putin is dissatisfied with Adamov's leadership of Minatom. (2) Adamov's chief priorities are downsizing Minatom's defense sector, increasing the oversight of subsidiary bodies by the central bureaucracy and consolidating commercial elements of the Ministry within an umbrella organization called Atomprom. (3) Viktor Mikhaylov, Adamov's predecessor and critic of his reform efforts, has been relieved of his duties as First Deputy Minister. While he retains his positions as Chief of the Science Councils and Chief Scientist at Arzamas-16, his influence on Minatom's direction is greatly diminished. Adamov will likely continue his efforts to further marginalize Mikhaylov in the coming year. (4) Securing extra-budgetary sources of income continues to be the major factor guiding Minatom's international business dealings. The Ministry will continue to aggressively promote the sale of nuclear technology abroad, often to countries with questionable nonproliferation commitments. (5) Given the financial difficulties in Russia and Minatom's client states, however, few nuclear development programs will come to fruition for a number of years, if ever. Nevertheless, certain peaceful nuclear cooperation agreements should be carefully monitored--particularly those negotiated with Cuba, Iran, Libya and Syria. (6) Waste management has also risen in importance for Minatom. Opportunities for raising funds by reprocessing, storing and permanently disposing of spent fuel from foreign states are being explored. Although currently prohibited by federal law, the Russian Parliament will likely pass legislation in support of this program.

  7. all-atom knowledge-based energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation...

  8. E-Print Network 3.0 - atomic energy control board canada Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    board canada Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic energy control board canada Page: << < 1 2 3 4 5 > >> 1 EMPLOYERS OF OUR...

  9. E-Print Network 3.0 - atomic energy agreements Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    60 hal-00194064,version1-5Dec2007 Understanding the Nucleation Mechanisms of Carbon Nanotubes in Catalytic Summary: . The energy of each atom therefore depends only on the...

  10. E-Print Network 3.0 - atomic energy control Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    53 hal-00194064,version1-5Dec2007 Understanding the Nucleation Mechanisms of Carbon Nanotubes in Catalytic Summary: . The energy of each atom therefore depends only on the...

  11. E-Print Network 3.0 - atomic energy act Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26 hal-00194064,version1-5Dec2007 Understanding the Nucleation Mechanisms of Carbon Nanotubes in Catalytic Summary: . The energy of each atom therefore depends only on the...

  12. E-Print Network 3.0 - atomic energy cooperation Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    collisions between atoms are necessary to redistribute energy in a gas in order... in the cold gas in such a way as to correlate the momentum of pairs of ... Source: Experimental...

  13. E-Print Network 3.0 - atomic energy commissionhistory Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some of the ... Source: Experimental High Energy Physics Collection: Plasma Physics and Fusion ; Physics 36 Optical diagnostics of cold (I'<1mK atoms in the magneto-optical trap...

  14. E-Print Network 3.0 - atomic energy Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some of the ... Source: Experimental High Energy Physics Collection: Plasma Physics and Fusion ; Physics 36 Optical diagnostics of cold (I'<1mK atoms in the magneto-optical trap...

  15. Fractal properties in fundamental force coupling constants, in atomic energies, and in elementary particle masses

    E-Print Network [OSTI]

    Boris Tatischeff

    2011-04-28T23:59:59.000Z

    Using the discrete-scale invariance theory, we show that the coupling constants of fundamental forces, the atomic masses and energies, and the elementary particle masses, obey to the fractal properties.

  16. THE ENERGY SPECTRA OF URANIUM ATOMS SPUTTERED FROM URANIUM METAL AND URANIUM DIOXIDE TARGETS

    E-Print Network [OSTI]

    Winfree, Erik

    THE ENERGY SPECTRA OF URANIUM ATOMS SPUTTERED FROM URANIUM METAL AND URANIUM DIOXIDE TARGETS Thesis. I have benefitted from conversations with many persons w~ile engaged in this project. I would like

  17. Perturbation of the ns energy levels of the hydrogen atom in rotationally invariant noncommutative space

    E-Print Network [OSTI]

    Gnatenko, Kh P; Tkachuk, V M

    2014-01-01T23:59:59.000Z

    Noncommutative space which is rotationally invariant is considered. The hydrogen atom is studied in this space. We exactly find the leading term in the asymptotic expansion of the corrections to the $ns$ energy levels over the small parameter of noncommutativity.

  18. Perturbation of the ns energy levels of the hydrogen atom in rotationally invariant noncommutative space

    E-Print Network [OSTI]

    Kh. P. Gnatenko; Yu. S. Krynytskyi; V. M. Tkachuk

    2014-12-23T23:59:59.000Z

    Noncommutative space which is rotationally invariant is considered. The hydrogen atom is studied in this space. We exactly find the leading term in the asymptotic expansion of the corrections to the $ns$ energy levels over the small parameter of noncommutativity.

  19. Gravitational Corrections to the Energy-Levels of a Hydrogen Atom

    E-Print Network [OSTI]

    Zhen-Hua Zhao; Yu-Xiao Liu; Xi-Guo Li

    2007-05-12T23:59:59.000Z

    The first order perturbations of the energy levels of a hydrogen atom in central internal gravitational field are investigated. The internal gravitational field is produced by the mass of the atomic nucleus. The energy shifts are calculated for the relativistic 1S, 2S, 2P, 3S, 3P, 3D, 4S and 4P levels with Schwarzschild metric. The calculated results show that the gravitational corrections are sensitive to the total angular momentum quantum number.

  20. INTERNATIONAL ATOMIC ENERGY AGENCY THIRD TECHNICAL COMMITTEE MEETING AND WORKSHOP

    E-Print Network [OSTI]

    Abdou, Mohamed

    in this activity includes Westinghouse Electric Corporation; General Atomic Company; EG&G Idaho, Inc.; Mc-free (icfnje to publ'ih or reproduce ihe publ'Sbed ioifn of Ihis U. S. Co*er NOTICE PORTIONS OFTHIS REPORT

  1. Ris Report No. 260 Danish Atomic Energy Commission

    E-Print Network [OSTI]

    Institute, Copenhagen #12;ISBN 87 550 0227 7 #12;- 3 - CONTENTS Page 1. Introduction 5 2. Material) The National Institute of Public Health, Utrecht, The Netherlands, 2) The In- stitute for Atomic Sciences in Agriculture, Wageningen, The Netherlands, 3) The National Food Institute, Copenhagen, Denmark, 4

  2. Ris8 Report No. 188 Danish Atomic Energy Commission

    E-Print Network [OSTI]

    T^T. - 3 is attainable, and that a high de- gree of ionisation is maintained in the plasma column-Cooling Efficiency 6 B. Neutral-Cs Distribution 6 HI. Conclusion 7 Acknowledgements 8 References 9 Figures 10 #12 temperature the Cs atoms escaping from the copper tube condense on the walls, leaving a Cs pressure

  3. Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation

    E-Print Network [OSTI]

    Xing, Eric P.

    Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation a technique for approximating the free energy of protein structures using Generalized Belief Propagation (GBP, we show that the entropy component of our free energy estimates can useful in distinguishing native

  4. Free Energy Estimates of All-atom Protein Structures Using Generalized Belief

    E-Print Network [OSTI]

    Langmead, Christopher James

    Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation H Detection, Free Energy, Probabilistic Graphical Models #12;Abstract We present a technique for approximating the free energy of protein structures using Generalized Belief Propagation (GBP). The accuracy and utility

  5. Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation

    E-Print Network [OSTI]

    Langmead, Christopher James

    Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation a technique for approximating the free energy of protein structures using Generalized Belief Propagation (GBP, we show that the entropy compo- nent of our free energy estimates can be useful in distinguishing

  6. INTERNATIONAL ATOMIC ENERGY AGENCY Wagramer Strasse 5, P.O. Box 100

    E-Print Network [OSTI]

    INTERNATIONAL ATOMIC ENERGY AGENCY Wagramer Strasse 5, P.O. Box 100 A-1400 Vienna, Austria www always driven human development. New technologies in energy production, starting from the use of fire for an abundant source of that energy for the world. To promote this groundbreaking technology, and to host

  7. Investigating Energy and Security Trade-offs in the Classroom With the Atom LEAP Testbed

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Investigating Energy and Security Trade-offs in the Classroom With the Atom LEAP Testbed Peter A. H seminar investi- gating potential trade-offs between security and energy consumption. Twenty tool for energy research and education. 1 Introduction Mobile and embedded devices face difficult trade

  8. INNER SHELL EXCITATION OF ATOMS AND MOLECULES BY ELECTRON IMPACT WITH HIGH ENERGY RESOLUTION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    INNER SHELL EXCITATION OF ATOMS AND MOLECULES BY ELECTRON IMPACT WITH HIGH ENERGY RESOLUTION F. H resolution energy loss spectra for inner shell excited states, (2) the observa- tion of inner shell excited are the subject of the present review. The inner shell states that can usefully be studied with energy resolutions

  9. THERMAL IMPACT OF WASTE EMPLACEMENT AND SURFACE COOLING ASSOCIATED WITH GEOLOGIC DISPOSAL OF NUCLEAR WASTE

    E-Print Network [OSTI]

    Wang, J.S.Y.

    2010-01-01T23:59:59.000Z

    Cnalk R i v e r , Ontar o, AECL-b308, 46 p . Tnomas, R. K. ,with a radioactive waste vault. AECL--6308, Atomic Energys t u d y . P a r t 2. AECL-6188-2, Atomic Energy of Canada,

  10. Measurements of ultra-low-energy electron scattering cross sections of atoms and molecules

    SciTech Connect (OSTI)

    Kitajima, M.; Shigemura, K.; Kurokawa, M. [Department of Chemistry, Tokyo Institute of Technology, 152-8551 Tokyo (Japan); Odagiri, T. [Department of Physics, Sophia University, 102-8554 Tokyo, Japan and Department of Chemistry, Tokyo Institute of Technology, 152-8551 Tokyo (Japan); Kato, H.; Hoshino, M.; Tanaka, H. [Department of Physics, Sophia University, 102-8554 Tokyo (Japan); Ito, K. [Photon Factory, Institute of Materials Structure Science, 305-0801 Tsukuba (Japan)

    2014-03-05T23:59:59.000Z

    A new experimental technique for the total cross section measurements of ultra-low energy electron collisions with atoms and molecules utilizing the synchrotron radiation is presented. The technique employs a combination of the penetrating field technique and the threshold photoionization of rare gas atoms using the synchrotron radiation as an electron source in order to produce a high resolution electron beam at very low energy. Absolute total cross sections for electron scattering from He, Ne, Ar, Kr, and Xe in the energy region from extremely low electron energy to 20 eV are presented.

  11. To cite this paper: Int. J. Rock Mech. & Min. Sci. 34:3-4, paper No. 071B. Published by Elsevier Science Ltd 1997 Copyright 1997 Elsevier Science Ltd

    E-Print Network [OSTI]

    of Civil and Geological Engineering, University of Manitoba, Winnipeg, Manitoba R3T 5V6, Canada 4 AECL by Elsevier Science Ltd 1997 Work at Atomic Energy of Canada Limited's (AECL) Underground Research Laboratory

  12. International Journal of Rock Mechanics & Mining Sciences 38 (2001) 9951027 Bayesian estimation of rock mass boundary conditions with

    E-Print Network [OSTI]

    Pan, Ernie

    of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 of the Underground Research Laboratory (URL) of the Atomic Energy of Canada Limited (AECL), Canada. The procedure

  13. JOURNAL DE PHYSIQUEIV ColloqueC8, suppltment au Journal de Physique 111,Volume 6, dgcembre 1996

    E-Print Network [OSTI]

    Boyer, Edmond

    and MechanicsBranch, WhiteshellLaboratories,AECL, Pinawa, Manitoba, CanadaROE 1U) Abstract. Internalfriction trademark of AtomicEnergy of CanadaLimited (AECL). Article published online by EDP Sciences and available

  14. AECL/US INERI - Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Power Reactors -- Fuel Requirements and Down-Select Report

    SciTech Connect (OSTI)

    William Carmack; Randy D. Lee; Pavel Medvedev; Mitch Meyer; Michael Todosow; Holly B. Hamilton; Juan Nino; Simon Philpot; James Tulenko

    2005-06-01T23:59:59.000Z

    The U.S. Advanced Fuel Cycle Program and the Atomic Energy Canada Ltd (AECL) seek to develop and demonstrate the technologies needed to minimize the overall Pu and minor actinides present in the light water reactor (LWR) nuclear fuel cycles. It is proposed to reuse the Pu from LWR spent fuel both for the energy it contains and to decrease the hazard and proliferation impact resulting from storage of the Pu and minor actinides. The use of fuel compositions with a combination of U and Pu oxide (MOX) has been proposed as a way to recycle Pu and/or minor actinides in LWRs. It has also been proposed to replace the fertile U{sup 238} matrix of MOX with a fertile-free matrix (IMF) to reduce the production of Pu{sup 239} in the fuel system. It is important to demonstrate the performance of these fuels with the appropriate mixture of isotopes and determine what impact there might be from trace elements or contaminants. Previous work has already been done to look at weapons-grade (WG) Pu in the MOX configuration [1][2] and the reactor-grade (RG) Pu in a MOX configuration including small (4000 ppm additions of Neptunium). This program will add to the existing database by developing a wide variety of MOX fuel compositions along with new fuel compositions called inert-matrix fuel (IMF). The goal of this program is to determine the general fabrication and irradiation behavior of the proposed IMF fuel compositions. Successful performance of these compositions will lead to further selection and development of IMF for use in LWRs. This experiment will also test various inert matrix material compositions with and without quantities of the minor actinides Americium and Neptunium to determine feasibility of incorporation into the fuel matrices for destruction. There is interest in the U.S. and world-wide in the investigation of IMF (inert matrix fuels) for scenarios involving stabilization or burn down of plutonium in the fleet of existing commercial power reactors. IMF offer the potential advantage for more efficient destruction of plutonium and minor actinides (MA) relative to MOX fuel. Greater efficiency in plutonium reduction results in greater flexibility in managing plutonium inventories and in developing strategies for disposition of MA, as well as a potential for fuel cycle cost savings. Because fabrication of plutonium-bearing (and MA-bearing) fuel is expensive relative to UO{sub 2} in terms of both capital and production, cost benefit can be realized through a reduction in the number of plutonium-bearing elements required for a given burn rate. In addition, the choice of matrix material may be manipulated either to facilitate fuel recycling or to make plutonium recovery extremely difficult. In addition to plutonium/actinide management, an inert matrix fuel having high thermal conductivity may have operational and safety benefits; lower fuel temperatures could be used to increase operating and safety margins, uprate reactor power, or a combination of both. The CANDU reactor offers flexibility in plutonium management and MA burning by virtue of online refueling, a simple bundle design, and good neutron economy. A full core of inert matrix fuel containing either plutonium or a plutonium-actinide mix can be utilized, with plutonium destruction efficiencies greater than 90%, and high (>60%) actinide destruction efficiencies. The Advanced CANDU Reactor (ACR) could allow additional possibilities in the design of an IMF bundle, since the tighter lattice pitch and light-water coolant reduce or eliminate the need to suppress coolant void reactivity, allowing the center region of the bundle to include additional fissile material and to improve actinide burning. The ACR would provide flexibility for management of plutonium and MA from the existing LWR fleet, and would be complementary to the AFCI program in the U.S. Many of the fundamental principles concerning the use of IMF are nearly identical in LWRs and the ACR, including fuel/coolant compatibility, fuel fabrication, and fuel irradiation behavior. In addition, the U.S. and Canada both

  15. Baryonium, a common ground for atomic and high energy physics

    E-Print Network [OSTI]

    Wycech, S; Loiseau, B

    2015-01-01T23:59:59.000Z

    Indications of the existence of quasi-bound states in the N-Nbar system are presented. Measurements by BES discovered a broad enhancement close to the p-pbar threshold in the S wave, isospin 0 state formed in radiative decays of J/psi. Another enhancement located about 50 MeV below the threshold was found in mesonic decays of J/psi. In terms of the Paris potential model it was shown that these are likely to represent the same state. Antiprotonic atomic data provide some support for this interpretation and indicate the existence of another fairly narrow quasi-bound state in a P wave.

  16. New Reflections on Electron's Energy and Wavefunction in the Hydrogen Atom

    E-Print Network [OSTI]

    Ezzat G. Bakhoum

    2009-07-17T23:59:59.000Z

    Schrodinger's equation predicts something very peculiar about the electron in the Hydrogen atom: its total energy must be equal to zero. Unfortunately, an analysis of a zero-energy wavefunction for the electron in the Hydrogen atom has not been attempted in the published literature. This paper provides such an analysis for the first time and uncovers a few interesting facts, including the fact that a "zero-energy wavefunction" is actually a quantized version of the classical wavefunction that has been known for decades.

  17. ND Atomic Theory 2005-1 Third-order negative-energy contributions to transition

    E-Print Network [OSTI]

    Johnson, Walter R.

    ND Atomic Theory 2005-1 Third-order negative-energy contributions to transition amplitudes with one negative-energy intermediate state. Although second-order NES contributions to transition interaction and first-order in the interaction with the electromagnetic field) contributions to transition

  18. Coherent backscattering of intense light by cold atoms with degenerate energy levels: Diagrammatic treatment

    E-Print Network [OSTI]

    V. N. Shatokhin; R. Blattmann; T. Wellens; A. Buchleitner

    2014-07-10T23:59:59.000Z

    We present a generalization of the diagrammatic pump-probe approach to coherent backscattering (CBS) of intense laser light for atoms with degenerate energy levels. We employ this approach for a characterization of the double scattering signal from optically pumped atoms with the transition $J_g\\rightarrow J_e=J_g+1$ in the helicity preserving polarization channel. We show that, in the saturation regime, the internal degeneracy becomes manifest for atoms with $J_g\\geq 1$, leading to a faster decrease of the CBS enhancement factor with increasing saturation parameter than in the non-degenerate case.

  19. atomic energy programme: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the see Programme is to provide state-of-the-art education in the fields of solar energy, power generation Lagergren, Jens 5 PROGRAMME SPECIFICATION POSTGRADUATE PROGRAMMES...

  20. International Atomic Energy Agency General Conference | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusinessDepartment ofEnergy as Prepared for Secretary

  1. atom spectral energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y. Polatoglu 2008-04-01 3 Inhomogeneous spectral moment sum rules for the retarded Green function and self-energy of strongly correlated electrons or ultracold fermionic...

  2. Four Atomic Optical Energy Levels as a Two Qubit Quantum Computer Register

    E-Print Network [OSTI]

    Vladimir L. Ermakov; Alexander R. Kessel; Vitaly V. Samartsev

    2000-01-25T23:59:59.000Z

    It is proposed to use four atomic optical energy levels as a two qubit quantum register. A single Pr3+ atom in a monocrystal LaF3 subjected to resonant laser irradiation is used as an example to illustrate the implementation of the universal set of quantum gates. The equilibrium state of this physical system is a desirable input state for quantum computation and therefore there is no need for its special preparation procedure.

  3. atomic energy industrial: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy industrial First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 MIT and Energy Industries MIT...

  4. atomic energy industry: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy industry First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 MIT and Energy Industries MIT Industry...

  5. On the Energy Levels of the Hydrogen Atom

    E-Print Network [OSTI]

    C. J. Fewster

    1993-05-21T23:59:59.000Z

    We re-examine the justification for the imposition of regular boundary conditions on the wavefunction at the Coulomb singularity in the treatment of the hydrogen atom in non-relativistic quantum mechanics. We show that the issue of the correct boundary conditions is not independent of the physical structure of the proton. Under the physically reasonable assumption that the finite size and structure of the proton can be represented as a positive correction to the Coulomb potential, we give a justification for the regular boundary condition, which, in contrast to the usual treatments, is physically motivated and mathematically rigorous. We also describe how irregular boundary conditions can be used to model non-positive corrections to the Coulomb potential.

  6. International Atomic Energy Agency General Conference | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusinessDepartment of

  7. UNITED STATES ATOMIC ENERGY COMMISSION CHICAGO OPERATIONS OFFICE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River,The Secretaryat Grand4100F. o

  8. UNITED STATES ATOMIC ENERGY COMMISSION NEVADA OPERATIONS OFFICE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River,The Secretaryat Grand4100F. oUNITED

  9. I UNITED STATES I ATOMIC ENERGY C O M M

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$ EGcG ENERGYELIkNATIONHEALXH: l ._ .r.,--I Is, * .

  10. JNITED STATES ATOMIC ENERGY COMMlSSiON

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$ EGcG ENERGYELIkNATIONHEALXH: l ._I *r'.Jq. 1 ' ,'

  11. UNITED STATES ATOMIC ENERGY COMMISSION CHICAGO OPERATIONS OFFICE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO: FILE FROM:DEC.lpx--., * :I(S.0$$

  12. UNITED STATES ATOMIC ENERGY COMMISSION Iew York Operation8 Office

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO: FILE FROM:DEC.lpx--., * :I(S.0$$fi

  13. UNITED STATES ATOMIC ENERGY COMMISSION OAK RIDGE OPERATIONS

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO: FILE FROM:DEC.lpx--., *

  14. UNITED STATES ATOMIC ENERGY COMMISSION Washington 25, D. C.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO: FILE FROM:DEC.lpx--.,' ,' ' .:,:

  15. UNITED, STATES ATOMIC ENERGY COMMlSSldN

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO: FILEWAWINQTON, 0. C. ZOSSSUNITED,

  16. ABBREVIATIONS AND ACRONYMS AEC U.S. Atomic Energy Commission

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_ ,'I- i.( 5.0ABBREVIATIONS

  17. A simple and clean source of low-energy atomic carbon

    SciTech Connect (OSTI)

    Krasnokutski, S. A.; Huisken, F. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Helmholtzweg 3, D-07743 Jena (Germany)

    2014-09-15T23:59:59.000Z

    A carbon source emitting low-energy carbon atoms from a thin-walled, sealed tantalum tube via thermal evaporation has been constructed. The tube is made from a 0.05?mm thick tantalum foil and filled with {sup 12}C or {sup 13}C carbon powder. After being sealed, it is heated by direct electric current. The solvated carbon atoms diffuse to the outer surface of the tube and, when the temperature rises over 2200?K, the evaporation of atomic carbon from the surface of the tantalum tube is observed. As the evaporated species have low energy they are well-suited for the incorporation into liquid helium droplets by the pick-up technique. Mass analysis of the incorporated species reveals the dominant presence of atomic carbon and very low abundances of C{sub 2} and C{sub 3} molecules (<1%). This is in striking contrast to the thermal evaporation of pure carbon, where C{sub 3} molecules are found to be the dominant species in the gas phase. Due to the thermal evaporation and the absence of high-energy application required for the dissociation of C{sub 2} and C{sub 3} molecules, the present source provides carbon atoms with rather low energy.

  18. Effect of a relativistic correction to the Coulomb potential on the energy levels of hydrogen atom

    E-Print Network [OSTI]

    Harihar Behera

    2012-01-10T23:59:59.000Z

    Based on classical electrodynamics, it is argued that the Coulomb potential (which is strictly valid for two point charges at rest), commonly used in the study of energy levels of hydrogen atom is not the correct one, because the electron in the hydrogen atom moves with relativistic speeds with respect to the nucleus. Retardation effect has to be considered in accordance with Li\\'{e}nard-Wiechert (or retarded) potential of a moving charge or the relativistic electrodynamics. However, such a consideration introduces a correction to the Coulomb potential, whose quantum mechanical expectation value is estimated at $E_{ret} = - \\frac{mc^2\\alpha ^4}{2n^3(l+1/2)}$, which is of the same order as the fine structure of hydrogen atom and hence added to the standard energy eigenvalue values of H-atom. This correction lifts the $l$-degeneracy in the spectra of H-atom and hence modifies the standard result. The result disturbs the existing agreement between the theory and experiments on H-atom and hence requires further theoretical and experimental re-examination. The implications of this result for the Kepler-problem in general is also discussed in the context of Heaviside's gravity, which seems to offer an alternative explanation for the non-Newtonian perihelion advance of Mercury without invoking the space-time curvature formalism of Einstein's general theory of relativity.

  19. Hewlett and Duncan - Atomic Shield | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecemberGlossaryEnergy and Commerce Subcommittee onDuncan -

  20. Secretary Chu Addresses the International Atomic Energy Agency General

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1to LaunchNuclearHydrogen Development

  1. DOE Comments - Radiation Protection (Atomic Energy Act) | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE Challenge Home RecommendedASKOSeptember 7,

  2. Nuclear Navy United States Atomic Energy Commission Historical Advisory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014Nuclear FacilitiesNuclearNavy United

  3. Part 810-ASSISTANCE TO FOREIGN ATOMIC ENERGY ACTIVITIES Sec.

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF CIVIL RIGHTS/%2A en10 CFR Part 810 1986

  4. Truman Signs Atomic Energy Act | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration go on moon walk at U.S.TimelineTruman Signs

  5. Iowa Powder Atomization Technologies, Inc. | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/Surface Reactions and IonEnergyIons shed water

  6. Albert Einstein Alerts President Roosevelt of German Atomic Energy Program

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartmentStewardshipAdministration helps| National Nuclear Security

  7. Civilian Control of Atomic Energy, 1945-1946

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, and technology for the

  8. Ris Report No. 329 Danish Atomic Energy Commission

    E-Print Network [OSTI]

    Metallurgy Department and Technical University of Denmark Department of Structural Properties of Materials Energy- Commission, Research Establishment Ris, Metallurgy Department. I would like to thank Professor like to thank Dr. techn. N. Hansen, head of the Metallurgy Department, Riso, for providing research

  9. Rise Report No. 255 Danish Atomic Energy Commission

    E-Print Network [OSTI]

    Energy Commission Research Establishment RisO Chemistry Department Abstract The Fe(n, Y) Fe reaction can effects, which may mask the effects of nuclear recoil, make short irradiation times and consequently low of nuclear reactions. For (n,Y) reactions the use of a M5ssbauer spectrometer on line with a reactor

  10. atomic energy institute: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy institute First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 INSTITUTE OF PHYSICS PUBLISHING and...

  11. Dynamical behavior of the entanglement, purity and energy between atomic qubits in motion under the influence of thermal environment

    E-Print Network [OSTI]

    L. Tan; Y. Q. Zhang; Z. H. Zhu; L. W. Liu

    2010-05-20T23:59:59.000Z

    The entanglement, purity and energy of two isolated two-level atoms which are initially prepared in Bell state and each interacts with a thermal cavity field are investigated by considering the atomic motion and the field-mode structure. We achieve the analytical solutions of the atomic qubits by using the algebraic dynamical approach and the influences of the field-mode structure parameter, the strength of the thermal field and the detuning on the entanglement, purity and energy are discussed. We also investigate the state evolution of the atomic qubits based on the entanglement-purity-energy diagrams. Our results show that the disentanglement process of the atomic qubits accompanies by excitations transferring from atomic subsystem to cavity field modes and atomic state from a pure state convert to the mixed states.

  12. Ultrasonic-Based Mode-Synthesizing Atomic Force Microscopy - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014 EIAUltrafast TransformationsCarbonInnovation

  13. United States Atomic Energy Commission formed, part 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear23,Diversity part

  14. Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience Program Cumulus Humilis Aerosol Processing

  15. Atomic Layer Deposition (ALD) Preparation of Noble Metal Catalysts - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience Program Cumulus Humilis Aerosol ProcessingPrograms |

  16. arXiv:quant-ph/99050166May1999 A simple formula for ground state energy of a two-electron atom

    E-Print Network [OSTI]

    Auzinsh, Marcis

    () A simple expression for a ground state energy for a two-electron atom is derived. For this assumption basedarXiv:quant-ph/99050166May1999 A simple formula for ground state energy of a two-electron atom M to calculate energy levels of the He atom. He discussed a model when both electrons of a two-electron atom move

  17. Determination of Surface Exciton Energies by Velocity Resolved Atomic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape, Density,TiO2(110). |

  18. Institute for Atom-Efficient Chemical Transformations Energy Frontier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home| Visitors|Upcoming

  19. Lesson 6 - Atoms to Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJenniferLeslie Pezzullo: ... Biomass Program Webinar3 -5 -6 -

  20. Oscillatory Magneto Conductance in Carbon Atom Wires | Energy Frontier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002Optics Group (X-rayLSD Logo AboutSignatureStatus:Research

  1. International Atomic Energy Agency holds conference on fusion roadmap |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponses to Engineered Nanomaterials:Advisory Committee

  2. Institute for Atom-Efficient Chemical Transformations Energy Frontier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign InReaction Mechanisms Problem

  3. Institute for Atom-Efficient Chemical Transformations Energy Frontier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign InReaction Mechanisms

  4. Institute for Atom-Efficient Chemical Transformations Energy Frontier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign InReaction MechanismsResearch

  5. Institute for Atom-Efficient Chemical Transformations Energy Frontier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign InReaction

  6. Institute for Atom-Efficient Chemical Transformations Energy Frontier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign InReactionResearch Center - IACT

  7. Institute for Atom-Efficient Chemical Transformations Energy Frontier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign InReactionResearch Center -

  8. Institute for Atom-Efficient Chemical Transformations Energy Frontier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign InReactionResearch Center

  9. The Harnessed Atom - Student Edition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy TechnicalFlowNationThe Facts on

  10. The Harnessed Atom - Teachers' Edition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy TechnicalFlowNationThe Facts onTeachers' Edition The

  11. The Manhattan Project: Making the Atomic Bomb | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy TechnicalFlowNationThe FactsTechnologies, TheTheThe

  12. Role of IAEA (International Atomic Energy Agency) safeguards in confidence building

    SciTech Connect (OSTI)

    Augustson, R.H.

    1989-01-01T23:59:59.000Z

    In this paper, I will examine some attributes of confidence building and connect them with how the International Atomic Energy Agency (IAEA) interacts with its member states in carrying out its safeguards function. These interactions and the structure set up to define them help maintain and strengthen confidence between the IAEA and the member states and among these states. 3 refs.

  13. Gas-Surface Energy Exchange in Collisions of Helium Atoms with Aligned Single-Walled Carbon

    E-Print Network [OSTI]

    Maruyama, Shigeo

    1 Gas-Surface Energy Exchange in Collisions of Helium Atoms with Aligned Single-Walled Carbon #12;2 ABSTRACT Since gas flows in micro/nano devices are dominated by the interaction of gas molecules accommodation of gas molecules on surfaces. The scattering of gas molecules on quartz surfaces covered with VA

  14. Exchange and correlation energies of ground states of atoms and molecules in strong magnetic fields

    E-Print Network [OSTI]

    Schmelcher, P; Becken, W

    1999-01-01T23:59:59.000Z

    Using a Hartree-Fock mesh method and a configuration interaction approach based on a generalized Gaussian basis set we investigate the behaviour of the exchange and correlation energies of small atoms and molecules, namely th e helium and lithium atom as well as the hydrogen molecule, in the presence of a magnetic field covering the regime B=0-100a.u. In general the importance of the exchange energy to the binding properties of at oms or molecules increases strongly with increasing field strength. This is due to the spin-flip transitions and in particular due to the contributions of the tightly bound hydrogenic state s which are involved in the corresponding ground states of different symmetries. In contrast to the exchange energy the correlation energy becomes less relevant with increasing field strength. This holds for the individual configurations constituting the ground state and for the crossovers of the global ground state.

  15. Voluntary Offer Safeguards Agreement and Additional Protocol with the International Atomic Energy Agency

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-12-15T23:59:59.000Z

    The Order defines requirements for Department of Energy (DOE) compliance with the Agreement between the United States of America and the International Atomic Energy Agency for the Application of Safeguards in the United States, the Protocol to the Agreement, the Additional Protocol to the Agreement, and the Subsidiary Arrangements to the Agreement and Additional Protocol. Cancels DOE O 142.2. Admin Chg 1, 6-27-13.

  16. Voluntary Offer Safeguards Agreement and Additional Protocol with the International Atomic Energy Agency

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-12-15T23:59:59.000Z

    The Order defines requirements for Department of Energy (DOE) compliance with the Agreement between the United States of America and the International Atomic Energy Agency for the Application of Safeguards in the United States, the Protocol to the Agreement, the Additional Protocol to the Agreement, and the Subsidiary Arrangements to the Agreement and Additional Protocol. Cancels DOE O 142.2. Admin Chg 1, dated 6-27-13, cancels DOE O 142.1A. Certified 12-3-14.

  17. The Energy Eigenvalues of the Two Dimensional Hydrogen Atom in a Magnetic Field

    E-Print Network [OSTI]

    A. Soylu; O. Bayrak; I. Boztosun

    2007-03-13T23:59:59.000Z

    In this paper, the energy eigenvalues of the two dimensional hydrogen atom are presented for the arbitrary Larmor frequencies by using the asymptotic iteration method. We first show the energy eigenvalues for the no magnetic field case analytically, and then we obtain the energy eigenvalues for the strong and weak magnetic field cases within an iterative approach for $n=2-10$ and $m=0-1$ states for several different arbitrary Larmor frequencies. The effect of the magnetic field on the energy eigenvalues is determined precisely. The results are in excellent agreement with the findings of the other methods and our method works for the cases where the others fail.

  18. Localization of gravitational energy and its potential to evaluation of hydrogen atom properties

    E-Print Network [OSTI]

    Jozef Sima; Miroslav Sukenik

    2000-11-16T23:59:59.000Z

    Vaidya metric as an integral part of the Expansive Nondecelerative Universe (ENU) model enables to localize the energy of gravitational field and, subsequently, to find a deep interrelationship between quantum mechanics and the general theory of relativity. In the present paper, stemming from the ENU model, ionisation energy and energy of hyperfine splitting of the hydrogen atom, energy of the elementary quantum of action, as well as the proton and electron mass are independently expressed through the mass of the planckton, Z and W bosons and fundamental constants.

  19. Recent experimental and analytic progress in the Japan Atomic Energy Research Institute Tokamak-60 Upgrade with W-shaped divertor

    E-Print Network [OSTI]

    Hudson, Stuart

    remote radiative divertor is necessary for the heat control. The prompt exhaust of helium ash and the reRecent experimental and analytic progress in the Japan Atomic Energy Research Institute Tokamak-60 Upgrade with W-shaped divertor configuration* H. Shirai,a) and the JT-60 Teamb) Japan Atomic Energy

  20. Anisotropic etching of polymer films by high energy ,,100s of eV... oxygen atom neutral beams

    E-Print Network [OSTI]

    Economou, Demetre J.

    Anisotropic etching of polymer films by high energy ,,?100s of eV... oxygen atom neutral beams to generate an energetic 100s of eV , high flux equivalent of 10s mA/cm2 oxygen atom neutral beam. Positive of the boundary voltage which controls neutral beam energy , and was independent of substrate temperature

  1. ATOMIC ENERGY CO&lbiISSION ms AlAMos. NEW MMICO

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r. aw wL2--\ AP R 2ATOMIC

  2. Medical Devices: The Therac25 \\Lambda Nancy Leveson

    E-Print Network [OSTI]

    Leveson, Nancy

    ­ray pho­ tons. In the early 1970s, Atomic Energy of Canada Limited (AECL) 1 and a French company called retained. The business relationship between AECL and CGR faltered after the Therac­20 effort. Citing. In the mid­1970s, AECL had developed a radical new ``double pass'' con­ cept for electron acceleration

  3. U.S. Radioecology Research Programs of the Atomic Energy Commission in the 1950s

    SciTech Connect (OSTI)

    Reichle, D.E.

    2004-01-12T23:59:59.000Z

    This report contains two companion papers about radiological and environmental research that developed out of efforts of the Atomic Energy Commission in the late 1940s and the 1950s. Both papers were written for the Joint U.S.-Russian International Symposium entitled ''History of Atomic Energy Projects in the 1950s--Sociopolitical, Environmental, and Engineering Lessons Learned,'' which was hosted by the International Institute for Applied Systems Analysis in Laxemberg, Austria, in October 1999. Because the proceedings of this symposium were not published, these valuable historic reviews and their references are being documented as a single ORNL report. The first paper, ''U.S. Radioecology Research Programs Initiated in the 1950s,'' written by David Reichle and Stanley Auerbach, deals with the formation of the early radioecological research programs at the U.S. Atomic Energy Commission's nuclear production facilities at the Clinton Engineering Works in Oak Ridge, Tennessee; at the Hanford Plant in Richland, Washington; and at the Savannah River Plant in Georgia. These early radioecology programs were outgrowths of the environmental monitoring programs at each site and eventually developed into the world renowned National Laboratory environmental program sponsored by the Office of Biological and Environmental Research of the U.S. Department of Energy. The original version of the first paper was presented by David Reichle at the symposium. The second paper, ''U.S. Atomic Energy Commission's Environmental Research Programs Established in the 1950s,'' summarizes all the environmental research programs supported by the U.S. Atomic Energy Commission in the 1950s and discusses their present-day legacies. This paper is a modified, expanded version of a paper that was published in September 1997 in a volume commemorating the 50th anniversary symposium of the U.S. Department of Energy's Office of Biological and Environmental Research (DOE/BER). Contributors to the original work--Murray Schulman, DOE Headquarters, retired; Jerry Elwood, DOE/BER; David Reichle, Oak Ridge National Laboratory; and Ward Wicker, Colorado State University--provided further insight into environmental research in the decade of the 1950s and expanded the environmental part of the original document. The original version of the second paper was presented by David Reichle in poster session at the symposium.

  4. The first years of the Atomic Energy Commission New York Operations Office Health and Safety Laboratory

    SciTech Connect (OSTI)

    Eisenbud, M. (Duke Univ. Medical Center, Durham, NC (United States))

    1994-01-01T23:59:59.000Z

    The Health and Safety Laboratory (HASL) of the Atomic Energy Commission has provided much of the data on exposure assessment in uranium contractor facilities and on fallout radionuclides in the environment. The research performed in the beryllium industry 1947-1949 led to establishment of the protection standards that exist to this day. This laboratory was formed in 1947, as part of the Medical Division of the New York Operations Office, directed by B.S. Wolf, HASL was directed initially by Merril Eisenbud and subsequently by S. Allen Lough and John Harley. The history of the Laboratory is traced from its beginning, and the projects described that led to HASL's reputation as a trouble-shooting arm of the Atomic Energy Commission. 4 refs.

  5. Report of the US Department of Energy's team analyses of the Chernobyl-4 Atomic Energy Station accident sequence

    SciTech Connect (OSTI)

    Not Available

    1986-11-01T23:59:59.000Z

    In an effort to better understand the Chernobyl-4 accident of April 26, 1986, the US Department of Energy (DOE) formed a team of experts from the National Laboratories including Argonne National Laboratory, Brookhaven National Laboratory, Oak Ridge National Laboratory, and Pacific Northwest Laboratory. The DOE Team provided the analytical support to the US delegation for the August meeting of the International Atomic Energy Agency (IAEA), and to subsequent international meetings. The DOE Team has analyzed the accident in detail, assessed the plausibility and completeness of the information provided by the Soviets, and performed studies relevant to understanding the accident. The results of these studies are presented in this report.

  6. Survival probability and energy modification of hydrogen Energetic Neutral Atoms on their way from the termination shock to Earth orbit

    E-Print Network [OSTI]

    M. Bzowski

    2008-06-14T23:59:59.000Z

    Context: With the forthcoming launch of a NASA SMEX mission IBEX devoted to imaging of heliospheric interface by in-situ detection of Energetic Neutral Atoms (ENA) an important issue becomes recognizing of transport of these atoms from the termination shock of the solar wind to Earth orbit. Aims: Investigate modifications of energy and of survival probability of the H ENA detectable by IBEX (0.01 -- 6 keV) between the termination shock and Earth orbit taking into account the influence of the variable and anisotropic solar wind and solar EUV radiation. Methods: Energy change of the atoms is calculated by numerical simulations of orbits of the H ENA atoms from ~100 AU from the Sun down to Earth orbit, taking into account solar gravity and Lyman-$\\alpha$ radiation pressure, which is variable in time and depends on radial velocity of the atom. To calculate survival probabilities of the atoms against onization, a detailed 3D and time-dependent model of H ENA ionization based on observations of the solar wind and EUV ionizing radiation is constructed, and wth the use of this model probabilities of survival of the atoms are calculated by numerical integration along the previously calculated orbits. Results: Owing to the radiation pressure, H ENA reach the Earth orbit practically without energy and direction change except the atoms with energy lower than 0.1 keV during high solar activity. For a given energy at Earth orbit one expects fluctuations of survival probability from ~20% at 0.01 keV down to just a few percent at 6 keV and a modulation of survival probability as a function of the location at Earth orbit, ecliptic latitude of the arrival direction, and the phase of solar cycle with an amplitude of a few dozen percent for 0.1 keV atoms at solar minimum to a few percent for 6 keV atoms at solar maximum.

  7. Imaging ion outflow in the high-latitude magnetosphere using low-energy neutral atoms

    SciTech Connect (OSTI)

    Hesse, M.; Smith, M.F.; Herrero, F. (NASA, Greenbelt, MD (United States). Goddard Space Flight Center); Ghielmetti, A.G.; Shelley, E.G. (Lockheed Palo Alto Research Lab., CA (United States)); Wurz, P.; Bochsler, P. (Univ. of Bern (Switzerland)); Gallagher, D.L.; Moore, T.E. (NASA, Huntsville, AL (United States). Marshall Space Flight Center); Stephen, T.S. (Univ. of Denver, CO (United States))

    1993-12-01T23:59:59.000Z

    The measurement of neutral atom fluxes generated by charge exchange with the Earth's geocorona has recently been shown to provide the capability to image the magnetosphere. The authors investigate neutral oxygen fluxes produced by charge exchange from the cusp/cleft ion fountain population. Using an empirical cusp/cleft ion fountain model, an empirical variation of the geocoronal neutral hydrogen density with distance, and typical values for charge-exchange cross sections, line-of-sight integrations are performed to calculate the neutral oxygen flux at arbitrary locations in space. The resulting images are evaluated for a set of orbital positions of the proposed HI-LITE small explorer spacecraft. The resulting neutral oxygen fluxes are high enough for imaging with a low-energy neutral atom imaging instrument (ILENA) onboard the spacecraft.

  8. 332 Journal of The Anterican Ceranaic Society -Aksay et al. Vol. 62, NO.7-8 "H.Marchandise. "Thermal Conductivity of Uranium Dioxide." Commission of

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    ," Atomic Energy of Canada. Ltd. Tech. Rept. No. CRFD-XI7 (Contract No. AECL- 1096). 1960. ISB.E. Schaner

  9. A Proof of Incorrectness using the LP Theorem The Editing Problem in the Therac25

    E-Print Network [OSTI]

    Calder, Muffy

    . It was manufactured by Atomic Energy of Canada Ltd. (AECL) during the 1980s and was used at hospitals and clinics

  10. A Proof of Incorrectness using the LP Theorem The Editing Problem in the Therac-25

    E-Print Network [OSTI]

    Calder, Muffy

    . It was manufactured by Atomic Energy of Canada Ltd. (AECL) during the 1980s and was used at hospitals and clinics

  11. Vacancies and small vacancy clusters in BCC transition metals : calculation of binding energy, atomic relaxation and electronic

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    921 Vacancies and small vacancy clusters in BCC transition metals : calculation of binding energy(E) and gi(03C9), for vacancy-type lattice defects in BCC transition metals : The short-range repulsive energies between neighbouring atomic sites are simulated by a Born-Mayer potential. Binding energies of di-vacancies

  12. Theory of the Energy Levels and Precise Two--Photon Spectroscopy of Atomic Hydrogen and Deuterium 1

    E-Print Network [OSTI]

    Pachucki, Krzysztof

    Theory of the Energy Levels and Precise Two--Photon Spectroscopy of Atomic Hydrogen and Deuterium 1 of the energy levels of simple hydrogenic systems. We review recent two­photon spectroscopic measurements performed in Garching and the relevant theoretical predictions for the hydrogen energy levels. A good

  13. A Terrestrial Search for Dark Contents of the Vacuum, Such as Dark Energy, Using Atom Interferometry

    SciTech Connect (OSTI)

    Adler, Ronald J.; /Stanford U., HEPL /San Francisco State U.; Muller, Holger; /UC, Berkeley; Perl, Martin L.; /KIPAC, Menlo Park /SLAC

    2012-06-11T23:59:59.000Z

    We describe the theory and first experimental work on our concept for searching on earth for the presence of dark contents of the vacuum (DCV) using atom interferometry. Specifically, we have in mind any DCV that has not yet been detected on a laboratory scale, but which might manifest itself as dark energy on the cosmological scale. The experimental method uses two atom interferometers to cancel the effect of earth's gravity and diverse noise sources. It depends upon two assumptions: first, that the DCV possesses some space inhomogeneity in density, and second that it exerts a sufficiently strong nongravitational force on matter. The motion of the apparatus through the DCV should then lead to an irregular variation in the detected matter-wave phase shift. We discuss the nature of this signal and note the problem of distinguishing it from instrumental noise. We also discuss the relation of our experiment to what might be learned by studying the noise in gravitational wave detectors such as LIGO. The paper concludes with a projection that a future search of this nature might be carried out using an atom interferometer in an orbiting satellite. The laboratory apparatus is now being constructed.

  14. Development of Fusion Nuclear Technologies at Japan Atomic Energy Research Institute

    SciTech Connect (OSTI)

    Seki, Masahiro; Yamanishi, Toshihiko; Shu, Wataru; Nishi, Masataka; Hatano, Toshihisa; Akiba, Masato; Takeuchi, Hiroshi; Nakamura, Kazuyuki; Sugimoto, Masayoshi; Shiba, Kiyoyuki; Jitsukawa, Shiro; Ishitsuka, Etsuo; Tsuji, Hiroshi [Japan Atomic Energy Research Institute (Japan)

    2002-07-15T23:59:59.000Z

    An overview of the present status of development of fusion nuclear technologies at Japan Atomic Energy Research Institute is presented. A tritium handling system for the ITER was designed, and the technology for each component of this system was demonstrated successfully. An ultraviolet laser with a wavelength of 193 nm was found quite effective for removing tritium from in-vessel components of D-T fusion reactors. Blanket technologies have been developed for the test blanket module of the ITER and for advanced blankets for DEMO reactors. This blanket is composed of ceramic Li{sub 2}TiO{sub 3} breeder pebbles and neutron multiplier beryllium pebbles, whose diameter ranges from 0.2 to 2 mm, contained in a box structure made of a reduced-activation ferritic steel, F82H. Mechanical properties of F82H under a thermal neutron irradiation at up to 50 displacements per atom (dpa) were obtained in a temperature range from 200 to 500 deg. C. Design of the International Fusion Materials Irradiation Facility (IFMIF) has been developed to obtain engineering data for candidate materials for DEMO reactors under a simulated fusion neutron irradiation up to 100 to 200 dpa, and basic development of the key technologies to construct the IFMIF is now under way as an International Energy Agency international collaboration.

  15. Binding energy for hydrogen-like atoms in the Nelson model without cutoffs

    E-Print Network [OSTI]

    Christian Hainzl; Masao Hirokawa; Herbert Spohn

    2003-12-10T23:59:59.000Z

    In the Nelson model particles interact through a scalar massless field. For hydrogen-like atoms there is a nucleus of infinite mass and charge $Ze$, $Z > 0$, fixed at the origin and an electron of mass $m$ and charge $e$. This system forms a bound state with binding energy $E_{\\rm bin} = me^4Z^2/2$ to leading order in $e$. We investigate the radiative corrections to the binding energy and prove upper and lower bounds which imply that $ E_{\\rm bin} = me^4 Z^2/2 + c_0 e^6 + \\Ow(e^7 \\ln e)$ with explicit coefficient $c_0$ and independent of the ultraviolet cutoff. $c_0$ can be computed by perturbation theory, which however is only formal since for the Nelson Hamiltonian the smallest eigenvalue sits exactly at the bottom of the continuous spectrum.

  16. Technical Exchange and Cooperation Arrangement Between the Department of Energy and the European Atomic Energy Community

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational EnergyCommitteeRenewable1234 OFTechnetiumResources Technical

  17. Permeation of low-Z atoms through carbon sheets: Density functional theory study on energy barriers and deformation effects

    SciTech Connect (OSTI)

    Huber, Stefan E., E-mail: s.huber@uibk.ac.at, E-mail: Michael.probst@uibk.ac.at; Mauracher, Andreas; Probst, Michael, E-mail: s.huber@uibk.ac.at, E-mail: Michael.probst@uibk.ac.at [Institute of Ion Physics and Applied Physics, University of Innsbruck, Technikerstrae 25, 6020 Innsbruck (Austria)] [Institute of Ion Physics and Applied Physics, University of Innsbruck, Technikerstrae 25, 6020 Innsbruck (Austria)

    2013-12-15T23:59:59.000Z

    Energetic and geometric aspects of the permeation of the atoms hydrogen to neon neutral atoms through graphene sheets are investigated by investigating the associated energy barriers and sheet deformations. Density functional theory calculations on cluster models, where graphene is modeled by planar polycyclic aromatic hydrocarbons (PAHs), provide the energies and geometries. Particularities of our systems, such as convergence of both energy barriers and deformation curves with increasing size of the PAHs, are discussed. Three different interaction regimes, adiabatic, planar and vertical, are investigated by enforcing different geometrical constraints. The adiabatic energy barriers range from 5 eV for hydrogen to 20 eV for neon. We find that the permeation of oxygen and carbon into graphene is facilitated by temporary chemical bonding while for other, in principle reactive atoms, it is not. We discuss implications of our results for modeling chemical sputtering of graphite.

  18. Analyticity of the self-energy in total momentum of an atom coupled to the quantized radiation field

    E-Print Network [OSTI]

    Jrmy Faupin; Juerg Froehlich; Baptiste Schubnel

    2014-09-28T23:59:59.000Z

    We study a neutral atom with a non-vanishing electric dipole moment coupled to the quantized electromagnetic field. For a sufficiently small dipole moment and small momentum, the one-particle (self-) energy of an atom is proven to be a real-analytic function of its momentum. The main ingredient of our proof is a suitable form of the Feshbach-Schur spectral renormalization group.

  19. Background report for the formerly utilized Manhattan Engineer District/Atomic Energy Commission sites program

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    The Department of Energy is conducting a program to determine radiological conditions at sites formerly used by the Army Corps of Engineers' Manhattan Engineer District and the Atomic Energy Commission in the early years of nuclear energy development. Also included in the program are sites used in the Los Alamos plutonium development program and the Trinity atomic bomb test site. Materials, equipment, buildings, and land became contaminated, primarily with naturally occurring radioactive nuclides. They were later decontaminated in accordance with the standards and survey methods in use at that time. Since then, however, radiological criteria, and proposed guidelines for release of such sites for unrestricted use have become more stringent as research on the effects of low-level radiation has progressed. In addition, records documenting some of these decontamination efforts cannot be found, and the final radiological conditions of the sites could not be adequately determined from the records. As a result, the Formerly Utilized Sites Program was initiated in 1974 to identify these formerly used sites and to reevaluate their radiological status. This report covers efforts through June 1980 to determine the radiological status of sites for which the existing conditions could not be clearly defined. Principal contractor facilities and associated properties have already been identified and activities are continuing to identify additional sites. Any new sites located will probably be subcontractor facilities and areas used for disposal of contractor waste or equipment; however, only limited information regarding this equipment and material has been collected to date. As additional information becomes available, supplemental reports will be published.

  20. U.S. Energy Secretary Addresses International Atomic Energy Agency General

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept. of Energy, Office of Civil Rights, 1000ofEnergyConference

  1. Electron-Atom Superelastic Scattering in Magnesium at Millielectron Volt Energies T. Baynard, A. C. Reber, R. F. Niedziela,| S. A. Darveau, B. Prutzman,# and R. S. Berry*,

    E-Print Network [OSTI]

    Berry, R. Stephen

    Electron-Atom Superelastic Scattering in Magnesium at Millielectron Volt Energies T. Baynard, A. C energy dependence of magnesium from threshold to 1400 eV10 with an energy resolution of 250 meV. Similar

  2. Project plan international atomic energy agency (IAEA) safeguards project plutonium finishing plant

    SciTech Connect (OSTI)

    BARTLETT, W.D.

    1999-05-13T23:59:59.000Z

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) International Atomic Energy Agency (IAEA) project. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the PFP Integrated Project Management Plan (PMP), HNF-3617, Rev. 0. This project plan is the top-level definitive project management document for the PFP IAEA project. It specifies the technical, schedule, requirements and the cost baselines to manage the execution of the IAEA project. Any deviations to the document must be authorized through the appropriate change control process.

  3. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014001 (11pp) doi:10.1088/0029-5515/50/1/014001

    E-Print Network [OSTI]

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014001 its worth. Looking at the way forward, this vision constitutes a strong basis to harness fusion energy Cabinet of the French High Commissioner for Atomic Energy CEA, 91191 Gif-sur-Yvette, France Received 19

  4. Hydrogen-Atom Excitation and Ionization by Proton Impact in 50-Kev to 200-Kev Energy Region

    E-Print Network [OSTI]

    Fitchard, E.; Ford, A. Lewis; Reading, John F.

    1977-01-01T23:59:59.000Z

    PH YSICAL RE VIE% A VOLUME 16, N UMBER 8 SEPTEMBER 1977 Hydrogen-atom excitation and ionization by proton impact in the 50- to 200-keV energy region E. Fitchard, A. L. Ford, and J. F. Reading Cyclotron Institute and Department of Physics, Texas A..., and include all terms in the Born series. For projectile energies between SO and 200 keV the results are in excellent agreement with rec'ent experiments. The excitation and ionization of a hydrogen atom by proton impact has been for many years, and still...

  5. Safety Series No. 75-INSAG-4, Safety Culture: A report by the International Nuclear Safety Advisory Group, International Atomic Energy Agency

    Broader source: Energy.gov [DOE]

    Safety Series No. 75-INSAG-4, Safety Culture: A report by the International Nuclear Safety Advisory Group, International Atomic Energy Agency, IAEA, 1991

  6. U.S. Energy Secretary Addresses International Atomic Energy Agency General

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track |Weatherized BySolar EnergyHousingReportand

  7. Energy shift and Casimir-Polder force for an atom out of thermal equilibrium near a dielectric substrate

    E-Print Network [OSTI]

    Wenting Zhou; Hongwei Yu

    2014-09-07T23:59:59.000Z

    We study the energy shift and the Casimir-Polder force of an atom out of thermal equilibrium near the surface of a dielectric substrate. We first generalize, adopting the local source hypothesis, the formalism proposed by Dalibard, Dupont-Roc and Cohen-Tannoudji, which separates the contributions of thermal fluctuations and radiation reaction to the energy shift and allows a distinct treatment to atoms in the ground and excited states, to the case out of thermal equilibrium, and then use the generalized formalism to calculate the energy shift and the Casimir-Polder force of an isotropically polarizable neutral atom. We identify the effects of the thermal fluctuations that originate from the substrate and the environment and discuss in detail how the Casimir-Polder force out of thermal equilibrium behaves in three different distance regions in both the low-temperature limit and the high-temperature limit for both the ground-state and excited-state atoms, with special attention devoted to the new features as opposed to thermal equilibrium. In particular, we recover the new behavior of the atom-wall force out of thermal equilibrium at large distances in the low temperature limit recently found in a different theoretical framework and furthermore we give a concrete region where this behavior holds.

  8. Chemical Sputtering and Surface Damage of Graphite by Low Energy Atomic and Molecular Hydrogen and Deuterium Projectiles

    SciTech Connect (OSTI)

    Meyer, Fred W [ORNL; Zhang, Hengda [ORNL; Lance, Michael J [ORNL; Krause, Herbert F [ORNL

    2008-01-01T23:59:59.000Z

    We present experimental methane production yields for H+, H2+, and H3+ ions incident on ATJ graphite in the energy range 10-250 eV/H. Below about 60 eV/H, the molecular H species give higher methane yields/H when compared with isovelocity H+. The results are interpreted by considering the differences of the maximum binary collision energy transfer in the ejection of chemical sputtering products associated with undissociated molecules and incident atomic ions, using the same analysis as developed by Yao et al. (PRL 81, 550(1998)) in comparing sputtering of Au by isovelocity N+ and N2+ ions. For both D and H atomic and molecular projectiles, the yields/atom coalesce onto a single curve below projectile energies of approximately 60 eV/atom, when plotted as function of maximum energy transfer, under the assumption that the incident molecular species are undissociated when ejecting the hydrocarbon chemical sputtering product. Raman spectroscopy of a graphite sample exposed to high fluences of D+ and D3+ beams at high and low energies, confirmed the expectation that, according to this argument, there should also be more surface damage by incident molecular species than by isovelocity atomic ions. The two high-energy beam-exposed spots showed similar damage, while the low-energy molecular-beam- exposed spot showed slightly more damage than the corresponding D+ beam exposed spot.

  9. 2013 UNITED KINGDOM ATOMIC ENERGY AUTHORITY The following article appeared in Proceedings of the 27th Symposium On Fusion Technology

    E-Print Network [OSTI]

    © 2013 UNITED KINGDOM ATOMIC ENERGY AUTHORITY The following article appeared in Proceedings Torino, Torino, Italy In the ITER equatorial ports containing ICRH antennas, parasitic electrical resonances can be excited in the nominal 20 mm clearance gap between the port walls and the plug contained

  10. 2013 UNITED KINGDOM ATOMIC ENERGY AUTHORITY The following article appeared in Proceedings of the 27th Symposium On Fusion Technology

    E-Print Network [OSTI]

    © 2013 UNITED KINGDOM ATOMIC ENERGY AUTHORITY The following article appeared in Proceedings Performance stage 2 (EP2) shutdown of JET. This was a demanding and challenging activity which was based to the outside via a feed through located in a main vertical port. #12;The scale and complexity of this project

  11. PHYSICAL REVIEW C 81, 044910 (2010) Production of exotic atoms at energies available at the CERN Large Hadron Collider

    E-Print Network [OSTI]

    Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

    one of the ions in the collider ("bound-free" pair production). In particular the process of pair several insights in the production mechanism which have not been explored in the literature. OurPHYSICAL REVIEW C 81, 044910 (2010) Production of exotic atoms at energies available at the CERN

  12. Energy Spectrum of a Relativistic Two-dimensional Hydrogen-like Atom in a Constant Magnetic Field of arbitrary strength

    E-Print Network [OSTI]

    V. M. Villalba; R. Pino

    2001-01-23T23:59:59.000Z

    We compute, via a variational mixed-base method, the energy spectrum of a two dimensional relativistic atom in the presence of a constant magnetic field of arbitrary strength. The results are compared to those obtained in the non-relativistic and spinless case. We find that the relativistic spectrum does not present $s$ states.

  13. Real-time study of the adiabatic energy loss in an atomic collision with a metal cluster

    E-Print Network [OSTI]

    Baer, Roi

    , microelectronics, and environmental chem- istry. In recent years a lot of interest has arisen in the role of small, it is well known that a dominant source of nuclear energy dissipation is through the excitation process of a hydrogen atom moving towards or on a metal surface. The effect of electronic dissipation

  14. Time-dependent Maxwell field operators and field energy density for an atom near a conducting wall

    E-Print Network [OSTI]

    R. Vasile; R. Messina; R. Passante

    2009-03-18T23:59:59.000Z

    We consider the time evolution of the electric and magnetic field operators for a two-level atom, interacting with the electromagnetic field, placed near an infinite perfectly conducting wall. We solve iteratively the Heisenberg equations for the field operators and obtain the electric and magnetic energy density operators around the atom (valid for any initial state). Then we explicitly evaluate them for an initial state with the atom in its bare ground state and the field in the vacuum state. We show that the results can be physically interpreted as the superposition of the fields propagating directly from the atom and the fields reflected on the wall. Relativistic causality in the field propagation is discussed. Finally we apply these results to the calculation of the dynamical Casimir-Polder interaction energy in the far zone between two atoms when a boundary condition such as a conducting wall is present. Magnetic contributions to the interatomic Casimir-Polder interaction in the presence of the wall are also considered. We show that, in the limit of large times, the known results of the stationary case are recovered.

  15. International Atomic Energy Agency (IAEA) Coordinated Research Projects on Structural Integrity of Reactor Pressure Vessels

    SciTech Connect (OSTI)

    Server, W. L. [ATI Consulting, Pinehurst, NC; Nanstad, Randy K [ORNL

    2009-01-01T23:59:59.000Z

    The International Atomic Energy Agency (IAEA) has conducted a series of Coordinated Research Projects (CRPs) that have focused on irradiated reactor pressure vessel (RPV) steel fracture toughness properties and approaches for assuring structural integrity of RPVs throughout operating life. A series of nine CRPs have been sponsored by the IAEA, starting in the early 1970s, focused on neutron radiation effects on RPV steels. The purpose of the CRPs was to develop comparisons and correlations to test the uniformity of irradiated results through coordinated international research studies and data sharing. Consideration of dose rate effects, effects of alloying (nickel, manganese, silicon, etc.) and residual elements (eg., copper and phosphorus), and drop in upper shelf toughness are also important for assessing neutron embrittlement effects. The ultimate use of embrittlement understanding is assuring structural integrity of the RPV under current and future operation and accident conditions. Material fracture toughness is the key ingredient needed for this assessment, and many of the CRPs have focused on measurement and application of irradiated fracture toughness. This paper presents an overview of the progress made since the inception of the CRPs in the early 1970s. The chronology and importance of each CRP have been reviewed and put into context for continued and long-term safe operation of RPVs.

  16. Summary history of domestic uranium procurement under US Atomic Energy Commission contracts. Final report

    SciTech Connect (OSTI)

    Albrethsen, H. Jr.; McGinley, F.E.

    1982-09-01T23:59:59.000Z

    During the period 1947 through 1970, the Atomic Energy Commission (AEC) fostered the rapid development and expansion of the domestic uranium mining and milling industry by providing a market for uranium. Some thirty-two mills were constructed during that period to produce U/sub 3/O/sub 8/ concentrates for sale to the AEC. In addition, there were various pilot plants, concentrators, upgraders, heap leach, and solution mining facilities that operated during the period. The purpose of this report is to compile a short narrative history of the AEC's uranium concentrate procurement program and to describe briefly each of the operations that produced uranium for sale to the AEC. Contractual arrangements are described and data are given on quantities of U/sub 3/O/sub 8/ purchased and prices paid. Similar data are included for V/sub 2/O/sub 5/, where applicable. Mill and other plant operating data were also compiled from old AEC records. These latter data were provided by the companies, as a contractual requirement, during the period of operation under AEC contracts. Additionally, an effort was made to determine the present status of each facility by reference to other recently published reports. No sites were visited nor were the individual reports reviewed by the companies, many of which no longer exist. The authors relied almost entirely on published information for descriptions of facilities and milling processes utilized.

  17. Development of series H{sup ?} multicusp ion source at China Institute of Atomic Energy

    SciTech Connect (OSTI)

    TianJue, Zhang; XianLu, Jia, E-mail: jiaxl@ciae.ac.cn; ZhenGuo, Li; Yinlong, Lu; JiuChang, Qin; Xia, Zheng; Hongjuan, Yao; JunQing, Zhong; GaoFeng, Pan; Tao, Ge; Fengping, Guan [China Institute of Atomic Energy, Beijing (China)] [China Institute of Atomic Energy, Beijing (China)

    2014-02-15T23:59:59.000Z

    The development of H{sup ?} multicusp ion sources has been carried out at China Institute of Atomic Energy (CIAE) for more than ten years. The first H{sup ?} ion source with 5.2 mA was made in 2002. After improving the configured magnetic field, a H{sup ?} ion source of 10 mA was made in 2004, and the beam intensity of 15 mA was obtained in 2008 after further improvements of the filter field. The beam intensity of 18 mA was achieved in 2010 following the in-depth study and optimization on some essential operation conditions. Now a series of H{sup ?} cusp sources with different sizes and beam intensity ranging from 3 mA to 18 mA have been successfully developed at CIAE. All the ion sources can fast finish the test on the test stand now, since all the connections are modularized and can fit all kinds of H{sup ?} mulitcusp source of CIAE. The development status of the various H{sup ?} multicusp ion sources at CIAE are presented in the paper.

  18. Resonant Absorption between Moving Atoms due to Doppler Frequency Shift and Quantum Energy Variation

    E-Print Network [OSTI]

    Ching-Chuan Su

    2002-08-23T23:59:59.000Z

    By taking both the Doppler frequency shift for electromagnetic wave and the quantum energy variation of matter wave into consideration, a resonant-absorption condition based on the local-ether wave equation is presented to account for a variety of phenomena consistently, including the Ives-Stilwell experiment, the output frequency from ammonia masers, and the M\\"{o}ssbauer rotor experiment. It is found that in the resonant-absorption condition, the major term associated with the laboratory velocity is a dot-product term between this velocity and that of the emitting or absorbing atom. This term appears both in the Doppler frequency shift and the transition frequency variation and then cancels out. Thereby, the experimental results can be independent of the laboratory velocity and hence comply with Galilean relativity, despite the restriction that the involved velocities are referred specifically to the local-ether frame. However, by examining the resonant-absorption condition in the M\\"{o}ssbauer rotor experiment to a higher order, it is found that Galilean relativity breaks down.

  19. Coordination-resolved local bond contraction and electron binding-energy entrapment of Si atomic clusters and solid skins

    SciTech Connect (OSTI)

    Bo, Maolin; Huang, Yongli; Zhang, Ting [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); Wang, Yan, E-mail: ywang8@hnust.edu.cn, E-mail: ecqsun@ntu.edu.sg [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Zhang, Xi [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Li, Can [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China); Sun, Chang Q., E-mail: ywang8@hnust.edu.cn, E-mail: ecqsun@ntu.edu.sg [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China)

    2014-04-14T23:59:59.000Z

    Consistency between x-ray photoelectron spectroscopy measurements and density-function theory calculations confirms our bond order-length-strength notation-incorporated tight-binding theory predictions on the quantum entrapment of Si solid skin and atomic clusters. It has been revealed that bond-order deficiency shortens and strengthens the Si-Si bond, which results in the local densification and quantum entrapment of the core and valence electrons. Unifying Si clusters and Si(001) and (111) skins, this mechanism has led to quantification of the 2p binding energy of 96.089?eV for an isolated Si atom, and their bulk shifts of 2.461?eV. Findings evidence the significance of atomic undercoordination that is of great importance to device performance.

  20. Geological Problems in Radioactive Waste Isolation: Second Worldwide Review

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Energy of Canada Limited (AECL) has developed and assessed aEnergy of Canada Limited (AECL) has been developing andand natural barriers. AECL's approach to development of the

  1. International Atomic Energy Agency (IAEA) activities on spent fuel management options

    SciTech Connect (OSTI)

    Lovasic, Z.; Danker, W. [International Atomic Energy Agency (IAEA) Vienna (Austria)

    2007-07-01T23:59:59.000Z

    Many countries have in the past several decades opted for storage of spent fuel for undefined periods of time. They have adopted the 'wait and see' strategy for spent fuel management. A relatively small number of countries have adopted reprocessing and use of MOX fuel as part of their strategy in spent fuel management. From the 10, 000 tonnes of heavy metal that is removed annually from nuclear reactors throughout the world, only approximately 30 % is currently being reprocessed. Continuous re-evaluation of world energy resources, announcement of the Global Nuclear Energy Partnership (GNEP) and the Russian initiative to form international nuclear centers, including reprocessing, are changing the stage for future development of nuclear energy. World energy demand is expected to more than double by 2050, and expansion of nuclear energy is a key to meeting this demand while reducing pollution and greenhouse gases. Since its foundation, the International Atomic Energy Agency (IAEA) has served as an interface between countries in exchanging information on the peaceful development of nuclear energy and at the same time guarding against proliferation of materials that could be used for nuclear weapons. The IAEA's Department of Nuclear Energy has been generating technical documents, holding meetings and conferences, and supporting technical cooperation projects to facilitate this exchange of information. This paper focuses on the current status of IAEA activities in the field of spent fuel management being carried out by the Division of Nuclear Fuel Cycle and Waste Technology. Information on those activities could be found on the web site link www.iaea.org/OurWork/ST/NE/NEFW/nfcms. To date, the IAEA has given priority in its spent fuel management activities to supporting Member States in their efforts to deal with growing accumulations of spent power reactor fuel. There is technical consensus that the present technologies for spent fuel storage, wet and dry, provide adequate protection to people and environment. As storage durations grow, the IAEA has expanded its work related to the implications of extended storage periods. Operation and maintenance of containers for storage and transport have also been investigated related to long term storage periods. In addition, as international interest in reprocessing of spent fuel increases, the IAEA continues to serve as a crossroads for sharing the latest developments in spent fuel treatment options. A Coordinated Research Project is currently addressing spent fuel performance assessment and research to evaluate long term effects of storage on spent fuel. The effect of increased burnup and mixed oxide fuels on spent fuel management is also the focus of interest as it follows the trend in optimizing the use of nuclear fuel. Implications of damaged fuel on storage and transport as well as burnup credit in spent fuel applications are areas that the IAEA is also investigating. Since spent fuel management considerations require social stability and institutional control, those aspects are taken into account in most IAEA activities. Data requirements and records management as storage durations extend were also investigated as well as the potential for regional spent fuel storage facilities. Spent fuel management activities continue to be coordinated with others in the IAEA to ensure compliance and consistency with efforts in the Department of Safety and Security and the Department of Safeguards, as well as with activities related to geologic disposal. Either disposal of radioactive waste or spent fuel will be an ultimate consideration in all spent fuel management options. Updated information on spent fuel treatment options that include fuel reprocessing as well as transmutation of minor actinides are investigated to optimize the use of nuclear fuel and minimize impact on environment. Tools for spent fuel management economics are also investigated to facilitate assessment of industrial applicability for these options. Most IAEA spent fuel management activities will ultimately be reported in o

  2. Extended Xray Absorption Fine Structure Spectroscopy (EXAFS) Provides details on how x rays are absorbed by an atom at energies near X18A,B,X19A Provides details on how xrays are absorbed by an atom at energies near

    E-Print Network [OSTI]

    Ohta, Shigemi

    's xray absorption probability due to the chemical and physical state of the atom · Especially sensitiveExtended Xray Absorption Fine Structure Spectroscopy (EXAFS) · Provides details on how x rays are absorbed by an atom at energies near X18A,B,X19A· Provides details on how xrays are absorbed by an atom

  3. E-Print Network 3.0 - atomic energy government Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Illuminating Complex Matters "The Reason and Ways to Know Things... Precisely using Cold Atoms" The Fifth Lecture in the 66th Arthur H. Compton Series Some of the ... Source:...

  4. Plasma screening effects on the energies of hydrogen atom under the influence of velocity-dependent potential

    SciTech Connect (OSTI)

    Bahar, M. K. [Department of Physics, Karamanoglu Mehmetbey University, 70100 Karaman (Turkey)

    2014-07-15T23:59:59.000Z

    In order to examine the plasma screening and velocity-dependent potential effects on the hydrogen atom, the Schrdinger equation including a more general exponential cosine screened Coulomb and velocity-dependent potential is solved numerically in the framework asymptotic iteration method. The more general exponential cosine screened Coulomb potential is used to model Debye and quantum plasma for the specific values of the parameters in its structure. However, in order to examine effects of velocity-dependent potential on energy values of hydrogen atom in Debye and quantum plasma, the isotropic form factor of velocity-dependent potential is given as harmonic oscillator type, ?(r)=?{sub o}r{sup 2}. Then, the energies of s and p states are calculated numerically without any approximation. In order to investigate thoroughly plasma screening effects and contribution of velocity-dependent potential on energy values of hydrogen atom, the corresponding calculations are carried out by using different values of parameters of more general exponential cosine screened Coulomb potential and isotropic dependence, results of which are discussed.

  5. Comparative Assessment of Status and Opportunities for CO2 Capture and Storage and Radioactive Waste Disposal in North America

    E-Print Network [OSTI]

    Oldenburg, C.

    2010-01-01T23:59:59.000Z

    Energy of Canada Limited (AECL) had been developing theet al. , 2001). In 1994, AECL submitted the Environmentalone initially developed by AECL. The underground facility

  6. Implementing Arrangement Between the U.S. Department of Energy and the Department of Natural Resources of Canada and Atomic Energy of Canada Limited For Collaboration in the Area of Nuclear Research

    Broader source: Energy.gov [DOE]

    Implementing Arrangement Between the U.S. Department of Energy and the Department of Natural Resources of Canada and Atomic Energy of Canada Limited For Collaboration in the Area of Nuclear Research

  7. The Energy-Level Shifts of a Stationary Hydrogen Atom in Static External Gravitational Field with Schwarzschild Geometry

    E-Print Network [OSTI]

    Zhen-Hua Zhao; Yu-Xiao Liu; Xi-Guo Li

    2007-09-17T23:59:59.000Z

    The first order perturbations of the energy levels of a stationary hydrogen atom in static external gravitational field, with Schwarzschild metric, are investigated. The energy shifts are calculated for the relativistic 1S, 2S, 2P, 3S, 3P, 3D, 4S, 4P, 4D and 4F levels. The results show that the energy-level shifts of the states with total angular momentum quantum number 1/2 are all zero, and the ratio of absolute energy shifts with total angular momentum quantum number 5/2 is 1:4:5. This feature can be used to help us to distinguish the gravitational effect from other effect.

  8. Charge asymmetry in the differential cross section of high-energy bremsstrahlung in the field of a heavy atom

    E-Print Network [OSTI]

    Krachkov, P A

    2015-01-01T23:59:59.000Z

    The distinction between the charged particle and antiparticle differential cross sections of high-energy bremsstrahlung in the electric field of a heavy atom is investigated. The consideration is based on the quasiclassical approximation to the wave functions in the external field. The charge asymmetry (the ratio of the antisymmetric and symmetric parts of the differential cross section) arises due to the account for the first quasiclassical correction to the differential cross section. All evaluations are performed with the exact account of the atomic field. We consider in detail the charge asymmetry for electrons and muons. For electrons, the nuclear size effect is not important while for muons this effect should be taken into account. For the longitudinal polarization of the initial charged particle, the account for the first quasiclassical correction to the differential cross section leads to the asymmetry in the cross section with respect to the replacement $\\varphi\\rightarrow-\\varphi$, where $\\varphi$ i...

  9. On The Method of Precise Calculations Of Energy Levels of Hydrogen-like Atoms

    E-Print Network [OSTI]

    N. A. Boikova; Y. N. Tyukhtyaev; R. N. Faustov

    2003-11-22T23:59:59.000Z

    We describe a method for deriving logarithmic corrections in the mass ratio to the S-level of a hydrogen-like atom. With this method, a number of new corrections of this type are calculated analitically for the first time.

  10. 2013 UNITED KINGDOM ATOMIC ENERGY AUTHORITY The following article appeared in Fusion Science and Technology, Vol.64, No.2, August 2013,

    E-Print Network [OSTI]

    © 2013 UNITED KINGDOM ATOMIC ENERGY AUTHORITY The following article appeared in Fusion Science on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 Pulsed DEMO design of energy storage issues, and fatigue life improvements in Nb3Sn CICC superconductors. I. BACKGROUND In 2011

  11. INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 16931709 PII: S0029-5515(03)67272-8

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 1693­1709 PII: S0029-5515(03)67272-8 Fusion energy with lasers, direct drive targets.iop.org/NF/43/1693 Abstract A coordinated, focused effort is underway to develop Laser Inertial Fusion Energy

  12. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004 (14pp) doi:10.1088/0029-5515/50/1/014004

    E-Print Network [OSTI]

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004 of nuclear energy in the form of nuclear fission were established with the nuclear powered submarine Research and Energy®, 48 Oakland Street, Princeton, NJ 08540, USA E-mail: dmeade@pppl.gov Received 6 August

  13. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014002 (10pp) doi:10.1088/0029-5515/50/1/014002

    E-Print Network [OSTI]

    Harnessing the energy of thermonuclear fusion reactions is one of the greatest challenges of our time. FusionIOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014002 (10pp) doi:10.1088/0029-5515/50/1/014002 ITER on the road to fusion energy Kaname Ikeda Director

  14. A New Determination of the Binding Energy of Atomic Oxygen on Dust Grain Surfaces: Experimental Results and Simulations

    E-Print Network [OSTI]

    He, Jiao; Hopkins, Tyler; Vidali, Gianfranco; Kaufman, Michael J

    2015-01-01T23:59:59.000Z

    The energy to desorb atomic oxygen from an interstellar dust grain surface, $E_{\\rm des}$, is an important controlling parameter in gas-grain models; its value impacts the temperature range over which oxygen resides on a dust grain. However, no prior measurement has been done of the desorption energy. We report the first direct measurement of $E_{\\rm des}$ for atomic oxygen from dust grain analogs. The values of $E_{\\rm des}$ are $1660\\pm 60$~K and $1850\\pm 90$~K for porous amorphous water ice and for a bare amorphous silicate film, respectively, or about twice the value previously adopted in simulations of the chemical evolution of a cloud. We use the new values to study oxygen chemistry as a function of depth in a molecular cloud. For $n=10^4$ cm$^{-3}$ and $G_0$=10$^2$ ($G_0$=1 is the average local interstellar radiation field), the main result of the adoption of the higher oxygen binding energy is that H$_2$O can form on grains at lower visual extinction $A_{\\rm V}$, closer to the cloud surface. A higher ...

  15. Manual for Implementation of the Voluntary Offer Safeguards Agreement and Additional Protocol with the International Atomic Energy Agency

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-06-12T23:59:59.000Z

    This Manual provides detailed information for implementing the requirements of DOE O 142.2A, dated 12-15-06; the Agreement Between the United States of America and the International Atomic Energy Agency (IAEA) for the Application of Safeguards in the United States; the Original Protocol to the Agreement; the Additional Protocol to the Agreement signed by the United States and the IAEA on June 12, 1998; and the Interagency Procedures for the Implementation of the U.S.-IAEA Safeguards Agreement. No cancellation. Admin Chg 1, dated 6-27-13, cancels DOE M 142.2-1. Certified 12-3-14.

  16. Manual for Implementation of the Voluntary Offer Safeguards Agreement and Additional Protocol with the International Atomic Energy Agency

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-06-12T23:59:59.000Z

    This Manual provides detailed information for implementing the requirements of DOE O 142.2A, dated 12-15-06; the Agreement Between the United States of America and the International Atomic Energy Agency (IAEA) for the Application of Safeguards in the United States; the Original Protocol to the Agreement; the Additional Protocol to the Agreement signed by the United States and the IAEA on June 12, 1998; and the Interagency Procedures for the Implementation of the U.S.-IAEA Safeguards Agreement. No cancellation. Admin Chg 1, 6-27-13

  17. A new method for solving the Z>137 problem for energy levels of hydrogen-like atoms

    E-Print Network [OSTI]

    V. P. Neznamov; I. I. Safronov

    2013-10-02T23:59:59.000Z

    The "catastrophe" in solving the Dirac equation for an electron in the field of a point electric charge, which emerges for the charge numbers Z > 137, is removed in this work by effective accounting of finite dimensions of nuclei. For this purpose, in numerical solutions of equations for Dirac radial wave functions, we introduce a boundary condition at the nucleus boundary such that the components of the electron current density is zero. As a result, for all nuclei of the periodic table the calculated energy levels practically coincide with the energy levels in standard solutions of the Dirac equation in the external field of the Coulomb potential of a point charge. Further, for Z > 105, the calculated energy level functions E(Z) are monotone and smooth.The lower energy level reaches the energy E=-mc^{2} (the electron "drop" on a nuclei) at Zc = 178. The proposed method of accounting of the finite size of nuclei can be easily used in numerical calculations of energy levels of many-electron atoms.

  18. E-Print Network 3.0 - atomic energy authority Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    low-energy modes 10 that are most probably associated... the new Fig. 3. VDOS and IPR low-energy region snapshots for pure' ... Source: Drabold, David - Department of...

  19. Energy transfer among distant quantum systems in spatially shaped laser fields: Two H atoms with an internuclear separation of 5.29 nm (100 a.u.)

    SciTech Connect (OSTI)

    Paramonov, Guennaddi K.; Kuehn, Oliver; Bandrauk, Andre D. [Institut fuer Physik, Universitaet Rostock, D-18051 Rostock (Germany); Laboratorie de Chimie Theorique, Faculte des Sciences, Universite de Sherbrooke, Sherbrooke, Quebec, J1K 2R1 (Canada)

    2011-01-15T23:59:59.000Z

    The quantum dynamics of two distant H atoms excited by ultrashort and spatially shaped laser pulses is studied by the numerical solution of the non-Born-Oppenheimer time-dependent Schroedinger equation within a three-dimensional (3D) model, including the internuclear distance R and the two z coordinates of the electrons z{sub 1} and z{sub 2}. The two one-dimensional (1D) H atoms, A and B, are assumed to be initially in their ground states with a large (but otherwise arbitrary) internuclear separation of R=100 a.u. (5.29 nm). Two types of a spatial envelope of a laser field linearly polarized along the z axis are considered: (i) a broad Gaussian envelope, such that atom A is excited by the laser field predominantly, and (ii) a narrow envelope, such that practically only atom A is excited by the laser field. With the laser carrier frequency {omega}=1.0 a.u. and the pulse duration t{sub p}=5 fs, in both cases an efficient energy transfer from atom A to atom B has been found. The ionization of atom B achieved mostly after the end of the laser pulse is close to or even higher than that of atom A. It is shown that with a narrow spatial envelope of the laser field, the underlying mechanisms of the energy transfer from A to B and the ionization of B are the Coulomb attraction of the laser driven electron by the proton of atom B and a short-range Coulomb repulsion of the two electrons when their wave functions significantly overlap in the domain of atom B. In the case of a broad Gaussian spatial envelope of the laser field, the opposite process also occurs, but with smaller probability: the energy is transferred from the weakly excited atom B to atom A, and the ionization of atom A is also induced by the electron-electron repulsion in the domain of atom A due to a strong overlap of the electronic wave functions.

  20. Benchmark atomization energy of ethane : importance of accurate zero-point vibrational energies and diagonal Born-Oppenheimer corrections for a 'simple' organic molecule.

    SciTech Connect (OSTI)

    Karton, A.; Martin, J. M. L.; Ruscic, B.; Chemistry; Weizmann Institute of Science

    2007-06-01T23:59:59.000Z

    A benchmark calculation of the atomization energy of the 'simple' organic molecule C2H6 (ethane) has been carried out by means of W4 theory. While the molecule is straightforward in terms of one-particle and n-particle basis set convergence, its large zero-point vibrational energy (and anharmonic correction thereto) and nontrivial diagonal Born-Oppenheimer correction (DBOC) represent interesting challenges. For the W4 set of molecules and C2H6, we show that DBOCs to the total atomization energy are systematically overestimated at the SCF level, and that the correlation correction converges very rapidly with the basis set. Thus, even at the CISD/cc-pVDZ level, useful correlation corrections to the DBOC are obtained. When applying such a correction, overall agreement with experiment was only marginally improved, but a more significant improvement is seen when hydrogen-containing systems are considered in isolation. We conclude that for closed-shell organic molecules, the greatest obstacles to highly accurate computational thermochemistry may not lie in the solution of the clamped-nuclei Schroedinger equation, but rather in the zero-point vibrational energy and the diagonal Born-Oppenheimer correction.

  1. Temporally stable coherent states in energy degenerate systems: The hydrogen atom

    E-Print Network [OSTI]

    Michael G. A. Crawford

    2001-01-18T23:59:59.000Z

    Klauder's recent generalization of the harmonic oscillator coherent states [J. Phys. A 29, L293 (1996)] is applicable only in non-degenerate systems, requiring some additional structure if applied to systems with degeneracies. The author suggests how this structure could be added, and applies the complete method to the hydrogen atom problem. To illustrate how a certain degree of freedom in the construction may be exercised, states are constructed which are initially localized and evolve semi-classically, and whose long time evolution exhibits "fractional revivals."

  2. Organizational Analysis in Computer Science

    E-Print Network [OSTI]

    Kling, Rob

    1993-01-01T23:59:59.000Z

    Energy of Canada Limited (AECL), as an advanced medicals software and hardware. AECL's engineers tried to patch the

  3. BOREHOLE DRILLING AND RELATED ACTIVITIES AT THE STRIPA MINE

    E-Print Network [OSTI]

    Kurfurst, P.J.

    2011-01-01T23:59:59.000Z

    Energy of Canada Limited (AECL)]. Although the subsurfaceUnder- vattensfoto. and the AECL) carried out additional

  4. Classical dynamics and localization of resonances in the high energy region of the hydrogen atom in crossed fields

    E-Print Network [OSTI]

    Frank Schweiner; Jrg Main; Holger Cartarius; Gnter Wunner

    2014-12-10T23:59:59.000Z

    When superimposing the potentials of external fields on the Coulomb potential of the hydrogen atom a saddle point appears, which is called the Stark saddle point. For energies slightly above the saddle point energy one can find classical orbits, which are located in the vicinity of this point. We follow those so-called quasi-Penning orbits to high energies and field strengths observing structural changes and uncovering their bifurcation behavior. By plotting the stability behavior of those orbits against energy and field strength the appearance of a stability apex is reported. A cusp bifurcation, located in the vicinity of the apex, will be investigated in detail. In this cusp bifurcation another orbit of similar shape is found, which becomes completely stable in the observed region of positive energy, i.e., in a region of parameter space, where the Kepler-like orbits located around the nucleus are already unstable. By quantum-mechanically exact calculations we prove the existence of signatures in quantum spectra belonging to those orbits. Husimi distributions are used to compare quantum-Poincar\\'e sections with the extension of the classical torus structure around the orbits. Since periodic orbit theory predicts that each classical periodic orbit contributes an oscillating term to photoabsorption spectra, we finally give an estimation for future experiments, which could verify the existence of the stable orbits.

  5. Theoretical Studies of Energy and Momentum Exchange in Atomic and Molecular Scattering from Surfaces

    SciTech Connect (OSTI)

    Joseph R. Manson

    2005-06-30T23:59:59.000Z

    The contributions that we have made during the grant period of DE-FG02-98ER45704 can be placed into six different categories: (1) advances in the Theory of Molecule-Surface Scattering, (2) advances in the Theory of Atom-Surface Scattering, (3) utilization of scattering theory to Extract Physical Information about Surfaces, (4) Gas-Surface Interactions, (5) Ion Scattering from surfaces and (6) Scanning Tunneling Microscopy (STM). These six topics are discussed below as individual listings under the title 'IV. Detailed description of research accomplishments'. These advances show that we have made significant progress on several scientific problems in atomic and molecular surface scattering during the course of this grant as well as contributions to other areas. It is also noted that this work, although fundamentally theoretical, is marked by its strong motivation to explain current experimental measurements. This was an important secondary goal in the proposed work. We have developed theory that is useful to experimentalists in the explanation and analysis of their experimental data.

  6. Atom penetration from a thin film into the substrate during sputtering by polyenergetic Ar{sup +} ion beam with mean energy of 9.4 keV

    SciTech Connect (OSTI)

    Kalin, B.A.; Gladkov, V.P.; Volkov, N.V.; Sabo, S.E. [Moscow Engineering Physics Inst. (Russian Federation)

    1995-12-31T23:59:59.000Z

    Penetration of alien atoms (Be, Ni) into Be, Al, Zr, Si and diamond was investigated under Ar{sup +} ion bombardment of samples having thermally evaporated films of 30--50 nm. Sputtering was carried out using a wide energy spectrum beam of Ar{sup +} ions of 9.4 keV to dose D = 1 {times} 10{sup 16}--10{sup 19} ion/cm{sup 2}. Implanted atom distribution in the targets was measured by Rutherford backscattering spectrometry (RBS) of H{sup +} and He{sup +} ions with energy of 1.6 MeV as well as secondary ion mass-spectrometry (SIMS). During the bombardment, the penetration depth of Ar atoms increases with dose linearly. This depth is more than 3--20 times deeper than the projected range of bombarding ions and recoil atoms. This is a deep action effect. The analysis shows that the experimental data for foreign atoms penetration depth are similar to the data calculated for atom migration through the interstitial site in a field of internal (lateral) compressive stresses created in the near-surface layer of the substrate as a result of implantation. Under these experimental conditions atom ratio r{sub i}/r{sub m} (r{sub i} -- radius of dopant, r{sub m} -- radius target of substrate) can play a principal determining role.

  7. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014006 (6pp) doi:10.1088/0029-5515/50/1/014006

    E-Print Network [OSTI]

    .57.-z, 89.30.Ji 1. Laser and laser fusion from past and present to future In 1917, Albert EinsteinIOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014006 energized implosion could be utilized for energy generation. Today, there are many facilities worldwide

  8. 2013 UNITED KINGDOM ATOMIC ENERGY AUTHORITY The following article appeared in Journal of Nuclear Materials, Vol.439, Issues 1-3, August

    E-Print Network [OSTI]

    © 2013 UNITED KINGDOM ATOMIC ENERGY AUTHORITY The following article appeared in Journal of Nuclear temperatures, reaction path (i) (sinks) dominates and at a high dose rates and/or low irradiation temperature for Fusion Energy (CCFE) Abingdon, Oxfordshire OX14 3DB, UK Name: Christopher Hardie Address: Department

  9. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 095020 (12pp) doi:10.1088/0029-5515/49/9/095020

    E-Print Network [OSTI]

    Zonca, Fulvio

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 095020-scale fluctuations, in contrast to present day experiments where, in general, relatively low energy fast ions of alpha particles produced in DT reactions as the main heating source. Fusion alphas, with small

  10. E-Print Network 3.0 - australian atomic energy commission Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    working at the ... Source: Australian National University, Department of Engineering, Solar Energy Program; Botea, Adi - Canberra Research Laboratory. National ICT Australia...

  11. International Atomic Energy Agency 49th Session of the General Conference |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusinessDepartment of EnergyDr.MD,ITRATIOALDepartment

  12. Researcher Supported by Atomic Energy Commission and U.S. Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015Department ofRequirements Crosswalk|SimulatorsEnergy is

  13. UNITED STATES OF AMERICA ATOMIC ENERGY COMMISSION APPLICATION FORAEC LICENSE TO

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Green River,The Secretaryat Grand4100F.DOF

  14. ATOMIC ENERGY COMMISSION Refer to File No. AEGR-1 The CommandinS Officer '

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r. aw wL2--\ AP R*>I '

  15. Federal~Regulations, Titie.10 - Atomic Energy, Chapter 1; Part LOi- Control,

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$ EGcG ENERGYELIkNATION REPORTFairfield, Ohio,

  16. UNITED STATES ATOMIC ENERGY COMMISSION OAK RIDGE TENNESSEE THE DIFFRACTION OF NEUTRONS BY CRYSTALLINE POWDERS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof EnergyLeaseEnergyUNCLASSIFIED 2 1 2 :MDDC 869

  17. UNITED STATES ATOMIC ENERGY C O M M ISSION WASHINGTON 25. D. C.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO: FILE FROM:DEC.lpx--., * : . ;=A-;w

  18. UNITED STATES ATOMIC ENERGY COMMISSION SPECIAL NUCLEAR MATERIAL LlCENSE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO: FILE FROM:DEC.lpx--.,' ,' ' .:,: '

  19. Researcher Supported by Atomic Energy Commission and U.S. Department...

    Energy Savers [EERE]

    Researcher Supported by the U.S. Department of Energy Is Co-Winner of 2008 Nobel Prize in Chemistry DOE-Supported Researchers Are Co-Winners of 2005 Nobel Prize in Chemistry...

  20. Economic applicability of atomic energy as a source of power in underdeveloped countries

    E-Print Network [OSTI]

    Ahmed, Sheik Basheer

    1963-01-01T23:59:59.000Z

    , Nuclear Engineering Department, for many helpful suggestions and comments in writing Chapter IV, "Com- parative Cost Study". My sincere appreciation goes to Mrs. Brenda Yowell I' or her patience in typing the thesis. 1. V TABLE OF CONTENTS LIST... oi' Quantity) Per Capita Consumption of Energy for Various Purposes . . . . . 6 4. Distribution of Total Energy Consumption 5. Cost of Conventional Power at Different Load Factors 41 6. Estimates of Nuclear Power Cost at Different Load Factors . I...

  1. Simulations of Kinetic Events at the Atomic Scale | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartment of

  2. Statement of Intent between US Department of Energy and the State Corporation for Atomic Energy "Rosatom"

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational EnergyCommittee onGAS Act |Yucca Mountain |Financial andStatement

  3. Anion A HX Clusters with Reduced Electron Binding Energies: Proton vs Hydrogen Atom Relocation Upon Electron Detachment

    SciTech Connect (OSTI)

    Wang, Xue B.; Kass, Steven R.

    2014-12-10T23:59:59.000Z

    Clustering an anion with one or more neutral molecules is a stabilizing process that enhances the oxidation potential of the complex relative to the free ion. Several hydrogen bond clusters (i.e., A HX, where A = H2PO4 and CF3CO2 and HX = MeOH, PhOH, and Me2NOH or Et2NOH) are examined by photoelectron spectroscopy and M06-2X and CCSD(T) computations. Remarkably, these species are experimentally found to have adiabatic detachment energies that are smaller than those for the free ion and reductions of 0.47 to 1.87 eV are predicted computationally. Hydrogen atom and proton transfers upon vertical photodetachment are two limiting extremes on the neutral surface in a continuum of mechanistic pathways that account for these results, and the whole gamut of possibilities are predicted to occur.

  4. Hewlett and Holl - Atoms for Peace and War | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecemberGlossaryEnergy and Commerce Subcommittee onDuncanHoll

  5. This document, concerning Assistance to Foreign Atomic Energy Activities, is a

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF CIVIL toRocky Flats Site 1995 RockyThis

  6. Energy and Site Selectivity in O-Atom Photodesorption from Nanostructured

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart Grocer Program Sign-upEnergyTricksJohn MaplesDMgO. |

  7. Atoms for Peace | OSTI, US Dept of Energy, Office of Scientific and

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the ReviewwillSpeeding access toAbout About| OSTI,ArthurTechnical

  8. VOLUME I A HISTORY OF THE UNITED STATES ATOMIC ENERGY COMMISSION

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research PetroleumDepartment of Energy Kaveh Ghaemmaghami hasService |UsersVOLUME

  9. The perfect atom sandwich requires an extra layer > EMC2 News > The Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe MolecularPlaceTheofThe Houseformation.The

  10. Researcher Supported by Atomic Energy Commission and U.S. Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared atEffect of DryCorrectionComplex Research and

  11. Statement of Intent by The United States Department of Energy and Atomic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSiteDepartment ofCreating Long-TermSPRBlueprint |Energy of Canada

  12. The Manhattan Project: Making of the Atomic Bomb | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy TechnicalFlowNationThe FactsTechnologies, TheThe

  13. Clog-free Atomizing and Spray Drying Nozzle - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVail

  14. Progress Report Atomic Energy Commission Contract AT-(04-3)-34, Agreement No. 126

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16Hamada winsProgress Report Workgroup #3 Low

  15. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 53 (2013) 042001 (3pp) doi:10.1088/0029-5515/53/4/042001

    E-Print Network [OSTI]

    Harilal, S. S.

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 53 (2013) 042001 Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, IN, USA Received 9 directly (e.g. by spectroscopy), integration of the post-exposure W deposition showed that a net effective

  16. | International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 043016 (8pp) doi:10.1088/0029-5515/54/4/043016

    E-Print Network [OSTI]

    Harilal, S. S.

    | International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 043016 (8pp) doi:10. Hassanein Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University the developed volume-of-fluid magnetohydrodynamic code. The effects of plasma velocity and magnetic field

  17. | International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 023004 (9pp) doi:10.1088/0029-5515/54/2/023004

    E-Print Network [OSTI]

    Harilal, S. S.

    | International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 023004 (9pp) doi:10 Tatyana Sizyuk and Ahmed Hassanein Center for Materials under Extreme Environment, School of Nuclear for publication 17 December 2013 Published 21 January 2014 Abstract The plasma shielding effect is a well

  18. Use and Storage of Test and Operations Data from the High Temperature Test Reactor Acquired by the US Government from the Japan Atomic Energy Agency

    SciTech Connect (OSTI)

    Hans Gougar

    2010-02-01T23:59:59.000Z

    This document describes the use and storage of data from the High Temperature Test Reactor (HTTR) acquired from the Japan Atomic Energy Agency (JAEA) by the U.S. Government for high temperature reactor research under the Next Generation Nuclear Plant (NGNP) Project.

  19. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 055018 (13pp) doi:10.1088/0029-5515/49/5/055018

    E-Print Network [OSTI]

    Washington at Seattle, University of

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 055018 experimental and theoretical status of the most basic issues of FRC stability, confinement, and current drive field line linear systems as fusion reactors. We also develop scaling relations for extrapolation from

  20. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 104010 (12pp) doi:10.1088/0029-5515/49/10/104010

    E-Print Network [OSTI]

    ?cole Normale Supérieure

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 104010. Zwingmann CEA, IRFM, F-13108 St Paul-lez-Durance, France 1 Associazione EURATOM-ENEA sulla Fusione, C;Nucl. Fusion 49 (2009) 104010 G. Giruzzi et al 9 LJAD, U.M.R. C.N.R.S. No 6621, Universit´e de Nice

  1. and INTERNATIONAL ATOMIC ENERGY AGENCYIOP PUBLISHING NUCLEAR FUSION Nucl. Fusion 48 (2008) 024016 (13pp) doi:10.1088/0029-5515/48/2/024016

    E-Print Network [OSTI]

    Solna, Knut

    and INTERNATIONAL ATOMIC ENERGY AGENCYIOP PUBLISHING NUCLEAR FUSION Nucl. Fusion 48 (2008) 024016 devices Milan Rajkovi´c1 , Milos Skori´c2 , Knut Sølna3 and Ghassan Antar4 1 Institute of Nuclear Sciences the issue of estimating the variable power law behavior of spectral densities is addressed. The analysis

  2. 91b material: Any material identified under Section 91b of the Atomic Energy Act of 1954 (42 U.S.C. Section 2121).

    E-Print Network [OSTI]

    GLOSSARY 91b material: Any material identified under Section 91b of the Atomic Energy Act of 1954 Contaminant Level for drinking water), a dose- or risk-based concentration level (e.g., DCGL), or a reference-based standard. See investigation level. activity: See radioactivity. ALARA (acronym for As Low As Reasonably

  3. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012) 013005 (11pp) doi:10.1088/0029-5515/52/1/013005

    E-Print Network [OSTI]

    Farge, Marie

    #12;IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012-vaguelette decomposition. After validation of the new method using an academic test case and numerical data obtained, but the associated vessel erosion also impairs the awaited viability of long lasting discharges. It is thus

  4. Atoms 2014, 2, 378-381; doi:10.3390/atoms2030378 OPEN ACCESS

    E-Print Network [OSTI]

    Atoms 2014, 2, 378-381; doi:10.3390/atoms2030378 OPEN ACCESS atomsISSN 2218-2004 www.mdpi.com/journal/atoms.calisti@univ-amu.fr 3 International Atomic Energy Agency, Atomic and Molecular Data Unit, Nuclear Data Section, P.O. Box for the first two SLSP workshops are for simple atomic systems: the hydrogen atom or hydrogen-like one

  5. The Formerly Utilized Sites Remedial Action Program (FUSRAP) was initiated in 1974 to identify, investigate, and clean up or control sites throughout the United States that were part of the Nation's early atomic weapons and energy programs during the 1940

    E-Print Network [OSTI]

    US Army Corps of Engineers

    , investigate, and clean up or control sites throughout the United States that were part of the Nation's early atomic weapons and energy programs during the 1940s, 1950s, and 1960s. Activities at the sites were performed by the Manhattan Engineer District or under the Atomic Energy Commission. Both were predecessors

  6. Investigation of pressure-tube and calandria-tube deformation following a single channel blockage event in ACR-700

    E-Print Network [OSTI]

    Gerardi, Craig Douglas

    2006-01-01T23:59:59.000Z

    The ACR-700 is an advanced pressure-tube (PT) reactor being developed by Atomic Energy of Canada Limited (AECL). As in conventional CANDU reactors, the PTs are horizontal. Each PT is surrounded by a calandria tube (CT), ...

  7. Investigation of Pressure-Tube and Calandria-Tube Deformation Following a Single Channel Blockage Event in ACR-700

    E-Print Network [OSTI]

    Buongiorno, Jacopo

    The ACR-700 is an advanced pressure-tube (PT) reactor being developed by Atomic Energy of Canada Limited (AECL). As in conventional CANDU reactors, the PTs are horizontal. Each PT is surrounded by a calandria tube (CT), ...

  8. acr lattice checkerboard: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced pressure-tube (PT) reactor being developed by Atomic Energy of Canada Limited (AECL). As in conventional CANDU reactors, the PTs are horizontal. Each PT is surrounded by a...

  9. Classical trajectory Monte Carlo model calculations for the antiproton-induced ionization of atomic hydrogen at low impact energy

    E-Print Network [OSTI]

    Sarkadi, L

    2015-01-01T23:59:59.000Z

    The three-body dynamics of the ionization of the atomic hydrogen by 30 keV antiproton impact has been investigated by calculation of fully differential cross sections (FDCS) using the classical trajectory Monte Carlo (CTMC) method. The results of the calculations are compared with the predictions of quantum mechanical descriptions: The semi-classical time-dependent close-coupling theory, the fully quantal, time-independent close-coupling theory, and the continuum-distorted-wave-eikonal-initial-state model. In the analysis particular emphasis was put on the role of the nucleus-nucleus (NN) interaction played in the ionization process. For low-energy electron ejection CTMC predicts a large NN interaction effect on FDCS, in agreement with the quantum mechanical descriptions. By examining individual particle trajectories it was found that the relative motion between the electron and the nuclei is coupled very weakly with that between the nuclei, consequently the two motions can be treated independently. A simple ...

  10. Scope and limitations of high energy electron scattering in obtaining relevant structural information about atoms and molecules

    SciTech Connect (OSTI)

    Ketkar, S.N.

    1984-01-01T23:59:59.000Z

    During the course of this work experiments were undertaken to measure the scattering cross-sections for high energy electrons scattering from various target systems. The experiments can be broadly classified into two categories, one dealing with rather small systems and the other dealing with large systems (at least in the view of physicists). Although the experimental aspects, in so much as the experimental measurement of the intensities of the scattered electron is concerned, is the same for both the cases the motivation for performing the experiment is totally different. In the first case, simple atomic and molecular target systems, namely He, H/sub 2/ and D/sub 2/, are used. For such systems, good theoretical framework is available and critical comparisons of experimental cross sections are made with theoretical predictions. Attention is focussed mainly at small momentum transfer (up to 10A/sup -1/), and correlation and binding effects are studied. In the second case, somewhat larger molecular systems, namely naphthalene, anthraquinone, anthracene and dichromium tetraacetate are used. For such systems attention is focused at large momentum transfer (from 10 to 25 A/sup -1/) to obtain structural information about the molecules.

  11. Elements & Compounds Atoms (Elements)

    E-Print Network [OSTI]

    Frey, Terry

    #12;Elements & Compounds #12;Atoms (Elements) Molecules (Compounds) Cells Elements & Compounds #12 #12;First shell Second shell Third shell Hydrogen 1H Lithium 3Li Sodium 11Na Beryllium 4Be Magnesium energy Higher energy (a) A ball bouncing down a flight of stairs provides an analogy for energy levels

  12. Hadronic Atoms

    E-Print Network [OSTI]

    J. Gasser; V. E. Lyubovitskij; A. Rusetsky

    2009-03-02T23:59:59.000Z

    We review the theory of hadronic atoms in QCD+QED. The non-relativistic effective Lagrangian approach, used to describe this type of bound states, is illustrated with the case of pi+pi- atoms. In addition, we discuss the evaluation of isospin-breaking corrections to hadronic atom observables by invoking chiral perturbation theory.

  13. Conference on Nuclear Energy and Science for the 21st Century: Atoms for Peace Plus Fifty - Washington, D.C., October 2003

    SciTech Connect (OSTI)

    Pfaltzgraff, Robert L [Institute for Foreign Policy Analysis

    2006-10-22T23:59:59.000Z

    This conference's focus was the peaceful uses of the atom and their implications for nuclear science, energy security, nuclear medicine and national security. The conference also provided the setting for the presentation of the prestigious Enrico Fermi Prize, a Presidential Award which recognizes the contributions of distinguished members of the scientific community for a lifetime of exceptional achievement in the science and technology of nuclear, atomic, molecular, and particle interactions and effects. An impressive group of distinguished speakers addressed various issues that included: the impact and legacy of the Eisenhower Administration??s ??Atoms for Peace? concept, the current and future role of nuclear power as an energy source, the challenges of controlling and accounting for existing fissile material, and the horizons of discovery for particle or high-energy physics. The basic goal of the conference was to examine what has been accomplished over the past fifty years as well as to peer into the future to gain insights into what may occur in the fields of nuclear energy, nuclear science, nuclear medicine, and the control of nuclear materials.

  14. Evaluation of the energy states of hydrogen atom using Schroedinger equation with a Coulomb potential modified by the interaction between the magnetic moments of the proton and electron

    E-Print Network [OSTI]

    Voicu Dolocan

    2014-04-06T23:59:59.000Z

    In this paper we have performed the calculus of the energy states of hydrogen atom by using the Schroedinger equation with a Coulomb potential which is modified by the interaction between the magnetic moments of the proton and the electron, respectively. The important result is that the Lamb shift appears as a natural result of the solution of Schroedinger equation. The obtained results are in a good agreement with experimental data.

  15. Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy

    E-Print Network [OSTI]

    Zaniewski, Anna Monro

    2012-01-01T23:59:59.000Z

    for harvesting solar energy by Anna Monro Zaniewski Amaterials for harvesting solar energy Copyright 2012 by Annafor harvesting solar energy by Anna Monro Zaniewski Doctor

  16. A regular round of talks with atomic energy ministry representatives of Russia, the U.S., Japan, South Korea and China will be held Saturday in the IAEA (International Atomic Energy Agency) HQ in Vienna. The sides will try to reach a compromise on the pro

    E-Print Network [OSTI]

    A regular round of talks with atomic energy ministry representatives of Russia, the U.S., Japan, as there's a "stalemate" in regard to the new reactor: Russia, the EU and China are for ITER construction and composition of this process. However, Borovkov stressed, Russia insists on keeping the composition the same

  17. Bogoliubov theory and bosonic atoms

    E-Print Network [OSTI]

    Phan Thanh Nam

    2011-09-13T23:59:59.000Z

    We formulate the Bogoliubov variational principle in a mathematical framework similar to the generalized Hartree-Fock theory. Then we analyze the Bogoliubov theory for bosonic atoms in details. We discuss heuristically why the Bogoliubov energy should give the first correction to the leading energy of large bosonic atoms.

  18. Atomic mass compilation 2012

    SciTech Connect (OSTI)

    Pfeiffer, B., E-mail: bpfeiffe@uni-mainz.de [II. Physikalisches Institut, Justus-Liebig-Universitt Gieen, Gieen (Germany); GSI Helmholtzzentrum fr Schwerionenforschung, Darmstadt (Germany); Venkataramaniah, K. [Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam (India)] [Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam (India); Czok, U. [II. Physikalisches Institut, Justus-Liebig-Universitt Gieen, Gieen (Germany)] [II. Physikalisches Institut, Justus-Liebig-Universitt Gieen, Gieen (Germany); Scheidenberger, C. [GSI Helmholtzzentrum fr Schwerionenforschung, Darmstadt (Germany) [GSI Helmholtzzentrum fr Schwerionenforschung, Darmstadt (Germany); II. Physikalisches Institut, Justus-Liebig-Universitt Gieen, Gieen (Germany)

    2014-03-15T23:59:59.000Z

    Atomic mass reflects the total binding energy of all nucleons in an atomic nucleus. Compilations and evaluations of atomic masses and derived quantities, such as neutron or proton separation energies, are indispensable tools for research and applications. In the last decade, the field has evolved rapidly after the advent of new production and measuring techniques for stable and unstable nuclei resulting in substantial ameliorations concerning the body of data and their precision. Here, we present a compilation of atomic masses comprising the data from the evaluation of 2003 as well as the results of new measurements performed. The relevant literature in refereed journals and reports as far as available, was scanned for the period beginning 2003 up to and including April 2012. Overall, 5750 new data points have been collected. Recommended values for the relative atomic masses have been derived and a comparison with the 2003 Atomic Mass Evaluation has been performed. This work has been carried out in collaboration with and as a contribution to the European Nuclear Structure and Decay Data Network of Evaluations.

  19. Spectral Emission of Moving Atom

    E-Print Network [OSTI]

    J. X. Zheng-Johansson

    2008-03-17T23:59:59.000Z

    A renewed analysis of the H.E. Ives and G.R. Stilwell's experiment on moving hydrogen canal rays (J. Opt. Soc. Am., 1938, v.28, 215) concludes that the spectral emission of a moving atom exhibits always a redshift which informs not the direction of the atom's motion. The conclusion is also evident from a simple energy relation: atomic spectral radiation is emitted as an orbiting electron consumes a portion of its internal energy on transiting to a lower-energy state which however has in a moving atom an additional energy gain; this results in a redshift in the emission frequency. Based on auxiliary experimental information and a scheme for de Broglie particle formation, we give a vigorous elucidation of the mechanism for deceleration radiation of atomic electron; the corresponding prediction of the redshift is in complete agreement with the Ives and Stilwell's experimental formula.

  20. Ground state of the polar alkali-metal-atom-strontium molecules: Potential energy curve and permanent dipole moment

    SciTech Connect (OSTI)

    Guerout, R. [Laboratoire Kastler-Brossel, CNRS, ENS, Univ Pierre et Marie Curie case 74, Campus Jussieu, F-75252 Paris Cedex 05 (France); Aymar, M.; Dulieu, O. [Laboratoire Aime Cotton, CNRS, UPR3321, Bat. 505, Univ Paris-Sud, F-91405 Orsay Cedex (France)

    2010-10-15T23:59:59.000Z

    In this study, we investigate the structure of the polar alkali-metal-atom-strontium diatomic molecules as possible candidates for the realization of samples of ultracold polar molecular species not yet investigated experimentally. Using a quantum chemistry approach based on effective core potentials and core polarization potentials, we model these systems as effective three-valence-electron systems, allowing for calculation of electronic properties with full configuration interaction. The potential curve and the permanent dipole moment of the {sup 2}{Sigma}{sup +} ground state are determined as functions of the internuclear distance for LiSr, NaSr, KSr, RbSr, and CsSr molecules. These molecules are found to exhibit a significant permanent dipole moment, though smaller than those of the alkali-metal-atom-Rb molecules.

  1. Single Supported Atoms Participate in Catalytic Processes | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functional Materials for Energy Single Supported Atoms Participate in Catalytic Processes December 04, 2014 Pathways for NO oxidation on single Pt atoms supported on the (010)...

  2. CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Presentation to PhD and

    E-Print Network [OSTI]

    energy consumption (efficiency improvement balances growth) 10 12 14 16 18 20 Gtoe Developing countries FSU/CEE OECD 0 2 4 6 8 1860 Source: World Energy Council, World Bank. The graph for the period 2000-2060 shows a scenario of future energy consumption based on current trends. 1880 1900 19801940 20201920

  3. NAAP Hydrogen Atom 1/9 The Hydrogen Atom Student Guide

    E-Print Network [OSTI]

    Farritor, Shane

    Name: NAAP ­ Hydrogen Atom 1/9 The Hydrogen Atom ­ Student Guide Background Material Carefully read and the Quantum model represent the Hydrogen atom. In some cases they both describe things in the same way frequency, smaller energy, and the same velocity through space as a blue photon". #12;NAAP ­Hydrogen Atom 2

  4. Atom Interferometry

    ScienceCinema (OSTI)

    Mark Kasevich

    2010-01-08T23:59:59.000Z

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton?s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  5. Iowa Powder Atomization Technologies

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  6. Iowa Powder Atomization Technologies

    ScienceCinema (OSTI)

    None

    2013-03-01T23:59:59.000Z

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  7. Atom Probe Tomography | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDear Friend,Arthur J. NozikAtom Probe Tomography Atom Probe

  8. Atomic Collapse Observed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDear Friend,Arthur J. NozikAtom Probe Tomography Atom

  9. Numerical study of atomic production rate in hydrogen negative ion sources with the effect of non-equilibrium electron energy distribution function

    SciTech Connect (OSTI)

    Shibata, T.; Hatayama, A. [Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan)] [Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan); Kashiwagi, M.; Inoue, T.; Hanada, M. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka 311-0193 (Japan)] [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka 311-0193 (Japan)

    2013-10-14T23:59:59.000Z

    Spatial non-uniformity of the dissociative hydrogen atom (H{sup 0}) production has been investigated in a large negative ion source (JAEA 10 A source) with the electron energy distribution function (EEDF) obtained by a Monte-Carlo simulation code for electron transport in 3D3V (three dimensional real and velocity) space. It has been shown that the H{sup 0} production rate becomes larger in the upper region (one side in the longitudinal direction) of the source chamber. This spatial non-uniformity of the H{sup 0} production profile is mainly explained by the non-equilibrium features of the EEDF in the upper region, i.e., the EEDF consists of thermal electron component with kinetic energy ? < 25 eV and fast electron component with energy ? > 25 eV in the upper region, while the EEDF mainly consists of only thermal electrons in the bottom region. These characteristics for the EEDF and the energy dependence of cross-sections for dissociation and dissociative ionization processes lead to the non-uniform profile of the H{sup 0} production. The above numerical results of the spatial H{sup 0} non-uniformity are validated and confirmed by comparisons with those by spectroscopic measurement. It has been clarified that the non-equilibrium (fast electron) component of the EEDF has a large contribution to the non-uniformity of the H{sup 0} production rate.

  10. QR, I UNITED STA-I' ES ATOMIC ENERGY COMMISSION W~I-WdOTDN 2B. D. D.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28 1%AU62 & 199344 2004 GJtQR, I

  11. UNITED STATES ATOMIC ENERGY COMMISSION SAC200063~~0oooo Frank K. Pittman, Director, /Division of Waste Management and Trans-

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO: FILE FROM:DEC.lpx--.,

  12. Effective atomic numbers of blue topaz at different gamma-rays energies obtained from Compton scattering technique

    SciTech Connect (OSTI)

    Tuschareon, S., E-mail: tuscharoen@hotmail.com; Limkitjaroenporn, P., E-mail: tuscharoen@hotmail.com; Kaewkhao, J., E-mail: tuscharoen@hotmail.com [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000, Thailand and Science Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000 (Thailand)

    2014-03-24T23:59:59.000Z

    Topaz occurs in a wide range of colors, including yellow, orange, brown, pink-to-violet and blue. All of these color differences are due to color centers. In order to improve the color of natural colorless topaz, the most commonly used is irradiated with x- or gamma-rays, indicated that attenuation parameters is important to enhancements by irradiation. In this work, the mass attenuation coefficients of blue topaz were measured at the different energy of ?-rays using the Compton scattering technique. The results show that, the experimental values of mass attenuation coefficient are in good agreement with the theoretical values. The mass attenuation coefficients increase with the decrease in gamma rays energies. This may be attributed to the higher photon interaction probability of blue topaz at lower energy. This result is a first report of mass attenuation coefficient of blue topaz at different gamma rays energies.

  13. Non-analyticity of the groud state energy of the Hamiltonian for Hydrogen atom in non-relativistic QED

    E-Print Network [OSTI]

    Jean-Marie Barbaroux; Semjon Vugalter

    2010-06-01T23:59:59.000Z

    We derive the ground state energy up to the fourth order in the fine structure constant $\\alpha$ for the translation invariant Pauli-Fierz Hamiltonian for a spinless electron coupled to the quantized radiation field. As a consequence, we obtain the non-analyticity of the ground state energy of the Pauli-Fierz operator for a single particle in the Coulomb field of a nucleus.

  14. GuidedestudessuprieuresFacult de gnie tudier dans la rgion de la capitale nationale du Canada

    E-Print Network [OSTI]

    Petriu, Emil M.

    , plasco energy group, aecon, dessau, pomerleau, Bombardier aerospace, Bell Helicopter, Husky energy, aecl

  15. The Decovalex III Project: A Summary of Activities and Lessons Learned

    E-Print Network [OSTI]

    Tsang, Chin-Fu; Jing, Lanru; Stephansson, Ove; Kautsky, Fritz

    2005-01-01T23:59:59.000Z

    Energy of Canada, Ltd (AECL). , Canada Swedish Nuclear Fuelin this task were OPG/AECL, SKB/CTH, STUK/HUT, and UEDIN.state boundary conditions (AECL and CTH). 2. Phase II: 3D

  16. Geological challenges in radioactive waste isolation: Third worldwide review

    E-Print Network [OSTI]

    Witherspoon editor, P.A.; Bodvarsson editor, G.S.

    2001-01-01T23:59:59.000Z

    of Canada Limited Report, AECL-10717, COG-93-7, Pinawa,Energy of Canada Limited (AECL) and more recently Ontarioof Canada Limited Report, AECL- 11494-5, COG-95-552-5,

  17. ORNL results for Test Case 1 of the International Atomic Energy Agency`s research program on the safety assessment of Near-Surface Radioactive Waste Disposal Facilities

    SciTech Connect (OSTI)

    Thorne, D.J.; McDowell-Boyer, L.M.; Kocher, D.C.; Little, C.A. [Oak Ridge National Lab., Grand Junction, CO (United States); Roemer, E.K. [Oak Ridge Inst. for Science and Education, TN (United States)

    1993-07-01T23:59:59.000Z

    The International Atomic Energy Agency (IAEA) started the Coordinated Research Program entitled ```The Safety Assessment of Near-Surface Radioactive Waste Disposal Facilities.`` The program is aimed at improving the confidence in the modeling results for safety assessments of waste disposal facilities. The program has been given the acronym NSARS (Near-Surface Radioactive Waste Disposal Safety Assessment Reliability Study) for ease of reference. The purpose of this report is to present the ORNL modeling results for the first test case (i.e., Test Case 1) of the IAEA NSARS program. Test Case 1 is based on near-surface disposal of radionuclides that are subsequently leached to a saturated-sand aquifer. Exposure to radionuclides results from use of a well screened in the aquifer and from intrusion into the repository. Two repository concepts were defined in Test Case 1: a simple earth trench and an engineered vault.

  18. Energy and Atomic Mass Dependence of Nuclear Stopping Power in Relativistic Heavy-Ion Collisions in Interacting Gluon Model

    E-Print Network [OSTI]

    Q. J. Liu; W. Q. Chao; G. Wilk

    1995-04-05T23:59:59.000Z

    We present a Monte-Carlo simulation of energy deposition process in relativistic heavy-ion collisions based on a new realization of the Interacting-Gluon-Model (IGM) for high energy $N-N$ collisions. In particular we show results for proton spectra from collisions of $E_{lab}=200 \\ GeV/N$ $^{32}$S beam incident on $^{32}$S target and analyze the energy and mass dependence of nuclear stopping power predicted by our model. Theoretical predictions for proton rapidity distributions of both $^{208}$Pb + $^{208}$Pb collisions at $E_{lab}=160 \\ GeV/N$ CERN SPS and $^{197}$Au + $^{197}$Au at $\\sqrt{s_{NN}}=200 \\ GeV$ BNL RHIC are given.

  19. Neutrino observations from the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    Energy of Canada Limited (AECL), Agra-Monenco, Canatom,The heavy water was loaned by AECL with the cooperation of

  20. Unified optical-model approach to low-energy antiproton annihilation on nuclei and to antiprotonic atoms

    E-Print Network [OSTI]

    C. J. Batty; E. Friedman; A. Gal

    2000-11-29T23:59:59.000Z

    A successful unified description of $\\bar p$ nuclear interactions near E=0 is achieved using a $\\bar p$ optical potential within a folding model, $V_{{\\rm opt}} \\sim \\bar v * {\\rho}$, where a $\\bar p p$ potential $\\bar v$ is folded with the nuclear density $\\rho$. The potential $\\bar v$ fits very well the measured $\\bar p p$ annihilation cross sections at low energies ($p_L optical potential $V_{{\\rm opt}}$ reproduces satisfactorily the strong-interaction level shifts and widths over the entire periodic table, for $A > 10$, as well as the few low energy $\\bar p$ annihilation cross sections measured on Ne. Both $\\bar v$ and $V_{{\\rm opt}}$ are found to be highly absorptive, which leads to a saturation of reaction cross sections in hydrogen and on nuclei. Predictions are made for $\\bar p$ annihilation cross sections over the entire periodic table at these very low energies and the systematics of the calculated cross sections as function of $A$, $Z$ and $E$ is discussed and explained in terms of a Coulomb-modified strong-absorption model. Finally, optical potentials which fit simultaneously low-energy $\\bar p - ^4$He observables for $E 0$ are used to assess the reliability of extracting Coulomb modified $\\bar p$ nuclear scattering lengths directly from the data. The relationship between different kinds of scattering lengths is discussed and previously published systematics of the $\\bar p$ nuclear scattering lengths is updated.

  1. CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Engineering Research at CCFE

    E-Print Network [OSTI]

    ­ Tritium inventory control and processing ­ Remote handling ­ and many more! #12;4 Technology Theme.; ­ Response to transients, EM loads; ­ Maintainability ­ remote handling design. ­ Manufacturability in ITER · Test if Nanofluids are suitable as an advanced cooling fluid able to remove extreme heat energy fluxes

  2. ELSEVIER Thin Solid Films 260 (1995)205-211 Investigation of the atomic-scale friction and energy dissipation in

    E-Print Network [OSTI]

    Brenner, Donald W.

    dissipation in diamond using molecular dynamics Judith A. Harrisona, Carter T. Whiteb, Richard J. Coltonb;accepted 10 January 1995 Abstract We have used molecular dynamics simulations to examine friction when two to be the mechanical excitation (in the form of vibrational and rotational energy) of the interface lattice layers upon

  3. Atomic Forces from Electronic Energies Via the Hellmann-Feynman Theorem, with Application to Semiconductor (110) Surface Relaxation

    E-Print Network [OSTI]

    SANKEY, OF; Allen, Roland E.

    1986-01-01T23:59:59.000Z

    becoming exact for an infinite cluster. The basic quantities considered are diagonal matrix ele- ments of the Green's function, G(E}=(E?H) ', where H is the tight-binding Hamiltonian. E is the energy, which is taken to mean E+i5, where 5~0+. The bond... order is obtained from matrix elements of the Green's function through E P??(i,j ) = ??Im J Gpj?(E)dE,00 where the Gpj?(E) are the off-diaganal matrix elements (i+j } of the Green's function G?"?(E)= &y?(;) ~ G(E) ~ y?(,) & . The electronic...

  4. Z UNITED S T A T E S ATOMIC ENERGY C O M M I S S I O N

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2 ContinuingYanYoussefYue Lu Yue LuMachine

  5. Elastic modulus mapping of atomically thin film based Lithium Ion Battery electrodes Lithium Ion Batteries (LIB) are one of the most promising class of next generation energy storage devices,

    E-Print Network [OSTI]

    Batteries (LIB) are one of the most promising class of next generation energy storage devices, which canElastic modulus mapping of atomically thin film based Lithium Ion Battery electrodes Lithium Ion the charging/discharging which otherwise lead to in efficient battery operation. The cyclically charging

  6. Degeneracy Breaking of Hydrogen Atom

    E-Print Network [OSTI]

    Agung Trisetyarso; Pantur Silaban

    2014-11-21T23:59:59.000Z

    The three dimensional rotation group, SO(3), is a symmetry group of the normal hydrogen atom. Each reducible representation of this group can be associated with a degenerate energy level. If this atom is placed in an external magnetic field, the interaction between the orbital magnetic moment with this field will lead to a symmetry breaking where the symmetry group of the atom is a new group distinct from the SO(3) group. This phenomenon describes the normal Zeeman effect, where a degenerate energy level splits into several new energy levels. It is explicitly shown that each of the new energy levels can be associated with an irreducible representation of the new symmetry group.

  7. Photoabsorption by Ions and Atoms

    SciTech Connect (OSTI)

    Manson, Steven T. [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303 (United States)

    2004-12-01T23:59:59.000Z

    Recent progress in theoretical and experimental investigations of photoabsorption by atoms and ions is presented. Specifically, examples of near-chaotic behavior in photoionization of positive ions, low-energy manifestations of nondipole effects, high-energy breakdown of the single particle picture and new phenomenology uncovered in the inner-shell photoabsorption by negative ions are discussed.

  8. Coordination of the U.S. DOE-Argentine National Atomic Energy Commission (CNEA) science and technology implementing arrangement. Final report

    SciTech Connect (OSTI)

    Ebadian, M.A.

    1998-01-01T23:59:59.000Z

    In 1989, the US Department of Energy (DOE) established the Office of Environmental Management (EM) and delegated to the office the responsibility of cleaning up the US nuclear weapons complex. EM`s mission has three primary activities: (1) to assess, remediate, and monitor contaminated sites and facilities; (2) to store, treat, and dispose of wastes from past and current operations; and (3) to develop and implement innovative technologies for environmental remediation. To this end, EM has established domestic and international cooperative technology development programs, including one with the Republic of Argentina. Cooperating with Argentine scientific institutes and industry meets US cleanup objectives by: (1) identifying and accessing Argentine EM-related technologies, thereby leveraging investments and providing cost-savings; (2) improving access to technical information, scientific expertise, and technologies applicable to EM needs; and (3) fostering the development of innovative environmental technologies by increasing US private sector opportunities in Argentina in EM-related areas. Florida International University`s Hemispheric Center for Environmental Technology (FIU-HCET) serves as DOE-OST`s primary technology transfer agent. FIU-HCET acts as the coordinating and managing body for the Department of Energy (DOE)-Argentina National Atomic Energy Commission (CNEA) Arrangement. Activities include implementing standard operating procedures, tracking various technical projects, hosting visiting scientists, advising DOE of potential joint projects based on previous studies, and demonstrating/transferring desired technology. HCET hosts and directs the annual Joint Coordinating Committee for Radioactive and Mixed Waste Management meeting between the DOE and CNEA representatives. Additionally, HCET is evaluating the possibility of establishing similar arrangements with other Latin American countries.

  9. Atomic magnetometer

    DOE Patents [OSTI]

    Schwindt, Peter (Albuquerque, NM); Johnson, Cort N. (Albuquerque, NM)

    2012-07-03T23:59:59.000Z

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  10. atomic structure calculations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    orbital discretization. We give analytic expressions for evaluating charge density, total energy, Helmholtz free energy and atomic forces without using the eigenvalues and...

  11. Decommissioning of the Dragon High Temperature Reactor (HTR) Located at the Former United Kingdom Atomic Energy Authority (UKAEA) Research Site at Winfrith - 13180

    SciTech Connect (OSTI)

    Smith, Anthony A. [Research Sites Restoration Ltd, Winfrith, Dorset (United Kingdom)] [Research Sites Restoration Ltd, Winfrith, Dorset (United Kingdom)

    2013-07-01T23:59:59.000Z

    The Dragon Reactor was constructed at the United Kingdom Atomic Energy Research Establishment at Winfrith in Dorset through the late 1950's and into the early 1960's. It was a High Temperature Gas Cooled Reactor (HTR) with helium gas coolant and graphite moderation. It operated as a fuel testing and demonstration reactor at up to 20 MW (Thermal) from 1964 until 1975, when international funding for this project was terminated. The fuel was removed from the core in 1976 and the reactor was put into Safestore. To meet the UK's Nuclear Decommissioning Authority (NDA) objective to 'drive hazard reduction' [1] it is necessary to decommission and remediate all the Research Sites Restoration Ltd (RSRL) facilities. This includes the Dragon Reactor where the activated core, pressure vessel and control rods and the contaminated primary circuit (including a {sup 90}Sr source) still remain. It is essential to remove these hazards at the appropriate time and return the area occupied by the reactor to a safe condition. (author)

  12. Japan Atomic Energy Research Institute/United States Integral Neutronics Experiments and Analyses for tritium breeding, nuclear heating, and induced radioactivity

    SciTech Connect (OSTI)

    Abdou, M.A.; Youssef, M.; Kumar, A. [Univ. of California, Los Angeles, CA (United States)] [and others

    1995-08-01T23:59:59.000Z

    A large member of integral experiments for fusion blanket neutronics were performed using deuterium-tritium (D-T) neutrons at the Fusion Neutronics Source facility as part of a 10-yr collaborative program between the Japan Atomic Energy Research Institute and the United States. A number of measurement techniques were developed for tritium production, induced radioactivity, and nuclear heating. Transport calculations were performed using three-dimensional Monte Carlo and two-dimensional discrete ordinates codes and the latest nuclear data libraries in Japan and the United States. Significant differences among measurement techniques and calculation methods were found. To assure a 90% confidence level for tritium breeding calculations not to exceed measurements, designers should use a safety factor > 1.1 to 1.2, depending on the calculation method. Such a safety factor may not be affordable with most candidate blanket designs. Therefore, demonstration of tritium self-sufficiency is recommended as a high priority for testing in near-term fusion facilities such as the International Thermonuclear Experimental Reactor (ITER). The radioactivity measurements were performed for > 20 materials with the focus on gamma emitters with half-lives < 5 yr. Most discrepancies were attributed directly to deficiencies in the activation libraries, particularly errors in cross sections for certain reactions. 71 refs., 30 figs., 5 tabs.

  13. Atomic Cascade in Muonic and Hadronic Hydrogen Atoms

    E-Print Network [OSTI]

    T. S. Jensen; V. P. Popov; V. N. Pomerantsev

    2007-12-18T23:59:59.000Z

    The atomic cascade in $\\mu^- p$ and $\\pi^- p$ atoms has been studied with the improved version of the extended cascade model in which new quantum mechanical calculations of the differential and integral cross sections of the elastic scattering, Stark transitions and Coulomb de-excitation have been included for the principal quantum number values $n\\le 8$ and the relative energies $E \\ge 0.01$ eV. The $X$-ray yields and kinetic energy distributions are compared with the experimental data.

  14. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    questions surrounding atoms. August 16, 2010 New energy recovery systems and occupancy sensors are greatly reducing energy costs at Woonsocket Middle School at Hamlet. | Photo...

  15. Atom Probe Tomography | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience Program Cumulus Humilis Aerosol Processing Study (CHAPS)Atom

  16. An Overview of the Cooperative Effort between the United States Department of Energy and the China Atomic Energy Authority to Enhance MPC&A Inspections for Civil Nuclear Facilities in China

    SciTech Connect (OSTI)

    Ahern, Keith [U.S. Enrichment Corporation Paducah Gaseous Diffusion Plant; Daming, Liu [China Institute of Atomic Energy (CIAE); Hanley, Tim [U.S. Department of Energy, NNSA; Livingston, Linwood [Pacific Northwest National Laboratory (PNNL); McAninch, Connie [U.S. Department of Energy, NNSA; McGinnis, Brent R [ORNL; Ning, Shen [China Institute of Atomic Energy (CIAE); Qun, Yang [China Institute of Atomic Energy (CIAE); Roback, Jason William [ORNL; Tuttle, Glenn [U.S. Nuclear Regulatory Commission; Xuemei, Gao [China Institute of Atomic Energy (CIAE); Galer, Regina [U.S. National Nuclear Security Administration; Peterson, Nancy [U.S. National Nuclear Security Administration; Jia, Jinlie [China Atomic Energy Authority (CAEA)

    2011-01-01T23:59:59.000Z

    The United States Department of Energy, National Nuclear Security Administration (DOE/NNSA) and the China Atomic Energy Authority (CAEA) are cooperating to enhance the domestic regulatory inspections capacity for special nuclear material protection, control and accounting (MPC&A) requirements for civil nuclear facilities in China. This cooperation is conducted under the auspices of the Agreement between the Department of Energy of the United States of America and the State Development and Planning Commission of the People s Republic of China on Cooperation Concerning Peaceful Uses of Nuclear Technology. This initial successful effort was conducted in three phases. Phase I focused on introducing CAEA personnel to DOE and U. S. Nuclear Regulatory Commission inspection methods for U. S. facilities. This phase was completed in January 2008 during meetings in Beijing. Phase II focused on developing physical protection and material control and accounting inspection exercises that enforced U. S. inspection methods identified during Phase 1. Hands on inspection activities were conducted in the United States over a two week period in July 2009. Simulated deficiencies were integrated into the inspection exercises. The U. S. and Chinese participants actively identified and discussed deficiencies noted during the two week training course. The material control and accounting inspection exercises were conducted at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, KY. The physical protection inspection exercises were conducted at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN. Phase III leveraged information provided under Phase I and experience gained under Phase II to develop a formal inspection guide that incorporates a systematic approach to training for Chinese MPC&A field inspectors. Additional hands on exercises that are applicable to Chinese regulations were incorporated into the Phase III training material. Phase III was completed in May 2010 at the China Institute of Atomic Energy (CIAE) in Beijing. This paper provides details of the successful cooperation between DOE/NNSA and CAEA for all phases of the cooperative effort to enhance civil domestic MPC&A inspections in China.

  17. E-Print Network 3.0 - atomic scale analysis Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    determine the atomic-scale structure of nanocrystals in detail... -energy XRD and atomic PDF ... Source: Petkov, Valeri - Department of Physics, Central Michigan University...

  18. E-Print Network 3.0 - atomic collision experiments Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experiments ... Source: Experimental High Energy Physics Collection: Plasma Physics and Fusion ; Physics 74 Ultra-cold Atom CollisionsUltra-cold Atom Collisions and Quantum...

  19. Activities with Argentina. Spring 1999. A U.S. Department of Energy Cooperative Program with the National Atomic Energy Commission of the Argentine Republic

    SciTech Connect (OSTI)

    NONE

    1999-06-01T23:59:59.000Z

    In 1989, the US Department of Energy (DOE) responded to the need to redirect resources from weapons production to environmental restoration and waste management by establishing the Office of Environmental Management (EM) and delegated to this office the responsibility of cleaning up the US nuclear weapons complex. Now in its eight year, EM`s mission has three central facets: (1) to assess, remediate, and monitor contaminated sites and facilities; (2) to store, treat, and dispose of waste from past and current operations; and (3) to develop and implement innovative technologies for environmental cleanup. To this end, EM has established domestic and international cooperative technology development programs, including one with the Republic of Argentina. Cooperating with Argentine scientific institutes and industries meets US cleanup objectives by: (1) identifying and accessing Argentine EM-related technologies, thereby leveraging investments and providing cost-savings; (2) improving access to technical information, scientific expertise, and technologies applicable to EM needs; and (3) fostering the development of innovative environmental technologies by increasing US private sector opportunities in Argentina in EM-related areas.

  20. Hartree-Fock theory for pseudorelativistic atoms

    E-Print Network [OSTI]

    Anna Dall'Acqua; Thomas stergaard Srensen; Edgardo Stockmeyer

    2007-07-31T23:59:59.000Z

    We study the Hartree-Fock model for pseudorelativistic atoms, that is, atoms where the kinetic energy of the electrons is given by the pseudorelativistic operator \\sqrt{(pc)^2+(mc^2)^2}-mc^2. We prove the existence of a Hartree-Fock minimizer, and prove regularity away from the nucleus and pointwise exponential decay of the corresponding orbitals.

  1. atom-atom collisions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Safronova, Marianna 3 Atom-atom correlations in colliding Bose-Einstein condensates Quantum Physics (arXiv) Summary: We analyze atom-atom correlations in the s-wave...

  2. Neutral atom traps.

    SciTech Connect (OSTI)

    Pack, Michael Vern

    2008-12-01T23:59:59.000Z

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  3. Atomic-level imaging, processing and characterization of semiconductor surfaces

    DOE Patents [OSTI]

    Kazmerski, L.L.

    1995-08-22T23:59:59.000Z

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe. 8 figs.

  4. Atomic-level imaging, processing and characterization of semiconductor surfaces

    DOE Patents [OSTI]

    Kazmerski, Lawrence L. (Lakewood, CO)

    1995-01-01T23:59:59.000Z

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe.

  5. 7 -ATOMIC PROCESSES Atomic processes can be

    E-Print Network [OSTI]

    Sitko, Michael L.

    1 7 - ATOMIC PROCESSES Atomic processes can be: 1. Scattering 2. Absorption/Thermal Emission scattering, although the results won't change much when this condition is relaxed. Absorption/Thermal Emission Free-free (continuum) ("Bremsstrahlung") Emission/Absorption #12;2 Bound-Bound & Bound

  6. 7 -ATOMIC PROCESSES Atomic processes can be

    E-Print Network [OSTI]

    Sitko, Michael L.

    1 7 - ATOMIC PROCESSES Atomic processes can be: 1. Scattering 2. Absorption/Thermal Emission scattering, although the results won't change much when this condition is relaxed. #12;2 Absorption/Thermal Emission Free-free (continuum) ("Bremsstrahlung") Emission/Absorption Bound-Bound & Bound-Free Processes

  7. The Manhattan Project: Making the atomic bomb

    SciTech Connect (OSTI)

    Gosling, F.G.

    1994-09-01T23:59:59.000Z

    This article is a short history of the origins and development of the American atomic bomb program during World War II. Beginning with the scientific developments of the pre-war years, the monograph details the role of US government in conducting a secret, nationwide enterprise that took science from the laboratory and into combat with an entirely new type of weapon. The monograph concludes with a discussion of the immediate postwar period, the debate over the Atomic Energy Act of 1946, and the founding of the Atomic Energy Commission.

  8. Quantum Electrodynamics of Atomic Resonances

    E-Print Network [OSTI]

    Miguel Ballesteros; Jrmy Faupin; Jrg Frhlich; Baptiste Schubnel

    2015-03-09T23:59:59.000Z

    A simple model of an atom interacting with the quantized electromagnetic field is studied. The atom has a finite mass $m$, finitely many excited states and an electric dipole moment, $\\vec{d}_0 = -\\lambda_{0} \\vec{d}$, where $\\| d^{i}\\| = 1,$ $ i=1,2,3,$ and $\\lambda_0$ is proportional to the elementary electric charge. The interaction of the atom with the radiation field is described with the help of the Ritz Hamiltonian, $-\\vec{d}_0\\cdot \\vec{E}$, where $\\vec{E}$ is the electric field, cut off at large frequencies. A mathematical study of the Lamb shift, the decay channels and the life times of the excited states of the atom is presented. It is rigorously proven that these quantities are analytic functions of the momentum $\\vec{p}$ of the atom and of the coupling constant $\\lambda_0$, provided $|\\vec{p}| < mc$ and $| \\Im\\vec{p} |$ and $| \\lambda_{0} |$ are sufficiently small. The proof relies on a somewhat novel inductive construction involving a sequence of `smooth Feshbach-Schur maps' applied to a complex dilatation of the original Hamiltonian, which yields an algorithm for the calculation of resonance energies that converges super-exponentially fast.

  9. Read the labels Compact interferometers that exploit the wave character of atoms have the potential of

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    1 ATOM CHIPS Read the labels Compact interferometers that exploit the wave character of atoms have that harnesses the internal structure of atoms should bring such applications a step closer. Chris Westbrook Atom is increased by the ratio of their rest energy to the energy of the photon -- some ten orders of magnitude1

  10. Gauge invariant hydrogen atom Hamiltonian

    E-Print Network [OSTI]

    Wei-Min Sun; Xiang-Song Chen; Xiao-Fu Lu; Fan Wang

    2010-06-22T23:59:59.000Z

    For quantum mechanics of a charged particle in a classical external electromagnetic field, there is an apparent puzzle that the matrix element of the canonical momentum and Hamiltonian operators is gauge dependent. A resolution to this puzzle is recently provided by us in [2]. Based on the separation of the electromagnetic potential into pure gauge and gauge invariant parts, we have proposed a new set of momentum and Hamiltonian operators which satisfy both the requirement of gauge invariance and the relevant commutation relations. In this paper we report a check for the case of the hydrogen atom problem: Starting from the Hamiltonian of the coupled electron, proton and electromagnetic field, under the infinite proton mass approximation, we derive the gauge invariant hydrogen atom Hamiltonian and verify explicitly that this Hamiltonian is different from the Dirac Hamiltonian, which is the time translation generator of the system. The gauge invariant Hamiltonian is the energy operator, whose eigenvalue is the energy of the hydrogen atom. It is generally time-dependent. In this case, one can solve the energy eigenvalue equation at any specific instant of time. It is shown that the energy eigenvalues are gauge independent, and by suitably choosing the phase factor of the time-dependent eigenfunction, one can ensure that the time-dependent eigenfunction satisfies the Dirac equation.

  11. Critical Behavior of Electron Impact Ionization of Atoms

    E-Print Network [OSTI]

    Kais, Sabre

    Critical Behavior of Electron Impact Ionization of Atoms IMAD LADADWA,1,2 SABRE KAIS1 1 Department of the electron impact ionization for different atoms are calculated numerically in the Born approximation as a function of both the incident electron energy and the nuclear charge Z of the ionized atom. We show

  12. Giant Magnetic Anisotropy of Single Cobalt Atoms and

    E-Print Network [OSTI]

    Brune, Harald

    Giant Magnetic Anisotropy of Single Cobalt Atoms and Nanoparticles P. Gambardella,1,2 * S. Rusponi. Dederichs,5 K. Kern,1,2 C. Carbone,3,5 H. Brune1 The isotropic magnetic moment of a free atom is shown to develop giant magnetic anisotropy energy due to symmetry reduction at an atomically ordered surface

  13. Atomizing nozzle and process

    DOE Patents [OSTI]

    Anderson, I.E.; Figliola, R.S.; Molnar, H.M.

    1993-07-20T23:59:59.000Z

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  14. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the Japanese Atomic Energy Agency (JAEA) and National Nuclear Security Administration (NNSA). | Photo from the Office of Public Affairs, NNSA NNSA Meets with Japanese Scientists...

  15. J. Phys. B: Atom. Molec. Phys., Vol. 11, No. 1, 1978. Printed in Great Britain. @ 1978 Analysis of excitation energies and transition moments

    E-Print Network [OSTI]

    Beebe, Nelson H. F.

    of excitation energies and transition moments Jens Oddershede, Poul J~rgensenand Nelson H F Beebe Department contributions to excitation energies and transition moments in a second-order polarisation propagator description of the electronic transition moments whereas excitation energies are virtually unaffected. We have

  16. Analysis of two-dimensional high-energy photoelectron momentum distributions in the single ionization of atoms by intense laser pulses

    E-Print Network [OSTI]

    Lin, Chii-Dong

    , using longer pulses at lower intensities. The energy spectra above 4Up, where Up is the ponderomotive energy, have been found to vary rapidly with small changes in laser intensities 10,11 when laser pulseAnalysis of two-dimensional high-energy photoelectron momentum distributions in the single

  17. Instead of splitting the atom --the

    E-Print Network [OSTI]

    gravitational forces ram hydrogen atoms together to produce helium, with solar energy the byproduct. On Earth -- with helium as the waste product in addition to the energy. A huge jolt of heat (to nearly 100 million C, 180 million F) would kickstart the process, fusing the nuclei in a charged gas called a plasma. Plasma has

  18. Hydrogen atom in rotationally invariant noncommutative space

    E-Print Network [OSTI]

    Kh. P. Gnatenko; V. M. Tkachuk

    2014-11-03T23:59:59.000Z

    We consider the noncommutative algebra which is rotationally invariant. The hydrogen atom is studied in a rotationally invariant noncommutative space. We find the corrections to the energy levels of the hydrogen atom up to the second order in the parameter of noncommutativity. The upper bound of the parameter of noncommutativity is estimated on the basis of the experimental results for 1s-2s transition frequency.

  19. Multiplicative Sets of Atoms.

    E-Print Network [OSTI]

    Rand, Ashley Nicole

    2013-01-01T23:59:59.000Z

    ??It is possible for an element to have both an atom factorization and a factorization that will always contain a reducible element. This leads us (more)

  20. Improved graphite furnace atomizer

    DOE Patents [OSTI]

    Siemer, D.D.

    1983-05-18T23:59:59.000Z

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  1. Atomic Collapse Observed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and professor of Physics at UC Berkeley. Nonrelativistic electrons orbiting a subcritical nucleus exhibit the traditional circular Bohr orbit of atomic physics. But when the...

  2. Researchers map atomic movements that trigger voltage fade in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    map atomic movements that trigger voltage fade in high-energy-density batteries January 22, 2015 Voltage and capacity curves from an LMR-NMC high-energy cathode show voltage fade...

  3. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014005 (5pp) doi:10.1088/0029-5515/50/1/014005

    E-Print Network [OSTI]

    with international collaboration towards the early use of fusion energy to meet the urgent needs for energy of three as shown in figure 2. Meanwhile, China's resources are poorly balanced. It uses 11% of world coal, 13% hydropower, but only 2.5% of the oil and 1.2% of the gas on the Earth. This means

  4. Phenomena of spin rotation and oscillation of particles (atoms, molecules) containing in a trap blowing on by wind of high energy particles in storage ring

    E-Print Network [OSTI]

    Vladimir Baryshevsky

    2002-02-14T23:59:59.000Z

    Spin rotation and oscillation phenomena of particles captured in a gas target through which beam of high energy particles passes is discussed. Such experiment arrangement make it realizable for storage ring and allows to study zero-angle scattering amplitude at highest possible energies.

  5. E-Print Network 3.0 - atomic explosions Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Within... to Coulomb explosion (Last and Jortner, 2000). Calculation of the energy absorption of atomic clusters... these results with kinetic energy of the ions coming from...

  6. E-Print Network 3.0 - atomic-scale contact potential Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage, Conversion and Utilization ; Renewable Energy 6 Detection of Heavy Metal Ions Based on Quantum Point Contacts Summary: separated by atomic scale gaps. By...

  7. Conservation laws and laser cooling of atoms

    E-Print Network [OSTI]

    Giuliani, Giuseppe

    2015-01-01T23:59:59.000Z

    The straightforward application of energy and linear momentum conservation to the absorption/emission of photons by atoms--first outlined by Schr\\"odinger in 1922--allows to establish the essential features of laser cooling of two levels atoms at low laser intensities. The minimum attainable average kinetic energy of the atoms depends on the ratio $\\Gamma/E_R$ between the natural linewidth and the recoil energy and tends to $E_R$ as $\\Gamma/E_R$ tends to zero. This treatment is valid for any value of the ratio $\\Gamma/E_R$ and contains the semiclassical theory of laser cooling as the limiting case in which $E_R\\ll \\Gamma$.

  8. Method and apparatus for atomic imaging

    DOE Patents [OSTI]

    Saldin, Dilano K. (Milwaukee, WI); de Andres Rodriquez, Pedro L. (Madrid, ES)

    1993-01-01T23:59:59.000Z

    A method and apparatus for three dimensional imaging of the atomic environment of disordered adsorbate atoms are disclosed. The method includes detecting and measuring the intensity of a diffuse low energy electron diffraction pattern formed by directing a beam of low energy electrons against the surface of a crystal. Data corresponding to reconstructed amplitudes of a wave form is generated by operating on the intensity data. The data corresponding to the reconstructed amplitudes is capable of being displayed as a three dimensional image of an adsorbate atom. The apparatus includes a source of a beam of low energy electrons and a detector for detecting the intensity distribution of a DLEED pattern formed at the detector when the beam of low energy electrons is directed onto the surface of a crystal. A device responsive to the intensity distribution generates a signal corresponding to the distribution which represents a reconstructed amplitude of a wave form and is capable of being converted into a three dimensional image of the atomic environment of an adsorbate atom on the crystal surface.

  9. Atomic dark matter

    SciTech Connect (OSTI)

    Kaplan, David E.; Krnjaic, Gordan Z.; Rehermann, Keith R.; Wells, Christopher M., E-mail: dkaplan@pha.jhu.edu, E-mail: gordan@pha.jhu.edu, E-mail: keith@pha.jhu.edu, E-mail: cwells13@pha.jhu.edu [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686 (United States)

    2010-05-01T23:59:59.000Z

    We propose that dark matter is dominantly comprised of atomic bound states. We build a simple model and map the parameter space that results in the early universe formation of hydrogen-like dark atoms. We find that atomic dark matter has interesting implications for cosmology as well as direct detection: Weak-scale dark atoms can accommodate hyperfine splittings of order 100 keV, consistent with the inelastic dark matter interpretation of the DAMA data while naturally evading direct detection bounds. Moreover, protohalo formation can be suppressed below M{sub proto} ? 10{sup 3}10{sup 6}M{sub s}un for weak scale dark matter due to Ion-Radiation and Ion-Atom interactions in the dark sector.

  10. The Manhattan Project: Making the Atomic Bomb. 1999 edition.

    SciTech Connect (OSTI)

    Gosling, F.G.

    1999-01-01T23:59:59.000Z

    ``The Manhattan Project: Making the Atomic Bomb`` is a short history of the origins and development of the American atomic bomb program during World War II. Beginning with the scientific developments of the pre-war years, the monograph details the role of the United States government in conducting a secret, nationwide enterprise that took science from the laboratory and into combat with an entirely new type of weapon. The monograph concludes with a discussion of the immediate postwar period, the debate over the Atomic Energy Act of 1946, and the founding of the Atomic Energy Commission.

  11. From Lattice Gauge Theories to Hydrogen Atoms

    E-Print Network [OSTI]

    Manu Mathur; T. P. Sreeraj

    2014-10-13T23:59:59.000Z

    Using canonical transformations we obtain a complete and most economical realization of the loop or physical Hilbert space of pure $SU(2)_{2+1}$ lattice gauge theory in terms of Wigner coupled Hilbert spaces of hydrogen atoms. One hydrogen atom is assigned to every plaquette of the lattice. The SU(2) gauge theory loop basis states over a plaquette are the bound energy eigenstates $|n l m>$ of the corresponding hydrogen atom. The Wigner couplings of these hydrogen atom energy eigenstates on different plaquettes provide a complete SU(2) gauge theory loop basis on the entire lattice. The loop basis is invariant under simultaneous rotations of all hydrogen atoms. The dual description of this basis diagonalizes all Wilson loop operators and is given in terms of hyperspherical harmonics on the SU(2) group manifold $S^3$. The SU(2) loop dynamics is governed by a "SU(2) spin Hamiltonian" without any gauge fields. The relevance of the hydrogen atom basis and its dynamical symmetry group SO(4,2) in SU(2) loop dynamics in weak coupling continuum limit ($g^2\\rightarrow 0$) is emphasized.

  12. Hydrogen Atom in Relativistic Motion

    E-Print Network [OSTI]

    M. Jarvinen

    2005-04-11T23:59:59.000Z

    The Lorentz contraction of bound states in field theory is often appealed to in qualitative descriptions of high energy particle collisions. Surprisingly, the contraction has not been demonstrated explicitly even in simple cases such as the hydrogen atom. It requires a calculation of wave functions evaluated at equal (ordinary) time for bound states in motion. Such wave functions are not obtained by kinematic boosts from the rest frame. Starting from the exact Bethe-Salpeter equation we derive the equal-time wave function of a fermion-antifermion bound state in QED, i.e., positronium or the hydrogen atom, in any frame to leading order in alpha. We show explicitly that the bound state energy transforms as the fourth component of a vector and that the wave function of the fermion-antifermion Fock state contracts as expected. Transverse photon exchange contributes at leading order to the binding energy of the bound state in motion. We study the general features of the corresponding fermion-antifermion-photon Fock states, and show that they do not transform by simply contracting. We verify that the wave function reduces to the light-front one in the infinite momentum frame.

  13. Energy band alignment of atomic layer deposited HfO{sub 2} on epitaxial (110)Ge grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Hudait, M. K.; Zhu, Y. [Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)] [Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Maurya, D.; Priya, S. [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States)] [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2013-03-04T23:59:59.000Z

    The band alignment properties of atomic layer HfO{sub 2} film deposited on epitaxial (110)Ge, grown by molecular beam epitaxy, was investigated using x-ray photoelectron spectroscopy. The cross-sectional transmission electron microscopy exhibited a sharp interface between the (110)Ge epilayer and the HfO{sub 2} film. The measured valence band offset value of HfO{sub 2} relative to (110)Ge was 2.28 {+-} 0.05 eV. The extracted conduction band offset value was 2.66 {+-} 0.1 eV using the bandgaps of HfO{sub 2} of 5.61 eV and Ge bandgap of 0.67 eV. These band offset parameters and the interface chemical properties of HfO{sub 2}/(110)Ge system are of tremendous importance for the design of future high hole mobility and low-power Ge-based metal-oxide transistor devices.

  14. Energy band alignment of atomic layer deposited HfO{sub 2} oxide film on epitaxial (100)Ge, (110)Ge, and (111)Ge layers

    SciTech Connect (OSTI)

    Hudait, Mantu K.; Zhu Yan [Advanced Devices and Sustainable Energy Laboratory (ADSEL), Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2013-03-21T23:59:59.000Z

    Crystallographically oriented epitaxial Ge layers were grown on (100), (110), and (111)A GaAs substrates by in situ growth process using two separate molecular beam epitaxy chambers. The band alignment properties of atomic layer hafnium oxide (HfO{sub 2}) film deposited on crystallographically oriented epitaxial Ge were investigated using x-ray photoelectron spectroscopy (XPS). Valence band offset, {Delta}E{sub v} values of HfO{sub 2} relative to (100)Ge, (110)Ge, and (111)Ge orientations were 2.8 eV, 2.28 eV, and 2.5 eV, respectively. Using XPS data, variation in valence band offset, {Delta}E{sub V}(100)Ge>{Delta}E{sub V}(111)Ge>{Delta}E{sub V}(110)Ge, was obtained related to Ge orientation. Also, the conduction band offset, {Delta}E{sub c} relation, {Delta}E{sub c}(110)Ge>{Delta}E{sub c}(111)Ge>{Delta}E{sub c}(100)Ge related to Ge orientations was obtained using the measured bandgap of HfO{sub 2} on each orientation and with the Ge bandgap of 0.67 eV. These band offset parameters for carrier confinement would offer an important guidance to design Ge-based p- and n-channel metal-oxide field-effect transistor for low-power application.

  15. Protocol Additional to the Agreement between the United States of America and the International Atomic Energy Agency for the Application of Safeguards in the United States of America

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF CIVIL RIGHTS/%2A

  16. Agreement Between The United States of America and The International Atomic Energy Agency for the Application of Safeguards in the United States

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77 Sandia National005-2010.I APPENDIXNNews

  17. U N C L A S S I F I E D WB196 THE UNIVERSITY OF ROCHESTER ATOMIC ENERGY PROJECT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof Energy Two2015 Tyson Research CenterT~p~FRONTT01 U%^

  18. Hydrogen atom in de Sitter spaces

    E-Print Network [OSTI]

    O. V. Veko; K. V. Kazmerchuk; E. M. Ovsiyuk; V. M. Red'kov; A. M. Ishkhanyan

    2014-12-28T23:59:59.000Z

    The hydrogen atom theory is developed for the de Sitter and anti de Sitter spaces on the basis of the Klein-Gordon-Fock wave equation in static coordinates. In both models, after separation of the variables, the problem is reduced to the general Heun equation, a second order linear differential equation having four regular singular points. A qualitative examination shows that the energy spectrum for the hydrogen atom in the de Sitter space should be quasi-stationary, and the atom should be unstable. We derive an approximate expression for energy levels within the quasi-classical approach and estimate the probability of decay of the atom. A similar analysis shows that in the anti de Sitter model the hydrogen atom should be stable in the quantum-mechanical sense. Using the quasi-classical approach, we derive approximate formulas for energy levels for this case as well. Finally, we present the extension to the case of a spin 1/2 particle for both de Sitter models. This extension leads to complicated differential equations with 8 singular points.

  19. | International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 033008 (8pp) doi:10.1088/0029-5515/54/3/033008

    E-Print Network [OSTI]

    Harilal, S. S.

    localized modes (ELMs) or plasma disruptions [1, 2], the high thermal energy can be deposited on localized areas of plasma- facing components (PFC) in fusion devices [3, 4]. Among high-Z materials, pure tungsten (W) demonstrates the highest resistance against thermal loads under plasma disruption conditions

  20. Optical imaging of Rydberg atoms .

    E-Print Network [OSTI]

    Mazurenko, Anton

    2012-01-01T23:59:59.000Z

    ??We present an experiment exploring electromagnetically induced transparency (EIT) in Rydberg atoms in order to observe optical nonlinearities at the single photon level. ??Rb atoms (more)

  1. Rydberg Atoms for Quantum Information.

    E-Print Network [OSTI]

    Younge, Kelly Cooper

    2010-01-01T23:59:59.000Z

    ??I examine interactions between ensembles of cold Rydberg atoms, and between Rydberg atoms and an intense, optical standing wave. Because of their strong electrostatic interactions, (more)

  2. Optical atomic magnetometer

    DOE Patents [OSTI]

    Budker, Dmitry; Higbie, James; Corsini, Eric P

    2013-11-19T23:59:59.000Z

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  3. Metal atomization spray nozzle

    DOE Patents [OSTI]

    Huxford, T.J.

    1993-11-16T23:59:59.000Z

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  4. The Hydrogen Atom with a Finite Sized Nucleus Frank Rioux

    E-Print Network [OSTI]

    Rioux, Frank

    r( ) Reduced mass: 1 Angular momentum: L 0 Integration limit: rmax 7 Energy guess: E 0.496 r 0 .01 of nuclear size on the ground state energy of the hydrogen atom's electron. The traditional approach assumes radius, the potential energy of the electron is as given below. Nuclear radius: Rn 0.1 Potential energy

  5. E-Print Network 3.0 - atomic level computational Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Summary: and how students relate matter at the atomic level with energy. Purpose of This Study This study... described an atom as a unit of matter than any...

  6. E-Print Network 3.0 - atomic electric power Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cookies as a Model... for Fusion In this activity, cookies will act like atoms in a fusion reaction. Fusion occurs when heat... is added to atoms, giving them enough energy...

  7. The atom completed and a new particle

    E-Print Network [OSTI]

    Murayama, Hitoshi

    rules like the Balmer formula for the hydrogen atom. Cathode rays had been studied, but many regarded for the opportunity to have their hands x-rayed, and soon x rays were put to less frivolous uses in medical diagnosis found empirically a functional form for the energy spectrum that satisfied both theoretical principles

  8. Nuclear structure effects in light muonic atoms

    E-Print Network [OSTI]

    Pachucki, Krzysztof

    2015-01-01T23:59:59.000Z

    Nuclear structure corrections to energy levels of light muonic atoms are derived with particular attention to the correct nuclear mass dependence. The obtained result for the 2P-2S transition of 1.717(19) meV serves for determination of the nuclear charge radius from the spectroscopic measurement in muonic deuterium.

  9. Multistage Zeeman deceleration of hydrogen atoms

    SciTech Connect (OSTI)

    Vanhaecke, Nicolas [Physical Chemistry, ETH Zuerich, CH-8093 Zuerich (Switzerland); Laboratoire Aime Cotton, batiment 505, Campus d'Orsay, 91405 Orsay (France); Meier, Urban; Andrist, Markus; Meier, Beat H.; Merkt, Frederic [Physical Chemistry, ETH Zuerich, CH-8093 Zuerich (Switzerland)

    2007-03-15T23:59:59.000Z

    The deceleration of beams of neutral particles possessing an electron spin with time-dependent inhomogeneous magnetic fields is demonstrated experimentally. Half the kinetic energy of a velocity-selected part of a pulsed supersonic beam of hydrogen atoms in the ground state is removed using six pulsed magnetic field stages.

  10. I UNITED S T A T E S ATOMIC ENERGY C O M M I S S I O N AECU-1275

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSL Bubblesstructure eind ExcBAECC:

  11. Calculations of atomic sputtering and displacement cross-sections in solid elements by electrons with energies from threshold to 1. 5 MV

    SciTech Connect (OSTI)

    Bradley, C.R.

    1988-12-01T23:59:59.000Z

    The kinetics of knock-on collisions of relativistic electrons with nuclei and details of the numerical evaluation of differential, recoil, and total Mott cross-sections are reviewed and discussed. The effects of electron beam induced displacement and sputtering, in the transmission electron microscope (TEM) environment, on microanalysis are analyzed with particular emphasis placed on the removal of material by knock-on sputtering. The mass loss predicted due to transmission knock-on sputtering is significant for many elements under conditions frequently encountered in microanalysis. Total Mott cross-sections are tabulated for all naturally occurring solid elements up to Z = 92 at displacement energies of one, two, four, and five times the sublimation energy and for accelerating voltages accessible in the transmission electron microscope. Fortran source code listings for the calculation of the differential Mott cross-section as a function of electron scattering angle (dMottCS), as a function of nuclear recoil angle (RECOIL), and the total Mott cross-section (TOTCS) are included. 48 refs., 21 figs., 12 tabs.

  12. Axion Dark Matter Detection using Atomic Transitions

    E-Print Network [OSTI]

    P. Sikivie

    2014-09-09T23:59:59.000Z

    Dark matter axions may cause transitions between atomic states that differ in energy by an amount equal to the axion mass. Such energy differences are conveniently tuned using the Zeeman effect. It is proposed to search for dark matter axions by cooling a kilogram-sized sample to milliKelvin temperatures and count axion induced transitions using laser techniques. This appears an appropriate approach to axion dark matter detection in the $10^{-4}$ eV mass range.

  13. Educational Multiwavelength Atomic Emission Spectrometer

    E-Print Network [OSTI]

    Nazarenko, Alexander

    atomic absorption is the capability for simultaneous multielement analysis. It can be used colleges had acquired atomic absorption instruments by the year 1990.[2] In contrast, atomic emission with the acetylene-air flame source taken from an existing atomic absorption instrument. Two spectrometer units

  14. http://bos.sagepub.com/ Bulletin of the Atomic Scientists

    E-Print Network [OSTI]

    Mousseau, Timothy A.

    of the Atomic Scientists Timothy A. Mousseau and Anders P. Møller Chernobyl's wildlife Landscape portrait contaminants on Chernobyl's wildlife Timothy A. Mousseau and Anders P. Møller Abstract The Chernobyl accident,000 square kilometers of land. The Chernobyl Forum Report, an initiative of the International Atomic Energy

  15. Quantum Sticking of Atoms on Membranes

    E-Print Network [OSTI]

    Dennis P. Clougherty

    2014-12-05T23:59:59.000Z

    A continuum model for low-energy physisorption on a membrane under tension is proposed and studied with variational mean-field theory. A discontinuous change in the energy-dependent sticking coefficient is predicted under certain conditions. This singularity is a result of the bosonic orthogonality catastrophe of the vibrational states of the membrane. The energy-dependent sticking coefficient is predicted to have exponential scaling in 1/E above the singularity. The application of this model to the quantum sticking of cold hydrogen to suspended graphene is discussed. The model predicts that a beam of atomic hydrogen can be completely reflected by suspended graphene at ultralow energies.

  16. Exploiting Universality in Atoms with Large Scattering Lengths

    SciTech Connect (OSTI)

    Braaten, Eric

    2012-05-31T23:59:59.000Z

    The focus of this research project was atoms with scattering lengths that are large compared to the range of their interactions and which therefore exhibit universal behavior at sufficiently low energies. Recent dramatic advances in cooling atoms and in manipulating their scattering lengths have made this phenomenon of practical importance for controlling ultracold atoms and molecules. This research project was aimed at developing a systematically improvable method for calculating few-body observables for atoms with large scattering lengths starting from the universal results as a first approximation. Significant progress towards this goal was made during the five years of the project.

  17. Atomic Force Microscope

    SciTech Connect (OSTI)

    Day, R.D.; Russell, P.E.

    1988-12-01T23:59:59.000Z

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  18. Atomic Josephson vortices

    SciTech Connect (OSTI)

    Kaurov, V. M.; Kuklov, A. B. [Department of Engineering Science and Physics, College of Staten Island, CUNY, Staten Island, New York 10314 (United States)

    2006-01-15T23:59:59.000Z

    We show that Josephson vortices in a quasi-one-dimensional atomic Bose Josephson junction can be controllably manipulated by imposing a difference of chemical potentials on the atomic Bose-Einstein condensate waveguides forming the junction. This effect, which has its origin in the Berry phase structure of a vortex, turns out to be very robust in the whole range of the parameters where such vortices can exist. We also propose that a Josephson vortex can be created by the phase imprinting technique and can be identified by a specific tangential feature in the interference picture produced by expanding clouds released from the waveguides.

  19. Origin of anomalous atomic vibrations in efficient thermoelectrics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functional Materials for Energy Origin of anomalous atomic vibrations in efficient thermoelectrics revealed May 06, 2014 Figure 1: Comparison of S(Q,E) measured with INS (left) and...

  20. Hard probes of strongly-interacting atomic gases

    SciTech Connect (OSTI)

    Nishida, Yusuke [Los Alamos National Laboratory

    2012-06-18T23:59:59.000Z

    We investigate properties of an energetic atom propagating through strongly interacting atomic gases. The operator product expansion is used to systematically compute a quasiparticle energy and its scattering rate both in a spin-1/2 Fermi gas and in a spinless Bose gas. Reasonable agreement with recent quantum Monte Carlo simulations even at a relatively small momentum k/kF > 1.5 indicates that our large-momentum expansions are valid in a wide range of momentum. We also study a differential scattering rate when a probe atom is shot into atomic gases. Because the number density and current density of the target atomic gas contribute to the forward scattering only, its contact density (measure of short-range pair correlation) gives the leading contribution to the backward scattering. Therefore, such an experiment can be used to measure the contact density and thus provides a new local probe of strongly interacting atomic gases.

  1. Observables in Neutrino Mass Spectroscopy Using Atoms

    E-Print Network [OSTI]

    D. N. Dinh; S. T. Petcov; N. Sasao; M. Tanaka; M. Yoshimura

    2012-09-21T23:59:59.000Z

    The process of collective de-excitation of atoms in a metastable level into emission mode of a single photon plus a neutrino pair, called radiative emission of neutrino pair (RENP), is sensitive to the absolute neutrino mass scale, to the neutrino mass hierarchy and to the nature (Dirac or Majorana) of massive neutrinos. We investigate how the indicated neutrino mass and mixing observables can be determined from the measurement of the corresponding continuous photon spectrum taking the example of a transition between specific levels of the Yb atom. The possibility of determining the nature of massive neutrinos and, if neutrinos are Majorana fermions, of obtaining information about the Majorana phases in the neutrino mixing matrix, is analyzed in the cases of normal hierarchical, inverted hierarchical and quasi-degenerate types of neutrino mass spectrum. We find, in particular, that the sensitivity to the nature of massive neutrinos depends critically on the atomic level energy difference relevant in the RENP.

  2. ATOMIC AND MOLECULAR DATA NEEDS David R. Schultz

    E-Print Network [OSTI]

    processes in plasmas play a crucial role in the devel opment of net energy producing magnetic fusion of producing energy through controlled fusion to meet the needs of an ever expanding technological society has are well understood, it is clear that the plasma and atomic physics involved in developing a net energy

  3. Magnetic-film atom chip with 10 ?m period lattices of microtraps for quantum information science with Rydberg atoms

    SciTech Connect (OSTI)

    Leung, V. Y. F. [Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, PO Box 94485, 1090 GL Amsterdam (Netherlands) [Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, PO Box 94485, 1090 GL Amsterdam (Netherlands); Complex Photonic Systems (COPS), MESA Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Pijn, D. R. M.; Schlatter, H.; Torralbo-Campo, L.; La Rooij, A. L.; Mulder, G. B.; Naber, J.; Soudijn, M. L.; Tauschinsky, A.; Spreeuw, R. J. C., E-mail: r.j.c.spreeuw@uva.nl [Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, PO Box 94485, 1090 GL Amsterdam (Netherlands)] [Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, PO Box 94485, 1090 GL Amsterdam (Netherlands); Abarbanel, C.; Hadad, B.; Golan, E. [Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105 (Israel)] [Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105 (Israel); Folman, R. [Department of Physics and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105 (Israel)] [Department of Physics and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105 (Israel)

    2014-05-15T23:59:59.000Z

    We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 ?m, suitable for experiments in quantum information science employing the interaction between atoms in highly excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cutout of a silver foil, was mounted under the atom chip in order to load ultracold {sup 87}Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.

  4. Toward improved photon-atom scattering predictions

    SciTech Connect (OSTI)

    Kissel, L.

    1994-10-21T23:59:59.000Z

    Photon-atom scattering is important in a variety of applications, but scattering from a composite system depends on the accurate characterization of the scattering from an isolated atom or ion. We have been examining the validity of simpler approximations of elastic scattering in the light of second-order S-matrix theory. Partitioning the many-body amplitude into Rayleigh and Delbrueck components, processes beyond photoionization contribute. Subtracted cross sections for bound-bound atomic transitions, bound pair annihilation, and bound pair production are required in anomalous scattering factors for: (1) convergence of the dispersion integral; (2) agreement with predictions of the more sophisticated S-matrix approach; (3) satisfying the Thomas-Reiche-Kuhn sum rule. New accurate tabulations of anomalous scattering factors have been prepared for all Z, for energies 0--10,000 keV, within the independent particle approximation (IPA) using a Dirac-Slater model of the atom. Separately, experimental atomic photoabsorption threshold information has been used to modify these IPA predictions for improved comparison with experiment.

  5. Atom-by-atom nucleation and growth of graphene nanopores

    E-Print Network [OSTI]

    Golovchenko, Jene A.

    Atom-by-atom nucleation and growth of graphene nanopores Christopher J. Russoa,b and J. A February 17, 2012 (received for review December 9, 2011) Graphene is an ideal thin membrane substrate structures in graphene with atomic preci- sion. It consists of inducing defect nucleation centers with ener

  6. Chemical Bonding: The Classical Description sharing or transferring electrons between atoms

    E-Print Network [OSTI]

    Ihee, Hyotcherl

    new arrangements of electrons with lower total potential energy than isolated atoms covalent ionic, actinides, metal, non-metal, semi-metal #12;IONIZATION ENERGY : a measure of the stability of the electron Existence of the SHELLExistence of the SHELL 3.2 Ionization Energies and the Shell Model of Atom #12

  7. Model for Energy Supply System Alternatives and their General...

    Open Energy Info (EERE)

    their General Environmental Impacts AgencyCompany Organization: International Atomic Energy Agency Sector: Energy Focus Area: Renewable Energy, Energy Efficiency Topics: Pathways...

  8. Atomic phenomena in dense plasmas

    SciTech Connect (OSTI)

    Weisheit, J.C.

    1981-03-01T23:59:59.000Z

    The following chapters are included: (1) the plasma environment, (2) perturbations of atomic structure, (3) perturbations of atomic collisions, (4) formation of spectral lines, and (5) dielectronic recombination. (MOW)

  9. ccsd00002314, Coherence-preserving trap architecture for long-term control of giant Rydberg atoms

    E-Print Network [OSTI]

    of giant Rydberg atoms P. Hya#12;l, 1 J. Mozley, 1 A. Perrin, 1 J. Tailleur, 1 G. Nogues, 1 M. Brune, 1 J a single Rydberg atom, make it long-lived and preserve an internal coherence over time scales reaching of the atomic energies using an external microwave #12;eld. We thoroughly identify and account for many causes

  10. E-Print Network 3.0 - atomic chain ordering Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and properties... vibration-mode energies . . . . . . 25 3 Formation and properties of metal-oxygen atomic ... Source: van Ruitenbeek, J. M. - Leiden Institute of Physics,...

  11. E-Print Network 3.0 - atomic fountain clock Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accurately measurable quantity in a laboratory setting... sundials of 3500 BC, to the cold atom ... Source: Experimental High Energy Physics Collection: Plasma Physics and...

  12. E-Print Network 3.0 - atomic clocks Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accurately measurable quantity in a laboratory setting... sundials of 3500 BC, to the cold atom ... Source: Experimental High Energy Physics Collection: Plasma Physics and...

  13. E-Print Network 3.0 - atomized burner design Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Technology Council (WTERT) Collection: Renewable Energy 2 An Atomized Spray Vortex Incinerator for Burning Dilute Siudge* Summary: that the combustion products issuing...

  14. A microfabricated atomic clock

    SciTech Connect (OSTI)

    Knappe, Svenja; Shah, Vishal; Schwindt, Peter D.D.; Hollberg, Leo; Kitching, John; Liew, Li-Anne; Moreland, John [Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305-3328 (United States); Electromagnetics Division, National Institute of Standards and Technology, Boulder, Colorado 80305-3328 (United States)

    2004-08-30T23:59:59.000Z

    Fabrication techniques usually applied to microelectromechanical systems (MEMS) are used to reduce the size and operating power of the core physics assembly of an atomic clock. With a volume of 9.5 mm{sup 3}, a fractional frequency instability of 2.5x10{sup -10} at 1 s of integration, and dissipating less than 75 mW of power, the device has the potential to bring atomically precise timing to hand-held, battery-operated devices. In addition, the design and fabrication process allows for wafer-level assembly of the structures, enabling low-cost mass-production of thousands of identical units with the same process sequence, and easy integration with other electronics.

  15. Delay in Atomic Photoionization

    SciTech Connect (OSTI)

    Kheifets, A. S. [Research School of Physical Sciences, Australian National University, Canberra ACT 0200 (Australia); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030 (United States); Ivanov, I. A. [Research School of Physical Sciences, Australian National University, Canberra ACT 0200 (Australia)

    2010-12-03T23:59:59.000Z

    We analyze the time delay between emission of photoelectrons from the outer valence ns and np subshells in noble gas atoms following absorption of an attosecond extreme ultraviolet pulse. Various processes such as elastic scattering of the photoelectron on the parent ion and many-electron correlation affect the apparent 'time zero' when the photoelectron leaves the atom. This qualitatively explains the time delay between photoemission from the 2s and 2p subshells of Ne as determined experimentally by attosecond streaking [Science 328, 1658 (2010)]. However, with our extensive numerical modeling, we were only able to account for less than half of the measured time delay of 21{+-}5 as. We argue that the extreme ultraviolet pulse alone cannot produce such a large time delay and it is the streaking IR field that is most likely responsible for this effect.

  16. Relativistic Hydrogen-Like Atom on a Noncommutative Phase Space

    E-Print Network [OSTI]

    Huseyin Masum; Sayipjamal Dulat; Mutallip Tohti

    2012-02-12T23:59:59.000Z

    The energy levels of hydrogen-like atom on a noncommutative phase space were studied in the framework of relativistic quantum mechanics. The leading order corrections to energy levels 2S_{1/2}, 2P_{1/2} and 2P_{3/2} were obtained by using the \\theta and the \\bar\\theta modified Dirac Hamiltonian of hydrogen-like atom on a noncommutative phase space. The degeneracy of the energy levels 2P_{1/2} and 2P_{3/2} were removed completely by \\theta-correction. And the \\bar\\theta-correction shifts these energy levels.

  17. Quantization of Differences Between Atomic and Nuclear Rest Masses and Selforganization of Atoms and Nuclei

    E-Print Network [OSTI]

    F. A. Gareev; I. E. Zhidkova

    2006-11-15T23:59:59.000Z

    We come to the conclusion that all atomic models based on either the Newton equation and the Kepler laws, or the Maxwell equations, or the Schrodinger and Dirac equations are in reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principle(s) which is (are) not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in the whole system - nuclei+atoms+condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies than the corresponding ones on free constituents. We were able to quantize phenomenologically the first time the differences between atomic and nuclear rest masses by the formula (in MeV/$c^{2}$) $\\Delta M=\\frac{n_{1}}{n_{2}}*0.0076294, n_{i}=1,2,3,...$ Note that this quantization rule is justified for atoms and nuclei with different $A, N$ and $Z$ and the nuclei and atoms represent a coherent synchronized systems - a complex of coupled oscillators (resonators). The cooperative resonance synchronization mechanisms are responsible for explanation of how the electron volt world can influence the nuclear mega electron volt world. It means that we created new possibilities for inducing and controlling nuclear reactions by atomic processes.

  18. Appendix G: Radiation HYDROGEN ATOM

    E-Print Network [OSTI]

    Pennycook, Steve

    . People are exposed to naturally occurring radiation constantly. For example, cosmic radiation; radon effects on the environment and biological systems. Radiation comes from natural and human-made sourcesAppendix G: Radiation #12;#12;P P P E E E N NN HYDROGEN ATOM DEUTERIUM ATOM TRITIUM ATOM HYDROGEN

  19. Appendix A: Radiation HYDROGEN ATOM

    E-Print Network [OSTI]

    Pennycook, Steve

    . People are exposed to naturally occurring radiation constantly. For example, cosmic radiation; radon effects on the environment and biological systems. Radiation comes from natural and human-made sourcesAppendix A: Radiation #12;P P P E E E N NN HYDROGEN ATOM DEUTERIUM ATOM TRITIUM ATOM HYDROGEN

  20. VARIOUS APPLICATIONS OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY

    E-Print Network [OSTI]

    Koizumi, Hideaki

    2011-01-01T23:59:59.000Z

    APPLICATIONS OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPYthe Zeeman effect to atomic absorption spectroscopy has beenthe Zeeman effect on atomic absorption spectrometry has been

  1. atoms: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory...

  2. PHYSICAL REVIEW A 87, 063408 (2013) Nondestructive light-shift measurements of single atoms in optical dipole traps

    E-Print Network [OSTI]

    Chapman, Michael

    - ics. Building upon the early demonstrations of single-neutral- atom traps [1,2], there have been many neutral atoms is an active area of research, motivated in large part by applications in quantum the energy levels of the atoms (so-called "light shifts") and thereby alter both the energy levels in which

  3. Ris Report No. Danish Atomic Energy Commission

    E-Print Network [OSTI]

    , University of Copenhagen, ?stervoldgade 5, DK-1350 København K. #12;INIS Descriptors: ATTENUATION COHERENT

  4. Ris Report No. Danish Atomic Energy Commission

    E-Print Network [OSTI]

    . J. A. Leth, Reactor Dept 19 Development of Nuclear Heat Calorimeters and Dose Separation of Nuclear in the pattern of the establishment today. According to the law by which it was founded, Risø has the task

  5. The Harnessed Atom | Department of Energy

    Energy Savers [EERE]

    using Mac, Windows, Android, and most other operating systems. Interactive games and videos that accompany the teacher's kit may have separate system requirements. Contact Us For...

  6. Spectra of helium clusters with up to six atoms using soft-core potentials

    SciTech Connect (OSTI)

    Gattobigio, M. [Universite de Nice-Sophia Antipolis, Institut Non-Lineaire de Nice, CNRS, 1361 route des Lucioles, F-06560 Valbonne (France); Kievsky, A.; Viviani, M. [Istituto Nazionale di Fisica Nucleare, Largo Pontecorvo 3, I-56100 Pisa (Italy)

    2011-11-15T23:59:59.000Z

    In this paper, we investigate small clusters of helium atoms using the hyperspherical harmonic basis. We consider systems with A=2,3,4,5,6 atoms with an interparticle potential which does not present a strong repulsion at short distances. We use an attractive Gaussian potential that reproduces the values of the dimer binding energy, the atom-atom scattering length, and the effective range obtained with one of the widely used He-He interactions, the Aziz and Slaman potential, called LM2M2. In systems with more than two atoms, we consider a repulsive three-body force that, by construction, reproduces the trimer binding energy of the LM2M2 potential. With this model, consisting of the sum of a two- and three-body potential, we have calculated the spectrum of clusters formed by four, five, and six helium atoms. We have found that these systems present two bound states, one deep and one shallow, close to the threshold fixed by the energy of the (A-1)-atom system. Universal relations between the energies of the excited state of the A-atom system and the ground-state energy of the (A-1)-atom system are extracted, as well as the ratio between the ground state of the A-atom system and the ground-state energy of the trimer.

  7. Atoms to electricity. [Booklet

    SciTech Connect (OSTI)

    Not Available

    1987-11-01T23:59:59.000Z

    This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle and the role of nuclear energy as one of the domestic energy resources being developed to help meet our national energy demand. Nuclear power accounted for over 16 percent of the US electric energy supply in 1986 and was second only to coal as a source of our electric power. In the 1990s, nuclear energy is expected to provide almost 20 percent of the Nation's electricity. 38 figs., 5 tabs.

  8. Optics and interferometry with atoms and molecules

    E-Print Network [OSTI]

    Cronin, Alexander D.

    Interference with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory fields technique used in atomic ...

  9. Atoms to electricity

    SciTech Connect (OSTI)

    Not Available

    1983-11-01T23:59:59.000Z

    This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle and the role of nuclear energy as one of the domestic energy resources being developed to help meet our national energy demand. Nuclear power accounted for some 12 percent of the US electric energy supply in 1982. In the 1990's, it is expected to become second only to coal as a source of our electric power, almost doubling its present contribution to our national electricity supply. 14 references, 40 figures, 5 tables.

  10. Bohr Model Calculations for Atoms and Ions Frank Rioux

    E-Print Network [OSTI]

    Rioux, Frank

    in doing energy audits, carrying out simple variational calculations and critically analyzing := V12 R1( ) 1 17 R1 := #12;The next step is to do an energy audit for the atom or ion under Department of Chemistry College of St. Benedict| St. Johns University

  11. New results in atomic physics at the Advanced Light Source

    SciTech Connect (OSTI)

    Schlachter, A.S.

    1995-01-01T23:59:59.000Z

    The Advanced Light Source is the world's first low-energy third-generation synchrotron radiation source. It has been running reliably and exceeding design specifications since it began operation in October 1993. It is available to a wide community of researchers in many scientific fields, including atomic and molecular science and chemistry. Here, new results in atomic physics at the Advanced Light Source demonstrate the opportunities available in atomic and molecular physics at this synchrotron light source. The unprecedented brightness allows experiments with high flux, high spectral resolution, and nearly 100% linear polarization.

  12. Body-assisted van der Waals interaction between excited atoms

    E-Print Network [OSTI]

    Hassan Safari; Mohammad Reza Karimpour

    2014-12-12T23:59:59.000Z

    We present a formula for the body-assisted van der Waals interaction potential between two atoms, one or both being prepared in an excited energy eigenstate. The presence of arbitrary arrangement for material environment is taken into account via the Green function. The resulting formula supports one of two conflicting findings recorded. The consistency of our formula is investigated by applying it for the case of two atoms in free space and comparing the resulting expression with the one found from the limiting Casimir-Polder potential between an excited atom and a small dielectric sphere.

  13. 1979 bibliography of atomic and molecular processes. [Bibliography

    SciTech Connect (OSTI)

    None

    1980-08-01T23:59:59.000Z

    This annotated bibliography lists 2146 works on atomic and molecular processes reported in publications dated 1979. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors.

  14. Energy deskbook

    SciTech Connect (OSTI)

    Glasstone, S.

    1983-01-01T23:59:59.000Z

    This book explains recent energy-related terms and principles. It defines and outlines over 400 topics. The subjects covered include: alcohol and diesel fuels; atomic, biomass, and fusion energy; desulfurization; electric vehicles; geothermal resources development; laser fusion; ocean thermal energy conversion; steam generation; wind energy conversion. Scientists, engineers, administrators, government officials, and conservationists will want this authoritative reference close at hand for the invaluable assistance it can provide in their work.

  15. Quantization of Differences Between Atomic and Nuclear Rest Masses and Selforganization of Atoms and Nuclei

    E-Print Network [OSTI]

    Gareev, F A

    2006-01-01T23:59:59.000Z

    We come to conclusion that the all atomic models based either on the Newton equation and the Kepler laws or on the Maxwell equations or on the Schrodinger and Dirac equations achieved reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principle(s) which is(are) not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in whole system - nuclei+atoms+condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies then corresponding ones on free constituents.We were able to quantize phenomenologically (numerology) the first time the differences between atomic and nuclear rest masses according to the formula (in MeV/$c^{2}$) $\\Delta M=0.0076294*n_{1}*2^{n_{2}}, n_{1}=1,2,3,..., n_{2}=1,\\pm2,\\pm4,\\pm8,... $. Note that this quantization rule is justified for atoms and nuclei with different $A, N$ and $Z$ and the nuclei and atoms represent a coherent synch...

  16. Rydberg Atoms in Ponderomotive Potentials.

    E-Print Network [OSTI]

    Knuffman, Brenton J.

    2009-01-01T23:59:59.000Z

    ??In this thesis, we examine the ponderomotive interaction between an applied optical field and a highly excited Rydberg electron. An atom in a Rydberg state (more)

  17. Absorption properties of identical atoms

    SciTech Connect (OSTI)

    Sancho, Pedro, E-mail: psanchos@aemet.es

    2013-09-15T23:59:59.000Z

    Emission rates and other optical properties of multi-particle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas. -- Highlights: The absorption rates of a pair of identical atoms in product and (anti)symmetrized states are different. The modifications of the optical properties are essentially determined by the overlapping between the atoms. The absorption properties differ, in some cases, for bosons and fermions.

  18. The Interaction Of Helium Atoms With Screw Dislocations In Alpha-Fe

    SciTech Connect (OSTI)

    Heinisch, Howard L.; Gao, Fei; Kurtz, Richard J.

    2006-03-01T23:59:59.000Z

    Formation energies, binding energies, and migration energies of interstitial He atoms in and near the core of an a/2<111> screw dislocation in alpha-Fe are determined in atomistic simulations using conjugate gradient relaxation and the Dimer method for determining saddle point energies. Results are compared as a function of the proximity of the He to the dislocation core and the excess interstitial volume in regions around the dislocation. Interstitial He atoms have binding energies to the screw dislocation that are about half the magnitude of binding energies to the a/2<111>{110} edge dislocation in alpha-Fe. Migration energies of interstitial He atoms for diffusion toward the dislocation and for pipe diffusion along the dislocation are about the same magnitude for the screw and edge dislocations, despite a significant difference in their migration mechanisms. Interstitial He atoms diffuse along the dislocation cores with a migration energy of 0.4-0.5 eV

  19. Similarity between positronium-atom and electron-atom scattering

    E-Print Network [OSTI]

    Fabrikant, I I

    2015-01-01T23:59:59.000Z

    We employ the impulse approximation for description of positronium-atom scattering. Our analysis and calculations of Ps-Kr and Ps-Ar collisions provide theoretical explanation of the similarity between the cross sections for positronium scattering and electron scattering for a range of atomic and molecular targets observed by S. J. Brawley et al. [Science 330, 789 (2010)].

  20. Coherent Atom Optics with fast metastable rare gas atoms

    SciTech Connect (OSTI)

    Grucker, J.; Baudon, J.; Karam, J.-C.; Perales, F.; Vassilev, G.; Ducloy, M. [Laboratoire de Physique des Lasers, Universite Paris 13, Avenue J.B. Clement, 93430-Villetaneuse (France); Bocvarski, V. [Institute of Physics, Pregrevica 118, 11080 - Belgrade-Zemun (Serbia and Montenegro)

    2006-12-01T23:59:59.000Z

    Coherent atom optics experiments making use of an ultra-narrow beam of fast metastable atoms generated by metastability exchange are reported. The transverse coherence of the beam (coherence radius of 1.7 {mu}m for He*, 1.2 {mu}m for Ne*, 0.87 {mu}m for Ar*) is demonstrated via the atomic diffraction by a non-magnetic 2{mu}m-period reflection grating. The combination of the non-scalar van der Waals (vdW) interaction with the Zeeman interaction generated by a static magnetic field gives rise to ''vdW-Zeeman'' transitions among Zeeman sub-levels. Exo-energetic transitions of this type are observed with Ne*(3P2) atoms traversing a copper micro-slit grating. They can be used as a tunable beam splitter in an inelastic Fresnel bi-prism atom interferometer.

  1. general_atomics.cdr

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Greentnv~ronmenrar ivronrrorrng Lformer General

  2. Committees (present) Member of the national Topteam on Energy, Ministry of Economic Affairs, Agriculture and Innovation

    E-Print Network [OSTI]

    ) Member of the review committee CAREM nuclear reactor design, National Atomic Energy Commission Argentina

  3. Energy

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$ EGcG ENERGY MEASUREMENTS;/:4,4 (; . 1.;Suire

  4. E-Print Network 3.0 - atomization atomic absorption Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atomic absorption Search Powered by Explorit Topic List Advanced Search Sample search results for: atomization atomic absorption Page: << < 1 2 3 4 5 > >> 1 :coherently trapped in...

  5. Turbulence in Atomic Hydrogen

    E-Print Network [OSTI]

    A. Lazarian

    1998-04-02T23:59:59.000Z

    Understanding the properties of interstellar turbulence is a great intellectual challenge and the urge to solve this problem is partially motivated by a necessity to explain the star formation mystery. This review deals with a recently suggested inversion technique as applied to atomic hydrogen. This technique allows to determine 3D turbulence statistics through the variations of 21 cm intensity. We claim that a radio interferometer is an ideal tool for such a study as its visibility function is directly related to the statistics of galactic HI. Next, we show how galactic rotation curve can be used to study the turbulence slice by slice and relate the statistics given in galactic coordinates and in the velocity space. The application of the technique to HI data reveals a shallow spectrum of the underlying HI density that is not compatible with a naive Kolmogorov picture. We show that the random density corresponding to the found spectrum tends to form low contrast filaments that are elongated towards the observer.

  6. Supersonic coal water slurry fuel atomizer

    DOE Patents [OSTI]

    Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Balsavich, John (Foxborough, MA)

    1991-01-01T23:59:59.000Z

    A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

  7. ATOMS PEACE WAR Eisenhower

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials2014Energy ANNUAL DOEDepartment of EnergyATLASATOMS

  8. Carlo Beenakker, Leiden University Graphene is a mono-atomic layer of carbon atoms, arranged in a honeycomb la ice. Con-

    E-Print Network [OSTI]

    Galis, Frietson

    Graphene Carlo Beenakker, Leiden University Graphene is a mono-atomic layer of carbon atoms = 106 m/s that is inde- pendent of their energy E. [1] Explain why the conduction electrons in graphene", and is a unique feature of graphene. We introduce a potential barrier U (x) (see gure). An electron moves

  9. Ultrafast probing of ejection dynamics of Rydberg atoms and molecular fragments from electronically excited helium nanodroplets

    SciTech Connect (OSTI)

    Buenermann, Oliver; Kornilov, Oleg; Neumark, Daniel M. [Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Chemistry, University of California, Berkeley, California 94720 (United States); Haxton, Daniel J.; Gessner, Oliver [Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Leone, Stephen R. [Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Chemistry, University of California, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States)

    2012-12-07T23:59:59.000Z

    The ejection dynamics of Rydberg atoms and molecular fragments from electronically excited helium nanodroplets are studied with time-resolved extreme ultraviolet ion imaging spectroscopy. At excitation energies of 23.6 {+-} 0.2 eV, Rydberg atoms in n= 3 and n= 4 states are ejected on different time scales and with significantly different kinetic energy distributions. Specifically, n= 3 Rydberg atoms are ejected with kinetic energies as high as 0.85 eV, but their appearance is delayed by approximately 200 fs. In contrast, n= 4 Rydberg atoms appear within the time resolution of the experiment with considerably lower kinetic energies. Major features in the Rydberg atom kinetic energy distributions for both principal quantum numbers can be described within a simple elastic scattering model of localized perturbed atomic Rydberg atoms that are expelled from the droplet due to their repulsive interaction with the surrounding helium bath. Time-dependent kinetic energy distributions of He{sub 2}{sup +} and He{sub 3}{sup +} ions are presented that support the formation of molecular ions in an indirect droplet ionization process and the ejection of neutral Rydberg dimers on a similar time scale as the n= 3 Rydberg atoms.

  10. E-Print Network 3.0 - atom traps atomic Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for: atom traps atomic Page: << < 1 2 3 4 5 > >> 1 An output coupler for Bose condensed atoms The observations of BEC have stimulated interest in atom lasers, coherent sources of...

  11. Detection of slow atoms confined in a Cesium vapor cell by spatially separated pump and probe laser beams

    E-Print Network [OSTI]

    Boyer, Edmond

    Detection of slow atoms confined in a Cesium vapor cell by spatially separated pump and probe laser distribution of atoms in a thermal gas is usually described through a Maxwell-Boltzman distribution of energy, and assumes isotropy. As a consequence, the probability for an atom to leave the surface under an azimuth

  12. Random-matrix theory and complex atomic spectra

    E-Print Network [OSTI]

    Pain, Jean-Christophe

    2012-01-01T23:59:59.000Z

    Around 1950, Wigner introduced the idea of modelling physical reality with an ensemble of random matrices while studying the energy levels of heavy atomic nuclei. Since then, the field of random-matrix theory has grown tremendously, with applications ranging from fluctuations on the economic markets to complex atomic spectra. The purpose of this short article is to review several attempts to apply the basic concepts of random-matrix theory to the structure and radiative transitions of atoms and ions, using the random matrices originally introduced by Wigner in the framework of the gaussian orthogonal ensemble. Some intrinsic properties of complex-atom physics, which could be enlightened by random-matrix theory, are presented.

  13. Entangling Atomic Spins with a Strong Rydberg-Dressed Interaction

    E-Print Network [OSTI]

    Jau, Y -Y; Keating, Tyler; Deutsch, I H; Biedermann, G W

    2015-01-01T23:59:59.000Z

    Controlling quantum entanglement between parts of a many-body system is the key to unlocking the power of quantum information processing for applications such as quantum computation, highprecision sensing, and simulation of many-body physics. Spin degrees of freedom of ultracold neutral atoms in their ground electronic state provide a natural platform given their long coherence times and our ability to control them with magneto-optical fields, but creating strong coherent coupling between spins has been challenging. We demonstrate a Rydberg-dressed ground-state blockade that provides a strong tunable interaction energy (~1 MHz in units of Planck's constant) between spins of individually trapped cesium atoms. With this interaction we directly produce Bell-state entanglement between two atoms with a fidelity >= 81(2)%, excluding atom loss events, and >= 60(3)% when loss is included.

  14. Electric quadrupole transition probabilities for atomic lithium

    SciTech Connect (OSTI)

    elik, Gltekin, E-mail: gultekin@selcuk.edu.tr [Department of Physics, Faculty of Science, Seluk University, Campus 42049 Konya (Turkey); Gke, Yasin; Y?ld?z, Murat [Department of Physics, Faculty of Science, Karamanoglu Mehmetbey University, Karaman (Turkey)

    2014-05-15T23:59:59.000Z

    Electric quadrupole transition probabilities for atomic lithium have been calculated using the weakest bound electron potential model theory (WBEPMT). We have employed numerical non-relativistic HartreeFock wavefunctions for expectation values of radii and the necessary energy values have been taken from the compilation at NIST. The results obtained with the present method agree very well with the Coulomb approximation results given by Caves (1975). Moreover, electric quadrupole transition probability values not existing in the literature for some highly excited levels have been obtained using the WBEPMT.

  15. The solar system mimics a hydrogen atom

    E-Print Network [OSTI]

    Je-An Gu

    2014-03-28T23:59:59.000Z

    The solar system and the hydrogen atom are two well known systems on different scales and look unrelated: The former is a classical system on the scale of about billions of kilometers and the latter a quantum system of about tens of picometers. Here we show a connection between them. Specifically, we find that the orbital radii of the planets mimic the mean radii of the energy levels of a quantum system under the Coulomb-like potential. This connection might be explained by very light dark matter which manifests quantum behavior in the solar system, thereby hinting at a dark matter mass around $8 \\times 10^{-14}$ electron-volts.

  16. General Atomics (GA) | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearch to sponsorGeneral Atomics (GA)

  17. AtomsPeace_Dec2003.qxd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience Program Cumulus Humilis Aerosol ProcessingProgramsAtoms for

  18. Atomic Layer Deposition | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDear Friend,Arthur J. NozikAtom Probe

  19. Thermal-hydraulic interfacing code modules for CANDU reactors

    SciTech Connect (OSTI)

    Liu, W.S.; Gold, M.; Sills, H. [Ontario Hydro Nuclear, Toronto (Canada)] [and others

    1997-07-01T23:59:59.000Z

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  20. Chemical factors influencing selenium atomization

    E-Print Network [OSTI]

    Buren, Mary Sue

    1980-01-01T23:59:59.000Z

    Atomization. (August 1980) Mary Sue Buren, B, S. , Angelo State University Chairman of Advisory Comm1ttee: Dr. Thomas M. Vickrey Selenium in an acid1c matrix was analyzed using graphite furnace atom1c absorption with Zeeman-effect background correct1on.... Nickel(II} and lanthanum( III) were introduced as matrix modifiers to determine their effect on interferences 1n selenium atom1zation. In add1tion to matr1x mod1ficat1on, surface coating the graphite furnace with z1rconium and tantalum salts was also...