Sample records for advanced transportation partnership

  1. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership...

  2. Recovery Act?Transportation Electrification Education Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery ActTransportation Electrification Education Partnership for Green Jobs and Sustainable Mobility Recovery ActTransportation Electrification Education Partnership for...

  3. Welcome and Advanced Manufacturing Partnership (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Welcome and Advanced Manufacturing Partnership video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  4. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop and demonstrate Advanced Burner Reactors (ABRs) that...

  5. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector...

  6. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2003-01-30T23:59:59.000Z

    This is the second quarterly progress report for Year-4 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between October 1, 2002 and December 30, 2002. This report presents a review of progress on the following specific tasks. (a) Design and development of an Advanced Cuttings Transport Facility Task 3: Addition of a Cuttings Injection/Separation System, Task 4: Addition of a Pipe Rotation System. (b) New research project (Task 9b): ''Development of a Foam Generator/Viscometer for Elevated Pressure and Elevated Temperature (EPET) Conditions''. (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions''. (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings. (Task 12), and Viscosity of Foam under EPET (Task 9b). (f) New Research project (Task 13): ''Study of Cuttings Transport with Foam under Elevated Pressure and Temperature Conditions''. (g) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (h) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  7. The Ohio Advanced Transportation Partnership (OATP)

    Broader source: Energy.gov (indexed) [DOE]

    - 11,041,500 * Partner Contribution - 18,274,951 Clean Energy Liquefied Natural Gas (LNG) Infrastructure in Seville, OH *OATP will create new jobs as well as save existing...

  8. The Ohio Advanced Transportation Partnership (OATP)

    Broader source: Energy.gov (indexed) [DOE]

    with sub-recipients signed and executed * Project launch and media event completed * Media campaign to promote OATP ongoing * NEPA Documentation submitted for * 100% of...

  9. The Ohio Advanced Transportation Partnership (OATP)

    Broader source: Energy.gov (indexed) [DOE]

    * DOE Share - 11,041,500 * Partner Contribution - 21,148,702 Columbus Yellow Cab Propane Taxi and Fueling Infrastructure *OATP will create new jobs as well as save existing...

  10. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30T23:59:59.000Z

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.

  11. Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnerships High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and climate science. Contact Director Harald...

  12. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and...

  13. Advanced Test Reactor National Scientific User Facility Partnerships

    SciTech Connect (OSTI)

    Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

    2012-03-01T23:59:59.000Z

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin-Madison; (8) Illinois Institute of Technology (IIT) Materials Research Collaborative Access Team (MRCAT) beamline at Argonne National Laboratory's Advanced Photon Source; and (9) Nanoindenter in the University of California at Berkeley (UCB) Nuclear Engineering laboratory Materials have been analyzed for ATR NSUF users at the Advanced Photon Source at the MRCAT beam, the NIST Center for Neutron Research in Gaithersburg, MD, the Los Alamos Neutron Science Center, and the SHaRE user facility at Oak Ridge National Laboratory (ORNL). Additionally, ORNL has been accepted as a partner facility to enable ATR NSUF users to access the facilities at the High Flux Isotope Reactor and related facilities.

  14. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

  15. advancing academic partnerships: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PARTNERSHIP CONFERENCE SERIES (R13) Funding Opportunity Number: PAR-12-102. CFDA Number(s): 93.865. Engineering Websites Summary: (NICHD). Area of Research: Conduct...

  16. Building Partnerships to Cut Petroleum Use in Transportation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    The U.S. Department of Energy's Clean Cities initiative advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use in transportation. Clean Cities accomplishes this work through the activities of nearly 100 local coalitions. These coalitions provide resources and technical assistance in the deployment of alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies as they emerge.

  17. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mengjiao Yu; Ramadan Ahmed; Mark Pickell; Len Volk; Lei Zhou; Zhu Chen; Aimee Washington; Crystal Redden

    2003-09-30T23:59:59.000Z

    The Quarter began with installing the new drill pipe, hooking up the new hydraulic power unit, completing the pipe rotation system (Task 4 has been completed), and making the SWACO choke operational. Detailed design and procurement work is proceeding on a system to elevate the drill-string section. The prototype Foam Generator Cell has been completed by Temco and delivered. Work is currently underway to calibrate the system. Literature review and preliminary model development for cuttings transportation with polymer foam under EPET conditions are in progress. Preparations for preliminary cuttings transport experiments with polymer foam have been completed. Two nuclear densitometers were re-calibrated. Drill pipe rotation system was tested up to 250 RPM. Water flow tests were conducted while rotating the drill pipe up to 100 RPM. The accuracy of weight measurements for cuttings in the annulus was evaluated. Additional modifications of the cuttings collection system are being considered in order to obtain the desired accurate measurement of cuttings weight in the annular test section. Cutting transport experiments with aerated fluids are being conducted at EPET, and analyses of the collected data are in progress. The printed circuit board is functioning with acceptable noise level to measure cuttings concentration at static condition using ultrasonic method. We were able to conduct several tests using a standard low pass filter to eliminate high frequency noise. We tested to verify that we can distinguish between different depths of sand in a static bed of sand. We tested with water, air and a mix of the two mediums. Major modifications to the DTF have almost been completed. A stop-flow cell is being designed for the DTF, the ACTF and Foam Generator/Viscometer which will allow us to capture bubble images without the need for ultra fast shutter speeds or microsecond flash system.

  18. Auto/Steel Partnership: Advanced High-Strength Steel Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. lm23heimbuch.pdf More Documents & Publications Overview: STEEL AutoSteel Partnership...

  19. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting arravt067vssbazzi2012o.pdf More Documents & Publications Advancing Transportation Through Vehicle Electrification - PHEV Advancing Plug In Hybrid Technology and...

  20. Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeedingOptimizingToolstoPartnering MechanismsPartnersPartnerships

  1. Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to the Pacific NorthwestPartnerships Network R&D

  2. Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to the Pacific NorthwestPartnerships Network R&D

  3. Clean Cities: Building Partnerships to Reduce Petroleum Use in Transportation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    This fact sheet provides an overview of the U.S. Department of Energy's Clean Cities program, which builds partnerships to reduce petroleum use in transportation in communities across the country. The U.S. Department of Energy's Clean Cities initiative advances the nation's economic, environmental, and energy security by supporting local actions to reduce petroleum consumption in transportation. Clean Cities accomplishes this work through the activities of nearly 100 local coalitions. These coalitions provide resources and technical assistance in the deployment of alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies, as they emerge. Clean Cities overarching goal is to reduce U.S. petroleum use by 2.5 billion gallons per year by 2020. To achieve this goal, Clean Cities employs three strategies: (1) Replace petroleum with alternative and renewable fuels, including natural gas, propane, electricity, ethanol, biodiesel, and hydrogen; (2) Reduce petroleum consumption through smarter driving practices and fuel economy improvements; and (3) Eliminate petroleum use through idle reduction and other fuel-saving technologies and practices.

  4. Fuel cells for future transportation: The Department of Energy OTT/OUT partnership

    SciTech Connect (OSTI)

    Patil, P.G.; Milliken, J.; Gronich, S.; Rossmeissl, N. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies; Ohi, J. [National Renewable Energy Lab., Golden, CO (United States). Center for Transportation Technologies and Systems

    1997-12-31T23:59:59.000Z

    The DOE Office of Transportation Technologies (OTT) is currently engaged in the development and integration R and D activities which will make it possible to reduce oil imports, and move toward a sustainable transportation future. Within OTT, the Office of Advanced Automotive Technologies is supporting development of highly efficient, low or zero emission fuel cell power systems as an alternative to internal combustion engines. The objectives of the program are: By 2000, develop and validate fuel cell stack system technologies that are greater than 51% energy efficient at 40 kW (maximum net power); more than 100 times cleaner than EPA Tier II emissions; and capable of operating on gasoline, methanol, ethanol, natural gas, and hydrogen gas or liquid. By 2004, develop and validate fuel cell power system technologies that meet vehicle requirements in terms of: cost--competitive with internal combustion engines; and performance, range, safety and reliability. The research, development, and validation of fuel cell technology is integrally linked to the Energy Policy Act (EPACT) and other major US policy objectives, such as the Partnership for a New Generation of Vehicles (PNGV). Established in 1993, PNGV is a research and development initiative involving seven Federal agencies and the three US automobile manufacturers to strengthen US competitiveness. The PNGV will develop technologies for vehicles with a fuel efficiency of 80 miles per gallon, while maintaining such attributes as size, performance, safety, and cost. To help address the critical issue of fuel and fuel infrastructure development for advanced vehicles, the DOE Office of Utility Technologies (OUT) has directed the Hydrogen Program to provide national leadership in the research, development, and validation of advanced technologies to produce, store, and use hydrogen. An objective of the Program is to work in partnership with industry to advance hydrogen systems to the point where they are cost effective and integrated into the energy economy. This integration will enable the Program to reach its objectives of displacing 10 quads per year by 2030 in all end-use sectors, which will represent about a 10% penetration into the total US energy market.

  5. Partnerships Help Advance Small Modular Reactor Technology | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652Grow Your Energy EfficiencyEnergy Partnerships

  6. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vssarravt067bazzi2010p.pdf More Documents & Publications Advancing Transportation Through Vehicle Electrification - PHEV...

  7. Overview of the Batteries for Advanced Transportation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Presentation from the...

  8. Overview and Progress of the Batteries for Advanced Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT)...

  9. Overview of the Batteries for Advanced Transportation Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program 2010 DOE Vehicle...

  10. Overview of the Batteries for Advanced Transportation Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program 2009 DOE...

  11. Transportation Electrification Education Partnership for Green Jobs and Sustainable Mobility

    SciTech Connect (OSTI)

    Peng, Huei; Mi, Chris; Gover, James

    2013-04-30T23:59:59.000Z

    This collaborative educational project between the University of Michigan—Ann Arbor, University of Michigan—Dearborn and the Kettering University successfully executed almost all the elements we proposed to do. In the original proposal, we proposed to develop four graduate courses, six undergraduate courses, four professional short courses, a K?12 electric vehicle education kit, a Saturday morning seminar series, and a set of consumer education material to support the advancement of transportation electrification. The first four deliverables were all successfully developed and offered. When we held the kick?off meeting in NETL in Morgantown back in early 2010 with all the ten ARRA education teams, however, it quickly became clear that among the ten ARRA education grantee teams, our proposed “consume education” activities are not better or with the potential to create bigger impact than some of activities proposed in other teams. For example, the Odyssey 2010 event held by the West Virginia University team had planned and successfully reached to more than 230,000 attendees, which is way more than what our proposed 100k event could ever reach. It was under the suggestion of Joseph Quaranta, the ARRA education Program Director at that time, that we should coordinate and eliminate redundancy. The resources should then be focused on activities that have less overlap. Therefore, the originally proposed activities: Saturday morning seminar series, and a set of consumer education material were dropped from our scope. We expanded the scope of our “education kit” activity to include some educational materials, mainly in the form of videos. The target audience also changed from general public to K?12 students. The majority of the project cost (~70%) goes toward the establishment of three undergraduate laboratories, which provides critically needed hands?on learning experience for next?generation green mobility engineers. We are very proud that the ARRA money, which was distributed as part of the economy stimulus package back in 2009, was used to invest in laboratories which are already impacting the learning experience of our undergraduate and graduate students, and will continue to do so in the coming decades. The offering and enrollments of the ten undergraduate and graduate courses developed under the support of this educational grant is summarized in the table below. The grant was finalized in September 2009, and four new courses were developed and offered soon after in Winter 2010. The other six courses were developed thereafter. The total number of students who took these new courses over the duration of this grant is just over 1,000. In the first 2 years, under the DOE funding, the courses are offered more regularly. After that, the courses were considered together with other existing courses in the planning of teaching schedule and may not be offered each year. Almost all of the 10 courses have healthy enrollments and we do expect them to be offered continuously in the future. The graduate courses perhaps will be offered every 2?3 years, and the undergraduate courses most likely on a yearly basis.

  12. Recovery Act„Transportation Electrification Education Partnership for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList?Department09JerseyTransportationServiceGreen Jobs

  13. Recovery Act„Transportation Electrification Education Partnership for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList?Department09JerseyTransportationServiceGreen

  14. Recovery Act„Transportation Electrification Education Partnership for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList?Department09JerseyTransportationServiceGreenGreen

  15. The Ohio Advanced Transportation Partnership (OATP) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy Department Feeds11,IndustrialDepartment of2 DOE

  16. The Ohio Advanced Transportation Partnership (OATP) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy Department Feeds11,IndustrialDepartment of2 DOE1 DOE

  17. The Ohio Advanced Transportation Partnership (OATP) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy Department Feeds11,IndustrialDepartment of2 DOE1 DOE0

  18. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    SciTech Connect (OSTI)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31T23:59:59.000Z

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).

  19. DOE Partnerships with States, Tribes and Other Federal Programs Help Responders Prepare for Challenges Involving Transport of Radioactive Materials

    SciTech Connect (OSTI)

    Marsha Keister

    2001-02-01T23:59:59.000Z

    DOE Partnerships with States, Tribes and Other Federal Programs Help Responders Prepare for Challenges Involving Transport of Radioactive Materials Implementing adequate institutional programs and validating preparedness for emergency response to radiological transportation incidents along or near U.S. Department of Energy (DOE) shipping corridors poses unique challenges to transportation operations management. Delayed or insufficient attention to State and Tribal preparedness needs may significantly impact the transportation operations schedule and budget. The DOE Transportation Emergency Preparedness Program (TEPP) has successfully used a cooperative planning process to develop strong partnerships with States, Tribes, Federal agencies and other national programs to support responder preparedness across the United States. DOE TEPP has found that building solid partnerships with key emergency response agencies ensures responders have access to the planning, training, technical expertise and assistance necessary to safely, efficiently and effectively respond to a radiological transportation accident. Through the efforts of TEPP over the past fifteen years, partnerships have resulted in States and Tribal Nations either using significant portions of the TEPP planning resources in their programs and/or adopting the Modular Emergency Response Radiological Transportation Training (MERRTT) program into their hazardous material training curriculums to prepare their fire departments, law enforcement, hazardous materials response teams, emergency management officials, public information officers and emergency medical technicians for responding to transportation incidents involving radioactive materials. In addition, through strong partnerships with Federal Agencies and other national programs TEPP provided technical expertise to support a variety of radiological response initiatives and assisted several programs with integration of the nationally recognized MERRTT program into other training venues, thus ensuring consistency of radiological response curriculums delivered to responders. This presentation will provide an overview of the steps to achieve coordination, to avoid redundancy, and to highlight several of the successful partnerships TEPP has formed with States, Tribes, Federal agencies and other national programs. Events, accident scenarios, and training where TEPP was proven to be integral in building the radiological response capabilities for first responders to actual radiological incidents are also highlighted. Participants will gain an appreciation for the collaborative efforts States and Tribes are engaging in with the DOE to ensure that responders all along the DOE transportation corridors are adequately prepared to respond to shipments of radioactive materials through their communities.

  20. Partnering with Utilities Part 2- Advanced Topics for Local Governments in Creating Successful Partnerships with Utilities to Deliver Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    This presentation given through the DOE's Technical Assitance Program (TAP) is part two in the series Partnering with Utilities:Advanced Topics for Local Governments in Creating Successful Partnerships with Utilities to Deliver Energy Efficiency Programs.

  1. Partnering with Utilities Part 2: Advanced Topics for Local Governments in Creating Successful Partnerships with Utilities to Deliver Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    This presentation; given through the DOE's Technical Assitance Program (TAP); is part two in the series; Partnering with Utilities:Advanced Topics for Local Governments in Creating Successful Partnerships with Utilities to Deliver Energy Efficiency Programs.

  2. H2FIRST: A partnership to advance hydrogen fueling station technology driving an optimal consumer experience.

    SciTech Connect (OSTI)

    Moen, Christopher D.; Dedrick, Daniel E.; Pratt, Joseph William; Balfour, Bruce; Noma, Edwin Yoichi; Somerday, Brian P.; San Marchi, Christopher W.; K. Wipke; J. Kurtz; D. Terlip; K. Harrison; S. Sprik

    2014-03-01T23:59:59.000Z

    The US Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Office of Fuel Cell Technologies Office (FCTO) is establishing the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) partnership, led by the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories (SNL). FCTO is establishing this partnership and the associated capabilities in support of H2USA, the public/private partnership launched in 2013. The H2FIRST partnership provides the research and technology acceleration support to enable the widespread deployment of hydrogen infrastructure for the robust fueling of light-duty fuel cell electric vehicles (FCEV). H2FIRST will focus on improving private-sector economics, safety, availability and reliability, and consumer confidence for hydrogen fueling. This whitepaper outlines the goals, scope, activities associated with the H2FIRST partnership.

  3. Water Transport in PEM Fuel Cells: Advanced Modeling, Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing, and Design Optimization Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization This presentation, which focuses on...

  4. Water Transport in PEM Fuel Cells: Advanced Modeling, Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Design Optimization Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization Part of a 100 million fuel cell award...

  5. Overview and Progress of the Batteries for Advanced Transportation...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Overview and Progress of the Batteries for Advanced Transportation Technologies 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit...

  6. advanced energy transport: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced energy transport First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Energy Conversion Advanced...

  7. Chemical Kinetic Modeling of Advanced Transportation Fuels

    SciTech Connect (OSTI)

    PItz, W J; Westbrook, C K; Herbinet, O

    2009-01-20T23:59:59.000Z

    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  8. Sustainable Campus Transportation through Transit Partnership and Transportation Demand Management: A Case Study from the University of Florida

    E-Print Network [OSTI]

    Bond, Alex; Steiner, Ruth

    2006-01-01T23:59:59.000Z

    A. 2005. The impacts of transportation demand management andUnlimited access. Transportation 28 (3): 233–267. Cervero,transit. Journal of Public Transportation 3 (4):10–19. ???.

  9. Advances in Transportation Technologies | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout UsAdvanced Modeling2

  10. Advanced simulation of intelligent transportation systems

    SciTech Connect (OSTI)

    Ewing, T.; Doss, E.; Hanebutte, U.; Tentner, A. [Argonne National Lab., IL (United States)

    1996-11-01T23:59:59.000Z

    A large-scale, comprehensive, scaleable simulation of an Intelligent Transportation System (ITS) has been developed which is capable of running on parallel computers and distributed (networked) computer systems. The simulator currently models instrumented {open_quotes}smart{close_quotes} vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide two-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces to support human-factors studies. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on parallel computers, such as ANL`s IBM SP-2, for large-scale problems. A novel feature of this approach is that vehicles are represented by autonomous computer processes which exchange messages with other processes. The vehicles have a behavior model which governs route selection and driving behavior, and can react to external traffic events much like real vehicles. With this approach, the simulation is scaleable to take advantage of emerging massively parallel processor (MPP) systems.

  11. Scienti#12;c Discovery through Advanced Computing (SciDAC-3) Partnership Project Annual Report

    SciTech Connect (OSTI)

    Hoffman, Forest M [ORNL; Bochev, Pavel B [SNL; Cameron-Smith, Philip J [LLNL; Easter, Richard C [PNNL; Elliott, Scott M [LANL; Ghan, Steven J [PNNL; Liu, Xiaohong [formerly PNNL, U. Wyoming; Lowrie, Robert B [LANL; Lucas, Donald D [LLNL; Shrivastava, Manish [PNNL; Singh, Balwinder [PNNL; Tautges, Timothy J [ANL; Taylor, Mark A [SNL; Vertenstein, Mariana [NCAR; Worley, Patrick H [ORNL; and,; Zhang, Kai [PNNL

    2014-01-15T23:59:59.000Z

    The Applying Computationally Efficient Schemes for BioGeochemical Cycles ACES4BGC Project is advancing the predictive capabilities of Earth System Models (ESMs) by reducing two of the largest sources of uncertainty, aerosols and biospheric feedbacks, with a highly e#14;cient computational approach. In particular, this project is implementing and optimizing new computationally e#14;cient tracer advection algorithms for large numbers of tracer species; adding important biogeochemical interactions between the atmosphere, land, and ocean models; and applying uncertainty quanti#12;cation (UQ) techniques to constrain process parameters and evaluate uncertainties in feedbacks between biogeochemical cycles and the climate system.

  12. Advancing Innovation Through Partnerships 2011-2012 Technology Transfer Progress Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScienceScriptingAdvancing Innovation

  13. EA-1255: Project Partnership Transportation of Foreign-Owned Enriched Uranium from the Republic of Georgia

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to transport 5.26 kilograms of enriched uranium-23 5 in the form of nuclear fuel, from the Republic of Georgia to the United Kingdom.

  14. Advanced Reactors Thermal Energy Transport for Process Industries

    SciTech Connect (OSTI)

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01T23:59:59.000Z

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  15. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect (OSTI)

    Michael Swanson; Daniel Laudal

    2008-03-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher-reactivity (low-rank) coals appear to perform better in a transport reactor than the less reactive bituminous coals. Factors that affect TRDU product gas quality appear to be coal type, temperature, and air/coal ratios. Testing with a higher-ash, high-moisture, low-rank coal from the Red Hills Mine of the Mississippi Lignite Mining Company has recently been completed. Testing with the lignite coal generated a fuel gas with acceptable heating value and a high carbon conversion, although some drying of the high-moisture lignite was required before coal-feeding problems were resolved. No ash deposition or bed material agglomeration issues were encountered with this fuel. In order to better understand the coal devolatilization and cracking chemistry occurring in the riser of the transport reactor, gas and solid sampling directly from the riser and the filter outlet has been accomplished. This was done using a baseline Powder River Basin subbituminous coal from the Peabody Energy North Antelope Rochelle Mine near Gillette, Wyoming.

  16. FEMP and Department of Transportation Partnership Wins GreenGov Award |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review:Department of Energyand Review ofSafety OfficerAdvanced10 UpdatedDepartment of

  17. Vehicle Technologies Office Merit Review 2014: Advancing Transportation through Vehicle Electrification – Ram 1500 PHEV

    Broader source: Energy.gov [DOE]

    Presentation given by Chrysler LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancing transportation through...

  18. Collaboration - Jülich, ORNL partnership ... | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaboration - Jlich, ORNL partnership ... An agreement between Germany's Research Centre Jlich and Oak Ridge National Laboratory will pursue advances in materials study with...

  19. Advanced Vehicles Group: Center for Transportation Technologies and Systems

    SciTech Connect (OSTI)

    Not Available

    2008-08-01T23:59:59.000Z

    Describes R&D in advanced vehicle systems and components (e.g., batteries) by NREL's Advanced Vehicles Group.

  20. LEDS Global Partnership in Action: Advancing Climate-Resilient Low Emission Development Around the World (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01T23:59:59.000Z

    Many countries around the globe are designing and implementing low emission development strategies (LEDS). These LEDS seek to achieve social, economic, and environmental development goals while reducing long-term greenhouse gas (GHG) emissions and increasing resiliency to climate change impacts. The LEDS Global Partnership (LEDS GP) harnesses the collective knowledge and resources of more than 120 countries and international donor and technical organizations to strengthen climate-resilient low emission development efforts around the world.

  1. Partnership Agreement Options | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agreement For Commercializing Technology (ACT) CRADA Work For Others Agreement User Agreement Sample Sponsored Research Agreement SBIR-STTR Support Partnerships Home | Connect...

  2. advanced public transportation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of advanced sensor, computer, electronics, and communications technologies and management strategies in an integrated manner providing traveler information to increase...

  3. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect (OSTI)

    Per F. Peterson

    2010-03-01T23:59:59.000Z

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  4. Application of overset grids for aerodynamic assessment of an advanced civil transport aircraft

    E-Print Network [OSTI]

    Espitia, Alejandro E

    2014-01-01T23:59:59.000Z

    Simulations are presented for 1:20 and 1:11 scale configurations of an advanced civil transport designed to use boundary layer ingestion (BLI). Comparison with wind tunnel results on unpowered configurations show that the ...

  5. Advancing Cellulosic Ethanol for Large Scale Sustainable Transportation

    E-Print Network [OSTI]

    Wyman, C

    2007-01-01T23:59:59.000Z

    Advancing Cellulosic Ethanol for Large Scale SustainableHydrogen Batteries Nuclear By Lee Lynd, Dartmouth Ethanol •Ethanol, ethyl alcohol, fermentation ethanol, or just “

  6. Energy Department Awards $45 Million to Deploy Advanced Transportation...

    Energy Savers [EERE]

    is helping to build a strong 21st century transportation sector that cuts harmful pollution, creates jobs and leads to a more sustainable energy future," said Energy...

  7. Toward Optimized Bioclogging and Biocementation Through Combining Advanced Geophysical Monitoring and Reactive Transport Modeling

    E-Print Network [OSTI]

    Hubbard, Susan

    and electrical techniques); (ii) developing and using a reactive transport simulator capable of predicting and Reactive Transport Modeling Approaches Christopher G Hubbard1 , Susan S. Hubbard1 , Yuxin Wu1 , Vikranth heterogeneities at the field scale. Optimization of these strategies requires advances in mechanistic reactive

  8. Advancing Cellulosic Ethanol for Large Scale Sustainable Transportation

    E-Print Network [OSTI]

    Wyman, C

    2007-01-01T23:59:59.000Z

    and ferment all sugars Ethanol recovery Fuel ethanol Residuecellulosic ethanol that is competitive as a pure fuel •Fuels Ocean/ hydro Geothermal Transportation Electricity Hydrogen Batteries Nuclear By Lee Lynd, Dartmouth Ethanol •

  9. Advances in Inverse Transport Methods and Applications to Neutron Tomography

    E-Print Network [OSTI]

    Wu, Zeyun

    2011-02-22T23:59:59.000Z

    The purpose of the inverse-transport problems that we address is to reconstruct the material distribution inside an unknown object undergoing a nondestructive evaluation. We assume that the object is subjected to incident beams of photons...

  10. Overview of Advanced Technology Transportation, 2005 Update. Advanced Vehicle Testing Activity

    SciTech Connect (OSTI)

    Barnitt, R.; Eudy, L.

    2005-08-01T23:59:59.000Z

    Document provides an overview of the transportation market in 2005. Areas covered include hybrid, fuel cell, hydrogen, and alternative fuel vehicles.

  11. National Parks Move Forward on Sustainable Transportation in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation in Partnership with Clean Cities National Parks Move Forward on Sustainable Transportation in Partnership with Clean Cities March 25, 2015 - 1:13pm...

  12. Global Nuclear Energy Partnership Fact Sheet - Expand Domestic...

    Broader source: Energy.gov (indexed) [DOE]

    Expand Domestic Use of Nuclear Power Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of Nuclear Power GNEP will build on the recent advances made by the...

  13. Advancements in the ADAPT Photospheric Flux Transport Model

    E-Print Network [OSTI]

    Kyle S. Hickmann; Humberto C. Godinez; Carl J. Henney; C. Nick Arge

    2014-10-22T23:59:59.000Z

    Maps of the solar photospheric magnetic flux are fundamental drivers for simulations of the corona and solar wind which makes photospheric simulations important predictors of solar events on Earth. However, observations of the solar photosphere are only made intermittently over small regions of the solar surface. The Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model uses localized ensemble Kalman filtering techniques to adjust a set of photospheric simulations to agree with the available observations. At the same time this information is propagated to areas of the simulation that have not been observed. ADAPT implements a local ensemble transform Kalman filter (LETKF) to accomplish data assimilation, allowing the covariance structure of the flux transport model to influence assimilation of photosphere observations while eliminating spurious correlations between ensemble members arising from a limited ensemble size. We give a detailed account of the ADAPT model and the implementation of the LETKF. Advantages of the LETKF scheme over previously implemented assimilation methods are highlighted.

  14. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  15. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Alexandra Z. LaGuardia; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

    2001-10-30T23:59:59.000Z

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, mixed proton/electron conductivity and hydrogen transport was measured as a function of metal phase content for a range of ceramic/metal (cermet) compositions. It was found that optimum performance occurred at 44 wt.% metal content for all compositions tested. Although each cermet appeared to have a continuous metal phase, it is believed that hydrogen transport increased with increasing metal content partially due to beneficial surface catalyst characteristics resulting from the metal phase. Beyond 44 wt.% there was a reduction in hydrogen transport most likely due to dilution of the proton conducting ceramic phase. Hydrogen separation rates for 1-mm thick cermet membranes were in excess of 0.1 mL/min/cm{sup 2}, which corresponded to ambipolar conductivities between 1 x 10{sup -3} and 8 x 10{sup -3} S/cm. Similar results were obtained for multiphase ceramic membranes comprised of a proton-conducting perovskite and electron conducting metal oxide. These multi-phase ceramic membranes showed only a slight improvement in hydrogen transport upon addition of a metal phase. The highest hydrogen separation rates observed this quarter were for a cermet membrane containing a hydrogen transport metal. A 1-mm thick membrane of this material achieved a hydrogen separation rate of 0.3 mL/min/cm{sup 2} at only 700 C, which increased to 0.6 mL/min/cm{sup 2} at 950 C.

  16. Partnerships to continue moving toward zero emissions

    E-Print Network [OSTI]

    California at Davis, University of

    Partnerships to continue moving toward zero emissions Zero Emission transportation goals Zero Emission MAP makes available technical assistance to states and cities to support the growth of zero emission mobility markets. 1 Research shows

  17. Hydrogen energy for tomorrow: Advanced hydrogen transport and storage technologies

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The future use of hydrogen to generate electricity, heat homes and businesses, and fuel vehicles will require the creation of a distribution infrastructure of safe, and cost-effective transport and storage. Present storage methods are too expensive and will not meet the performance requirements of future applications. Transport technologies will need to be developed based on the production and storage systems that come into use as the hydrogen energy economy evolves. Different applications will require the development of different types of storage technologies. Utility electricity generation and home and office use will have storage fixed in one location--stationary storage--and size and weight will be less important than energy efficiency and costs of the system. Fueling a vehicle, however, will require hydrogen storage in an ``on-board`` system--mobile storage--with weight and size similar to the gasoline tank in today`s vehicle. Researchers are working to develop physical and solid-state storage systems that will meet these diverse future application demands. Physical storage systems and solid-state storage methods (metal hydrides, gas-on-solids adsorption, and glass microspheres) are described.

  18. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Adam E. Calihman; Lyrik Y. Pitzman; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

    2001-07-30T23:59:59.000Z

    Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, ceramic, cermet (ceramic/metal), and thin film membranes were prepared, characterized, and evaluated for H{sub 2} transport. For selected ceramic membrane compositions an optimum range for transition metal doping was identified, and it was determined that highest proton conductivity occurred for two-phase ceramic materials. Furthermore, a relationship between transition metal dopant atomic number and conductivity was observed. Ambipolar conductivities of {approx}6 x 10{sup -3} S/cm were achieved for these materials, and {approx} 1-mm thick membranes generated H{sub 2} transport rates as high as 0.3 mL/min/cm{sup 2}. Cermet membranes during this quarter were found to have a maximum conductivity of 3 x 10{sup -3} S/cm, which occurred at a metal phase contact of 36 vol.%. Homogeneous dense thin films were successfully prepared by tape casting and spin coating; however, there remains an unacceptably high difference in shrinkage rates between the film and support, which led to membrane instability. Further improvements in high pressure membrane seals also were achieved during this quarter, and a maximum pressure of 100 psig was attained. CoorsTek optimized many of the processing variables relevant to manufacturing scale production of ceramic H{sub 2} transport membranes, and SCI used their expertise to deposit a range of catalysts compositions onto ceramic membrane surfaces. Finally, MTI compiled relevant information regarding Vision 21 fossil fuel plant operation parameters, which will be used as a starting point for assessing the economics of incorporating a H{sub 2} separation unit.

  19. Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing,

    E-Print Network [OSTI]

    Optimization J. Vernon Cole and Ashok Gidwani CFDRC Prepared for: DOE Hydrogen Fuel Cell Kickoff MeetingWater Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design fuel cell design and operation; Demonstrate improvements in water management resulting in improved

  20. Steady-State Gyrokinetics Transport Code (SSGKT), A Scientific Application Partnership with the Framework Application for Core-Edge Transport Simulations, Final Report

    SciTech Connect (OSTI)

    Fahey, Mark R. [Oak Ridge National Laboratory] [Oak Ridge National Laboratory; Candy, Jeff [General Atomics] [General Atomics

    2013-11-07T23:59:59.000Z

    This project initiated the development of TGYRO ? a steady-state Gyrokinetic transport code (SSGKT) that integrates micro-scale GYRO turbulence simulations into a framework for practical multi-scale simulation of conventional tokamaks as well as future reactors. Using a lightweight master transport code, multiple independent (each massively parallel) gyrokinetic simulations are coordinated. The capability to evolve profiles using the TGLF model was also added to TGYRO and represents a more typical use-case for TGYRO. The goal of the project was to develop a steady-state Gyrokinetic transport code (SSGKT) that integrates micro-scale gyrokinetic turbulence simulations into a framework for practical multi-scale simulation of a burning plasma core ? the International Thermonuclear Experimental Reactor (ITER) in particular. This multi-scale simulation capability will be used to predict the performance (the fusion energy gain, Q) given the H-mode pedestal temperature and density. At present, projections of this type rely on transport models like GLF23, which are based on rather approximate fits to the results of linear and nonlinear simulations. Our goal is to make these performance projections with precise nonlinear gyrokinetic simulations. The method of approach is to use a lightweight master transport code to coordinate multiple independent (each massively parallel) gyrokinetic simulations using the GYRO code. This project targets the practical multi-scale simulation of a reactor core plasma in order to predict the core temperature and density profiles given the H-mode pedestal temperature and density. A master transport code will provide feedback to O(16) independent gyrokinetic simulations (each massively parallel). A successful feedback scheme offers a novel approach to predictive modeling of an important national and international problem. Success in this area of fusion simulations will allow US scientists to direct the research path of ITER over the next two decades. The design of an efficient feedback algorithm is a serious numerical challenge. Although the power source and transport balance coding in the master are standard, it is nontrivial to design a feedback loop that can cope with outputs that are both intermittent and extremely expensive. A prototypical feedback scheme has already been successfully demonstrated for a single global GYRO simulation, although the robustness and efficiency are likely far from optimal. Once the transport feedback scheme is perfected, it could, in principle, be embedded into any of the more elaborate transport codes (ONETWO, TRANSP, and CORSICA), or adopted by other FSP-related multi-scale projects.

  1. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; M.K. Ferber; Aaron L. Wagner; Jon P. Wagner

    2002-07-30T23:59:59.000Z

    Eltron Research Inc. and their team members are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, new cermet compositions were tested that demonstrated similar performance to previous materials. A 0.5-mm thick membrane achieved at H{sub 2} transport rate of 0.2 mL/min/cm{sup 2} at 950 C, which corresponded to an ambipolar conductivity of 3 x 10{sup -3} S/cm. Although these results were equivalent to those for other cermet compositions, this new composition might be useful if it demonstrates improved chemical or mechanical stability. Ceramic/ceramic composite membranes also were fabricated and tested; however, some reaction did occur between the proton- and electron-conducting phases, which likely compromised conductivity. This sample only achieved a H{sub 2} transport rate of {approx} 0.006 mL/min/cm{sup 2} and an ambipolar conductivity of {approx}4 x 10{sup -4} S/cm. Chemical stability tests were continued, and candidate ceramic membranes were found to react slightly with carbon monoxide under extreme testing conditions. A cermet compositions did not show any reaction with carbon monoxide, but a thick layer of carbon formed on the membrane surface. The most significant technical accomplishment this quarter was a new high-pressure seal composition. This material maintained a pressure differential across the membrane of {approx} 280 psi at 800 C, and is still in operation.

  2. Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program

    SciTech Connect (OSTI)

    Caille, Gary

    2013-12-13T23:59:59.000Z

    The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.

  3. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect (OSTI)

    Michael L. Swanson

    2005-08-30T23:59:59.000Z

    The transport reactor development unit (TRDU) was modified to accommodate oxygen-blown operation in support of a Vision 21-type energy plex that could produce power, chemicals, and fuel. These modifications consisted of changing the loop seal design from a J-leg to an L-valve configuration, thereby increasing the mixing zone length and residence time. In addition, the standpipe, dipleg, and L-valve diameters were increased to reduce slugging caused by bubble formation in the lightly fluidized sections of the solid return legs. A seal pot was added to the bottom of the dipleg so that the level of solids in the standpipe could be operated independently of the dipleg return leg. A separate coal feed nozzle was added that could inject the coal upward into the outlet of the mixing zone, thereby precluding any chance of the fresh coal feed back-mixing into the oxidizing zone of the mixing zone; however, difficulties with this coal feed configuration led to a switch back to the original downward configuration. Instrumentation to measure and control the flow of oxygen and steam to the burner and mix zone ports was added to allow the TRDU to be operated under full oxygen-blown conditions. In total, ten test campaigns have been conducted under enriched-air or full oxygen-blown conditions. During these tests, 1515 hours of coal feed with 660 hours of air-blown gasification and 720 hours of enriched-air or oxygen-blown coal gasification were completed under this particular contract. During these tests, approximately 366 hours of operation with Wyodak, 123 hours with Navajo sub-bituminous coal, 143 hours with Illinois No. 6, 106 hours with SUFCo, 110 hours with Prater Creek, 48 hours with Calumet, and 134 hours with a Pittsburgh No. 8 bituminous coal were completed. In addition, 331 hours of operation on low-rank coals such as North Dakota lignite, Australian brown coal, and a 90:10 wt% mixture of lignite and wood waste were completed. Also included in these test campaigns was 50 hours of gasification on a petroleum coke from the Hunt Oil Refinery and an additional 73 hours of operation on a high-ash coal from India. Data from these tests indicate that while acceptable fuel gas heating value was achieved with these fuels, the transport gasifier performs better on the lower-rank feedstocks because of their higher char reactivity. Comparable carbon conversions have been achieved at similar oxygen/coal ratios for both air-blown and oxygen-blown operation for each fuel; however, carbon conversion was lower for the less reactive feedstocks. While separation of fines from the feed coals is not needed with this technology, some testing has suggested that feedstocks with higher levels of fines have resulted in reduced carbon conversion, presumably due to the inability of the finer carbon particles to be captured by the cyclones. These data show that these low-rank feedstocks provided similar fuel gas heating values; however, even among the high-reactivity low-rank coals, the carbon conversion did appear to be lower for the fuels (brown coal in particular) that contained a significant amount of fines. The fuel gas under oxygen-blown operation has been higher in hydrogen and carbon dioxide concentration since the higher steam injection rate promotes the water-gas shift reaction to produce more CO{sub 2} and H{sub 2} at the expense of the CO and water vapor. However, the high water and CO{sub 2} partial pressures have also significantly reduced the reaction of (Abstract truncated)

  4. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    SciTech Connect (OSTI)

    Wang, M. Q.

    1998-12-16T23:59:59.000Z

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  5. NSF/DOE Thermoelectrics Partnership: Purdue ? GM Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces NSFDOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste...

  6. PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O'Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

    2006-01-01T23:59:59.000Z

    During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

  7. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  8. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect (OSTI)

    Thomas A. Erickson

    2004-01-01T23:59:59.000Z

    The PCOR Partnership is off to a very exciting and ambitious start. Task 1 activities have included the planning and execution of an internal kickoff meeting, participation in the DOE's national kickoff meeting, and the planning and execution of the first meeting of the PCOR Partnership at the Energy & Environmental Research Center (EERC). Task 2 activities have focused on developing effective and critical partnerships. A plan has been developed to utilize Dakota Gasification Company's (DGC) experience and data with respect to their participation in the enhanced oil recovery project at Weyburn, Saskatchewan. A solid line of communication has been developed with the Interstate Oil & Gas Compact Commission (IOGCC) for the mutual benefit of the PCOR Partnership and IOGCC's compensatory efforts. Task 3 activities have been focused on developing a foundation of background materials in order to avoid a duplication of efforts and provide the best outreach and educational materials possible. Progress in Task 4, Characterization and Evaluation, has included the development of a database format, the preliminary collection of data regarding CO{sub 2} sources and sinks, and data on the performance and costs for CO{sub 2} separation, capture, and treatment to prepare the fluid for pipeline transportation. Task 5 activities have resulted in a conceptual model for screening and qualitatively assessing sequestration options. Task 5 activities have also been useful in structuring data collection and other activities in Tasks 2, 3, and 5.

  9. Inward particle transport at high collisionality in the Experimental Advanced Superconducting Tokamak

    SciTech Connect (OSTI)

    Wang, G. Q.; Ma, J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China) [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Centre for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031 (China); Weiland, J.; Zang, Q. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)] [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2013-10-15T23:59:59.000Z

    We have made the first drift wave study of particle transport in the Experimental Advanced Superconducting Tokamak (Wan et al., Nucl. Fusion 49, 104011 (2009)). The results reveal that collisions make the particle flux more inward in the high collisionality regime. This can be traced back to effects that are quadratic in the collision frequency. The particle pinch is due to electron trapping which is not very efficient in the high collisionality regime so the approach to equilibrium is slow. We have included also the electron temperature gradient (ETG) mode to give the right electron temperature gradient, since the Trapped Electron Mode (TE mode) is weak in this regime. However, at the ETG mode number ions are Boltzmann distributed so the ETG mode does not give particle transport.

  10. ULTRACLEAN FUELS PRODUCTION AND UTILIZATION FOR THE TWENTY-FIRST CENTURY: ADVANCES TOWARDS SUSTAINABLE TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    Fox, E.

    2013-06-17T23:59:59.000Z

    Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow the introduction of alternative feed stocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive clean-up and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization, synthesis gas conversion into fuels and feed stocks that were presented at the 245th American Chemical Society Spring Annual Meeting in New Orleans, LA in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization".

  11. Foiling the Flu Bug Global Partnerships for Nuclear Energy

    E-Print Network [OSTI]

    1 1663 Foiling the Flu Bug Global Partnerships for Nuclear Energy Dark Universe Mysteries WILL NOT NEED TESTING Expanding Nuclear Energy the Right Way GLOBAL PARTNERSHIPS AND AN ADVANCED FUEL CYCLE sense.The Laboratory is operated by Los Alamos National Security, LLC, for the Department of Energy

  12. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman

    2004-07-01T23:59:59.000Z

    The Plains Co{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) activities have focused on developing information on deployment issues to support Task 5 activities by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) activities have focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) has included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 (Modeling and Phase II Action Plans) activities have focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

  13. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

    2005-01-01T23:59:59.000Z

    The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

  14. TERMS OF REFERENCE FOR THE INTERNATIONAL PARTNERSHIP FOR THE HYDROGEN ECONOMY

    E-Print Network [OSTI]

    TERMS OF REFERENCE FOR THE INTERNATIONAL PARTNERSHIP FOR THE HYDROGEN ECONOMY Introduction international partnership to help the world advance toward a sustainable hydrogen economy and to address our greenhouse gas emissions levels. The International Partnership for the Hydrogen Economy (IPHE) will provide

  15. PartnershipAgreementsTraining

    Energy Savers [EERE]

    small business community is afforded every opportunity to participate in government contracting. n The executed Partnership Agreement permits procurement activities to engage in...

  16. Technology Demonstration Partnership Policy

    Broader source: Energy.gov [DOE]

    This City Council memorandum establishes a framework for engaging in and evaluating demonstration partnerships with the goal of developing, testing, and demonstrating emerging technologies, product, and service innovations.

  17. NEW SOLAR HOMES PARTNERSHIP FINALGUIDEBOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP FINALGUIDEBOOK DECEMBER 2006 CEC-300 Executive Director Payam Narvand Program Lead NEW SOLAR HOMES PARTNERSHIP Bill Blackburn Supervisor EMERGING RENEWABLES PROGRAM & NEW SOLAR HOMES PARTNERSHIP Drake Johnson Office Manager RENEWABLE ENERGY PROGRAM

  18. Technology Partnership Ombudsman - Roles, Responsibilities, Authoritie...

    Energy Savers [EERE]

    Technology Partnership Ombudsman - Roles, Responsibilities, Authorities and Accountabilities Technology Partnership Ombudsman - Roles, Responsibilities, Authorities and...

  19. NETL Partnership and Licensing Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnerships and Licensing Options Available Technologies Partnerships and Licensing Success Stories Contact Us Cooperative Research and Development Agreement (CRADA) A CRADA...

  20. E-Print Network 3.0 - advanced transportation system Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestr Summary: ) > Warning signals > Intelligent transportation systems >...

  1. WEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Larry Myer; Terry Surles; Kelly Birkinshaw

    2004-01-01T23:59:59.000Z

    The West Coast Regional Carbon Sequestration Partnership is one of seven partnerships which have been established by the US Department of Energy (DOE) to evaluate carbon dioxide capture, transport and sequestration (CT&S) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, and the North Slope of Alaska. Led by the California Energy Commission, the West Coast Partnership is a consortium of over thirty five organizations, including state natural resource and environmental protection agencies; national labs and universities; private companies working on CO{sub 2} capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. In an eighteen month Phase I project, the Partnership will evaluate both terrestrial and geologic sequestration options. Work will focus on five major objectives: (1) Collect data to characterize major CO{sub 2} point sources, the transportation options, and the terrestrial and geologic sinks in the region, and compile and organize this data via a geographic information system (GIS) database; (2) Address key issues affecting deployment of CT&S technologies, including storage site permitting and monitoring, injection regulations, and health and environmental risks (3) Conduct public outreach and maintain an open dialogue with stakeholders in CT&S technologies through public meetings, joint research, and education work (4) Integrate and analyze data and information from the above tasks in order to develop supply curves and cost effective, environmentally acceptable sequestration options, both near- and long-term (5) Identify appropriate terrestrial and geologic demonstration projects consistent with the options defined above, and create action plans for their safe and effective implementation A kickoff meeting for the West Coast Partnership was held on Sept 30-Oct.1. Contracts were then put into place with twelve organizations which will carry out the technical work required to meet Partnership objectives.

  2. Advances and future needs in particle production and transport code developments

    SciTech Connect (OSTI)

    Mokhov, N.V.; /Fermilab

    2009-12-01T23:59:59.000Z

    The next generation of accelerators and ever expanding needs of existing accelerators demand new developments and additions to Monte-Carlo codes, with an emphasis on enhanced modeling of elementary particle and heavy-ion interactions and transport. Challenges arise from extremely high beam energies and beam power, increasing complexity of accelerators and experimental setups, as well as design, engineering and performance constraints. All these put unprecedented requirements on the accuracy of particle production predictions, the capability and reliability of the codes used in planning new accelerator facilities and experiments, the design of machine, target and collimation systems, detectors and radiation shielding and minimization of their impact on environment. Recent advances in widely-used general-purpose all-particle codes are described for the most critical modules such as particle production event generators, elementary particle and heavy ion transport in an energy range which spans up to 17 decades, nuclide inventory and macroscopic impact on materials, and dealing with complex geometry of accelerator and detector structures. Future requirements for developing physics models and Monte-Carlo codes are discussed.

  3. National Institute for Advanced Transportation Technology A N N U A L R E P O R T A U G U S T 2 0 0 2

    E-Print Network [OSTI]

    Kyte, Michael

    for Clean Vehicle Technology relates to the area's environmental concerns of preserving national parks1 National Institute for Advanced Transportation Technology A N N U A L R E P O R T · A U G U S T 2;2 Theme: Advanced Transportation Technology M I S S I O N Our mission is to work with industry, government

  4. United States Automotive Materials Partnership LLC (USAMP)

    SciTech Connect (OSTI)

    United States Automotive Materials Partnership

    2011-01-31T23:59:59.000Z

    The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunities for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly developed materials and technologies, and have resulted in significant technical successes to date, as discussed in the individual project summary final reports. Over 70 materials-focused projects have been established by USAMP, in collaboration with participating suppliers, academic/non-profit organizations and national laboratories, and executed through its original three divisions: the Automotive Composites Consortium (ACC), the Automotive Metals Division (AMD), and Auto/Steel Partnership (A/SP). Two new divisions were formed by USAMP in 2006 to drive research emphasis on integration of structures incorporating dissimilar lightweighting materials, and on enabling technology for nondestructive evaluation of structures and joints. These new USAMP divisions are: Multi-Material Vehicle Research and Development Initiative (MMV), and the Non-Destructive Evaluation Steering Committee (NDE). In cooperation with USAMP and the FreedomCAR Materials Technical Team, a consensus process has been established to facilitate the development of projects to help move leveraged research to targeted development projects that eventually migrate to the original equipment manufacturers (OEMs) as application engineering projects. Research projects are assigned to one of three phases: concept feasibility, technical feasibility, and demonstration feasibility. Projects are guided through ongoing monitoring and USAMP offsite reviews, so as to meet the requirements of each phase before they are allowed to move on to the next phase. As progress is made on these projects, the benefits of lightweight construction and enabling technologies will be transferred to the supply base and implemented in production vehicles. The single greatest barrier to automotive use of lightweight materials is their high cost; therefore, priority is given to activities aimed at reducing costs through development of new materials, forming technologies, and manufacturing processes. The emphasis of the research projects reported in this document was largely on applied research and evaluation of mass savings opportunities thro

  5. COP 18 Side Event: Advancing Collaborative Action for Low Emissions...

    Open Energy Info (EERE)

    Event: Advancing Collaborative Action for Low Emissions Development Jump to: navigation, search Low Emission Development Strategies Global Partnership Advancing climate-resilient,...

  6. The Partnership Evaluation Framework

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: The Partnership Evaluation Framework: How to evaluate a potential partner’s business model and identify areas for collaboration.

  7. Utility and Industrial Partnerships

    E-Print Network [OSTI]

    Sashihara, T. F.

    In the past decade, many external forces have shocked both utilities and their large industrial customers into seeking more effective ways of coping and surviving. One such way is to develop mutually beneficial partnerships optimizing the use...

  8. Regional Carbon Sequestration Partnerships

    Broader source: Energy.gov [DOE]

    DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also...

  9. Better Buildings Residential Network Case Study: Partnerships...

    Energy Savers [EERE]

    Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships, from the U.S. Department of...

  10. Public Private R&D Partnerships Examples

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Coal Power Plants 2010 * 400kW Modules -Residential, Commercial, Industrial CHP -Transportation APUs 2005 * 1 st Generation Prototypes - Testing & Evaluation 5 6 SECA...

  11. Alternative Transportation Technologies: Hydrogen, Biofuels,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced...

  12. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Lisa S. Botnen

    2005-07-01T23:59:59.000Z

    The Plains CO{sub 2} Reduction (PCOR) Partnership characterization work is nearing completion, and most remaining efforts are related to finalizing work products. Task 2 (Technology Deployment) has developed a Topical Report entitled ''Deployment Issues Related to Geologic CO{sub 2} Sequestration in the PCOR Partnership Region''. Task 3 (Public Outreach) has developed an informational Public Television program entitled ''Nature in the Balance'', about CO{sub 2} sequestration. The program was completed and aired on Prairie Public Television in this quarter. Task 4 (Sources, Sinks, and Infrastructure) efforts are nearing completion, and data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation are being incorporated into a series of topical reports. The expansion of the Decision Support System Geographic Information System database has continued with the development of a ''save bookmark'' feature that allows users to save a map from the system easily. A feature that allows users to develop a report that summarizes CO{sub 2} sequestration parameters was also developed. Task 5 (Modeling and Phase II Action Plans) focused on screening and qualitatively assessing sequestration options and developing economic estimates for important regional CO{sub 2} sequestration strategies.

  13. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect (OSTI)

    Thomas A. Erickson

    2004-04-01T23:59:59.000Z

    The PCOR Partnership continues to make great progress. Task 2 (Deployment Issues) activities have focused on utilizing Dakota Gasification Company (DGC) experience and data with respect to DGC participation in the enhanced oil recovery project at Weyburn, Saskatchewan. A solid line of communication has been developed with the Interstate Oil & Gas Compact Commission (IOGCC) for the mutual benefit of the PCOR Partnership and IOGCC's complementary efforts. Task 3 (Public Education and Outreach) activities have focused on developing a foundation of background materials in order to avoid a duplication of efforts and provide the best outreach and educational materials possible. Progress in Task 4 (Characterization and Evaluation) has included the development of a database format, the preliminary collection of data regarding CO{sub 2} sources and sinks, and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 (Modeling and Phase II Action Plans) activities have resulted in a conceptual model for screening and qualitatively assessing sequestration options. Task 5 activities have also been useful in structuring data collection and other activities in Tasks 2, 3, and 5.

  14. E-Print Network 3.0 - advanced space transportation Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Renewable Energy Program Summary: and indoor environments through advanced space conditioning, refrigeration, thermal distribution, appliances... and dependence on foreign...

  15. Ellsworth Air Force Base Advanced Metering Project

    Broader source: Energy.gov [DOE]

    Presentation covers the Ellsworth Air Force Base Advanced Metering project and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  16. E-Print Network 3.0 - advanced cuttings transport Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biology and Medicine ; Computer Technologies and Information Sciences ; Engineering 2 Council of University Transportation Centers Summary: Recipient Remarks Michael Kyte,...

  17. Minority Educational Institutions Student Partnership Program...

    Broader source: Energy.gov (indexed) [DOE]

    Minority Educational Institutions Student Partnership Program (MEISPP) Internship Spotlight Minority Educational Institutions Student Partnership Program (MEISPP) Internship...

  18. NEW SOLAR HOMES PARTNERSHIP COMMITTEEDRAFTGUIDEBOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP COMMITTEEDRAFTGUIDEBOOK NOVEMBER 2006 CEC................................................................................................ 1 C. Comparison of Emerging Renewables Program and New Solar Homes Partnership Guidebooks ................................................... 8 G. Estimated Performance Using Commission PV Calculator .................................. 8 H

  19. Economic Partnership, IDB ink deal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    18 May 2010 00:00 Economic Partnership, IDB ink deal The Oak Ridge Industrial Development Board (IDB) signed an agreement with the Oak Ridge Economic Partnership on Friday hiring...

  20. Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership

    SciTech Connect (OSTI)

    None

    2000-12-01T23:59:59.000Z

    The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

  1. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  2. Partnerships | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to the Pacific NorthwestPartnershipsPartnershipsFor

  3. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces...

  4. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel Nanostructured Interface Solution for Automotive Thermoelectric...

  5. Thermoelectrics Partnership: High Performance Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles Thermoelectrics Partnership: High Performance Thermoelectric...

  6. 6Innovation and Partnership

    E-Print Network [OSTI]

    -based design of better and more efficient social services. The pivotal development in the innovation sphere6Innovation and Partnership #12;6.1. Context and overarching goals Over the past four years, UCD and in their mutual reinforcement. Over the period of this new strategic plan, UCD will develop innovation

  7. The Sheward Partnership, LLC

    High Performance Buildings Database

    Philadelphia, PA The renovation of the Philadelphia office suite was in response to renewing the lease for an additional ten years. The existing tenant fit-out was originally constructed in 2001 and was designed by Mr. Michael Sheward, Principal of The Sheward Partnership. The scope of work for the renovation consisted of finish upgrades, new cabinetry, plumbing modifications, HVAC fixes, and lighting alterations.

  8. Partnership Sugar Beet Growers

    E-Print Network [OSTI]

    production areas this year. Some locations received torrential early season rainfall which induced a varietyPartnership of: Sugar Beet Growers Michigan Sugar Company Monitor Sugar Company Michigan State the negatives, the industry still harvested an average of approximately 18-tons per acre and 18% sugar. Improved

  9. E-Print Network 3.0 - advanced subsonic transport Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Two-Dimensional Conservation Laws Summary: (4.3) in the subsonic region as an equation for whose coefficients evolve according to transport... degenerate elliptic equations...

  10. StationaryEnvironment ResidentialTransportation Premium Power Advanced High Efficiency, Quick Start Fuel

    E-Print Network [OSTI]

    Premium Power Agenda STARTM (1999-2003) ­ Substrate based Transportation application Autothermal ReformerEnvironment Residential Stationary Premium Power STAR Fuel Processor · Autothermal reformer · Substrate-based catalysts

  11. E-Print Network 3.0 - advanced rural transportation systems Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of rural populations and less developed transportation networks results in fewer health care... ). These rural-urban differences in health system ... Source: Lopez-Carr, David -...

  12. Advances

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScienceScripting forAdvances in

  13. Welcome and Advanced Manufacturing Partnership (Text Version...

    Broader source: Energy.gov (indexed) [DOE]

    200 school aged students go into this manufacturing demonstration facility and make 3D printing or other manufacturing parts. Design and make parts for their robots. For their...

  14. Advanced Manufacturing Partnership | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and cost-shared R&D projects, supporting manufacturing infrastructure, and facilitating job creation. These actions save energy and provide benefits to U.S. industry and the...

  15. Secretary Chu Announces New Partnerships Under the Energy and...

    Broader source: Energy.gov (indexed) [DOE]

    Partnerships Under the Energy and Climate Partnership of the Americas Secretary Chu Announces New Partnerships Under the Energy and Climate Partnership of the Americas April 15,...

  16. ADVANCED METHODS FOR THE COMPUTATION OF PARTICLE BEAM TRANSPORT AND THE COMPUTATION OF ELECTROMAGNETIC FIELDS AND MULTIPARTICLE PHENOMENA

    SciTech Connect (OSTI)

    Alex J. Dragt

    2012-08-31T23:59:59.000Z

    Since 1980, under the grant DEFG02-96ER40949, the Department of Energy has supported the educational and research work of the University of Maryland Dynamical Systems and Accelerator Theory (DSAT) Group. The primary focus of this educational/research group has been on the computation and analysis of charged-particle beam transport using Lie algebraic methods, and on advanced methods for the computation of electromagnetic fields and multiparticle phenomena. This Final Report summarizes the accomplishments of the DSAT Group from its inception in 1980 through its end in 2011.

  17. Experimental characterization of adsorption and transport properties for advanced thermo-adsorptive batteries

    E-Print Network [OSTI]

    Kim, Hyunho, S.M. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Thermal energy storage has received significant interest for delivering heating and cooling in both transportation and building sectors. It can minimize the use of on-board electric batteries for heating, ventilation and ...

  18. Partnership in Computational Science

    SciTech Connect (OSTI)

    Huray, Paul G.

    1999-02-24T23:59:59.000Z

    This is the final report for the "Partnership in Computational Science" (PICS) award in an amount of $500,000 for the period January 1, 1993 through December 31, 1993. A copy of the proposal with its budget is attached as Appendix A. This report first describes the consequent significance of the DOE award in building infrastructure of high performance computing in the Southeast and then describes the work accomplished under this grant and a list of publications resulting from it.

  19. Transportation

    E-Print Network [OSTI]

    Vinson, Steve

    2013-01-01T23:59:59.000Z

    Transportation in ancient Egypt entailed the use of boats2007 Land transport in Roman Egypt: A study of economics andDieter 1991 Building in Egypt: Pharaonic stone masonry. New

  20. Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors

    SciTech Connect (OSTI)

    Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi; Zhang, Dingkang

    2013-11-29T23:59:59.000Z

    This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implement a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.

  1. USDrive Partnership Plan, December 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to as "partners" and include the U.S. Department of Energy and companies in the automobile, energy, and electric utility industries. Specifically, the Partnership facilitates...

  2. Experience INL/University Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INLUniversity Partnerships Idaho National Laboratory has strong relationships with schools throughout the United States and actively encourages its scientists and engineers to...

  3. Utility Partnerships Program Overview (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    Program overview brochure for the Utility Partnerships Program within the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP).

  4. Geospatial Analysis and Optimization of Fleet Logistics to Exploit Alternative Fuels and Advanced Transportation Technologies: Preprint

    SciTech Connect (OSTI)

    Sparks, W.; Singer, M.

    2010-06-01T23:59:59.000Z

    This paper describes how the National Renewable Energy Laboratory (NREL) is developing geographical information system (GIS) tools to evaluate alternative fuel availability in relation to garage locations and to perform automated fleet-wide optimization to determine where to deploy alternative fuel and advanced technology vehicles and fueling infrastructure.

  5. The role of plasma evolution and photon transport in optimizing future advanced lithography sources

    E-Print Network [OSTI]

    Harilal, S. S.

    , and reduced contamination and damage to the optical mirror collection system from plasma debris and energetic particles. The ideal target is to generate a source of maximum EUV radiation output and collection in the 13 and plasma, ioniza- tion, plasma radiation, and details of photon transport in these media. We studied

  6. Partnerships | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to the Pacific NorthwestPartnerships Network

  7. Partnerships | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to the Pacific NorthwestPartnerships

  8. Partnerships and Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven AshbyDepartment of Energy PartneringPartnerships and

  9. Sandia National Laboratories: Partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PVracksFacilityParabolicPartnership

  10. Sandia National Laboratories: Partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-SaltReliability PVracksFacilityParabolicPartnershipPrice

  11. Utility Partnerships Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New12.'6/0.2Contract (UESC) is not anPartnerships Program

  12. Minority Educational Institution Student Partnership Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minority Educational Institution Student Partnership Program (MEISPP) Minority Educational Institution Student Partnership Program (MEISPP) December 14, 2012 8:00PM EST to March...

  13. Sustainable Business Models - Utilities and Efficiency Partnerships...

    Energy Savers [EERE]

    Sustainable Business Models - Utilities and Efficiency Partnerships Sustainable Business Models - Utilities and Efficiency Partnerships Provides an overview and lessons learned on...

  14. Obama Administration Announces New Partnership on Unconventional...

    Broader source: Energy.gov (indexed) [DOE]

    Partnership on Unconventional Natural Gas and Oil Research Obama Administration Announces New Partnership on Unconventional Natural Gas and Oil Research April 13, 2012 - 3:01pm...

  15. DOE Regional Partnership Successfully Demonstrates Terrestrial...

    Broader source: Energy.gov (indexed) [DOE]

    successfully completed by one of the U.S. Department of Energy's (DOE) seven Regional Carbon Sequestration Partnerships (RCSPs). The Plains CO2 Reduction (PCOR) Partnership , a...

  16. Federal Utility Partnership Working Group

    Broader source: Energy.gov [DOE]

    The Federal Utility Partnership Working Group (FUPWG) establishes partnerships and facilitates communications among Federal agencies, utilities, and energy service companies. The group develops strategies to implement cost-effective energy efficiency and water conservation projects through utility incentive programs at Federal sites.

  17. US EPA SmartWay Transport Partnership

    E-Print Network [OSTI]

    Minnesota, University of

    Way Partner Results 2, 700 Partners ­ Most of the top 100 carriers in the US (700,000 trucks) ­ All the Class 1 railroads; several short haul railroads ­ 25% of the Fortune 100 shipper partners ­ In addition - logistics companies, technology manufacturers, trucks stops, ports, banks, vehicle and equipment dealer

  18. Recovery Act?Transportation Electrification Education Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. tiarravt038peng2010o...

  19. Southeast Regional Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Kenneth J. Nemeth

    2006-08-30T23:59:59.000Z

    The Southeast Regional Carbon Sequestration Partnership's (SECARB) Phase I program focused on promoting the development of a framework and infrastructure necessary for the validation and commercial deployment of carbon sequestration technologies. The SECARB program, and its subsequent phases, directly support the Global Climate Change Initiative's goal of reducing greenhouse gas intensity by 18 percent by the year 2012. Work during the project's two-year period was conducted within a ''Task Responsibility Matrix''. The SECARB team was successful in accomplishing its tasks to define the geographic boundaries of the region; characterize the region; identify and address issues for technology deployment; develop public involvement and education mechanisms; identify the most promising capture, sequestration, and transport options; and prepare action plans for implementation and technology validation activity. Milestones accomplished during Phase I of the project are listed below: (1) Completed preliminary identification of geographic boundaries for the study (FY04, Quarter 1); (2) Completed initial inventory of major sources and sinks for the region (FY04, Quarter 2); (3) Completed initial development of plans for GIS (FY04, Quarter 3); (4) Completed preliminary action plan and assessment for overcoming public perception issues (FY04, Quarter 4); (5) Assessed safety, regulatory and permitting issues (FY05, Quarter 1); (6) Finalized inventory of major sources/sinks and refined GIS algorithms (FY05, Quarter 2); (7) Refined public involvement and education mechanisms in support of technology development options (FY05, Quarter 3); and (8) Identified the most promising capture, sequestration and transport options and prepared action plans (FY05, Quarter 4).

  20. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions

    SciTech Connect (OSTI)

    Dragt, A.J.; Gluckstern, R.L.

    1990-11-01T23:59:59.000Z

    The University of Maryland Dynamical Systems and Accelerator Theory Group carries out research in two broad areas: the computation of charged particle beam transport using Lie algebraic methods and advanced methods for the computation of electromagnetic fields and beam-cavity interactions. Important improvements in the state of the art are believed to be possible in both of these areas. In addition, applications of these methods are made to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. The Lie algebraic method of computing and analyzing beam transport handles both linear and nonlinear beam elements. Tests show this method to be superior to the earlier matrix or numerical integration methods. It has wide application to many areas including accelerator physics, intense particle beams, ion microprobes, high resolution electron microscopy, and light optics. With regard to the area of electromagnetic fields and beam cavity interactions, work is carried out on the theory of beam breakup in single pulses. Work is also done on the analysis of the high behavior of longitudinal and transverse coupling impendances, including the examination of methods which may be used to measure these impedances. Finally, work is performed on the electromagnetic analysis of coupled cavities and on the coupling of cavities to waveguides.

  1. Advanced quadratures and periodic boundary conditions in parallel 3D S{sub n} transport

    SciTech Connect (OSTI)

    Manalo, K.; Yi, C.; Huang, M.; Sjoden, G. [Nuclear and Radiological Engineering Program, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332-0745 (United States)

    2013-07-01T23:59:59.000Z

    Significant updates in numerical quadratures have warranted investigation with 3D Sn discrete ordinates transport. We show new applications of quadrature departing from level symmetric (S{sub 2}o). investigating 3 recently developed quadratures: Even-Odd (EO), Linear-Discontinuous Finite Element - Surface Area (LDFE-SA), and the non-symmetric Icosahedral Quadrature (IC). We discuss implementation changes to 3D Sn codes (applied to Hybrid MOC-Sn TITAN and 3D parallel PENTRAN) that can be performed to accommodate Icosahedral Quadrature, as this quadrature is not 90-degree rotation invariant. In particular, as demonstrated using PENTRAN, the properties of Icosahedral Quadrature are suitable for trivial application using periodic BCs versus that of reflective BCs. In addition to implementing periodic BCs for 3D Sn PENTRAN, we implemented a technique termed 'angular re-sweep' which properly conditions periodic BCs for outer eigenvalue iterative loop convergence. As demonstrated by two simple transport problems (3-group fixed source and 3-group reflected/periodic eigenvalue pin cell), we remark that all of the quadratures we investigated are generally superior to level symmetric quadrature, with Icosahedral Quadrature performing the most efficiently for problems tested. (authors)

  2. The Advanced Manufacturing Partnership and the Advanced Manufacturing Program Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOfficeThe 21st Century TruckAPRIL

  3. The Advanced Manufacturing Partnership and the Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy TechnicalFlow RoomTexas Clean EnergyDepartment

  4. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan Capalbo

    2005-12-31T23:59:59.000Z

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration re

  5. Advanced methods in global gyrokinetic full f particle simulation of tokamak transport

    SciTech Connect (OSTI)

    Ogando, F. [Euratom-Tekes Association TKK (Finland); Universidad Nacional de Educacion a Distancia (Spain); Heikkinen, J. A. [Euratom-Tekes Association VTT (Finland); Henriksson, S.; Janhunen, S. J.; Kiviniemi, T. P.; Leerink, S. [Euratom-Tekes Association TKK (Finland)

    2006-11-30T23:59:59.000Z

    A new full f nonlinear gyrokinetic simulation code, named ELMFIRE, has been developed for simulating transport phenomena in tokamak plasmas. The code is based on a gyrokinetic particle-in-cell algorithm, which can consider electrons and ions jointly or separately, as well as arbitrary impurities. The implicit treatment of the ion polarization drift and the use of full f methods allow for simulations of strongly perturbed plasmas including wide orbit effects, steep gradients and rapid dynamic changes. This article presents in more detail the algorithms incorporated into ELMFIRE, as well as benchmarking comparisons to both neoclassical theory and other codes.Code ELMFIRE calculates plasma dynamics by following the evolution of a number of sample particles. Because of using an stochastic algorithm its results are influenced by statistical noise. The effect of noise on relevant magnitudes is analyzed.Turbulence spectra of FT-2 plasma has been calculated with ELMFIRE, obtaining results consistent with experimental data.

  6. Safety of high speed guided ground transportation systems: Comparison of magnetic and electric fields of conventional and advanced electrified transportation systems. Final report, September 1992-March 1993

    SciTech Connect (OSTI)

    Dietrich, F.M.; Feero, W.E.; Jacobs, W.L.

    1993-08-01T23:59:59.000Z

    Concerns exist regarding the potential safety, environmental and health effects on the public and on transportation workers due to electrification along new or existing rail corridors, and to proposed maglev and high speed rail operations. Therefore, the characterization of electric and magnetic fields (EMF) produced by both steady (dc) and alternating currents (ac) at power frequency (50 Hz in Europe and 60 Hz in the U.S.) and above, in the Extreme Low Frequency (ELF) range (3-3000 Hz) is of interest. The report summarizes and compares the results of a survey of EMF characteristics (spatial, temporal and frequency bands) for representative conventional railroad and transit and advanced high-speed systems including: the German TR-07 maglev system; the Amtrak Northeast Corridor (NEC) and North Jersey Transit (NJT) trains; the Washington, DC Metrorail (WMATA) and the Boston, MA (MBTA) transit systems; and the French TGV-A high speed rail system. This comprehensive comparative EMF survey produced both detailed data and statistical summaries of EMF profiles, and their variability in time and space. EMF ELF levels for WMATA are also compared to those produced by common environmental sources at home, work, and under power lines, but have specific frequency signatures.

  7. Advances toward a transportable antineutrino detector system for reactor monitoring and safeguards

    SciTech Connect (OSTI)

    Reyna, D. [Sandia National Laboratories, Livermore, CA 94550 (United States); Bernstein, A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Lund, J.; Kiff, S.; Cabrera-Palmer, B. [Sandia National Laboratories, Livermore, CA 94550 (United States); Bowden, N. S.; Dazeley, S.; Keefer, G. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2011-07-01T23:59:59.000Z

    Nuclear reactors have served as the neutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Our SNL/LLNL collaboration has demonstrated that such antineutrino based monitoring is feasible using a relatively small cubic meter scale liquid scintillator detector at tens of meters standoff from a commercial Pressurized Water Reactor (PWR). With little or no burden on the plant operator we have been able to remotely and automatically monitor the reactor operational status (on/off), power level, and fuel burnup. The initial detector was deployed in an underground gallery that lies directly under the containment dome of an operating PWR. The gallery is 25 meters from the reactor core center, is rarely accessed by plant personnel, and provides a muon-screening effect of some 20-30 meters of water equivalent earth and concrete overburden. Unfortunately, many reactor facilities do not contain an equivalent underground location. We have therefore attempted to construct a complete detector system which would be capable of operating in an aboveground location and could be transported to a reactor facility with relative ease. A standard 6-meter shipping container was used as our transportable laboratory - containing active and passive shielding components, the antineutrino detector and all electronics, as well as climate control systems. This aboveground system was deployed and tested at the San Onofre Nuclear Generating Station (SONGS) in southern California in 2010 and early 2011. We will first present an overview of the initial demonstrations of our below ground detector. Then we will describe the aboveground system and the technological developments of the two antineutrino detectors that were deployed. Finally, some preliminary results of our aboveground test will be shown. (authors)

  8. Shared Value in Utility and Efficiency Partnerships

    Broader source: Energy.gov [DOE]

    Presents four case studies highlighting partnerships between local utilities and energy efficiency programs.

  9. Public-Private Partnerships for Energy Efficiency Programming, Successes of the Massachusetts Energy Efficiency Partnership

    E-Print Network [OSTI]

    Winkler, E.

    2005-01-01T23:59:59.000Z

    Public-Private Partnerships for Energy Efficiency Programming, Successes of the Massachusetts Energy Efficiency Partnership Eric Winkler, University of Massachusetts The Massachusetts Energy Efficiency Partnership is a public... on the partnership and value added experience of end users and energy service providers. Eric Winkler, Ph.D. Director, Massachusetts Energy Efficiency Partnership Center for Energy Efficiency and Renewable Energy University of Massachusetts - Amherst 160...

  10. Southwest Regional Partnership on Carbon Sequestration

    SciTech Connect (OSTI)

    Brian McPherson

    2006-03-31T23:59:59.000Z

    The Southwest Partnership on Carbon Sequestration completed its Phase I program in December 2005. The main objective of the Southwest Partnership Phase I project was to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. Many other goals were accomplished on the way to this objective, including (1) analysis of CO{sub 2} storage options in the region, including characterization of storage capacities and transportation options, (2) analysis and summary of CO{sub 2} sources, (3) analysis and summary of CO{sub 2} separation and capture technologies employed in the region, (4) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region, (5) dissemination of existing regulatory/permitting requirements, and (6) assessing and initiating public knowledge and acceptance of possible sequestration approaches. Results of the Southwest Partnership's Phase I evaluation suggested that the most convenient and practical ''first opportunities'' for sequestration would lie along existing CO{sub 2} pipelines in the region. Action plans for six Phase II validation tests in the region were developed, with a portfolio that includes four geologic pilot tests distributed among Utah, New Mexico, and Texas. The Partnership will also conduct a regional terrestrial sequestration pilot program focusing on improved terrestrial MMV methods and reporting approaches specific for the Southwest region. The sixth and final validation test consists of a local-scale terrestrial pilot involving restoration of riparian lands for sequestration purposes. The validation test will use desalinated waters produced from one of the geologic pilot tests. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, five major electric utility companies, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs, and the Western Governors Association. This group is continuing its work in the Phase II Validation Program, slated to conclude in 2009.

  11. NEW SOLAR HOMES PARTNERSHIP GUIDEBOOKSTAFFDRAFT

    E-Print Network [OSTI]

    Heather Raitt Technical Director RENEWABLE ENERGY PROGRAM Bill Pennington Office Manager BUILDINGS RENEWABLES PROGRAM & NEW SOLAR HOMES PARTNERSHIP Mark Hutchison Office Manager RENEWABLE ENERGY PROGRAM Building Energy Efficiency ................................................................. 9 C. Grid

  12. Clean Water Partnership Law (Minnesota)

    Broader source: Energy.gov [DOE]

    The main purpose of the Clean Water Partnership Law is to provide financial and technical assistance to local governments for the protection, enhancement, and restoration of surface waters. However...

  13. State Partnership for Energy Efficient Demonstrations: Market Transformation Partnerships for Crossing the "Valley of Death"

    E-Print Network [OSTI]

    California at Davis, University of

    State Partnership for Energy Efficient Demonstrations: Market Transformation Partnerships of California-Davis ABSTRACT Between the lab and the marketplace, new energy-efficient technologies often. The California Energy Commission created the State Partnership for Energy Efficient Demonstrations (SPEED

  14. Private Sector Outreach and Partnerships | Department of Energy

    Energy Savers [EERE]

    Private Sector Outreach and Partnerships Private Sector Outreach and Partnerships ISER's partnerships with the private sector are a strength which has enabled the division to...

  15. The Global Nuclear Energy Partnership | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The Global Nuclear Energy Partnership The Global Nuclear Energy Partnership An article describing the small scale reactors in the GNEP. The Global Nuclear Energy Partnership More...

  16. Ukraine Steam Partnership

    SciTech Connect (OSTI)

    Gurvinder Singh

    2000-02-15T23:59:59.000Z

    The Ukraine Steam Partnership program is designed to implement energy efficiency improvements in industrial steam systems. These improvements are to be made by the private plants and local government departments responsible for generation and delivery of energy to end-users. One of the activities planned under this program was to provide a two-day training workshop on industrial steam systems focusing on energy efficiency issues related to the generation, distribution, and consumption of steam. The workshop was geared towards plant managers, who are not only technically oriented, but are also key decision makers in their respective companies. The Agency for Rational Energy Use and Ecology (ARENA-ECO), a non-governmental, not-for-profit organization founded to promote energy efficiency and environmental protection in Ukraine, in conjunction with the Alliance staff in Kiev sent out invitations to potential participants in all the regions of Ukraine. The purpose of this report is the describe the proceedings from the workshop and provide recommendations from the workshop's roundtable discussion. The workshop was broken down into two main areas: (1) Energy efficient boiler house steam generation; and Energy efficient steam distribution and consumption. The workshop also covered the following topics: (1) Ukrainian boilers; (2) Water treatment systems; (3) A profile of UKRESCO (Ukrainian Energy Services Company); (4) Turbine expanders and electricity generation; (5) Enterprise energy audit basics; and (6) Experience of steam use in Donetsk oblast.

  17. Final Scientific and Technical Report State and Regional Biomass Partnerships

    SciTech Connect (OSTI)

    Handley, Rick; Stubbs, Anne D.

    2008-12-29T23:59:59.000Z

    The Northeast Regional Biomass Program successfully employed a three pronged approach to build the regional capacity, networks, and reliable information needed to advance biomass and bioenergy technologies and markets. The approach included support for state-based, multi-agency biomass working groups; direct technical assistance to states and private developers; and extensive networking and partnership-building activities to share objective information and best practices.

  18. NSF/DOE Thermoelectics Partnership: Thermoelectrics for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery 2011 DOE...

  19. Energy Technology Solutions: Public-Private Partnerships Transforming...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solutions: Public-Private Partnerships Transforming Industry, November 2010 Energy Technology Solutions: Public-Private Partnerships Transforming Industry, November 2010...

  20. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler TinaContact-Information-Transmission SignTransport

  1. AFFIDAVIT OF TERMINATION OF DOMESTIC PARTNERSHIP Declaration

    E-Print Network [OSTI]

    Ohta, Shigemi

    AFFIDAVIT OF TERMINATION OF DOMESTIC PARTNERSHIP Declaration I of Termination of Domestic Partnership form to my former Domestic Partner on ____________________, 20 or misleading statement made will subject me to disciplinary action up to and including termination

  2. Hollings Manufacturing Extension Partnership: A Commercialization Collaborator

    E-Print Network [OSTI]

    Perkins, Richard A.

    to process improvements to green manufacturing. MEP also works with partners at the state and federal levelsHollings Manufacturing Extension Partnership: A Commercialization Collaborator MEP · MANUFACTURING to successfully commercialize federal technologies #12;The Manufacturing Extension Partnership

  3. APPALACHIAN COLLEGES COMMUNITY ECONOMIC DEVELOPMENT PARTNERSHIP

    E-Print Network [OSTI]

    Engel, Jonathan

    customized community economic development engagement strategies. · Provide on-site Partnership evaluation to undertake new economic development programs. Communication, Sustainability, and Evaluation--Years 1, 2 and 3APPALACHIAN COLLEGES COMMUNITY ECONOMIC DEVELOPMENT PARTNERSHIP The UNC-Chapel Hill Office

  4. NEW SOLAR HOMES PARTNERSHIP DRAFTSTAFFPROPOSALMAY 2006

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP DRAFTSTAFFPROPOSALMAY 2006 CEC-300 of the information in this paper. #12;TABLE OF CONTENTS NEW SOLAR HOMES PARTNERSHIP .......................................................................................................2 Current Solar Incentive Programs

  5. Testimonials - Partnerships in Battery Technologies - Capstone...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Technologies - Capstone Turbine Corporation Testimonials - Partnerships in Battery Technologies - Capstone Turbine Corporation Addthis Text Version The words Office of...

  6. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-03-01T23:59:59.000Z

    Describes Clean Cities' National Clean Fleets Partnership, an initiative that helps large private fleets reduce petroleum use.

  7. Innovative Utility Partnership at Fort Lewis, Washington

    SciTech Connect (OSTI)

    Not Available

    2000-07-01T23:59:59.000Z

    Utility partnership upgrades energy system to help meet the General Services Administration's (GSA) energy-saving goals

  8. NEW SOLAR HOMES PARTNERSHIP REVISED SECONDTHIRD EDITION

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP REVISED SECONDTHIRD EDITION of 15 Attachment 1 ERRATA TO THE NEW SOLAR HOMES PARTNERSHIP COMMITTEE DRAFT GUIDEBOOK The following list of Errata was adopted as part of the proposed revisions to the New Solar Homes Partnership

  9. EPSRC and TSB Partnership in

    E-Print Network [OSTI]

    Berzins, M.

    that can compete successfully in domestic and global markets. In addition, jobs generated in manufacturing create additional employment in the wider economy. Investment in High Value Manufacturing activitiesEPSRC and TSB Partnership in High Value Manufacturing Image credit: istockphoto #12;The Government

  10. LEEDS PARTNERSHIP NHS FOUNDATION TRUST

    E-Print Network [OSTI]

    Berzins, M.

    6469 ABOUT THIS CASE STUDY Leeds Partnerships NHS Foundation Trust worked with the University of Leeds untoward incidents (SUIs) occurring within the Trust to achieve a sustained improvement in patient safety of the North of England to work together to improve the sustainable economic development of the North towards

  11. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-01-31T23:59:59.000Z

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies.

  12. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-11-01T23:59:59.000Z

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound MMV is critical for public acceptance of these technologies. Deliverables for the 7th Quarter reporting period include (1) for the geological efforts: Reports on Technology Needs and Action Plan on the Evaluation of Geological Sinks and Pilot Project Deployment (Deliverables 2 and 3), and Report on the Feasibility of Mineralization Trapping in the Snake River Plain Basin (Deliverable 14); (2) for the terrestrial efforts: Report on the Evaluation of Terrestrial Sinks and a Report of the Best Production Practices for Soil C Sequestration (Deliverables 8 and 15). In addition, the 7th Quarter activities for the Partnership included further development of the proposed activities for the deployment and demonstration phase of the carbon sequestration pilots including geological and terrestrial pilots, expansion of the Partnership to encompass regions and institutions that are complimentary to the steps we have identified, building greater collaborations with industry and stakeholders in the region, contributed to outreach efforts that spanned all partnerships, co-authorship on the Carbon Capture and Separation report, and developed a regional basis to address future energy opportunities in the region. The deliverables and activities are discussed in the following sections and appended to this report. The education and outreach efforts have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The public website has been expanded and integrated with the GIS carbon atlas. We have made presentations to stakeholders and policy makers including two tribal sequestration workshops, and made connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmental

  13. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-10-31T23:59:59.000Z

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. In the fourth quarter, three deliverables have been completed, some in draft form to be revised and updated to include Wyoming. This is due primarily to some delays in funding to LANL and INEEL and the approval of a supplemental proposal to include Wyoming in much of the GIS data sets, analysis, and related materials. The de

  14. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-06-01T23:59:59.000Z

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed this quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. To date, there has been little research on soil carbon on rangelands, and since rangeland constitutes a major land use in the Big Sky region, this is important in achieving a better understanding of terrestrial sinks. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. Progress on other deliverables is noted in the PowerPoint presentations. A series of meetings held during the second quarter have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. Finally, the education and outreach efforts have resulted in a comprehensive plan and process which serves as a guide for implementing the outreach activities under Phase I. While we are still working on the public website, we have made many presentations to stakeholders and policy makers, connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmentally-friendly energy production. In addition, we have laid plans for integration of our outreach efforts with the students, especially at the tribal colleges and at the universities involved in our partnership. This includes collaboration with the film and media arts departments at MSU, with outreach effort

  15. 1.212J / ESD.221J An Introduction to Intelligent Transportation Systems, Spring 2003

    E-Print Network [OSTI]

    Sussman, Joseph

    Basic elements of intelligent transportation systems. Technological, systems, and institutional aspects of ITS considered, including system architecture, congestion pricing, public/private partnerships, network models, ITS ...

  16. An Advanced Integrated Diffusion/Transport Method for the Design, Analysis and Optimization of the Very-High-Temperature Reactors

    SciTech Connect (OSTI)

    Farzad Rahnema; Dingkang Zhang; Abderrafi Ougouag; Frederick Gleicher

    2011-04-04T23:59:59.000Z

    The main objective of this research is to develop an integrated diffusion/transport (IDT) method to substantially improve the accuracy of nodal diffusion methods for the design and analysis of Very High Temperature Reactors (VHTR). Because of the presence of control rods in the reflector regions in the Pebble Bed Reactor (PBR-VHTR), traditional nodal diffusion methods do not accurately model these regions, within which diffusion theory breaks down in the vicinity of high neutron absorption and steep flux gradients. The IDT method uses a local transport solver based on a new incident flux response expansion method in the controlled nodes. Diffusion theory is used in the rest of the core. This approach improves the accuracy of the core solution by generating transport solutions of controlled nodes while maintaining computational efficiency by using diffusion solutions in nodes where such a treatment is sufficient. The transport method is initially developed and coupled to the reformulated 3-D nodal diffusion model in the CYNOD code for PBR core design and fuel cycle analysis. This method is also extended to the prismatic VHTR. The new method accurately captures transport effects in highly heterogeneous regions with steep flux gradients. The calculations of these nodes with transport theory avoid errors associated with spatial homogenization commonly used in diffusion methods in reactor core simulators

  17. TRANSPORTATION Policy Research CENTER

    E-Print Network [OSTI]

    , and describes conditions necessary for successful public-private transportation partnerships. The researchers found that effective P3 programs rely on these factors for their success: Enabling Legislation in the process is necessary. Economic Environment: Favorable economic conditions conducive to investment-- from

  18. FDACS-UF/IFAS Florida Farm to School Partnership Farmer Tips For Success

    E-Print Network [OSTI]

    Florida, University of

    FDACS- UF/IFAS Florida Farm to School Partnership Farmer Tips For Success FDACS and UF-IFAS have to work with farmers to find innovative ways to connect them to our school cafeterias. We have a team the potential needs of schools in advance and the corresponding practices on your farm, you can streamline

  19. ORISE: Partnership Development in Health Communication

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnership Development The Oak Ridge Institute for Science and Education (ORISE) helps government agencies tackle public health issues by building solid networks of citizens,...

  20. Partnership Plan, Roadmaps, and Other Documents | Department...

    Broader source: Energy.gov (indexed) [DOE]

    As the Partnership updates its documents to reflect the transition to U.S. DRIVE, current roadmaps and previous accomplishments reports are available for reference and information....

  1. International Partnership for Geothermal Technology Launches...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership for Geothermal Technology Launches Website November 18, 2008 - 2:52pm Addthis Geothermal energy, with EGS, has the potential to be the world's only renewable baseload...

  2. Federal Utility Partnership Working Group Utility Partners

    Broader source: Energy.gov [DOE]

    Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

  3. Community Energy Partnerships Program (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    The Community Energy Partnerships Program (CEPP) provides financial grants to community groups who are developing renewable energy projects in Ontario. These grants provide funding to community...

  4. Federal Utility Partnership Working Group Participants | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the Federal Utility Partnership Working Group or engaged in a utility energy service contract project. General Services Administration National Aeronautics and Space...

  5. Federal Utility Partnership Working Group Participants

    Broader source: Energy.gov [DOE]

    The following Federal agencies have participated in the Federal Utility Partnership Working Group or engaged in a utility energy service contract project.

  6. CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership

    E-Print Network [OSTI]

    CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership Rooftop Solar Challenge 1 Sunshot #12;WASHINGTON PV CONTEXTWASHINGTON PV CONTEXT 285 cities, 39 Installations happen where process is easier #12;EVERGREEN STATE SOLAR PARTNERSHIP Commerce NWSEEDEdmonds

  7. Partnership Description | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven AshbyDepartment of Energy Partnering withPartnership

  8. Energy Department Announces New Private Sector Partnership to...

    Office of Environmental Management (EM)

    Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate...

  9. Energy Department Announces New Private Sector Partnership to...

    Office of Environmental Management (EM)

    Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate Renewable...

  10. Innovation and Coordination at the Callifornia Fuel Cell Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation and Coordination at the Callifornia Fuel Cell Partnership Innovation and Coordination at the Callifornia Fuel Cell Partnership Presented at Refueling Infrastructure for...

  11. Naval Construction Battalion Center Gulfport- Mississippi Power Partnership Success Story

    Broader source: Energy.gov [DOE]

    Presentation covers the Naval Construction Battalion Center Gulfport - Mississippi Power Partnership success story given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting...

  12. Department of Energy Releases Global Nuclear Energy Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Nuclear Energy Partnership Strategic Plan Department of Energy Releases Global Nuclear Energy Partnership Strategic Plan January 10, 2007 - 9:59am Addthis WASHINGTON, DC -...

  13. Energy Department to Award $6 Million to State Partnerships to...

    Energy Savers [EERE]

    to Award 6 Million to State Partnerships to Increase Energy Efficiency Energy Department to Award 6 Million to State Partnerships to Increase Energy Efficiency September 19, 2006...

  14. Energy Department, ArcelorMittal Partnership Boosts Efficiency...

    Energy Savers [EERE]

    Energy Department, ArcelorMittal Partnership Boosts Efficiency of Major Steel Manufacturing Plant Energy Department, ArcelorMittal Partnership Boosts Efficiency of Major Steel...

  15. Department of Energy Announces New Partnerships to Support Manufacturi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Partnerships to Support Manufacturing Job Training Department of Energy Announces New Partnerships to Support Manufacturing Job Training June 29, 2011 - 12:00am Addthis...

  16. Engagement with Australia Active Partnership Agreements

    E-Print Network [OSTI]

    Behmer, Spencer T.

    Engagement with Australia Active Partnership Agreements: Expired Partnership Agreements: University of Southern Queensland University of Queensland University of Western Australia University of Western Sydney&M University 58 Texas A&M University students studying in Australia Internship ­ 1 Research ­ 1 Short Term

  17. Hollings Manufacturing Extension Partnership: A Commercialization Collaborator

    E-Print Network [OSTI]

    of services, from innovation strategies to process improvements to green manufacturing. MEP also worksHollings Manufacturing Extension Partnership: A Commercialization Collaborator MEP · MANUFACTURING Manufacturing Extension Partnership (MEP) works with small and mid-sized U.S. manufacturers to help them create

  18. NEW SOLAR HOMES PARTNERSHIP Fourth Edition

    E-Print Network [OSTI]

    NEW SOLAR HOMES PARTNERSHIP GUIDEBOOK Fourth Edition CALIFORNIA ENERGY COMMISSION Edmund The New Solar Homes Partnership (NSHP) Program is part of a statewide solar program known as the California Solar Initiative (CSI). The NSHP provides financial incentives for installing solar energy

  19. NEW SOLAR HOMES PARTNERSHIP DRAFT GUIDEBOOK

    E-Print Network [OSTI]

    NEW SOLAR HOMES PARTNERSHIP DRAFT GUIDEBOOK Fourth Edition SEPTEMBER 2011 CEC3002011006CMD 7, 2010. #12;i ABSTRACT The New Solar Homes Partnership (NSHP) Program is part of a statewide solar program known as the California Solar Initiative (CSI). The NSHP provides financial incentives

  20. NEW SOLAR HOMES PARTNERSHIP DRAFT GUIDEBOOK

    E-Print Network [OSTI]

    NEW SOLAR HOMES PARTNERSHIP DRAFT GUIDEBOOK Fourth Edition JANUARY 2012 CEC3002011006CMD2 The New Solar Homes Partnership (NSHP) Program is part of a statewide solar program known as the California Solar Initiative (CSI). The NSHP provides financial incentives for installing solar energy

  1. COMMISSION GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP

    E-Print Network [OSTI]

    is part of a statewide solar program known as the California Solar Initiative. The New Solar Homes Nguyen, Le-Quyen, Farakh Nasim. 2013. New Solar Homes Partnership Guidebook (Sixth Edition). CaliforniaCOMMISSION GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP GUIDEBOOK Sixth Edition Commission Guidebook APRIL

  2. STAFF DRAFT GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP

    E-Print Network [OSTI]

    . Brown, Jr., Governor #12;CALIFORNIA ENERGY COMMISSION Andrew McAllister Lead Commissioner, New Solar as the California Solar Initiative and. The New Solar Homes Partnership provides financial incentivesSTAFF DRAFT GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP GUIDEBOOK Seventh Edition Staff Draft

  3. STAFF DRAFT GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP

    E-Print Network [OSTI]

    solar program known as the California Solar Initiative (CSI). The New Solar Homes Partnership providesSTAFF DRAFT GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP GUIDEBOOK Fifth Edition SEPTEMBER 2012 CEC3002012007ED5SD CALIFORNIA ENERGY COMMISSION Edmund G. Brown, Jr., Governor #12;CALIFORNIA

  4. SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION

    SciTech Connect (OSTI)

    Brian McPherson; Rick Allis; Barry Biediger; Joel Brown; Jim Cappa; George Guthrie; Richard Hughes; Eugene Kim; Robert Lee; Dennis Leppin; Charles Mankin; Orman Paananen; Rajesh Pawar; Tarla Peterson; Steve Rauzi; Jerry Stuth; Genevieve Young

    2004-11-01T23:59:59.000Z

    The Southwest Partnership Region includes six whole states, including Arizona, Colorado, Kansas, New Mexico, Oklahoma, and Utah, roughly one-third of Texas, and significant portions of adjacent states. The Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. The main objective of the Southwest Partnership project is to achieve an 18% reduction in carbon intensity by 2012. The Partnership made great progress in this first year. Action plans for possible Phase II carbon sequestration pilot tests in the region are almost finished, including both technical and non-technical aspects necessary for developing and carrying out these pilot tests. All partners in the Partnership are taking an active role in evaluating and ranking optimum sites and technologies for capture and storage of CO{sub 2} in the Southwest Region. We are identifying potential gaps in all aspects of potential sequestration deployment issues.

  5. State Technologies Advancement Collaborative

    SciTech Connect (OSTI)

    David S. Terry

    2012-01-30T23:59:59.000Z

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

  6. An advanced algorithm for construction of Integral Transport Matrix Method operators using accumulation of single cell coupling factors

    SciTech Connect (OSTI)

    Powell, B. P.; Azmy, Y. Y. [North Carolina State University, Department of Nuclear Engineering, Burlington Engineering Labs, 2500 Stinston Drive, Raleigh, NC 27695 (United States)

    2013-07-01T23:59:59.000Z

    The Integral Transport Matrix Method (ITMM) has been shown to be an effective method for solving the neutron transport equation in large domains on massively parallel architectures. In the limit of very large number of processors, the speed of the algorithm, and its suitability for unstructured meshes, i.e. other than an ordered Cartesian grid, is limited by the construction of four matrix operators required for obtaining the solution in each sub-domain. The existing algorithm used for construction of these matrix operators, termed the differential mesh sweep, is computationally expensive and was developed for a structured grid. This work proposes the use of a new algorithm for construction of these operators based on the construction of a single, fundamental matrix representing the transport of a particle along every possible path throughout the sub-domain mesh. Each of the operators is constructed by multiplying an element of this fundamental matrix by two factors dependent only upon the operator being constructed and on properties of the emitting and incident cells. The ITMM matrix operator construction time for the new algorithm is demonstrated to be shorter than the existing algorithm in all tested cases with both isotropic and anisotropic scattering considered. While also being a more efficient algorithm on a structured Cartesian grid, the new algorithm is promising in its geometric robustness and potential for being applied to an unstructured mesh, with the ultimate goal of application to an unstructured tetrahedral mesh on a massively parallel architecture. (authors)

  7. Transportation megaproject procurement : benefits and challenges for PPPs and alternative delivery strategies, and the resulting implications for Crossrail

    E-Print Network [OSTI]

    Kay, Michael A. (Michael Adam)

    2009-01-01T23:59:59.000Z

    This thesis evaluates the applicability of public-private partnerships (PPPs) and alternative delivery strategies to transportation megaprojects. There has been tremendous expansion of innovative procurement and financing ...

  8. R&D and deployment valuation of intelligent transportation systems : a case example of the intersection collision avoidance systems

    E-Print Network [OSTI]

    Hodota, Kenichi

    2006-01-01T23:59:59.000Z

    Compared with investments in the conventional infrastructure, those in Intelligent Transportation Technology (ITS) include various uncertainties. Because deployment of ITS requires close public-private partnership, projects ...

  9. Federal Utility Partnership Working Group Seminar: Washington Update

    Broader source: Energy.gov [DOE]

    Presentation covers the Federal Utility Partnership Working Group Seminar: Washington Update on May 22, 2013.

  10. Sustainable Transportation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  11. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Options for Liquid Biofuels Development in Ireland. SEI, 562006: Outlook for advanced biofuels. Energy Policy, 34(17),40 pp. IEA, 2004c: Biofuels for Transport: An International

  12. FPL - PAFB Partnership Comprehensive Energy Program

    Broader source: Energy.gov (indexed) [DOE]

    FPL - PAFB Partnership Comprehensive Energy Program Ed A. Anderson, PE May 1, 2007 Patrick Air Force Base * Home to the USAF 45 th Space Wing - 920 th Rescue Wing - Air Force...

  13. Canadian Art Partnership Program in Finland

    E-Print Network [OSTI]

    Ketovuori, Mikko Mr.

    2011-01-01T23:59:59.000Z

    of arts education, Finland and Canada? An integrated view.Partnership Program in Finland In the UNESCO’s “Wow Factor”Bamford suggests that Finland has a special relationship to

  14. Superconducting Partnership with Readiness Review Update

    E-Print Network [OSTI]

    1 Superconducting Partnership with Industry: Readiness Review Update Mike Gouge, ORNL Steve Ashworth, LANL Paul Bakke, DOE-Golden DOE 2004 Superconductivity Peer Review July 27-29, 2004 #12;2 SPI

  15. Public private partnership in infrastructure financing

    E-Print Network [OSTI]

    Ahmed, Anas

    2014-01-01T23:59:59.000Z

    The global financial crisis, which was unique in its magnitude and after effects, has generated significant interest in Public Private Partnership (PPP). Lack of investments and deteriorated infrastructure challenges ...

  16. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01T23:59:59.000Z

    Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with local stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.

  17. COMMISSION GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP

    E-Print Network [OSTI]

    is part of a statewide solar program known as the California Solar Initiative. The New Solar HomesCOMMISSION GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP GUIDEBOOK Fifth Edition Commission Guidebook CALIFORNIA ENERGY COMMISSION Edmund G. Brown, Jr., Governor SEPTEMBER 2012 CEC

  18. PARTNERSHIPS POWER NEW JERSEY NEIGHBORHOODS' SAVINGS | Department...

    Broader source: Energy.gov (indexed) [DOE]

    PARTNERSHIPS POWER NEW JERSEY NEIGHBORHOODS SAVINGS With a sluggish economy and more than half of its residents living in poverty, the City of Camden, New Jersey, saw a new...

  19. New partnership uses advanced computer science modeling to address...

    National Nuclear Security Administration (NNSA)

    - Sandia, Argonne, Brookhaven, Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, Pacific Northwest - along with the National Center for Atmospheric Research,...

  20. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.FinancialofFuelDepartmentGeothermalGlen

  1. New partnership uses advanced computer science modeling to address climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Libraryornl.govNew imaging toolchange | National

  2. Brazil-NETL Advanced Fossil Fuels Partnerships | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder, CO) Jump

  3. Private-Public Partnerships for U.S. Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Government Large Manufacturing Companies Small & Medium Enterprise (SMEs) Start-ups Industry Network of IMIs 2013 State of the Union Announcement National Network for...

  4. Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFYOxideof Energy Clean CoalDNV KEMA TheClean

  5. Brazil-NETL Advanced Fossil Fuels Partnerships | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGEFairfield(CTIAdvanced Fossil Fuels

  6. Fact Sheet: Energy Storage Technology Advancement Partnership (October

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &ofDepartment of Energy On November 5,2012) | Department

  7. Private-Public Partnerships for U.S. Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sof EnergyReserve |DiscussesMonth,Princeton-

  8. Gas Technology Institute (Partnership for Advanced Residential Retrofit) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent6894093° Loading69. ItLewickiMauiSL JumpRyeOpen Energy

  9. Sandia National Laboratories: public-private partnership to advance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialsthe GoalMicrosystems Enabledphotovoltaic

  10. The Gas/Electric Partnership

    E-Print Network [OSTI]

    Schmeal, W. R.; Royall, D.; Wrenn, K. F. Jr.

    The electric and gas industries are each in the process of restructuring and "converging" toward one mission: providing energy. Use of natural gas in generating electric power and use of electricity in transporting natural gas will increase...

  11. Recent Theoretical Results for Advanced Thermoelectric Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Recent Theoretical Results for Advanced Thermoelectric Materials Transport theory and first principles calculations applied to oxides, chalcogenides and...

  12. Session 1Session 1 Public Private Partnerships: GlobalPublic Private Partnerships: Global

    E-Print Network [OSTI]

    Electricity Law permits private sector participation · Mini-grid (generation, distribution) rural connections) · Expected results: 3000 new connections NEPAL · Electricity Act allows private/ communitySession 1Session 1 Public Private Partnerships: GlobalPublic Private Partnerships: Global

  13. Partnership ofPartnership of Oregon Dept. of Fish and Wildlife,

    E-Print Network [OSTI]

    Partnership ofPartnership of Oregon Dept. of Fish and Wildlife, Washington Dept. of Fish for compensatory predation by smallmouth bass and walleye. 4 Evaluate effect of program on salmonid4. Evaluate 4 Decreased amount of older/larger fish4. Decreased amount of older/larger fish. 5. Reduced

  14. Indicators that matter : measuring transportation performance in Ahmedabad

    E-Print Network [OSTI]

    Osborne, James Clark, M.C.P. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    In light of the growing challenges of planning for transportation in India, this thesis proposes that a set of indicators, sensitive to local conditions, developed, implemented and managed through a collaborative partnership ...

  15. Clean Cities: Cutting Petroleum Use in Transportation Since 1993 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This fact sheet provides an overview of the U.S. Department of Energy's Clean Cities program, which builds partnerships to reduce petroleum use in transportation in communities across the country.

  16. The ADVANCE project: Formal evaluation of the targeted deployment. Volume 3

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    ADVANCE [Advanced Driver and Vehicle Advisory Navigation ConcEpt] was a public/private partnership conceived and developed by four founding parties. The founding parties include the Federal Highway Administration (FHWA), the Illinois Department of Transportation (IDOT), the University of Illinois at Chicago and Northwestern University operating together under the auspices of the Illinois Universities Transportation Research Consortium (IUTRC), and Motorola, Inc. The major responsibilities of each party are fully described in the Project agreement. Subsequently, these four were joined on the Steering Committee by the American Automobile Association (AAA). This unique blending of public sector, private sector and university interests, augmented by more than two dozen other private sector participants, provided a strong set of resources for ADVANCE. The ADVANCE test area covered over 300 square miles including portions of the City of Chicago and 40 northwest suburban communities. The Project encompasses the high growth areas adjacent to O`Hare International Airport, the Schaumbura/Hoffman Estates office and retail complexes, and the Lake-Cook Road development corridor. It also includes major sports and entertainment complexes such as the Arlington International Racecourse and the Rosemont Horizon. The population in the area is more than 750,000. This volume provides a summary of the insights and achievements made as a result of this field test, and selected appendices containing more detailed information.

  17. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T.

    2008-03-30T23:59:59.000Z

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

  18. Hollings Manufacturing Extension Partnership: Delivering Measurable Results to Manufacturing Clients

    E-Print Network [OSTI]

    Perkins, Richard A.

    of services, from innovation strategies to process improvements to green manufacturing. MEP also worksHollings Manufacturing Extension Partnership: Delivering Measurable Results to Manufacturing Clients MEP · MANUFACTURING EXTENSION PARTNERSHIP NationalInstituteofStandardsandTechnology March2013

  19. Departments of State and Energy Establish Global Partnership...

    Broader source: Energy.gov (indexed) [DOE]

    State and Energy Establish Global Partnership to Green U.S. Embassies and Consulates Departments of State and Energy Establish Global Partnership to Green U.S. Embassies and...

  20. SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (SECARB)

    SciTech Connect (OSTI)

    Kenneth J. Nemeth

    2004-09-01T23:59:59.000Z

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is on schedule and within budget projections for the work completed during the first year of its two year program. Work during the semiannual period (third and fourth quarter) of the project (April 1--September 30, 2004) was conducted within a ''Task Responsibility Matrix.'' Under Task 1.0 Define Geographic Boundaries of the Region, Texas and Virginia were added during the second quarter of the project and no geographical changes occurred during the third or fourth quarter of the project. Under Task 2.0 Characterize the Region, general mapping and screening of sources and sinks has been completed, with integration and Geographical Information System (GIS) mapping ongoing. The first step focused on the macro level characterization of the region. Subsequent characterization will focus on smaller areas having high sequestration potential. Under Task 3.0 Identify and Address Issues for Technology Deployment, SECARB has completed a preliminary assessment of safety, regulatory, permitting, and accounting frameworks within the region to allow for wide-scale deployment of promising terrestrial and geologic sequestration approaches. Under Task 4.0 Develop Public Involvement and Education Mechanisms, SECARB has conducted a survey and focus group meeting to gain insight into approaches that will be taken to educate and involve the public. Task 5.0 and 6.0 will be implemented beginning October 1, 2004. Under Task 5.0 Identify the Most Promising Capture, Sequestration, and Transport Options, SECARB will evaluate findings from work performed during the first year and shift the focus of the project team from region-wide mapping and characterization to a more detailed screening approach designed to identify the most promising opportunities. Under Task 6.0 Prepare Action Plans for Implementation and Technology Validation Activity, the SECARB team will develop an integrated approach to implementing and setting up measurement, monitoring and verification (MMV) programs for the most promising opportunities. During this semiannual period special attention was provided to Texas and Virginia, which were added to the SECARB region, to ensure a smooth integration of activities with the other 9 states. Milestones completed and submitted during the third and fourth quarter included: Q3-FY04--Complete initial development of plans for GIS; and Q4-FYO4--Complete preliminary action plan and assessment for overcoming public perception issues.

  1. Partnerships | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to the Pacific NorthwestPartnershipsPartnerships

  2. Federal Utility Partnership Working Group Overview (FUPWG) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01T23:59:59.000Z

    Fact sheet overview of the Federal Utility Partnership Working Group (FUPWG), including group objectives, activities, and services.

  3. Federal Utility Partnership Working Group: Welcome to Portland

    Broader source: Energy.gov [DOE]

    Presentation covers welcoming attendees to Portland at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  4. Florida Solar Energy Center (Building America Partnership for...

    Open Energy Info (EERE)

    for Improved Residential Construction Jump to: navigation, search Name: Florida Solar Energy Center (Building America Partnership for Improved Residential Construction...

  5. NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery Development for commercialization of...

  6. Partnerships with the U.S. Postal Service

    SciTech Connect (OSTI)

    Not Available

    2000-07-01T23:59:59.000Z

    Utility partnership upgrades energy system to help meet the General Services Administration's (GSA) energy-saving goals.

  7. FEMP and Department of Transportation Partnership Wins GreenGov...

    Energy Savers [EERE]

    Steve Renzi, and Eugene Tumblin. Late last month, staff members from the Federal Energy Management Program (FEMP) were recognized with a GreenGov Presidential Green Team...

  8. NREL: News Feature - Partnerships Drive New Transportation Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National NuclearoverAcquisitionEnergy153014

  9. National Parks Move Forward on Sustainable Transportation in Partnership

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergyHydrogen Storage1, 2011 -with Clean

  10. Building Partnership Capacity and Sustainability in Financially Challenging Times

    E-Print Network [OSTI]

    Building Partnership Capacity and Sustainability in Financially Challenging Times Introduction educational inequality. Partnership Question From the outset, the core objective was to design a sustainable that by focusing on capacity building and sustainability from the beginning, it is possible to build a partnership

  11. Business Partnerships & Enterprise Strategy Faculty of Science and Technology: Business Partnerships & Enterprise Strategy 2011-2015

    E-Print Network [OSTI]

    Meju, Max

    of ICT, Engineering and Environmental Technology SMEs. Significantly increased participationBusiness Partnerships & Enterprise Strategy 2011-2015 #12;Faculty of Science and Technology 2008 and 2011, science and technology departments at Lancaster continued to develop and deepen

  12. Transportation Resources | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II:LIGHT-DUTY

  13. Prison Pet Partnership Program The Prison Pet Partnership Program rescues and trains homeless animals to provide service dogs for

    E-Print Network [OSTI]

    Borenstein, Elhanan

    Prison Pet Partnership Program (Ongoing) The Prison Pet Partnership Program rescues and trains skills to women inmates so they can find gainful employment in the pet industry upon release. The Program to service. We value education and growth. We value building partnerships in a community. The Prison Pet

  14. Northwestern University Transportation Center

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    Northwestern University Transportation Center 2011 Business Advisory Committee NUTC #12;#12;I have the pleasure of presenting our Business Advisory Committee members--a distinguished group of transportation industry lead- ers who have partnered with the Transportation Center in advancing the state of knowledge

  15. Collaborative Partnerships in Health, Medicine & Social Care

    E-Print Network [OSTI]

    Meju, Max

    Collaborative Partnerships in Health, Medicine & Social Care Launch Conference Lancaster University and globally in Health, Medicine and Social Care. Guest Speakers will include: Dr Louise Wood (Head sector in research, knowledge exchange and professional development across all fields of Health, Medicine

  16. Technology Venture Development Community Partnerships Strategic Initiatives

    E-Print Network [OSTI]

    and academic partnerships to accelerate development of renewable and efficient energy sources. www League we manage Utah FIRST LeGO League to inspire kids. Partners are welcome. www.utfll.utah.edu & More.westerninnovation.com Energy Commercialization Center (ECC) The energy Commercialization Center is working to create industry

  17. Industrial Partnership Prosperity Game{trademark}

    SciTech Connect (OSTI)

    Boyak, K.; Berman, M.; Beck, D.

    1998-02-01T23:59:59.000Z

    Prosperity Games TM are an outgrowth and adaptation move/countermove and seminar War Games. Prosperity Games TM are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education, and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games TM are unique in that both the game format and the player contributions vary from game to game. This report documents the Industry Partnership Prosperity Game sponsored by the Technology Partnerships and Commercialization Center at Sandia National Laboratories. Players came from the Sandia line organizations, the Sandia business development and technology partnerships organizations, the US Department of Energy, academia, and industry The primary objectives of this game were to: explore ways to increase industry partnerships to meet long-term Sandia goals; improve Sandia business development and marketing strategies and tactics; improve the process by which Sandia develops long-term strategic alliances. The game actions and recommendations of these players provided valuable insights as to what Sandia can do to meet these objectives.

  18. Technology Venture Development Community Partnerships Strategic Initiatives

    E-Print Network [OSTI]

    Technology Venture Development Community Partnerships · Strategic Initiatives · Faculty Outreach) 587-3836 Technology Commercialization Office (TCO) Intellectual Property Protection · Technology and Start the Commercialization Process www.TeCh venTUreS.UTAh.eDU Technology commercialization starts

  19. Technology Venture Development Community Partnerships Strategic Initiatives

    E-Print Network [OSTI]

    Technology Venture Development Community Partnerships · Strategic Initiatives · Faculty Outreach) 587-3836 Technology Commercialization Office (TCO) Intellectual Property Protection · Technology) 585-3844 INTRODUCTION www.TeCh venTUreS.UTAh.eDUwww.TeCh venTUreS.UTAh.eDU Technology

  20. Biofueled Public Transport for sustainable transportation: A case study of Stockholm and possibility in Kathmandu.

    E-Print Network [OSTI]

    Moktan, Uttam

    2013-01-01T23:59:59.000Z

    ?? Uttam Moktan, Biofueled Public Transport for sustainable transportation: Case Study of Stockholm and possibility in KathmanduHuman Geography, advanced level, master thesis for master exam… (more)

  1. Final Scientifc Report - Hydrogen Education State Partnership Project

    SciTech Connect (OSTI)

    Leon, Warren

    2012-02-03T23:59:59.000Z

    Under the leadership of the Department of Energy Hydrogen and Fuel Cells program, Clean Energy States Alliance (CESA) educated and worked with state leaders to encourage wider deployment of fuel cell and hydrogen technologies. Through outreach to state policymakers, legislative leaders, clean energy funds, energy agencies, and public utility commissions, CESA worked to accomplish the following objectives of this project: 1. Provide information and technical assistance to state policy leaders and state renewable energy programs in the development of effective hydrogen fuel cell programs. 2. Identify and foster hydrogen program best practices. 3. Identify and promote strategic opportunities for states and the Department of Energy (DOE) to advance hydrogen technology deployment through partnerships, collaboration, and targeted activities. Over the three years of this project, CESA, with our partner National Conference of State Legislatures (NCSL), was able to provide credible information on fuel cell policies, finance, and technical assistance to hundreds of state officials and other stakeholders. CESA worked with its membership network to effectively educate state clean energy policymakers, program managers, and decision makers about fuel cell and hydrogen technologies and the efforts by states to advance those technologies. With the assistance of NCSL, CESA gained access to an effective forum for outreach and communication with state legislators from all 50 states on hydrogen issues and policies. This project worked to educate policymakers and stakeholders with the potential to develop and deploy stationary and portable fuel cell technologies.

  2. Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the the Advanced Combustion Engine R&D subprogram that focuses on developing advanced ICE technologies for all highway transportation vehicles. 2011advcombustionengine.pdf...

  3. Alternative Transportation Technologies: Hydrogen, Biofuels,...

    Broader source: Energy.gov (indexed) [DOE]

    Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Results of two Reports from the National Research Council...

  4. E-Print Network 3.0 - atp-binding cassette transporters Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transporters Search Powered by Explorit Topic List Advanced Search Sample search results for: atp-binding cassette transporters...

  5. E-Print Network 3.0 - atp-binding cassette transporter Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transporter Search Powered by Explorit Topic List Advanced Search Sample search results for: atp-binding cassette transporter...

  6. E-Print Network 3.0 - atp-binding cassette transport Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transport Search Powered by Explorit Topic List Advanced Search Sample search results for: atp-binding cassette transport...

  7. Industry/Utility Partnerships: Formula for Success

    E-Print Network [OSTI]

    Smith, W. R.; Spriggs, H. D.

    INDUSTRY/UTILITY PARTNERSHIPS: FORMULA FOR SUCCESS William R. Smith, PE, Business Development, Houston Lighting & Power Company, Houston, TX 77046 H. D. Spriggs, PhD, President, Matrix 2000, Leesburg, VA 22075 ABSTRACT Industry/utility... a critical role in their competitiveness. Utilities can playa central role in industrial competitiveness, not only by providing competitively priced and reliable power, but also by helping their customers to identify and implement the most...

  8. MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (MRCSP)

    SciTech Connect (OSTI)

    David Ball; Judith Bradbury; Rattan Lal; Larry Wickstrom; Neeraj Gupta; Robert Burns; Bob Dahowski

    2004-04-30T23:59:59.000Z

    This is the first semiannual report for Phase I of the Midwest Carbon Sequestration Partnership (MRCSP). The project consists of nine tasks to be conducted over a two year period that started in October 2003. The makeup of the MRCSP and objectives are described. Progress on each of the active Tasks is also described and where possible, for those Tasks at some point of completion, a summary of results is presented.

  9. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01T23:59:59.000Z

    Clean Cities' National Clean Fleets Partnership establishes strategic alliances with large fleets to help them explore and adopt alternative fuels and fuel economy measures to cut petroleum use. The initiative leverages the strength of nearly 100 Clean Cities coalitions, nearly 18,000 stakeholders, and more than 20 years of experience. It provides fleets with top-level support, technical assistance, robust tools and resources, and public acknowledgement to help meet and celebrate fleets' petroleum-use reductions.

  10. University Partnerships | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014NationalUniversity Partnerships University

  11. Southeast Regional Carbon Sequestration Partnership (SECARB)

    SciTech Connect (OSTI)

    Kenneth J. Nemeth

    2005-09-30T23:59:59.000Z

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is a diverse partnership covering eleven states involving the Southern States Energy Board (SSEB) an interstate compact; regulatory agencies and/or geological surveys from member states; the Electric Power Research Institute (EPRI); academic institutions; a Native American enterprise; and multiple entities from the private sector. Figure 1 shows the team structure for the partnership. In addition to the Technical Team, the Technology Coalition, an alliance of auxiliary participants, in the project lends yet more strength and support to the project. The Technology Coalition, with its diverse representation of various sectors, is integral to the technical information transfer, outreach, and public perception activities of the partnership. The Technology Coalition members, shown in Figure 2, also provide a breadth of knowledge and capabilities in the multiplicity of technologies needed to assure a successful outcome to the project and serve as an extremely important asset to the partnership. The eleven states comprising the multi-state region are: Alabama; Arkansas; Florida; Georgia; Louisiana; Mississippi; North Carolina; South Carolina; Tennessee; Texas; and Virginia. The states making up the SECARB area are illustrated in Figure 3. The primary objectives of the SECARB project include: (1) Supporting the U.S. Department of Energy (DOE) Carbon Sequestration Program by promoting the development of a framework and infrastructure necessary for the validation and deployment of carbon sequestration technologies. This requires the development of relevant data to reduce the uncertainties and risks that are barriers to sequestration, especially for geologic storage in the SECARB region. Information and knowledge are the keys to establishing a regional carbon dioxide (CO{sub 2}) storage industry with public acceptance. (2) Supporting the President's Global Climate Change Initiative with the goal of reducing greenhouse gas intensity by 18 percent by 2012. A corollary to the first objective, this objective requires the development of a broad awareness across government, industry, and the general public of sequestration issues and establishment of the technological and legal frameworks necessary to achieve the President's goal. The information developed by the SECARB team will play a vital role in achieving the President's goal for the southeastern region of the United States. (3) Evaluating options and potential opportunities for regional CO{sub 2} sequestration. This requires characterization of the region regarding the presence and location of sources of greenhouse gases (GHGs), primarily CO{sub 2}, the presence and location of potential carbon sinks and geological parameters, geographical features and environmental concerns, demographics, state and interstate regulations, and existing infrastructure.

  12. The RNLI and the University of Southampton working in partnership to enhance the operating efficiency of lifeboats through innovative engineering modelling techniques,

    E-Print Network [OSTI]

    Anderson, Jim

    costs of a product over a lifetime, and were pivotal in recommending areas for potential savings, and advanced data manipulation and management science. CaseStudy|KnowledgeTransferPartnership #12;The Company - Increase your competitive advantage and profitability - Improve your performance/business operations

  13. Testimonials - Partnerships in Solid-State Lighting - Cree, Inc...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cree, Inc. Testimonials - Partnerships in Solid-State Lighting - Cree, Inc. Addthis Text Version The words "Office of Energy Efficiency & Renewable Energy, U.S. Department of...

  14. Tennessee Pollution Prevention Partnership | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tennessee Pollution ... Tennessee Pollution Prevention Partnership Posted: February 14, 2013 - 9:58am The green flag belongs to every Y-12 employee who has collected cans for...

  15. New Article on Cybersecurity Discusses DOE's Partnership with...

    Broader source: Energy.gov (indexed) [DOE]

    Partnership with the Energy Sector to Keep the Grid Reliable and Secure Innovating to Meet the Evolving Cyber Challenge Smart Meter Investments Yield Positive Results in Maine...

  16. Testimonials - Partnerships in R&D - Air Products and Chemicals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Products and Chemicals Incorporated Testimonials - Partnerships in R&D - Air Products and Chemicals Incorporated Addthis Text Version The words "Office of Energy Efficiency &...

  17. Auto/Steel Partnership: AHSS Stamping, Strain Rate Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AHSS Stamping, Strain Rate Characterization, Sheet Steel Fatigue, AHSS Joining AutoSteel Partnership: AHSS Stamping, Strain Rate Characterization, Sheet Steel Fatigue, AHSS...

  18. FreedomCAR and Fuel Partnership 2008 Highlights of Technical...

    Energy Savers [EERE]

    8 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2008 Highlights of Technical Accomplishments Report containing brief summaries of key technical...

  19. FreedomCAR and Fuel Partnership 2007 Highlights of Technical...

    Energy Savers [EERE]

    7 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2007 Highlights of Technical Accomplishments Report containing brief summaries of key technical...

  20. FreedomCAR and Fuel Partnership 2009 Highlights of Technical...

    Energy Savers [EERE]

    9 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2009 Highlights of Technical Accomplishments This report summarizes key technical accomplishments achieved...

  1. FreedomCAR and Fuel Partnership 2010 Highlights of Technical...

    Energy Savers [EERE]

    10 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2010 Highlights of Technical Accomplishments This report summarizes key technical accomplishments...

  2. FreedomCAR and Fuel Partnership 2006 Highlights of Technical...

    Energy Savers [EERE]

    6 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2006 Highlights of Technical Accomplishments Report containing brief summaries of key technical...

  3. FreedomCAR and Fuel Partnership 2004 Highlights of Technical...

    Energy Savers [EERE]

    4 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2004 Highlights of Technical Accomplishments Report containing brief summaries of key accomplishments of...

  4. FreedomCAR and Fuel Partnership 2005 Highlights of Technical...

    Energy Savers [EERE]

    5 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2005 Highlights of Technical Accomplishments Report containing brief summaries of key technical...

  5. 21st Century Truck Partnership Roadmap Roadmap and Technical...

    Broader source: Energy.gov (indexed) [DOE]

    Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 Report...

  6. 21st Century Truck Partnership - Roadmap and Technical White...

    Broader source: Energy.gov (indexed) [DOE]

    - Roadmap and Technical White Papers Appendix of Supporting Information - 21CTP-0003, December 2006 21st Century Truck Partnership - Roadmap and Technical White Papers Appendix of...

  7. Testimonials - Partnerships in R&D - Capstone Turbine Corporation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R&D - Capstone Turbine Corporation Testimonials - Partnerships in R&D - Capstone Turbine Corporation Addthis Text Version The words Office of Energy Efficiency and Renewable Energy...

  8. Strengthening Public-Private Partnerships to Accelerate Global...

    Open Energy Info (EERE)

    Public-Private Partnerships to Accelerate Global Electricity Technology Deployment Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Strengthening Public-Private...

  9. NREL Success Stories - SkyFuel Partnership Reflects Bright Future

    ScienceCinema (OSTI)

    Jorgensen, Gary; Gee, Randy

    2013-05-29T23:59:59.000Z

    NREL Scientists and SkyFuel share a story about how their partnership has resulted in a revolutionary concentrating solar power technology ReflecTech Mirror Film.

  10. Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced...

    Broader source: Energy.gov (indexed) [DOE]

    Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP will help prevent misuse of civilian nuclear facilities for...

  11. assistance partnership wrap: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B.; Chaudhari, S. 2011-01-01 48 Basic Business Structures: Sole Proprietor, Joint Operating Agreements and Partnerships Texas A&M University - TxSpace Summary: Basic...

  12. Meetings of the Federal Utility Partnership Working Group

    Broader source: Energy.gov [DOE]

    The Federal Utility Partnership Working Group (FUPWG) meets twice per year to share success stories, information on Federal Energy Management Program activities and other business.

  13. Knowledge Partnership for Measuring Air Pollution and Greenhouse...

    Open Energy Info (EERE)

    Measuring Air Pollution and Greenhouse Gas Emissions in Asia Jump to: navigation, search Name Knowledge Partnership for Measuring Air Pollution and Greenhouse Gas Emissions in Asia...

  14. Exploring Partnerships to Further Building Code Compliance Enhancement

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), identifies opportunities for municipal and state partnerships to ensure better building code compliance.

  15. University-Industry-National Laboratory Partnership to Improve...

    Office of Environmental Management (EM)

    University-Industry-National Laboratory Partnership to Improve Building Efficiency by Equipment Health Monitoring with Virtual Intelligent Sensing University-Industry-National...

  16. NSF/DOE Thermoelectric Partnership: Inorganic-Organic Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inorganic-Organic Hybrid Thermoelectrics NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

  17. Small Business and Clean Energy Alliance (CEA) Partnership -...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and strategies aimed at attracting investment. The Partnership, which concluded in 2012, included 37 incubators- 19 of which have been matched with start-ups around the country...

  18. Partnership Logging Accidents Cornelis de Hoop, LA Forest Products Lab

    E-Print Network [OSTI]

    Partnership Logging Accidents · by · Cornelis de Hoop, LA Forest Products Lab · Albert Lefort Agreement · 1998 & 1999 Accident Reports · 25 injuries reported · 185 loggers signed up · 8 deaths 1999

  19. CX-006039: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Ohio Advanced Transportation Partnership: Zanesville Energy Biogas Compressed Natural Gas Fueling Infrastructure Date: 06092011 Location(s):...

  20. Annual Report: National Risk Assessment Partnership (30 September 2012)

    SciTech Connect (OSTI)

    Bromhal, Grant; Guthrie, George

    2014-01-06T23:59:59.000Z

    The U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) is conducting research to advance the science and engineering knowledge base for technologies that will accelerate the business case for CO{sub 2} capture and storage, including prediction and quantification of risks that may relate to potential liabilities. As part of this effort, NETL, through its Office of Research and Development (ORD), is leading a multi-laboratory effort that leverages broad technical capabilities across the DOE complex: the National Risk Assessment Partnership (NRAP). NRAP involves five DOE national laboratories: NETL, Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Pacific Northwest National Laboratory (PNNL). This team is working together to develop a science-based method for quantifying the likelihood of risks (and associated potential liabilities) for CO{sub 2} storage sites. NRAP is an effort that harnesses the breadth of capabilities across the DOE National Laboratory (NL) system into a mission-focused platform that will develop the integrated science base that can be applied to risk assessment for long-term storage of CO{sub 2}.

  1. Global Nuclear Energy Partnership Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    R.A. Wigeland

    2008-10-01T23:59:59.000Z

    Abstract: The proposed Global Nuclear Energy Partnership (GNEP) Program, which is part of the President’s Advanced Energy Initiative, is intended to support a safe, secure, and sustainable expansion of nuclear energy, both domestically and internationally. Domestically, the GNEP Program would promote technologies that support economic, sustained production of nuclear-generated electricity, while reducing the impacts associated with spent nuclear fuel disposal and reducing proliferation risks. The Department of Energy (DOE) proposed action envisions changing the United States nuclear energy fuel cycle from an open (or once-through) fuel cycle—in which nuclear fuel is used in a power plant one time and the resulting spent nuclear fuel is stored for eventual disposal in a geologic repository—to a closed fuel cycle in which spent nuclear fuel would be recycled to recover energy-bearing components for use in new nuclear fuel. At this time, DOE has no specific proposed actions for the international component of the GNEP Program. Rather, the United States, through the GNEP Program, is considering various initiatives to work cooperatively with other nations. Such initiatives include the development of grid-appropriate reactors and the development of reliable fuel services (to provide an assured supply of fresh nuclear fuel and assist with the management of the used fuel) for nations who agree to employ nuclear energy only for peaceful purposes, such as electricity generation.

  2. Building America Industrialized Housing Partnership (BAIHP II)

    SciTech Connect (OSTI)

    Abernethy, Bob; Chandra, Subrato; Baden, Steven; Cummings, Jim; Cummings, Jamie; Beal, David; Chasar, David; Colon, Carlos; Dutton, Wanda; Fairey, Philip; Fonorow, Ken; Gil, Camilo; Gordon, Andrew; Hoak, David; Kerr, Ryan; Peeks, Brady; Kosar, Douglas; Hewes, Tom; Kalaghchy, Safvat; Lubliner, Mike; Martin, Eric; McIlvaine, Janet; Moyer, Neil; Liguori, Sabrina; Parker, Danny; Sherwin, John; Stroer, Dennis; Thomas-Rees, Stephanie; Daniel, Danielle; McIlvaine, Janet

    2010-11-30T23:59:59.000Z

    This report summarizes the work conducted by the Building America Industrialized Housing Partnership (BAIHP - www.baihp.org) during the final budget period (BP5) of our contract, January 1, 2010 to November 30, 2010. Highlights from the four previous budget periods are included for context. BAIHP is led by the Florida Solar Energy Center (FSEC) of the University of Central Florida. With over 50 Industry Partners including factory and site builders, work in BP5 was performed in six tasks areas: Building America System Research Management, Documentation and Technical Support; System Performance Evaluations; Prototype House Evaluations; Initial Community Scale Evaluations; Project Closeout, Final Review of BA Communities; and Other Research Activities.

  3. SPEER: Building a Regional Energy Efficiency Partnership

    E-Print Network [OSTI]

    Lewin, D.

    2013-01-01T23:59:59.000Z

    SPEER: Building a Regional Energy Efficiency Partnership Clean Air Through Energy Efficiency Conference – San Antonio, TX Doug Lewin December 18, 2013 ESL-KT-13-12-52 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas... Dec. 16-18 SPEER • Member-based, non-profit organization • The Newest Regional Energy Efficiency Organization (REEO) • Founded in 2011 • 38 members from wide cross section of E.E. industries ESL-KT-13-12-52 CATEE 2013: Clean Air Through Energy...

  4. Green Power Partnership | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell VehicleEnergy (5TemperaturesandandPartnership Green Power

  5. ZERH Lender Partnership Agreement | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations |Join theZ:\ENROLL\H1.ENRLender Partnership Agreement

  6. ZERH Trainer Partnership Agreement | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations |Join theZ:\ENROLL\H1.ENRLender Partnership

  7. ZERH Verifier Partnership Agreement | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations |Join theZ:\ENROLL\H1.ENRLender PartnershipVerifier

  8. ORISE: Partnership Development in Health Communication

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory |CHEMPACK MappingHistory The OakMentorExercisesofPartnership

  9. California Fuel Cell Partnership: Alternative Fuels Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 20154: CategoricalDepartmentFuel Cell Partnership -

  10. NREL Technology Partnerships: Fiscal Year 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of Women |hits 21Species.4 Leads NREL4 PARTNERSHIP

  11. Northeast Energy Efficiency Partnerships | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnership ProgramDepartmentDakota Company Wins

  12. Energy Smart Federal Partnership: Partnering to Provide Technical Assistance, Financial Incentives, and More

    Broader source: Energy.gov [DOE]

    Presentation covers technical and financial incentives for the Energy Smart Federal Partnership and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  13. Update on Dining Public Private Partnership (P3)

    E-Print Network [OSTI]

    MacAdam, Keith

    energy audit findings 11 #12;Academic Partnership ·Flagship collaborative innovation centerUpdate on Dining Public Private Partnership (P3) June 10, 2014 Board of Trustees Meeting University received · Feb 4, 2014 ­ University announces decision to proceed with dual track discussions

  14. For more information about Clean Transportation projects at the North Carolina Solar Center visit www.cleantransportation.org 12/3/13 Clean Fuel Advanced Technology Information Matrix

    E-Print Network [OSTI]

    www.cleantransportation.org 12/3/13 Clean Fuel Advanced Technology Information Matrix Fuel Type Infrastructure Biodiesel Light Duty (LD), Medium Duty (MD), and Heavy Duty (HD) diesel vehicles and equipment. Biodiesel used in all diesel engines as B100 or in a blend with ULSD. ASTM standards consider B5 (5

  15. Partnering with Industry to Advance Biofuels and Bioproducts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01T23:59:59.000Z

    Fact sheet describing NREL's Integrated Biorefinery Research Facility, a biochemical pilot plant and partnership facility containing equipment and lab space for pretreatement, enzymatic hydrolysis, fermentation, compositional analysis, and downstream processing. For more than 30 years, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has been at the leading edge of research and technology advancements to develop renewable fuels and bioproducts. NREL works to develop cost-competitive alternatives to conventional transportation fuels and value-added biobased chemicals that can be used to manufacture clothing, plastics, lubricants, and other products. NREL is developing technologies and processes to produce a range of sustainable, energy-dense advanced biofuels that are compatible with our existing transportation fuel infrastructure. As part of that effort, NREL's National Bioenergy Center has entered into more than 90 collaborations in the past five years with companies ranging in size from start-ups to those that appear on Fortune magazine's Fortune 100 list. The new Integrated Biorefinery Research Facility (IBRF) showcases NREL's commitment to collaboration and to meeting the nation's biofuels and bioproducts development and deployment goals. Designed to speed the growth of the biofuels and bioproducts industries, the IBRF is a unique $33.5 million pilot facility capable of supporting a variety of projects. The IBRF is available to industry partners who work with NREL through cooperative research and development, technical, and analytical service agreements. With 27,000 ft2 of high bay space, the IBRF provides industry partners with the opportunity to operate, test, and develop their own biorefining technology and equipment.

  16. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being applied to algal biofuels processes. Analysts are also testing algal fuel properties to measure energy content and ensure compatibility with existing fueling infrastructure. (5) Cross-Cutting Analysis - NREL scientists and engineers are conducting rigorous techno-economic analyses of algal biofuels processes. In addition, they are performing a full life cycle assessment of the entire algae-to-biofuels process.

  17. North East Scotland Climate Change Partnership This voluntary Partnership is being formed in acknowledgement of the effects of

    E-Print Network [OSTI]

    Levi, Ran

    and sources of carbon dioxide and other greenhouse gas emissions. A key role of the Partnership. This will include adaptation to the changes which are already occurring, and mitigation of the underlying causes - encourage action from other local organisations Members The Partnership members will be drawn from the major

  18. GOVERNMENT FUNDING FOR ADVANCED TECHNOLOGY, A GUIDE TO APPLYING FOR GOVERNMENT GRANTS

    E-Print Network [OSTI]

    Thompson, Anne

    will examine 9 major sources of funding for advanced oilfield technology. The afternoon session will cover and Federal agencies: Research Partnership to Secure Energy for America (RPSEA); Rocky Mountain Oilfield on advanced petroleum technology. She is currently conducting studies on improved oilfield recovery and CO2

  19. Global Nuclear Energy Partnership Waste Treatment Baseline

    SciTech Connect (OSTI)

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01T23:59:59.000Z

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  20. Community Development Finance Institutions-Opportunities for Partnerships with Energy Efficiency Programs Transcript.doc

    Broader source: Energy.gov [DOE]

    Community Development Finance Institutions-Opportunities for Partnerships with Energy Efficiency Programs Transcript.doc

  1. Community Development Finance Institutions- Opportunities for Partnerships with Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Community Development Finance Institutions- Opportunities for Partnerships with Energy Efficiency Programs

  2. Lessons & Examples for Establishing Partnerships Between Grantees & Financial Institutions (Text Version)

    Broader source: Energy.gov [DOE]

    Transcript of the webinar, "Lessons & Examples for Establishing Partnerships Between Grantees & Financial Institutions."

  3. The AMTEX Partnership. Second quarter report, Fiscal Year 1995

    SciTech Connect (OSTI)

    Lemon, D.K.; Quisenberry, R.K. [AMTEX Partnership (United States)

    1995-03-01T23:59:59.000Z

    The AMTEX Partnership{trademark} is a collaborative research and development program among the US Integrated Textile Industry, the Department of Energy (DOE), the national laboratories, other federal agencies and laboratories, and universities. The goal of AMTEX is to strengthen the competitiveness of this vital industry, thereby reserving and creating US jobs. The operations and program management of the AMTEX Partnership is provided by the Program Office. This report is produced by the Program Office on a quarterly basis and provides information on the progress, operations, and project management of the partnership.

  4. Commercial Buildings Partnerships - Overview of Higher Education Projects

    SciTech Connect (OSTI)

    Parrish, Kristen; Robinson, Alastair; Regnier, Cindy

    2013-02-01T23:59:59.000Z

    The Commercial Building Partnership (CBP), a public/private, cost-shared program sponsored by the U.S. Department of Energy (DOE), paired selected commercial building owners and operators with representatives of DOE, its national laboratories, and private-sector technical experts. These teams explored energy-saving measures across building systems – including some considered too costly or technologically challenging – and used advanced energy modeling to achieve peak whole-building performance. Modeling results were then included in new construction or retrofit designs to achieve significant energy reductions. CBP design goals aimed to achieve 50 percent energy savings compared to ANSI/ASHRAE/IES Standard 90.1-2004 for new construction, while retrofits are designed to consume at least 30 percent less energy than either Standard 90.1-2004 or current consumption. After construction and commissioning of the project, laboratory staff continued to work with partners to collect and analyze data for verification of the actual energy reduction. CBP projects represent diverse building types in commercial real estate, including lodging, grocery, retail, higher education, office, and warehouse/storage facilities. Partners also commit to replicating low-energy technologies and strategies from their CBP projects throughout their building portfolios. As a result of CBP projects, five sector overviews (Lodging, Food Sales, General Merchandise, Higher Education, Offices) were created to capture successful strategies and recommended energy efficiency measures that could broadly be applied across these sectors. These overviews are supplemented with individual case studies providing specific details on the decision criteria, modeling results, and lessons learned on specific projects. Sector overviews and CBP case studies will also be updated to reflect verified data and replication strategies as they become available.

  5. Defense programs industrial partnerships at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Freese, K.B. [Los Alamos National Lab., NM (United States). Industrial Partnership Office

    1996-10-01T23:59:59.000Z

    The US Department of Energy`s Defense Programs face unprecedented challenges of stewardship for an aging nuclear stockpile, cessation of nuclear testing, reduced federal budgets, and a smaller manufacturing complex. Partnerships with industry are essential in developing technology, modernizing the manufacturing complex, and maintaining the safety and reliability of the nation`s nuclear capability. The past decade of federal support for industrial partnerships has promoted benefits to US industrial competitiveness. Recent shifts in government policy have re-emphasized the importance of industrial partnerships in accomplishing agency missions. Nevertheless, abundant opportunities exist for dual-benefit, mission-driven partnerships between the national laboratories and industry. Experience at Los Alamos National Laboratory with this transition is presented.

  6. Germany and China -an Innovative Partnership in Information Technology

    E-Print Network [OSTI]

    Weske, Mathias

    . Stephan STEGLICH, Fraunhofer Institute for Open Communication Systems Brief Introduction to CNNIC and IDNGermany and China - an Innovative Partnership in Information Technology Hasso Plattner Institute Internet Society of China (ISC), Chinese Academy of Engineering (CAE) Innovating information technology

  7. Auto/Steel Partnership: Fatigue of AHSS Strain Rate Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. lm26heimbuch.pdf More Documents & Publications AutoSteel Partnership: AHSS Stamping,...

  8. Digital Storytelling & Documentary Development Presented by Public Partnership & Outreach,

    E-Print Network [OSTI]

    Behmer, Spencer T.

    process to improve narrative and expository composition Participants will design a digital storyDigital Storytelling & Documentary Development Presented by Public Partnership & Outreach, Office in a multimodal world of technology. Learn how to combine digital technology applications with classroom content

  9. Sandia National Laboratories: Northrop-Grumman, GE Partnerships...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experience Northrop-Grumman, GE Partnerships Tap a Wide Range of Sandia Labs Experience Solar Energy Research Institute for India and the United States Kick-Off American Chemical...

  10. February 5, 2014 Webinar - The Cementitious Barriers Partnership...

    Office of Environmental Management (EM)

    of the Cementitious Barriers Partnership Toolbox, Version 2.0 David Kosson et al. (Vanderbilt UniversityCRESP) Agenda - 252014 P&RA CoP Webinar Presentation - Tools...

  11. Testimonials - Partnerships in Fuel Cells - GE Global Research...

    Broader source: Energy.gov (indexed) [DOE]

    cells. Footage of a photo of a man in lab, followed by a photo of a man and women in blue lab coats looking at equipment in a lab. We had a partnership with the Department of...

  12. Federal Utility Partnership Working Group- Utility Interconnection Panel

    Broader source: Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses solar/photovoltaic (PV) projects to connect with utility in California and their issues.

  13. Geologic selection methodology for transportation corridor routing

    E-Print Network [OSTI]

    Shultz, Karin Wilson

    2002-01-01T23:59:59.000Z

    A lack of planning techniques and processes on long, linear, cut and cover-tunneling route transportation systems has resulted because of the advancement of transportation systems into underground corridors. The proposed methodology is tested...

  14. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30T23:59:59.000Z

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

  15. E-Print Network 3.0 - advanced scientific computing Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of scientific knowledge as a lever for advancing... and transportation, high-performance computing, modeling and simulation, and advanced weapons technologies... and objective...

  16. The Midwest Regional Carbon Sequestration Partnership (MRCSP)

    SciTech Connect (OSTI)

    James J. Dooley; Robert Dahowski; Casie Davidson

    2005-12-01T23:59:59.000Z

    This final report summarizes the Phase I research conducted by the Midwest regional Carbon Sequestration Partnership (MRCSP). The Phase I effort began in October 2003 and the project period ended on September 31, 2005. The MRCSP is a public/private partnership led by Battelle with the mission of identifying the technical, economic, and social issues associated with implementation of carbon sequestration technologies in its seven state geographic region (Indiana, Kentucky, Maryland, Michigan, Ohio, Pennsylvania, and West Virginia) and identifying viable pathways for their deployment. It is one of seven partnerships that together span most of the U.S. and parts of Canada that comprise the U.S. Department of Energy's (DOE's) Regional Carbon Sequestration Program led by DOE's national Energy Technology Laboratory (NETL). The MRCSP Phase I research was carried out under DOE Cooperative Agreement No. DE-FC26-03NT41981. The total value of Phase I was $3,513,513 of which the DOE share was $2,410,967 or 68.62%. The remainder of the cost share was provided in varying amounts by the rest of the 38 members of MRCSP's Phase I project. The next largest cost sharing participant to DOE in Phase I was the Ohio Coal Development Office within the Ohio Air Quality Development Authority (OCDO). OCDO's contribution was $100,000 and was contributed under Grant Agreement No. CDO/D-02-17. In this report, the MRCSP's research shows that the seven state MRCSP region is a major contributor to the U. S. economy and also to total emissions of CO2, the most significant of the greenhouse gases thought to contribute to global climate change. But, the research has also shown that the region has substantial resources for sequestering carbon, both in deep geological reservoirs (geological sequestration) and through improved agricultural and land management practices (terrestrial sequestration). Geological reservoirs, especially deep saline reservoirs, offer the potential to permanently store CO2 for literally 100s of years even if all the CO2 emissions from the region's large point sources were stored there, an unlikely scenario under any set of national carbon emission mitigation strategies. The terrestrial sequestration opportunities in the region have the biophysical potential to sequester up to 20% of annual emissions from the region's large point sources of CO2. This report describes the assumptions made and methods employed to arrive at the results leading to these conclusions. It also describes the results of analyses of regulatory issues in the region affecting the potential for deployment of sequestration technologies. Finally, it describes the public outreach and education efforts carried out in Phase I including the creation of a web site dedicated to the MRCSP at www.mrcsp.org.

  17. NextSTEPS (Sustainable Transportation Energy Pathways) PROGRAM SUMMARY

    E-Print Network [OSTI]

    California at Davis, University of

    NextSTEPS (Sustainable Transportation Energy Pathways) PROGRAM SUMMARY Institute of Transportation in January 2011, building on the many advances of our Sustainable Transportation Energy Pathways (STEPS Studies University of California, Davis Automakers, energy companies, utilities and governments are making

  18. Building America Industrialized Housing Partnership (BAIHP)

    SciTech Connect (OSTI)

    McIlvaine, Janet; Chandra, Subrato; Barkaszi, Stephen; Beal, David; Chasar, David; Colon, Carlos; Fonorow, Ken; Gordon, Andrew; Hoak, David; Hutchinson, Stephanie; Lubliner, Mike; Martin, Eric; McCluney, Ross; McGinley, Mark; McSorley, Mike; Moyer, Neil; Mullens, Mike; Parker, Danny; Sherwin, John; Vieira, Rob; Wichers, Susan

    2006-06-30T23:59:59.000Z

    This final report summarizes the work conducted by the Building America Industrialized Housing Partnership (www.baihp.org) for the period 9/1/99-6/30/06. BAIHP is led by the Florida Solar Energy Center of the University of Central Florida and focuses on factory built housing. In partnership with over 50 factory and site builders, work was performed in two main areas--research and technical assistance. In the research area--through site visits in over 75 problem homes, we discovered the prime causes of moisture problems in some manufactured homes and our industry partners adopted our solutions to nearly eliminate this vexing problem. Through testing conducted in over two dozen housing factories of six factory builders we documented the value of leak free duct design and construction which was embraced by our industry partners and implemented in all the thousands of homes they built. Through laboratory test facilities and measurements in real homes we documented the merits of 'cool roof' technologies and developed an innovative night sky radiative cooling concept currently being tested. We patented an energy efficient condenser fan design, documented energy efficient home retrofit strategies after hurricane damage, developed improved specifications for federal procurement for future temporary housing, compared the Building America benchmark to HERS Index and IECC 2006, developed a toolkit for improving the accuracy and speed of benchmark calculations, monitored the field performance of over a dozen prototype homes and initiated research on the effectiveness of occupancy feedback in reducing household energy use. In the technical assistance area we provided systems engineering analysis, conducted training, testing and commissioning that have resulted in over 128,000 factory built and over 5,000 site built homes which are saving their owners over $17,000,000 annually in energy bills. These include homes built by Palm Harbor Homes, Fleetwood, Southern Energy Homes, Cavalier and the manufacturers participating in the Northwest Energy Efficient Manufactured Home program. We worked with over two dozen Habitat for Humanity affiliates and helped them build over 700 Energy Star or near Energy Star homes. We have provided technical assistance to several show homes constructed for the International builders show in Orlando, FL and assisted with other prototype homes in cold climates that save 40% over the benchmark reference. In the Gainesville Fl area we have several builders that are consistently producing 15 to 30 homes per month in several subdivisions that meet the 30% benchmark savings goal. We have contributed to the 2006 DOE Joule goals by providing two community case studies meeting the 30% benchmark goal in marine climates.

  19. Commercial Building Partnerships Replication and Diffusion

    SciTech Connect (OSTI)

    Antonopoulos, Chrissi A.; Dillon, Heather E.; Baechler, Michael C.

    2013-09-16T23:59:59.000Z

    This study presents findings from survey and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, PNNL gathered quantitative and qualitative data relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners’ replication efforts of technologies and approaches used in the CBP project to the rest of the organization’s building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States.

  20. CEMENTITIOUS BARRIERS PARTNERSHIP FY13 MID-YEAR REPORT

    SciTech Connect (OSTI)

    Burns, H.; Flach, G.; Langton, C.; KOSSON, D.; BROWN, K.; SAMSON, E.; MEEUSSEN, J.; SLOOT, H.; GARBOCZI, E.

    2013-05-01T23:59:59.000Z

    In FY2013, the Cementitious Barriers Partnership (CBP) is continuing in its effort to develop and enhance software tools demonstrating tangible progress toward fulfilling the objective of developing a set of tools to improve understanding and prediction of the long?term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. In FY2012, the CBP released the initial inhouse “Beta?version” of the CBP Software Toolbox, a suite of software for simulating reactive transport in cementitious materials and important degradation phenomena. The current primary software components are LeachXS/ORCHESTRA, STADIUM, and a GoldSim interface for probabilistic analysis of selected degradation scenarios. THAMES is a planned future CBP Toolbox component (FY13/14) focused on simulation of the microstructure of cementitious materials and calculation of resultant hydraulic and constituent mass transfer parameters needed in modeling. This past November, the CBP Software Toolbox Version 1.0 was released that supports analysis of external sulfate attack (including damage mechanics), carbonation, and primary constituent leaching. The LeachXS component embodies an extensive material property measurements database along with chemical speciation and reactive mass transport simulation cases with emphasis on leaching of major, trace and radionuclide constituents from cementitious materials used in DOE facilities, such as Saltstone (Savannah River) and Cast Stone (Hanford), tank closure grouts, and barrier concretes. STADIUM focuses on the physical and structural service life of materials and components based on chemical speciation and reactive mass transport of major cement constituents and aggressive species (e.g., chloride, sulfate, etc.). The CBP issued numerous reports and other documentation that accompanied the “Version 1.0” release including a CBP Software Toolbox User Guide and Installation Guide. These documents, as well as, the presentations from the CBP Software Toolbox Demonstration and User Workshop, which are briefly described below, can be accessed from the CBP webpage at http://cementbarriers.org/. The website was recently modified to describe the CBP Software Toolbox and includes an interest form for application to use the software. The CBP FY13 program is continuing research to improve and enhance the simulation tools as well as develop new tools that model other key degradation phenomena not addressed in Version 1.0. Also efforts to continue to verify the various simulation tools thru laboratory experiments and analysis of field specimens are ongoing to quantify and reduce the uncertainty associated with performance assessments are ongoing. This mid?year report also includes both a summary on the FY13 software accomplishments in addition to the release of Version 1.0 of the CBP Software Toolbox and the various experimental programs that are providing data for calibration and validation of the CBP developed software. The focus this year for experimental studies was to measure transport in cementitious material by utilization of a leaching method and reduction capacity of saltstone field samples. Results are being used to calibrate and validate the updated carbonation model.

  1. Conventional Transportation Planning Models: Review and Prospects for Alternatives

    E-Print Network [OSTI]

    Nagurney, Anna

    of 1964 ($ 375 m) Highway Oriented 1970s Oil Crisis, Back to the City Transit Oriented (Urban Mass-Aid Highway Act of 1956) 1960s Fiscal Crisis, Urban Exodus Suburbanization Urban Mass Transportation Act-Private Partnership 1990s Global Warming CAAA 1990, ISTEA 1991, TEA21 1998 2000s Alternative Energy Sources Terrorism

  2. LANCASHIRE AND CUMBRIA COLLABORATIVE PARTNERSHIPS IN

    E-Print Network [OSTI]

    Diggle, Peter J.

    , innovation, and professional training and development in medicine, biomedical sciences, health & social care programmes of research, innovation and professional development, but also in shaping and leading local: · The value of excellent research, innovation and CPD as a fundamental requirement for advancing healthcare

  3. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2003-11-01T23:59:59.000Z

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  4. FINAL REPORT: Adopting Biophysics Methods in Pursuit of Biogeophysical Research: Advancing the Measurement and Modeling of Electrical Signatures of Microbe-Mineral Transformations Impacting Contaminant Transport

    SciTech Connect (OSTI)

    PRODAN, CAMELIA; SLATER, LEE; NTARLAGIANNIS, DIMITRIOS

    2012-09-01T23:59:59.000Z

    This exploratory project involved laboratory experiments to investigate three hypotheses: (H1) Physics-based modeling of low-frequency dispersions (henceforth referred to as alpha) measured in broadband dielectric spectroscopy (DS) data can quantify pore-scale geometric changes impacting contaminant transport resulting from biomineralization; (H2) Physics-based modeling of high-frequency dispersions (henceforth referred to as beta) measured in broadband dielectric spectroscopy data can quantify rates of mineral growth in/on the cell wall; (H3) Application of this measurement and modeling approach can enhance geophysical interpretation of bioremediation experiments conducted at the RIFLE IFC by providing constraints on bioremediation efficiency (biomass concentration, mineral uptake within the cell wall, biomineralization rate). We tested H1 by performing DS measurements (alpha and beta range) on iron (Fe) particles of dimensions similar to microbial cells, dispersed within agar gels over a range of Fe concentrations. We have tested the ability of the physics-based modeling to predict volume concentrations of the Fe particles by assuming that the Fe particles are polarizable inclusions within an otherwise nonpolarizable medium. We evaluated the smallest volume concentration that can be detected with the DS method. Similar experiments and modeling have been performed on the sulfate-reducing bacteria D. vulgaris. Synchrotron x-ray absorption measurements were conducted to determine the local structure of biominerals coatings on D. vulgaris which were grown in the presence of different Fe concentrations. We imaged the mineral growth on cell wall using SEM. We used dielectric spectroscopy to differentiate between iron sulfide precipitates of biotic and abiotic nature. Biotic measurements were made on D. vulgaris bacteria grown in the presence of different concentrations of iron to form different thicknesses of iron sulfide precipitates around themselves and abiotic measurements were made on different concentrations of pyrrhotite particles suspended in agar. Results show a decrease in dielectric permittivity as a function of frequency for biotic minerals and an opposite trend is observed for abiotic minerals. Our results suggest that dielectric spectroscopy offers a noninvasive and fast approach for distinguishing between abiotic and biotic mineral precipitates.

  5. Adopting Biophysics Methods in Pursuit of Biogeophysical Research: Advancing the measurement and modeling of electrical signatures of microbe-mineral transformations impacting contaminant transport

    SciTech Connect (OSTI)

    Prodan, Camelia [NJIT

    2013-06-14T23:59:59.000Z

    This exploratory project involved laboratory experiments to investigate three hypotheses: (H1) Physics-based modeling of low-frequency dispersions (henceforth referred to as alpha) measured in broadband dielectric spectroscopy (DS) data can quantify pore-scale geometric changes impacting contaminant transport resulting from biomineralization; (H2) Physics-based modeling of high-frequency dispersions (henceforth referred to as beta) measured in broadband dielectric spectroscopy data can quantify rates of mineral growth in/on the cell wall; (H3) Application of this measurement and modeling approach can enhance geophysical interpretation of bioremediation experiments conducted at the RIFLE IFC by providing constraints on bioremediation efficiency (biomass concentration, mineral uptake within the cell wall, biomineralization rate). We tested H1 by performing DS measurements (alpha and beta range) on iron (Fe) particles of dimensions similar to microbial cells, dispersed within agar gels over a range of Fe concentrations. We have tested the ability of the physics-based modeling to predict volume concentrations of the Fe particles by assuming that the Fe particles are polarizable inclusions within an otherwise nonpolarizable medium. We evaluated the smallest volume concentration that can be detected with the DS method. Similar experiments and modeling have been performed on the sulfate-reducing bacteria D. vulgaris. Synchrotron x-ray absorption measurements were conducted to determine the local structure of biominerals coatings on D. vulgaris which were grown in the presence of different Fe concentrations. We imaged the mineral growth on cell wall using SEM. We used dielectric spectroscopy to differentiate between iron sulfide precipitates of biotic and abiotic nature. Biotic measurements were made on D. vulgaris bacteria grown in the presence of different concentrations of iron to form different thicknesses of iron sulfide precipitates around themselves and abiotic measurements were made on different concentrations of pyrrhotite particles suspended in agar. Results show a decrease in dielectric permittivity as a function of frequency for biotic minerals and an opposite trend is observed for abiotic minerals. Our results suggest that dielectric spectroscopy offers a noninvasive and fast approach for distinguishing between abiotic and biotic mineral precipitates.

  6. E-Print Network 3.0 - advanced technology applications Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Texas Transportation Institute Collection: Engineering 12 Kompetenzzentrum fr Automobil-und Industrieelektronik Summary: of materials for these advanced semiconductor...

  7. wileyonlinelibrary.com Working in Partnership to

    E-Print Network [OSTI]

    Kaski, Samuel

    The Homer Encyclopedia Kirk-Othmer Encyclopedia of Chemical TechnologyKirk-Othmer Patai's Chemistry Mining and Knowledge Discovery Developmental Biology Energy and Environment Membrane Transport;wileyonlinelibrary.com Wiley thecochranelibrary.com 13,000 Wiley Essential Evidence PlusEBM Guidelines

  8. The International Partnership for the Hydrogen Economy

    E-Print Network [OSTI]

    Hydrogen? It's abundant, clean, efficient, and can be derived from diverse domestic resources. . Distributed Generation TransportationBiomass Hydro Wind Solar Geothermal Coal Nuclear Natural Gas Oil With program has tripled in size since 1995. Initiated Roadmaps and Programs: Australia, Brazil, Canada, China

  9. The AMTEX Partnership{trademark}. Fourth quarter FY95 report

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The AMTEX Partnership{trademark} is a collaborative research and development program among the US Integrated Textile Industry, the Department of Energy (DOE), the national laboratories, other federal agencies and laboratories, and universities. The goal of AMTEX is to strengthen the competitiveness of this vital industry, thereby preserving and creating US jobs. The operations and program management of the AMTEX Partnership{trademark} is provided by the Program Office. This report is produced by the Program Office on a quarterly basis and provides information on the progress, operations, and project management of the partnership. Progress is reported on the following projects: computer-aided fabric evaluation; cotton biotechnology; demand activated manufacturing architecture; electronic embedded fingerprints; on-line process control for flexible fiber manufacturing; rapid cutting; sensors for agile manufacturing; and textile resource conservation.

  10. Cementitious Barriers Partnership FY2013 End-Year Report

    SciTech Connect (OSTI)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States); Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States); Burns, H. H. [Savannah River Site (SRS), Aiken, SC (United States); Smith, F. G. [Savannah River Site (SRS), Aiken, SC (United States); Kosson, D. S. [Vanderbilt University, School of Engineering, Nashville, TN (United States); Brown, K. G. [Vanderbilt University, School of Engineering, Nashville, TN (United States); Samson, E. [SIMCO Technologies, Inc., Quebec (Canada); Meeussen, J. C.L. [Nuclear Research and Consultancy Group (NRG), Petten (The Netherlands); van der Sloot, H. A. [Hans van der Sloot Consultancy, Langedijk (The Netherlands); Garboczi, E. J. [Materials & Construction Research Division, National Institute of Standards and Technology, Gaithersburg, MD (United States)

    2013-11-01T23:59:59.000Z

    In FY2013, the Cementitious Barriers Partnership (CBP) demonstrated continued tangible progress toward fulfilling the objective of developing a set of software tools to improve understanding and prediction of the long?term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. In November 2012, the CBP released “Version 1.0” of the CBP Software Toolbox, a suite of software for simulating reactive transport in cementitious materials and important degradation phenomena. In addition, the CBP completed development of new software for the “Version 2.0” Toolbox to be released in early FY2014 and demonstrated use of the Version 1.0 Toolbox on DOE applications. The current primary software components in both Versions 1.0 and 2.0 are LeachXS/ORCHESTRA, STADIUM, and a GoldSim interface for probabilistic analysis of selected degradation scenarios. The CBP Software Toolbox Version 1.0 supports analysis of external sulfate attack (including damage mechanics), carbonation, and primary constituent leaching. Version 2.0 includes the additional analysis of chloride attack and dual regime flow and contaminant migration in fractured and non?fractured cementitious material. The LeachXS component embodies an extensive material property measurements database along with chemical speciation and reactive mass transport simulation cases with emphasis on leaching of major, trace and radionuclide constituents from cementitious materials used in DOE facilities, such as Saltstone (Savannah River) and Cast Stone (Hanford), tank closure grouts, and barrier concretes. STADIUM focuses on the physical and structural service life of materials and components based on chemical speciation and reactive mass transport of major cement constituents and aggressive species (e.g., chloride, sulfate, etc.). THAMES is a planned future CBP Toolbox component focused on simulation of the microstructure of cementitious materials and calculation of resultant hydraulic and constituent mass transfer parameters needed in modeling. Two CBP software demonstrations were conducted in FY2013, one to support the Saltstone Disposal Facility (SDF) at SRS and the other on a representative Hanford high?level waste tank. The CBP Toolbox demonstration on the SDF provided analysis on the most probable degradation mechanisms to the cementitious vault enclosure caused by sulfate and carbonation ingress. This analysis was documented and resulted in the issuance of a SDF Performance Assessment Special Analysis by Liquid Waste Operations this fiscal year. The two new software tools supporting chloride attack and dual?regime flow will provide additional degradation tools to better evaluate performance of DOE and commercial cementitious barriers. The CBP SRNL experimental program produced two patent applications and field data that will be used in the development and calibration of CBP software tools being developed in FY2014. The CBP software and simulation tools varies from other efforts in that all the tools are based upon specific and relevant experimental research of cementitious materials utilized in DOE applications. The CBP FY2013 program involved continuing research to improve and enhance the simulation tools as well as developing new tools that model other key degradation phenomena not addressed in Version 1.0. Also efforts to continue to verify the various simulation tools through laboratory experiments and analysis of field specimens are ongoing and will continue into FY2014 to quantify and reduce the uncertainty associated with performance assessments. This end?year report summarizes FY2013 software development efforts and the various experimental programs that are providing data for calibration and validation of the CBP developed software.

  11. U.S.-Russia Twenty-Year Partnership Completes Final Milestone...

    Broader source: Energy.gov (indexed) [DOE]

    -Russia Twenty-Year Partnership Completes Final Milestone in Converting 20,000 Russian Nuclear Warheads into Fuel for U.S. Electricity U.S.-Russia Twenty-Year Partnership Completes...

  12. Ford-Dow Partnership Is Linked to Carbon Fiber Research at ORNL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ford-Dow Partnership Is Linked to Carbon Fiber Research at ORNL Ford-Dow Partnership Is Linked to Carbon Fiber Research at ORNL May 16, 2013 - 12:00am Addthis EERE provided funding...

  13. An Overview of Accountability Mechanisms in Public - Private Partnerships in South Africa

    E-Print Network [OSTI]

    Fombad, Madeleine

    2013-01-01T23:59:59.000Z

    consumers within the New Public Management (reforms that aimpublic administration, politics and management of expectations. NewNew development: Accountability in public-private partnership the case of local strategic partnerships. Public Money & Management

  14. The coordination between public and private sectors: the role of partnerships in ecotourism development

    E-Print Network [OSTI]

    Sekartjakrarini, Soeharrtini

    1993-01-01T23:59:59.000Z

    community development. In this sense, ecotourism is seen as a partnership between public agencies and the private sector. Such a perspective on ecotourism is aligned with current policy directives of the Indonesian government. Seven partnerships in nature...

  15. Roadmap and Technical White Papers for 21st Century Truck Partnership...

    Broader source: Energy.gov (indexed) [DOE]

    Roadmap and Technical White Papers for 21st Century Truck Partnership Roadmap and Technical White Papers for 21st Century Truck Partnership Roadmap document for 21st Century Truck...

  16. Appalachian Colleges Community Economic Development Partnership The Small Private Colleges Economic Development Toolkit

    E-Print Network [OSTI]

    Engel, Jonathan

    Partnerships o Evaluation: Measuring Effectiveness #12;The Small Private Colleges Economic Development ToolkitAppalachian Colleges Community Economic Development Partnership The Small Private Colleges Economic and sustainable economic development outreach programs. It contains carefully selected articles and case studies

  17. Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    An overview of the Department of Energy`s Office of Industrial Technologies and its private sector partnerships is presented. Commercial success stories and real-world benefits of the technology partnerships are discussed.

  18. The Impact of the Colorado Domestic Partnership Act on Colorado's State Budget

    E-Print Network [OSTI]

    Badgett, M.V. Lee; Sears, Brad; Lee, Roger; MacCartney, Danielle

    2006-01-01T23:59:59.000Z

    October 2006 The Impact of the Colorado Domestic PartnershipAct on Colorado's State Budget http://www.law.ucla.edu/2006 The Impact of the Colorado Domestic Partnership Act on

  19. E-Print Network 3.0 - alternative fish transportation Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fish transportation Search Powered by Explorit Topic List Advanced Search Sample search results for: alternative fish transportation Page: << < 1 2 3 4 5 > >> 1 Fishing in Indiana...

  20. Standardization of Transport Properties Measurements: Internal Energy Agency (IEA-AMT) Annex on Thermoelectric

    Broader source: Energy.gov [DOE]

    Thermoelectric materials transport properties measurements improvement and standardization is undertaken by new IEA annex under the Advanced Materials for Transportation implementing agreement

  1. DOE Partnership Completes Successful CO2 Injection Test in the Mount Simon Sandstone

    Broader source: Energy.gov [DOE]

    The Midwest Regional Carbon Sequestration Partnership, one of seven partnerships in the U.S. Department of Energy's Regional Carbon Sequestration Partnerships program, has successfully injected 1,000 metric tons of carbon dioxide (CO2) into the Mount Simon Sandstone, a deep saline formation that is widespread across much of the Midwest.

  2. Advanced Post-Irradiation Examination Capabilities Alternatives Analysis Report

    SciTech Connect (OSTI)

    Jeff Bryan; Bill Landman; Porter Hill

    2012-12-01T23:59:59.000Z

    An alternatives analysis was performed for the Advanced Post-Irradiation Capabilities (APIEC) project in accordance with the U.S. Department of Energy (DOE) Order DOE O 413.3B, “Program and Project Management for the Acquisition of Capital Assets”. The Alternatives Analysis considered six major alternatives: ? No Action ? Modify Existing DOE Facilities – capabilities distributed among multiple locations ? Modify Existing DOE Facilities – capabilities consolidated at a few locations ? Construct New Facility ? Commercial Partnership ? International Partnerships Based on the alternatives analysis documented herein, it is recommended to DOE that the advanced post-irradiation examination capabilities be provided by a new facility constructed at the Materials and Fuels Complex at the Idaho National Laboratory.

  3. Algae Testbed Public-Private Partnership

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance|atp3.org 1 John A. McGowen PhD, PMP Director

  4. Southeast Regional Carbon Sequestration Partnership (SECARB)

    SciTech Connect (OSTI)

    Kathryn A. Baskin

    2004-03-31T23:59:59.000Z

    Work during the first six months of the project mainly concentrated on contracts execution and collection of data to characterize the region and input of that data into the geographical information system (GIS) system. Data was collected for source characterization, transportation options and terrestrial options. In addition, discussions were held to determine the extent of the geologic information that would be needed for the project. In addition, activities associated with the regulatory, permitting and safety issues were completed. Outreach activities are in the formative stages.

  5. is seeking partnerships with private and corporate donors

    E-Print Network [OSTI]

    mineral resources is the keystone to the global minerals industry. As existing mines are depleted of metallic mineral resources. Programs encouraging reduction in use, re-use and recycling are able to offset#12;is seeking partnerships with private and corporate donors to strengthen capacity in mineral

  6. Pinellas Plant: Child Care/Partnership School safety assessment

    SciTech Connect (OSTI)

    NONE

    1989-11-01T23:59:59.000Z

    The Albuquerque Operations Office through the Pinellas Plant Area Office is involved in a joint venture to establish a Partnership School and a Day Care Facility at the Plant. The venture is unique in that it is based on a partnership with the local county school system. The county school system will provide the teachers, supplies and classroom furnishings for the operation of the school for pre-kindergarten, kindergarten, first and second grade during regular school hours. The Government will provide the facility and its normal operating and maintenance costs. A Day Care Facility will also be available for children from infancy through the second grade for outside school hours. The day care will be operated as a non-profit corporation. Fees paid by parents with children in the day care center will cove the cost of staff, food, supplies and liability insurance. Again, the government will provide the facility and its normal operating and maintenance costs. Between 75 and 90 children are expected in the first year of operation. The Partnership School will consist of one class each for pre-kindergarten, kindergarten and first grade. Second grade will be added in 1990. The total estimated number of children for both the Child Care and Partnership School should not exceed 200 children. Expected benefits include reduced absenteeism, tardiness and turnover and thus increased productivity. The program will be an asset in recruiting and retaining the best workforce. Other benefits include improved education for the children.

  7. Public forestry = partnership? learning through the British experience

    E-Print Network [OSTI]

    /09/2009 #12;Drivers of partnership in the UK 1979 ­ 1997 Neo-liberal period · Markets, deregulation and decentralised 9 28/09/2009 #12;28/09/200910 #12;Specific drivers for forestry · Countryside fulfilling new

  8. PARTNERSHIP PROFILE: THE GAVI ALLIANCE | 1 About the GAVI Alliance

    E-Print Network [OSTI]

    Klein, Ophir

    . GAVI's work is based on an innovative partnership and business model. GAVI is not an implementing that funds are used efficiently and effectively. In raising the resources to finance immunization programs agency, relying instead on countries and partners to ensure that resources provided by GAVI are used

  9. POWERFUL PARTNERSHIPS: THE FEDERAL ROLE IN INTERNATIONAL COOPERATION

    E-Print Network [OSTI]

    POWERFUL PARTNERSHIPS: THE FEDERAL ROLE IN INTERNATIONAL COOPERATION ON ENERGY INNOVATION A REPORT IN ENERGY RESEARCH, DEVELOPMENT, DEMONSTRATION, AND DEPLOYMENT JUNE 1999 #12;About the President's Committee that national needs remain an overarching guide for the NSTC. The PCAST provides feedback about Federal programs

  10. Partnership Efforts in the Sustainable Rangelands LORI HIDINGER

    E-Print Network [OSTI]

    Wyoming, University of

    , and through the Delphi Process. In 17 #12;Table 1: Organizations Involved in the Sustainable RangelandsPartnership Efforts in the Sustainable Rangelands Roundtable LORI HIDINGER The author is program manager, Sustainable Biosphere Initiative and Science Programs, Ecological Society of America, Washington

  11. Research Summary Civil Society, the Forestry Commission and Partnerships

    E-Print Network [OSTI]

    working practices (e.g. joint budget setting and accounting processes, joint forward job planning is to assess which are the most sustainable and able to provide the desired forestry policy related outcomes participants to gather more in depth case study material about individual partnership arrangements. Findings

  12. Federal Utility Partnership Working Group Spring 2009 Meeting Welcome

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting—covers the Federal Energy Management Program (FEMP) mission and services; Energy Independence and Security Act (EISA) Section 432 guidance; and American Reinvestment and Recovery Act (ARRA).

  13. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt067vssbazzi2011o.pdf More Documents & Publications...

  14. Advanced Vehicle Electrification and Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Enhancing Transportation Energy Security through Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative - NPBF The FreedomCAR & Vehicle Technologies Health Impacts Program - The Collaborative Lubricating Oil Study on Emissions (CLOSE) Project The Pathway to Energy Security...

  16. Aerospace, Transportation and Advanced Systems Laboratory (ATAS)

    E-Print Network [OSTI]

    Bennett, Gisele

    . ELSYS employs an "end-to-end" approach to developing electronic warfare and other electronic systems.gtri.gatech.edu/labs CTISLATAS #12;electronic Systems Laboratory (eLSYS) Joe Brooks, Laboratory Director www

  17. Advanced Vehicle Electrification & Transportation Sector Electrification |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| DepartmentEnergy 2Waste

  18. Advanced Vehicle Electrification and Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| DepartmentEnergy 2Waste| Department

  19. Advanced Vehicle Electrification and Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| DepartmentEnergy 2Waste| Department|

  20. Advancing Transportation Through Vehicle Electrification - PHEV |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2|Department of EnergyMini-VanDepartment

  1. Advancing Transportation Through Vehicle Electrification - PHEV |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2|Department of

  2. Advancing Transportation Through Vehicle Electrification - PHEV |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2|Department ofDepartment of Energy 0

  3. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOE FormerEnergySavePEnergyDepartment ofSector

  4. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOE FormerEnergySavePEnergyDepartment

  5. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable Energy (EERE)Smart ManufacturingDepartment ofSector

  6. Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S9-0s)Department of Energy1

  7. National Institute for Advanced Transportation Technology

    E-Print Network [OSTI]

    Kyte, Michael

    Combustion Engines; Small Engine Laboratory Support for Multi-Fuel Performance and Emissions Testing;Engine Performance Work Continues Projects: Modeling and Application of Catalytic Ignition in Internal engines. Under the direction of Dr. Steven Beyerlein, emissions data for the van in different modes

  8. Advancing Transportation Through Vehicle Electrification- PHEV

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. DAINTREE NETWORKS PARTNERS WITH CLTC TO ADVANCE LIGHTING CONTROLS UC Davis' California Lighting Technology Center (CLTC) and Daintree team up to increase adoption with

    E-Print Network [OSTI]

    California at Davis, University of

    - more - DAINTREE NETWORKS PARTNERS WITH CLTC TO ADVANCE LIGHTING CONTROLS UC Davis' California affiliate partnership with UC Davis' California Lighting Technology Center (CLTC) with the goal of advancing wireless smart building solutions for enterprise control and energy management, today announced its

  10. Transportation Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Services Transporting nuclear materials within the United States and throughout the world is a complicated and sometimes highly controversial effort requiring...

  11. Local Transportation

    E-Print Network [OSTI]

    Local Transportation. Transportation from the Airport to Hotel. There are two types of taxi companies that operate at the airport: special and regular taxis (

  12. Greening Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Goal 2: Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by offering various commuting and work...

  13. Chamber transport

    SciTech Connect (OSTI)

    OLSON,CRAIG L.

    2000-05-17T23:59:59.000Z

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

  14. Southwest Regional Partnership on Carbon Sequestration Phase II

    SciTech Connect (OSTI)

    James Rutledge

    2011-02-01T23:59:59.000Z

    The Southwest Regional Partnership (SWP) on Carbon Sequestration designed and deployed a medium-scale field pilot test of geologic carbon dioxide (CO2) sequestration in the Aneth oil field. Greater Aneth oil field, Utah's largest oil producer, was discovered in 1956 and has produced over 455 million barrels of oil (72 million m3). Located in the Paradox Basin of southeastern Utah, Greater Aneth is a stratigraphic trap producing from the Pennsylvanian Paradox Formation. Because it represents an archetype oil field of the western U.S., Greater Aneth was selected as one of three geologic pilots to demonstrate combined enhanced oil recovery (EOR) and CO2 sequestration under the auspices of the SWP on Carbon Sequestration, sponsored by the U.S. Department of Energy. The pilot demonstration focuced on the western portion of the Aneth Unit as this area of the field was converted from waterflood production to CO2 EOR starting in late 2007. The Aneth Unit is in the northwestern part of the field and has produced 149 million barrels (24 million m3) of the estimated 450 million barrels (71.5 million m3) of the original oil in place - a 33% recovery rate. The large amount of remaining oil makes the Aneth Unit ideal to demonstrate both CO2 storage capacity and EOR by CO2 flooding. This report summarizes the geologic characterization research, the various field monitoring tests, and the development of a geologic model and numerical simulations conducted for the Aneth demonstration project. The Utah Geological Survey (UGS), with contributions from other Partners, evaluated how the surface and subsurface geology of the Aneth Unit demonstration site will affect sequestration operations and engineering strategies. The UGS-research for the project are summarized in Chapters 1 through 7, and includes (1) mapping the surface geology including stratigraphy, faulting, fractures, and deformation bands, (2) describing the local Jurassic and Cretaceous stratigraphy, (3) mapping the Desert Creek zone reservoir, Gothic seal, and overlying aquifers, (4) characterizing the depositional environments and diagenetic events that produced significant reservoir heterogeneity, (5) describing the geochemical, petrographic, and geomechanical properties of the seal to determine the CO2 or hydrocarbon column it could support, and (6) evaluating the production history to compare primary production from vertical and horizontal wells, and the effects of waterflood and wateralternating- gas flood programs. The field monitoring demonstrations were conducted by various Partners including New Mexico Institute of Mining and Technology, University of Utah, National Institute of Advanced Industrial Science and Technology, Japan, Los Alamos National Laboratory and Cambridge Geosciences. The monitoring tests are summarized in Chapters 8 through 12, and includes (1) interwell tracer studies during water- and CO2-flood operations to characterize tracer behavoirs in anticipation of CO2-sequestration applications, (2) CO2 soil flux monitoring to measure background levels and variance and assess the sensitivity levels for CO2 surface monitoring, (3) testing the continuous monitoring of self potential as a means to detect pressure anomalies and electrochemical reaction due to CO2 injection, (4) conducting time-lapse vertical seismic profiling to image change near a CO2 injection well, and (5) monitoring microseismicity using a downhole string of seismic receivers to detect fracture slip and deformation associated with stress changes. Finally, the geologic modeling and numerical simulation study was conducted by researcher at the University of Utah. Chapter 13 summarizes their efforts which focused on developing a site-specific geologic model for Aneth to better understand and design CO2 storage specifically tailored to oil reservoirs.

  15. Through the Innovative Partnerships Program, NASA fosters partnerships among researchers, academia

    E-Print Network [OSTI]

    InsideAerovations Fighting fire Systems technology helps NASA and the U.S. Forest Service determine;Rolling Hills uses IPP funding to advance technology and commercial products Student assists with Reliable and deliver critical information to forest fire com- manders. NTR valuable for researchers New technology

  16. Fuel Cells For Transportation - 1999 Annual Progress Report Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1999 Annual Progress Report Energy Conversion Team Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Developing Advanced PEM Fuel Cell Technologies...

  17. Fuels Performance Group: Center for Transportation Technologies and Systems

    SciTech Connect (OSTI)

    Not Available

    2008-08-01T23:59:59.000Z

    Describes R&D and analysis in advanced petroleum-based and non-petroleum-based transportation fuels done by NREL's Fuels Performance Group.

  18. Visualization of Fuel Cell Water Transport and Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies Fundamental Issues in Subzero PEMFC Startup and Operation Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization...

  19. Sustainable Transportation (Fact Sheet), Office of Energy Efficiency...

    Energy Savers [EERE]

    Energy, U.S. Department of Energy (DOE) This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies,...

  20. Technical Report of Accomplishments of the Weatherization Leveraging Partnership Project

    SciTech Connect (OSTI)

    Economic Opportunity Studies

    2007-09-30T23:59:59.000Z

    The Weatherization Leveraging Partnership Project was established to provide three types of technical assistance support to W.A.P. network organizations seeking to achieve the Weatherization Plus goal of expanding their non-federal resources. It provided: (1) Analysis that profiled W.A.P.-eligible household energy characteristics and finances for all in determining efficiency investment targets and goals; (2) Detailed information on leveraged partnerships linked from many sources and created a website with finding aids to meet the needs the network identified. There are five major market segments with related, but different, technical assistance needs; (3) Direct, sustained assistance in preparing strategies, analyses, and communications for a limited set of local network initiatives that were in early stages of initiating or changing their resource expansion strategies. The Project identified trends in the challenges that weatherizers initiatives encountered; it designed materials and tools, including the dynamic www.weatherizationplus.org website, to meet the continuing and the emerging needs.

  1. National facility for advanced computational science: A sustainable path to scientific discovery

    SciTech Connect (OSTI)

    Simon, Horst; Kramer, William; Saphir, William; Shalf, John; Bailey, David; Oliker, Leonid; Banda, Michael; McCurdy, C. William; Hules, John; Canning, Andrew; Day, Marc; Colella, Philip; Serafini, David; Wehner, Michael; Nugent, Peter

    2004-04-02T23:59:59.000Z

    Lawrence Berkeley National Laboratory (Berkeley Lab) proposes to create a National Facility for Advanced Computational Science (NFACS) and to establish a new partnership between the American computer industry and a national consortium of laboratories, universities, and computing facilities. NFACS will provide leadership-class scientific computing capability to scientists and engineers nationwide, independent of their institutional affiliation or source of funding. This partnership will bring into existence a new class of computational capability in the United States that is optimal for science and will create a sustainable path towards petaflops performance.

  2. Steam Partnerships: Case Study of Improved Energy Efficiency

    E-Print Network [OSTI]

    Calogero, M. V.; Hess, R. E.; Leigh, N.

    Steam Partnerships: Case Study of Improved Energy Efficiency Michael V. Calogero, P.E., CEM Robert E. Hess Novi Leigh Director, Northeast Operations Sr. Energy Systems Engineer Energy Systems Engineer Armstrong Service, Inc ABSTRACT Effective.... 1998-2001 operating data from client's laundry processing facility. 3. Turner, Wayne C., Energy Management Handbook, 2 nd edition, 1993. 4. Armstrong International, Inc., Steam Conservation Guidelines for Condensate Drainage, Handbook N-1 01, 1997...

  3. Dimensions of Family and Professional Partnerships: Constructive Guidelines for Collaboration

    E-Print Network [OSTI]

    Blue-Banning, Martha; Summers, Jean Ann; Frankland, H. Corine; Lord Nelson, Louise G.; Beegle, Gwen

    2004-01-01T23:59:59.000Z

    adolescents and young adults with disabilities. Both stakeholder groups identified the disparity of Winter 2004 168 power and authority in the relationship between parents and professionals as a major challenge to successful partnerships... equally powerful in their ability to influence outcomes for children and families. Avoiding use of "clout" Empowering partners Validating others Advocating for child or family with other professionals Allowing reciprocity among members Being...

  4. International Partnership for a Hydrogen Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOE Vehicle TechnologiesDepartmentDepartmentPartnership for

  5. Wind Partnerships for Advanced Component Technology: WindPACT Advanced Wind Turbine Drivetrain Designs; Northern Power Systems, Inc.

    SciTech Connect (OSTI)

    Not Available

    2006-03-01T23:59:59.000Z

    This fact sheet describes a subcontract with Northern Power Systems to develop a direct-drive (no gearbox) permanent magnet generator, which has the greatest potential to decrease the cost of energy.

  6. U.S.-India Partnership to Advance Clean Energy: A Progress Report (June

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1TeleworkAgriculture U.S.-China Clean EnergyChina2012) |

  7. Auto/Steel Partnership: Advanced High-Strength Steel Research and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 AuditAugust 5, 2010Auto Indexer

  8. Advanced Safeguards Approaches for New Reprocessing Facilities

    SciTech Connect (OSTI)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Richard; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-06-24T23:59:59.000Z

    U.S. efforts to promote the international expansion of nuclear energy through the Global Nuclear Energy Partnership (GNEP) will result in a dramatic expansion of nuclear fuel cycle facilities in the United States. New demonstration facilities, such as the Advanced Fuel Cycle Facility (AFCF), the Advanced Burner Reactor (ABR), and the Consolidated Fuel Treatment Center (CFTC) will use advanced nuclear and chemical process technologies that must incorporate increased proliferation resistance to enhance nuclear safeguards. The ASA-100 Project, “Advanced Safeguards Approaches for New Nuclear Fuel Cycle Facilities,” commissioned by the NA-243 Office of NNSA, has been tasked with reviewing and developing advanced safeguards approaches for these demonstration facilities. Because one goal of GNEP is developing and sharing proliferation-resistant nuclear technology and services with partner nations, the safeguards approaches considered are consistent with international safeguards as currently implemented by the International Atomic Energy Agency (IAEA). This first report reviews possible safeguards approaches for the new fuel reprocessing processes to be deployed at the AFCF and CFTC facilities. Similar analyses addressing the ABR and transuranic (TRU) fuel fabrication lines at AFCF and CFTC will be presented in subsequent reports.

  9. PRESENTED BY UC DAVIS SCHOOL OF EDUCATION IN PARTNERSHIP WITH NEXTED

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    PRESENTED BY UC DAVIS SCHOOL OF EDUCATION IN PARTNERSHIP WITH NEXTED C D : Colfax High energy. Firing missiles from a catapult made with a mousetrap. T , , : Turning

  10. Overcoming Persistent Barriers to Energy Efficiency in Multifamily Housing through Partnerships

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Overcoming Persistent Barriers to Energy Efficiency in Multifamily Housing through Partnerships.

  11. Funding Opportunity Webinar – Building America Industry Partnerships for High Performance Housing Innovations

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of the “Building America Industry Partnerships for High Performance Housing Innovations” Funding Opportunity Announcement, DE-FOA-0001117.

  12. Funding Opportunity Webinar – Building America Industry Partnerships for High Performance Housing Innovations (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the Funding Opportunity Webinar, Building America Industry Partnerships for High Performance Housing Innovations, presented in November 2014.

  13. Partnering with Utilities Part 1: Successful Partnerships and Lessons from the Field

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on how to create successful partnerships with utility companies (Part 1).

  14. UESC Success Story: GSA and Consolidated Edison's Strong Partnership Has Many Rewards (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01T23:59:59.000Z

    Case study outlining energy management projecs implemented at the General Services Administration's Ted Weiss Federal Building through utility partnerships with Con Edison.

  15. Successful Partnerships and Lessons from the Field, Part 1, Webinar Transcript

    Broader source: Energy.gov [DOE]

    Part 1-Successful Partnerships and Lessons from the Field Webinar Transcript, from the U.S. Department of Energy Technical Assistance Program (TAP).

  16. [Interstate Clean Transportation]. Final Report for FG02-99EE50591

    SciTech Connect (OSTI)

    Wendt, Lee

    2002-07-19T23:59:59.000Z

    The Interstate Clean Transportation (ICTC) purpose is to develop a public-private partnership dedicated to accelerating the market penetration of clean, alternative fuel vehicles (AFVs) in interstate goods movement. In order to foster project development, the ICTC activity sought to increase awareness of heavy-duty AFVs among truck fleet operators.

  17. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R. [NETL

    2013-03-11T23:59:59.000Z

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  18. Transportation Statistics Annual Report 1997

    SciTech Connect (OSTI)

    Fenn, M.

    1997-01-01T23:59:59.000Z

    This document is the fourth Transportation Statistics Annual Report (TSAR) prepared by the Bureau of Transportation Statistics (BTS) for the President and Congress. As in previous years, it reports on the state of U.S. transportation system at two levels. First, in Part I, it provides a statistical and interpretive survey of the system—its physical characteristics, its economic attributes, aspects of its use and performance, and the scale and severity of unintended consequences of transportation, such as fatalities and injuries, oil import dependency, and environment impacts. Part I also explores the state of transportation statistics, and new needs of the rapidly changing world of transportation. Second, Part II of the report, as in prior years, explores in detail the performance of the U.S. transportation system from the perspective of desired social outcomes or strategic goals. This year, the performance aspect of transportation chosen for thematic treatment is “Mobility and Access,” which complements past TSAR theme sections on “The Economic Performance of Transportation” (1995) and “Transportation and the Environment” (1996). Mobility and access are at the heart of the transportation system’s performance from the user’s perspective. In what ways and to what extent does the geographic freedom provided by transportation enhance personal fulfillment of the nation’s residents and contribute to economic advancement of people and businesses? This broad question underlies many of the topics examined in Part II: What is the current level of personal mobility in the United States, and how does it vary by sex, age, income level, urban or rural location, and over time? What factors explain variations? Has transportation helped improve people’s access to work, shopping, recreational facilities, and medical services, and in what ways and in what locations? How have barriers, such as age, disabilities, or lack of an automobile, affected these accessibility patterns? How are commodity flows and transportation services responding to global competition, deregulation, economic restructuring, and new information technologies? How do U.S. patterns of personal mobility and freight movement compare with other advanced industrialized countries, formerly centrally planned economies, and major newly industrializing countries? Finally, how is the rapid adoption of new information technologies influencing the patterns of transportation demand and the supply of new transportation services? Indeed, how are information technologies affecting the nature and organization of transportation services used by individuals and firms?

  19. Commercial Buildings Partnership Projects - Metered Data Format and Delivery

    SciTech Connect (OSTI)

    Katipamula, Srinivas

    2010-11-16T23:59:59.000Z

    A number of the Commercial Building Partnership Projects (CBPs) will require metering, monitoring, data analysis and verification of savings after the retrofits are complete. Although monitoring and verification (M&V) agents are free to use any metering and monitoring devices that they chose, the data they collect should be reported to Pacific Northwest National Laboratory (PNNL) in a standard format. PNNL will store the data collected in its CBP database for further use by PNNL and U.S. Department of Energy. This document describes the data storage process and the deliver format of the data from the M&V agents.

  20. 2014 CATEE: Collaboration is the Key- Public/Private Partnerships

    E-Print Network [OSTI]

    Lin, L.

    2014-01-01T23:59:59.000Z

    , Texas Nov. 18-20 HGOC Education and Outreach ? District Meetings ? Peer Exchange ? Workshops ? Webinars ? One-on-One Trainings ? Newsletters ? Social media ESL-KT-14-11-24 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18...2014 CATEE Collaboration is the Key - Public/Private Partnerships November 19, 2014 Lisa Lin, Sustainability Manager, City of Houston ESL-KT-14-11-24 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 City of Houston...

  1. PP-206 Frontera Generation Limited Partnership | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6 Frontera Generation Limited Partnership PP-206

  2. Partnerships > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to the Pacific NorthwestPartnerships Network R&DIn

  3. Partnership between DOE programs leads to mutual success | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiativesNationalNuclearRocky MountainEnergy Partnership between DOE

  4. Partnership for Energy Sector Climate Resilience | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiativesNationalNuclearRocky MountainEnergy Partnership between

  5. The 21st Century Truck Partnership | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOfficeThe 21st Century Truck Partnership The

  6. Potential partnerships and funding from a variety of sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22, 2014SocietyJ.Potential partnerships and

  7. Potential partnerships and funding from a variety of sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22, 2014SocietyJ.Potential partnerships

  8. Join > Partnerships > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMission Statement Titan TargetIn This Section Why Partnerships?

  9. Plains CO2 Reduction Partnership PCOR | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: EnergyPierceJump81647° LoadingPlain City, Ohio:is aPartnership

  10. Utility Partnerships Webinar Series: Electric Utility Energy Efficiency Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New12.'6/0.2Contract (UESC) is not anPartnerships

  11. Utility Partnerships Webinar Series: Gas Utility Energy Efficiency Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New12.'6/0.2Contract (UESC) is not anPartnerships|

  12. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: Energy.gov (indexed) [DOE]

    of Bowling Green PMCPVT 2012 110111 - 2292012 Erin Russell-Story Bowling Green, Wood Co., Ohio Ohio Advanced Transportation Partnership - City of Bowling Green Three EVSEs...

  13. NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form

    Broader source: Energy.gov (indexed) [DOE]

    PVTClean Cities ARRA Erin Russell-Story 112011 - 612011 2210 S. Erie Blvd. Hamilton, OH 45015 Ohio Advanced Transportation Partnership (OATP) - EV Charging...

  14. NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form

    Broader source: Energy.gov (indexed) [DOE]

    PVTClean Cities ARRA Erin Russell-Story 212010 - 1312014 3700 Struble Rd., Hamilton Co., OH Ohio Advanced Transportation Partnership (OATP) - Rumke CNG Fueling Station...

  15. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: Energy.gov (indexed) [DOE]

    EE0002566 Clean Fuels Ohio EE Car Charging PMCPVTD 2012 642012 - 7312012 Erin Russell-Story Multiple locations in Ohio Ohio Advanced Transportation Partnership - EVSE...

  16. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: Energy.gov (indexed) [DOE]

    EE0002566 Clean Fuels Ohio EE Car Charging PMCPVTD 2012 6182012 - 9302012 Erin Russell-Story 1280 Demorest Rd., Columbus, Ohio Ohio Advanced Transportation Partnership - EVSE...

  17. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: Energy.gov (indexed) [DOE]

    EE0002566 Clean Fuels Ohio EE Car Charging PMCPVTD 2012 6182012 - 8312012 Erin Russell-Story 748 N. State St., Westerville, OH Ohio Advanced Transportation Partnership -...

  18. NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form

    Broader source: Energy.gov (indexed) [DOE]

    Pike, Zanesville, OH 43701 Ohio Advanced Transportation Partnership: Zanesville Energy Biogas CNG Fueling Infrastructure Siting, construction, and operation of a CNG (compressed...

  19. NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form

    Broader source: Energy.gov (indexed) [DOE]

    Columbus, OH 43207 Ohio Advanced Transportation Partnership (OATP) Installation of propane vehicle fueling station: 2 - 1000 gal. propane storage tanks on skids, 1 AutoGas...

  20. NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form

    Broader source: Energy.gov (indexed) [DOE]

    Ave. Coumbus, OH 43213 Ohio Advanced Transportation PartnershipFrito Lay Columbus Propane Fueling Infrastructure Installation of propane vehicle fueling infrastructure to...

  1. NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form

    Broader source: Energy.gov (indexed) [DOE]

    Dr., West Chester, OH Ohio Advanced Transportation PartnershipFrito Lay Cincinnati Propane Fueling Infrastructure Installation of propane vehicle fueling infrastructure to...

  2. Near-Neoclassical Transport & Enhanced Stability

    E-Print Network [OSTI]

    magnetic shear configurations are particularly attractive for advanced tokamak reactors -- predicted and advanced tokamak physics Outline · Formation · Transport · MHD Stability · Future Directions TFTR #12;6 5 4 by Shaing and Hazeltine; Hinton and Kim modification of Hirshman-Sigmar equations · comparison with Full

  3. Advanced Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4T opAddress:AdolphusAdvanced Energy

  4. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options.

    SciTech Connect (OSTI)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J. (Idaho National Laboratory, Idaho Falls, ID); Parma, Edward J., Jr.; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-10-01T23:59:59.000Z

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents.

  5. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov (indexed) [DOE]

    Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

  6. Alternative Transportation Technologies: Hydrogen, Biofuels,

    E-Print Network [OSTI]

    @ $50/kW and H2 storage @ $15/kWh) #12;8 CASE 2: ICEV EFFICIENCY · Currently available and projected11 Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug Methodology and Scenarios · Market Penetration Rates · Oil and CO2 Savings · Fuel, Fuel Cell, Battery

  7. Naval Station Norfolk, VA- Energy Conservation Program UESC Partnership Success Story

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—covers the basis for success of a U.S. Navy utility energy service contract (UESC) project at a Naval Station in Norfolk, Virginia, including the project phases and why the utility partnership works.

  8. A National Academies Symposium Webcast: Partnerships, Science, and Innovation for Sustainability Solutions

    E-Print Network [OSTI]

    Sheridan, Jennifer

    A National Academies Symposium Webcast: Partnerships, Science, and Innovation for Sustainability and Technology for Sustainability Program (STS) will organize a two and a half day public symposium, Science, Innovation, and Partnerships for Sustainability Solutions at the Pew DC Conference Center in Washington, DC

  9. Geology and Geophysics: Building Partnerships Forging New Links and Strengthening Old Ones Builds a Stronger Department

    E-Print Network [OSTI]

    Johnson, Cari

    , course-work tracks that equip students for roles in industry, geological engineering, oil and mineralGeology and Geophysics: Building Partnerships Forging New Links and Strengthening Old Ones Builds. The Geology and Geophysics Department at the University of Utah has a long history of successful partnerships

  10. SAMPLE INTERNSHIP DESCRIPTION NOT CURRENTLY OPEN FOR INFORMATION ONLY Community Partnership Internship

    E-Print Network [OSTI]

    SAMPLE INTERNSHIP DESCRIPTION ­ NOT CURRENTLY OPEN ­ FOR INFORMATION ONLY Community Partnership Internship Free Geek Interested in learning about and working with a variety of businesses and non-profits in the area and telling them about Free Geek? Our Community Partnerships Internship is a great short

  11. Learning to Export: Building farmers' capabilities through partnerships in Kenya LEARNING TO EXPORT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Learning to Export: Building farmers' capabilities through partnerships in Kenya Bolo, M.O LEARNING TO EXPORT: BUILDING FARMERS' CAPABILITIES THROUGH PARTNERSHIPS IN KENYA'S FLOWER INDUSTRY Maurice Ochieng in volume, value and acreage of cut flowers in Kenya ­ largely from large scale growers. In order to improve

  12. Trade war in the Pacific: ASEAN and the Trans-Pacific Partnership https://theconversation.edu.au/trade-war-in-the-pacific-asean-and-the-trans-pacific-partnership-10937[3/12/2012 11:38:09 AM

    E-Print Network [OSTI]

    Botea, Adi

    Trade war in the Pacific: ASEAN and the Trans-Pacific Partnership https://theconversation.edu.au/trade-war-in-the-pacific-asean-and-the-trans-pacific-partnership-10937[3/12/2012 11:38:09 AM] TC Home + Society Science + Technology Trade war in the Pacific: ASEAN and the Trans-Pacific Partnership 30 November

  13. Advanced LIGO

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration

    2014-11-17T23:59:59.000Z

    The Advanced LIGO gravitational wave detectors are second generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid- and high- frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

  14. High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint

    SciTech Connect (OSTI)

    Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

    2012-06-01T23:59:59.000Z

    Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

  15. TECHNOLOGY AND COLLABORATION FOR EFFECTIVE TRANSPORTATION POLICY: THE CASE OF THE URBAN PARTNERSHIP

    E-Print Network [OSTI]

    Levinson, David M.

    . Neither government nor hierarchies have evaporated under the new public management, and formal authority and nongovernmental entities must become an essential part of public management research (Frederickson, 1997; Kettl are organizations that have merged into a new entity meant to address the public problem through merged authority

  16. Great Lakes Biomass State and Regional Partnership (GLBSRP)

    SciTech Connect (OSTI)

    Frederic Kuzel

    2009-09-01T23:59:59.000Z

    The Council of Great Lakes Governors administered the Great Lakes Biomass State and Regional Partnership (GLBSRP) under contract with the U. S. Department of Energy (DOE). This Partnership grew out of the existing Regional Biomass Energy Program which the Council had administered since 1983. The GLBSRP includes the States of Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio and Wisconsin. The GLBSRPĂ?Â?s overall goal is to facilitate the increased production and use of bioenergy and biobased products throughout the region. The GLBSRP has traditionally addressed its goals and objectives through a three-pronged approach: providing grants to the States; undertaking region-wide education, outreach and technology transfer projects; and, providing in-house management, support and information dissemination. At the direction of US Department of Energy, the primary emphasis of the GLBSRP in recent years has been education and outreach. Therefore, most activities have centered on developing educational materials, hosting workshops and conferences, and providing technical assistance. This report summarizes a selection of activities that were accomplished under this cooperative agreement.

  17. The Hyperion Project: Partnership for an Advaned Technology Cluster Testbed

    SciTech Connect (OSTI)

    Seager, M; Leininger, M

    2008-04-28T23:59:59.000Z

    The Hyperion project offers a unique opportunity to participate in a community-driven testing and development resource at a scale beyond what can be accomplished by one entity alone. Hyperion is a new strategic technology partnership intended to support the member-driven development and testing at scale. This partnership will allow commodity clusters to scale up to meet the growing demands of customers multi-core petascale simulation environments. Hyperion will tightly couple together the outstanding research and development capabilities of Lawrence Livermore National Laboratory with leading technology companies, including Cisco, Data Direct Networks, Dell, Intel, LSI, Mellanox, Qlogic, RedHat, SuperMicro and Sun. The end goal of this project is to revolutionize cluster computing in fundamental ways by providing the critical software and hardware components for a highly scalable simulation environment. This environment will include support for high performance networking, parallel file systems, operating system, and cluster management. This goal will be achieved by building a scalable technology cluster testbed that will be fully dedicated to the partners and provide: (1) A scalable development testing and benchmarking environment for critical enabling Linux cluster technologies; (2) An evaluation testbed for new hardware and software technologies; and (3) A vehicle for forming long term collaborations.

  18. The AMTEX Partnership{trademark}: Policy and procedures

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The AMTEX Partnership is a path-finding research and development collaboration among the US Department of Energy, the contract operators of its national laboratories, and research, education, technology transfer (RETT) consortia representing the integrated textile industry. The goal of AMTEX is to strengthen the competitiveness of the US textile industry. The complex nature of the collaboration requires consistent and reliable policy direction. The policies, stated in the form of a Mission, Vision, and Key Principles have remained largely unchanged since the inception of AMTEX in March of 1993. The policies define the primary roles and public accountabilities of the AMTEX participants whether in government, industry, or federal research laboratories. The organizational structure and procedures of AMTEX have evolved as better ways were found to implement and fulfill the intent of the Mission, Vision, and Key Principles. This document describes the policies and procedures of the AMTEX Partnership{trademark} as approved by the AMTEX Operating Committee on July 20, 1995. It supersedes all previous AMTEX policies and procedures.

  19. Building Stronger State Partnerships with the US Department of Energy (Energy Assurance)

    SciTech Connect (OSTI)

    Mike Keogh

    2011-09-30T23:59:59.000Z

    From 2007 until 2011, the National Association of Regulatory Utility Commissioners (NARUC) engaged in a partnership with the National Energy Technology Lab (NETL) to improve State-Federal coordination on electricity policy and energy assurance issues. This project allowed State Public Utility Commissioners and their staffs to engage on the most cutting-edge level in the arenas of energy assurance and electricity policy. Four tasks were outlined in the Statement of Performance Objectives: Task 1 - Training for Commissions on Critical Infrastructure Topics; Task 2 - Analyze and Implement Recommendations on Energy Assurance Issues; Task 3 - Ongoing liaison activities & outreach to build stronger networks between federal agencies and state regulators; and Task 4 - Additional Activities. Although four tasks were prescribed, in practice these tasks were carried out under two major activity areas: the critical infrastructure and energy assurance partnership with the US Department of Energy's Infrastructure Security and Emergency Response office, and the National Council on Electricity Policy, a collaborative which since 1994 has brought together State and Federal policymakers to address the most pressing issues facing the grid from restructuring to smart grid implementation. On Critical Infrastructure protection, this cooperative agreement helped State officials yield several important advances. The lead role on NARUC's side was played by our Committee on Critical Infrastructure Protection. Key lessons learned in this arena include the following: (1) Tabletops and exercises work - They improve the capacity of policymakers and their industry counterparts to face the most challenging energy emergencies, and thereby equip these actors with the capacity to face everything up to that point as well. (2) Information sharing is critical - Connecting people who need information with people who have information is a key success factor. However, exposure of critical infrastructure information to bad actors also creates new vulnerabilities. (3) Tensions exist between the transparency-driven basis of regulatory activity and the information-protection requirements of asset protection. (4) Coordination between states is a key success factor - Because comparatively little federal authority exists over electricity and other energy infrastructure, the interstate nature of these energy grids defy centralized command and control governance. Patchwork responses are a risk when addressed at a state-by-state level. Coordination is the key to ensuring consistent response to shared threats. In Electricity Policy, the National Council on Electricity Policy continued to make important strides forward. Coordinated electricity policy among States remains the best surrogate for an absent national electricity policy. In every area from energy efficiency to clean coal, State policies are driving the country's electricity policy, and regional responses to climate change, infrastructure planning, market operation, and new technology deployment depend on a forum for bringing the States together.

  20. Sustainable Campus Transportation through Transit Partnership and Transportation Demand Management: A Case Study from the University of Florida

    E-Print Network [OSTI]

    Bond, Alex; Steiner, Ruth

    2006-01-01T23:59:59.000Z

    s share of the service contract pays for unlimited access toautomobile use. The Service Contract provides three di?erent

  1. E-Print Network 3.0 - advanced technology program Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of science and technology to identify... and transportation, high-performance computing, modeling and simulation, and advanced weapons technologies... THE VALUE OF THE DEPARTMENT...

  2. E-Print Network 3.0 - advanced hazmat life Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hazmat life Page: << < 1 2 3 4 5 > >> 1 Technical Report Documentation Page 1. Project No. Summary: responders do not have advanced information about the HAZMAT being transported...

  3. Transportation Security

    Broader source: Energy.gov (indexed) [DOE]

    Preliminary Draft - For Review Only 1 Transportation Security Draft Annotated Bibliography Review July 2007 Preliminary Draft - For Review Only 2 Work Plan Task * TEC STG Work...

  4. Computational Transportation

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    ), in-vehicle computers, and computers in the transportation infrastructure are integrated ride- sharing, real-time multi-modal routing and navigation, to autonomous/assisted driving

  5. ARPA-E University - Strategic Military Partnerships | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    advance the technology. Moderator: Dr. Ryan Umstattd, ARPA-E Senior Commercialization Advisor Presenters: Tom Stepien, Primus Power, CEO; Ryan Farris, Raytheon DoDCivil EO...

  6. Renewing America's Nuclear Power Partnership for Energy Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - for advanced clean energy projects that avoid, reduce or sequester emissions of air pollutants or greenhouse gases. This total includes about 20.5 billion in loan...

  7. Alternative Fuel and Advanced Vehicle Tools (AFAVT), AFDC (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01T23:59:59.000Z

    The Alternative Fuels and Advanced Vehicles Web site offers a collection of calculators, interactive maps, and informational tools to assist fleets, fuel providers, and others looking to reduce petroleum consumption in the transportation sector.

  8. FreedomCAR and Fuel Partnership 2009 Highlights of Technical...

    Broader source: Energy.gov (indexed) [DOE]

    recently, investigators have succeeded in predicting transport properties only in the bulk of the material and not at the interface between two materials. As a first step...

  9. Transportation Market Distortions

    E-Print Network [OSTI]

    Litman, Todd

    2006-01-01T23:59:59.000Z

    of Highways, Volpe National Transportation Systems Center (Evaluating Criticism of Transportation Costing, VictoriaFrom Here: Evaluating Transportation Diversity, Victoria

  10. NREL Case Study Leads to International Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01T23:59:59.000Z

    In 2012, NREL analysts produced a case study, "Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience," which drew upon dozens of interviews with international experts involved in crafting effective policies and markets. The report proposed a cross-cutting initiative to transform the world's power systems by implementing two complementary strategies: the large?scale deployment of renewable energy, and a combination of comprehensive energy efficiency and smarter grids. This recommendation led to the launch of the 21st Century Power Partnership in April 2012, and its membership has since grown to include Denmark, Finland, Germany, India, Mexico, Spain, and the United States. NREL, together with its affiliated Joint Institute for Strategic Energy Analysis, are the operating agents.

  11. Western Partnership for Environmental Technology Education Faculty Internship Program

    SciTech Connect (OSTI)

    Zehnder, N. [Sandia National Labs., Livermore, CA (United States)

    1994-12-31T23:59:59.000Z

    As an important element within Western Partnership for Environmental Technology Education (PETE), summer internship opportunities are made available to environmental technology instructors, primarily at the community-college level, at participating federal laboratories, test facilities, state regulatory agencies and in private industry. The Program is intended to provide instructors with the opportunity to gain practical experience and understanding within the broad area of environmental technology to enhance the development and presentation of environmental technology curricula. Internship content is intended to be flexible to provide experiences which will relate to and meet the specific needs of the intern and his/her college. The Faulty Internship Program provides business and government with the opportunity to strengthen the educational process and to expand potential candidate pools for employment.

  12. Regional partnerships to sequester CO{sub 2} at near-commercial scale

    SciTech Connect (OSTI)

    NONE

    2008-07-01T23:59:59.000Z

    A summary of the keynote speech by Acting Deputy Secretary of Energy, Jeffrey Kupfer, is given, as well as details about new agreements on CO{sub 2} injection. These include the West Coast Regional Carbon Sequestration Partnership agreement to locate CO{sub 2} injection with a 50 mw clean energy systems plant in Kumberlina, California, and the Plains CO{sub 2} Reduction Partnership and Southeast Regional Carbon Sequestration PARTNERSHIP plans to inject CO{sub 2} derived from post combustion capture at power plants. 3 photos.

  13. Advanced Motors

    SciTech Connect (OSTI)

    Knoth, Edward A.; Chelluri, Bhanumathi; Schumaker, Edward J.

    2012-12-14T23:59:59.000Z

    Project Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, ���������������¢��������������������������������Motors and Generators for the 21st Century���������������¢�������������������������������. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can be met with a variety of bonded magnet compositions. The torque ripple was found to drop significantly by using thinner magnet segments. The powder co-filling and subsequent compaction processing allow for thinner magnet structures to be formed. Torque ripple can be further reduced by using skewing and pole shaping techniques. The techniques can be incorporated into the rotor during the powder co-filling process.

  14. Under U.S.-Russia Partnership, Final Shipment of Fuel Converted...

    Broader source: Energy.gov (indexed) [DOE]

    U.S.-Russia Partnership, Final Shipment of Fuel Converted From 20,000 Russian Nuclear Warheads Arrives in United States and Will Be Used for U.S. Electricity Under U.S.-Russia...

  15. "Climate Wise" in the Lone Star State: A Successful Partnership for Energy Efficiency in Austin, Texas

    E-Print Network [OSTI]

    Allen, S. J.; Schare, S.

    The City of Austin, Texas is forming partnerships with local companies to lower energy consumption and improve environmental performance within the industrial sector. As a local government participant in the federal Climate Wise program, Austin...

  16. PRESENTED BY UC DAVIS SCHOOL OF EDUCATION IN PARTNERSHIP WITH NEXTED

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    PRESENTED BY UC DAVIS SCHOOL OF EDUCATION IN PARTNERSHIP WITH NEXTED Unforge able Summer me FUN" safely. Building and racing a car that runs en rely on solar energy. Firing missiles from a catapult

  17. The New House of the Region of Hannover - Building Energy Efficient in a Public Private Partnership

    E-Print Network [OSTI]

    Schubert, T.; Plesser, S.

    2008-01-01T23:59:59.000Z

    Public Private Partnerships are an increasingly popular approach to carry out public infra-structure projects. PPPs aim at reducing costs and risk and improving service and quality by using private expertise and management potential....

  18. EA-0642: Operation of the Pinellas Plant Child Development Center/Partnership School

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a joint venture proposal to operate a Partnership School and Child Development Center at the U.S. Department of Energy's Pinellas Plant in New Mexico.

  19. Toll road public-private partnerships in Malaysia : using the CLIOS process for policy improvements

    E-Print Network [OSTI]

    Ward, John L., 1977-

    2005-01-01T23:59:59.000Z

    Malaysia has relied on private sector provision of toll roads for over twenty years using public- private partnerships (PPPs). While the program has been successful in providing close to 1,800 kilometers of highway in that ...

  20. Heritage partnerships : national designation, regional promotion and the role of local preservation organizations

    E-Print Network [OSTI]

    Morton, Elizabeth, Ph. D. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    In this dissertation, I examine the impact of one important type of "heritage partnership," the National Heritage Areas (NHA) program, on historic preservation activities at the grassroots level. NHAs, often termed the ...