National Library of Energy BETA

Sample records for advancing reactive tracer

  1. Advancing reactive tracer methods for measuring thermal evolution in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CO2-and water-based geothermal reservoirs | Department of Energy Advancing reactive tracer methods for measuring thermal evolution in CO2-and water-based geothermal reservoirs Advancing reactive tracer methods for measuring thermal evolution in CO2-and water-based geothermal reservoirs DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop reactive tracer method for monitoring thermal drawdown in enhanced geothermal systems. tracers_hull_thermal_evolution.pdf (852.51

  2. Advancing Reactive Tracer Methods for Measuring Thermal Evolution...

    Open Energy Info (EERE)

    and interpret reactive tracer tests - Development of suitable tracers to cover a range of reservoir temperature and residence time conditions - Testing the tools and tracers in a...

  3. Advancing Reactive Tracer Methods for Measurement of Thermal...

    Office of Scientific and Technical Information (OSTI)

    These methods included (1) mathematical investigation of the sensitivity of known and hypothetical reactive tracers, (2) laboratory testing of novel tracers that would improve ...

  4. Advancing reactive tracer methods for measuring thermal evolution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ....51 KB) More Documents & Publications Using Thermally-Degrading, Partitioning, and Nonreactive Tracers to Determine Temperature Distribution and FractureHeat Transfer Surface Area ...

  5. ADVANCING REACTIVE TRACER METHODS FOR MONITORING THERMAL DRAWDOWN IN GEOTHERMAL ENHANCED GEOTHERMAL RESERVOIRS

    SciTech Connect (OSTI)

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; George D. Redden; Laurence C. Hull

    2010-10-01

    Reactive tracers have long been considered a possible means of measuring thermal drawdown in a geothermal system, before significant cooling occurs at the extraction well. Here, we examine the sensitivity of the proposed method to evaluate reservoir cooling and demonstrate that while the sensitivity of the method as generally proposed is low, it may be practical under certain conditions.

  6. Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in Geothermal Reservoirs: Final Report

    SciTech Connect (OSTI)

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; Laurence C. Hull; George D. Redden

    2011-07-01

    The injection of cold fluids into engineered geothermal system (EGS) and conventional geothermal reservoirs may be done to help extract heat from the subsurface or to maintain pressures within the reservoir (e.g., Rose et al., 2001). As these injected fluids move along fractures, they acquire heat from the rock matrix and remove it from the reservoir as they are extracted to the surface. A consequence of such injection is the migration of a cold-fluid front through the reservoir (Figure 1) that could eventually reach the production well and result in the lowering of the temperature of the produced fluids (thermal breakthrough). Efficient operation of an EGS as well as conventional geothermal systems involving cold-fluid injection requires accurate and timely information about thermal depletion of the reservoir in response to operation. In particular, accurate predictions of the time to thermal breakthrough and subsequent rate of thermal drawdown are necessary for reservoir management, design of fracture stimulation and well drilling programs, and forecasting of economic return. A potential method for estimating migration of a cold front between an injection well and a production well is through application of reactive tracer tests, using chemical whose rate of degradation is dependent on the reservoir temperature between the two wells (e.g., Robinson 1985). With repeated tests, the rate of migration of the thermal front can be determined, and the time to thermal breakthrough calculated. While the basic theory behind the concept of thermal tracers has been understood for some time, effective application of the method has yet to be demonstrated. This report describes results of a study that used several methods to investigate application of reactive tracers to monitoring the thermal evolution of a geothermal reservoir. These methods included (1) mathematical investigation of the sensitivity of known and hypothetical reactive tracers, (2) laboratory testing of novel

  7. Novel Multidimensional Tracers for Geothermal Inter-Well Diagnostics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Tracers to Characterize Fractures in Engineered Geothermal Systems Advancing reactive tracer methods for measuring thermal evolution in CO2-and water-based geothermal reservoirs

  8. Validation of Geothermal Tracer Methods in Highly Constrained...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This project will test smartdiffusive tracers for measuring heat exchange. ... Advancing reactive tracer methods for measuring thermal evolution in CO2-and water-based ...

  9. Semianalytical Solutions of Radioactive or Reactive Tracer Transport in Layered Fractured Media

    SciTech Connect (OSTI)

    G.J. Moridis; G. S. Bodvarsson

    2001-10-01

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive tracers (solutes or colloids) through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the matrix account for (a) diffusion, (b) surface diffusion (for solutes only), (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first order chemical reactions. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Additionally, the colloid transport equations account for straining and velocity adjustments related to the colloidal size. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of {sup 3}H, {sup 237}Np and {sup 239}Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity. {sup 239}Pu colloid transport problems in multilayered systems indicate significant colloid accumulations at straining interfaces but much faster transport of the colloid than the corresponding strongly sorbing solute species.

  10. QUANTIFICATION OF FUGITIVE REACTIVE ALKENE EMISSIONS FROM PETROCHEMICAL PLANTS WITH PERFLUOROCARBON TRACERS.

    SciTech Connect (OSTI)

    SENUM,G.I.; DIETZ,R.N.

    2004-06-30

    Recent studies demonstrate the impact of fugitive emissions of reactive alkenes on the atmospheric chemistry of the Houston Texas metropolitan area (1). Petrochemical plants located in and around the Houston area emit atmospheric alkenes, such as ethene, propene and 1,3-butadiene. The magnitude of emissions is a major uncertainty in assessing their effects. Even though the petrochemical industry reports that fugitive emissions of alkenes have been reduced to less than 0.1% of daily production, recent measurement data, obtained during the TexAQS 2000 experiment indicates that emissions are perhaps a factor of ten larger than estimated values. Industry figures for fugitive emissions are based on adding up estimated emission factors for every component in the plant to give a total estimated emission from the entire facility. The dramatic difference between estimated and measured rates indicates either that calculating emission fluxes by summing estimates for individual components is seriously flawed, possibly due to individual components leaking well beyond their estimated tolerances, that not all sources of emissions for a facility are being considered in emissions estimates, or that there are known sources of emissions that are not being reported. This experiment was designed to confirm estimates of reactive alkene emissions derived from analysis of the TexAQS 2000 data by releasing perfluorocarbon tracers (PFTs) at a known flux from a petrochemical plant and sampling both the perfluorocarbon tracer and reactive alkenes downwind using the Piper-Aztec research aircraft operated by Baylor University. PFTs have been extensively used to determine leaks in pipelines, air infiltration in buildings, and to characterize the transport and dispersion of air parcels in the atmosphere. Over 20 years of development by the Tracer Technology Center (TTC) has produced a range of analysis instruments, field samplers and PFT release equipment that have been successfully deployed in a

  11. Validation of Geothermal Tracer Methods in Highly Constrained Field

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experiments | Department of Energy Geothermal Tracer Methods in Highly Constrained Field Experiments Validation of Geothermal Tracer Methods in Highly Constrained Field Experiments DOE Geothermal Peer Review 2010 - Project Summary. This project will test smartdiffusive tracers for measuring heat exchange. tracers_becker_verification_methods.pdf (1.81 MB) More Documents & Publications track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review Advancing reactive tracer

  12. Radiocarbon as a Reactive Tracer for Tracking Permanent CO2 Storage in Basaltic Rocks

    SciTech Connect (OSTI)

    Matter, Juerg; Stute, Martin; Schlosser, Peter; Broecker, Wallace

    2015-09-30

    In view of concerns about the long-term integrity and containment of CO2 storage in geologic reservoirs, many efforts have been made to improve the monitoring, verification and accounting methods for geologically stored CO2. Our project aimed to demonstrate that carbon-14 (14C) could be used as a reactive tracer to monitor geochemical reactions and evaluate the extent of mineral trapping of CO2 in basaltic rocks. The capacity of a storage reservoir for mineral trapping of CO2 is largely a function of host rock composition. Mineral carbonation involves combining CO2 with divalent cations including Ca2+, Mg2+ and Fe2+. The most abundant geological sources for these cations are basaltic rocks. Based on initial storage capacity estimates, we know that basalts have the necessary capacity to store million to billion tons of CO2 via in situ mineral carbonation. However, little is known about CO2-fluid-rock reactions occurring in a basaltic storage reservoir during and post-CO2 injection. None of the common monitoring and verification techniques have been able to provide a surveying tool for mineral trapping. The most direct method for quantitative monitoring and accounting involves the tagging of the injected CO2 with 14C because 14C is not present in deep geologic reservoirs prior to injection. Accordingly, we conducted two CO2 injection tests at the CarbFix pilot injection site in Iceland to study the feasibility of 14C as a reactive tracer for monitoring CO2-fluid-rock reactions and CO2 mineralization. Our newly developed monitoring techniques, using 14C as a reactive tracer, have been successfully demonstrated. For the first time, permanent and safe disposal of CO2 as environmentally benign carbonate minerals in basaltic rocks could be shown. Over 95% of the injected CO2 at the Carb

  13. Advanced hydraulic fracturing methods to create in situ reactive barriers

    SciTech Connect (OSTI)

    Murdoch, L. |; Siegrist, B.; Vesper, S.

    1997-12-31

    Many contaminated areas consist of a source area and a plume. In the source area, the contaminant moves vertically downward from a release point through the vadose zone to an underlying saturated region. Where contaminants are organic liquids, NAPL may accumulate on the water table, or it may continue to migrate downward through the saturated region. Early developments of permeable barrier technology have focused on intercepting horizontally moving plumes with vertical structures, such as trenches, filled with reactive material capable of immobilizing or degrading dissolved contaminants. This focus resulted in part from a need to economically treat the potentially large volumes of contaminated water in a plume, and in part from the availability of construction technology to create the vertical structures that could house reactive compounds. Contaminant source areas, however, have thus far remained largely excluded from the application of permeable barrier technology. One reason for this is the lack of conventional construction methods for creating suitable horizontal structures that would place reactive materials in the path of downward-moving contaminants. Methods of hydraulic fracturing have been widely used to create flat-lying to gently dipping layers of granular material in unconsolidated sediments. Most applications thus far have involved filling fractures with coarse-grained sand to create permeable layers that will increase the discharge of wells recovering contaminated water or vapor. However, it is possible to fill fractures with other compounds that alter the chemical composition of the subsurface. One early application involved development and field testing micro-encapsulated sodium percarbonate, a solid compound that releases oxygen and can create aerobic conditions suitable for biodegradation in the subsurface for several months.

  14. Tracers and Tracer Testing: Design, Implementation, Tracer Selection...

    Office of Scientific and Technical Information (OSTI)

    Conducting a successful tracer test requires adhering to a set of steps. The steps include identifying appropriate and achievable test goals, identifying tracers with the ...

  15. Tracers for Characterizing Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Karen Wright; George Redden; Carl D. Palmer; Harry Rollins; Mark Stone; Mason Harrup; Laurence C. Hull

    2010-02-01

    Information about the times of thermal breakthrough and subsequent rates of thermal drawdown in enhanced geothermal systems (EGS) is necessary for reservoir management, designing fracture stimulation and well drilling programs, and forecasting economic return. Thermal breakthrough in heterogeneous porous media can be estimated using conservative tracers and assumptions about heat transfer rates; however, tracers that undergo temperature-dependent changes can provide more detailed information about the thermal profile along the flow path through the reservoir. To be effectively applied, the thermal reaction rates of such temperature sensitive traces must be well characterized for the range of conditions that exist in geothermal systems. Reactive tracers proposed in the literature include benzoic and carboxylic acids (Adams) and organic esters and amides (Robinson et al.); however, the practical temperature range over which these tracers can be applied (100-275C) is somewhat limited. Further, for organic esters and amides, little is known about their sorption to the reservoir matrix and how such reactions impact data interpretation. Another approach involves tracers where the reference condition is internal to the tracer itself. Two examples are: 1) racemization of polymeric amino acids, and 2) mineral thermoluminescence. In these cases internal ratios of states are measured rather than extents of degradation and mass loss. Racemization of poly-L-lactic acid (for example) is temperature sensitive and therefore can be used as a temperature-recording tracer depending on the rates of racemization and stability of the amino acids. Heat-induced quenching of thermoluminescence of pre-irradiated LiF can also be used. To protect the tracers from alterations (extraneous reactions, dissolution) in geothermal environments we are encapsulating the tracers in core-shell colloidal structures that will subsequently be tested for their ability to be transported and to protect the

  16. Tracers and Tracer Testing: Design, Implementation, Tracer Selection...

    Office of Scientific and Technical Information (OSTI)

    presents methods for analysis. The report is an overview of tracer technology; the Suggested Reading section offers references to the specifics of test design and interpretation. ...

  17. INL Tracer Interpretation

    Energy Science and Technology Software Center (OSTI)

    2007-03-27

    This spreadsheet application is for tracer test analysis. The analyses are based on the first temporal moment of a tracer. The governing equations are briefly discussed, and the individual steps required of the user are outlined. A series of Excel macros written in Visual Basic calculate mean residence time, swept pore volume, and flow-storage geometry from a tracer history.

  18. Tracers and Tracer Interpretation | Open Energy Information

    Open Energy Info (EERE)

    Component Research and DevelopmentAnalysis Nathrop, CO 1,840,000 460,000 2,300,000 Quantum Dot Tracers for Use in Engineered Geothermal Systems Utah University of Utah Recovery...

  19. Biological tracer method

    DOE Patents [OSTI]

    Strong-Gunderson, Janet M. (Ten Mile, TN); Palumbo, Anthony V. (Oak Ridge, TN)

    1998-01-01

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer.

  20. Biological tracer method

    DOE Patents [OSTI]

    Strong-Gunderson, J.M.; Palumbo, A.V.

    1998-09-15

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer. 2 figs.

  1. Multi-Objective Advanced Inverter Controls to Dispatch the Real and Reactive Power of Many Distributed PV Systems.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Lave, Matthew Samuel; Broderick, Robert Joseph; Seuss, John; Grijalva, Santiago

    2016-01-01

    The research presented in this report compares several real - time control strategies for the power output of a large number of PV distributed throughout a large distribution feeder circuit. Both real and reactive power controls are considered with the goal of minimizing network over - voltage violations caused by large amounts of PV generation. Several control strategies are considered under various assumptions regarding the existence and latency of a communication network. The control parameters are adjusted to maximize the effectiveness of each control. The controls are then compared based on their ability to achieve multiple objectiv es. These objectives include minimizing the total number of voltage violations , minimizing the total amount of PV energy curtailed or reactive power generated, and maximizing the fairness of any control action among all PV systems . The controls are simulat ed on the OpenDSS platform using time series load and spatially - distributed irradiance data.

  2. Category:Tracer Testing | Open Energy Information

    Open Energy Info (EERE)

    Pages in category "Tracer Testing" This category contains only the following page. T Tracer Testing Retrieved from "http:en.openei.orgwindex.php?titleCategory:TracerTe...

  3. First Tracer Test After Circulation in Desert Peak 27-15

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Rose, Peter

    Following the successful stimulation of Desert Peak target EGS well 27-15, a circulation test was initiated by injecting a conservative tracer (1,5-nds) in combination with a reactive tracer (7-amino-1,3-naphthalene disulfonate). The closest production well 74-21 was monitored over the subsequent several months.

  4. First Tracer Test After Circulation in Desert Peak 27-15

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Rose, Peter

    2013-11-16

    Following the successful stimulation of Desert Peak target EGS well 27-15, a circulation test was initiated by injecting a conservative tracer (1,5-nds) in combination with a reactive tracer (7-amino-1,3-naphthalene disulfonate). The closest production well 74-21 was monitored over the subsequent several months.

  5. Tracer Testing | Open Energy Information

    Open Energy Info (EERE)

    In The Past 20 Years- Geochemistry In Geothermal Exploration Resource Evaluation And Reservoir Management Tracer Testing At Coso Geothermal Area (1993) Coso Geothermal Area...

  6. Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.; Rose, Peter; Dean, Cynthia A.; Watson, Tom B.; Newell, D.; Leecaster, Kevin; Brauser, Eric

    2013-05-01

    A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.

  7. Innovative techniques for the description of reservoir heterogeneity using tracers. Final report, October 1992--December 1993

    SciTech Connect (OSTI)

    Pope, G.A.; Sepehrnoori, K.; Delshad, M.; Ferreira, L.; Gupta, A.; Maroongroge, V.

    1994-11-01

    This is the final report of a three year research project on the use of tracers for reservoir characterization. The objective of this research was to develop advanced, innovative techniques for the description of reservoir characteristics using both single-well backflow and interwell tracer tests. (1) The authors implemented and validated tracer modeling features in a compositional simulator (UTCOMP). (2) They developed and applied a new single well tracer test for estimating reservoir heterogeneity. (3) They developed and applied a new single well tracer test for estimating reservoir wettability in-situ. (4) They developed a new, simple and efficient method to analyze two well tracer tests based upon type curve matching and illustrated its use with actual field tracer data. (5) They developed a new method for deriving an integrated reservoir description based upon combinatorial optimization schemes. (6) They developed a new, interwell tracer test for reservoir heterogeneity called vertical tracer profiling (VTP) and demonstrated its advantages over conventional interwell tracer testing. (7) They developed a simple and easy analytical method to estimate swept pore volume from interwell tracer data and showed both the theoretical basis for this method and its practical utility. (8) They made numerous enhancements to our compositional reservoir simulator such as including the full permeability tensor, adding faster solvers, improving its speed and robustness and making it easier to use (better I/0) for tracer simulation problems. (9) They applied the enhanced version of UTCOMP to the analysis of interwell tracer data using perfluorocarbons at Elks Hill Naval Petroleum Reserve. All of these accomplishments taken together have significantly improved the state of reservoir tracer technology and have demonstrated that it is a far more powerful and useful tool for quantitative reservoir characterization than previously realized or practiced by the industry.

  8. Tracer airflow measurement system (TRAMS)

    DOE Patents [OSTI]

    Wang, Duo

    2007-04-24

    A method and apparatus for measuring fluid flow in a duct is disclosed. The invention uses a novel high velocity tracer injector system, an optional insertable folding mixing fan for homogenizing the tracer within the duct bulk fluid flow, and a perforated hose sampling system. A preferred embodiment uses CO.sub.2 as a tracer gas for measuring air flow in commercial and/or residential ducts. In extant commercial buildings, ducts not readily accessible by hanging ceilings may be drilled with readily plugged small diameter holes to allow for injection, optional mixing where desired using a novel insertable foldable mixing fan, and sampling hose.

  9. Tracers and Exploration Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tracers and Exploration Technologies Tracers and Exploration Technologies Below are the project presentations and respective peer review results for Tracers and Exploration Technologies. Using Thermally-Degrading, Partitioning, and Nonreactive Tracers to Determine Temperature Distribution and Fracture/Heat Transfer Surface Area in Geothermal Reservoirs, Thomas Watson, Brookhaven National Laboratory; Paul W. Reimus, Los Alamos National Laboratory; Vince Vermeul, Pacific Northwest National

  10. A Tracer Test Using Ethanol as a Two-Phase Tracer and 2-Naphthalene...

    Open Energy Info (EERE)

    Tracer Test Using Ethanol as a Two-Phase Tracer and 2-Naphthalene Sulfonate as a Liquid-Phase Tracer at the Coso Geothermal Field Jump to: navigation, search OpenEI Reference...

  11. ARM - CARES - Tracer Forecast for CARES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CampaignsCarbonaceous Aerosols and Radiative Effects Study (CARES)Tracer Forecast for CARES Related Links CARES Home AAF Home ARM Data Discovery Browse Data Post-Campaign Data Sets Field Updates CARES Wiki Campaign Images Experiment Planning Proposal Abstract and Related Campaigns Science Plan Operations Plan Measurements Forecasts News News & Press Backgrounder (PDF, 1.45MB) G-1 Aircraft Fact Sheet (PDF, 1.3MB) Contacts Rahul Zaveri, Lead Scientist Tracer Forecasts for CARES This webpage

  12. Analysis of tracer and thermal transients during reinjection

    SciTech Connect (OSTI)

    Kocabas, I.

    1989-10-01

    This work studied tracer and thermal transients during reinjection in geothermal reserviors and developed a new technique which combines the results from interwell tracer tests and thermal injection-backflow tests to estimate the thermal breakthrough times. Tracer tests are essential to determine the degree of connectivity between the injection wells and the producing wells. To analyze the tracer return profiles quantitatively, we employed three mathematical models namely, the convection-dispersion (CD) model, matrix diffusion (MD) model, and the Avodnin (AD) model, which were developed to study tracer and heat transport in a single vertical fracture. We considered three types of tracer tests namely, interwell tracer tests without recirculation, interwell tracer tests with recirculation, and injection-backflow tracer tests. To estimate the model parameters, we used a nonlinear regression program to match tracer return profiles to the solutions.

  13. Novel Multidimensional Tracers for Geothermal Inter-Well Diagnostics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Multidimensional Tracers for Geothermal Inter-Well Diagnostics Novel Multidimensional Tracers for Geothermal Inter-Well Diagnostics Novel Multidimensional Tracers for Geothermal Inter-Well Diagnostics presentation at the April 2013 peer review meeting held in Denver, Colorado. tang_peer2013.pdf (1.14 MB) More Documents & Publications Novel Multi-dimensional Tracers for Geothermal Inter-wall Diagnostics Use of Tracers to Characterize Fractures in Engineered Geothermal

  14. Enhanced Oil Recovery: Aqueous Flow Tracer Measurement

    SciTech Connect (OSTI)

    Joseph Rovani; John Schabron

    2009-02-01

    A low detection limit analytical method was developed to measure a suite of benzoic acid and fluorinated benzoic acid compounds intended for use as tracers for enhanced oil recovery operations. Although the new high performance liquid chromatography separation successfully measured the tracers in an aqueous matrix at low part per billion levels, the low detection limits could not be achieved in oil field water due to interference problems with the hydrocarbon-saturated water using the system's UV detector. Commercial instrument vendors were contacted in an effort to determine if mass spectrometry could be used as an alternate detection technique. The results of their work demonstrate that low part per billion analysis of the tracer compounds in oil field water could be achieved using ultra performance liquid chromatography mass spectrometry.

  15. Method of dispersing particulate aerosol tracer

    DOE Patents [OSTI]

    O'Holleran, Thomas P.

    1988-01-01

    A particulate aerosol tracer which comprises a particulate carrier of sheet silicate composition having a particle size up to one micron, and a cationic dopant chemically absorbed in solid solution in the carrier. The carrier is preferably selected from the group consisting of natural mineral clays such as bentonite, and the dopant is selected from the group consisting of rare earth elements and transition elements. The tracers are dispersed by forming an aqueous salt solution with the dopant present as cations, dispersing the carriers in the solution, and then atomizing the solution under heat sufficient to superheat the solution droplets at a level sufficient to prevent reagglomeration of the carrier particles.

  16. An Integrated Approach to Characterizing Bypassed Oil in Heterogeneous and Fractured Reservoirs Using Partitioning Tracers

    SciTech Connect (OSTI)

    Akhil Datta-Gupta

    2006-12-31

    approach is very fast and avoids much of the subjective judgments and time-consuming trial-and-errors associated with manual history matching. We demonstrate the power and utility of our approach using a synthetic example and two field examples. We have also explored the use of a finite difference reservoir simulator, UTCHEM, for field-scale design and optimization of partitioning interwell tracer tests. The finite-difference model allows us to include detailed physics associated with reactive tracer transport, particularly those related with transverse and cross-streamline mechanisms. We have investigated the potential use of downhole tracer samplers and also the use of natural tracers for the design of partitioning tracer tests. Finally, we discuss several alternative ways of using partitioning interwell tracer tests (PITTs) in oil fields for the calculation of oil saturation, swept pore volume and sweep efficiency, and assess the accuracy of such tests under a variety of reservoir conditions.

  17. Mark 22 Reactivity

    SciTech Connect (OSTI)

    Buckner, M.R.

    2001-07-02

    Calculations for reactivity held in control rods have underpredicted the observed Mark 22 reactivity. Reactivity predictions by charge designers have accounted for this by including large biases which change with exposure and reactor region. The purpose of this study was to thoroughly investigate the methods and data used in the reactivity calculations. The goal was to identify errors and improvements and make necessary corrections.

  18. Tracer Test Interpretation Methods for Reservior Properties

    SciTech Connect (OSTI)

    Shook, George Michael

    2001-08-01

    The purpose of this project is to develop tools that can be used to interpret tracer tests and obtain estimates of reservoir and operational parameters. These tools (mostly in the form of spreadsheet applications) can be used to optimize geothermal resource management.

  19. Tracer Testing At Coso Geothermal Area (2006) | Open Energy Informatio...

    Open Energy Info (EERE)

    and two-phase tracers in fluid-depleted geothermal fields. References Mella, M.; Rose, P.; McCulloch, J.; Buck, C. (1 January 2006) A Tracer Test Using Ethanol as a...

  20. Quantum Dot Tracers for Use in Engineered Geothermal

    Broader source: Energy.gov [DOE]

    Quantum Dot Tracers for Use in Engineered Geothermal presentation at the April 2013 peer review meeting held in Denver, Colorado.

  1. Tracer Testing At Raft River Geothermal Area (1983) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River...

  2. Use of Tracers to Characterize Fractures in Engineered Geothermal Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Use of Tracers to Characterize Fractures in Engineered Geothermal Systems Use of Tracers to Characterize Fractures in Engineered Geothermal Systems Project Objectives: Measure interwell fracture surface area and fracture spacing using sorbing tracers; measure fracture surface areas adjacent to a single geothermal well using tracers and injection/backflow techniques; design, fabricate and test a downhole instrument for measuring fracture flow following a hydraulic

  3. System for reactivating catalysts

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2010-03-02

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  4. Permeable Reactive Barriers

    Broader source: Energy.gov [DOE]

    A permeable reactive barrier (PRB) is a zone of reactive material placed underground to intercept and react with a contaminant plume in ground water. Typically, PRBs are emplaced by replacing soils...

  5. 100-NR-2 Apatite Treatability Test: Fall 2010 Tracer Infiltration Test (White Paper)

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.; Greenwood, William J.; Johnson, Timothy C.; Horner, Jacob A.; Strickland, Christopher E.; Szecsody, James E.; Williams, Mark D.

    2011-04-14

    The primary objectives of the tracer infiltration test were to 1) determine whether field-scale hydraulic properties for the compacted roadbed materials and underlying Hanford fm. sediments comprising the zone of water table fluctuation beneath the site are consistent with estimates based laboratory-scale measurements on core samples and 2) characterize wetting front advancement and distribution of soil moisture achieved for the selected application rate. These primary objectives were met. The test successfully demonstrated that 1) the remaining 2 to 3 ft of compacted roadbed material below the infiltration gallery does not limit infiltration rates to levels that would be expected to eliminate near surface application as a viable amendment delivery approach and 2) the combined aqueous and geophysical monitoring approaches employed at this site, with some operational adjustments based on lessons learned, provides an effective means of assessing wetting front advancement and the distribution of soil moisture achieved for a given solution application. Reasonably good agreement between predicted and observed tracer and moisture front advancement rates was observed. During the first tracer infiltration test, which used a solution application rate of 0.7 cm/hr, tracer arrivals were observed at the water table (10 to 12 ft below the bottom of the infiltration gallery) after approximately 5 days, for an advancement rate of approximately 2 ft/day. This advancement rate is generally consistent with pre-test modeling results that predicted tracer arrival at the water table after approximately 5 days (see Figure 8, bottom left panel). This agreement indicates that hydraulic property values specified in the model for the compacted roadbed materials and underlying Hanford formation sediments, which were based on laboratory-scale measurements, are reasonable estimates of actual field-scale conditions. Additional work is needed to develop a working relationship between resistivity

  6. High Efficiency Fuel Reactivity Controlled Compression Ignition Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Fuel Reactivity Controlled Compression Ignition Combustion High Efficiency Fuel Reactivity Controlled Compression Ignition Combustion An optimized dual-fuel PCCI concept, RCCI, is proposed. deer10_reitz.pdf (960.46 KB) More Documents & Publications Effect of Compression Ratio and Piston Geometry on RCCI load limit Optimization of Advanced Diesel Engine Combustion Strategies Comparison of Conventional Diesel and Reactivity Controlled Compression Ignition (RCCI)

  7. Reactive and Catalytic Air Purification Materials - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Building Energy Efficiency Building Energy Efficiency Advanced Materials Advanced Materials Find More Like This Return to Search Reactive and Catalytic Air Purification Materials Naval Research Laboratory Contact NRL About This Technology Publications: PDF Document Publication AirPurification (546 KB) Technology Marketing SummarySorbents for the removal of toxic in-dustrial gases such as ammonia and phosgene. The materials offer reactive and/or catalytic sites within a high surface

  8. COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL...

    Office of Scientific and Technical Information (OSTI)

    TESTS AT THE RAFT RIVER GEOTHERMAL SITE Citation Details In-Document Search Title: COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL SITE Three conservative ...

  9. Quantitative interpretation of tracer test data | Open Energy...

    Open Energy Info (EERE)

    of tracer test data Abstract Geothermal reinjection is an important part of sustainable management of geothermal resources. Reinjection started out as a method of waste-water...

  10. Tracer Testing At Raft River Geothermal Area (1984) | Open Energy...

    Open Energy Info (EERE)

    undertaken at Raft River geothermal area. References Kroneman, R. L.; Yorgason, K. R.; Moore, J. N. (1 December 1984) Preferred methods of analysis for chemical tracers in...

  11. Tracer Testing At East Mesa Geothermal Area (1984) | Open Energy...

    Open Energy Info (EERE)

    not indicated DOE-funding Unknown References Kroneman, R. L.; Yorgason, K. R.; Moore, J. N. (1 December 1984) Preferred methods of analysis for chemical tracers in...

  12. Tracer Testing At Coso Geothermal Area (1993) | Open Energy Informatio...

    Open Energy Info (EERE)

    Activity Details Location Coso Geothermal Area Exploration Technique Tracer Testing Activity Date 1993 Usefulness useful DOE-funding Unknown Exploration Basis To determine...

  13. Tracer Methods for Characterizing Fracture Creation in Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 ... Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer ...

  14. Tracer Testing At Dixie Valley Geothermal Area (Reed, 2007) ...

    Open Energy Info (EERE)

    tetrasulfonate compounds. Tracer analysis was conducted by a combination of liquid chromatography and ultraviolet-fluorescence spectroscopy. Mean residence time, fracture volume in...

  15. Integrated Approach to Use Natural Chemical and Isotopic Tracers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fracture Spacing and Surface Area in EGS Systems Integrated Approach to Use Natural Chemical and Isotopic Tracers to Estimate Fracture Spacing and Surface Area in EGS Systems DOE ...

  16. Using Thermally-Degrading, Partitioning, and Nonreactive Tracers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Thermally-Degrading, Partitioning, and Nonreactive Tracers to Determine Temperature Distribution and FractureHeat Transfer Surface Area in Geothermal Reservoirs Using ...

  17. Tracer Methods for Characterizing Fracture Stimulation in Engineered...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sorbing tracers to determine the fracture-matrix interface area available for heat transfer; and; explore the feasibility of obtaining fracture-matrix interface area from ...

  18. Tracer Methods for Characterizing Fracture Stimulation in Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stimulation in Enhanced Geothermal Systems (EGS); 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture Stimulation in Enhanced...

  19. Unraveling DPF Degradation using Chemical Tracers and Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Opportunities for Extending Filter Life Unraveling DPF Degradation using Chemical Tracers and Opportunities for Extending Filter Life A unique electrochemical sensing strategy ...

  20. National Biomedical Tracer Facility. Project definition study

    SciTech Connect (OSTI)

    Schafer, R.

    1995-02-14

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.

  1. Methods and systems using encapsulated tracers and chemicals for reservoir interrogation and manipulation

    DOE Patents [OSTI]

    Roberts, Jeffery; Aines, Roger D; Duoss, Eric B; Spadaccini, Christopher M

    2014-11-04

    An apparatus, method, and system of reservoir interrogation. A tracer is encapsulating in a receptacle. The receptacle containing the tracer is injected into the reservoir. The tracer is analyzed for reservoir interrogation.

  2. Recover Act. Verification of Geothermal Tracer Methods in Highly Constrained Field Experiments

    SciTech Connect (OSTI)

    Becker, Matthew W.

    2014-05-16

    pumping tests in identifying a poorly connected well. As a result, we were able to predict which well pairs would demonstrate channelized flow. The focus of the tracer investigation was multi-ionic tests. In multi-ionic tests several ionic tracers are injected simultaneously and the detected in a nearby pumping well. The time history of concentration, or breakthrough curve, will show a separation of the tracers. Anionic tracers travel with the water but cationic tracer undergo chemical exchange with cations on the surface of the rock. The degree of separation is indicative of the surface area exposed to the tracer. Consequently, flow channelization will tend to decrease the separation in the breakthrough. Estimation of specific surface area (the ration of fracture surface area to formation volume) is performed through matching the breakthrough curve with a transport model. We found that the tracer estimates of surface area were confirmed the prediction of channelized flow between well pairs produced by the periodic hydraulic tests. To confirm that the hydraulic and tracer tests were correctly predicting channelize flow, we imaged the flow field using surface GPR. Saline water was injected between the well pairs which produced a change in the amplitude and phase of the reflected radar signal. A map was produced of the migration of saline tracer from these tests which qualitatively confirmed the flow channelization predicted by the hydraulic and tracer tests. The resolution of the GPR was insufficient to quantitatively estimate swept surface area, however. Surface GPR is not applicable in typical geothermal fields because the penetration depths do not exceed 10’s of meters. Nevertheless, the method of using of phase to measure electrical conductivity and the assessment of antennae polarization represent a significant advancement in the field of surface GPR. The effect of flow character on fracture / rock thermal exchange was evaluated using heated water as a tracer. Water

  3. Reactive facies: An approach for parameterizing field-scale reactive...

    Office of Scientific and Technical Information (OSTI)

    transport models using geophysical methods Citation Details In-Document Search Title: Reactive facies: An approach for parameterizing field-scale reactive transport models ...

  4. Radioactive tracers offer a closer look at horizontal completions

    SciTech Connect (OSTI)

    Holcomb, D.L.; Read, D.A. )

    1991-11-01

    Radioactive tracer tagging during stimulation treatments on vertical wells has been in use for many years and applications have been discussed in literature. More recently, multiple radioactive tracers have been employed to help evaluate various aspects of well stimulation. They have become standard industry practice for evaluation of treatment containment, fracture height growth, channeling behind casing, fracture initiation from perforations, diversion and acid or proppant distribution. In this paper completion techniques are analyzed using gamma ray-emitting isotopes and spectral-gamma ray logging. Examples of Austin Chalk and Bakken Shale evaluations show how operators can qualitatively compare stimulation and diversion effectiveness, and completion methods by using tracer technology.

  5. Reactive power compensator

    DOE Patents [OSTI]

    El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.; Chen, Mingliang; Andexler, George; Huang, Tony

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  6. Reactive Power Compensator.

    DOE Patents [OSTI]

    El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.

    1992-07-28

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.

  7. Tracer Testing At Fenton Hill HDR Geothermal Area (Callahan,...

    Open Energy Info (EERE)

    the Hot Dry Rock Geothermal System, Fenton Hill, New Mexico- Tracer Test Results Donald Brown, Robert DuTeaux (1997) Three Principal Results from Recent Fenton Hill Flow Testing...

  8. Tracer advection by steady groundwater flow in a stratified aquifer

    SciTech Connect (OSTI)

    Sposito, Garrison; Weeks, Scott W.

    1997-01-02

    The perfectly stratified aquifer has often been investigated as a simple, tractable model for exploring new theoretical issues in subsurface hydrology. Adopting this approach, we show that steady groundwater flows in the perfectly stratified aquifer are always confined to a set of nonintersecting permanent surfaces, on which both streamlines and vorticity lines lie. This foliation of the flow domain exists as well for steady groundwater flows in any isotropic, spatially heterogeneous aquifer. In the present model example it is a direct consequence of the existence of a stream function, we then demonstrate that tracer plume advection by steady groundwater flow in a perfectly stratified aquifer is never ergodic, regardless of the initial size of the tracer plume. This nonergodicity, which holds also for tracer advection in any isotropic, spatially heterogeneous aquifer, implies that stochastic theories of purely advective tracer plume movement err in assuming ergodic behavior to simplify probabilistic calculations of plume spatial concentration moments.

  9. Tracer testing in geothermal reservoirs | Open Energy Information

    Open Energy Info (EERE)

    geothermal reservoirs Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Tracer testing in geothermal reservoirs Author PetroWiki Published PetroWiki,...

  10. Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate...

    Open Energy Info (EERE)

    at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino G, and Fluorescein Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Tracer Testing at...

  11. Novel Multidimensional Tracers for Geothermal Inter-Well Diagnostics

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Multidimensional Tracers for Geothermal Inter-Well Diagnostics Principal Investigator : Yongchun Tang Presenter: John Ma Power Environmental Energy Research Institute DE-EE0003032 Project Officer: John Ma Total Project Funding: $2,300,000 April 23, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research Objective: Develop a matrix of the smart geothermal tracer and

  12. Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Creation in Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review reservoir_033_rose.pdf (207.82 KB) More Documents & Publications Tracer Methods for Characterizing Fracture Stimulation

  13. Tracer Methods for Characterizing Fracture Stimulation in Enhanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Systems (EGS); 2010 Geothermal Technology Program Peer Review Report | Department of Energy in Enhanced Geothermal Systems (EGS); 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture Stimulation in Enhanced Geothermal Systems (EGS); 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review reservoir_034_pruess.pdf (203.28 KB) More Documents & Publications Tracer Methods for

  14. Unraveling DPF Degradation using Chemical Tracers and Opportunities for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extending Filter Life | Department of Energy Unraveling DPF Degradation using Chemical Tracers and Opportunities for Extending Filter Life Unraveling DPF Degradation using Chemical Tracers and Opportunities for Extending Filter Life A unique electrochemical sensing strategy correlating the level of NOx with an impedance-based signal shows promise for sensitivity, stability, and accuracy while incorporating single-cell structures and simple electronics into low-cost designs deer10_sappok.pdf

  15. Using Thermally-Degrading, Partitioning, and Nonreactive Tracers to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determine Temperature Distribution and Fracture/Heat Transfer Surface Area in Geothermal Reservoirs | Department of Energy Using Thermally-Degrading, Partitioning, and Nonreactive Tracers to Determine Temperature Distribution and Fracture/Heat Transfer Surface Area in Geothermal Reservoirs Using Thermally-Degrading, Partitioning, and Nonreactive Tracers to Determine Temperature Distribution and Fracture/Heat Transfer Surface Area in Geothermal Reservoirs DOE Geothermal Peer Review 2010 -

  16. Integrated Approach to Use Natural Chemical and Isotopic Tracers to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Estimate Fracture Spacing and Surface Area in EGS Systems | Department of Energy Approach to Use Natural Chemical and Isotopic Tracers to Estimate Fracture Spacing and Surface Area in EGS Systems Integrated Approach to Use Natural Chemical and Isotopic Tracers to Estimate Fracture Spacing and Surface Area in EGS Systems DOE Geothermal Peer Review 2010 - Presentation. This objective of this project is to develop an innovative approach to estimate fracture surface area and spacing through

  17. HYDROGEL TRACER BEADS: THE DEVELOPMENT, MODIFICATION, AND TESTING OF AN INNOVATIVE TRACER FOR BETTER UNDERSTANDING LNAPL TRANSPORT IN KARST AQUIFERS

    SciTech Connect (OSTI)

    Amanda Laskoskie, Harry M. Edenborn, and Dorothy J. Vesper

    2012-01-01

    The goal of this specific research task is to develop proxy tracers that mimic contaminant movement to better understand and predict contaminant fate and transport in karst aquifers. Hydrogel tracer beads are transported as a separate phase than water and can used as a proxy tracer to mimic the transport of non-aqueous phase liquids (NAPL). They can be constructed with different densities, sizes & chemical attributes. This poster describes the creation and optimization of the beads and the field testing of buoyant beads, including sampling, tracer analysis, and quantitative analysis. The buoyant beads are transported ahead of the dissolved solutes, suggesting that light NAPL (LNAPL) transport in karst may occur faster than predicted from traditional tracing techniques. The hydrogel beads were successful in illustrating this enhanced transport.

  18. Reactive Power Compensating System.

    DOE Patents [OSTI]

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  19. Reactive power compensating system

    DOE Patents [OSTI]

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1987-01-01

    The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.

  20. Reactive power pricing and management

    SciTech Connect (OSTI)

    Hao, S.; Papalexopoulos, A.

    1997-02-01

    This paper explores the technical and economic issues of determining reactive power pricing structures in an open-access environment. It is believed that reactive power pricing and management under open-access will depend upon two important developments: (1) the functional unbundling of facilities that support the reactive power and voltage control service, and (2) grid rules to facilitate the coordination between generation and transmission systems for reliable system operation. The paper discusses the characteristics of reactive power that must be considered in order to develop a framework for reactive power pricing and management. Several cost allocation methods for valuing reactive power are presented. Two workable reactive power pricing structures are also proposed. The first is based on performance standards and the second is based on the local reactive power market concept.

  1. Reactive Air Aluminization

    SciTech Connect (OSTI)

    Choi, Jung-Pyung; Chou, Y. S.; Stevenson, Jeffry W.

    2011-10-28

    Ferritic stainless steels and other alloys are of great interest to SOFC developers for applications such as interconnects, cell frames, and balance of plant components. While these alloys offer significant advantages (e.g., low material and manufacturing cost, high thermal conductivity, and high temperature oxidation resistance), there are challenges which can hinder their utilization in SOFC systems; these challenges include Cr volatility and reactivity with glass seals. To overcome these challenges, protective coatings and surface treatments for the alloys are under development. In particular, aluminization of alloy surfaces offers the potential for mitigating both evaporation of Cr from the alloy surface and reaction of alloy constituents with glass seals. Commercial aluminization processes are available to SOFC developers, but they tend to be costly due to their use of exotic raw materials and/or processing conditions. As an alternative, PNNL has developed Reactive Air Aluminization (RAA), which offers a low-cost, simpler alternative to conventional aluminization methods.

  2. Permeable Reactive Barriers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Permeable Reactive Barriers Permeable Reactive Barriers Permeable Reactive Barrier Field Projects Durango, Colorado Durango, Colorado DOE installed a PRB in October 1995 to treat ...

  3. Advanced Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design » Design for Efficiency » Advanced House Framing Advanced House Framing Two-story home using advanced framing techniques. Two-story home using advanced framing techniques. Advanced house framing, sometimes called optimum value engineering (OVE), refers to framing techniques designed to reduce the amount of lumber used and waste generated in the construction of a wood-framed house. These techniques boost energy efficiency by replacing lumber with insulation material while maintaining the

  4. Unit vent airflow measurements using a tracer gas technique

    SciTech Connect (OSTI)

    Adams, D.G.; Lagus, P.L.; Fleming, K.M.

    1997-08-01

    An alternative method for assessing flowrates that does not depend on point measurements of air flow velocity is the constant tracer injection technique. In this method one injects a tracer gas at a constant rate into a duct and measures the resulting concentration downstream of the injection point. A simple equation derived from the conservation of mass allows calculation of the flowrate at the point of injection. Flowrate data obtained using both a pitot tube and a flow measuring station were compared with tracer gas flowrate measurements in the unit vent duct at the Callaway Nuclear Station during late 1995 and early 1996. These data are presented and discussed with an eye toward obtaining precise flowrate data for release rate calculations. The advantages and disadvantages of the technique are also described. In those test situations for which many flowrate combinations are required, or in large area ducts, a tracer flowrate determination requires fewer man-hours than does a conventional traverse-based technique and does not require knowledge of the duct area. 6 refs., 10 figs., 6 tabs.

  5. High upwind concentrations observed during an upslope tracer event

    SciTech Connect (OSTI)

    Ciolek, J.T. Jr.

    1993-10-01

    In February of 1991 the Rocky Flats Plant conducted twelve tracer experiments to validate an emergency response dispersion model known as the Terrain-Responsive Atmospheric Code (TRAC) (Hodgin 1985). Experimenters released 140 to 260 kilograms of inert tracer gas (sulfur hexafloride) from the plant over an 11 hour period. During each release, one hundred and sixty-five samples, most of which formed concentric rings of 8 and 16 km radius from the plant, recorded cumulative hourly concentrations of the tracer at one meter above ground level (AGL). Figure 1 contains a depiction of the sampler location, the terrain, and the meteorological stations available within the tracer study area. Brown (1991) describes the experimental setup in more detail. The subject of this paper is an event that occurred early in the fifth experiment, on February 9, 1991. In this experiment, tracer material released from 13:00 to 17:00 LST appeared both downwind and upwind of the source, with the highest concentrations upwind. During the fifth experiment, high pressure in Utah produced mostly sunny skis around Rocky Flats. For most of the day, one could find moderate (5 to 10 ms{sup {minus}1}) northerly (from the North) flow within the 700 to 500 mb level of the atmosphere (approximately 3000 to 5500 meters above Mean Sea Level (MSL)). Synoptic scale motions were isolated enough from the surface layer and heating was great enough to produce a 1 km deep upslope flow (flow from the East to the West) by late afternoon. The winds reversed and became downslope at approximately 17:30 LST.

  6. Low Cost Non-Reactive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prepared: 10/28/09 Low Cost Non-Reactive Coating for Refractory Metals A non-reactive coating for refractory metals has been developed at The Ames Laboratory. Contamination of rare earth and reactive metals and their alloys has been a chronic problem that results from their interaction with the crucibles or other vessels used in high temperature processing or during other applications. As a consequence, processing and other costs are high due to the need to replace equipment or containers, or

  7. Quantum Dot Tracers for Use in Engineered Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quantum Dot Tracers for Use in Engineered Geothermal Systems DE-EE0002768 Peter Rose, EGI/University of Utah Michael Bartl, Department of Chemistry at the University of Utah Paul Reimus, Los Alamos National Lab Project Officer: Lauren Boyd Total Project Funding: $1,238,499 April 23, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research The objective of this project is to

  8. Waste tank ventilation rates measured with a tracer gas method

    SciTech Connect (OSTI)

    Huckaby, J.L.; Evans, J.C.; Sklarew, D.S.; Mitroshkov, A.V.

    1998-08-01

    Passive ventilation with the atmosphere is used to prevent accumulation of waste gases and vapors in the headspaces of 132 of the 177 high-level radioactive waste Tanks at the Hanford Site in Southeastern Washington State. Measurements of the passive ventilation rates are needed for the resolution of two key safety issues associated with the rates of flammable gas production and accumulation and the rates at which organic salt-nitrate salt mixtures dry out. Direct measurement of passive ventilation rates using mass flow meters is not feasible because ventilation occurs va multiple pathways to the atmosphere (i.e., via the filtered breather riser and unsealed tank risers and pits), as well as via underground connections to other tanks, junction boxes, and inactive ventilation systems. The tracer gas method discussed in this report provides a direct measurement of the rate at which gases are removed by ventilation and an indirect measurement of the ventilation rate. The tracer gas behaves as a surrogate of the waste-generated gases, but it is only diminished via ventilation, whereas the waste gases are continuously released by the waste and may be subject to depletion mechanisms other than ventilation. The fiscal year 1998 tracer studies provide new evidence that significant exchange of air occurs between tanks via the underground cascade pipes. Most of the single-shell waste tanks are connected via 7.6-cm diameter cascade pipes to one or two adjacent tanks. Tracer gas studies of the Tank U-102/U-103 system indicated that the ventilation occurring via the cascade line could be a significant fraction of the total ventilation. In this two-tank cascade, air evidently flowed from Tank U-103 to Tank U-102 for a time and then was observed to flow from Tank U-102 to Tank U-103.

  9. Single Well Injection Withdrawl Tracer Tests for Proppant Detection -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Find More Like This Return to Search Single Well Injection Withdrawl Tracer Tests for Proppant Detection Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (800 KB) Technology Marketing SummaryA large question preventing optimal natural gas production from "hydrofracked" shales is how far proppants, injected to keep shale fractures open, move into the gas-bearing shales. Knowing precisely

  10. A Tariff for Reactive Power

    SciTech Connect (OSTI)

    Kueck, John D; Kirby, Brendan J; Li, Fangxing; Tufon, Christopher; Isemonger, Alan

    2008-07-01

    Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would reduce

  11. Pre-fire warning system and method using a perfluorocarbon tracer

    DOE Patents [OSTI]

    Dietz, Russell N.; Senum, Gunnar I.

    1994-01-01

    A composition and method for detecting thermal overheating of an apparatus or system and for quickly and accurately locating the portions of the apparatus or system that experience a predetermined degree of such overheating. A composition made according to the invention includes perfluorocarbon tracers (PFTs) mixed with certain non-reactive carrier compounds that are effective to trap or block the PFTs within the composition at normal room temperature or at normal operating temperature of the coated apparatus or system. When a predetermined degree of overheating occurs in any of the coated components of the apparatus or system, PFTs are emitted from the compositions at a rate corresponding to the degree of overheating of the component. An associated PFT detector (or detectors) is provided and monitored to quickly identify the type of PFTs emitted so that the PFTs can be correlated with the respective PFT in the coating compositions applied on respective components in the system, thereby to quickly and accurately localize the source of the overheating of such components.

  12. Pre-fire warning system and method using a perfluorocarbon tracer

    DOE Patents [OSTI]

    Dietz, R.N.; Senum, G.I.

    1994-11-08

    A composition and method are disclosed for detecting thermal overheating of an apparatus or system and for quickly and accurately locating the portions of the apparatus or system that experience a predetermined degree of such overheating. A composition made according to the invention includes perfluorocarbon tracers (PFTs) mixed with certain non-reactive carrier compounds that are effective to trap or block the PFTs within the composition at normal room temperature or at normal operating temperature of the coated apparatus or system. When a predetermined degree of overheating occurs in any of the coated components of the apparatus or system, PFTs are emitted from the compositions at a rate corresponding to the degree of overheating of the component. An associated PFT detector (or detectors) is provided and monitored to quickly identify the type of PFTs emitted so that the PFTs can be correlated with the respective PFT in the coating compositions applied on respective components in the system, thereby to quickly and accurately localize the source of the overheating of such components. 4 figs.

  13. Advanced Gasificatioin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Gasification Research Team Members Key Contacts Advanced Gasification Carbon feedstock gasification is a promising pathway for high-efficiency, low-pollutant power generation and chemical production. The inability, however, to meet a number of operational goals could create roadblocks to widespread acceptance and commercialization of advanced gasification technologies. We must, for example, achieve gasifier online availability of 85-95 percent in utility applications, and 95 percent for

  14. Advanced Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Combustion Background Conventional coal-fired power plants utilize steam turbines to ... development of large-scale Ni-based superalloy castings for power plant applications. ...

  15. Fuel Temperature Coefficient of Reactivity

    SciTech Connect (OSTI)

    Loewe, W.E.

    2001-07-31

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  16. Fracture Evolution Following a Hydraulic Stimulation within an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir Advancing reactive tracer methods for measuring thermal evolution in CO2-and water-based geothermal ...

  17. Final report on isotope tracer investigations in the Forebay of the Orange County groundwater basin.

    SciTech Connect (OSTI)

    Davisson, M; Woodside, G

    2003-12-13

    California is currently faced with some critical decisions about water resource infrastructure development in highly urbanized regions, whose outcome will dictate the future long-term viability of plentiful water. Among these is developing and safely implementing the reuse of advanced treated waste water. One of the most reliable strategies for this water resource is its indirect reuse via groundwater recharge and storage, with particular emphasis on supplementing annual water demand or during drought relief. The Orange County Water District (District) is currently implementing the first phase of a large-scale water reuse project that will advance-treat up to 60 million gallons per day of waste water and recharge it into existing percolation basins in the Forebay region of the Orange County groundwater basin. In order for the District to protect public health, the fate and potability of this recharged waste water needs to be understood. In particular, the direction and rates of flow into underlying aquifers need to be characterized so that changes in water quality can be quantified between the recharge basins and points of production. Furthermore, to ensure compliance to California Department of Health Services (DHS) draft regulations, the direction and rate of recharged waste water from these basins need to be understood to sufficient detail that small mixtures can be delineated in monitoring and production wells. Under proposed DHS guidelines, consumptive use of recycled water is permissive only if its residence time in an aquifer exceeds a specified six-month time-frame. DHS guidelines also limit the percentage of recycled water at production wells. However, attaining such detail using current hydrogeological and computer-assisted modeling tools is either cost-prohibitive or results in uncertainties too large to achieve regulatory confidence. To overcome this technical barrier, the District funded Lawrence Livermore National Laboratory (LLNL) from 1995-2001 to

  18. Final Progress Report for Project Entitled: Quantum Dot Tracers for Use in Engineered Geothermal Systems

    SciTech Connect (OSTI)

    Rose, Peter; Bartl, Michael; Reimus, Paul; Williams, Mark; Mella, Mike

    2015-09-12

    The objective of this project was to develop and demonstrate a new class of tracers that offer great promise for use in characterizing fracture networks in EGS reservoirs. From laboratory synthesis and testing through numerical modeling and field demonstrations, we have demonstrated the amazing versatility and applicability of quantum dot tracers. This report summarizes the results of four years of research into the design, synthesis, and characterization of semiconductor nanocrystals (quantum dots) for use as geothermal tracers.

  19. COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL SITE

    SciTech Connect (OSTI)

    Earl D Mattson; Mitchell Plummer; Carl Palmer; Larry Hull; Samantha Miller; Randy Nye

    2011-02-01

    Three conservative tracer tests have been conducted through the Bridge Fault fracture zone at the Raft River Geothermal (RRG) site. All three tests were conducted between injection well RRG-5 and production wells RRG-1 (790 m distance) and RRG-4 (740 m distance). The injection well is used during the summer months to provide pressure support to the production wells. The first test was conducted in 2008 using 136 kg of fluorescein tracer. Two additional tracers were injected in 2010. The first 2010 tracer injected was 100 kg fluorescein disodium hydrate salt on June, 21. The second tracer (100 kg 2,6-naphthalene disulfonic acid sodium salt) was injected one month later on July 21. Sampling of the two productions wells is still being performed to obtain the tail end of the second 2010 tracer test. Tracer concentrations were measured using HPLC with a fluorescence detector. Results for the 2008 test, suggest 80% tracer recover at the two production wells. Of the tracer recovered, 85% of tracer mass was recovered in well RRG-4 indicating a greater flow pathway connection between injection well and RRG-4 than RRG-1. Fluorescein tracer results appear to be similar between the 2008 and 2010 tests for well RRG-4 with peak concentrations arriving approximately 20 days after injection despite the differences between the injection rates for the two tests (~950 gpm to 475 gpm) between the 2008 and 2010. The two 2010 tracer tests will be compared to determine if the results support the hypothesis that rock contraction along the flow pathway due to the 55 oC cooler water injection alters the flow through the ~140 oC reservoir.

  20. Novel Multi-dimensional Tracers for Geothermal Inter-wall Diagnostics

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. The objective of this project is to develop a matrix of the smart geothermal tracer and its interpretation tools.

  1. Modeling of CBM production, CO{sub 2} injection, and tracer movement...

    Office of Scientific and Technical Information (OSTI)

    The fate and movement of injected COsub 2 can be determined by using several monitoring techniques. Monitoring of perfluorocarbon (PFC) tracers is one of these monitoring ...

  2. The use of synthetic colloids in tracer transport experiments in saturated rock fractures

    SciTech Connect (OSTI)

    Reimus, P.W.

    1995-08-01

    Studies of groundwater flow and contaminant transport in saturated, fractured geologic media are of great interest to researchers studying the potential long-term storage of hazardous wastes in or near such media. A popular technique for conducting such studies is to introduce tracers having different chemical and physical properties into a system and then observe the tracers at one or more downstream locations, inferring flow and transport mechanisms from the breakthrough characteristics of the different tracers. Many tracer studies have been conducted in saturated, fractured media to help develop and/or refine models capable of predicting contaminant transport over large scales in such media.

  3. Wear Measurement of Highly Cross-linked UHMWPE using a 7Be Tracer...

    Office of Scientific and Technical Information (OSTI)

    Tracer methods are there- fore being explored. The purpose of this study was to perform a proof-of-concept experiment ... Country of Publication: United States Language: English ...

  4. Single well tracer method to evaluate enhanced recovery

    DOE Patents [OSTI]

    Sheely, Jr., Clyde Q.; Baldwin, Jr., David E.

    1978-01-01

    Data useful to evaluate the effectiveness of or to design an enhanced recovery process (the recovery process involving mobilizing and moving hydrocarbons through a hydrocarbon-bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well) are obtained by a process which comprises sequentially: determining hydrocarbon saturation in the formation in a volume in the formation near a well bore penetrating the formation, injecting sufficient of the mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore penetrating the formation, and determining by the single well tracer method a hydrocarbon saturation profile in a volume from which hydrocarbons are moved. The single well tracer method employed is disclosed by U.S. Pat. No. 3,623,842. The process is useful to evaluate surfactant floods, water floods, polymer floods, CO.sub.2 floods, caustic floods, micellar floods, and the like in the reservoir in much less time at greatly reduced costs, compared to conventional multi-well pilot test.

  5. Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Scientific Computing Research Advanced Scientific Computing Research Discovering, ... The DOE Office of Science's Advanced Scientific Computing Research (ASCR) program ...

  6. Complex functionality with minimal computation. Promise and pitfalls of reduced-tracer ocean biogeochemistry models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Galbraith, Eric D.; Dunne, John P.; Gnanadesikan, Anand; Slater, Richard D.; Sarmiento, Jorge L.; Dufour, Carolina O.; de Souza, Gregory F.; Bianchi, Daniele; Claret, Mariona; Rodgers, Keith B.; et al

    2015-12-21

    Earth System Models increasingly include ocean biogeochemistry models in order to predict changes in ocean carbon storage, hypoxia, and biological productivity under climate change. However, state-of-the-art ocean biogeochemical models include many advected tracers, that significantly increase the computational resources required, forcing a trade-off with spatial resolution. Here, we compare a state-of the art model with 30 prognostic tracers (TOPAZ) with two reduced-tracer models, one with 6 tracers (BLING), and the other with 3 tracers (miniBLING). The reduced-tracer models employ parameterized, implicit biological functions, which nonetheless capture many of the most important processes resolved by TOPAZ. All three are embedded inmore » the same coupled climate model. Despite the large difference in tracer number, the absence of tracers for living organic matter is shown to have a minimal impact on the transport of nutrient elements, and the three models produce similar mean annual preindustrial distributions of macronutrients, oxygen, and carbon. Significant differences do exist among the models, in particular the seasonal cycle of biomass and export production, but it does not appear that these are necessary consequences of the reduced tracer number. With increasing CO2, changes in dissolved oxygen and anthropogenic carbon uptake are very similar across the different models. Thus, while the reduced-tracer models do not explicitly resolve the diversity and internal dynamics of marine ecosystems, we demonstrate that such models are applicable to a broad suite of major biogeochemical concerns, including anthropogenic change. Lastly, these results are very promising for the further development and application of reduced-tracer biogeochemical models that incorporate ‘‘sub-ecosystem-scale’’ parameterizations.« less

  7. Complex functionality with minimal computation. Promise and pitfalls of reduced-tracer ocean biogeochemistry models

    SciTech Connect (OSTI)

    Galbraith, Eric D.; Dunne, John P.; Gnanadesikan, Anand; Slater, Richard D.; Sarmiento, Jorge L.; Dufour, Carolina O.; de Souza, Gregory F.; Bianchi, Daniele; Claret, Mariona; Rodgers, Keith B.; Marvasti, Seyedehsafoura Sedigh

    2015-12-21

    Earth System Models increasingly include ocean biogeochemistry models in order to predict changes in ocean carbon storage, hypoxia, and biological productivity under climate change. However, state-of-the-art ocean biogeochemical models include many advected tracers, that significantly increase the computational resources required, forcing a trade-off with spatial resolution. Here, we compare a state-of the art model with 30 prognostic tracers (TOPAZ) with two reduced-tracer models, one with 6 tracers (BLING), and the other with 3 tracers (miniBLING). The reduced-tracer models employ parameterized, implicit biological functions, which nonetheless capture many of the most important processes resolved by TOPAZ. All three are embedded in the same coupled climate model. Despite the large difference in tracer number, the absence of tracers for living organic matter is shown to have a minimal impact on the transport of nutrient elements, and the three models produce similar mean annual preindustrial distributions of macronutrients, oxygen, and carbon. Significant differences do exist among the models, in particular the seasonal cycle of biomass and export production, but it does not appear that these are necessary consequences of the reduced tracer number. With increasing CO2, changes in dissolved oxygen and anthropogenic carbon uptake are very similar across the different models. Thus, while the reduced-tracer models do not explicitly resolve the diversity and internal dynamics of marine ecosystems, we demonstrate that such models are applicable to a broad suite of major biogeochemical concerns, including anthropogenic change. Lastly, these results are very promising for the further development and application of reduced-tracer biogeochemical models that incorporate ‘‘sub-ecosystem-scale’’ parameterizations.

  8. DETERMINATION OF SPECIFIC NEUTRONIC REACTIVITY

    DOE Patents [OSTI]

    Dessauer, G.

    1960-05-10

    A method is given for production-line determination of the specific neutronic reactivity of such objects as individual nuclear fuel or neutron absorber elements and is notable for rapidity and apparatus simplicity. The object is incorporated in a slightly sub-critical chain fission reactive assembly having a discrete neutron source, thereby establishing a K/sub eff/ within the crucial range of 0.95 to 0.995. The range was found to afford, uniquely, flux- transient damped response in a niatter of seconds simultaneously with acceptable analytical sensitivity. The resulting neutron flux measured at a situs spaced from both object and source within the assembly serves as a calibrable indication of said reactivity.

  9. Nonlocal reactive transport with physical and chemical heterogeneity: Localization errors

    SciTech Connect (OSTI)

    Cushman, J.H.; Hu, B.X.; Deng, F.W.

    1995-09-01

    The origin of nonlocality in {open_quotes}macroscale{close_quotes} models for subsurface chemical transport is illustrated. It is argued that media that are either nonperiodic (e.g., media with evolving heterogeneity) or periodic viewed on a scale wherein a unit cell is discernible must display some nonlocality in the mean. A metaphysical argument suggests that owing to the scarcity of information on natural scales of heterogeneity and on scales of observation associated with an instrument window, constitutive theories for the mean concentration should at the outset of any modeling effort always be considered nonlocal. The intuitive appeal to nonlocality is reinforced with an analytical derivation of the constitutive theory for a conservative tracer without appeal to any mathematical approximations. Comparisons are made between the fully nonlocal (FNL), nonlocal in time (NLT), and fully localized (FL) theories. For conservative transport, there is little difference between the first-order FL and FNL models for spatial moments up to and including the third. However, for conservative transport the first-order NLT model differs significantly from the FNL model in the third spatial moments. For reactive transport, all spatial moments differ between the FNL and FL models. The second transverse-horizontal and third longitudinal-horizontal moments for the NLT model differ from the FNL model. These results suggest that localized first-order transport models for conservative tracers are reasonable if only lower-order moments are desired. However, when the chemical reacts with its environment, the localization approximation can lead to significant error in all moments, and a FNL model will in general be required for accurate simulation. 18 refs., 9 figs., 1 tab.

  10. Reactive Dehydration technology for Production of Fuels and Chemicals from Biomass

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dr. James R. Kittrell, KSE, Inc. Dr. Carl R. Dupre, KSE, Inc. Dr. Michael F. Malone (Subcontractor) U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. 2 Project Objective Commercialize a novel reactive distillation technology using the iCARD platform (Intensified Catalytic and Reactive Distillation) for compact, inexpensive production of biomass-based

  11. Tracer Methods for Characterizing Fracture Stimulation in Engineered Geothermal Systems (EGS)

    Broader source: Energy.gov [DOE]

    Project objectives: identify tracers with sorption properties favorable for EGS applications; apply reversibly sorbing tracers to determine the fracture-matrix interface area available for heat transfer; and; explore the feasibility of obtaining fracture-matrix interface area from non-isothermal; single-well injection-withdrawal (SWIW) tests.

  12. advanced manufacutring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manufacutring - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  13. Advanced Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Manufacturing Office 13 Selectees Announced for High Performance Computing for Manufacturing Program 13 Selectees Announced for High Performance Computing for Manufacturing Program EERE, in partnership with Lawrence Livermore National Laboratory (LLNL), announced the second round of selections for the High Performance Computing for Manufacturing ("HPC4Mfg") Program. Thirteen projects were selected to receive nearly $3.8 million for manufacturers to use high-performance

  14. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  15. Engine combustion control via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2015-07-14

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  16. Engine combustion control via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  17. THE NEW YORK CITY URBAN DISPERSION PROGRAM MARCH 2005 FIELD STUDY: TRACER METHODS AND RESULTS.

    SciTech Connect (OSTI)

    WATSON, T.B.; HEISER, J.; KALB, P.; DIETZ, R.N.; WILKE, R.; WIESER, R.; VIGNATO, G.

    2005-10-01

    The Urban Dispersion Program March 2005 Field Study tracer releases, sampling, and analytical methods are described in detail. There were two days where tracer releases and sampling were conducted. A total of 16.0 g of six tracers were released during the first test day or Intensive Observation Period (IOP) 1 and 15.7 g during IOP 2. Three types of sampling instruments were used in this study. Sequential air samplers, or SAS, collected six-minute samples, while Brookhaven atmospheric tracer samplers (BATS) and personal air samplers (PAS) collected thirty-minute samples. There were a total of 1300 samples resulting from the two IOPs. Confidence limits in the sampling and analysis method were 20% as determined from 100 duplicate samples. The sample recovery rate was 84%. The integrally averaged 6-minute samples were compared to the 30-minute samples. The agreement was found to be good in most cases. The validity of using a background tracer to calculate sample volumes was examined and also found to have a confidence level of 20%. Methods for improving sampling and analysis are discussed. The data described in this report are available as Excel files. An additional Excel file of quality assured tracer data for use in model validation efforts is also available. The file consists of extensively quality assured BATS tracer data with background concentrations subtracted.

  18. Environmental Tracers for Determining Water Resource Vulnerability to Climate Change

    SciTech Connect (OSTI)

    Singleton, M

    2009-07-08

    Predicted changes in the climate will have profound impacts on water availability in the Western US, but large uncertainties exist in our ability to predict how natural and engineered hydrological systems will respond. Most predictions suggest that the impacts of climate change on California water resources are likely to include a decrease in the percentage of precipitation that falls as snow, earlier onset of snow-pack melting, and an increase in the number of rain on snow events. These processes will require changes in infrastructure for water storage and flood control, since much of our current water supply system is built around the storage of winter precipitation as mountain snow pack. Alpine aquifers play a critical role by storing and releasing snowmelt as baseflow to streams long after seasonal precipitation and the disappearance of the snow pack, and in this manner significantly impact the stream flow that drives our water distribution systems. Mountain groundwater recharge and, in particular, the contribution of snowmelt to recharge and baseflow, has been identified as a potentially significant effect missing from current climate change impact studies. The goal of this work is to understand the behavior of critical hydrologic systems, with an emphasis on providing ground truth for next generation models of climate-water system interactions by implementing LLNL capabilities in environmental tracer and isotopic science. We are using noble gas concentrations and multiple isotopic tracers ({sup 3}H/{sup 3}He, {sup 35}S, {sup 222}Rn, {sup 2}H/{sup 1}H, {sup 18}O/{sup 16}O, and {sup 13}C/{sup 12}C) in groundwater and stream water in a small alpine catchment to (1) provide a snapshot of temperature, altitude, and physical processes at the time of recharge, (2) determine subsurface residence times (over time scales ranging from months to decades) of different groundwater age components, and (3) deconvolve the contribution of these different groundwater components

  19. Predictions of tracer transport in interwell tracer tests at the C-Hole complex. Yucca Mountain site characterization project report milestone 4077

    SciTech Connect (OSTI)

    Reimus, P.W.

    1996-09-01

    This report presents predictions of tracer transport in interwell tracer tests that are to be conducted at the C-Hole complex at the Nevada Test Site on behalf of the Yucca Mountain Site Characterization Project. The predictions are used to make specific recommendations about the manner in which the tracer test should be conducted to best satisfy the needs of the Project. The objective of he tracer tests is to study flow and species transport under saturated conditions in the fractured tuffs near Yucca Mountain, Nevada, the site of a potential high-level nuclear waste repository. The potential repository will be located in the unsaturated zone within Yucca Mountain. The saturated zone beneath and around the mountain represents the final barrier to transport to the accessible environment that radionuclides will encounter if they breach the engineered barriers within the repository and the barriers to flow and transport provided by the unsaturated zone. Background information on the C-Holes is provided in Section 1.1, and the planned tracer testing program is discussed in Section 1.2.

  20. Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at...

  1. Tracers for monitoring the activity of sodium/glucose cotransporters in health and disease

    DOE Patents [OSTI]

    Wright, Ernest M; Barrio, Jorge R; Hirayama, Bruce A; Kepe, Vladimir

    2014-09-30

    Radiolabeled tracers for sodium/glucose cotransporters (SGLTs), their synthesis, and their use are provided. The tracers are methyl or ethyl pyranosides having an equatorial hydroxyl group at carbon-2 and a C 1 preferred conformation, radiolabeled with .sup.18F, .sup.123I, or .sup.124I, or free hexoses radiolabeled with .sup.18F, .sup.123I, or .sup.124. Also provided are in vivo and in vitro techniques for using these and other tracers as analytical and diagnostic tools to study glucose transport, in health and disease, and to evaluate therapeutic interventions.

  2. Scientific Discovery through Advanced Computing (SciDAC-3) Partnership Project Annual Report

    SciTech Connect (OSTI)

    Hoffman, Forest M.; Bochev, Pavel B.; Cameron-Smith, Philip J..; Easter, Richard C; Elliott, Scott M.; Ghan, Steven J.; Liu, Xiaohong; Lowrie, Robert B.; Lucas, Donald D.; Ma, Po-lun; Sacks, William J.; Shrivastava, Manish; Singh, Balwinder; Tautges, Timothy J.; Taylor, Mark A.; Vertenstein, Mariana; Worley, Patrick H.

    2014-01-15

    The Applying Computationally Efficient Schemes for BioGeochemical Cycles ACES4BGC Project is advancing the predictive capabilities of Earth System Models (ESMs) by reducing two of the largest sources of uncertainty, aerosols and biospheric feedbacks, with a highly efficient computational approach. In particular, this project is implementing and optimizing new computationally efficient tracer advection algorithms for large numbers of tracer species; adding important biogeochemical interactions between the atmosphere, land, and ocean models; and applying uncertainty quanti cation (UQ) techniques to constrain process parameters and evaluate uncertainties in feedbacks between biogeochemical cycles and the climate system.

  3. Tracer diffusion in compacted, water-saturated bentonite

    SciTech Connect (OSTI)

    Bourg, Ian C.; Sposito, Garrison; Bourg, Alain C.M.

    2005-08-04

    Compacted Na-bentonite clay barriers, widely used in theisolation of solid-waste landfills and other contaminated sites, havebeen proposed for a similar use in the disposal of high-level radioactivewaste. Molecular diffusion through the pore space in these barriers playsa key role in their performance, thus motivating recent measurements ofthe apparent diffusion coefficient tensor of water tracers in compacted,water-saturated Na-bentonites. In the present study, we introduce aconceptual model in which the pore space of water-saturated bentonite isdivided into 'macropore' and 'interlayer nanopore' compartments. Withthis model we determine quantitatively the relative contributions ofpore-network geometry (expressed as a geometric factor) and of thediffusive behavior of water molecules near montmorillonite basal surfaces(expressed as a contristivity factor) to the apparent diffusioncoefficient tensor. Our model predicts, in agreement with experiment,that the mean principal value of the apparent diffusion coefficienttensor follows a single relationship when plotted against the partialmontmorillonite dry density (mass of montmorillonite per combined volumeof montmorillonite and pore space). Using a single fitted parameter, themean principal geometric factor, our model successfully describes thisrelationship for a broad range of bentonite-water system, from dilute gelto highly-compacted bentonite with 80 percent of its pore water ininterlayer nanopores.

  4. Reactive composite compositions and mat barriers

    SciTech Connect (OSTI)

    Langton, Christine A.; Narasimhan, Rajendran; Karraker, David G.

    2001-01-01

    A hazardous material storage area has a reactive multi-layer composite mat which lines an opening into which a reactive backfill and hazardous material are placed. A water-inhibiting cap may cover the hazardous material storage area. The reactive multi-layer composite mat has a backing onto which is placed an active layer which will neutralize or stabilize hazardous waste and a fronting layer so that the active layer is between the fronting and backing layers. The reactive backfill has a reactive agent which can stabilize or neutralize hazardous material and inhibit the movement of the hazardous material through the hazardous material storage area.

  5. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain site characterization study. Final report

    SciTech Connect (OSTI)

    Stetzenbach, K.; Farnham, I.

    1996-06-01

    Extensive tracer testing is expected to take place at the C-well complex in the Nevada Test Site as part of the Yucca Mountain Site Characterization Project. The C-well complex consists of one pumping well, C3, and two injection wells, C1 and C2 into which tracer will be introduced. The goal of this research was to provide USGS with numerous tracers to completed these tests. Several classes of fluorinated organic acids have been evaluated. These include numerous isomers of fluorinated benzoic acids, cinnamic acids, and salicylic acids. Also several derivatives of 2-hydroxy nicotinic acid (pyridone) have been tested. The stability of these compounds was determined using batch and column tests. Ames testing (mutagenicity/carcinogenicity) was conducted on the fluorinated benzoic acids and a literature review of toxicity of the fluorobenzoates and three perfluoro aliphatic acids was prepared. Solubilities were measured and method development work was performed to optimize the detection of these compounds. A Quality Assurance (QA) Program was developed under existing DOE and USGS guidelines. The program includes QA procedures and technical standard operating procedures. A tracer test, using sodium iodide, was performed at the C-well complex. HRC chemists performed analyses on site, to provide real time data for the USGS hydrologists and in the laboratories at UNLV. Over 2,500 analyses were performed. This report provides the results of the laboratory experiments and literature reviews used to evaluate the potential tracers and reports on the results of the iodide C-well tracer test.

  6. Development of Models to Simulate Tracer Behavior in Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Williams, Mark D.; Vermeul, Vincent R.; Reimus, P. W.; Newell, D.; Watson, Tom B.

    2010-06-01

    A recent report found that power and heat produced from engineered (or enhanced) geothermal systems (EGSs) could have a major impact on the United States while incurring minimal environmental impacts. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distributions, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for commercial development of geothermal energy. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. Modeling capabilities are being developed as part of this project to support laboratory and field testing to characterize engineered geothermal systems in single- and multi-well tests using tracers. The objective of this report is to describe the simulation plan and the status of model development for simulating tracer tests for characterizing EGS.

  7. 36Cl as a tracer in geothermal systems- Example from Valles Caldera...

    Open Energy Info (EERE)

    the use of chlorine-36 as a geothermal tracer. Authors F.M. Phillips, Fraser E. Goff, Francois D. Vuataz, H.W. Bentley and H.E. Gove Published Journal Geophysical Research...

  8. Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.

    2014-12-22

    In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NOX and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustion whenmore » speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.« less

  9. Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

    SciTech Connect (OSTI)

    Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.

    2014-12-22

    In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NOX and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustion when speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.

  10. Urban Dispersion Program MSG05 Field Study: Summary of Tracer and Meteorological Measurements

    SciTech Connect (OSTI)

    Allwine, K Jerry; Flaherty, Julia E.

    2006-08-09

    The Urban Dispersion Program is a multi-year project, funded by the U.S. Department of Homeland Security, to better understand the flow and dispersion of airborne contaminants through and around the deep street canyons of New York City. The first tracer and meteorological field study was a limited study conducted during March 2005 near the Madison Square Garden in midtown Manhattan. Six safe, inert, gaseous perfluorocarbon tracers were released simultaneously at five street-level locations during two experimental days. In addition to collecting tracer data, meteorological data were also collected. Brookhaven National Laboratory conducted the bulk of the tracer and meteorological field efforts with Pacific Northwest National Laboratory and Stevens Institute of Technology assisting by measuring the vertical profile of winds. The Environmental Protection Agency worked with Brookhaven National Laboratory in accomplishing the personal exposure component of the study. This report presents some results from this analysis. In general, different release locations showed vastly different plume footprints for tracer materials, and the situation was made very complex with upwind and/or crosswind transport of tracer near street-level for the different release locations. Overall wind speeds and directions upwind and over the city were generally constant throughout each of the two experimental periods.

  11. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain site characterization study. Progress report, October 1, 1994--December 31, 1994

    SciTech Connect (OSTI)

    Stetzenbach, K.; Farnham, I.

    1994-12-31

    The bromide anion has been used extensively as a tracer for mapping the flow of groundwater. It has proven to be both a safe and reliable groundwater tracer. The goal in this study is to find several tracing compounds with characteristics similar to the bromide anion to be used in multiple well tracing tests. Four groups of fluorinated organic acids were selected as candidates for groundwater tracers. These groups include fluorinated benzoic acids (FBA), fluorinated salicylic acids (FSA), fluorinated toluic acids (FTA), and fluorinated cinnamic acids (FCA). These compounds have been shown to move readily with the flow of water and do not adsorb to soil. They are also non-toxic. In this study, the retention of the fluorinated organic acids on to a soil column is compared to that of the bromide ion. The time required for the elution of each analyte from the soil column is measured using a UV-Vis detector. The soils consist of the light, medium, and dark tuffs used in the batch study. The work performed during this quarter consists of the continuation of the batch studies for the fluorinated benzoic acids and column studies for several potential tracer compounds.

  12. Low-rank coal research: Volume 2, Advanced research and technology development: Final report

    SciTech Connect (OSTI)

    Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.

    1987-04-01

    Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

  13. Layered reactive particles with controlled geometries, energies, and reactivities, and methods for making the same

    DOE Patents [OSTI]

    Fritz, Gregory M.; Weihs, Timothy P.; Grzyb, Justin A.

    2016-07-05

    An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.

  14. Layered reactive particles with controlled geometries, energies, and reactivities, and methods for making the same

    DOE Patents [OSTI]

    Fritz, Gregory M; Knepper, Robert Allen; Weihs, Timothy P; Gash, Alexander E; Sze, John S

    2013-04-30

    An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.

  15. New Tracers of Gas Migration in the Continental Crust

    SciTech Connect (OSTI)

    Kurz, Mark D.

    2015-11-01

    Noble gases are exceptional tracers in continental settings due to the remarkable isotopic variability between the mantle, crust, and atmosphere, and because they are inert. Due to systematic variability in physical properties, such as diffusion, solubility, and production rates, the combination of helium, neon, and argon provides unique but under-utilized indices of gas migration. Existing noble gas data sets are dominated by measurements of gas and fluid phases from gas wells, ground waters and hot springs. There are very few noble gas measurements from the solid continental crust itself, which means that this important reservoir is poorly characterized. The central goal of this project was to enhance understanding of gas distribution and migration in the continental crust using new measurements of noble gases in whole rocks and minerals from existing continental drill cores, with an emphasis on helium, neon, argon. We carried out whole-rock and mineral-separate noble gas measurements on Precambrian basement samples from the Texas Panhandle. The Texas Panhandle gas field is the southern limb of the giant Hugoton-Panhandle oil and gas field; it has high helium contents (up to ~ 2 %) and 3He/4He of 0.21 (± 0.03) Ra. Because the total amount of helium in the Panhandle gas field is relatively well known, crustal isotopic data and mass balance calculations can be used to constrain the ultimate source rocks, and hence the helium migration paths. The new 3He/4He data range from 0.03 to 0.11 Ra (total), all of which are lower than the gas field values. There is internal isotopic heterogeneity in helium, neon, and argon, within all the samples; crushing extractions yield less radiogenic values than melting, demonstrating that fluid inclusions preserve less radiogenic gases. The new data suggest that the Precambrian basement has lost significant amounts of helium, and shows the importance of measuring helium with neon and argon. The 4He/40Ar values are particularly useful

  16. Interfacial Structure and Reactivity | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a robust, molecular-scale understanding of its structure and reactivity? Research Context The transport of ions across the electrodeelectrolyte interface can lead to kinetic...

  17. Shock Desensitization Experiments and Reactive Flow Modeling...

    Office of Scientific and Technical Information (OSTI)

    Shock Desensitization Experiments and Reactive Flow Modeling on Self-Sustaining LX-17 Detonation Waves Citation Details In-Document Search Title: Shock Desensitization Experiments ...

  18. Rejuvenating Permeable Reactive Barriers by Chemical Flushing

    Broader source: Energy.gov [DOE]

    Final Report:Rejuvenating Permeable Reactive Barriers by Chemical Flushing,U.S. Environmental Protection Agency, Region 8 Support.August 2004

  19. Directional Reactive Power Ground Plane Transmission - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marketing SummaryORNL researchers have developed a pioneering power alternative to batteries using directional reactive power. Batteries are currently the primary option for...

  20. Method for reactivating catalysts and a method for recycling supercritical fluids used to reactivate the catalysts

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2008-08-05

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  1. Laboratory testing and modeling to evaluate perfluorocarbon compounds as tracers in geothermal systems

    SciTech Connect (OSTI)

    Reimus, Paul W

    2011-01-21

    The thermal stability and adsorption characteristics of three perfluorinated hydrocarbon compounds were evaluated under geothermal conditions to determine the potential to use these compounds as conservative or thermally-degrading tracers in Engineered (or Enhanced) Geothermal Systems (EGS). The three compounds tested were perfluorodimethyl-cyclobutane (PDCB), perfluoromethylcyclohexane (PMCH), and perfluorotrimethylcyclohexane (PTCH), which are collectively referred to as perfluorinated tracers, or PFTs. Two sets of duplicate tests were conducted in batch mode in gold-bag reactors, with one pair of reactors charged with a synthetic geothermal brine containing the PFTs and a second pair was charged with the brine-PFT mixture plus a mineral assemblage chosen to be representative of activated fractures in an EGS reservoir. A fifth reactor was charged with deionized water containing the three PFTs. The experiments were conducted at {approx}100 bar, with temperatures ranging from 230 C to 300 C. Semi-analytical and numerical modeling was also conducted to show how the PFTs could be used in conjunction with other tracers to interrogate surface area to volume ratios and temperature profiles in EGS reservoirs. Both single-well and cross-hole tracer tests are simulated to illustrate how different suites of tracers could be used to accomplish these objectives. The single-well tests are especially attractive for EGS applications because they allow the effectiveness of a stimulation to be evaluated without drilling a second well.

  2. Single well surfactant test to evaluate surfactant floods using multi tracer method

    DOE Patents [OSTI]

    Sheely, Clyde Q.

    1979-01-01

    Data useful for evaluating the effectiveness of or designing an enhanced recovery process said process involving mobilizing and moving hydrocarbons through a hydrocarbon bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well, comprising (a) determining hydrocarbon saturation in a volume in the formation near a well bore penetrating formation, (b) injecting sufficient mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore, and (c) determining the hydrocarbon saturation in a volume including at least a part of the volume of (b) by an improved single well surfactant method comprising injecting 2 or more slugs of water containing the primary tracer separated by water slugs containing no primary tracer. Alternatively, the plurality of ester tracers can be injected in a single slug said tracers penetrating varying distances into the formation wherein the esters have different partition coefficients and essentially equal reaction times. The single well tracer method employed is disclosed in U.S. Pat. No. 3,623,842. This method designated the single well surfactant test (SWST) is useful for evaluating the effect of surfactant floods, polymer floods, carbon dioxide floods, micellar floods, caustic floods and the like in subterranean formations in much less time and at much reduced cost compared to conventional multiwell pilot tests.

  3. Leak testing of bubble-tight dampers using tracer gas techniques

    SciTech Connect (OSTI)

    Lagus, P.L.; DuBois, L.J.; Fleming, K.M.

    1995-02-01

    Recently tracer gas techniques have been applied to the problem of measuring the leakage across an installed bubble-tight damper. A significant advantage of using a tracer gas technique is that quantitative leakage data are obtained under actual operating differential pressure conditions. Another advantage is that leakage data can be obtained using relatively simple test setups that utilize inexpensive materials without the need to tear ducts apart, fabricate expensive blank-off plates, and install test connections. Also, a tracer gas technique can be used to provide an accurate field evaluation of the performance of installed bubble-tight dampers on a periodic basis. Actual leakage flowrates were obtained at Zion Generating Station on four installed bubble-tight dampers using a tracer gas technique. Measured leakage rates ranged from 0.01 CFM to 21 CFM. After adjustment and subsequent retesting, the 21 CFM damper leakage was reduced to a leakage of 3.8 CFM. In light of the current regulatory climate and the interest in Control Room Habitability issues, imprecise estimates of critical air boundary leakage rates--such as through bubble-tight dampers--are not acceptable. These imprecise estimates can skew radioactive dose assessments as well as chemical contaminant exposure calculations. Using a tracer gas technique, the actual leakage rate can be determined. This knowledge eliminates a significant source of uncertainty in both radioactive dose and/or chemical exposure assessments.

  4. Advanced gray rod control assembly

    DOE Patents [OSTI]

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  5. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program ...

  6. General Reactive Atomistic Simulation Program

    Energy Science and Technology Software Center (OSTI)

    2004-09-22

    GRASP (General Reactive Atomistic Simulation Program) is primarily intended as a molecular dynamics package for complex force fields, The code is designed to provide good performance for large systems, either in parallel or serial execution mode, The primary purpose of the code is to realistically represent the structural and dynamic properties of large number of atoms on timescales ranging from picoseconds up to a microsecond. Typically the atoms form a representative sample of some material,more » such as an interface between polycrystalline silicon and amorphous silica. GRASP differs from other parallel molecular dynamics codes primarily due to it’s ability to handle relatively complicated interaction potentials and it’s ability to use more than one interaction potential in a single simulation. Most of the computational effort goes into the calculation of interatomic forces, which depend in a complicated way on the positions of all the atoms. The forces are used to integrate the equations of motion forward in time using the so-called velocity Verlet integration scheme. Alternatively, the forces can be used to find a minimum energy configuration, in which case a modified steepest descent algorithm is used.« less

  7. Multiple-tracer tests for contaminant transport process identification in saturated municipal solid waste

    SciTech Connect (OSTI)

    Woodman, N.D. Rees-White, T.C.; Stringfellow, A.M.; Beaven, R.P.; Hudson, A.P.

    2015-04-15

    Highlights: • Multiple tracers were applied to saturated MSW to test dual-porosity properties. • Lithium demonstrated to be non-conservative as a tracer. • 260 mm diameter column too small to test transport properties of MSW. • The classical advection-dispersion mode was rejected due to high dispersivity. • Characteristic diffusion times did not vary with the tracer. - Abstract: Two column tests were performed in conditions emulating vertical flow beneath the leachate table in a biologically active landfill to determine dominant transport mechanisms occurring in landfills. An improved understanding of contaminant transport process in wastes is required for developing better predictions about potential length of the long term aftercare of landfills, currently measured in timescales of centuries. Three tracers (lithium, bromide and deuterium) were used. Lithium did not behave conservatively. Given that lithium has been used extensively for tracing in landfill wastes, the tracer itself and the findings of previous tests which assume that it has behaved conservatively may need revisiting. The smaller column test could not be fitted with continuum models, probably because the volume of waste was below a representative elemental volume. Modelling compared advection-dispersion (AD), dual porosity (DP) and hybrid AD–DP models. Of these models, the DP model was found to be the most suitable. Although there is good evidence to suggest that diffusion is an important transport mechanism, the breakthrough curves of the different tracers did not differ from each other as would be predicted based on the free-water diffusion coefficients. This suggested that solute diffusion in wastes requires further study.

  8. Interpretations of Tracer Tests Performed in the Culebra Dolomite at the Waste Isolation Pilot Plant Site

    SciTech Connect (OSTI)

    MEIGS,LUCY C.; BEAUHEIM,RICHARD L.; JONES,TOYA L.

    2000-08-01

    This report provides (1) an overview of all tracer testing conducted in the Culebra Dolomite Member of the Rustler Formation at the Waste Isolation Pilot Plant (WPP) site, (2) a detailed description of the important information about the 1995-96 tracer tests and the current interpretations of the data, and (3) a summary of the knowledge gained to date through tracer testing in the Culebra. Tracer tests have been used to identify transport processes occurring within the Culebra and quantify relevant parameters for use in performance assessment of the WIPP. The data, especially those from the tests performed in 1995-96, provide valuable insight into transport processes within the Culebra. Interpretations of the tracer tests in combination with geologic information, hydraulic-test information, and laboratory studies have resulted in a greatly improved conceptual model of transport processes within the Culebra. At locations where the transmissivity of the Culebra is low (< 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a single-porosity medium in which advection occurs largely through the primary porosity of the dolomite matrix. At locations where the transmissivity of the Culebra is high (> 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a heterogeneous, layered, fractured medium in which advection occurs largely through fractures and solutes diffuse between fractures and matrix at multiple rates. The variations in diffusion rate can be attributed to both variations in fracture spacing (or the spacing of advective pathways) and matrix heterogeneity. Flow and transport appear to be concentrated in the lower Culebra. At all locations, diffusion is the dominant transport process in the portions of the matrix that tracer does not access by flow.

  9. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    SciTech Connect (OSTI)

    B.M. Freifeild

    2001-10-18

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  10. Sandia Energy - Advanced Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Research & Development Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Advanced Research & Development Advanced Research & DevelopmentCoryne...

  11. Advanced Manufacturing Office News

    SciTech Connect (OSTI)

    2013-08-08

    News stories about advanced manufacturing, events, and office accomplishments. Subscribe to receive updates.

  12. Reactivity of perovskites with water: Role of hydroxylation in...

    Office of Scientific and Technical Information (OSTI)

    Reactivity of perovskites with water: Role of hydroxylation in wetting and implications ... Title: Reactivity of perovskites with water: Role of hydroxylation in wetting and ...

  13. Experimental Evidence for Self-Limiting Reactive Flow through...

    Office of Scientific and Technical Information (OSTI)

    Experimental Evidence for Self-Limiting Reactive Flow through a Fractured Cement Core: ... Title: Experimental Evidence for Self-Limiting Reactive Flow through a Fractured Cement ...

  14. The Reactivity of Energetic Materials Under High Pressure and...

    Office of Scientific and Technical Information (OSTI)

    The Reactivity of Energetic Materials Under High Pressure and Temperature Citation Details In-Document Search Title: The Reactivity of Energetic Materials Under High Pressure and ...

  15. Inducing and Quantifying Forbidden Reactivity with Single Molecule...

    Office of Scientific and Technical Information (OSTI)

    Inducing and Quantifying Forbidden Reactivity with Single Molecule Polymer Mechanochemistry Citation Details In-Document Search Title: Inducing and Quantifying Forbidden Reactivity ...

  16. Chemical Imaging and Dynamical Studies of Reactivity and Emergent...

    Office of Scientific and Technical Information (OSTI)

    Chemical Imaging and Dynamical Studies of Reactivity and Emergent Behavior in Complex ... Title: Chemical Imaging and Dynamical Studies of Reactivity and Emergent Behavior in ...

  17. Reactivity of Ozone with Solid Potassium Iodide Investigated...

    Office of Scientific and Technical Information (OSTI)

    Reactivity of Ozone with Solid Potassium Iodide Investigated by Atomic Force Microscopy Citation Details In-Document Search Title: Reactivity of Ozone with Solid Potassium...

  18. Modeling of fault reactivation and induced seismicity during...

    Office of Scientific and Technical Information (OSTI)

    Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs Citation Details In-Document Search Title: Modeling of fault reactivation ...

  19. Investigation of long term reactive stability of ceria for use...

    Office of Scientific and Technical Information (OSTI)

    reactive stability of ceria for use in solar thermochemical cycles This content will ... reactive stability of ceria for use in solar thermochemical cycles Authors: Rhodes, ...

  20. Groundwater well with reactive filter pack

    DOE Patents [OSTI]

    Gilmore, Tyler J.; Holdren, Jr., George R.; Kaplan, Daniel I.

    1998-01-01

    A method and apparatus for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques.

  1. Groundwater well with reactive filter pack

    DOE Patents [OSTI]

    Gilmore, T.J.; Holdren, G.R. Jr.; Kaplan, D.I.

    1998-09-08

    A method and apparatus are disclosed for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques. 3 figs.

  2. Reactivity control assembly for nuclear reactor

    DOE Patents [OSTI]

    Bollinger, Lawrence R.

    1984-01-01

    Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.

  3. Mild coal pretreatment to improve liquefaction reactivity

    SciTech Connect (OSTI)

    Miller, R.L.

    1991-01-01

    This report describes work completed during the fourth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. This work is part of a larger effort to develop a new coal liquefaction or coal/oil coprocessing scheme consisting of three main process steps: (1) mile pretreatment of the feed coal to enhance dissolution reactivity and dry the coal, (2) low severity thermal dissolution of the pretreated coal to obtain a very reactive coal-derived residual material amenable to upgrading, and (3) catalytic upgrading of the residual products to distillate liquids.

  4. A Tariff for Reactive Power - IEEE

    SciTech Connect (OSTI)

    Kueck, John D; Tufon, Christopher; Isemonger, Alan; Kirby, Brendan J

    2008-11-01

    This paper describes a suggested tariff or payment for the local supply of reactive power from distributed energy resources. The authors consider four sample customers, and estimate the cost of supply of reactive power for each customer. The power system savings from the local supply of reactive power are also estimated for a hypothetical circuit. It is found that reactive power for local voltage regulation could be supplied to the distribution system economically by customers when new inverters are installed. The inverter would be supplied with a power factor of 0.8, and would be capable of local voltage regulation to a schedule supplied by the utility. Inverters are now installed with photovoltaic systems, fuel cells and microturbines, and adjustable-speed motor drives.

  5. Synthesis and processing of composites by reactive metal penetration

    SciTech Connect (OSTI)

    Loehman, R.E.; Ewsuk, K.G.; Tomsia, A.P.

    1997-04-01

    Achieving better performance in commercial products and processes often is dependent on availability of new and improved materials. Ceramic-metal composites have advantages over more conventional materials because of their high stiffness-to-weight ratios, good fracture toughness, and because their electrical and thermal properties can be varied through control of their compositions and microstructures. However, ceramic composites will be more widely used only when their costs are competitive with other materials and when designers have more confidence in their reliability. Over the past four years reactive metal penetration has been shown to be a promising technique for making ceramic and metal-matrix composites to near-net-shape with control of both composition and microstructure. It appears that, with sufficient development, reactive metal penetration could be an economical process for manufacturing many of the advanced ceramic composites that are needed for light-weight structural and wear applications for transportation and energy conversion devices. Near-net-shape fabrication of parts is a significant advantage because costly and energy intensive grinding and machining operations are substantially reduced, and the waste generated from such finishing operations is minimized. The most promising compositions to date consist of Al and Al{sub 2}O{sub 3}; thus, these composites should be of particular interest to the aluminum industry. The goals of this ceramic-metal composite research and development program are: (1) to identify compositions favorable for making composites by reactive metal penetration; (2) to understand the mechanism(s) by which these composites are formed; (3) to control and optimize the process so that composites and composite coatings can be made economically; and (4) to apply R&D results to problems of interest to the aluminum industry.

  6. Wet oxidation of high-concentration reactive dyes

    SciTech Connect (OSTI)

    Chen, G.; Lei, L.; Yue, P.L.

    1999-05-01

    Advanced oxidation methods were used to degrade reactive dyes at high concentrations in aqueous solutions. Wet peroxide oxidation (WPO) was found to be the best method in terms of the removal of color and total organic carbon (TOC). Reactive blue (Basilen Brilliant Blue P-3R) was chosen as a model dye for determining the suitable reaction conditions. The variables studied include reaction temperature, H{sub 2}O{sub 2} dosage, solution pH, dye concentration, and catalyst usage. The removal of TOC and color by wet oxidation is very sensitive to the reaction temperature. At 150 C, the removal of 77% TOC and 90% color was obtained in less than 30 min. The initial TOC removal rate is proportional to the H{sub 2}O{sub 2} dosage. The TOC removal is insignificant even when 50% of the stoichiometric amount of H{sub 2}O{sub 2} is used. No color change is observed until the dosage of H{sub 2}O{sub 2} is 100% of the stoichiometric amount. The color removal is closely related to TOC removal. When the pH of the solution is adjusted to 3.5, the dye degradation rate increases significantly. The rates of TOC and color removal are enhanced by using a Cu{sup 2+} catalyst. Another four reactive dyes, Procion Red PX-4B, Cibacron Yellow P-6GS, Cibacron Brown P-6R, and Procion Black PX-2R, were treated at 150 C using WPO. More than 80% TOC was removed from the solution in less than 15 min. The process can remove the colors of al these dyes except Procion Black PX-2R.

  7. Assessment of Controlling Processes for Field-Scale Uranium Reactive Transport under Highly Transient Flow Conditions

    SciTech Connect (OSTI)

    Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan; Greskowiak, Janek; Prommer, Henning; Zachara, John M.

    2014-02-13

    This paper presents the results of a comprehensive model-based analysis of a uranium tracer test conducted at the U.S Department of Energy Hanford 300 Area (300A) IFRC site. A three-dimensional multi-component reactive transport model was employed to assess the key factors and processes that control the field-scale uranium reactive transport. Taking into consideration of relevant physical and chemical processes, the selected conceptual/numerical model replicates the spatial and temporal variations of the observed U(VI) concentrations reasonably well in spite of the highly complex field conditions. A sensitivity analysis was performed to interrogate the relative importance of various processes and factors for reactive transport of U(VI) at the field-scale. The results indicate that multi-rate U(VI) sorption/desorption, U(VI) surface complexation reactions, and initial U(VI) concentrations were the most important processes and factors controlling U(VI) migration. On the other hand, cation exchange reactions, the choice of the surface complexation model, and dual-domain mass transfer processes, which were previously identified to be important in laboratory experiments, played less important roles under the field-scale experimental condition at the 300A site. However, the model simulations also revealed that the groundwater chemistry was relatively stable during the uranium tracer experiment and therefore presumably not dynamic enough to appropriately assess the effects of ion exchange reaction and the choice of surface complexation models on U(VI) sorption and desorption. Furthermore, it also showed that the field experimental duration (16 days) was not sufficiently long to precisely assess the role of a majority of the sorption sites that were accessed by slow kinetic processes within the dual domain model. The sensitivity analysis revealed the crucial role of the intraborehole flow that occurred within the long-screened monitoring wells and thus significantly

  8. EPA/ITRC-RTDF permeable reactive barrier short course. Permeable reactive barriers: Application and deployment

    SciTech Connect (OSTI)

    Not Available

    1999-01-01

    This report focuses on the following: Permeable Reactive Barriers: Application and Deployment; Introduction to Permeable Reactive Barriers (PRBs) for Remediating and Managing Contaminated Groundwater in Situ; Collection and Interpretation of Design Data 1: Site Characterization for PRBs; Reactive Materials: Zero-Valent Iron; Collection and Interpretation of Design Data 2: Laboratory and Pilot Scale Tests; Design Calculations; Compliance Monitoring, Performance Monitoring and Long-Term Maintenance for PRBs; PRB Emplacement Techniques; PRB Permitting and Implementation; Treatment of Metals; Non-Metallic Reactive Materials; Economic Considerations for PRB Deployment; and Bibliography.

  9. EPA/ITRC-RTDF permeable reactive barrier short course. Permeable reactive barriers: Application and deployment

    SciTech Connect (OSTI)

    1999-11-01

    This report focuses on the following: Permeable Reactive Barriers: Application and Deployment; Introduction to Permeable Reactive Barriers (PRBs) for Remediating and Managing Contaminated Groundwater in Situ; Collection and Interpretation of Design Data 1: Site Characterization for PRBs; Reactive Materials: Zero-Valent Iron; Collection and Interpretation of Design Data 2: Laboratory and Pilot Scale Tests; Design Calculations; Compliance Monitoring, Performance Monitoring and Long-Term Maintenance for PRBs; PRB Emplacement Techniques; PRB Permitting and Implementation; Treatment of Metals; Non-Metallic Reactive Materials; Economic Considerations for PRB Deployment; and Bibliography.

  10. A Study Plan for Determining Recharge Rates at the Hanford Site Using Environmental Tracers

    SciTech Connect (OSTI)

    Murphy,, E. M.; Szecsody,, J. E.; Phillips,, S. J.

    1991-02-01

    This report presents a study plan tor estimating recharge at the Hanford Site using environmental tracers. Past operations at the Hanford Site have led to both soil and groundwater contamination, and recharge is one of the primary mechanisms for transporting contaminants through the vadose zone and into the groundwater. The prediction of contaminant movement or transport is one aspect of performance assessment and an important step in the remedial investigation/feasibility study (RI/FS) process. In the past, recharge has been characterized by collecting lysimeter data. Although lysimeters can generate important and reliable data, their limitations include 1) fixed location, 2) fixed sediment contents, 3) edge effects, 4) low rates, and 5) relatively short duration of measurement. These limitations impact the ability to characterize the spatial distribution of recharge at the Hanford Site, and thus the ability to predict contaminant movement in the vadose zone. An alternative to using fixed lysimeters for determining recharge rates in the vadose zone is to use environmental tracers. Tracers that have been used to study water movement in the vadose zone include total chloride, {sup 36}CI, {sup 3}H, and {sup 2}H/{sup 18}O. Atmospheric levels of {sup 36}CI and {sup 3}H increased during nuclear bomb testing in the Pacific, and the resulting "bomb pulse" or peak concentration can be measured in the soil profile. Locally, past operations at the Hanford Site have resu~ed in the atmospheric release of numerous chemical and isotopic tracers, including nitrate, {sup 129}I, and {sup 99}Tc. The radionuclides, in particular, reached a well-defined atmospheric peak in 1945. Atmospheric releases of {sup 129}I and {sup 99}Tc were greatly reduced by mid-1946, but nitrogen oxides continued to be released from the uranium separations facilities. As a result, the nitrate concentrations probably peaked in the mid-1950s, when the greatest number of separations facilities were operating

  11. Overview of SIMS-Based Experimental Studies of Tracer Diffusion in Solids and Application to Mg Self-Diffusion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kulkarni, Nagraj S.; Bruce Warmack, Robert J.; Radhakrishnan, Bala; Hunter, Jerry L.; Sohn, Yongho; Coffey, Kevin R.; Murch, Graeme E.; Belova, Irina V.

    2014-09-23

    Tracer diffusivities provide the most fundamental information on diffusion in materials and are the foundation of robust diffusion databases. Compared to traditional radiotracer techniques that utilize radioactive isotopes, the secondary ion mass spectrometry (SIMS) based thin-film technique for tracer diffusion is based on the use of enriched stable isotopes that can be accurately profiled using SIMS. Experimental procedures & techniques that are utilized for the measurement of tracer diffusion coefficients are presented for pure magnesium, which presents some unique challenges due to the ease of oxidation. The development of a modified Shewmon-Rhines diffusion capsule for annealing Mg and an ultra-highmore » vacuum (UHV) system for sputter deposition of Mg isotopes are discussed. Optimized conditions for accurate SIMS depth profiling in polycrystalline Mg are provided. An automated procedure for the correction of heat-up and cool-down times during tracer diffusion annealing is discussed. The non-linear fitting of a SIMS depth profile data using the thin film Gaussian solution to obtain the tracer diffusivity along with the background tracer concentration and tracer film thickness is discussed. An Arrhenius fit of the Mg self-diffusion data obtained using the low-temperature SIMS measurements from this study and the high-temperature radiotracer measurements of Shewmon and Rhines (1954) was found to be a good representation of both types of diffusion data that cover a broad range of temperatures between 250 - 627° C (523 900 K).« less

  12. Overview of SIMS-Based Experimental Studies of Tracer Diffusion in Solids and Application to Mg Self-Diffusion

    SciTech Connect (OSTI)

    Kulkarni, Nagraj S.; Bruce Warmack, Robert J.; Radhakrishnan, Bala; Hunter, Jerry L.; Sohn, Yongho; Coffey, Kevin R.; Murch, Graeme E.; Belova, Irina V.

    2014-09-23

    Tracer diffusivities provide the most fundamental information on diffusion in materials and are the foundation of robust diffusion databases. Compared to traditional radiotracer techniques that utilize radioactive isotopes, the secondary ion mass spectrometry (SIMS) based thin-film technique for tracer diffusion is based on the use of enriched stable isotopes that can be accurately profiled using SIMS. Experimental procedures & techniques that are utilized for the measurement of tracer diffusion coefficients are presented for pure magnesium, which presents some unique challenges due to the ease of oxidation. The development of a modified Shewmon-Rhines diffusion capsule for annealing Mg and an ultra-high vacuum (UHV) system for sputter deposition of Mg isotopes are discussed. Optimized conditions for accurate SIMS depth profiling in polycrystalline Mg are provided. An automated procedure for the correction of heat-up and cool-down times during tracer diffusion annealing is discussed. The non-linear fitting of a SIMS depth profile data using the thin film Gaussian solution to obtain the tracer diffusivity along with the background tracer concentration and tracer film thickness is discussed. An Arrhenius fit of the Mg self-diffusion data obtained using the low-temperature SIMS measurements from this study and the high-temperature radiotracer measurements of Shewmon and Rhines (1954) was found to be a good representation of both types of diffusion data that cover a broad range of temperatures between 250 - 627° C (523 900 K).

  13. Advanced Combustion FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q: What is advanced combustion? A: State-of-the-art, coal-fired boilers use air for the ... Q: What could an advanced combustion power plant look like? A: An oxy-combustion power ...

  14. Advanced Conversion Roadmap Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Conversion Technologies for Advanced Biofuels - Biomass Program Introduction ... has renewed the urgency for developing sustainable biofuels, bioproducts, and biopower. ...

  15. Advanced Critical Advanced Energy Retrofit Education and Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Advanced Energy Retrofit Education and Training and Credentialing - 2014 BTO Peer Review Advanced Critical Advanced Energy Retrofit Education and Training and ...

  16. Advanced Nuclear Technology: Advanced Light Water Reactors Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary Advanced Nuclear Technology: Advanced Light Water Reactors ...

  17. Quantitative measurement of binary liquid distributions using multiple-tracer x-ray fluorescence and radiography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.

    2015-01-23

    The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of usingmorestereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.less

  18. Appraisal of transport and deformation in shale reservoirs using natural noble gas tracers

    SciTech Connect (OSTI)

    Heath, Jason E.; Kuhlman, Kristopher L.; Robinson, David G.; Bauer, Stephen J.; Gardner, William Payton

    2015-09-01

    This report presents efforts to develop the use of in situ naturally-occurring noble gas tracers to evaluate transport mechanisms and deformation in shale hydrocarbon reservoirs. Noble gases are promising as shale reservoir diagnostic tools due to their sensitivity of transport to: shale pore structure; phase partitioning between groundwater, liquid, and gaseous hydrocarbons; and deformation from hydraulic fracturing. Approximately 1.5-year time-series of wellhead fluid samples were collected from two hydraulically-fractured wells. The noble gas compositions and isotopes suggest a strong signature of atmospheric contribution to the noble gases that mix with deep, old reservoir fluids. Complex mixing and transport of fracturing fluid and reservoir fluids occurs during production. Real-time laboratory measurements were performed on triaxially-deforming shale samples to link deformation behavior, transport, and gas tracer signatures. Finally, we present improved methods for production forecasts that borrow statistical strength from production data of nearby wells to reduce uncertainty in the forecasts.

  19. Quantitative measurement of binary liquid distributions using multiple-tracer x-ray fluorescence and radiography

    SciTech Connect (OSTI)

    Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.

    2015-01-01

    The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of using stereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.

  20. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  1. Water reactive hydrogen fuel cell power system

    SciTech Connect (OSTI)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  2. Nuclear engine flow reactivity shim control

    DOE Patents [OSTI]

    Walsh, J.M.

    1973-12-11

    A nuclear engine control system is provided which automatically compensates for reactor reactivity uncertainties at the start of life and reactivity losses due to core corrosion during the reactor life in gas-cooled reactors. The coolant gas flow is varied automatically by means of specially provided control apparatus so that the reactor control drums maintain a predetermined steady state position throughout the reactor life. This permits the reactor to be designed for a constant drum position and results in a desirable, relatively flat temperature profile across the core. (Official Gazette)

  3. REAL-TIME TRACER MONITORING OF RESERVOIR STIMULATION PROCEDURES VIA ELECTRONIC WIRELINE AND TELEMETRY DATA TRANSMISSION

    SciTech Connect (OSTI)

    George Scott III

    2003-08-01

    Ongoing Phase 2-3 work comprises the final development and field-testing of two complementary real-time reservoir technologies; a stimulation process and a tracer fracturing diagnostic system. Initial DE-FC26-99FT40129 project work included research, development, and testing of the patented gamma tracer fracturing diagnostic system. This process was field-proven to be technically useful in providing tracer measurement of fracture height while fracturing; however, technical licensing restrictions blocked Realtimezone from fully field-testing this real-time gamma diagnostic system, as originally planned. Said restrictions were encountered during Phase 2 field test work as result of licensing limitations and potential conflicts between service companies participating in project work, as related to their gamma tracer logging tool technology. Phase 3 work principally demonstrated field-testing of Realtimezone (RTZ) and NETL's Downhole-mixed Reservoir Stimulation process. Early on, the simplicity of and success of downhole-mixing was evident from well tests, which were made commercially productive. A downhole-mixed acid stimulation process was tested successfully and is currently commercially used in Canada. The fourth well test was aborted due to well bore conditions, and an alternate test project is scheduled April, 2004. Realtimezone continues to effectuate ongoing patent protection in the United States and foreign markets. In 2002, Realtimezone and the NETL licensed their United States patent to Halliburton Energy Services (HES). Additional licensing arrangements with other industry companies are anticipated in 2004-2005. Ongoing Phase 2 and Phase 3 field-testing continues to confirm applications of both real-time technologies. Technical data transfer to industry is ongoing via Internet tech-transfer and various industry presentations and publications including Society of Petroleum Engineers. These real-time enhanced stimulation procedures should significantly

  4. Scalable subsurface inverse modeling of huge data sets with an application to tracer concentration breakthrough data from magnetic resonance imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Jonghyun; Yoon, Hongkyu; Kitanidis, Peter K.; Werth, Charles J.; Valocchi, Albert J.

    2016-06-09

    When characterizing subsurface properties is crucial for reliable and cost-effective groundwater supply management and contaminant remediation. With recent advances in sensor technology, large volumes of hydro-geophysical and geochemical data can be obtained to achieve high-resolution images of subsurface properties. However, characterization with such a large amount of information requires prohibitive computational costs associated with “big data” processing and numerous large-scale numerical simulations. To tackle such difficulties, the Principal Component Geostatistical Approach (PCGA) has been proposed as a “Jacobian-free” inversion method that requires much smaller forward simulation runs for each iteration than the number of unknown parameters and measurements needed inmore » the traditional inversion methods. PCGA can be conveniently linked to any multi-physics simulation software with independent parallel executions. In our paper, we extend PCGA to handle a large number of measurements (e.g. 106 or more) by constructing a fast preconditioner whose computational cost scales linearly with the data size. For illustration, we characterize the heterogeneous hydraulic conductivity (K) distribution in a laboratory-scale 3-D sand box using about 6 million transient tracer concentration measurements obtained using magnetic resonance imaging. Since each individual observation has little information on the K distribution, the data was compressed by the zero-th temporal moment of breakthrough curves, which is equivalent to the mean travel time under the experimental setting. Moreover, only about 2,000 forward simulations in total were required to obtain the best estimate with corresponding estimation uncertainty, and the estimated K field captured key patterns of the original packing design, showing the efficiency and effectiveness of the proposed method. This article is protected by copyright. All rights reserved.« less

  5. Quantifying groundwater travel time near managed recharge operations using 35S as an intrinsic tracer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Urióstegui, Stephanie H.; Bibby, Richard K.; Esser, Bradley K.; Clark, Jordan F.

    2016-04-23

    By identifying groundwater retention times near managed aquifer recharge (MAR) facilities is a high priority for managing water quality, especially for operations that incorporate recycled wastewater. In order to protect public health, California guidelines for Groundwater Replenishment Reuse Projects require a minimum 2–6 month subsurface retention time for recycled water depending on the level of disinfection, which highlights the importance of quantifying groundwater travel times on short time scales. This study developed and evaluated a new intrinsic tracer method using the naturally occurring radioisotope sulfur-35 (35S). The 87.5 day half-life of 35S is ideal for investigating groundwater travel times onmore » the <1 year timescale of interest to MAR managers. Natural concentrations of 35S found in water as dissolved sulfate (35SO4) were measured in source waters and groundwater at the Rio Hondo Spreading Grounds in Los Angeles County, CA, and Orange County Groundwater Recharge Facilities in Orange County, CA. 35SO4 travel times are comparable to travel times determined by well-established deliberate tracer studies. The study also revealed that 35SO4 in MAR source water can vary seasonally and therefore careful characterization of 35SO4 is needed to accurately quantify groundwater travel time. But, more data is needed to fully assess whether or not this tracer could become a valuable tool for managers.« less

  6. Field studies of streamflow generation using natural and injected tracers on Bickford and Walker Branch Watersheds

    SciTech Connect (OSTI)

    Genereux, D.; Hemond, H. . Dept. of Civil Engineering); Mulholland, P. )

    1992-05-01

    Field studies of streamflow generation were undertaken on two forested watersheds, the West Road subcatchment of Bickford Watershed in central Massachusetts and the West Fork of Walker Branch Watershed in eastern Tennessee. A major component of the research was development of a two-stage methodology for the use of naturally-occurring {sup 222}Rn as a tracer. The first of the two stages was solving a mass-balance equation for {sup 222}Rn around a stream reach of interest in order to calculate Rn{sub q}, the {sup 222}Rn content of the lateral inflow to the reach; a conservative tracer (chloride) and a volatile tracer (propane) were injected into the study stream to account for lateral inflow to, and volatilization from, the study reach. The second stage involved quantitative comparison of Rn{sub q} to the measured {sup 222}Rn concentrations of different subsurface waters in order to assess how important these waters were in contributing lateral inflow to the stream reach.

  7. Mass transport parameters of aspen wood chip beds via stimulus-response tracer techniques

    SciTech Connect (OSTI)

    Hradil, G.; Calo, J.M.; Wunderlich, T.K. Jr. )

    1993-02-05

    A stimulus-response tracer technique has been used to characterize packed beds of untreated, as well as acid prehydrolyzed, and enzymatically hydrolyzed aspen wood chips. Glucose was used as the trace. Bulk liquid phase dispersion, interphase mass transfer, and intraparticle diffusion coefficients were determined for these materials as well as effective porosities and tortuosities. The untreated and prehydrolyzed aspen wood chips were found to have effective void fractions of ca. 0.8, while the enzymatically hydrolyzed wood chips exhibited a void fraction of 0.37. Intraparticle diffusion was approximately twice as rapid in the prehydrolyzed and enzymatically hydrolyzed wood chips as in the untreated wood chips. Also, under the current experimental conditions, intraparticle diffusional transport resistance accounted for roughly half of the total tracer pulse dispersion. It is demonstrated that stimulus-response tracer techniques can be useful and convenient probes for beds of lignocellulosic, or other porous materials, which vary in character with extent of conversion and/or treatment.

  8. Low Reactivity SI Engine Lubricant Program

    Broader source: Energy.gov [DOE]

    Results showed that lubricant improvement allowed up to 4 degree improvement in spark advance at knock limited conditions resulting in potentially over 3 percent indicated efficiency improvement

  9. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Officer National Institute of Standards and Technology Carrie Houtman Senior Public Policy Manager Dow Chemical Overview * Advanced Manufacturing Activities * Advanced ...

  10. Method For Reactivating Solid Catalysts Used For Alklation Reactions

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2005-05-03

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  11. Method for reactivating solid catalysts used in alkylation reactions

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2003-06-17

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  12. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    SciTech Connect (OSTI)

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    2015-04-23

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injection strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant

  13. Neutron Radiography Reactor Reactivity -- Focused Lessons Learned

    SciTech Connect (OSTI)

    Eric Woolstenhulme; Randal Damiana; Kenneth Schreck; Ann Marie Phillips; Dana Hewit

    2010-11-01

    As part of the Global Threat Reduction Initiative, the Neutron Radiography Reactor (NRAD) at the Idaho National Laboratory (INL) was converted from using highly enriched uranium (HEU) to low enriched uranium (LEU) fuel. After the conversion, NRAD resumed operations and is meeting operational requirements. Radiography image quality and the number of images that can be produced in a given time frame match pre-conversion capabilities. However, following the conversion, NRADs excess reactivity with the LEU fuel was less than it had been with the HEU fuel. Although some differences between model predictions and actual performance are to be expected, the lack of flexibility in NRADs safety documentation prevented adjusting the reactivity by adding more fuel, until the safety documentation could be modified. To aid future reactor conversions, a reactivity-focused Lessons Learned meeting was held. This report summarizes the findings of the lessons learned meeting and addresses specific questions posed by DOE regarding NRADs conversion and reactivity.

  14. The Advanced Manufacturing Partnership and the Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Program Office | Department of Energy The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office This presentation describes the Advanced Manufacturing Partnership from its beginning as a recommendation of the President's Council of Advisers on Science and Technology to its development and organization. The Advanced Manufacturing Partnership and the

  15. AdvAnced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AdvAnced test reActor At the InL advanced Unlike large, commercial power reactors, ATR is a low- temperature, low-pressure reactor. A nuclear reactor is basically an elaborate tool to produce power. reactors work by splitting atoms, the basic building blocks of matter, to release large amounts of energy. In commercial power reactors, that energy heats water, which creates steam. the steam turns turbines, generating electricity. What makes the Advanced test reactor, located at the Idaho national

  16. Advanced Studies Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this professional development experience to help aspiring young researchers advance and excel in the next stage of their careers in academia or at a national laboratory. For...

  17. Advanced Target Effects Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Target Effects Modeling for Ion Accelerators and other High-Energy-Density ... ature effects, e.g., surface tension and target fragmentation, that are not generally ...

  18. Overview | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Overview: Introduction APS Systems Map LINAC Booster Synchrotron Storage Ring Insertion Devices Experiment Hall LOMs & Beamlines Overview of the APS The Advanced Photon Source...

  19. Advanced Reciprocating Engine Systems

    Broader source: Energy.gov [DOE]

    The Advanced Reciprocating Engine Systems (ARES) program is designed to promote separate but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the...

  20. Advanced Energy Design Guides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... ADVANCED ENERGY DESIGN GUIDES FACT SHEET EERE Information Center 1-877-EERE-INFO ... For more information, contact: Jerome Lam Energy Technology Program Specialist Commercial ...

  1. Advanced Rooftop Unit Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced-Rooftop-Unit-Control Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors...

  2. Advanced Usage Examples

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Examples Advanced Usage Examples Transferring Data from Batch Jobs Once you have set up your automatic HPSS authentication you can access HPSS within batch scripts. Read More ...

  3. Beamlines | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamlines Beamlines Home Beamlines Directory Research Techniques Sectors Directory Status and Schedule Safety and Training Beamlines The Advanced Photon Source consists of 34...

  4. Advanced Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Much Cheaper, More Abundant Catalyst May Lower Hydrogen-Powered Car Costs Advanced Materials Laboratory, Analysis, Capabilities, Energy, Facilities, Highlights - Energy Research, ...

  5. Advanced Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Sandia Researchers Win CSP:ELEMENTS Funding Award Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test ...

  6. Advanced Optical Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Advanced Optical Components and Technologies program develops, creates and provides critical optical components for laser-based missions at LLNL. Past projects focused on ...

  7. Grid Integration & Advanced Inverters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration & Advanced Inverters - Sandia Energy Energy Search Icon Sandia Home ... Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ...

  8. Structure and Reactivity of X-ray Amorphous Uranyl Peroxide,...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Structure and Reactivity of X-ray Amorphous Uranyl Peroxide, U 2 O 7 Prev Next Title: Structure and Reactivity of X-ray Amorphous Uranyl Peroxide, U 2 O 7 ...

  9. Insight from simulations of single-well injection-withdrawal tracer tests on simple and complex fractures

    SciTech Connect (OSTI)

    Tsang, C.-F.; Doughty, C.

    2009-08-06

    The single-well injection withdrawal (SWIW) test, a tracer test utilizing only one well, is proposed as a useful contribution to site characterization of fractured rock, as well as providing parameters relevant to tracer diffusion and sorption. The usual conceptual model of flow and solute transport through fractured rock with low matrix permeability involves solute advection and dispersion through a fracture network coupled with diffusion and sorption into the surrounding rock matrix. Unlike two-well tracer tests, results of SWIW tests are ideally independent of advective heterogeneity, channeling and flow dimension, and, instead, focus on diffusive and sorptive characteristics of tracer (solute) transport. Thus, they can be used specifically to study such characteristics and evaluate the diffusive parameters associated with tracer transport through fractured media. We conduct simulations of SWIW tests on simple and complex fracture models, the latter being defined as having two subfractures with altered rock blocks in between and gouge material in their apertures. Using parameters from the Aspo site in Sweden, we calculate and study SWIW tracer breakthrough curves (BTCs) from a test involving four days of injection and then withdrawal. By examining the peak concentration C{sub pk} of the SWIW BTCs for a variety of parameters, we confirm that C{sub pk} is largely insensitive to the fracture advective flow properties, in particular to permeability heterogeneity over the fracture plane or to subdividing the flow into two subfractures in the third dimension orthogonal to the fracture plane. The peak arrival time t{sub pk} is not a function of fracture or rock properties, but is controlled by the time schedule of the SWIW test. The study shows that the SWIW test is useful for the study of tracer diffusion-sorption processes, including the effect of the so-called flow-wetted surface (FWS) of the fracture. Calculations with schematic models with different FWS values are

  10. Advanced uranium enrichment technologies

    SciTech Connect (OSTI)

    Merriman, R.

    1983-03-10

    The Advanced Gas Centrifuge and Atomic Vapor Laser Isotope Separation methods are described. The status and potential of the technologies are summarized, the programs outlined, and the economic incentives are noted. How the advanced technologies, once demonstrated, might be deployed so that SWV costs in the 1990s can be significantly reduced is described.

  11. Nuclear reactivity control using laser induced polarization

    DOE Patents [OSTI]

    Bowman, Charles D.

    1991-01-01

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neutrons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  12. Nuclear reactivity control using laser induced polarization

    DOE Patents [OSTI]

    Bowman, Charles D.

    1990-01-01

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neturons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  13. Reactivity control assembly for nuclear reactor. [LMFBR

    DOE Patents [OSTI]

    Bollinger, L.R.

    1982-03-17

    This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.

  14. Multiscale reactive molecular dynamics | Argonne Leadership Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility reactive molecular dynamics Authors: Chris KnighT, Gerrick E. Lindberg, Gregory A. Voth Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data

  15. Computationally Efficient Multiconfigurational Reactive Molecular Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne Leadership Computing Facility Computationally Efficient Multiconfigurational Reactive Molecular Dynamics Authors: Takefumi Yamashita, Yuxing Peng, Chris Knight, Gregory A. Voth It is a computationally demanding task to explicitly simulate the electronic degrees of freedom in a system to observe the chemical transformations of interest, while at the same time sampling the time and length scales required to converge statistical properties and thus reduce artifacts due to initial

  16. Tracer study of oxygen and hydrogen uptake by Mg alloys in air with water vapor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brady, M. P.; Fayek, M.; Meyer, H. M.; Leonard, D. N.; Elsentriecy, H. H.; Unocic, K. A.; Anovitz, L. M.; Cakmak, E.; Keiser, J. R.; Song, G. L.; et al

    2015-05-15

    We studied the pure oxidation of Mg, Mg–3Al–1Zn (AZ31B), and Mg–1Zn–0.25Zr–<0.5Nd (ZE10A) at 85 °C in humid air using sequential exposures with H218O and D216O for water vapor. Incorporation of 18O in the hydroxide/oxide films indicated that oxygen from water vapor participated in the reaction. Moreover, penetration of hydrogen into the underlying metal was observed, particularly for the Zr- and Nd-containing ZE10A. Isotopic tracer profiles suggested a complex mixed inward/outward film growth mechanism.

  17. Using {sup 222}Rn as a tracer of geophysical processes in underground environments

    SciTech Connect (OSTI)

    Lacerda, T.; Anjos, R. M.; Silva, A. A. R. da; Yoshimura, E. M.

    2014-11-11

    Radon levels in two old mines in San Luis, Argentina, are reported and analyzed. These mines are today used for touristic visitation. Our goal was to assess the potential use of such radioactive noble gas as tracer of geological processes in underground environments. CR-39 nuclear track detectors were used during the winter and summer seasons. The findings show that the significant radon concentrations reported in this environment are subject to large seasonal modulations, due to the strong dependence of natural ventilation on the variations of outside temperature. The results also indicate that radon pattern distribution appear as a good method to localize unknown ducts, fissures or secondary tunnels in subterranean environments.

  18. DOE - Office of Legacy Management -- Reactive Metals Inc - OH 10

    Office of Legacy Management (LM)

    Reactive Metals Inc - OH 10 FUSRAP Considered Sites Site: Reactive Metals Inc. (OH.10) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Ashtabula Site Documents Related to Reactive Metals Inc

  19. Reactive Air Aluminizing of Nicrofer-6025HT for Use in Advanced Coal-Based Power Plants

    SciTech Connect (OSTI)

    Joshi, Vineet V.; Choi, Jung-Pyung; Darsell, Jens T.; Meier, Alan; Weil, K. Scott

    2013-01-01

    The present work demonstrated the feasibility of preparing RAA coatings on Nicrofer and compared the effect of aluminum powder size on the RAA process.

  20. Advanced Vehicles Manufacturing Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects DOE-LPO_ATVM-Economic-Growth_Thumbnail.png DRIVING ECONOMIC GROWTH: ADVANCED TECHNOLOGY VEHICLES

  1. Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications

    SciTech Connect (OSTI)

    McLing, Travis; Smith, William; Smith, Robert

    2014-12-31

    In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO₂-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at a proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO₂. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO₂ will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO₂ driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ

  2. Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McLing, Travis; Smith, William; Smith, Robert

    2014-12-31

    In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO₂-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at amore » proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO₂. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO₂ will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO₂ driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ reservoir

  3. A Really Good Hammer: Quantification of Mass Transfer Using Perfluorocarbon Tracers (475th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Watson, Tom

    2012-02-15

    Brookhaven Labs perfluorocarbon tracer (PFT) technology can be viewed as a hammer looking for nails. But, according to Tom Watson, leader of the Labs Tracer Technology Group in the Environmental Research and Technology Division (ERTD), Its a really good hammer! The colorless, odorless and safe gases have a number of research uses, from modeling how airborne contaminants might move through urban canyons to help first responders plan their response to potential terrorist attacks and accidents to locating leaks in underground gas pipes. Their extremely low background level detectable at one part per quadrillion allows their transport to be easily tracked. Lab researchers used PFTs during the 2005 Urban Dispersion Program field studies in New York City, gathering data to help improve models of how a gas or chemical release might move around Manhattans tall buildings and canyons. Closer to home, scientists also used PFTs to make ventilation measurements in Bldg. 400 on the Lab site to provide data to test air flow models used in determining the effects of passive and active air exchange on the levels of indoor and outdoor air pollution, and to determine the effects of an accidental or intentional release of hazardous substances in or around buildings.

  4. REAL-TIME TRACER MONITORING OF RESERVOIR STIMULATION PROCEDURES VIA ELECTRONIC WIRELINE AND TELEMETRY DATA TRANSMISSION

    SciTech Connect (OSTI)

    George L. Scott III

    2005-01-01

    Finalized Phase 2-3 project work has field-proven two separate real-time reservoir processes that were co-developed via funding by the National Energy Technology Laboratory (NETL). Both technologies are presently patented in the United States and select foreign markets; a downhole-commingled reservoir stimulation procedure and a real-time tracer-logged fracturing diagnostic system. Phase 2 and early Phase 3 project work included the research, development and well testing of a U.S. patented gamma tracer fracturing diagnostic system. This stimulation logging process was successfully field-demonstrated; real-time tracer measurement of fracture height while fracturing was accomplished and proven technically possible. However, after the initial well tests, there were several licensing issues that developed between service providers that restricted and minimized Realtimezone's (RTZ) ability to field-test the real-time gamma diagnostic system as was originally outlined for this project. Said restrictions were encountered after when one major provider agreed to license their gamma logging tools to another. Both of these companies previously promised contributory support toward Realtimezone's DE-FC26-99FT40129 project work, however, actual support was less than desired when newly-licensed wireline gamma logging tools from one company were converted by the other from electric wireline into slickline, batter-powered ''memory'' tools for post-stimulation logging purposes. Unfortunately, the converted post-fracture measurement memory tools have no applications in experimentally monitoring real-time movement of tracers in the reservoir concurrent with the fracturing treatment. RTZ subsequently worked with other tracer gamma-logging tool companies for basic gamma logging services, but with lessened results due to lack of multiple-isotope detection capability. In addition to real-time logging system development and well testing, final Phase 2 and Phase 3 project work included the

  5. Advanced Combustion Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that will accelerate turbine performance and efficiency beyond current state-of-the-art and reduce the risk to market for novel and advanced turbine-based power cycles. ...

  6. Advanced Simulation and Computing

    National Nuclear Security Administration (NNSA)

    NA-ASC-117R-09-Vol.1-Rev.0 Advanced Simulation and Computing PROGRAM PLAN FY09 October 2008 ASC Focal Point Robert Meisner, Director DOE/NNSA NA-121.2 202-586-0908 Program Plan Focal Point for NA-121.2 Njema Frazier DOE/NNSA NA-121.2 202-586-5789 A Publication of the Office of Advanced Simulation & Computing, NNSA Defense Programs i Contents Executive Summary ----------------------------------------------------------------------------------------------- 1 I. Introduction

  7. Advanced Algal Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Systems Research and development (R&D) on advanced algal biofuels and bio- products presents an opportunity to sustainably expand biomass resource potential in the United States. The Bio- energy Technologies Office's (BETO's) Advanced Algal Systems Program is carrying out a long-term, applied R&D strategy to lower the costs of algal biofuel production by working with partners to develop revolutionary technologies and conduct crosscut- ting analyses to better understand the

  8. Advanced Combustion Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Advanced Battery Manufacturing Making Strides in Oregon Advanced Battery Manufacturing Making Strides in Oregon February 16, 2012 - 12:09pm Addthis EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program What are the key facts? Through the Recovery Act, the Department has

  9. Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Scientific Computing Research Advanced Scientific Computing Research Discovering, developing, and deploying computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to the Department of Energy. Get Expertise Pieter Swart (505) 665 9437 Email Pat McCormick (505) 665-0201 Email Dave Higdon (505) 667-2091 Email Fulfilling the potential of emerging computing systems and architectures beyond today's tools and techniques to deliver

  10. Advanced Studies Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute » Advanced Studies Institute Science of Signatures Advanced Studies Institute Developing innovative solution strategies for problems that support the forward deployment theme of the Science of Signatures Pillar, and building skills needed for successful research program development. Contact Institute Director Charles Farrar (505) 665-0860 Email UCSD EI Director Michael Todd (858) 534-5951 Executive Administrator Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran

  11. Advances in Lithography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advances in Lithography Advances in Lithography Print Tuesday, 16 December 2014 11:40 Work featured on Applied Optics cover from ALS Beamline 11.3.2. Field-dependent wavefront aberration distribution of an extreme ultraviolet single-lens zone-plate microscope, recovered by the gradient descent algorithm customized for partially coherent imaging and targeted for fast and accurate retrieval. For information, see Yamazoe et al., pp. B34-B43, part of the Applied Optics-JOSA A cohosted feature,

  12. Advances in Performance Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers at Sandia National Laboratories originated an innovative approach to determining the safety of geologic repositories for radioactive waste disposal called "performance assessment", PA. The discipline of PA continues to advance within the Defense Waste Management Programs as computing capabilities advance and as the discipline is used in an expanding portfolio of applications both nationally and internationally. Do Radioactive Waste Disposal Options Assure Safety for

  13. TTU Advanced Doppler Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TTU Advanced Doppler Radar - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  14. Preparation of reactive beta-dicalcium silicate

    DOE Patents [OSTI]

    Shen, Ming-Shing (Laramie, WY, NJ); Chen, James M. (Rahway, NJ); Yang, Ralph T. (Amherst, NY)

    1982-01-01

    This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane and hydrogen, at a temperature of about 850.degree.-1000.degree. C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

  15. Fossil power plant layup and reactivation

    SciTech Connect (OSTI)

    Tsou, J.L.

    1996-07-01

    In recent years, many utilities have developed excess generation capacity problems during period of low system load growth, particularly with new generation units coming on-line. System load studies may indicate that the situation is temporary and higher generation capacity will be needed in the near future. The objective of layup is to prevent component deterioration during the long shut down periods. This paper discusses equipment preservation practices in use in the industry and the advantages/disadvantages of various layup methods. Other issues related to plant layup and reactivation are also presented.

  16. Preparation of reactive beta-dicalcium silicate

    DOE Patents [OSTI]

    Shen, M.S.; Chen, J.M.; Yang, R.T.

    1980-02-28

    This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica, and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane, and hydrogen, at a temperature of about 850 to 1000/sup 0/C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

  17. Recent advances in fullerene science (Invited)

    SciTech Connect (OSTI)

    Dunk, P. W.; Marshall, A. G.; Mulet-Gas, M.; Rodriguez-Fortea, A.; Poblet, J. M.

    2014-12-09

    The development of very high resolution FT-ICR mass spectrometers (Marshall et al, 1998) has made a wide range of new measurements possible and by combining this new technology with laser vaporization supersonic beam methods of producing carbon species (chains, rings and fullerenes), new advances in understanding of the fullerene creation mechanisms and their reactivity have been possible. In this overview, new understanding has been developed with regard to: a) closed-network growth of fullerenes (Dunk et al, 2012a); b) small endohedral species such as MαC{sub 28} (Dunk et al., 2012b); c) metallofullerene and fullerene formation under conditions in stellar outflows with relevance to stardust (Dunk et al., 2013a) and d) The formation of heterofullerenes by direct exposure of C{sub 60} toboron vapor (Dunk et al., 2013b)

  18. Innovative Topics for Advanced Biofuels

    Broader source: Energy.gov (indexed) [DOE]

    Innovative Topics for Advanced Biofuels Jonathan Male, Ph.D. PNNL Report-Out Webinar ... into biomass sugars to feed advanced biofuels Separations - Compatibility with ...

  19. MO-C-BRE-01: The WMIS-AAPM Joint Symposium: Advances in Molecular Imaging

    SciTech Connect (OSTI)

    Contag, C; Pogue, B; Lewis, J

    2014-06-15

    This joint symposium of the World Molecular Imaging Society (WMIS) and the AAPM includes three luminary speakers discussing work in new paradigms of molecular imaging in cancer (Contag), applications of optical imaging technologies to radiation therapy (Pogue) and an update on PET imaging as a surrogate biomarker for cancer progression and response to therapy. Learning Objectives: Appreciate the current trends in molecular and systems imaging. Understand how optical imaging technologies, and particularly Cerenkov detectors, can be used in advancing radiation oncology. Stay current on new PET tracers - and targets - of interest in cancer treatment.

  20. Implementing Advances in Transport Security Technologies | Department...

    Office of Environmental Management (EM)

    Implementing Advances in Transport Security Technologies Implementing Advances in Transport Security Technologies Implementing Advances in Transport Security Technologies More...

  1. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL ... Advanced Conversion Roadmap Workshop Conversion Technologies for Advanced Biofuels - ...

  2. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership ...

  3. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  4. Verification and Validation of Corrected Versions of RELAP5 for ATR Reactivity Analyses

    SciTech Connect (OSTI)

    Cliff B. Davis

    2008-11-01

    Two versions of the RELAP5 computer code, RELAP5/MOD2.5 and RELAP5/MOD3 Version 3.2.1.2, are used to support safety analyses of the Advanced Test Reactor (ATR). Both versions of RELAP5 contain a point reactor kinetics model that has been used to simulate power excursion transients at the ATR. Errors in the RELAP5 point kinetics model were reported to the RELAP5 code developers in 2007. These errors had the potential to affect reactivity analyses that are part of the ATR’s safety basis. Consequently, corrected versions of RELAP5 were developed for analysis of the ATR. Four reactivity transients were simulated to verify and validate the corrected codes for use in safety evaluations of the ATR. The objectives of this paper are to describe the verification and validation of the point kinetics model for ATR applications and to inform code users of the effects of the errors on representative reactivity analyses.

  5. Measuring seasonal variations of moisture in a landfill with the partitioning gas tracer test

    SciTech Connect (OSTI)

    Han, Byunghyun; Jafarpour, Behnam; Gallagher, Victoria N.; Imhoff, Paul T. . E-mail: imhoff@udel.edu; Chiu, Pei C.; Fluman, Daniel A.

    2006-07-01

    Seven pilot-scale partitioning gas tracer tests (PGTTs) were conducted to assess the accuracy and reproducibility of this method for measuring water in municipal solid waste landfills. Tests were conducted in the same location over a 12-month period, and measured moisture conditions ranged from possible dry waste to refuse with a moisture content of 24.7%. The final moisture content of 24.7% was in reasonable agreement with gravimetric measurements of excavated refuse, where the moisture content was 26.5 {+-} 6.0CI%. Laboratory tests were used to assess the utility of the PGTT for measuring water in small pores, water sorbed to solid surfaces, and the influence of dry waste on PGTTs. These experiments indicated that when refuse surfaces are not completely solvated with water, PGTTs may produce misleading results (negative estimates) of water saturation and moisture content.

  6. Rocky Flats 1990--91 winter validation tracer study: Volume 1

    SciTech Connect (OSTI)

    Brown, K.J.

    1991-10-01

    During the winter of 1990--91, North American Weather Consultants (NAWC) and its subcontractor, ABB Environmental Services (ABBES), conducted a Winter Validation Study (WVS) for EG&G Rocky Flats involving 12 separate tracer experiments conducted between February 3 and February 19, 1991. Six experiments were conducted during nighttime hours and four experiments were conducted during daytime hours. In addition, there was one day/night and one night/day transitional experiment conducted. The primary purpose of the WVS was to gather data to further the approval process for the Terrain Responsive Atmospheric Code (TRAC). TRAC is an atmospheric dispersion model developed and operated at the Department of Energy`s (DOE`s) Rocky Flats Plant (RFP) north of Denver, Colorado. A secondary objective was to gather data that will serve to validate the TRAC model physics.

  7. Advanced servomanipulator development

    SciTech Connect (OSTI)

    Kuban, D.P.

    1985-01-01

    The Advanced Servomanipulator (ASM) System consists of three major components: the ASM slave, the dual arm master controller (DAMC) or master, and the control system. The ASM is remotely maintainable force-reflecting servomanipulator developed at the Oak Ridge National Laboratory (ORNL) as part of the Consolidated Fuel Reprocessing Program. This new manipulator addresses requirements of advanced nuclear fuel reprocessing with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. The advanced servomanipulator is uniquely subdivided into remotely replaceable modules which will permit in situ manipulator repair by spare module replacement. Manipulator modularization and increased reliability are accomplished through a force transmission system that uses gears and torque tubes. Digital control algorithms and mechanical precision are used to offset the increased backlash, friction, and inertia resulting from the gear drives. This results in the first remotely maintainable force-reflecting servomanipulator in the world.

  8. Advanced instrumentation for reprocessing.

    SciTech Connect (OSTI)

    Cipiti, Benjamin B.

    2005-10-01

    Recent interest in reprocessing nuclear fuel in the U.S. has led to advanced separations processes that employ continuous processing and multiple extraction steps. These advanced plants will need to be designed with state-of-the-art instrumentation for materials accountancy and control. This research examines the current and upcoming instrumentation for nuclear materials accountancy for those most suited to the reprocessing environment. Though this topic has received attention time and again in the past, new technologies and changing world conditions require a renewed look and this subject. The needs for the advanced UREX+ separations concept are first identified, and then a literature review of current and upcoming measuring techniques is presented. The report concludes with a preliminary list of recommended instruments and measurement locations.

  9. Advanced Hydrogen Turbine Development

    SciTech Connect (OSTI)

    Marra, John

    2015-09-30

    Under the sponsorship of the U.S. Department of Energy (DOE) National Energy Technology Laboratories, Siemens has completed the Advanced Hydrogen Turbine Development Program to develop an advanced gas turbine for incorporation into future coal-based Integrated Gasification Combined Cycle (IGCC) plants. All the scheduled DOE Milestones were completed and significant technical progress was made in the development of new technologies and concepts. Advanced computer simulations and modeling, as well as subscale, full scale laboratory, rig and engine testing were utilized to evaluate and select concepts for further development. Program Requirements of: A 3 to 5 percentage point improvement in overall plant combined cycle efficiency when compared to the reference baseline plant; 20 to 30 percent reduction in overall plant capital cost when compared to the reference baseline plant; and NOx emissions of 2 PPM out of the stack. were all met. The program was completed on schedule and within the allotted budget

  10. Haze in the Grand Canyon: An evaluation of the Winter Haze Intensive Tracer Experiment

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    The Grand Canyon is one of the most spectacular natural sights on earth. Approximately 4 million visitors travel to Grand Canyon National Park (GCNP) each year to enjoy its majestic geological formations and intensely colored views. However, visibility in GCNP can be impaired by small increases in concentrations of fine suspended particles that scatter and absorb light; the resulting visibility degradation is perceived as haze. Sulfate particles are a major factor in visibility impairment at Grand Canyon in summer and winter. Many wintertime hazes at GCNP are believed to result from the accumulation of emissions from local sources during conditions of air stagnation, which occur more frequently in winter than in summer. In January and February 1987, the National Park Service (NPS) carried out a large-scale experiment known as the Winter Haze Intensive Tracer Experiment (WHITEX) to investigate the causes of wintertime haze in the region of GCNP and Canyonlands National Park. The overall objective of WHITEX was to assess the feasibility of attributing visibility impairment in specific geographic regions to emissions from a single point source. The experiment called for the injection of a tracer, deuterated methane (CD{sub 4}), into one of the stacks of the Navajo Generating Station (NGS), a major coal-fired power plant located 25 km from the GCNP boundary and 110 km northeast of Grand Canyon Village. A network of field stations was established in the vicinity -- mostly to the northeast of GCNP and NGS -- to measure CD{sub 4} concentrations, atmospheric aerosol and optical properties, and other chemical and physical attributes. 19 refs., 3 figs.

  11. PERFLUOROCARBON GAS TRACER STUDIES TO SUPPORT RISK ASSESSMENT MODELING OF CRITICAL INFRASTRUCTURE SUBJECTED TO TERRORIST ATTACKS.

    SciTech Connect (OSTI)

    SULLIVAN, T.M.; HEISER, J.; WATSON, T.; ALLWINE, K.J.; FLAHERTY, J.E.

    2006-05-06

    Development of real-time predictive modeling to identify the dispersion and/or source(s) of airborne weapons of mass destruction including chemical, biological, radiological, and nuclear material in urban environments is needed to improve response to potential releases of these materials via either terrorist or accidental means. These models will also prove useful in defining airborne pollution dispersion in urban environments for pollution management/abatement programs. Predicting gas flow in an urban setting on a scale of less than a few kilometers is a complicated and challenging task due to the irregular flow paths that occur along streets and alleys and around buildings of different sizes and shapes, i.e., ''urban canyons''. In addition, air exchange between the outside and buildings and subway areas further complicate the situation. Transport models that are used to predict dispersion of WMD/CBRN materials or to back track the source of the release require high-density data and need defensible parameterizations of urban processes. Errors in the data or any of the parameter inputs or assumptions will lead to misidentification of the airborne spread or source release location(s). The need for these models to provide output in a real-time fashion if they are to be useful for emergency response provides another challenge. To improve the ability of New York City's (NYC's) emergency management teams and first response personnel to protect the public during releases of hazardous materials, the New York City Urban Dispersion Program (UDP) has been initiated. This is a four year research program being conducted from 2004 through 2007. This paper will discuss ground level and subway Perfluorocarbon tracer (PFT) release studies conducted in New York City. The studies released multiple tracers to study ground level and vertical transport of contaminants. This paper will discuss the results from these tests and how these results can be used for improving transport models

  12. Advanced fuel chemistry for advanced engines.

    SciTech Connect (OSTI)

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  13. Comparison of Conventional Diesel and Reactivity Controlled Compression

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ignition (RCCI) Combustion in a Light-Duty Engine | Department of Energy Conventional Diesel and Reactivity Controlled Compression Ignition (RCCI) Combustion in a Light-Duty Engine Comparison of Conventional Diesel and Reactivity Controlled Compression Ignition (RCCI) Combustion in a Light-Duty Engine CFD modeling was used to compare conventional diesel and dual-fuel Reactivity Controlled Compression Ignition combustion at US Tier 2 Bin 5 NOx levels, while accounting for Diesel Exhaust Fluid

  14. Geopolymer with hierarchically meso-/macroporous structures from reactive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    emulsion templating Geopolymer with hierarchically meso-/macroporous structures from reactive emulsion templating Authors: Medpelli, D., Seo, J.-M., and Seo, D.-K. Title: Geopolymer with hierarchically meso-/macroporous structures from reactive emulsion templating Source: J. Amer. Ceram. Soc. Year: 2014 Volume: 97 (1) Pages: 70-73 ABSTRACT: We present a simple synthetic route to hierarchically porous geopolymers using triglyceride oil for a reactive emulsion template. In the new synthetic

  15. Advanced Reciprocating Engine Systems (ARES)

    Broader source: Energy.gov [DOE]

    Advanced Natural Gas Reciprocating Engines Increase Efficiency and Reduce Emissions for Distributed Power Generation Applications

  16. Advanced Bioeconomy Feedstocks Conference

    Broader source: Energy.gov [DOE]

    The Advanced Bioeconomy Feedstocks Conference will be held in Miami, Florida, from June 7–8, 2016. The conference will allow leaders across the feedstocks and supply fields to gather and discuss the latest advances, innovations, and opportunities in the industry. Bioenergy Technologies Office Director Jonathan Male will be giving a presentation, “The U.S. Department of Energy Update on Policies and Programs,” and Terrestrial Feedstocks Program Manager Alison Goss Eng will be participating in the “Supporting the Bioeconomy” panel.

  17. Advanced Containment System

    DOE Patents [OSTI]

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2005-02-08

    An advanced containment system for containing buried waste and associated leachate. The advanced containment system comprises a plurality of casing sections with each casing section interlocked to an adjacent casing section. Each casing section includes a complementary interlocking structure that interlocks with the complementary interlocking structure on an adjacent casing section. A barrier filler substantially fills the casing sections and may substantially fill the spaces of the complementary interlocking structure to form a substantially impermeable barrier. Some of the casing sections may include sensors so that the casing sections and the zone of interest may be remotely monitored after the casing sections are emplaced in the ground.

  18. Advanced Monitoring systems initiative

    SciTech Connect (OSTI)

    R.J. Venedam; E.O. Hohman; C.F. Lohrstorfer; S.J. Weeks; J.B. Jones; W.J. Haas

    2004-09-30

    The Advanced Monitoring Systems Initiative (AMSI) actively searches for promising technologies and aggressively moves them from the research bench into DOE/NNSA end-user applications. There is a large unfulfilled need for an active element that reaches out to identify and recruit emerging sensor technologies into the test and evaluation function. Sensor research is ubiquitous, with the seeds of many novel concepts originating in the university systems, but at present these novel concepts do not move quickly and efficiently into real test environments. AMSI is a widely recognized, self-sustaining ''business'' accelerating the selection, development, testing, evaluation, and deployment of advanced monitoring systems and components.

  19. Effects from influent boundary conditions on tracer migration and spatial variability features in intermediate-scale experiments

    SciTech Connect (OSTI)

    Fuentes, H.R.; Polzer, W.L.; Springer, E.P.

    1987-04-01

    In previous unsaturated transport studies at Los Alamos dispersion coefficients were estimated to be higher close to the tracer source than at greater distances from the source. Injection of tracers through discrete influent outlets could have accounted for those higher dispersions. Also, a lack of conservation of mass of the tracers was observed and suspected to be due to spatial variability in transport. In the present study experiments were performed under uniform influent (ponded) conditions in which breakthrough of tracers was monitored at four locations at each of four depths. All other conditions were similar to those of the unsaturated transport experiments. A comparison of results from these two sets of experiments indicates differences in the parameter estimates. Estimates were made for the dispersion coefficient and the retardation factor by the one-dimensional steady flow computer code, CFITIM. Estimates were also made for mass and for velocity and the dispersion coefficient by the method of moments. The dispersion coefficient decreased with depth under discrete influent application and increased with depth under ponded influent application. Retardation was predicted better under the discrete influent application than under ponded influent application. Differences in breakthroughs and in estimated parameters among locations at the same depth were observed under ponded influent application. Those differences indicate that there is a lack of conservation of mass as well as significant spatial variability across the experimental domain. 14 refs., 9 figs., 8 tabs.

  20. Green River air quality model development: meteorological and tracer data, July/August 1982 field study in Brush Valley, Colorado

    SciTech Connect (OSTI)

    Whiteman, C.D.; Lee, R.N.; Orgill, M.M.; Zak, B.D.

    1984-06-01

    Meteorological and atmospheric tracer studies were conducted during a 3-week period in July and August of 1982 in the Brush Creek Valley of northwestern Colorado. The objective of the field experiments was to obtain data to evaluate a model, called VALMET, developed at PNL to predict dispersion of air pollutants released from an elevated stack located within a deep mountain valley in the post-sunrise temperature inversion breakup period. Three tracer experiments were conducted in the valley during the 2-week period. In these experiments, sulfur hexafluoride (SF/sub 6/) was released from a height of approximately 100 m, beginning before sunrise and continuing until the nocturnal down-valley winds reversed several hours after sunrise. Dispersion of the sulfur hexafluoride after release was evaluated by measuring SF/sub 6/ concentrations in ambient air samples taken from sampling devices operated within the valley up to about 8 km down valley from the source. An instrumented research aircraft was also used to measure concentrations in and above the valley. Tracer samples were collected using a network of radio-controlled bag sampling stations, two manually operated gas chromatographs, a continuous SF/sub 6/ monitor, and a vertical SF/sub 6/ profiler. In addition, basic meteorological data were collected during the tracer experiments. Frequent profiles of vertical wind and temperature structure were obtained with tethered balloons operated at the release site and at a site 7.7 km down the valley from the release site. 10 references, 63 figures, 50 tables.

  1. Sample Memorandum to Reactivate a Directive Placed on Hold (NOTE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sample Memorandum to Reactivate a Directive Placed on Hold (NOTE: Per Office of Executive Secretariat procedures, please use Calibri, 12 point font for this memorandum.) (Effective...

  2. WP-07 Reactive Power Supplemental Proposal (wp07/initial)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This modification is necessary in light of recent FERC cases regarding generation input cost for generation supplied reactive power and voltage control. On February 13, BPA...

  3. PFLOTRAN User Manual: A Massively Parallel Reactive Flow and...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: PFLOTRAN User Manual: A Massively Parallel Reactive Flow and Transport Model for Describing Surface and Subsurface Processes Citation Details In-Document Search...

  4. PFLOTRAN User Manual: A Massively Parallel Reactive Flow and...

    Office of Scientific and Technical Information (OSTI)

    PFLOTRAN User Manual: A Massively Parallel Reactive Flow and Transport Model for Describing Surface and Subsurface Processes Lichtner, Peter OFM Research; Karra, Satish Los...

  5. Light-Duty Reactivity Controlled Compression Ignition Drive Cycle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ignition Drive Cycle Fuel Economy and Emissions Estimates Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel Economy and Emissions Estimates Vehicle ...

  6. Review of Reactivity Experiments for Lithium Ternary Alloys ...

    Office of Scientific and Technical Information (OSTI)

    The plant uses lithium in both the primary coolant and blanket; therefore, lithium related hazards are of primary concern. Reducing chemical reactivity is the primary motivation ...

  7. Persistence of Hydrologic Variables and Reactive Stream Solute...

    Office of Scientific and Technical Information (OSTI)

    Watershed Citation Details In-Document Search Title: Persistence of Hydrologic Variables and Reactive Stream Solute Concentrations in an East Tennessee Watershed Time and ...

  8. Double Shock Experiments and Reactive Flow Modeling of High Pressure...

    Office of Scientific and Technical Information (OSTI)

    Double Shock Experiments and Reactive Flow Modeling of High Pressure LX-17 Detonation Reaction Product States Citation Details In-Document Search Title: Double Shock Experiments ...

  9. Reactivity of the Gold/Water Interface During Selective Oxidation...

    Office of Scientific and Technical Information (OSTI)

    the GoldWater Interface During Selective Oxidation Catalysis Citation Details In-Document Search Title: Reactivity of the GoldWater Interface During Selective Oxidation Catalysis ...

  10. CL-20 Reactivity in the Subsurface Environment and Potential...

    Office of Scientific and Technical Information (OSTI)

    and Potential for Migration Citation Details In-Document Search Title: CL-20 Reactivity in the Subsurface Environment and Potential for Migration Hexanitrohexaazaisowurtzit...

  11. Characterization of Dual-Fuel Reactivity Controlled Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (RCCI) Using Hydrated Ethanol and Diesel Fuel Characterization of Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel This study ...

  12. Chemically Reactive Working Fluids for the Capture and Transport...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Planar Optical Waveguide Coupler Transformers for High-Power Solar Enegy Collection and Transmission Chemically Reactive Working Fluids Low-Cost Light Weigh Thin Film Solar ...

  13. Comparison of Conventional Diesel and Reactivity Controlled Compressio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Combustion Strategies High Efficiency Fuel Reactivity Controlled Compression Ignition Combustion Effect of Compression Ratio and Piston Geometry on RCCI load limit

  14. Reactive Molecular Simulations of Protonation of Water Clusters...

    Office of Scientific and Technical Information (OSTI)

    of Water Clusters and Depletion of Acidity in H-ZSM-5 Zeolite Citation Details In-Document Search Title: Reactive Molecular Simulations of Protonation of Water Clusters ...

  15. Hydraulic Conductivity of the Monticello Permeable Reactive Barrier...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    City, Colorado, Uranium Mill Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Caon City, Colorado, Uranium Mill

  16. Review of existing reactive transport software

    SciTech Connect (OSTI)

    Glassley, W., LLNL

    1998-02-03

    Simulations of thermal and hydrological evolution following the potential emplacement of a subterranean nuclear waste repository at Yucca Mountain, NV provide data that suggest the inevitability of dependent, simultaneous chemical evolution in this system. These chemical changes will modify significantly both the magnitude and structure of local porosity and permeability; hence, they will have a dynamic feedback effect on the evolving thermal and hydrological regime. Yet, despite this intimate interdependence of transport and chemical processes, a rigorous quantitative analysis of the post- emplacement environment that incorporates this critical feedback mechanism has not been completed to date. As an initial step in this direction, the present document outlines the fundamental chemical and transport processes that must be accounted for in such an analysis, and reviews the inventory of existing software that encodes these processed in explicitly coupled form. A companion report describes the prioritization of specific capabilities that are needed for modeling post-emplacement reactive transport at Yucca Mountain.

  17. A Uranium Bioremediation Reactive Transport Benchmark

    SciTech Connect (OSTI)

    Yabusaki, Steven B.; Sengor, Sevinc; Fang, Yilin

    2015-06-01

    A reactive transport benchmark problem set has been developed based on in situ uranium bio-immobilization experiments that have been performed at a former uranium mill tailings site in Rifle, Colorado, USA. Acetate-amended groundwater stimulates indigenous microorganisms to catalyze the reduction of U(VI) to a sparingly soluble U(IV) mineral. The interplay between the flow, acetate loading periods and rates, microbially-mediated and geochemical reactions leads to dynamic behavior in metal- and sulfate-reducing bacteria, pH, alkalinity, and reactive mineral surfaces. The benchmark is based on an 8.5 m long one-dimensional model domain with constant saturated flow and uniform porosity. The 159-day simulation introduces acetate and bromide through the upgradient boundary in 14-day and 85-day pulses separated by a 10 day interruption. Acetate loading is tripled during the second pulse, which is followed by a 50 day recovery period. Terminal electron accepting processes for goethite, phyllosilicate Fe(III), U(VI), and sulfate are modeled using Monod-type rate laws. Major ion geochemistry modeled includes mineral reactions, as well as aqueous and surface complexation reactions for UO2++, Fe++, and H+. In addition to the dynamics imparted by the transport of the acetate pulses, U(VI) behavior involves the interplay between bioreduction, which is dependent on acetate availability, and speciation-controlled surface complexation, which is dependent on pH, alkalinity and available surface complexation sites. The general difficulty of this benchmark is the large number of reactions (74), multiple rate law formulations, a multisite uranium surface complexation model, and the strong interdependency and sensitivity of the reaction processes. Results are presented for three simulators: HYDROGEOCHEM, PHT3D, and PHREEQC.

  18. Advanced Bioeconomy Feedstocks Conference

    Broader source: Energy.gov [DOE]

    This year’s Advanced Bioeconomy Feedstocks Conference will be held from June 9–10, 2015 in New Orleans, Louisiana. The conference will gather supply chain leaders of the bioeconomy to examine supply chain technologies, business models, and partnerships. BETO Director Jonathan Male and Technology Manager Steve Thomas will be speaking at the conference.

  19. Advanced Test Reactor Tour

    ScienceCinema (OSTI)

    Miley, Don

    2013-05-28

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  20. Advanced Test Reactor Tour

    SciTech Connect (OSTI)

    Miley, Don

    2011-01-01

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  1. Flash pyrolysis of biomass with reactive and non-reactive gases

    SciTech Connect (OSTI)

    Steinberg, M.; Fallon, P.T.

    1982-06-01

    The rapid or flash pyrolysis of wood biomass is being studied in a 1'' downflow entrained tubular reactor with a capacity of approximately 1 lb/hr of wood. The process chemistry data is being obtained with the view of building a data base and ascertaining the value of producing synthetic fuels and chemical feedstocks by the flash pyrolysis method. Data is being obtained on the effect of non-reactive pyrolyzing gases and the effect of reactive gases, hydrogen for the flash hydropyrolysis of wood and methane for flash methanolysis of wood. Preliminary process design and analysis has been made. The yield of ethylene and benzene is especially attractive for the production of chemical feedstocks from the reaction of methane and wood in a flash methanolysis process.

  2. Revolutionizing Clean Energy Technology with Advanced Composites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revolutionizing Clean Energy Technology with Advanced Composites Revolutionizing Clean Energy Technology with Advanced Composites Addthis

  3. Radionuclide tracers for the fate of metals in the Savannah estuary: River-ocean exchange processes

    SciTech Connect (OSTI)

    Olsen, C.R.; Thein, M.; Larsen, I.L.; Byrd, J.T.; Windom, H.L.

    1989-01-01

    Plutonium-238 from the US Department of Energy's Savannah River Plant labels riverborne particles, providing a unique opportunity for examining the fate of metals in estuaries and for tracing river-ocean exchange processes. Results indicate that plutonium and lead-210 are enriched on estuarine particles and that inputs of plutonium from oceanic sources greatly exceed inputs from riverborne or drainage-basin sources as far upstream as the landward limit of seawater penetration. We suggest that these radionuclides (and other chemically reactive metals) are being scavenged from oceanic water by sorption onto particles in turbid estuarine and coastal areas. Since estuaries, bays, mangroves, and intertidal areas serve as effective traps for fine particles and associated trace substances, these results have important implications concerning the disposal of chemically reactive substances in oceanic waters. 13 refs., 1 fig., 1 tab.

  4. Reactive ion etched substrates and methods of making and using

    DOE Patents [OSTI]

    Rucker, Victor C.; Shediac, Rene; Simmons, Blake A.; Havenstrite, Karen L.

    2007-08-07

    Disclosed herein are substrates comprising reactive ion etched surfaces and specific binding agents immobilized thereon. The substrates may be used in methods and devices for assaying or isolating analytes in a sample. Also disclosed are methods of making the reactive ion etched surfaces.

  5. Using CO2 Lidar for Standoff Detection of a Perfluorocarbon Tracer in Air

    SciTech Connect (OSTI)

    Heiser,J.H.; Smith, S.; Sedlacek, A.

    2008-02-06

    The Tag, Track and Location System Program (TTL) is investigating the use of PFTs as tracers for tagging and tracking items of interest or fallen soldiers. In order for the tagging and tracking to be valuable there must be a location system that can detect the PFTs. This report details the development of an infrared lidar platform for standoff detection of PFTs released into the air from a tagged object or person. Furthering work performed using a table top lidar system in an indoor environment; a mobile mini lidar platform was assembled using an existing Raman lidar platform, a grating tunable CO{sub 2} IR laser, Judson HgCdTe detector and miscellaneous folding optics and electronics. The lidar achieved {approx}200 ppb-m sensitivity in laboratory and indoor testing and was then successfully demonstrated at an outdoor test. The lidar system was able to detect PFTs released into a vehicle from a distance of 100 meters. In its final, fully optimized configuration the lidar was capable of repeatedly detecting PFTs in the air released from tagged vehicles. Responses were immediate and clear. This report details the results of a proof-of-concept demonstration for standoff detection of a perfluorocarbon tracer (PFT) using infrared lidar. The project is part of the Tag, Track and Location System Program and was performed under a contract with Tracer Detection Technology Corp. with funding from the Office of Naval Research. A lidar capable of detecting PFT releases at distance was assembled by modifying an existing Raman lidar platform by incorporating a grating tunable CO{sub 2} IR laser, Judson HgCdTe detector and miscellaneous folding optics and electronics. The lidar achieved {approx}200 ppb-m sensitivity in laboratory and indoor testing and was successfully demonstrated at an outdoor test. The demonstration test (scripted by the sponsor) consisted of three parked cars, two of which were tagged with the PFT. The cars were located 70 (closest) to 100 meters (farthest

  6. Variational reactivity estimates: new analyses and new results

    SciTech Connect (OSTI)

    Favorite, Jeffrey A

    2009-01-01

    A modified form of the variational estimate of the reactivity worth ofa perturbation was previously developed to extend the range of applicability of variational perturbation theory for perturbations leading to negative reactivity worths. Recent numerical results challenged the assumptions behind the modified form. In this paper, more results are obtained, leading to the conclusion that sometimes the modified form extends the range ofapplicability of variational perturbation theory for positive reactivity worths as well, and sometimes the standard variational form is more accurate for negative-reactivity perturbations. In addition, this paper proves that using the exact generalized adjoint function would lead to an inaccurate variational reactivity estimate when the error in the first-order estimate is large; the standard generalized adjoint function, an approximation to the exact one, leads to Lore accurate results. This conclusion is also demonstrated numerically. Transport calculations use the PARTISN multi group discrete ordinates code

  7. Biodiesel Fuel Property Effects on Particulate Matter Reactivity

    SciTech Connect (OSTI)

    Williams, A.; Black, S.; McCormick, R. L.

    2010-06-01

    Controlling diesel particulate emissions to meet the 2007 U.S. standard requires the use of a diesel particulate filter (DPF). The reactivity of soot, or the carbon fraction of particulate matter, in the DPF and the kinetics of soot oxidation are important in achieving better control of aftertreatment devices. Studies showed that biodiesel in the fuel can increase soot reactivity. This study therefore investigated which biodiesel fuel properties impact reactivity. Three fuel properties of interest included fuel oxygen content and functionality, fuel aromatic content, and the presence of alkali metals. To determine fuel effects on soot reactivity, the performance of a catalyzed DPF was measured with different test fuels through engine testing and thermo-gravimetric analysis. Results showed no dependence on the aromatic content or the presence of alkali metals in the fuel. The presence and form of fuel oxygen was the dominant contributor to faster DPF regeneration times and soot reactivity.

  8. Coupling a Genome-Scale Metabolic Model with a Reactive Transport Model to Describe In Situ Uranium Bioremediation

    SciTech Connect (OSTI)

    Scheibe, Timothy D.; Mahadevan, Radhakrishnan; Fang, Yilin; Garg, Srinath; Long, Philip E.; Lovley, Derek R.

    2009-03-01

    Quantitative numerical simulation codes known as reactive transport models are widely used for simulating the hydrologic transport and geochemical speciation of dissolved constituents in the subsurface (Steefel et al., 2005). Because the activity of microorganisms strongly influences the fate of many constituents, both organic and inorganic, such models often include microbially-mediated reactions in their reaction networks (Hunter et al., 1998; Burgos et al., 2002; Fang et al., 2006; Scheibe et al., 2006; Yabusaki et al., 2007). However, the canonical form and stoichiometry of microbial reactions, reaction rate formulations and parameters, and biomass growth yield coefficients are prescribed a priori and applied over the entire range of simulated conditions. This approach does not account for the fact that fundamental microbial functions vary in response to local variations in environmental conditions(Stewart and Franklin, 2008). Multiple alternative reaction pathways are encoded in microbial genomes; specific pathways become active or inactive in response to, for example, nutrient limitation. Recent advances in genomic analysis allow us to define cellular metabolic networks, and accurate predictions of active pathways and reaction fluxes have been made using constraint-based metabolic models (Mahadevan et al., 2002; Price et al., 2003; Reed and Palsson, 2003; Mahadevan et al., 2006). Here, we demonstrate for the first time a methodology of coupling constraint-based metabolic models with reactive transport models. Our approach integrates advanced microbiological characterization, hydrology, and geochemistry in a powerful manner that will significantly improve subsurface reactive transport models.

  9. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  10. Advanced CCD camera developments

    SciTech Connect (OSTI)

    Condor, A.

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  11. Advanced Separation Consortium

    SciTech Connect (OSTI)

    2006-01-01

    The Center for Advanced Separation Technologies (CAST) was formed in 2001 under the sponsorship of the US Department of Energy to conduct fundamental research in advanced separation and to develop technologies that can be used to produce coal and minerals in an efficient and environmentally acceptable manner. The CAST consortium consists of seven universities - Virginia Tech, West Virginia University, University of Kentucky, Montana Tech, University of Utah, University of Nevada-Reno, and New Mexico Tech. The consortium brings together a broad range of expertise to solve problems facing the US coal industry and the mining sector in general. At present, a total of 60 research projects are under way. The article outlines some of these, on topics including innovative dewatering technologies, removal of mercury and other impurities, and modelling of the flotation process. 1 photo.

  12. Advanced steel reheat furnace

    SciTech Connect (OSTI)

    Moyeda, D.; Sheldon, M.; Koppang, R.; Lanyi, M.; Li, X.; Eleazer, B.

    1997-10-01

    Energy and Environmental Research Corp. (EER) under a contract from the Department of Energy is pursuing the development and demonstration of an Advanced Steel Reheating Furnace. This paper reports the results of Phase 1, Research, which has evaluated an advanced furnace concept incorporating two proven and commercialized technologies previously applied to other high temperature combustion applications: EER`s gas reburn technology (GR) for post combustion NOx control; and Air Product`s oxy-fuel enrichment air (OEA) for improved flame heat transfer in the heating zones of the furnace. The combined technologies feature greater production throughput with associated furnace efficiency improvements; lowered NOx emissions; and better control over the furnace atmosphere, whether oxidizing or reducing, leading to better control over surface finish.

  13. Advanced Polymer Processing Facility

    SciTech Connect (OSTI)

    Muenchausen, Ross E.

    2012-07-25

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  14. Advanced Simulation Capability for

    Office of Environmental Management (EM)

    for Environmental Management (ASCEM) ASCEM is being developed to provide a tool and approach to facilitate robust and standardized development of perfor- mance and risk assessments for cleanup and closure activi- ties throughout the EM complex. The ASCEM team is composed of scientists from eight National Laboratories. This team is leveraging Department of Energy (DOE) investments in basic science and applied research including high performance computing codes developed through the Advanced

  15. Joining of Advanced Thermoplastics

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3, 2012 Joining of Advanced Thermoplastics Ed Herderick, PhD George Ritter, PhD Applications Engineer Principal Engineer Materials Group EWI 614.688.5111 Sean Flowers eherderick@ewi.org Ultrasonics Group Thermoplastic Composites: Outline * Lighter than metals, tougher than thermosets, can be welded and recycled * Examples of joining approaches * Bio-based composites * Nano-reinforced composites * High temperature thermoplastics Joining of Engineering Thermoplastics MATERIAL * Polyether-ether

  16. A Bayesian Modeling Approach for Estimation of a Shape-Free Groundwater Age Distribution using Multiple Tracers

    SciTech Connect (OSTI)

    Massoudieh, Arash; Visser, Ate; Sharifi, Soroosh; Broers, Hans Peter

    2013-10-15

    The mixing of groundwaters with different ages in aquifers, groundwater age is more appropriately represented by a distribution rather than a scalar number. To infer a groundwater age distribution from environmental tracers, a mathematical form is often assumed for the shape of the distribution and the parameters of the mathematical distribution are estimated using deterministic or stochastic inverse methods. We found that the prescription of the mathematical form limits the exploration of the age distribution to the shapes that can be described by the selected distribution. In this paper, the use of freeform histograms as groundwater age distributions is evaluated. A Bayesian Markov Chain Monte Carlo approach is used to estimate the fraction of groundwater in each histogram bin. This method was able to capture the shape of a hypothetical gamma distribution from the concentrations of four age tracers. The number of bins that can be considered in this approach is limited based on the number of tracers available. The histogram method was also tested on tracer data sets from Holten (The Netherlands; 3H, 3He, 85Kr, 39Ar) and the La Selva Biological Station (Costa-Rica; SF 6, CFCs, 3H, 4He and 14C), and compared to a number of mathematical forms. According to standard Bayesian measures of model goodness, the best mathematical distribution performs better than the histogram distributions in terms of the ability to capture the observed tracer data relative to their complexity. Among the histogram distributions, the four bin histogram performs better in most of the cases. The Monte Carlo simulations showed strong correlations in the posterior estimates of bin contributions, indicating that these bins cannot be well constrained using the available age tracers. The fact that mathematical forms overall perform better than the freeform histogram does not undermine the benefit of the

  17. A Bayesian Modeling Approach for Estimation of a Shape-Free Groundwater Age Distribution using Multiple Tracers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Massoudieh, Arash; Visser, Ate; Sharifi, Soroosh; Broers, Hans Peter

    2013-10-15

    The mixing of groundwaters with different ages in aquifers, groundwater age is more appropriately represented by a distribution rather than a scalar number. To infer a groundwater age distribution from environmental tracers, a mathematical form is often assumed for the shape of the distribution and the parameters of the mathematical distribution are estimated using deterministic or stochastic inverse methods. We found that the prescription of the mathematical form limits the exploration of the age distribution to the shapes that can be described by the selected distribution. In this paper, the use of freeform histograms as groundwater age distributions is evaluated.more » A Bayesian Markov Chain Monte Carlo approach is used to estimate the fraction of groundwater in each histogram bin. This method was able to capture the shape of a hypothetical gamma distribution from the concentrations of four age tracers. The number of bins that can be considered in this approach is limited based on the number of tracers available. The histogram method was also tested on tracer data sets from Holten (The Netherlands; 3H, 3He, 85Kr, 39Ar) and the La Selva Biological Station (Costa-Rica; SF 6, CFCs, 3H, 4He and 14C), and compared to a number of mathematical forms. According to standard Bayesian measures of model goodness, the best mathematical distribution performs better than the histogram distributions in terms of the ability to capture the observed tracer data relative to their complexity. Among the histogram distributions, the four bin histogram performs better in most of the cases. The Monte Carlo simulations showed strong correlations in the posterior estimates of bin contributions, indicating that these bins cannot be well constrained using the available age tracers. The fact that mathematical forms overall perform better than the freeform histogram does not undermine the benefit of the freeform approach, especially for the cases where a larger amount of observed data is

  18. Advanced Microturbine Systems

    SciTech Connect (OSTI)

    Lindberg, Laura

    2005-04-29

    Dept. of Energy (DOE) Cooperative Agreement DE-FC02-00-CH11061 was originally awarded to Honeywell International, Inc. Honeywell Power Systems Inc. (HPSI) division located in Albuquerque, NM in October 2000 to conduct a program titled Advanced Microturbine Systems (AMS). The DOE Advanced Microturbines Systems Program was originally proposed as a five-year program to design and develop a high efficiency, low emissions, durable microturbine system. The period of performance was to be October 2000 through September 2005. Program efforts were underway, when one year into the program Honeywell sold the intellectual property of Honeywell Power Systems Inc. and HPSI ceased business operations. Honeywell made an internal decision to restructure the existing program due to the HPSI shutdown and submitted a formal request to DOE on September 24, 2001 to transfer the Cooperative Agreement to Honeywell Engines, Systems and Services (HES&S) in Phoenix, AZ in order to continue to offer support for DOE's Advanced Microturbine Program. Work continued on the descoped program under Cooperative Agreement No. DE-FC26-00-CH11061 and has been completed.

  19. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2003-11-01

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  20. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    2015-04-23

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injectionmore » strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still

  1. A Metal Fuel Core Concept for 1000 MWt Advanced Burner Reactor

    SciTech Connect (OSTI)

    Yang, W.S.; Kim, T.K.; Grandy, C.

    2007-07-01

    This paper describes the core design and performance characteristics of a metal fuel core concept for a 1000 MWt Advanced Burner Reactor. A ternary metal fuel form of U-TRU-Zr was assumed with weapons grade plutonium feed for the startup core and TRU recovered from LWR spent fuel for the recycled equilibrium core. A compact burner core was developed by trade-off between the burnup reactivity loss and TRU conversion ratio, with a fixed cycle length of one-year. In the startup core, the average TRU enrichment is 15.5%, the TRU conversion ratio is 0.81, and the burnup reactivity loss over a cycle is 3.6% {delta}k. The heavy metal and TRU inventories are 13.1 and 2.0 metric tons, respectively. The average discharge burnup is 93 MWd/kg, and the TRU consumption rate is 55.5 kg/year. For the recycled equilibrium core, the average TRU enrichment is 22.1 %, the TRU conversion ratio is 0.73, and the burnup reactivity loss is 2.2% {delta}k. The TRU inventory and consumption rate are 2.9 metric tons and 81.6 kg/year, respectively. The evaluated reactivity coefficients provide sufficient negative feedbacks. The control systems provide shutdown margins that are more than adequate. The integral reactivity parameters for quasi-static reactivity balance analysis indicate favorable passive safety features, although detailed safety analyses are required to verify passive safety behavior. (authors)

  2. Hybrid and Advanced Air Cooling

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hybrid and Advanced Air Cooling presentation at the April 2013 peer review meeting held in Denver, Colorado.

  3. Advanced Photon Source Upgrade Project

    ScienceCinema (OSTI)

    Mitchell, John; Gibson, Murray; Young, Linda; Joachimiak, Andrzej

    2013-04-19

    Upgrade to Advanced Photon Source announced by Department Of Energy. Read more: http://go.usa.gov/ivZ

  4. Advanced HVAC Development and Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of advanced HVAC systems? - "Retrofit-ready" ... - Dehumidification - Water Heating - Ventilation 5 ... Spreadsheet loads and Domestic Hot Water Event Generator. ...

  5. Hydrogen Materials Advanced Research Consortium

    Broader source: Energy.gov [DOE]

    An overview of the organization and scientific activities of the Hydrogen Materials—Advanced Research Consortium (HyMARC).

  6. Reservoir characterization based on tracer response and rank analysis of production and injection rates

    SciTech Connect (OSTI)

    Refunjol, B.T.; Lake, L.W.

    1997-08-01

    Quantification of the spatial distribution of properties is important for many reservoir-engineering applications. But, before applying any reservoir-characterization technique, the type of problem to be tackled and the information available should be analyzed. This is important because difficulties arise in reservoirs where production records are the only information for analysis. This paper presents the results of a practical technique to determine preferential flow trends in a reservoir. The technique is a combination of reservoir geology, tracer data, and Spearman rank correlation coefficient analysis. The Spearman analysis, in particular, will prove to be important because it appears to be insightful and uses injection/production data that are prevalent in circumstances where other data are nonexistent. The technique is applied to the North Buck Draw field, Campbell County, Wyoming. This work provides guidelines to assess information about reservoir continuity in interwell regions from widely available measurements of production and injection rates at existing wells. The information gained from the application of this technique can contribute to both the daily reservoir management and the future design, control, and interpretation of subsequent projects in the reservoir, without the need for additional data.

  7. Preliminary Interpretation of a Radionuclide and Colloid Tracer Test in a Granodiorite Shear Zone at the Grimsel Test Site, Switzerland

    SciTech Connect (OSTI)

    Reimus, Paul W.

    2012-08-30

    In February and March 2012, a tracer test involving the injection of a radionuclide-colloid cocktail was conducted in the MI shear zone at the Grimsel Test Site, Switzerland, as part of the Colloids Formation and Migration (CFM) project. The colloids were derived from FEBEX bentonite, which is mined in Spain and is being considered as a potential waste package backfill in a Spanish nuclear waste repository. The tracer test, designated test 12-02 (second test in 2012), involved the injection of the tracer cocktail into borehole CFM 06.002i2 and extraction from the Pinkel surface packer at the main access tunnel wall approximately 6.1 m from the injection interval. The test configuration is depicted in Figure 1. This configuration has been used in several conservative tracer tests and two colloid-homologue tracer tests since 2007, and it is will be employed in an upcoming test involving the emplacement of a radionuclide-doped bentonite plug into CFM 06.002i2 to evaluate the swelling and erosion of the bentonite and the transport of bentonite colloids and radionuclides from the source to the extraction point at the tunnel wall. Interpretive analyses of several of the previous tracer tests, from 09-01 through 12-02 were provided in two previous Used Fuel Disposition Program milestone reports (Arnold et al., 2011; Kersting et al., 2012). However, only the data for the conservative tracer Amino-G Acid was previously analyzed from test 12-02 because the other tracer data from this test were not available at the time. This report documents the first attempt to quantitatively analyze the radionuclide and colloid breakthrough curves from CFM test 12-02. This report was originally intended to also include an experimental assessment of colloid-facilitated transport of uranium by bentonite colloids in the Grimsel system, but this assessment was not conducted because it was reported by German collaborators at the Karlsruhe Institute of Technology (KIT) that neither uranium nor

  8. You are not always what we think you eat. Selective assimilation across multiple whole-stream isotopic tracer studies

    SciTech Connect (OSTI)

    Dodds, W. K.; Collins, S. M.; Hamilton, S. K.; Tank, J. L.; Johnson, S.; Webster, J. R.; Simon, K. S.; Whiles, M. R.; Rantala, H. M.; McDowell, W. H.; Peterson, S. D.; Riis, T.; Crenshaw, C. L.; Thomas, S. A.; Kristensen, P. B.; Cheever, B. M.; Flecker, A. S.; Griffiths, N. A.; Crowl, T.; Rosi-Marshall, E. J.; El-Sabaawi, R.; Martí, E.

    2014-10-01

    Analyses of 21 15N stable isotope tracer experiments, designed to examine food web dynamics in streams around the world, indicated that the isotopic composition of food resources assimilated by primary consumers (mostly invertebrates) poorly reflected the presumed food sources. Modeling indicated that consumers assimilated only 33–50% of the N available in sampled food sources such as decomposing leaves, epilithon, and fine particulate detritus over feeding periods of weeks or more. Thus, common methods of sampling food sources consumed by animals in streams do not sufficiently reflect the pool of N they assimilate. Lastly, Isotope tracer studies, combined with modeling and food separation techniques, can improve estimation of N pools in food sources that are assimilated by consumers.

  9. You are not always what we think you eat. Selective assimilation across multiple whole-stream isotopic tracer studies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dodds, W. K.; Collins, S. M.; Hamilton, S. K.; Tank, J. L.; Johnson, S.; Webster, J. R.; Simon, K. S.; Whiles, M. R.; Rantala, H. M.; McDowell, W. H.; et al

    2014-10-01

    Analyses of 21 15N stable isotope tracer experiments, designed to examine food web dynamics in streams around the world, indicated that the isotopic composition of food resources assimilated by primary consumers (mostly invertebrates) poorly reflected the presumed food sources. Modeling indicated that consumers assimilated only 33–50% of the N available in sampled food sources such as decomposing leaves, epilithon, and fine particulate detritus over feeding periods of weeks or more. Thus, common methods of sampling food sources consumed by animals in streams do not sufficiently reflect the pool of N they assimilate. Lastly, Isotope tracer studies, combined with modeling andmore » food separation techniques, can improve estimation of N pools in food sources that are assimilated by consumers.« less

  10. Regional respiratory tract absorption of inhaled reactive gases

    SciTech Connect (OSTI)

    Miller, F.J.; Overton, J.H.; Kimbell, J.S.; Russell, M.L.

    1992-06-29

    Highly reactive gases present unique problems due to the number of factors which must be taken into account to determine regional respiratory tract uptake. The authors reviewed some of the physical, chemical, and biological factors that affect dose and that must be understood to interpret toxicological data, to evaluate experimental dosimetry studies, and to develop dosimetry models. Selected dosimetry experiments involving laboratory animals and humans were discussed, showing the variability and uptake according to animal species and respiratory tract region for various reactive gases. New experimental dosimetry approaches, such as those involving isotope ratio mass spectroscopy and cyclotron generation reactive gases, were discussed that offer great promise for improving the ability to study regional respiratory tract absorption of reactive gases. Various dosimetry modeling applications were discussed which demonstrate: the importance of airflow patterns for site-specific dosimetry in the upper respiratory tract, the influence of the anatomical model used to make inter- and intraspecies dosimetric comparisons, the influence of tracheobronchial path length on predicted dose curves, and the implications of ventilatory unit structure and volume on dosimetry and response. Collectively, these examples illustrate important aspects of regional respiratory tract absorption of inhaled reactive gases. Given the complex nature of extent and pattern of injury in the respiratory tract from exposure to reactive gases, understanding interspecies differences in the absorption of reactive gases will continue to be an important area for study.

  11. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOE Patents [OSTI]

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2002-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime, high frequency, high power bursts of low-duty factor microwaves sufficient to generate a plasma discharge and passing a gas to be treated through the discharge so as to cause dissociative reduction of the exhaust gases and enhanced catalyst reactivity through application of the pulsed microwave fields directly to the catalyst material sufficient to cause a polarizability catastrophe and enhanced heating of the metal crystallite particles of the catalyst, and in the presence or absence of the plasma. The invention also includes a reactor for aftertreatment of exhaust gases.

  12. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect (OSTI)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  13. Interpretation of Colloid-Homologue Tracer Test 10-03, Including Comparisons to Test 10-01

    SciTech Connect (OSTI)

    Reimus, Paul W.

    2012-06-26

    This presentation covers the interpretations of colloid-homologue tracer test 10-03 conducted at the Grimsel Test Site, Switzerland, in 2010. It also provides a comparison of the interpreted test results with those of tracer test 10-01, which was conducted in the same fracture flow system and using the same tracers than test 10-03, but at a higher extraction flow rate. A method of correcting for apparent uranine degradation in test 10-03 is presented. Conclusions are: (1) Uranine degradation occurred in test 10-03, but not in 10-01; (2) Uranine correction based on apparent degradation rate in injection loop in test 11-02 seems reasonable when applied to data from test 10-03; (3) Colloid breakthrough curves quite similar in the two tests with similar recoveries relative to uranine (after correction); and (4) Much slower apparent desorption of homologues in test 10-03 than in 10-01 (any effect of residual homologues from test 10-01 in test 10-03?).

  14. Horizontal Advanced Tensiometer

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    2004-06-22

    An horizontal advanced tensiometer is described that allows the monitoring of the water pressure of soil positions, particularly beneath objects or materials that inhibit the use of previous monitoring wells. The tensiometer includes a porous cup, a pressure transducer (with an attached gasket device), an adaptive chamber, at least one outer guide tube which allows access to the desired horizontal position, a transducer wire, a data logger and preferably an inner guide tube and a specialized joint which provides pressure on the inner guide tube to maintain the seal between the gasket of the transducer and the adaptive chamber.

  15. Advanced Bioeconomy Leadership Conference

    Broader source: Energy.gov [DOE]

    This year’s Advanced Bioeconomy Leadership Conference will be held from Feb. 17–19, 2016, in Washington, D.C. The conference will gather leaders of the bioeconomy to examine supply chain technologies, business models, and partnerships. Bioenergy Technologies Office (BETO) Director Jonathan Male and Senior Executive Advisor Harry Baumes will be speaking on a panel titled “Federal Activities in the Bioeconomy I,” and Program Manager Alison Goss Eng will be moderating. The Biomass Research and Development Board Operations Committee will also be hosting alistening session on the federal bioeconomy.

  16. Advanced Manufacture of Reflectors

    Broader source: Energy.gov [DOE]

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  17. Experimental Observation of Quantum Oscillation of Surface Chemical Reactivities

    SciTech Connect (OSTI)

    Ma, X.; Jiang, P.; Qi, Y.; Jia, J.; Yang, Y.; Duan, W.; Li, W. X.; Bao, X.; Zhang, S. B.

    2007-05-29

    Here we present direct observation of a quantum reactivity with respect to the amounts of O2 adsorbed and the rates of surface oxidation as a function of film thickness on ultrathin (2-6 nm) Pb mesas by scanning tunneling microscopy. Simultaneous spectroscopic measurements on the electronic structures reveal a quantum oscillation that originates from quantum well states of the mesas, as a generalization of the Fabry-P{acute e}rot modes of confined electron waves. We expect the quantum reactivity to be a general phenomenon for most ultrathin metal films with broad implications, such as nanostructure tuning of surface reactivities and rational design of heterogeneous catalysts.

  18. Method for preparing hydride configurations and reactive metal surfaces

    DOE Patents [OSTI]

    Silver, G.L.

    1984-05-18

    A method for preparing reactive metal surfaces, particularly uranium surfaces is disclosed, whereby the metal is immediately reactive to hydrogen gas at room temperature and low pressure. The metal surfaces are first pretreated by exposure to an acid which forms an adherent hydride-bearing composition on the metal surface. Subsequent heating of the pretreated metal at a temperature sufficient to decompose the hydride coating in vacuum or inert gas renders the metal surface instantaneously reactive to hydrogen gas at room temperature and low pressure.

  19. ENHANCING ADVANCED CANDU PROLIFERATION RESISTANCE FUEL WITH MINOR ACTINIDES

    SciTech Connect (OSTI)

    Gray S. Chang

    2010-05-01

    The advanced nuclear system will significantly advance the science and technology of nuclear energy systems and to enhance the spent fuel proliferation resistance. Minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs can play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In this work, an Advanced CANDU Reactor (ACR) fuel unit lattice cell model with 43 UO2 fuel rods will be used to investigate the effectiveness of a Minor Actinide Reduction Approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance. The main MARA objective is to increase the 238Pu / Pu isotope ratio by using the transuranic nuclides (237Np and 241Am) in the high burnup fuel and thereby increase the proliferation resistance even for a very low fuel burnup. As a result, MARA is a very effective approach to enhance the proliferation resistance for the on power refueling ACR system nuclear fuel. The MA transmutation characteristics at different MA loadings were compared and their impact on neutronics criticality assessed. The concept of MARA, significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms for peace and the intermediate term of nuclear energy reconnaissance.

  20. 2011 Grants for Advanced Hydropower Technologies | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grants for Advanced Hydropower Technologies 2011 Grants for Advanced Hydropower Technologies 2011 Grants for Advanced Hydropower Technologies Click on an Awardee or Project Site...

  1. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research...

  2. Guiding SSL Technology Advances | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guiding SSL Technology Advances Guiding SSL Technology Advances PDF icon Guiding Solid-State Lighting Technology Advances More Documents & Publications Doing Business with DOE's ...

  3. Advanced Conversion Roadmap Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Conversion Roadmap Workshop Advanced Conversion Roadmap Workshop DOE introduction slides to the Advanced Conversion Roadmap Workshop webinar. ctabwebinardoe.pdf (1.47 ...

  4. Fossil Energy Advanced Technologies (2008 - 2009) | Department...

    Office of Environmental Management (EM)

    Fossil Energy Advanced Technologies (2008 - 2009) Fossil Energy Advanced Technologies (2008 - 2009) Fossil Energy Advanced Technologies (2008 - 2009) (383.24 KB) Amendment: Energy ...

  5. Future Transient Testing of Advanced Fuels

    SciTech Connect (OSTI)

    Jon Carmack

    2009-09-01

    The transient in-reactor fuels testing workshop was held on May 4–5, 2009 at Idaho National Laboratory. The purpose of this meeting was to provide a forum where technical experts in transient testing of nuclear fuels could meet directly with technical instrumentation experts and nuclear fuel modeling and simulation experts to discuss needed advancements in transient testing to support a basic understanding of nuclear fuel behavior under off-normal conditions. The workshop was attended by representatives from Commissariat à l'Énergie Atomique CEA, Japanese Atomic Energy Agency (JAEA), Department of Energy (DOE), AREVA, General Electric – Global Nuclear Fuels (GE-GNF), Westinghouse, Electric Power Research Institute (EPRI), universities, and several DOE national laboratories. Transient testing of fuels and materials generates information required for advanced fuels in future nuclear power plants. Future nuclear power plants will rely heavily on advanced computer modeling and simulation that describes fuel behavior under off-normal conditions. TREAT is an ideal facility for this testing because of its flexibility, proven operation and material condition. The opportunity exists to develop advanced instrumentation and data collection that can support modeling and simulation needs much better than was possible in the past. In order to take advantage of these opportunities, test programs must be carefully designed to yield basic information to support modeling before conducting integral performance tests. An early start of TREAT and operation at low power would provide significant dividends in training, development of instrumentation, and checkout of reactor systems. Early start of TREAT (2015) is needed to support the requirements of potential users of TREAT and include the testing of full length fuel irradiated in the FFTF reactor. The capabilities provided by TREAT are needed for the development of nuclear power and the following benefits will be realized by the

  6. Flash pyrolysis of biomass with reactive and non-reactive gases

    SciTech Connect (OSTI)

    Steinberg, M.; Fallon, P.T.; Sundaram, M.S.

    1984-03-01

    The process chemistry of the flash pyrolysis of biomass (wood) with the reactive gases, H/sub 2/ and CH/sub 4/ and with the non-reactive gases He and N/sub 2/ is being determined in an 1'' downflow tubular reactor at pressures from 20 to 1000 psi and temperatures from 600 to 1000/sup 0/C. With hydrogen, flash hydropyrolysis leads to high yields of ethylene, benzene and CO which can be used for the production of valuable chemical feedstocks and methanol transportation fuel. At reactor conditions of 50 psi and 1000/sup 0/C and approximately 1 sec residence time, the ethylene yield based on pine wood carbon conversion is 27%, for benzene it is 25% and for CO the yield is 39%, indicating that over 90% of the carbon in pine is converted to valuable products. Pine wood produces higher yields of hydrocarbon products than Douglas fir wood. The yield of ethylene is 2.3 times higher with methane than with helium or nitrogen, thus indicating a free radical reaction between CH/sub 4/ and the pyrolyzed wood. There appears to be no net production or consumption of methane. A preliminary process design and analysis indicate an economically competitive system for the production of ethylene, benzene and methanol based on the methanolysis of wood. 7 references, 13 figures, 1 table.

  7. Advanced Metering Infrastructure

    SciTech Connect (OSTI)

    2007-10-15

    The report provides an overview of the development of Advanced Metering Infrastructure (AMI). Metering has historically served as the cash register for the utility industry. It measured the amount of energy used and supported the billing of customers for that usage. However, utilities are starting to look at meters in a whole different way, viewing them as the point of contact with customers in supporting a number of operational imperatives. The combination of smart meters and advanced communications has opened up a variety of methods for utilities to reduce operating costs while offering new services to customers. A concise look is given at what's driving interest in AMI, the components of AMI, and the creation of a business case for AMI. Topics covered include: an overview of AMI including the history of metering and development of smart meters; a description of the key technologies involved in AMI; a description of key government initiatives to support AMI; an evaluation of the current market position of AMI; an analysis of business case development for AMI; and, profiles of 21 key AMI vendors.

  8. Analysis of three sets of SWIW tracer-test data using a two-population complex fracture model for matrix diffusion and sorption

    SciTech Connect (OSTI)

    Doughty, C.; Tsang, C.F.

    2009-08-01

    A complex fracture model employing two populations for diffusion and sorption is proposed to analyze three representative single-well injection-withdrawal (SWIW) tracer tests from Forsmark and Laxemar, the two sites under investigation by the Swedish Nuclear Fuel and Waste Management Company (SKB). One population represents the semi-infinite rock matrix and the other represents finite blocks that can become saturated, thereafter accepting no further diffusion or sorption. The diffusion and sorption parameters of the models are inferred by matching tracer breakthrough curves (BTCs). Three tracers are simultaneously injected, uranine (Ur), which is conservative, and rubidium (Rb) and cesium (Cs), which are non-conservative. For non-sorbing tracer uranine, the finite blocks become saturated with test duration of the order of 10 hours, and both the finite and the semi-infinite populations play a distinct role in controlling BTCs. For sorbing tracers Rb and Cs, finite blocks do not saturate, but act essentially as semi-infinite, and thus BTC behavior is comparable to that obtained for a model containing only a semi-infinite rock matrix. The ability to obtain good matches to BTCs for both sorbing and non-sorbing tracers for these three different SWIW data sets demonstrates that the two-population complex fracture model may be a useful conceptual model to analyze all SWIW tracer tests in fractured rock, and perhaps also usual multiwell tracer tests. One of the two populations should be semi-infinite rock matrix and the other finite blocks that can saturate. The latter can represent either rock blocks or gouge within the fracture, a fracture skin zone, or stagnation zones.

  9. Virtual Advanced Power Training Environments | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virtual Advanced Power Training Environments

  10. Well ER-6-1 Tracer Test Analysis: Yucca Flat, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    Greg Ruskauff

    2006-09-01

    The ER-6-1 multiple-well aquifer test-tracer test (MWAT-TT) investigated groundwater flow and transport processes relevant to the transport of radionuclides from sources on the Nevada Test Site (NTS) through the lower carbonate aquifer (LCA) hydrostratigraphic unit (HSU). The LCA, which is present beneath much of the NTS, is the principal aquifer for much of southern Nevada. This aquifer consists mostly of limestone and dolomite, and is pervasively fractured. Groundwater flow in this aquifer is primarily in the fractures, and the hydraulic properties are primarily related to fracture frequency and fracture characteristics (e.g., mineral coatings, aperture, connectivity). The objective of the multiple-well aquifer test (MWAT) was to determine flow and hydraulic characteristics for the LCA in Yucca Flat. The data were used to derive representative flow model and parameter values for the LCA. The items of specific interest are: Hydraulic conductivity; Storage parameters; Dual-porosity behavior; and Fracture flow characteristics. The objective of the tracer transport experiment was to evaluate the transport properties and processes of the LCA and to derive representative transport parameter values for the LCA. The properties of specific interest are: Effective porosity; Matrix diffusion; Longitudinal dispersivity; Adsorption characteristics; and Colloid transport characteristics. These properties substantially control the rate of transport of contaminants in the groundwater system and concentration distributions. To best support modeling at the scale of the corrective action unit (CAU), these properties must be investigated at the field scale. The processes represented by these parameters are affected by in-situ factors that are either difficult to investigate at the laboratory scale or operate at a much larger scale than can be reproduced in the laboratory. Measurements at the field scale provide a better understanding of the effective average parameter values. The

  11. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High...

    Office of Scientific and Technical Information (OSTI)

    and Reactivity Control for Salt-Cooled High Temperature Reactors Citation Details In-Document Search Title: Pebble Fuel Handling and Reactivity Control for Salt-Cooled High ...

  12. Coupled hydro-mechanical processes and fault reactivation induced...

    Office of Scientific and Technical Information (OSTI)

    Coupled hydro-mechanical processes and fault reactivation induced by Co2 Injection in a three-layer storage formation Citation Details In-Document Search This content will become ...

  13. Laboratory and field scale demonstration of reactive barrier systems

    SciTech Connect (OSTI)

    Dwyer, B.P.; Marozas, D.C.; Cantrell, K.; Stewart, W.

    1996-10-01

    In an effort to devise a cost efficient technology for remediation of uranium contaminated groundwater, the Department of Energy`s Uranium Mill Tailings Remedial Action (DOE-UMTRA) Program through Sandia National Laboratories (SNL) fabricated a pilot scale research project utilizing reactive subsurface barriers at an UMTRA site in Durango, Colorado. A reactive subsurface barrier is produced by placing a reactant material (in this experiment, metallic iron) in the flow path of the contaminated groundwater. The reactive media then removes and/or transforms the contaminant(s) to regulatory acceptable levels. Experimental design and results are discussed with regard to other potential applications of reactive barrier remediation strategies at other sites with contaminated groundwater problems.

  14. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect (OSTI)

    Jha, M.C.; Berggren, M.H.

    1987-10-27

    AMAX Research Development Center (AMAX R D) has been investigating methods for improving the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hog coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. The reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point in a bench-scale fixed-bed reactor. The durability may be defined as the ability of the sorbent to maintain its reactivity and other important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and regeneration. Two base case sorbents, spherical pellets and cylindrical extrudes used in related METC sponsored projects, are being used to provide a basis for the comparison of physical characteristics and chemical reactivity.

  15. Pre-plated reactive diffusion-bonded battery electrode plaques

    DOE Patents [OSTI]

    Maskalick, Nicholas J.

    1984-01-01

    A high strength, metallic fiber battery plaque is made using reactive diffusion bonding techniques, where a substantial amount of the fibers are bonded together by an iron-nickel alloy.

  16. Reactivity of Chromium(III) Nutritional Supplements in Biological...

    Office of Scientific and Technical Information (OSTI)

    Reactivities of Cr(III) complexes used in nutritional formulations, including Cr3O(OCOEt)6(OH2)3+ (A), Cr(pic)3 (pic) 2-pyridinecarboxylato(-) (B), and trans-CrCl2(OH2)4+ ...

  17. Highly reactive light-dependent monoterpenes in the Amazon

    SciTech Connect (OSTI)

    Jardine, A. B.; Jardine, K. J.; Fuentes, J. D.; Martin, S. T.; Martins, G.; Durgante, F.; Carneiro, V.; Higuchi, N.; Manzi, A. O.; Chambers, J. Q.

    2015-03-06

    Despite orders of magnitude difference in atmospheric reactivity and great diversity in biological functioning, little is known about monoterpene speciation in tropical forests. Here we report vertically resolved ambient air mixing ratios for 12 monoterpenes in a central Amazon rainforest including observations of the highly reactive cis-β-ocimene (160 ppt), trans-β-ocimene (79 ppt), and terpinolene (32 ppt) which accounted for an estimated 21% of total monoterpene composition yet 55% of the upper canopy monoterpene ozonolysis rate. All 12 monoterpenes showed a mixing ratio peak in the upper canopy, with three demonstrating subcanopy peaks in 7 of 11 profiles. Leaf level emissions of highly reactive monoterpenes accounted for up to 1.9% of photosynthesis confirming light-dependent emissions across several Amazon tree genera. These results suggest that highly reactive monoterpenes play important antioxidant roles during photosynthesis in plants and serve as near-canopy sources of secondary organic aerosol precursors through atmospheric photooxidation via ozonolysis.

  18. Analytical methods for determining the reactivity of pyrochemical salts

    SciTech Connect (OSTI)

    Phillips, A.G.; Stakebake, J.L.

    1994-05-01

    Pyrochemical processes used for the purification of plutonium have generated quantities of residue that contain varying amounts of reactive metals such as potassium, sodium, calcium, and magnesium. These residues are currently considered hazardous and are being managed under RCRA because of the reactivity characteristic. This designation is based solely on process knowledge. Currently there is no approved procedure for determining the reactivity of a solid with water. A method is being developed to rapidly evaluate the reactivity of pyrochemical salts with water by measuring the rate of hydrogen generation. The method was initially tested with a magnesium containing pyrochemical salt. A detection limit of approximately 0.004 g of magnesium was established. A surrogate molten salt extraction residue was also tested. Extrapolation of test data resulted in a hydrogen generation rate of 4.4 mg/(g min).

  19. On the late-time behavior of tracer test breakthrough curves

    SciTech Connect (OSTI)

    HAGGERTY,ROY; MCKENNA,SEAN A.; MEIGS,LUCY C.

    2000-06-12

    The authors investigated the late-time (asymptotic) behavior of tracer test breakthrough curves (BTCs) with rate-limited mass transfer (e.g., in dual or multi-porosity systems) and found that the late-time concentration, c, is given by the simple expression: c = t{sub ad} (c{sub 0}g {minus} m{sub 0}{partial_derivative}g/{partial_derivative}t), for t >> t{sub ad} and t{sub a} >> t{sub ad} where t{sub ad} is the advection time, c{sub 0} is the initial concentration in the medium, m{sub 0} is the 0th moment of the injection pulse; and t{sub a} is the mean residence time in the immobile domain (i.e., the characteristic mass transfer time). The function g is proportional to the residence time distribution in the immobile domain, the authors tabulate g for many geometries, including several distributed (multirate) models of mass transfer. Using this expression they examine the behavior of late-time concentration for a number of mass transfer models. One key results is that if rate-limited mass transfer causes the BTC to behave as a power-law at late-time (i.e., c {approximately} t{sup {minus}k}), then the underlying density function of rate coefficients must also be a power-law with the form a{sup k{minus}}, as a {r_arrow}0. This is true for both density functions of first-order and diffusion rate coefficients. BTCs with k < 3 persisting to the end of the experiment indicate a mean residence time longer than the experiment and possibly infinite, and also suggest an effective rate coefficient that is either undefined or changes as a function of observation time. They apply their analysis to breakthrough curves from Single-Well Injection-Withdrawal tests at the Waste Isolation Pilot Plant, New Mexico.

  20. [C II] 158 μm EMISSION AS A STAR FORMATION TRACER

    SciTech Connect (OSTI)

    Herrera-Camus, R.; Bolatto, A. D.; Wolfire, M. G.; Smith, J. D.; Croxall, K. V.; Kennicutt, R. C.; Boquien, M.; Calzetti, D.; Helou, G.; Walter, F.; Meidt, S. E.; Leroy, A. K.; Draine, B.; Brandl, B. R.; Armus, L.; Sandstrom, K. M.; Dale, D. A.; Aniano, G.; Hunt, L. K.; Galametz, M.; and others

    2015-02-10

    The [C II] 157.74 μm transition is the dominant coolant of the neutral interstellar gas, and has great potential as a star formation rate (SFR) tracer. Using the Herschel KINGFISH sample of 46 nearby galaxies, we investigate the relation of [C II] surface brightness and luminosity with SFR. We conclude that [C II] can be used for measurements of SFR on both global and kiloparsec scales in normal star-forming galaxies in the absence of strong active galactic nuclei (AGNs). The uncertainty of the Σ{sub [C} {sub II]} – Σ{sub SFR} calibration is ±0.21 dex. The main source of scatter in the correlation is associated with regions that exhibit warm IR colors, and we provide an adjustment based on IR color that reduces the scatter. We show that the color-adjusted Σ{sub [C} {sub II]} – Σ{sub SFR} correlation is valid over almost five orders of magnitude in Σ{sub SFR}, holding for both normal star-forming galaxies and non-AGN luminous infrared galaxies. Using [C II] luminosity instead of surface brightness to estimate SFR suffers from worse systematics, frequently underpredicting SFR in luminous infrared galaxies even after IR color adjustment (although this depends on the SFR measure employed). We suspect that surface brightness relations are better behaved than the luminosity relations because the former are more closely related to the local far-UV field strength, most likely the main parameter controlling the efficiency of the conversion of far-UV radiation into gas heating. A simple model based on Starburst99 population-synthesis code to connect SFR to [C II] finds that heating efficiencies are 1%-3% in normal galaxies.

  1. Isotopic tracer studies of Fischer-Tropsch Synthesis over Ru/TiO sub 2 catalysts

    SciTech Connect (OSTI)

    Krishna, K.R.

    1992-01-01

    Fischer-Tropsch synthesis is a process in which CO and H{sub 2} react to give predominantly liquid hydrocarbons. The reaction can be considered a special type of polymerization in which the monomer is produced in situ, and chain growth occurs by a sequence of independently repeated additions of the monomer to the growing chain. A investigation has been conducted to study the CO hydrogenation reaction in order to better understand catalyst deactivation and the elementary surface processes involved in chain growth. Isotopic tracers are used in conjunction with transient-response techniques in this study of Fischer-Tropsch synthesis over Ru/TiO{sub 2} catalysts. Experiments are conducted at a total pressure of 1 atmosphere, reaction temperatures of 453--498 K and D{sub 2}/CO (or H{sub 2}/CO) ratios of 2--5. Synthesis products are analyzed by gas chromatography or isotope-ratio gas chromatography-mass spectrometry. Rate constants for chain initiation, propagation and termination are evaluated under steady-state reaction conditions by using transients in isotopic composition. The activation energy for chain termination is much higher than that for propagation, accounting for the observed decrease in the chain growth parameter are also estimated. Coverages by reaction intermediates are also estimated. When small amounts of {sup 12}C-labelled ethylene are added to {sup 13}CO/H{sub 2} synthesis gas, ethylene acts as the sole chain initiator. Ethylene-derived carbon also accounts for 45% of the C{sub 1} monomer pool. 102 refs., 29 figs., 11 tabs.

  2. Isotopic tracer studies of Fischer-Tropsch Synthesis over Ru/TiO{sub 2} catalysts

    SciTech Connect (OSTI)

    Krishna, K.R.

    1992-01-01

    Fischer-Tropsch synthesis is a process in which CO and H{sub 2} react to give predominantly liquid hydrocarbons. The reaction can be considered a special type of polymerization in which the monomer is produced in situ, and chain growth occurs by a sequence of independently repeated additions of the monomer to the growing chain. A investigation has been conducted to study the CO hydrogenation reaction in order to better understand catalyst deactivation and the elementary surface processes involved in chain growth. Isotopic tracers are used in conjunction with transient-response techniques in this study of Fischer-Tropsch synthesis over Ru/TiO{sub 2} catalysts. Experiments are conducted at a total pressure of 1 atmosphere, reaction temperatures of 453--498 K and D{sub 2}/CO (or H{sub 2}/CO) ratios of 2--5. Synthesis products are analyzed by gas chromatography or isotope-ratio gas chromatography-mass spectrometry. Rate constants for chain initiation, propagation and termination are evaluated under steady-state reaction conditions by using transients in isotopic composition. The activation energy for chain termination is much higher than that for propagation, accounting for the observed decrease in the chain growth parameter are also estimated. Coverages by reaction intermediates are also estimated. When small amounts of {sup 12}C-labelled ethylene are added to {sup 13}CO/H{sub 2} synthesis gas, ethylene acts as the sole chain initiator. Ethylene-derived carbon also accounts for 45% of the C{sub 1} monomer pool. 102 refs., 29 figs., 11 tabs.

  3. METHOD OF ALLOYING REACTIVE METALS WITH ALUMINUM OR BERYLLIUM

    DOE Patents [OSTI]

    Runnalls, O.J.C.

    1957-10-15

    A halide of one or more of the reactive metals, neptunium, cerium and americium, is mixed with aluminum or beryllium. The mass is heated at 700 to 1200 deg C, while maintaining a substantial vacuum of above 10/sup -3/ mm of mercury or better, until the halide of the reactive metal is reduced and the metal itself alloys with the reducing metal. The reaction proceeds efficiently due to the volatilization of the halides of the reducing metal, aluminum or beryllium.

  4. Reactive MD Simulation of Shock-Induced Cavitation Damage | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility Billion atom reactive molecular dynamics simulation of nanobubble collapse in wa Billion atom reactive molecular dynamics simulation of nanobubble collapse in water near a ceramic surface under shock compression. A 2km/sec shock wave compresses the nanobubble and creates high compressive stress and novel chemical reactions (production of hydronium ions) not found under normal conditions. The simulations reveal that high pressure in the shock wave deforms the

  5. (Electronic structure and reactivities of transition metal clusters)

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  6. Project Profile: Chemically Reactive Working Fluids | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemically Reactive Working Fluids Project Profile: Chemically Reactive Working Fluids ANL logo -- This project is inactive -- Argonne National Laboratory (ANL), under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), is working to identify and test new heat-transfer fluids (HTFs) that store energy chemically for more efficient energy transfer in CSP applications. Approach Chart with an upward curve with ideal power generation efficiency on the

  7. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  8. Chapter 4: Advancing Clean Electric Power Technologies | Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The non-capture components of a power plant offer ... For pulverized coal plants it includes advanced turbines, ... than for more dilute air-fired combustion systems, which ...

  9. TOOLKIT FOR ADVANCED OPTIMIZATION

    Energy Science and Technology Software Center (OSTI)

    2000-10-13

    The TAO project focuses on the development of software for large scale optimization problems. TAO uses an object-oriented design to create a flexible toolkit with strong emphasis on the reuse of external tools where appropriate. Our design enables bi-directional connection to lower level linear algebra support (for example, parallel sparse matrix data structures) as well as higher level application frameworks. The Toolkist for Advanced Optimization (TAO) is aimed at teh solution of large-scale optimization problemsmore » on high-performance architectures. Our main goals are portability, performance, scalable parallelism, and an interface independent of the architecture. TAO is suitable for both single-processor and massively-parallel architectures. The current version of TAO has algorithms for unconstrained and bound-constrained optimization.« less

  10. Advanced engineering analysis

    SciTech Connect (OSTI)

    Freeman, W.R.

    1992-11-01

    The Advanced Engineering Analysis project is being used to improve the breadth of engineering analysis types, the particular phenomena which may be simulated, and also increase the accuracy and usability of the results of both new and current types of simulations and analyses. This is an interim report covering several topics under this project. Information on two new implementations of failure criteria for metal forming, the implementation of coupled fluid flow/heat transfer analysis capabilities, the integration of experimental shock and vibration test data with analyses, a correction to a contact solution problem with a 3-D parabolic brick finite element, and the development and implementation of a file translator to link IDEAS to DYNA3D is provided in this report.

  11. Advanced servo manipulator

    DOE Patents [OSTI]

    Holt, W.E.; Kuban, D.P.; Martin, H.L.

    1988-10-25

    An advanced servo manipulator has modular parts. Modular motor members drive individual input gears to control shoulder roll, shoulder pitch, elbow pitch, wrist yaw, wrist pitch, wrist roll, and tong spacing. The modules include a support member, a shoulder module for controlling shoulder roll, and a sleeve module attached to the shoulder module in fixed relation thereto. The shoulder roll sleeve module has an inner cylindrical member rotatable relative to the outer cylindrical member, and upon which a gear pod assembly is mounted. A plurality of shafts are driven by the gears, which are in turn driven by individual motor modules to transmit rotary power to control elbow pitch as well as to provide four different rotary shafts across the bendable elbow joint to supply rotary motive power to a wrist member and tong member. 41 figs.

  12. Advanced servo manipulator

    DOE Patents [OSTI]

    Holt, William E.; Kuban, Daniel P.; Martin, H. Lee

    1988-01-01

    An advanced servo manipulator has modular parts. Modular motor members drive individual input gears to control shoulder roll, shoulder pitch, elbow pitch, wrist yaw, wrist pitch, wrist roll, and tong spacing. The modules include a support member, a shoulder module for controlling shoulder roll, and a sleeve module attached to the shoulder module in fixed relation thereto. The shoulder roll sleeve module has an inner cylindrical member rotatable relative to the outer cylindrical member, and upon which a gear pod assembly is mounted. A plurality of shafts are driven by the gears, which are in turn driven by individual motor modules to transmit rotary power to control elbow pitch as well as to provide four different rotary shafts across the bendable elbow joint to supply rotary motive power to a wrist member and tong member.

  13. Advanced drilling systems study.

    SciTech Connect (OSTI)

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  14. Advanced Containment System

    DOE Patents [OSTI]

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2005-05-24

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  15. Advanced Containment System

    DOE Patents [OSTI]

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2004-10-12

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  16. Advanced isotope separation

    SciTech Connect (OSTI)

    Not Available

    1982-05-04

    The Study Group briefly reviewed the technical status of the three Advanced Isotope Separation (AIS) processes. It also reviewed the evaluation work that has been carried out by DOE's Process Evaluation Board (PEB) and the Union Carbide Corporation-Nuclear Division (UCCND). The Study Group briefly reviewed a recent draft assessment made for DOE staff of the nonproliferation implications of the AIS technologies. The staff also very briefly summarized the status of GCEP and Advanced Centrifuge development. The Study Group concluded that: (1) there has not been sufficient progress to provide a firm scientific, technical or economic basis on which to select one of the three competing AIS processes for full-scale engineering development at this time; and (2) however, should budgetary restraints or other factors force such a selection, we believe that the evaluation process that is being carried out by the PEB provides the best basis available for making a decision. The Study Group recommended that: (1) any decisions on AIS processes should include a comparison with gas centrifuge processes, and should not be made independently from the plutonium isotope program; (2) in evaluating the various enrichment processes, all applicable costs (including R and D and sales overhead) and an appropriate discounting approach should be included in order to make comparisons on a private industry basis; (3) if the three AIS programs continue with limited resources, the work should be reoriented to focus only on the most pressing technical problems; and (4) if a decision is made to develop the Atomic Vapor Laser Isotope Separation process, the solid collector option should be pursued in parallel to alleviate the potential program impact of liquid collector thermal control problems.

  17. Optimization of Advanced Diesel Engine Combustion Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Computational Fluid Dynamics ...

  18. Northeast Energy Efficiency Partnerships: Advanced Lighting Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Credit: Northeast Energy Efficiency...

  19. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Energy Savers [EERE]

    Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue ... on Conversion Technologies for Advanced Biofuels - Carbohydrates Conversion Technologies ...

  20. Electrolytes - Advanced Electrolyte and Electrolyte Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development of Advanced Electrolytes and Electrolyte Additives Electrolytes - Advanced Electrolyte and Electrolyte Additives Develop & evaluate ...

  1. Electrolytes - Advanced Electrolyte and Electrolyte Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electrolytes - Advanced Electrolyte and Electrolyte Additives Electrolytes - Advanced Electrolyte and Electrolyte Additives Develop & Evaluate ...

  2. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Advanced Gasoline Turbocharged Direct Injection (GTDI) ...

  3. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advancing Transportation Through Vehicle Electrification - ... Office Merit Review 2014: Advancing Transportation through Vehicle Electrification - Ram ...

  4. Energy Storage - Advanced Technology Development Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Development Merit Review Energy Storage - Advanced Technology Development ... Research Program Annual Review Safety System Oversight Staffing Analysis - Blank ...

  5. Flash pyrolysis of biomass with reactive and non-reactive gases

    SciTech Connect (OSTI)

    Steinberg, M.; Fallon, P.T.; Sundaram, M.S.

    1985-03-01

    The process chemistry of the flash pyrolysis of biomass (wood) with the reactive gases, H/sub 2/ and CH/sub 4/ and with the non-reactive gases He and N/sub 2/ is being determined in a 1'' downflow tubular reactor at pressures from 20 to 1000 psi and temperatures from 600 to 1000/sup 0/C. With hydrogen, flash hydropyrolysis leads to high yields of methane and CO which can be used for SNG and methanol fuel production. With methane, flash methanolysis leads to high yields of ethylene, benzene and CO which can be used for the production of valuable chemical feedstocks and methanol transportation fuel. At reactor conditions of 50 psi and 1000/sup 0/C and approximately 1 sec residence time, the yields based on pine wood carbon conversion are up to 30% for ethylene, 25% for benzene, and 45% for CO, indicating that over 90% of the carbon in pine is converted to valuable products. Pine wood produces higher yields of hydrocarbon products than Douglas fir wood; the yield of ethylene is 2.3 times higher with methane than with helium or nitrogen, and for pine, the ratio is 7.5 times higher. The mechanism appears to be a free radical reaction between CH/sub 4/ and the pyrolyzed wood. There appears to be no net production or consumption of methane. A preliminary process design and analysis indicates an economically competitive system for the production of ethylene, benzene and methanol based on the methanolysis of wood. 8 refs., 18 figs., 1 tab.

  6. National Advanced Biofuels Consortium Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Biofuels Consortium Virent Board of Directors June 15, 2010 NABC: For Open Distribution Biomass R&D Evolution Prior Focus Cellulosic Ethanol RD&D Technoeconomic Analysis Sustainability Analysis Future Focus Cellulosic Ethanol RD&D Advanced Biofuels R&D Technoeconomic Analysis Resource Analysis/Allocation Sustainability Analysis & LCA Biopower Biomass Intermediates Algal Biofuels R&D NABC: For Open Distribution * Create a U.S. Advanced Biofuels Research Consortium

  7. Advances in Coupling of Kinetics and Molecular Scale Tools to Shed Light on Soil Biogeochemical Processes

    SciTech Connect (OSTI)

    Sparks, Donald

    2014-09-02

    Biogeochemical processes in soils such as sorption, precipitation, and redox play critical roles in the cycling and fate of nutrients, metal(loid)s and organic chemicals in soil and water environments. Advanced analytical tools enable soil scientists to track these processes in real-time and at the molecular scale. Our review focuses on recent research that has employed state-of-the-art molecular scale spectroscopy, coupled with kinetics, to elucidate the mechanisms of nutrient and metal(loid) reactivity and speciation in soils. We found that by coupling kinetics with advanced molecular and nano-scale tools major advances have been made in elucidating important soil chemical processes including sorption, precipitation, dissolution, and redox of metal(loids) and nutrients. Such advances will aid in better predicting the fate and mobility of nutrients and contaminants in soils and water and enhance environmental and agricultural sustainability.

  8. Advanced Modeling & Simulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation ADVANCING THE STATE OF THE ART Innovation advances science. Historically, innovation resulted almost exclusively from fundamental theories combined with observation and experimentation over time. With advancements in engineering, computing power and visualization tools, scientists from all disciplines are gaining insights into physical systems in ways not possible with traditional approaches

  9. ADVANCED MIXING MODELS

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R; David Tamburello, D

    2008-11-13

    schedule savings. The focus of the present work is to establish mixing criteria associated with the waste processing at SRS and to quantify the mixing time required to suspend sludge particles with the submersible jet pump. Literature results for a turbulent jet flow are reviewed briefly, since the decay of the axial jet velocity and the evolution of the jet flow patterns are important phenomena affecting sludge suspension and mixing operations. One of the main objectives in the waste processing is to provide the DWPF a uniform slurry composition at a certain weight percentage (typically {approx}13 wt%) over an extended period of time. In preparation of the sludge for slurrying to DWPF, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition for DWPF? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination? Grenville and Tilton (1996) investigated the mixing process by giving a pulse of tracer (electrolyte) through the submersible jet nozzle and by monitoring the conductivity at three locations within the cylindrical tank. They proposed that the mixing process was controlled by the turbulent kinetic energy dissipation rate in the region far away from the jet entrance. They took the energy dissipation rates in the regions remote from the nozzle to be proportional to jet velocity and jet diameter at that location. The reduction in the jet velocity was taken to be proportional to the nozzle velocity and distance from the nozzle. Based on their analysis, a correlation was proposed. The proposed correlation was shown to be valid over a wide range of Reynolds numbers

  10. Advance Electronics | Open Energy Information

    Open Energy Info (EERE)

    transient suppressors, automatic voltage stablisers, voltmeters oscilloscopes, and signal generators. References: Advance Electronics1 This article is a stub. You can help...

  11. Advanced Combustion | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Advanced Combustion Combustion engines drive a large percentage of our nation's transportation vehicles and power generation and manufacturing facilities. Today's...

  12. Advanced Telemetry | Open Energy Information

    Open Energy Info (EERE)

    search Name: Advanced Telemetry Place: San Diego, California Zip: 92131-2435 Sector: Buildings Product: San Diego-based provider of energy management software, communication and...

  13. Media Center | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    distributed to all APS users and others interested in the APS. Research Highlights Books Articles on Advanced Photon Source research and engineering highlights that are written...

  14. Advanced Neutron Source (ANS) Project

    SciTech Connect (OSTI)

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Peretz, F.J.

    1991-02-01

    This report discusses the research and development, design and safety of the Advanced Neutron Source at Oak Ridge National Laboratory. (LSP)

  15. Advanced Leds | Open Energy Information

    Open Energy Info (EERE)

    Place: Coventry, England, United Kingdom Zip: CV5 6SP Product: Advanced Leds develops LED technology for outdoor lighting, including street lighting applications. Coordinates:...

  16. APS Science | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science APS Science features articles on Advanced Photon Source research and engineering highlights that are written for the interested public as well as the synchrotron x-ray,...

  17. Video Library | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archives APS Brochure Annual Reports Posters Podcasts Image Gallery external site Video Library Syndicated Feeds (RSS) Featured Videos: Introduction to the Advanced Photon...

  18. Video Library | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archives APS Brochure Annual Reports Posters Podcasts Image Gallery external site Video Library Syndicated Feeds (RSS) Now Playing: The Advanced Photon Source More videos:...

  19. Advanced Manufacturing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The U.S. Department of Energy funds the research, development, and demonstration of highly ... that enable the development and demonstration of advanced manufacturing ...

  20. 2012 Advanced Accelerator Concepts Workshop

    SciTech Connect (OSTI)

    Downer, Michael C.

    2015-03-23

    We report on the organization and outcome of the 2012 Advanced Accelerator Concepts Workshop, held in Austin, Texas in June 2012.

  1. Advanced Bioeconomy Leadership Conference 2015

    Broader source: Energy.gov [DOE]

    The Advanced Bioeconomy Leadership Conference was held on March 11–13, at the Capital Hilton in Washington, D.C.

  2. Advanced Reciprocating Engine System (ARES)

    Broader source: Energy.gov (indexed) [DOE]

    Diesel & Gas Turbine Worldwide Power Generation Order Survey, 1992-2012. ... advanced enginegenerator system that combines high ... suitable for the 1-2 MW gas electric power ...

  3. Video Library | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video Library Related Links: APS Colloquium APS Podcasts APS Today More videos: Introduction to the APS Physics of the Blues Now Playing: Building the Advanced Photon Source This...

  4. Measuring and monitoring KIPT Neutron Source Facility Reactivity

    SciTech Connect (OSTI)

    Cao, Yan; Gohar, Yousry; Zhong, Zhaopeng

    2015-08-01

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on developing and constructing a neutron source facility at Kharkov, Ukraine. The facility consists of an accelerator-driven subcritical system. The accelerator has a 100 kW electron beam using 100 MeV electrons. The subcritical assembly has keff less than 0.98. To ensure the safe operation of this neutron source facility, the reactivity of the subcritical core has to be accurately determined and continuously monitored. A technique which combines the area-ratio method and the flux-to-current ratio method is purposed to determine the reactivity of the KIPT subcritical assembly at various conditions. In particular, the area-ratio method can determine the absolute reactivity of the subcritical assembly in units of dollars by performing pulsed-neutron experiments. It provides reference reactivities for the flux-to-current ratio method to track and monitor the reactivity deviations from the reference state while the facility is at other operation modes. Monte Carlo simulations are performed to simulate both methods using the numerical model of the KIPT subcritical assembly. It is found that the reactivities obtained from both the area-ratio method and the flux-to-current ratio method are spatially dependent on the neutron detector locations and types. Numerical simulations also suggest optimal neutron detector locations to minimize the spatial effects in the flux-to-current ratio method. The spatial correction factors are calculated using Monte Carlo methods for both measuring methods at the selected neutron detector locations. Monte Carlo simulations are also performed to verify the accuracy of the flux-to-current ratio method in monitoring the reactivity swing during a fuel burnup cycle.

  5. Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah

    Broader source: Energy.gov [DOE]

    Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah

  6. Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

    SciTech Connect (OSTI)

    Splitter, Derek A; Reitz, Rolf

    2014-01-01

    Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

  7. Advanced Hydrogen Turbine Development

    SciTech Connect (OSTI)

    Joesph Fadok

    2008-01-01

    advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to

  8. Advanced fossil fuel combustor

    SciTech Connect (OSTI)

    Rogers, B.

    1995-05-01

    Charged with enhancing the use of US fossil energy resources, the Morgantown Energy Technology Center (METC) is a federal Department of Energy research center that performs its own research and also manages the work of contractors. One interesting recent METC project is the effort to develop a ``multiannular swirl burner`` (MSB) for use in an advanced fossil fuel combustion system. The design is being developed by an outside contractor with funding and technical assistance from METC. Recently, EG and G Technical Services of West Virginia was asked to provide analytical support to the contractor developing the MSB. Design projects like this usually require building and testing a series of very expensive prototypes. Recent success with computational fluid dynamic (CFD) design techniques, however, have generated a great deal of excitement because of its ability to reduce research and development costs. Using FLUENT, a CFD package from Fluent Inc., EG and G was able to predict, with a high degree of accuracy, the performance of one of the MSB combustor prototypes. Furthermore, the model provided researchers with a more detailed understanding of the proposed design`s performance characteristics.

  9. Advanced worker protection system

    SciTech Connect (OSTI)

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-10-01

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project describes the development of an Advanced Worker Protection System (AWPS) which will include a life-support backpack with liquid air for cooling and as a supply of breathing gas, protective clothing, respirators, communications, and support equipment.

  10. Advanced Pressure Boundary Materials

    SciTech Connect (OSTI)

    Santella, Michael L; Shingledecker, John P

    2007-01-01

    Increasing the operating temperatures of fossil power plants is fundamental to improving thermal efficiencies and reducing undesirable emissions such as CO{sub 2}. One group of alloys with the potential to satisfy the conditions required of higher operating temperatures is the advanced ferritic steels such as ASTM Grade 91, 9Cr-2W, and 12Cr-2W. These are Cr-Mo steels containing 9-12 wt% Cr that have martensitic microstructures. Research aimed at increasing the operating temperature limits of the 9-12 wt% Cr steels and optimizing them for specific power plant applications has been actively pursued since the 1970's. As with all of the high strength martensitic steels, specifying upper temperature limits for tempering the alloys and heat treating weldments is a critical issue. To support this aspect of development, thermodynamic analysis was used to estimate how this critical temperature, the A{sub 1} in steel terminology, varies with alloy composition. The results from the thermodynamic analysis were presented to the Strength of Weldments subgroup of the ASME Boiler & Pressure Vessel Code and are being considered in establishing maximum postweld heat treatment temperatures. Experiments are also being planned to verify predictions. This is part of a CRADA project being done with Alstom Power, Inc.

  11. Advanced robot locomotion.

    SciTech Connect (OSTI)

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  12. Core follow calculation with the nTRACER numerical reactor and verification using power reactor measurement data

    SciTech Connect (OSTI)

    Jung, Y. S.; Joo, H. G.; Yoon, J. I.

    2013-07-01

    The nTRACER direct whole core transport code employing the planar MOC solution based 3-D calculation method, the subgroup method for resonance treatment, the Krylov matrix exponential method for depletion, and a subchannel thermal/hydraulic calculation solver was developed for practical high-fidelity simulation of power reactors. Its accuracy and performance is verified by comparing with the measurement data obtained for three pressurized water reactor cores. It is demonstrated that accurate and detailed multi-physic simulation of power reactors is practically realizable without any prior calculations or adjustments. (authors)

  13. Measurement of the Tracer Gradient and Sampling System Bias of the Hot Fuel Examination Facility Stack Air Monitoring System

    SciTech Connect (OSTI)

    Glissmeyer, John A.; Flaherty, Julia E.

    2011-07-20

    This report describes tracer gas uniformity and bias measurements made in the exhaust air discharge of the Hot Fuel Examination Facility at Idaho National Laboratory. The measurements were a follow-up on earlier measurements which indicated a lack of mixing of the two ventilation streams being discharged via a common stack. The lack of mixing is detrimental to the accuracy of air emission measurements. The lack of mixing was confirmed in these new measurements. The air sampling probe was found to be out of alignment and that was corrected. The suspected sampling bias in the air sample stream was disproved.

  14. Assessment of the Economic Benefits from Reactive Power Compensation

    SciTech Connect (OSTI)

    Li, Fangxing; Kueck, John D; Rizy, D Tom; Tolbert, Leon M; Zhang, Wenjuan

    2006-01-01

    The U.S. power industry is under great pressure to provide reactive power or Var support. Although it is generally known that there are technical benefits for utilities and industrial customers to provide local reactive power support, a thorough quantitative investigation of the economic benefit is greatly needed. This paper seeks to provide a quantitative approach to evaluate the benefits from local reactive power compensation. This paper investigates the benefits including reduced losses, shifting reactive power flow to real power flow, and increased transfer capability. These benefits are illustrated with a simple two-bus model and then presented with a more complicated model using Optimal Power Flow. Tests are conducted on a system with seven buses in two areas. These simulations show that the economic benefits can be significant, if compared with capacity payment to central generators or power factor penalties applied to utilities. This economic value may give utilities a better understanding of the Var benefits to assist their cost-benefit analysis for Var compensation. In addition, since the economic benefits are significant, this paper suggests that the future reactive power market should consider local Var providers.

  15. Advanced LBB methodology and considerations

    SciTech Connect (OSTI)

    Olson, R.; Rahman, S.; Scott, P.

    1997-04-01

    LBB applications have existed in many industries and more recently have been applied in the nuclear industry under limited circumstances. Research over the past 10 years has evolved the technology so that more advanced consideration of LBB can now be given. Some of the advanced considerations for nuclear plants subjected to seismic loading evaluations are summarized in this paper.

  16. Effects of gasoline reactivity and ethanol content on boosted premixed and partially stratified low-temperature gasoline combustion (LTGC)

    SciTech Connect (OSTI)

    Dec, John E.; Yang, Yi; Ji, Chunsheng; Dernotte, Jeremie

    2015-04-14

    Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel ?- sensitive so that partial fuel stratification (PFS) can be applied for higher loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.

  17. Effects of gasoline reactivity and ethanol content on boosted premixed and partially stratified low-temperature gasoline combustion (LTGC)

    SciTech Connect (OSTI)

    Dec, John E.; Yang, Yi; Ji, Chunsheng; Dernotte, Jeremie

    2015-04-14

    Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel Φ- sensitive so that partial fuel stratification (PFS) can be applied for higher loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.

  18. Effects of gasoline reactivity and ethanol content on boosted premixed and partially stratified low-temperature gasoline combustion (LTGC)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dec, John E.; Yang, Yi; Ji, Chunsheng; Dernotte, Jeremie

    2015-04-14

    Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel Φ- sensitive so that partial fuel stratification (PFS) can be applied for highermore » loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.« less

  19. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these

  20. Advanced solar panel designs

    SciTech Connect (OSTI)

    Ralph, E.L.; Linder, E.

    1995-10-01

    This paper describes solar cell panel designs that utilize new high efficiency solar cells along with lightweight rigid panel technology. The resulting designs push the W/kg and W/sq m parameters to new high levels. These new designs are well suited to meet the demand for higher performance small satellites. This paper reports on progress made on two SBIR Phase 1 contracts. One panel design involved the use of large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells of 19% efficiency combined with a lightweight rigid graphite fiber epoxy isogrid substrate configuration. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power level of 60 W/kg with a potential of reaching 80 W/kg. The second panel design involved the use of newly developed high efficiency (22%) dual junction GaInP2/GaAs/Ge solar cells combined with an advanced lightweight rigid substrate using aluminum honeycomb core with high strength graphite fiber mesh facesheets. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power of 105 W/kg and 230 W/sq m. This paper will address the construction details of the panels and an analysis of the component weights. A strawman array design suitable for a typical small-sat mission is described for each of the two panel design technologies being studied. Benefits in respect to weight reduction, area reduction, and system cost reduction are analyzed and compared to conventional arrays.

  1. State Technologies Advancement Collaborative

    SciTech Connect (OSTI)

    David S. Terry

    2012-01-30

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5

  2. Advances in rapid prototyping

    SciTech Connect (OSTI)

    Atwood, C.L.; McCarty, G.D.; Pardo, B.T.; Bryce, E.A.

    1993-12-31

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System`s QuickCast{trademark} resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. Sandia uses patterns generated from rapid prototyping processes to reduce the cycle time and cost of fabricating prototype parts in support of a Sandia National Laboratories managed program called FASTCAST. As participants in the Beta test program for QuickCast{trademark} resin and software, they experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible, using this technology, to produce highly accurate prototype parts as well as acceptable firs article and small lots size production parts. They use the Selective Laser Sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster, with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This presentation will focus on the successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes.

  3. Apparatus for making environmentally stable reactive alloy powders

    DOE Patents [OSTI]

    Anderson, Iver E.; Lograsso, Barbara K.; Terpstra, Robert L.

    1996-12-31

    Apparatus and method for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloyants needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment.

  4. Environmentally stable reactive alloy powders and method of making same

    DOE Patents [OSTI]

    Anderson, Iver E.; Lograsso, Barbara K.; Terpstra, Robert L.

    1998-09-22

    Apparatus and method for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloyants needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment.

  5. Apparatus for making environmentally stable reactive alloy powders

    DOE Patents [OSTI]

    Anderson, I.E.; Lograsso, B.K.; Terpstra, R.L.

    1996-12-31

    Apparatus and method are disclosed for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloyants needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment. 7 figs.

  6. Environmentally stable reactive alloy powders and method of making same

    DOE Patents [OSTI]

    Anderson, I.E.; Lograsso, B.K.; Terpstra, R.L.

    1998-09-22

    Apparatus and method are disclosed for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloys needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment. 7 figs.

  7. Method and apparatus for measuring reactivity of fissile material

    DOE Patents [OSTI]

    Lee, D.M.; Lindquist, L.O.

    1982-09-07

    Given are a method and apparatus for measuring nondestructively and noninvasively (i.e., using no internal probing) the burnup, reactivity, or fissile content of any material which emits neutrons and which has fissionable components. The assay is accomplished by altering the return flux of neutrons into the fuel assembly by means of changing the reflecting material. The existing passive neutron emissions in the material being assayed are used as the source of interrogating neutrons. Two measurements of either emitted neutron or emitted gamma-ray count rates are made and are then correlated to either reactivity, burnup, or fissionable content of the material being assayed, thus providing a measurement of either reactivity, burnup, or fissionable content of the material being assayed. Spent fuel which has been freshly discharged from a reactor can be assayed using this method and apparatus. Precisions of 1000 MWd/tU appear to be feasible.

  8. Si etching with reactive neutral beams of very low energy

    SciTech Connect (OSTI)

    Hara, Yasuhiro; Hamagaki, Manabu; Mise, Takaya; Iwata, Naotaka; Hara, Tamio

    2014-12-14

    A Si etching process has been investigated with reactive neutral beams (NBs) extracted using a low acceleration voltage of less than 100 V from CF{sub 4} and Ar mixed plasmas. The etched Si profile shows that the etching process is predominantly anisotropic. The reactive NB has a constant Si etching rate in the acceleration voltage range from 20 V to 80 V. It is considered that low-energy NBs can trigger Si etching because F radicals adsorb onto the Si surface and weaken Si–Si bonds. The etching rate per unit beam flux is 33 times higher than that with Ar NB. These results show that the low-energy reactive NB is useful for damage-free high speed Si etching.

  9. Accelerating development of advanced inverters : evaluation of anti-islanding schemes with grid support functions and preliminary laboratory demonstration.

    SciTech Connect (OSTI)

    Neely, Jason C.; Gonzalez, Sigifredo; Ropp, Michael; Schutz, Dustin

    2013-11-01

    The high penetration of utility interconnected photovoltaic (PV) systems is causing heightened concern over the effect that variable renewable generation will have on the electrical power system (EPS). These concerns have initiated the need to amend the utility interconnection standard to allow advanced inverter control functionalities that provide: (1) reactive power control for voltage support, (2) real power control for frequency support and (3) better tolerance of grid disturbances. These capabilities are aimed at minimizing the negative impact distributed PV systems may have on EPS voltage and frequency. Unfortunately, these advanced control functions may interfere with island detection schemes, and further development of advanced inverter functions requires a study of the effect of advanced functions on the efficacy of antiislanding schemes employed in industry. This report summarizes the analytical, simulation and experimental work to study interactions between advanced inverter functions and anti-islanding schemes being employed in distributed PV systems.

  10. Plasma & reactive ion etching to prepare ohmic contacts

    DOE Patents [OSTI]

    Gessert, Timothy A.

    2002-01-01

    A method of making a low-resistance electrical contact between a metal and a layer of p-type CdTe surface by plasma etching and reactive ion etching comprising: a) placing a CdS/CdTe layer into a chamber and evacuating said chamber; b) backfilling the chamber with Argon or a reactive gas to a pressure sufficient for plasma ignition; and c) generating plasma ignition by energizing a cathode which is connected to a power supply to enable the plasma to interact argon ions alone or in the presence of a radio-frequency DC self-bias voltage with the p-CdTe surface.

  11. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect (OSTI)

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  12. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect (OSTI)

    Jha, M.C.; Berggren, M.H.

    1988-11-14

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  13. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect (OSTI)

    Jha, M.C.; Berggren, M.H.

    1989-03-06

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  14. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect (OSTI)

    Jha, M.C.; Berggren, M.H.

    1988-08-19

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  15. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect (OSTI)

    Jha, M.C.; Baltich, L.K.; Berggren, M.H.

    1987-05-18

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  16. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect (OSTI)

    Jha, M.C.; Baltich, L.K.; Berggren, M.H.

    1987-08-28

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  17. Increasing Class C fly ash reduces alkali silica reactivity

    SciTech Connect (OSTI)

    Hicks, J.K.

    2007-07-01

    Contrary to earlier studies, it has been found that incremental additions of Class C fly ash do reduce alkali silica reactivity (ASR), in highly reactive, high alkali concrete mixes. AST can be further reduced by substituting 5% metakaolin or silica fume for the aggregate in concrete mixes with high (more than 30%) Class C fly ash substitution. The paper reports results of studies using Class C fly ash from the Labadie Station plant in Missouri which typically has between 1.3 and 1.45% available alkalis by ASTM C311. 7 figs.

  18. Approximate photochemical dynamics of azobenzene with reactive force fields

    SciTech Connect (OSTI)

    Li, Yan; Hartke, Bernd

    2013-12-14

    We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis?trans- and trans?cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work)

  19. In Situ Tracer method for establishing the presence and predicting the activity of heavy metal-reducing microbes in the subsurface. Final Report

    SciTech Connect (OSTI)

    Hatfield, K.

    2003-07-01

    Tracer method to establish presence and distribution of chromium reducing microbes. The primary objective of this research was to establish an in situ tracer method for detecting the presence. distribution. and activity of subsurface heavy metal-reducing microorganisms. Research focused on microbial systems responsible for the reduction of chromium and a suite of biotracers coupled to the reduction process. The tracer method developed may be used to characterize sites contaminated with chromium or expedite bioremediation: and although research focused on chromium. the method can be easily extended to other metals, organics, and radionuclides. This brief final report contains three major sections. The first identifies specific products of the research effort such as students supported and publications. The second section briefly presents major research findings, while the last section summarizes the overall research effort.

  20. Magnetic Materials | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Internal Magnetic Materials The Magnetic Material Group (MMG) is part of the X-ray Science Division (XSD) at the Advanced Photon Source (APS). Our research focuses on the...

  1. Georgia Power- Advanced Solar Initiative

    Broader source: Energy.gov [DOE]

    Note: According to Georgia Power's website, the Advanced Solar Initiative's final program guidelines are due to be published on June 25th and the bidding period for is expected to open on July 10,...

  2. APS Podcasts | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Art Preservation and Connoisseurship August 14, 2007; mp3 - 1.88MB Franceska Casadio, Art Institute of Chicago: November 3, 2004 The Advanced Photon Source (videomp4) August...

  3. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry

  4. Advanced Sensors and Instrumentation Newsletter

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Sensors and Instrumentation (ASI) newsletter will be released periodically to inform program stakeholders about new developments and achievements in the area of sensors, instrumentation and related technologies across the Office of Nuclear Energy (NE) R&D programs.

  5. Advanced Supply System Validation Workshop

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) is hosting the Advanced Supply System Validation Workshop on February 3-4, 2015, in Golden, Colorado. The purpose of the workshop is to bring together a...

  6. ADVANCED RESEARCH PROJECTS AGENCY - ENERGY ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 - 2013 2014 2015 2016 ADVANCED RESEARCH PROJECTS AGENCY - ENERGY Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec Jan Feb Mar Apr...

  7. Advanced Collaborative Emissions Study (ACES)

    Broader source: Energy.gov [DOE]

    ACES is a cooperative multi-party effort to characterize emissions and possible health effects of new, advanced heavy duty engine and control systems and fuels in the market 2007 - 2010.

  8. Highly reactive light-dependent monoterpenes in the Amazon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jardine, A. B.; Jardine, K. J.; Fuentes, J. D.; Martin, S. T.; Martins, G.; Durgante, F.; Carneiro, V.; Higuchi, N.; Manzi, A. O.; Chambers, J. Q.

    2015-03-06

    Despite orders of magnitude difference in atmospheric reactivity and great diversity in biological functioning, little is known about monoterpene speciation in tropical forests. Here we report vertically resolved ambient air mixing ratios for 12 monoterpenes in a central Amazon rainforest including observations of the highly reactive cis-β-ocimene (160 ppt), trans-β-ocimene (79 ppt), and terpinolene (32 ppt) which accounted for an estimated 21% of total monoterpene composition yet 55% of the upper canopy monoterpene ozonolysis rate. All 12 monoterpenes showed a mixing ratio peak in the upper canopy, with three demonstrating subcanopy peaks in 7 of 11 profiles. Leaf level emissionsmore » of highly reactive monoterpenes accounted for up to 1.9% of photosynthesis confirming light-dependent emissions across several Amazon tree genera. These results suggest that highly reactive monoterpenes play important antioxidant roles during photosynthesis in plants and serve as near-canopy sources of secondary organic aerosol precursors through atmospheric photooxidation via ozonolysis.« less

  9. Neutron economic reactivity control system for light water reactors

    DOE Patents [OSTI]

    Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.; Gregurech, Steve

    1989-01-01

    A neutron reactivity control system for a LWBR incorporating a stationary seed-blanket core arrangement. The core arrangement includes a plurality of contiguous hexagonal shaped regions. Each region has a central and a peripheral blanket area juxapositioned an annular seed area. The blanket areas contain thoria fuel rods while the annular seed area includes seed fuel rods and movable thoria shim control rods.

  10. Method and apparatus for measuring reactivity of fissile material

    DOE Patents [OSTI]

    Lee, David M.; Lindquist, Lloyd O.

    1985-01-01

    Given are a method and apparatus for measuring nondestructively and non-invasively (i.e., using no internal probing) the burnup, reactivity, or fissile content of any material which emits neutrons and which has fissionable components. No external neutron-emitting interrogation source or fissile material is used and no scanning is required, although if a profile is desired scanning can be used. As in active assays, here both reactivity and content of fissionable material can be measured. The assay is accomplished by altering the return flux of neutrons into the fuel assembly. The return flux is altered by changing the reflecting material. The existing passive neutron emissions in the material being assayed are used as the source of interrogating neutrons. Two measurements of either emitted neutron or emitted gamma-ray count rates are made and are then correlated to either reactivity, burnup, or fissionable content of the material being assayed, thus providing a measurement of either reactivity, burnup, or fissionable content of the material being assayed. Spent fuel which has been freshly discharged from a reactor can be assayed using this method and apparatus. Precisions of 1000 MWd/tU appear to be feasible.

  11. NO2 oxidation reactivity and burning mode of diesel particulates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Strzelec, Andrea; Vander Wal, Randy L.; Thompson, Thomas N.; Toops, Todd J.; Daw, C. Stuart

    2016-03-24

    The NO2 oxidation kinetics and burning mode for diesel particulate from light-duty and medium-duty engines fueled with either ultra low sulfur diesel or soy methyl ester biodiesel blends have been investigated and are shown to be significantly different from oxidation by O2. Oxidation kinetics were measured using a flow-through packed bed microreactor for temperature programmed reactions and isothermal differential pulsed oxidation reactions. The burning mode was evaluated using the same reactor system for flowing BET specific surface area measurements and HR-TEM with fringe analysis to evaluate the nanostructure of the nascent and partially oxidized particulates. The low activation energy measured,more » specific surface area progression with extent of oxidation, HR-TEM images and difference plots of fringe length and tortuosity paint a consistent picture of higher reactivity for NO2, which reacts indiscriminately immediately upon contact with the surface, leading to the Zone I or shrinking core type oxidation. In comparison, O2 oxidation is shown to have relatively lower reactivity, preferentially attacking highly curved lamella, which are more reactive due to bond strain, and short lamella, which have a higher proportion of more reactive edge sites. Furthermore, this preferential oxidation leads to Zone II type oxidation, where solid phase diffusion of oxygen via pores contributes significantly to slowing the overall oxidation rate, by comparison.« less

  12. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect (OSTI)

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  13. Advanced Microturbine Systems

    SciTech Connect (OSTI)

    Rosfjord, T; Tredway, W; Chen, A; Mulugeta, J; Bhatia, T

    2008-12-31

    In July 2000, the United Technologies Research Center (UTRC) was one of five recipients of a US Department of Energy contract under the Advanced Microturbine System (AMS) program managed by the Office of Distributed Energy (DE). The AMS program resulted from several government-industry workshops that recognized that microturbine systems could play an important role in improving customer choice and value for electrical power. That is, the group believed that electrical power could be delivered to customers more efficiently and reliably than the grid if an effective distributed energy strategy was followed. Further, the production of this distributed power would be accomplished with less undesirable pollutants of nitric oxides (NOx) unburned hydrocarbons (UHC), and carbon monoxide (CO). In 2000, the electrical grid delivered energy to US customers at a national average of approximately 32% efficiency. This value reflects a wide range of powerplants, but is dominated by older, coal burning stations that provide approximately 50% of US electrical power. The grid efficiency is also affected by transmission and distribution (T&D) line losses that can be significant during peak power usage. In some locations this loss is estimated to be 15%. Load pockets can also be so constrained that sufficient power cannot be transmitted without requiring the installation of new wires. New T&D can be very expensive and challenging as it is often required in populated regions that do not want above ground wires. While historically grid reliability has satisfied most customers, increasing electronic transactions and the computer-controlled processes of the 'digital economy' demand higher reliability. For them, power outages can be very costly because of transaction, work-in-progress, or perishable commodity losses. Powerplants that produce the grid electrical power emit significant levels of undesirable NOx, UHC, and CO pollutants. The level of emission is quoted as either a technology

  14. Advanced Distillation Final Report

    SciTech Connect (OSTI)

    Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode

    2010-03-24

    The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were

  15. Advanced Integrated Traction System

    SciTech Connect (OSTI)

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step

  16. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a

  17. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  18. Advancing Women in Clean Energy

    Broader source: Energy.gov [DOE]

    As part of the Clean Energy Ministerial, C3E and its ambassadors have made it their mission to advance the leadership of women in clean energy around the world. In this series, we will leverage the experience and wisdom of some of the amazing C3E ambassadors who will share advice or suggestions that may be helpful for women seeking to advance their careers in clean energy.

  19. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    Office of Energy Efficiency and Renewable Energy (EERE)

    Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary November 2014

  20. The correlation between reactivity and ash mineralogy of coke

    SciTech Connect (OSTI)

    Kerkkonen, O.; Mattila, E.; Heiniemi, R.

    1996-12-31

    Rautaruukki is a modern integrated Finnish steel works having a production of 2.4 mil. t/year of flat products. The total fuel consumption of the two blast furnaces in 1994 was 435 kg/t HM. Coke used was 345 kg/t HM and oil injection was 90 kg/t HM. The coking plant was taken in to operation in 1987 and is the only one in Finland, which means that the coking tradition is very short. Coke production is 0.9 mil. t/year. The coking blends include 70--80% medium volatile coals having a wide range of total dilatation. From time to time disturbances in the operation of the blast furnaces have occurred in spite of the fact that the reactivity of the coke used has remained constant or even decreased. It was thought necessary to investigate the factors affecting coke reactivity, in order to better understand the results of the reactivity test. This paper deals with carbonization tests done in a 7 kg test oven using nine individual coals having volatile-matter contents of 17--36% (dry) and seven blends made from these coals. Coke reactivity with CO{sub 2} at 1100 C (CRI) and coke strength after reaction (CSR) were determined using the test developed by the Nippon Steel Corporation. The influence of coke carbon form, porosity and especially ash mineralogy on the coke reactivity were examined. The effects of some additives; petroleum coke (pet coke), the spillage material from the coke ovens and oxidized coal, on coke quality were also studied. Typical inorganic minerals found in coals were added to one of the high volatile coals, which was then coked to determine the affect of the minerals on the properties of the coke produced.

  1. Reactive multilayers fabricated by vapor deposition. A critical review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adams, D. P.

    2014-10-02

    The reactive multilayer thin films are a class of energetic materials that continue to attract attention for use in joining applications and as igniters. Generally composed of two reactants, these heterogeneous solids can be stimulated by an external source to promptly release stored chemical energy in a sudden emission of light and heat. In our critical review article, results from recent investigations of these materials are discussed. Discussion begins with a brief description of the vapor deposition techniques that provide accurate control of layer thickness and film composition. More than 50 reactive film compositions have been reported to date, withmore » most multilayers fabricated by magnetron sputter deposition or electron-beam evaporation. In later sections, we review how multilayer ignition threshold, reaction rate, and total heat are tailored via thin film design. For example, planar multilayers with nanometer-scale periodicity exhibit rapid, self-sustained reactions with wavefront velocities up to 100 m/s. Numeric and analytical models have elucidated many of the fundamental processes that underlie propagating exothermic reactions while demonstrating how reaction rates vary with multilayer design. Recent, time-resolved diffraction and imaging studies have further revealed the phase transformations and the wavefront dynamics associated with propagating chemical reactions. Many reactive multilayers (e.g., Co/Al) form product phases that are consistent with published equilibrium phase diagrams, yet a few systems, such as Pt/Al, develop metastable products. The final section highlights current and emerging applications of reactive multilayers. Examples include reactive Ni(V)/Al and Pd/Al multilayers which have been developed for localized soldering of heat-sensitive components.« less

  2. Reactive multilayers fabricated by vapor deposition. A critical review

    SciTech Connect (OSTI)

    Adams, D. P.

    2014-10-02

    The reactive multilayer thin films are a class of energetic materials that continue to attract attention for use in joining applications and as igniters. Generally composed of two reactants, these heterogeneous solids can be stimulated by an external source to promptly release stored chemical energy in a sudden emission of light and heat. In our critical review article, results from recent investigations of these materials are discussed. Discussion begins with a brief description of the vapor deposition techniques that provide accurate control of layer thickness and film composition. More than 50 reactive film compositions have been reported to date, with most multilayers fabricated by magnetron sputter deposition or electron-beam evaporation. In later sections, we review how multilayer ignition threshold, reaction rate, and total heat are tailored via thin film design. For example, planar multilayers with nanometer-scale periodicity exhibit rapid, self-sustained reactions with wavefront velocities up to 100 m/s. Numeric and analytical models have elucidated many of the fundamental processes that underlie propagating exothermic reactions while demonstrating how reaction rates vary with multilayer design. Recent, time-resolved diffraction and imaging studies have further revealed the phase transformations and the wavefront dynamics associated with propagating chemical reactions. Many reactive multilayers (e.g., Co/Al) form product phases that are consistent with published equilibrium phase diagrams, yet a few systems, such as Pt/Al, develop metastable products. The final section highlights current and emerging applications of reactive multilayers. Examples include reactive Ni(V)/Al and Pd/Al multilayers which have been developed for localized soldering of heat-sensitive components.

  3. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect (OSTI)

    Berggren, M.H.; Jha, M.C.

    1989-10-01

    AMAX Research Development Center (AMAX R D) investigated methods for enhancing the reactivity and durability of zinc ferrite desulfurization sorbents. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For this program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation. Two base case sorbents, a spherical pellet and a cylindrical extrude used in related METC-sponsored projects, were used to provide a basis for the aimed enhancement in durability and reactivity. Sorbent performance was judged on the basis of physical properties, single particle kinetic studies based on thermogravimetric (TGA) techniques, and multicycle bench-scale testing of sorbents. A sorbent grading system was utilized to quantify the characteristics of the new sorbents prepared during the program. Significant enhancements in both reactivity and durability were achieved for the spherical pellet shape over the base case formulation. Overall improvements to reactivity and durability were also made to the cylindrical extrude shape. The primary variables which were investigated during the program included iron oxide type, zinc oxide:iron oxide ratio, inorganic binder concentration, organic binder concentration, and induration conditions. The effects of some variables were small or inconclusive. Based on TGA studies and bench-scale tests, induration conditions were found to be very significant.

  4. Advanced Nuclear Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects ADVANCED NUCLEAR ENERGY 1 PROJECT in 1 LOCATION 2,200 MW GENERATION CAPACITY 17,200,000 MWh PROJECTED ANNUAL GENERATION * 10,000,000 METRIC TONS OF CO2 EMISSIONS PREVENTED ANNUALLY ALL FIGURES AS OF MARCH 2015 * Calculated using the project's and NREL Technology specific capacity factors. For cases in which NREL's capacity

  5. Development of a system model for advanced small modular reactors.

    SciTech Connect (OSTI)

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandia's concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  6. Advanced Manufacture of Reflectors

    SciTech Connect (OSTI)

    Angel, Roger

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of

  7. Funding Opportunity Webinar - Advancing Solutions to Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancing Solutions to Improve Energy Efficiency of Commercial Buildings Funding Opportunity Webinar - Advancing Solutions to Improve Energy Efficiency of Commercial Buildings View ...

  8. 2012 Advanced Applications Research & Development Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Method - Yuri Makarov, PNNL PDF icon 2012 Advanced Applications R&D Peer Review - Modal Analysis for Grid Operations (MANGO) - Henry Huang, PNNL PDF icon 2012 Advanced ...

  9. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. PDF icon esarravt002flicker2010p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing...

  10. Development of Advanced Combustion Technologies for Increased...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Technologies for Increased Thermal Efficiency Development of Advanced Combustion Technologies for Increased Thermal Efficiency Investigation of fuel effects on ...

  11. Advancing Solar Through Photovoltaic Technology Innovations ...

    Energy Savers [EERE]

    Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity ...

  12. Advanced Qualification of Additive Manufacturing Materials Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Qualification of Additive Manufacturing Materials Workshop Advanced Qualification of Additive Manufacturing Materials Workshop WHEN: Jul 20, 2015 8:30 AM - Jul 21, 2015...

  13. Independent Oversight Review, Advanced Mixed Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Mixed Waste Treatment Project - April 2013 Independent Oversight Review, Advanced Mixed Waste Treatment Project - April 2013 April 2013 Review of Radiation Protection...

  14. Optimization of Advanced Diesel Engine Combustion Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Use of Low Cetane Fuel to Enable Low Temperature ...

  15. Advances in understanding solar energy collection materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding solar energy collection materials Advances in understanding solar energy collection materials A LANL team and collaborators have made advances in the understanding of...

  16. Ecology Action: Small Market Advanced Retrofit Transformation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ecology Action: Small Market Advanced Retrofit Transformation Program (SMART) Ecology Action: Small Market Advanced Retrofit Transformation Program (SMART) Ecology Action: Small ...

  17. Advanced Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: Advanced Energy Company Place: Japan Product: Established March 19, 2010, Advanced Energy Company (AEC) aims to install EV power stations...

  18. Advanced OpenMP Training Registration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced OpenMP Training Registration Advanced OpenMP Training Registration Feb 4, 2016: Registration is now closed. Jan 28, 2016: Only remote attendance is still available. ...

  19. Advanced Biofuels Industry Roundtable - List of Participants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Industry Roundtable - List of Participants Advanced Biofuels Industry Roundtable - List of Participants List of Participants from the May 18 Advanced Biofuels Industry ...

  20. APS Organization Chart | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Organization Chart The Advanced Photon Source (APS) organization comprises three divisions and one project office. Advanced Photon Source Organization Photon Sciences Overview...

  1. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics...

  2. Northeast Energy Efficiency Partnerships: Advanced Lighting Controls...

    Broader source: Energy.gov (indexed) [DOE]

    PROJECT OBJECTIVE NEEP's Commercial Advanced Lighting Control (CALC) project is designed to address market barriers and enable widespread adoption of Advanced Lighting Control ...

  3. Advanced Energy | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    so researchers could see the impact of the inverter's advanced features on power reliability and quality. Advanced Energy's inverter will help support a smarter grid that can ...

  4. Advanced Manufacturing Office Update January 2016 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partner Spotlight AMO Technology Advances Wind Turbine Research Hilton Joins Superior ... Partner Spotlight AMO Technology Advances Wind Turbine Research BAAM machine.jpg ...

  5. TRC Advanced Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Logo: TRC Advanced Technologies Inc Name: TRC Advanced Technologies Inc Address: 8700 Commerce Park Place: Houston, Texas Zip: 77036 Region: Texas Area Sector: Solar Product:...

  6. International safeguards recommendations for the Indian advanced...

    Office of Scientific and Technical Information (OSTI)

    advanced heavy water reactor (AHWR) Citation Details In-Document Search Title: International safeguards recommendations for the Indian advanced heavy water reactor (AHWR) ...

  7. Tribal Renewable Energy Advanced Course: Project Development...

    Office of Environmental Management (EM)

    Tribal Renewable Energy Advanced Course: Project Development and Financing Essentials Watch the DOE Office of Indian Energy advanced course webinar entitled "Tribal Renewable ...

  8. Advanced Green Technologies | Open Energy Information

    Open Energy Info (EERE)

    Green Technologies Jump to: navigation, search Name: Advanced Green Technologies Place: Fort Lauderdale, Florida Zip: 33311 Product: Advanced Green Technologies is a US-based...

  9. Advanced Battery Manufacturing Facilities and Equipment Program...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program Fact Sheet: Grid-Scale ...

  10. Steven Winter Associates (Consortium for Advanced Residential...

    Open Energy Info (EERE)

    Steven Winter Associates (Consortium for Advanced Residential Buildings) Jump to: navigation, search Name: Steven Winter Associates (Consortium for Advanced Residential Buildings)...

  11. Advanced Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Jump to: navigation, search Name: Advanced Renewable Energy Place: Italy Sector: Biomass, Renewable Energy, Wind energy Product: Advanced Renewable Energy Ltd...

  12. Voluntary Protection Program Onsite Review, Advanced Technologies...

    Office of Environmental Management (EM)

    Advanced Technologies and Laboratories, Inc., Hanford - Feb 2014 Voluntary Protection Program Onsite Review, Advanced Technologies and Laboratories, Inc., Hanford - Feb 2014...

  13. Offshore Wind Advanced Technology Demonstration Projects | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Demonstration Projects Offshore Wind Advanced Technology Demonstration Projects With roughly 80% of the U.S. electricity demand originating from coastal states, ...

  14. Three Offshore Wind Advanced Technology Demonstration Projects...

    Energy Savers [EERE]

    Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding ...

  15. Advanced Water Splitting Materials EMN Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Water Splitting Materials EMN Workshop Stanford, CA April 14 th , 2016 Dr. Eric ... Laying a Foundation.. ...for an Advanced Water Splitting Materials EMN for renewable H 2 ...

  16. Draft Advanced Fossil Solicitation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal loan guarantee solicitation announcement -- Advanced Fossil Energy Projects. Microsoft Word - Draft Advanced Fossil Solicitation Final Draft.1 (383.34 KB) More Documents & ...

  17. Advanced Materials Partners Inc | Open Energy Information

    Open Energy Info (EERE)

    Materials Partners Inc Jump to: navigation, search Logo: Advanced Materials Partners Inc Name: Advanced Materials Partners Inc Address: 45 Pine Street Place: New Canaan,...

  18. A Prospective Target for Advanced Biofuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Prospective Target for Advanced Biofuel Production A Prospective Target for Advanced Biofuel Production Print Thursday, 02 February 2012 13:34 The sesquiterpene bisabolene was...

  19. Advanced Solar Photonics | Open Energy Information

    Open Energy Info (EERE)

    Advanced Solar Photonics Place: Lake Mary, Florida Zip: 32746 Product: Florida-based thin film PV module manufacturer. References: Advanced Solar Photonics1 This article is...

  20. Sec. Moniz Discusses Advanced Technology Vehicle Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moniz Discusses Advanced Technology Vehicle Manufacturing Loans Sec. Moniz Discusses Advanced Technology Vehicle Manufacturing Loans April 2, 2014 - 4:37pm Addthis NEWS MEDIA ...

  1. Butamax Advanced Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Butamax Advanced Biofuels LLC Jump to: navigation, search Name: Butamax Advanced Biofuels LLC Place: Wilmington, Delaware Zip: 19880-0268 Sector: Biofuels Product: Delaware-based...

  2. Technology Advancements for Next Generation Falling Particle...

    Office of Scientific and Technical Information (OSTI)

    Technology Advancements for Next Generation Falling Particle Receivers. Citation Details In-Document Search Title: Technology Advancements for Next Generation Falling Particle ...

  3. Center for Advanced Separation Technology (Technical Report)...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Center for Advanced Separation Technology Citation Details In-Document Search Title: Center for Advanced Separation Technology The U.S. is the largest producer of ...

  4. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Reciprocating Engine System (ARES) Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Dresser Waukesha, June 2011 Integration of Diesel Engine Technology ...

  5. Advanced Plant Pharmaceuticals Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc. Place: New York, New York Product: String representation "Advanced Plant ... f its business." is too long. References: Advanced Plant Pharmaceuticals, Inc.1 This...

  6. Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dresser Waukesha, June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Dresser Waukesha, June 2011 Presentation on Advanced Natural Gas Reciprocating ...

  7. Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Solicitation ...

  8. Advanced Mud System for Microhole Coiled Tubing Drilling

    SciTech Connect (OSTI)

    Kenneth Oglesby

    2008-12-01

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  9. Image reconstruction in higher dimensions: myocardial perfusion imaging of tracer dynamics with cardiac motion due to deformation and respiration

    SciTech Connect (OSTI)

    Shrestha, Uttam M.; Seo, Youngho; Botvinick, Elias H.; Gullberg, Grant T.

    2015-10-09

    Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variation of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. We find these results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Additionally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.

  10. Generalized chloride mass balance: Forward and inverse solutions for one-dimensional tracer convection under transient flux

    SciTech Connect (OSTI)

    Ginn, T.R.; Murphy, E.M.

    1996-12-01

    Forward and inverse solutions are provided for analysis of inert tracer profiles resulting from one-dimensional convective transport under fluxes which vary with time and space separately. The developments are displayed as an extension of conventional chloride mass balance (CMB) techniques to account for transient as well as space-dependent water fluxes. The conventional chloride mass balance has been used over two decades to estimate recharge over large time scales in arid environments. In this mass balance approach, the chloride concentration in the pore water, originating from atmospheric fallout, is inversely proportional to the flux of water through the sediments. The CMB method is especially applicable to arid and semi-arid regions where evapotranspirative enrichment of the pore water produces a distinct chloride profile in the unsaturated zone. The solutions presented allow incorporation of transient fluxes and boundary conditions in CMB analysis, and allow analysis of tracer profile data which is not constant with depth below extraction zone in terms of a rational water transport model. A closed-form inverse solution is derived which shows uniqueness of model parameter and boundary condition (including paleoprecipitation) estimation, for the specified flow model. Recent expressions of the conventional chloride mass balance technique are derived from the general model presented here; the conventional CMB is shown to be fully compatible with this transient flow model and it requires the steady-state assumption on chloride mass deposition only (and not on water fluxes or boundary conditions). The solutions and results are demonstrated on chloride profile data from west central New Mexico.

  11. Image reconstruction in higher dimensions: myocardial perfusion imaging of tracer dynamics with cardiac motion due to deformation and respiration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shrestha, Uttam M.; Seo, Youngho; Botvinick, Elias H.; Gullberg, Grant T.

    2015-10-09

    Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variationmore » of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. We find these results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Additionally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.« less

  12. Characterization of Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel

    Broader source: Energy.gov [DOE]

    This study uses numerical simulations to explore the use of wet ethanol as the low-reactivity fuel and diesel as the high-reactivity fuel for RCCI operation in a heavy-duty diesel engine.

  13. A Reactive Force Field study of Li/C Systems for Electrical Energy...

    Office of Scientific and Technical Information (OSTI)

    A Reactive Force Field study of LiC Systems for Electrical Energy Storage Citation Details In-Document Search Title: A Reactive Force Field study of LiC Systems for Electrical ...

  14. Reactive codoping of GaAlInP compound semiconductors (Patent...

    Office of Scientific and Technical Information (OSTI)

    Patent: Reactive codoping of GaAlInP compound semiconductors Citation Details In-Document Search Title: Reactive codoping of GaAlInP compound semiconductors A GaAlInP compound ...

  15. Development of a Full-core Reactivity Equivalence for FeCrAl...

    Office of Scientific and Technical Information (OSTI)

    Reactivity Equivalence for FeCrAl Enhanced Accident Tolerant Fuel in BWRs Citation Details In-Document Search Title: Development of a Full-core Reactivity Equivalence for ...

  16. Catalytic and reactive polypeptides and methods for their preparation and use

    DOE Patents [OSTI]

    Schultz, Peter

    1993-01-01

    Catalytic and reactive polypeptides include a binding site specific for a reactant or reactive intermediate involved in a chemical reaction of interest. The polypeptides further include at least one active functionality proximate the bi.

  17. Process for producing advanced ceramics

    DOE Patents [OSTI]

    Kwong, Kyei-Sing

    1996-01-01

    A process for the synthesis of homogeneous advanced ceramics such as SiC+AlN, SiAlON, SiC+Al.sub.2 O.sub.3, and Si.sub.3 N.sub.4 +AlN from natural clays such as kaolin, halloysite and montmorillonite by an intercalation and heat treatment method. Included are the steps of refining clays, intercalating organic compounds into the layered structure of clays, drying the intercalated mixture, firing the treated atmospheres and grinding the loosely agglomerated structure. Advanced ceramics produced by this procedure have the advantages of homogeneity, cost effectiveness, simplicity of manufacture, ease of grind and a short process time. Advanced ceramics produced by this process can be used for refractory, wear part and structure ceramics.

  18. Catalytic destruction of groundwater contaminants in reactive extraction wells

    DOE Patents [OSTI]

    McNab, Jr., Walt W.; Reinhard, Martin

    2002-01-01

    A system for remediating groundwater contaminated with halogenated solvents, certain metals and other inorganic species based on catalytic reduction reactions within reactive well bores. The groundwater treatment uses dissolved hydrogen as a reducing agent in the presence of a metal catalyst, such a palladium, to reduce halogenated solvents (as well as other substituted organic compounds) to harmless species (e.g., ethane or methane) and immobilize certain metals to low valence states. The reactive wells function by removing water from a contaminated water-bearing zone, treating contaminants with a well bore using catalytic reduction, and then reinjecting the treated effluent into an adjacent water-bearing zone. This system offers the advantages of a compact design with a minimal surface footprint (surface facilities) and the destruction of a broad suite of contaminants without generating secondary waste streams.

  19. Engine combustion control at low loads via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2014-10-07

    A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

  20. Fuel temperature reactivity coefficient calculation by Monte Carlo perturbation techniques

    SciTech Connect (OSTI)

    Shim, H. J.; Kim, C. H.

    2013-07-01

    We present an efficient method to estimate the fuel temperature reactivity coefficient (FTC) by the Monte Carlo adjoint-weighted correlated sampling method. In this method, a fuel temperature change is regarded as variations of the microscopic cross sections and the temperature in the free gas model which is adopted to correct the asymptotic double differential scattering kernel. The effectiveness of the new method is examined through the continuous energy MC neutronics calculations for PWR pin cell problems. The isotope-wise and reaction-type-wise contributions to the FTCs are investigated for two free gas models - the constant scattering cross section model and the exact model. It is shown that the proposed method can efficiently predict the reactivity change due to the fuel temperature variation. (authors)