National Library of Energy BETA

Sample records for advanced transportation partnership

  1. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership...

  2. Northeast Energy Efficiency Partnerships: Advanced Lighting Controls...

    Energy Savers [EERE]

    Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Credit: Northeast Energy Efficiency...

  3. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program...

  4. Welcome and Advanced Manufacturing Partnership (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Welcome and Advanced Manufacturing Partnership video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  5. Private-Public Partnerships for U.S. Advanced Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Workshop Crystal City January 13, 2014 Private-Public Partnerships for U.S. Advanced Manufacturing Dr. Frank W. Gayle Advanced Manufacturing National Program Office...

  6. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced...

    Broader source: Energy.gov (indexed) [DOE]

    on the design, development, and demonstration of ABRs as part of the GNEP. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors More Documents &...

  7. New partnership uses advanced computer science modeling to address...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partnership uses advanced computer science modeling to address climate change | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing...

  8. Implementing Advances in Transport Security Technologies | Department...

    Office of Environmental Management (EM)

    Implementing Advances in Transport Security Technologies Implementing Advances in Transport Security Technologies Implementing Advances in Transport Security Technologies More...

  9. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira

    2000-10-30

    This is the first quarterly progress report for Year 2 of the ACTS project. It includes a review of progress made in Flow Loop development and research during the period of time between July 14, 2000 and September 30, 2000. This report presents information on the following specific tasks: (a) Progress in Advanced Cuttings Transport Facility design and development (Task 2), (b) Progress on research project (Task 8): ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (c) Progress on research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (d) Progress on research project (Task 7): ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (e) Progress on research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Initiate research on project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (g) Progress on instrumentation tasks to measure: Cuttings concentration and distribution (Tasks 11), and Foam properties (Task 12), (h) Initiate a comprehensive safety review of all flow-loop components and operational procedures. Since the previous Task 1 has been completed, we will now designate this new task as: (Task 1S). (i) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  10. Enhancing Transportation Energy Security through Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Security through Advanced Combustion and Fuels Technologies Enhancing Transportation Energy Security through Advanced Combustion and Fuels Technologies 2005...

  11. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.

  12. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Ergun Kuru; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira; Neelima Godugu

    2000-07-30

    ACTS flow loop is now operational under elevated pressure and temperature. Currently, experiments with synthetic based drilling fluids under pressure and temperature are being conducted. Based on the analysis of Fann 70 data, empirical correlations defining the shear stress as a function of temperature, pressure and the shear rate have been developed for Petrobras synthetic drilling fluids. PVT equipment has been modified for testing Synthetic oil base drilling fluids. PVT tests with Petrobras Synthetic base mud have been conducted and results are being analyzed Foam flow experiments have been conducted and the analysis of the data has been carried out to characterize the rheology of the foam. Comparison of pressure loss prediction from the available foam hydraulic models and the test results has been made. Cuttings transport experiments in horizontal annulus section have been conducted using air, water and cuttings. Currently, cuttings transport tests in inclined test section are being conducted. Foam PVT analysis tests have been conducted. Foam stability experiments have also been conducted. Effects of salt and oil concentration on the foam stability have been investigated. Design of ACTS flow loop modification for foam and aerated mud flow has been completed. A flow loop operation procedure for conducting foam flow experiments under EPET conditions has been prepared Design of the lab-scale flow loop for dynamic foam characterization and cuttings monitoring instrumentation tests has been completed. The construction of the test loop is underway. As part of the technology transport efforts, Advisory Board Meeting with ACTS-JIP industry members has been organized on May 13, 2000.

  13. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mengjiao Yu; Ramadan Ahmed; Mark Pickell; Len Volk; Lei Zhou; Zhu Chen; Aimee Washington; Crystal Redden

    2003-09-30

    The Quarter began with installing the new drill pipe, hooking up the new hydraulic power unit, completing the pipe rotation system (Task 4 has been completed), and making the SWACO choke operational. Detailed design and procurement work is proceeding on a system to elevate the drill-string section. The prototype Foam Generator Cell has been completed by Temco and delivered. Work is currently underway to calibrate the system. Literature review and preliminary model development for cuttings transportation with polymer foam under EPET conditions are in progress. Preparations for preliminary cuttings transport experiments with polymer foam have been completed. Two nuclear densitometers were re-calibrated. Drill pipe rotation system was tested up to 250 RPM. Water flow tests were conducted while rotating the drill pipe up to 100 RPM. The accuracy of weight measurements for cuttings in the annulus was evaluated. Additional modifications of the cuttings collection system are being considered in order to obtain the desired accurate measurement of cuttings weight in the annular test section. Cutting transport experiments with aerated fluids are being conducted at EPET, and analyses of the collected data are in progress. The printed circuit board is functioning with acceptable noise level to measure cuttings concentration at static condition using ultrasonic method. We were able to conduct several tests using a standard low pass filter to eliminate high frequency noise. We tested to verify that we can distinguish between different depths of sand in a static bed of sand. We tested with water, air and a mix of the two mediums. Major modifications to the DTF have almost been completed. A stop-flow cell is being designed for the DTF, the ACTF and Foam Generator/Viscometer which will allow us to capture bubble images without the need for ultra fast shutter speeds or microsecond flash system.

  14. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2003-07-30

    This Quarter has been divided between running experiments and the installation of the drill-pipe rotation system. In addition, valves and piping were relocated, and three viewports were installed. Detailed design work is proceeding on a system to elevate the drill-string section. Design of the first prototype version of a Foam Generator has been finalized, and fabrication is underway. This will be used to determine the relationship between surface roughness and ''slip'' of foams at solid boundaries. Additional cups and rotors are being machined with different surface roughness. Some experiments on cuttings transport with aerated fluids have been conducted at EPET. Theoretical modeling of cuttings transport with aerated fluids is proceeding. The development of theoretical models to predict frictional pressure losses of flowing foam is in progress. The new board design for instrumentation to measure cuttings concentration is now functioning with an acceptable noise level. The ultrasonic sensors are stable up to 190 F. Static tests with sand in an annulus indicate that the system is able to distinguish between different sand concentrations. Viscometer tests with foam, generated by the Dynamic Test Facility (DTF), are continuing.

  15. Building Partnerships to Cut Petroleum Use in Transportation

    SciTech Connect (OSTI)

    2014-02-26

    The U.S. Department of Energy's Clean Cities initiative advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use in transportation. Clean Cities accomplishes this work through the activities of nearly 100 local coalitions. These coalitions provide resources and technical assistance in the deployment of alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies as they emerge.

  16. Building Partnerships to Cut Petroleum Use in Transportation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    The U.S. Department of Energy's Clean Cities initiative advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use in transportation. Clean Cities accomplishes this work through the activities of nearly 100 local coalitions. These coalitions provide resources and technical assistance in the deployment of alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies as they emerge.

  17. Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUserPartnerships Partnerships Strategic

  18. Clean Cities: Building Partnerships to Reduce Petroleum Use in Transportation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Clean Cities program, which builds partnerships to reduce petroleum use in transportation in communities across the country. The U.S. Department of Energy's Clean Cities initiative advances the nation's economic, environmental, and energy security by supporting local actions to reduce petroleum consumption in transportation. Clean Cities accomplishes this work through the activities of nearly 100 local coalitions. These coalitions provide resources and technical assistance in the deployment of alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies, as they emerge. Clean Cities overarching goal is to reduce U.S. petroleum use by 2.5 billion gallons per year by 2020. To achieve this goal, Clean Cities employs three strategies: (1) Replace petroleum with alternative and renewable fuels, including natural gas, propane, electricity, ethanol, biodiesel, and hydrogen; (2) Reduce petroleum consumption through smarter driving practices and fuel economy improvements; and (3) Eliminate petroleum use through idle reduction and other fuel-saving technologies and practices.

  19. Fuel cells for future transportation: The Department of Energy OTT/OUT partnership

    SciTech Connect (OSTI)

    Patil, P.G.; Milliken, J.; Gronich, S.; Rossmeissl, N.; Ohi, J.

    1997-12-31

    The DOE Office of Transportation Technologies (OTT) is currently engaged in the development and integration R and D activities which will make it possible to reduce oil imports, and move toward a sustainable transportation future. Within OTT, the Office of Advanced Automotive Technologies is supporting development of highly efficient, low or zero emission fuel cell power systems as an alternative to internal combustion engines. The objectives of the program are: By 2000, develop and validate fuel cell stack system technologies that are greater than 51% energy efficient at 40 kW (maximum net power); more than 100 times cleaner than EPA Tier II emissions; and capable of operating on gasoline, methanol, ethanol, natural gas, and hydrogen gas or liquid. By 2004, develop and validate fuel cell power system technologies that meet vehicle requirements in terms of: cost--competitive with internal combustion engines; and performance, range, safety and reliability. The research, development, and validation of fuel cell technology is integrally linked to the Energy Policy Act (EPACT) and other major US policy objectives, such as the Partnership for a New Generation of Vehicles (PNGV). Established in 1993, PNGV is a research and development initiative involving seven Federal agencies and the three US automobile manufacturers to strengthen US competitiveness. The PNGV will develop technologies for vehicles with a fuel efficiency of 80 miles per gallon, while maintaining such attributes as size, performance, safety, and cost. To help address the critical issue of fuel and fuel infrastructure development for advanced vehicles, the DOE Office of Utility Technologies (OUT) has directed the Hydrogen Program to provide national leadership in the research, development, and validation of advanced technologies to produce, store, and use hydrogen. An objective of the Program is to work in partnership with industry to advance hydrogen systems to the point where they are cost effective and integrated into the energy economy. This integration will enable the Program to reach its objectives of displacing 10 quads per year by 2030 in all end-use sectors, which will represent about a 10% penetration into the total US energy market.

  20. Job Title Executive Director Employer/ Agency PAIR: Partnership for the Advancement & Immersion of Refugees

    E-Print Network [OSTI]

    Azevedo, Ricardo

    of Refugees Job Description Houston-based Partnership for the Advancement & Immersion of Refugees (PAIR) (www volunteers serving more than 200 refugees per year, PAIR empowers refugee youth to reach their full potential in the community to foster an understanding of the needs of young refugees and the role of PAIR's programs

  1. Overview and Progress of the Batteries for Advanced Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity 2012 DOE Hydrogen...

  2. Maine’s Beginning with Habitat program and transportation partnership

    E-Print Network [OSTI]

    Bostwick, Richard; Charry, Barbara

    2005-01-01

    He has worked for the Maine Department of Transportation inanimal-vehicle crash study for the Maine DOT. On the Road toof Field Studies, Maine Department of Transportation, 16

  3. Transportation Resources | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.WeekProducts >Transportation currentlyTransportation

  4. Transportation Electrification Education Partnership for Green Jobs and Sustainable Mobility

    SciTech Connect (OSTI)

    Peng, Huei; Mi, Chris; Gover, James

    2013-04-30

    This collaborative educational project between the University of Michigan—Ann Arbor, University of Michigan—Dearborn and the Kettering University successfully executed almost all the elements we proposed to do. In the original proposal, we proposed to develop four graduate courses, six undergraduate courses, four professional short courses, a K?12 electric vehicle education kit, a Saturday morning seminar series, and a set of consumer education material to support the advancement of transportation electrification. The first four deliverables were all successfully developed and offered. When we held the kick?off meeting in NETL in Morgantown back in early 2010 with all the ten ARRA education teams, however, it quickly became clear that among the ten ARRA education grantee teams, our proposed “consume education” activities are not better or with the potential to create bigger impact than some of activities proposed in other teams. For example, the Odyssey 2010 event held by the West Virginia University team had planned and successfully reached to more than 230,000 attendees, which is way more than what our proposed 100k event could ever reach. It was under the suggestion of Joseph Quaranta, the ARRA education Program Director at that time, that we should coordinate and eliminate redundancy. The resources should then be focused on activities that have less overlap. Therefore, the originally proposed activities: Saturday morning seminar series, and a set of consumer education material were dropped from our scope. We expanded the scope of our “education kit” activity to include some educational materials, mainly in the form of videos. The target audience also changed from general public to K?12 students. The majority of the project cost (~70%) goes toward the establishment of three undergraduate laboratories, which provides critically needed hands?on learning experience for next?generation green mobility engineers. We are very proud that the ARRA money, which was distributed as part of the economy stimulus package back in 2009, was used to invest in laboratories which are already impacting the learning experience of our undergraduate and graduate students, and will continue to do so in the coming decades. The offering and enrollments of the ten undergraduate and graduate courses developed under the support of this educational grant is summarized in the table below. The grant was finalized in September 2009, and four new courses were developed and offered soon after in Winter 2010. The other six courses were developed thereafter. The total number of students who took these new courses over the duration of this grant is just over 1,000. In the first 2 years, under the DOE funding, the courses are offered more regularly. After that, the courses were considered together with other existing courses in the planning of teaching schedule and may not be offered each year. Almost all of the 10 courses have healthy enrollments and we do expect them to be offered continuously in the future. The graduate courses perhaps will be offered every 2?3 years, and the undergraduate courses most likely on a yearly basis.

  5. Overview of the Batteries for Advanced Transportation

    E-Print Network [OSTI]

    Knowles, David William

    Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Venkat Srinivasan of the DOE/EERE FreedomCAR and Vehicle Technologies Program to develop batteries for vehicular applications double the energy density of presently available Li batteries · HEV: low-T operation, cost, and abuse

  6. Recovery Act„Transportation Electrification Education Partnership for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI |Service of Colorado PonnequinGreen Jobs and

  7. Recovery Act„Transportation Electrification Education Partnership for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI |Service of Colorado PonnequinGreen Jobs

  8. The Ohio Advanced Transportation Partnership (OATP) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState of Pennsylvania U.S.The6, 2015Need forNorthWorkshop in2

  9. The Ohio Advanced Transportation Partnership (OATP) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState of Pennsylvania U.S.The6, 2015Need forNorthWorkshop in21

  10. The Ohio Advanced Transportation Partnership (OATP) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState of Pennsylvania U.S.The6, 2015Need forNorthWorkshop

  11. Recovery Act„Transportation Electrification Education Partnership for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI |Service of Colorado PonnequinGreen JobsGreen

  12. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    SciTech Connect (OSTI)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).

  13. Overview of the Batteries for Advanced Transportation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    merit08srinivasanoverview.pdf More Documents & Publications Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Overview and Progress of the...

  14. Overview and Progress of the Batteries for Advanced Transportation...

    Broader source: Energy.gov (indexed) [DOE]

    08duong2013o.pdf More Documents & Publications Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of the...

  15. Water Transport in PEM Fuel Cells: Advanced Modeling, Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing, and Design Optimization Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization This presentation, which focuses on...

  16. Water Transport in PEM Fuel Cells: Advanced Modeling, Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Design Optimization Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization Part of a 100 million fuel cell award...

  17. Partnering with Utilities Part 2- Advanced Topics for Local Governments in Creating Successful Partnerships with Utilities to Deliver Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    This presentation given through the DOE's Technical Assistance Program (TAP) is part two in the series Partnering with Utilities:Advanced Topics for Local Governments in Creating Successful Partnerships with Utilities to Deliver Energy Efficiency Programs.

  18. Partnering with Utilities Part 2: Advanced Topics for Local Governments in Creating Successful Partnerships with Utilities to Deliver Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    This presentation; given through the DOE's Technical Assitance Program (TAP); is part 2 in the series; Partnering with Utilities:Advanced Topics for Local Governments in Creating Successful Partnerships with Utilities to Deliver Energy Efficiency Programs.

  19. H2FIRST: A partnership to advance hydrogen fueling station technology driving an optimal consumer experience.

    SciTech Connect (OSTI)

    Moen, Christopher D.; Dedrick, Daniel E.; Pratt, Joseph William; Balfour, Bruce; Noma, Edwin Yoichi; Somerday, Brian P.; San Marchi, Christopher W.; K. Wipke; J. Kurtz; D. Terlip; K. Harrison; S. Sprik

    2014-03-01

    The US Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Office of Fuel Cell Technologies Office (FCTO) is establishing the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) partnership, led by the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories (SNL). FCTO is establishing this partnership and the associated capabilities in support of H2USA, the public/private partnership launched in 2013. The H2FIRST partnership provides the research and technology acceleration support to enable the widespread deployment of hydrogen infrastructure for the robust fueling of light-duty fuel cell electric vehicles (FCEV). H2FIRST will focus on improving private-sector economics, safety, availability and reliability, and consumer confidence for hydrogen fueling. This whitepaper outlines the goals, scope, activities associated with the H2FIRST partnership.

  20. Chemical Kinetic Modeling of Advanced Transportation Fuels

    SciTech Connect (OSTI)

    PItz, W J; Westbrook, C K; Herbinet, O

    2009-01-20

    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  1. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4 »DigitalanDepartmentSecondarySmartCyberReliabilitySector

  2. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4

  3. Advanced Vehicle Electrification & Transportation Sector Electrification |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL Advanced PetroleumDepartment

  4. Advanced Vehicle Electrification and Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL Advanced PetroleumDepartment| Department of

  5. Advanced Vehicle Electrification and Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL Advanced PetroleumDepartment| Department of|

  6. Advancing Transportation Through Vehicle Electrification - PHEV |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL AdvancedEnergy Climate

  7. Advancing Transportation Through Vehicle Electrification - PHEV |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL AdvancedEnergy ClimateDepartment of

  8. Advancing Transportation Through Vehicle Electrification - PHEV |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL AdvancedEnergy ClimateDepartment of Energy

  9. Advancing Transportation through Vehicle Electrification - PHEV

    SciTech Connect (OSTI)

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31

    FCA US LLC viewed the American Recovery and Reinvestment Act (ARRA) as an historic opportunity to learn about and develop PHEV technologies and create the FCA US LLC engineering center for Electrified Powertrains. The ARRA funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies for production on future programs. FCA US LLC intended to develop the next-generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components and common modules. To support the development of a strong, commercially viable supplier base, FCA US LLC also utilized this opportunity to evaluate various designated component and sub-system suppliers. The original proposal of this project was submitted in May 2009 and selected in August 2009. The project ended in December 2014.

  10. A Public-Private-Academic Partnership to Advance Solar Power Forecasting

    Broader source: Energy.gov [DOE]

    The University Corporation for Atmospheric  Research (UCAR) will develop a solar power forecasting system that advances the state of the science through cutting-edge research.

  11. Advanced Reactors Thermal Energy Transport for Process Industries

    SciTech Connect (OSTI)

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  12. Partnerships | OpenEI Community

    Open Energy Info (EERE)

    Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation Partnerships Technology Innovation & Solutions Transportation Trucking...

  13. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect (OSTI)

    Michael Swanson; Daniel Laudal

    2008-03-31

    The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher-reactivity (low-rank) coals appear to perform better in a transport reactor than the less reactive bituminous coals. Factors that affect TRDU product gas quality appear to be coal type, temperature, and air/coal ratios. Testing with a higher-ash, high-moisture, low-rank coal from the Red Hills Mine of the Mississippi Lignite Mining Company has recently been completed. Testing with the lignite coal generated a fuel gas with acceptable heating value and a high carbon conversion, although some drying of the high-moisture lignite was required before coal-feeding problems were resolved. No ash deposition or bed material agglomeration issues were encountered with this fuel. In order to better understand the coal devolatilization and cracking chemistry occurring in the riser of the transport reactor, gas and solid sampling directly from the riser and the filter outlet has been accomplished. This was done using a baseline Powder River Basin subbituminous coal from the Peabody Energy North Antelope Rochelle Mine near Gillette, Wyoming.

  14. EA-1255: Project Partnership Transportation of Foreign-Owned Enriched Uranium from the Republic of Georgia

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to transport 5.26 kilograms of enriched uranium-23 5 in the form of nuclear fuel, from the Republic of Georgia to the United Kingdom.

  15. Vehicle Technologies Office Merit Review 2014: Advancing Transportation through Vehicle Electrification – Ram 1500 PHEV

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Chrysler LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancing transportation through...

  16. Advanced Vehicles Group: Center for Transportation Technologies and Systems

    SciTech Connect (OSTI)

    Not Available

    2008-08-01

    Describes R&D in advanced vehicle systems and components (e.g., batteries) by NREL's Advanced Vehicles Group.

  17. Advanced transport codes for nuclear thermal rocket analysis

    SciTech Connect (OSTI)

    Perry, R.T.; Buksa, J.J.; Houts, M.G. (Los Alamos National Lab., NM (United States))

    1992-01-01

    Nuclear thermal rocket (NTR) propulsion systems will enable the manned exploration of our solar system. In the context of current and future safety standards and environmental constraints, the likelihood of any large nuclear engine testing program similar in scope to the ROVER/NERVA program is remote. Consequently, extensive computational verification of the safety, reliability, and performance of the reactor and spacecraft will be required. Fortunately, the development of new codes coupled with computer hardware advances will make this feasible and cost-effective. Although coupled-phenomena and separate-effects modeling at the component and system levels will be necessary, this paper addresses only radiation transport modeling of NTR systems and reviews the status and applicability of several codes that Los Alamos National Laboratory (LANL) is using.

  18. Advanced fuel cells for transportation applications. Final report

    SciTech Connect (OSTI)

    1998-02-10

    This Research and Development (R and D) contract was directed at developing an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The objective of this project was to develop a low-cost high-efficiency long-life lubrication-free integrated compressor/expander utilizing scroll technology. The goal of this compressor/expander was to be capable of providing compressed air over the flow and pressure ranges required for the operation of 50 kW PEM fuel cells in transportation applications. The desired ranges of flow, pressure, and other performance parameters were outlined in a set of guidelines provided by DOE. The project consisted of the design, fabrication, and test of a prototype compressor/expander module. The scroll CEM development program summarized in this report has been very successful, demonstrating that scroll technology is a leading candidate for automotive fuel cell compressor/expanders. The objectives of the program are: develop an integrated scroll CEM; demonstrate efficiency and capacity goals; demonstrate manufacturability and cost goals; and evaluate operating envelope. In summary, while the scroll CEM program did not demonstrate a level of performance as high as the DOE guidelines in all cases, it did meet the overriding objectives of the program. A fully-integrated, low-cost CEM was developed that demonstrated high efficiency and reliable operation throughout the test program. 26 figs., 13 tabs.

  19. Consumer Views on Transportation and Advanced Vehicle Technologies

    SciTech Connect (OSTI)

    Singer, Mark

    2015-09-01

    Vehicle manufacturers, U.S. Department of Energy laboratories, universities, private researchers, and organizations from countries around the globe are pursuing advanced vehicle technologies that aim to reduce gasoline and diesel consumption. This report details study findings of broad American public sentiments toward issues surrounding advanced vehicle technologies and is supported by the U.S. Department of Energy Vehicle Technology Office (VTO) in alignment with its mission to develop and deploy these technologies to improve energy security, increase mobility flexibility, reduce transportation costs, and increase environmental sustainability. Understanding and tracking consumer sentiments can influence the prioritization of development efforts by identifying barriers to and opportunities for broad acceptance of new technologies. Predicting consumer behavior toward developing technologies and products is inherently inexact. A person's stated preference given in an interview about a hypothetical setting may not match the preference that is demonstrated in an actual situation. This difference makes tracking actual consumer actions ultimately more valuable in understanding potential behavior. However, when developing technologies are not yet available and actual behaviors cannot be tracked, stated preferences provide some insight into how consumers may react in new circumstances. In this context this report provides an additional source to validate data and a new resource when no data are available. This report covers study data captured from December 2005 through June 2015 relevant to VTO research efforts at the time of the studies. Broadly the report covers respondent sentiments about vehicle fuel economy, future vehicle technology alternatives, ethanol as a vehicle fuel, plug-in electric vehicles, and willingness to pay for vehicle efficiency. This report represents a renewed effort to publicize study findings and make consumer sentiment data available to researchers, policy makers, and the public. Planned reports will follow detailing data from new studies targeting the primary challenges to and opportunities for advanced vehicle technology deployment. The effort continually refines study content to maintain and improve the relevance and validity of results.

  20. LEDS Global Partnership in Action: Advancing Climate-Resilient Low Emission Development Around the World (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    Many countries around the globe are designing and implementing low emission development strategies (LEDS). These LEDS seek to achieve social, economic, and environmental development goals while reducing long-term greenhouse gas (GHG) emissions and increasing resiliency to climate change impacts. The LEDS Global Partnership (LEDS GP) harnesses the collective knowledge and resources of more than 120 countries and international donor and technical organizations to strengthen climate-resilient low emission development efforts around the world.

  1. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect (OSTI)

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  2. Overview of the Batteries for Advanced Transportation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Advanced Li-ion Chemistries Using Mathematical Modeling (Srinivasan) Mesoscale Simulations of Active Materials for High for High-Power Batteries: Mesoscale...

  3. Advancing Cellulosic Ethanol for Large Scale Sustainable Transportation

    E-Print Network [OSTI]

    Wyman, C

    2007-01-01

    Advancing Cellulosic Ethanol for Large Scale SustainableHydrogen Batteries Nuclear By Lee Lynd, Dartmouth Ethanol •Ethanol, ethyl alcohol, fermentation ethanol, or just “

  4. Energy Department Awards $45 Million to Deploy Advanced Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is helping to build a strong 21st century transportation sector that cuts harmful pollution, creates jobs and leads to a more sustainable energy future," said Energy Secretary...

  5. Advancing Cellulosic Ethanol for Large Scale Sustainable Transportation

    E-Print Network [OSTI]

    Wyman, C

    2007-01-01

    improve technology and reduce costs • In response to recentuses and to advance technologies to reduce costs Basis of MyEthanol • Operating costs are low • Technology is ready to

  6. Overview of Advanced Technology Transportation, 2005 Update. Advanced Vehicle Testing Activity

    SciTech Connect (OSTI)

    Barnitt, R.; Eudy, L.

    2005-08-01

    Document provides an overview of the transportation market in 2005. Areas covered include hybrid, fuel cell, hydrogen, and alternative fuel vehicles.

  7. Advancements in the ADAPT Photospheric Flux Transport Model

    E-Print Network [OSTI]

    Kyle S. Hickmann; Humberto C. Godinez; Carl J. Henney; C. Nick Arge

    2015-04-08

    Global maps of the solar photospheric magnetic flux are fundamental drivers for simulations of the corona and solar wind and therefore are important predictors of geoeffective events. However, observations of the solar photosphere are only made intermittently over approximately half of the solar surface. The Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model uses localized ensemble Kalman filtering techniques to adjust a set of photospheric simulations to agree with the available observations. At the same time, this information is propagated to areas of the simulation that have not been observed. ADAPT implements a local ensemble transform Kalman filter (LETKF) to accomplish data assimilation, allowing the covariance structure of the flux transport model to influence assimilation of photosphere observations while eliminating spurious correlations between ensemble members arising from a limited ensemble size. We give a detailed account of the implementation of the LETKF into ADAPT. Advantages of the LETKF scheme over previously implemented assimilation methods are highlighted.

  8. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Alexandra Z. LaGuardia; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

    2001-10-30

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, mixed proton/electron conductivity and hydrogen transport was measured as a function of metal phase content for a range of ceramic/metal (cermet) compositions. It was found that optimum performance occurred at 44 wt.% metal content for all compositions tested. Although each cermet appeared to have a continuous metal phase, it is believed that hydrogen transport increased with increasing metal content partially due to beneficial surface catalyst characteristics resulting from the metal phase. Beyond 44 wt.% there was a reduction in hydrogen transport most likely due to dilution of the proton conducting ceramic phase. Hydrogen separation rates for 1-mm thick cermet membranes were in excess of 0.1 mL/min/cm{sup 2}, which corresponded to ambipolar conductivities between 1 x 10{sup -3} and 8 x 10{sup -3} S/cm. Similar results were obtained for multiphase ceramic membranes comprised of a proton-conducting perovskite and electron conducting metal oxide. These multi-phase ceramic membranes showed only a slight improvement in hydrogen transport upon addition of a metal phase. The highest hydrogen separation rates observed this quarter were for a cermet membrane containing a hydrogen transport metal. A 1-mm thick membrane of this material achieved a hydrogen separation rate of 0.3 mL/min/cm{sup 2} at only 700 C, which increased to 0.6 mL/min/cm{sup 2} at 950 C.

  9. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    SciTech Connect (OSTI)

    2010-01-01

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  10. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    ScienceCinema (OSTI)

    None

    2013-05-29

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  11. Overview and Progress of the Batteries for Advanced Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT OFER-B-00-02 AUDIT REPORTTechnologies (BATT)

  12. Overview of the Batteries for Advanced Transportation Technologies (BATT)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT OFER-B-00-020Overview ofU.S.Energy

  13. Overview of the Batteries for Advanced Transportation Technologies (BATT)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT OFER-B-00-020Overview ofU.S.EnergyProgram

  14. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann39.1_Acquisition_of_Information_Resources_0.pdfEnablingManufacturingAdvancing Clean

  15. Hydrogen energy for tomorrow: Advanced hydrogen transport and storage technologies

    SciTech Connect (OSTI)

    NONE

    1995-08-01

    The future use of hydrogen to generate electricity, heat homes and businesses, and fuel vehicles will require the creation of a distribution infrastructure of safe, and cost-effective transport and storage. Present storage methods are too expensive and will not meet the performance requirements of future applications. Transport technologies will need to be developed based on the production and storage systems that come into use as the hydrogen energy economy evolves. Different applications will require the development of different types of storage technologies. Utility electricity generation and home and office use will have storage fixed in one location--stationary storage--and size and weight will be less important than energy efficiency and costs of the system. Fueling a vehicle, however, will require hydrogen storage in an ``on-board`` system--mobile storage--with weight and size similar to the gasoline tank in today`s vehicle. Researchers are working to develop physical and solid-state storage systems that will meet these diverse future application demands. Physical storage systems and solid-state storage methods (metal hydrides, gas-on-solids adsorption, and glass microspheres) are described.

  16. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Adam E. Calihman; Lyrik Y. Pitzman; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

    2001-07-30

    Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, ceramic, cermet (ceramic/metal), and thin film membranes were prepared, characterized, and evaluated for H{sub 2} transport. For selected ceramic membrane compositions an optimum range for transition metal doping was identified, and it was determined that highest proton conductivity occurred for two-phase ceramic materials. Furthermore, a relationship between transition metal dopant atomic number and conductivity was observed. Ambipolar conductivities of {approx}6 x 10{sup -3} S/cm were achieved for these materials, and {approx} 1-mm thick membranes generated H{sub 2} transport rates as high as 0.3 mL/min/cm{sup 2}. Cermet membranes during this quarter were found to have a maximum conductivity of 3 x 10{sup -3} S/cm, which occurred at a metal phase contact of 36 vol.%. Homogeneous dense thin films were successfully prepared by tape casting and spin coating; however, there remains an unacceptably high difference in shrinkage rates between the film and support, which led to membrane instability. Further improvements in high pressure membrane seals also were achieved during this quarter, and a maximum pressure of 100 psig was attained. CoorsTek optimized many of the processing variables relevant to manufacturing scale production of ceramic H{sub 2} transport membranes, and SCI used their expertise to deposit a range of catalysts compositions onto ceramic membrane surfaces. Finally, MTI compiled relevant information regarding Vision 21 fossil fuel plant operation parameters, which will be used as a starting point for assessing the economics of incorporating a H{sub 2} separation unit.

  17. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard Mackay; Scott R. Morrison; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephen; Frank E. Anderson; Shandra Ratnasamy; Jon P. Wagner; Clive Brereton

    2004-01-30

    The objective of this project is to develop an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites with hydrogen permeable alloys. The primary technical challenge in achieving the goals of this project will be to optimize membrane composition to enable practical hydrogen separation rates and chemical stability. Other key aspects of this developing technology include catalysis, ceramic processing methods, and separation unit design operating under high pressure. To achieve these technical goals, Eltron Research Inc. has organized a consortium consisting of CoorsTek, Sued Chemie, Inc. (SCI), Argonne National Laboratory (ANL), and NORAM. Hydrogen permeation rates in excess of 50 mL {center_dot} min{sup -1} {center_dot} cm{sup 2} at {approx}440 C were routinely achieved under less than optimal experimental conditions using a range of membrane compositions. Factors that limit the maximum permeation attainable were determined to be mass transport resistance of H{sub 2} to and from the membrane surface, as well as surface contamination. Mass transport resistance was partially overcome by increasing the feed and sweep gas flow rates to greater than five liters per minute. Under these experimental conditions, H2 permeation rates in excess of 350 mL {center_dot} min{sup -1} {center_dot} cm{sup 2} at {approx}440 C were attained. These results are presented in this report, in addition to progress with cermets, thin film fabrication, catalyst development, and H{sub 2} separation unit scale up.

  18. Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing,

    E-Print Network [OSTI]

    Optimization J. Vernon Cole and Ashok Gidwani CFDRC Prepared for: DOE Hydrogen Fuel Cell Kickoff MeetingWater Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design fuel cell design and operation; Demonstrate improvements in water management resulting in improved

  19. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; M.K. Ferber; Aaron L. Wagner; Jon P. Wagner

    2002-07-30

    Eltron Research Inc. and their team members are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, new cermet compositions were tested that demonstrated similar performance to previous materials. A 0.5-mm thick membrane achieved at H{sub 2} transport rate of 0.2 mL/min/cm{sup 2} at 950 C, which corresponded to an ambipolar conductivity of 3 x 10{sup -3} S/cm. Although these results were equivalent to those for other cermet compositions, this new composition might be useful if it demonstrates improved chemical or mechanical stability. Ceramic/ceramic composite membranes also were fabricated and tested; however, some reaction did occur between the proton- and electron-conducting phases, which likely compromised conductivity. This sample only achieved a H{sub 2} transport rate of {approx} 0.006 mL/min/cm{sup 2} and an ambipolar conductivity of {approx}4 x 10{sup -4} S/cm. Chemical stability tests were continued, and candidate ceramic membranes were found to react slightly with carbon monoxide under extreme testing conditions. A cermet compositions did not show any reaction with carbon monoxide, but a thick layer of carbon formed on the membrane surface. The most significant technical accomplishment this quarter was a new high-pressure seal composition. This material maintained a pressure differential across the membrane of {approx} 280 psi at 800 C, and is still in operation.

  20. Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program

    SciTech Connect (OSTI)

    Caille, Gary

    2013-12-13

    The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.

  1. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Adam Calihman; Andy Girard; Pamela M. Van Calcar; Richard Mackay; Tom Barton; Sara Rolfe

    2001-01-30

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. Membranes testing during this reporting period were greater than 1 mm thick and had the general perovskite composition AB{sub 1-x}B'{sub x}O{sub 3-{delta}}, where 0.05 {<=} x {<=} 0.3. These materials demonstrated hydrogen separation rates between 1 and 2 mL/min/cm{sup 2}, which represents roughly 20% of the target goal for membranes of this thickness. The sintered membranes were greater than 95% dense, but the phase purity decreased with increasing dopant concentration. The quantity of dopant incorporated into the perovskite phase was roughly constant, with excess dopant forming an additional phase. Composite materials with distinct ceramic and metallic phases, and thin film perovskites (100 {micro}m) also were successfully prepared, but have not yet been tested for hydrogen transport. Finally, porous platinum was identified as a excellent catalyst for evaluation of membrane materials, however, lower cost nickel catalyst systems are being developed.

  2. Recap: Advancing Scientific Innovation at the National Labs

    Broader source: Energy.gov [DOE]

    Learn how the National Labs are advancing scientific innovation through user facilities and industry partnerships.

  3. Energy Department Launches Public-Private Partnership to Deploy...

    Broader source: Energy.gov (indexed) [DOE]

    to support more transportation energy options for U.S. consumers, including fuel cell electric vehicles (FCEVs). The new partnership brings together automakers,...

  4. Steady-State Gyrokinetics Transport Code (SSGKT), A Scientific Application Partnership with the Framework Application for Core-Edge Transport Simulations, Final Report

    SciTech Connect (OSTI)

    Fahey, Mark R.; Candy, Jeff

    2013-11-07

    This project initiated the development of TGYRO ? a steady-state Gyrokinetic transport code (SSGKT) that integrates micro-scale GYRO turbulence simulations into a framework for practical multi-scale simulation of conventional tokamaks as well as future reactors. Using a lightweight master transport code, multiple independent (each massively parallel) gyrokinetic simulations are coordinated. The capability to evolve profiles using the TGLF model was also added to TGYRO and represents a more typical use-case for TGYRO. The goal of the project was to develop a steady-state Gyrokinetic transport code (SSGKT) that integrates micro-scale gyrokinetic turbulence simulations into a framework for practical multi-scale simulation of a burning plasma core ? the International Thermonuclear Experimental Reactor (ITER) in particular. This multi-scale simulation capability will be used to predict the performance (the fusion energy gain, Q) given the H-mode pedestal temperature and density. At present, projections of this type rely on transport models like GLF23, which are based on rather approximate fits to the results of linear and nonlinear simulations. Our goal is to make these performance projections with precise nonlinear gyrokinetic simulations. The method of approach is to use a lightweight master transport code to coordinate multiple independent (each massively parallel) gyrokinetic simulations using the GYRO code. This project targets the practical multi-scale simulation of a reactor core plasma in order to predict the core temperature and density profiles given the H-mode pedestal temperature and density. A master transport code will provide feedback to O(16) independent gyrokinetic simulations (each massively parallel). A successful feedback scheme offers a novel approach to predictive modeling of an important national and international problem. Success in this area of fusion simulations will allow US scientists to direct the research path of ITER over the next two decades. The design of an efficient feedback algorithm is a serious numerical challenge. Although the power source and transport balance coding in the master are standard, it is nontrivial to design a feedback loop that can cope with outputs that are both intermittent and extremely expensive. A prototypical feedback scheme has already been successfully demonstrated for a single global GYRO simulation, although the robustness and efficiency are likely far from optimal. Once the transport feedback scheme is perfected, it could, in principle, be embedded into any of the more elaborate transport codes (ONETWO, TRANSP, and CORSICA), or adopted by other FSP-related multi-scale projects.

  5. ULTRACLEAN FUELS PRODUCTION AND UTILIZATION FOR THE TWENTY-FIRST CENTURY: ADVANCES TOWARDS SUSTAINABLE TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    Fox, E.

    2013-06-17

    Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow the introduction of alternative feed stocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive clean-up and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization, synthesis gas conversion into fuels and feed stocks that were presented at the 245th American Chemical Society Spring Annual Meeting in New Orleans, LA in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization".

  6. NSF/DOE Thermoelectrics Partnership: Purdue ? GM Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purdue GM Partnership on Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectrics Partnership: Purdue GM Partnership on Thermoelectrics for Automotive Waste...

  7. PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O'Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

    2006-01-01

    During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

  8. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

    2005-04-01

    The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) and provided information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 2 efforts also included preparation of a draft topical report entitled ''Deployment Issues Related to Geologic CO{sub 2} Sequestration in the PCOR Partnership Region'', which is nearing completion. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. The video will be completed and aired on Prairie Public Television in the next quarter. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. The addition of the Canadian province of Alberta to the PCOR Partnership region expanded the decision support system (DSS) geographic information system database. Task 5 screened and qualitatively assessed sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

  9. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  10. Foiling the Flu Bug Global Partnerships for Nuclear Energy

    E-Print Network [OSTI]

    1 1663 Foiling the Flu Bug Global Partnerships for Nuclear Energy Dark Universe Mysteries WILL NOT NEED TESTING Expanding Nuclear Energy the Right Way GLOBAL PARTNERSHIPS AND AN ADVANCED FUEL CYCLE sense.The Laboratory is operated by Los Alamos National Security, LLC, for the Department of Energy

  11. Promoting Advanced Manufacturing Clusters in

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    Promoting Advanced Manufacturing Clusters in Tennessee1 1 This report is supported, Economic Development Administration; and the Manufacturing Extension Partnership Program, National.........................................................................................................................1 Context: Trends in Tennessee Manufacturing

  12. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

    2005-01-01

    The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

  13. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

    2004-10-01

    The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

  14. Partnerships for Clean Development and Climate: Business and Technology Cooperation Benefits

    E-Print Network [OSTI]

    Sathaye, Jayant A.; Price, Lynn; Kumar, Satish; de la Rue du Can, Stephane; Warfield, Corina; Padmanabhan, S.

    2006-01-01

    renewable energy investments in DG technologies through technology and business partnerships that advance access of electricity supply to rural areas in India.

  15. LIDAR, Camera and Inertial Sensors Based Navigation Techniques for Advanced Intelligent Transportation System Applications

    E-Print Network [OSTI]

    Huang, Lili

    2010-01-01

    planar range sensor designed for intelligent robots andSensors Based Navigation Techniques for Advanced IntelligentSensors Based Navigation Techniques for Advanced Intelligent

  16. Testimonials- Partnerships in Fuel Efficiency- Cummins Inc.

    Broader source: Energy.gov [DOE]

    Wayne Eckerle, VP of Corporate Research and Technology at Cummins Inc., talks about how its partnership with EERE has helped move waste heat recovery advances for vehicles into production and will help them reach fuel consumption reductions of 20-30% over the next decade.

  17. FreedomCAR and Fuel Partnership

    E-Print Network [OSTI]

    CAR and Fuel Partnership is a collaborative effort among the Department of Energy (DOE), energy companies (BP and advance the pre-competitive, high-risk research needed to develop the component and infrastructure multiple options in each technology area (e.g., hydrogen production, hydrogen delivery, hydrogen storage

  18. Partnership Agreement Form

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership Agreement Form Learn more at energy.goveereamobetter-plants The Better Buildings, Better Plants Program is a national initiative to significantly improve energy...

  19. PARTNERSHIPS INITIATIVES Partnerships Launches New Web Page with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INITIATIVES Partnerships Launches New Web Page with Innovative Technology Search Engine The ORNL Partnerships Directorate seeks to foster economic development and the growth of...

  20. WEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Larry Myer; Terry Surles; Kelly Birkinshaw

    2004-01-01

    The West Coast Regional Carbon Sequestration Partnership is one of seven partnerships which have been established by the US Department of Energy (DOE) to evaluate carbon dioxide capture, transport and sequestration (CT&S) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, and the North Slope of Alaska. Led by the California Energy Commission, the West Coast Partnership is a consortium of over thirty five organizations, including state natural resource and environmental protection agencies; national labs and universities; private companies working on CO{sub 2} capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. In an eighteen month Phase I project, the Partnership will evaluate both terrestrial and geologic sequestration options. Work will focus on five major objectives: (1) Collect data to characterize major CO{sub 2} point sources, the transportation options, and the terrestrial and geologic sinks in the region, and compile and organize this data via a geographic information system (GIS) database; (2) Address key issues affecting deployment of CT&S technologies, including storage site permitting and monitoring, injection regulations, and health and environmental risks (3) Conduct public outreach and maintain an open dialogue with stakeholders in CT&S technologies through public meetings, joint research, and education work (4) Integrate and analyze data and information from the above tasks in order to develop supply curves and cost effective, environmentally acceptable sequestration options, both near- and long-term (5) Identify appropriate terrestrial and geologic demonstration projects consistent with the options defined above, and create action plans for their safe and effective implementation A kickoff meeting for the West Coast Partnership was held on Sept 30-Oct.1. Contracts were then put into place with twelve organizations which will carry out the technical work required to meet Partnership objectives.

  1. A Complex-Geometry Validation Experiment for Advanced Neutron Transport Codes

    SciTech Connect (OSTI)

    David W. Nigg; Anthony W. LaPorta; Joseph W. Nielsen; James Parry; Mark D. DeHart; Samuel E. Bays; William F. Skerjanc

    2013-11-01

    The Idaho National Laboratory (INL) has initiated a focused effort to upgrade legacy computational reactor physics software tools and protocols used for support of core fuel management and experiment management in the Advanced Test Reactor (ATR) and its companion critical facility (ATRC) at the INL.. This will be accomplished through the introduction of modern high-fidelity computational software and protocols, with appropriate new Verification and Validation (V&V) protocols, over the next 12-18 months. Stochastic and deterministic transport theory based reactor physics codes and nuclear data packages that support this effort include MCNP5[1], SCALE/KENO6[2], HELIOS[3], SCALE/NEWT[2], and ATTILA[4]. Furthermore, a capability for sensitivity analysis and uncertainty quantification based on the TSUNAMI[5] system has also been implemented. Finally, we are also evaluating the Serpent[6] and MC21[7] codes, as additional verification tools in the near term as well as for possible applications to full three-dimensional Monte Carlo based fuel management modeling in the longer term. On the experimental side, several new benchmark-quality code validation measurements based on neutron activation spectrometry have been conducted using the ATRC. Results for the first four experiments, focused on neutron spectrum measurements within the Northwest Large In-Pile Tube (NW LIPT) and in the core fuel elements surrounding the NW LIPT and the diametrically opposite Southeast IPT have been reported [8,9]. A fifth, very recent, experiment focused on detailed measurements of the element-to-element core power distribution is summarized here and examples of the use of the measured data for validation of corresponding MCNP5, HELIOS, NEWT, and Serpent computational models using modern least-square adjustment methods are provided.

  2. COP 18 Side Event: Advancing Collaborative Action for Low Emissions...

    Open Energy Info (EERE)

    COP 18 Side Event: Advancing Collaborative Action for Low Emissions Development Jump to: navigation, search Low Emission Development Strategies Global Partnership Advancing...

  3. EIS-0396: Advance Notice of Intent o Prepare an Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0396: Advance Notice of Intent o Prepare an Environmental Impact Statement Global Nuclear Energy Partnership Technology Demonstration Program Advance Notice of Intent To...

  4. United States Automotive Materials Partnership LLC (USAMP)

    SciTech Connect (OSTI)

    United States Automotive Materials Partnership

    2011-01-31

    The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunities for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly developed materials and technologies, and have resulted in significant technical successes to date, as discussed in the individual project summary final reports. Over 70 materials-focused projects have been established by USAMP, in collaboration with participating suppliers, academic/non-profit organizations and national laboratories, and executed through its original three divisions: the Automotive Composites Consortium (ACC), the Automotive Metals Division (AMD), and Auto/Steel Partnership (A/SP). Two new divisions were formed by USAMP in 2006 to drive research emphasis on integration of structures incorporating dissimilar lightweighting materials, and on enabling technology for nondestructive evaluation of structures and joints. These new USAMP divisions are: Multi-Material Vehicle Research and Development Initiative (MMV), and the Non-Destructive Evaluation Steering Committee (NDE). In cooperation with USAMP and the FreedomCAR Materials Technical Team, a consensus process has been established to facilitate the development of projects to help move leveraged research to targeted development projects that eventually migrate to the original equipment manufacturers (OEMs) as application engineering projects. Research projects are assigned to one of three phases: concept feasibility, technical feasibility, and demonstration feasibility. Projects are guided through ongoing monitoring and USAMP offsite reviews, so as to meet the requirements of each phase before they are allowed to move on to the next phase. As progress is made on these projects, the benefits of lightweight construction and enabling technologies will be transferred to the supply base and implemented in production vehicles. The single greatest barrier to automotive use of lightweight materials is their high cost; therefore, priority is given to activities aimed at reducing costs through development of new materials, forming technologies, and manufacturing processes. The emphasis of the research projects reported in this document was largely on applied research and evaluation of mass savings opportunities thro

  5. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive...

  6. Nuclear Waste Partnership, LLC

    Office of Environmental Management (EM)

    Nuclear Waste Partnership, LLC Waste Isolation Pilot Plant Report from the Department of Energy Voluntary Protection Program Onsite Review March 17-27, 2015 U.S. Department of...

  7. Regional Carbon Sequestration Partnerships

    Broader source: Energy.gov [DOE]

    DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also...

  8. Utility and Industrial Partnerships 

    E-Print Network [OSTI]

    Sashihara, T. F.

    1989-01-01

    In the past decade, many external forces have shocked both utilities and their large industrial customers into seeking more effective ways of coping and surviving. One such way is to develop mutually beneficial partnerships optimizing the use...

  9. Federal Utility Partnership Working Group Meeting: Washington...

    Energy Savers [EERE]

    Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting:...

  10. ADVANCED METHODS FOR THE COMPUTATION OF PARTICLE BEAM TRANSPORT AND THE COMPUTATION OF ELECTROMAGNETIC FIELDS AND MULTIPARTICLE PHENOMENA

    SciTech Connect (OSTI)

    Alex J. Dragt

    2012-08-31

    Since 1980, under the grant DEFG02-96ER40949, the Department of Energy has supported the educational and research work of the University of Maryland Dynamical Systems and Accelerator Theory (DSAT) Group. The primary focus of this educational/research group has been on the computation and analysis of charged-particle beam transport using Lie algebraic methods, and on advanced methods for the computation of electromagnetic fields and multiparticle phenomena. This Final Report summarizes the accomplishments of the DSAT Group from its inception in 1980 through its end in 2011.

  11. Experimental characterization of adsorption and transport properties for advanced thermo-adsorptive batteries

    E-Print Network [OSTI]

    Kim, Hyunho, S.M. Massachusetts Institute of Technology

    2014-01-01

    Thermal energy storage has received significant interest for delivering heating and cooling in both transportation and building sectors. It can minimize the use of on-board electric batteries for heating, ventilation and ...

  12. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Lisa S. Botnen

    2005-07-01

    The Plains CO{sub 2} Reduction (PCOR) Partnership characterization work is nearing completion, and most remaining efforts are related to finalizing work products. Task 2 (Technology Deployment) has developed a Topical Report entitled ''Deployment Issues Related to Geologic CO{sub 2} Sequestration in the PCOR Partnership Region''. Task 3 (Public Outreach) has developed an informational Public Television program entitled ''Nature in the Balance'', about CO{sub 2} sequestration. The program was completed and aired on Prairie Public Television in this quarter. Task 4 (Sources, Sinks, and Infrastructure) efforts are nearing completion, and data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation are being incorporated into a series of topical reports. The expansion of the Decision Support System Geographic Information System database has continued with the development of a ''save bookmark'' feature that allows users to save a map from the system easily. A feature that allows users to develop a report that summarizes CO{sub 2} sequestration parameters was also developed. Task 5 (Modeling and Phase II Action Plans) focused on screening and qualitatively assessing sequestration options and developing economic estimates for important regional CO{sub 2} sequestration strategies.

  13. ARPA-E University- Strategic Military Partnerships

    Broader source: Energy.gov [DOE]

    This webinar will provide an inside look at how one ARPA-E project team, led by Primus Power, formed a strategic partnership with a major defense contractor to demonstrate its innovative energy storage system. Don’t miss the chance to learn more about Primus Power’s innovative EnergyPod and how the company has worked with Raytheon to advance the technology.

  14. Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership

    SciTech Connect (OSTI)

    2000-12-01

    The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

  15. Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors

    SciTech Connect (OSTI)

    Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi; Zhang, Dingkang

    2013-11-29

    This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implement a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.

  16. Advanced simulation of electron heat transport in fusion plasmas , S Klasky2

    E-Print Network [OSTI]

    Lin, Zhihong

    first heat electrons. First-principles simulations of electron turbulence are much more challenging due reactor design relies on the extrapolation of the transport level from present-day fusion experiments to much larger future devices, such as the International Thermonuclear Experimental Reactor (ITER)1

  17. Thermoelectrics Partnership: High Performance Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles Thermoelectrics Partnership: High Performance Thermoelectric...

  18. Partnerships | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUserPartnerships Partnerships StrategicIn

  19. Partnerships | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUserPartnerships Partnerships

  20. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Energy Savers [EERE]

    More Documents & Publications Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) Energy Storage Systems 2014 Peer Review Presentations - Session 11...

  1. Northeast Energy Efficiency Partnerships: Advanced Lighting Controls |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t e g r i t y -Department of

  2. WATER ADVISORY PARTNERSHIP

    E-Print Network [OSTI]

    US Army Corps of Engineers

    COCONINO PLATEAU WATER ADVISORY COUNCIL& WATERSHED PARTNERSHIP 3624 E. Mesquite St. Gilbe~t, Arizona 85296" 1832 Participants: Arizona Department of Environmental Quality Arizona Department of Water City ofFlagstaff City of Page City of Sedona City of Williams Coconino County Doney Park Water Company

  3. Community Partnerships Impact Report

    E-Print Network [OSTI]

    Olszewski Jr., Edward A.

    . #12;Where is UNCW Making an Impact? · Teaching, Research, Service - Education and Social ServicesUNCW Community Partnerships Impact Report Gary L. Miller Chancellor Bill Kawczynski Community Impact · Developing a tool to identify impact of campus activities on: ­ Volunteerism ­ Service Learning

  4. Secretary Chu Announces New Partnerships Under the Energy and...

    Office of Environmental Management (EM)

    Secretary Chu Announces New Partnerships Under the Energy and Climate Partnership of the Americas Secretary Chu Announces New Partnerships Under the Energy and Climate Partnership...

  5. Advances toward a transportable antineutrino detector system for reactor monitoring and safeguards

    SciTech Connect (OSTI)

    Reyna, D.; Bernstein, A.; Lund, J.; Kiff, S.; Cabrera-Palmer, B.; Bowden, N. S.; Dazeley, S.; Keefer, G.

    2011-07-01

    Nuclear reactors have served as the neutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Our SNL/LLNL collaboration has demonstrated that such antineutrino based monitoring is feasible using a relatively small cubic meter scale liquid scintillator detector at tens of meters standoff from a commercial Pressurized Water Reactor (PWR). With little or no burden on the plant operator we have been able to remotely and automatically monitor the reactor operational status (on/off), power level, and fuel burnup. The initial detector was deployed in an underground gallery that lies directly under the containment dome of an operating PWR. The gallery is 25 meters from the reactor core center, is rarely accessed by plant personnel, and provides a muon-screening effect of some 20-30 meters of water equivalent earth and concrete overburden. Unfortunately, many reactor facilities do not contain an equivalent underground location. We have therefore attempted to construct a complete detector system which would be capable of operating in an aboveground location and could be transported to a reactor facility with relative ease. A standard 6-meter shipping container was used as our transportable laboratory - containing active and passive shielding components, the antineutrino detector and all electronics, as well as climate control systems. This aboveground system was deployed and tested at the San Onofre Nuclear Generating Station (SONGS) in southern California in 2010 and early 2011. We will first present an overview of the initial demonstrations of our below ground detector. Then we will describe the aboveground system and the technological developments of the two antineutrino detectors that were deployed. Finally, some preliminary results of our aboveground test will be shown. (authors)

  6. Partnership in Computational Science

    SciTech Connect (OSTI)

    Huray, Paul G.

    1999-02-24

    This is the final report for the "Partnership in Computational Science" (PICS) award in an amount of $500,000 for the period January 1, 1993 through December 31, 1993. A copy of the proposal with its budget is attached as Appendix A. This report first describes the consequent significance of the DOE award in building infrastructure of high performance computing in the Southeast and then describes the work accomplished under this grant and a list of publications resulting from it.

  7. Partnerships | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics AndBeryllium Disease | DepartmentOLED StakeholderINL E-IDREnergy Partnerships Help

  8. Utility Partnerships Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY 2009,Biofuels forDocumentsPartnerships Program Overview The

  9. DOE Announces Webinars on Energy Systems Advances, Hydrogen Safety...

    Broader source: Energy.gov (indexed) [DOE]

    10: Live Webcast on Clean Energy Advances Webinar Sponsor: EERE's Energy Innovation Portal The Energy Department, in partnership with the Battelle Commercialization Council,...

  10. Sandia Energy - Advanced Controls of Wave Energy Converters May...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Controls of Wave Energy Converters May Increase Power Capture Up to 330% Home Renewable Energy Energy Water Power Partnership News News & Events Computational Modeling &...

  11. Sustainable Transportation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  12. Recovery Act?Transportation Electrification Education Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. tiarravt038peng2010...

  13. Recovery Act?Transportation Electrification Education Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt038tipeng2012...

  14. Recovery Act?Transportation Electrification Education Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt038tipeng2011p...

  15. Testimonials - Partnerships in Sustainable Transportation - The Ohio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnologyTel: Name: Rm. Tel:Test Circuit ServiceR&DState

  16. Utility Partnerships Program Overview (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    Program overview brochure for the Utility Partnerships Program within the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP).

  17. NEW SOLAR HOMES PARTNERSHIP DRAFTGUIDEBOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP DRAFTGUIDEBOOK SEPTEMBER 2006 CEC-300 .................................................................. 4 A. Technology and System Ownership ................................................... 6 G. Estimated Performance Using Commission PV Calculator .................................. 6 H

  18. NEW SOLAR HOMES PARTNERSHIP COMMITTEEFINALGUIDEBOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP COMMITTEEFINALGUIDEBOOK NOVEMBER 2006 CEC .................................................................. 8 A. Technology and System Ownership ................................................. 10 G. Estimated Performance Using Commission PV Calculator ................................ 10 H

  19. Nuclear Waste Partnership Contract Modifications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Partnership Contract DE-EM0001971 Modifications NWP Modification Index Description Modification 001 Modification 002 Modification 003 Modification 004 Modification 005...

  20. PARTNERSHIPS DIRECTORATE PEOPLE TECHNOLOGY EVENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DIRECTORATE PEOPLE TECHNOLOGY EVENTS (continued on page 8) (continued on page 3) Rogers, Thompson Named New Directors The ORNL Partnerships Directorate seeks to foster economic...

  1. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ace067goodson2011o.pdf More Documents & Publications Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel...

  2. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    competitiveness. * Inputs to the process included: * Surveys and workshops of industry and university participants * Desk research of comparable mechanisms used in...

  3. The Advanced Manufacturing Partnership and the Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaics »TanklessResearchEnergy2 DOE Hydrogen12The Ad

  4. Partnership Opportunities | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser Careers/ResearchParkingPartnership

  5. Sandia Energy - Partnership Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy &WaterNew CREWOnlineParticulate andPartnership

  6. Tribal Renewable Energy Solutions and Partnerships: Collaborating...

    Energy Savers [EERE]

    Tribal Renewable Energy Solutions and Partnerships: Collaborating Through the Headwinds of Change Tribal Renewable Energy Solutions and Partnerships: Collaborating Through the...

  7. Obama Administration Announces New Partnership on Unconventional...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership on Unconventional Natural Gas and Oil Research Obama Administration Announces New Partnership on Unconventional Natural Gas and Oil Research April 13, 2012 - 3:01pm...

  8. DOE's Carbon Sequestration Partnership Program Adds Canadian...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Carbon Sequestration Partnership Program Adds Canadian Provinces DOE's Carbon Sequestration Partnership Program Adds Canadian Provinces February 16, 2005 - 10:14am Addthis...

  9. Federal Utility Partnership Working Group Meeting: Washington...

    Energy Savers [EERE]

    Federal Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting: Washington Update Presentation-given at the Fall 2012...

  10. Eight National Labs Offer Streamlined Partnership Agreements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eight National Labs Offer Streamlined Partnership Agreements to Help Industry Bring New Technologies to Market Eight National Labs Offer Streamlined Partnership Agreements to Help...

  11. Algenol Announces Commercial Algal Ethanol Fuel Partnership ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algenol Announces Commercial Algal Ethanol Fuel Partnership Algenol Announces Commercial Algal Ethanol Fuel Partnership October 21, 2015 - 10:35am Addthis An error occurred. Try...

  12. Algenol Announces Commercial Algal Ethanol Fuel Partnership ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algenol Announces Commercial Algal Ethanol Fuel Partnership Algenol Announces Commercial Algal Ethanol Fuel Partnership October 2, 2015 - 11:28am Addthis An error occurred. Try...

  13. Sustainable Business Models: Utilities and Efficiency Partnerships

    Broader source: Energy.gov [DOE]

    Residential Energy Efficiency Solutions Conference: Session 1 -– Sustainable Business Models: Utilities and Efficiency Partnerships, July 10, 2012. Provides an overview and lessons learned on Energize Phoenix's utility partnership.

  14. Sandia Energy - Advanced Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Imaging Home Transportation Energy Predictive Simulation of Engines Reacting Flow Experiments Advanced Imaging Advanced ImagingAshley Otero2015-10-30T01:47:37+00:00...

  15. Southeast Regional Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Kenneth J. Nemeth

    2006-08-30

    The Southeast Regional Carbon Sequestration Partnership's (SECARB) Phase I program focused on promoting the development of a framework and infrastructure necessary for the validation and commercial deployment of carbon sequestration technologies. The SECARB program, and its subsequent phases, directly support the Global Climate Change Initiative's goal of reducing greenhouse gas intensity by 18 percent by the year 2012. Work during the project's two-year period was conducted within a ''Task Responsibility Matrix''. The SECARB team was successful in accomplishing its tasks to define the geographic boundaries of the region; characterize the region; identify and address issues for technology deployment; develop public involvement and education mechanisms; identify the most promising capture, sequestration, and transport options; and prepare action plans for implementation and technology validation activity. Milestones accomplished during Phase I of the project are listed below: (1) Completed preliminary identification of geographic boundaries for the study (FY04, Quarter 1); (2) Completed initial inventory of major sources and sinks for the region (FY04, Quarter 2); (3) Completed initial development of plans for GIS (FY04, Quarter 3); (4) Completed preliminary action plan and assessment for overcoming public perception issues (FY04, Quarter 4); (5) Assessed safety, regulatory and permitting issues (FY05, Quarter 1); (6) Finalized inventory of major sources/sinks and refined GIS algorithms (FY05, Quarter 2); (7) Refined public involvement and education mechanisms in support of technology development options (FY05, Quarter 3); and (8) Identified the most promising capture, sequestration and transport options and prepared action plans (FY05, Quarter 4).

  16. NEW SOLAR HOMES PARTNERSHIP FINALGUIDEBOOK

    E-Print Network [OSTI]

    ............................................................................................... 5 1. How to get reservation funding for a Housing Development with 6 or more units installing solarCALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP FINALGUIDEBOOK DECEMBER 2006 CEC-300 Executive Director Payam Narvand Program Lead NEW SOLAR HOMES PARTNERSHIP Bill Blackburn Supervisor EMERGING

  17. Tanzania Partnership Program An Overview

    E-Print Network [OSTI]

    Tanzania Partnership Program An Overview PartnershipsforSustainableCommunityDevelopment Michigan The Tanzania Partnership Program (TPP) provides an opportunity to develop, test, and refine the PSCD model. Tanzania was selected as the initial location for PSCD based on demonstrated need, potential for success

  18. What are Improvement Partnerships? "VCHIPisaperfectexampleofhowstategroupscancometogetheraroundacommongoaland

    E-Print Network [OSTI]

    Hayden, Nancy J.

    ; and · Informing policy. improvement partnerships inform health policy By collaborating to share resources and family health, measure performance, and develop and disseminate tools. Practice-level support and a focus Partnerships (IP) are a durable state or regional collaboration of public and private partners that uses

  19. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout / Transforming Y-12Capacity-Forum Sign InTransportation

  20. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration re

  1. The Fantasy World of Private Finance for Transport via Public...

    Open Energy Info (EERE)

    The Fantasy World of Private Finance for Transport via Public Private Partnerships Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Fantasy World of Private Finance...

  2. Recent Theoretical Results for Advanced Thermoelectric Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Theoretical Results for Advanced Thermoelectric Materials Recent Theoretical Results for Advanced Thermoelectric Materials Transport theory and first principles calculations...

  3. Southwest Regional Partnership on Carbon Sequestration

    SciTech Connect (OSTI)

    Brian McPherson

    2006-03-31

    The Southwest Partnership on Carbon Sequestration completed its Phase I program in December 2005. The main objective of the Southwest Partnership Phase I project was to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. Many other goals were accomplished on the way to this objective, including (1) analysis of CO{sub 2} storage options in the region, including characterization of storage capacities and transportation options, (2) analysis and summary of CO{sub 2} sources, (3) analysis and summary of CO{sub 2} separation and capture technologies employed in the region, (4) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region, (5) dissemination of existing regulatory/permitting requirements, and (6) assessing and initiating public knowledge and acceptance of possible sequestration approaches. Results of the Southwest Partnership's Phase I evaluation suggested that the most convenient and practical ''first opportunities'' for sequestration would lie along existing CO{sub 2} pipelines in the region. Action plans for six Phase II validation tests in the region were developed, with a portfolio that includes four geologic pilot tests distributed among Utah, New Mexico, and Texas. The Partnership will also conduct a regional terrestrial sequestration pilot program focusing on improved terrestrial MMV methods and reporting approaches specific for the Southwest region. The sixth and final validation test consists of a local-scale terrestrial pilot involving restoration of riparian lands for sequestration purposes. The validation test will use desalinated waters produced from one of the geologic pilot tests. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, five major electric utility companies, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs, and the Western Governors Association. This group is continuing its work in the Phase II Validation Program, slated to conclude in 2009.

  4. Advanced Bioeconomy Feedstocks Conference

    Broader source: Energy.gov [DOE]

    This year’s Advanced Bioeconomy Feedstocks Conference will be held from June 9–10, 2015 in New Orleans, Louisiana. The conference will gather supply chain leaders of the bioeconomy to examine supply chain technologies, business models, and partnerships. BETO Director Jonathan Male and Technology Manager Steve Thomas will be speaking at the conference.

  5. CEC- New Solar Homes Partnership

    Broader source: Energy.gov [DOE]

    Launched on January 2, 2007, the New Solar Homes Partnership (NSHP) is a 10-year, $400 million program to encourage solar in new homes by working with builders and developers to incorporate into ...

  6. NSF PARTNERSHIPS FOR INNOVATION: BUILDING INNOVATION Directorate for Engineering, Division of Industrial Innovation and Partnerships

    E-Print Network [OSTI]

    Finley Jr., Russell L.

    NSF PARTNERSHIPS FOR INNOVATION: BUILDING INNOVATION Directorate for Engineering, Division of Industrial Innovation and Partnerships Program Solicitation: NSF 12-578 Replaces document(s): NSF 12 be translated to innovations. This program solicitation, Partnerships for Innovation: Building Innovation

  7. The Global Nuclear Energy Partnership | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Global Nuclear Energy Partnership The Global Nuclear Energy Partnership An article describing the small scale reactors in the GNEP. The Global Nuclear Energy Partnership More...

  8. PP-206 Frontera Generation Limited Partnership | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PP-206 Frontera Generation Limited Partnership PP-206 Frontera Generation Limited Partnership Presidential permit authorizing Frontera Generation Limited Partnership to construct,...

  9. Advanced Integrated Systems Technology Development

    E-Print Network [OSTI]

    2013-01-01

    Renewable Energy Technologies Transportation Advanced Integrated Systems Technology Development is the final report for the Advanced Integrated Systems Technology Development project (

  10. International Partnership for a Hydrogen Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S. Department of EnergyPresentation | Department ofPartnership

  11. Energy Technology Solutions: Public-Private Partnerships Transforming...

    Energy Savers [EERE]

    Energy Technology Solutions: Public-Private Partnerships Transforming Industry, November 2010 Energy Technology Solutions: Public-Private Partnerships Transforming Industry,...

  12. NSF/DOE Thermoelectics Partnership: Thermoelectrics for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery 2011 DOE...

  13. NEW SOLAR HOMES PARTNERSHIP DRAFTSTAFFPROPOSALMAY 2006

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP DRAFTSTAFFPROPOSALMAY 2006 CEC-300 of the information in this paper. #12;TABLE OF CONTENTS NEW SOLAR HOMES PARTNERSHIP .......................................................................................................2 Current Solar Incentive Programs

  14. Saturn, The GM/UAW Partnership

    E-Print Network [OSTI]

    Rubinstein, Saul

    2002-06-06

    Designed and implemented as a partnership between GM and the UAW, Saturn breaks new ground in firm governance,management and industrial relations. Through detailed study of Saturn?s partnership arrangements we have found ...

  15. Partnership Agreement Form

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT P -Particle Receiver IntegratedPartners

  16. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-03-01

    Describes Clean Cities' National Clean Fleets Partnership, an initiative that helps large private fleets reduce petroleum use.

  17. Northeast Energy Efficiency Partnerships | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lead Performer: Northeast Energy Efficiency Partnerships, Lexington, MA Partners: Burlington Electric Department, Cape Light Compact, Connecticut Light and Power, Efficiency...

  18. Income tax problems of partnerships 

    E-Print Network [OSTI]

    Harrell, Clyde Wallace

    1951-01-01

    the revenue laws. The fundamental 1ncpcizy concerns the intention of the ysrties ss disclosed by theM agreement and by their conduct. Xn deciding whether s business entity is a psrtmership or an association, the decision often turns on 1X. a. C. , Sec... return. Partnerihi s The so-cslle4 "fsmiIy partnership" is a partnership vhose members sre closely related, The Bureau oi' Internal Revenue refuses to recognise such partnershiys vhen they represent tax avoidance schemes vithout bona fide partners...

  19. NEW SOLAR HOMES PARTNERSHIP REVISED SECONDTHIRD EDITION

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP REVISED SECONDTHIRD EDITION of 15 Attachment 1 ERRATA TO THE NEW SOLAR HOMES PARTNERSHIP COMMITTEE DRAFT GUIDEBOOK The following list of Errata was adopted as part of the proposed revisions to the New Solar Homes Partnership

  20. Sandia Energy - Partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkhole Officials Turn to Sandia NationalAdvanced Materials

  1. EPSRC and TSB Partnership in

    E-Print Network [OSTI]

    Berzins, M.

    that can compete successfully in domestic and global markets. In addition, jobs generated in manufacturing create additional employment in the wider economy. Investment in High Value Manufacturing activitiesEPSRC and TSB Partnership in High Value Manufacturing Image credit: istockphoto #12;The Government

  2. USDA Regional Conservation Partnership Program

    Broader source: Energy.gov [DOE]

    The U.S. Department of Agriculture is accepting applications for the Regional Conservation Partnership Program to identify and address natural resource objectives in balance with operational goals in order to benefit soil, water, wildlife, and related natural resources locally, regionally, and nationally.

  3. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-01-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies.

  4. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-06-30

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop (see attached agenda). The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO2 concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. A third Partnership meeting has been planned for August 04 in Idaho Falls; a preliminary agenda is attached.

  5. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound MMV is critical for public acceptance of these technologies. Deliverables for the 7th Quarter reporting period include (1) for the geological efforts: Reports on Technology Needs and Action Plan on the Evaluation of Geological Sinks and Pilot Project Deployment (Deliverables 2 and 3), and Report on the Feasibility of Mineralization Trapping in the Snake River Plain Basin (Deliverable 14); (2) for the terrestrial efforts: Report on the Evaluation of Terrestrial Sinks and a Report of the Best Production Practices for Soil C Sequestration (Deliverables 8 and 15). In addition, the 7th Quarter activities for the Partnership included further development of the proposed activities for the deployment and demonstration phase of the carbon sequestration pilots including geological and terrestrial pilots, expansion of the Partnership to encompass regions and institutions that are complimentary to the steps we have identified, building greater collaborations with industry and stakeholders in the region, contributed to outreach efforts that spanned all partnerships, co-authorship on the Carbon Capture and Separation report, and developed a regional basis to address future energy opportunities in the region. The deliverables and activities are discussed in the following sections and appended to this report. The education and outreach efforts have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The public website has been expanded and integrated with the GIS carbon atlas. We have made presentations to stakeholders and policy makers including two tribal sequestration workshops, and made connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmental

  6. Alternative Transportation Technologies: Hydrogen, Biofuels,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in...

  7. 1.212J / ESD.221J An Introduction to Intelligent Transportation Systems, Spring 2003

    E-Print Network [OSTI]

    Sussman, Joseph

    Basic elements of intelligent transportation systems. Technological, systems, and institutional aspects of ITS considered, including system architecture, congestion pricing, public/private partnerships, network models, ITS ...

  8. Emerging DOE partnerships threatened

    SciTech Connect (OSTI)

    Fairley, P.

    1996-06-26

    At CW press time the house was considering a 10% cut in Department of Energy (DOE) conservation programs and a 14% cut in DOE funding for fossil fuel R&D. The cuts show that, while easing off this year on efforts to pare back EPA, House Republicans have not given up the fight over federal technology programs. House Republicans consider federal involvement in R&D {open_quotes}corporate welfare,{close_quotes} and, while the Commerce Department`s Advanced Technology Program (ATP) has been the lightning rod for their criticism, DOE programs have also been targeted for reduction. The $499-million conservation funding level contemplated by the House is 33% below the President`s request and follows an equally large cut last year.

  9. Energy Storage - Summary of the FY 2005 Batteries for Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review Energy Storage - Summary of the FY 2005 Batteries for Advanced Transportation Technologies...

  10. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. In the fourth quarter, three deliverables have been completed, some in draft form to be revised and updated to include Wyoming. This is due primarily to some delays in funding to LANL and INEEL and the approval of a supplemental proposal to include Wyoming in much of the GIS data sets, analysis, and related materials. The de

  11. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-01-04

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the first performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first Partnership meeting the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Complementary to the efforts on evaluation of sources and sinks is the development of the Big Sky Partnership Carbon Cyberinfrastructure (BSP-CC) and a GIS Road Map for the Partnership. These efforts will put in place a map-based integrated information management system for our Partnership, with transferability to the national carbon sequestration effort. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but other policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. A series of meetings held in November and December, 2003, have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These include the impact of existing local, state, and federal permitting issues for terrestrial based carbon sequestration projects, consistency of final protocols and planning standards with national requirements, and alignments of carbon sequestration projects with existing federal and state cost-share programs. Finally, the education and outreach efforts during this performance period have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The primary goal of this plan is to increase awareness, understanding, and public acceptance of sequestration efforts and build support for a constituent based network which includes the initial Big Sky Partnership and other local and regional businesses and entities.

  12. An advanced algorithm for construction of Integral Transport Matrix Method operators using accumulation of single cell coupling factors

    SciTech Connect (OSTI)

    Powell, B. P.; Azmy, Y. Y.

    2013-07-01

    The Integral Transport Matrix Method (ITMM) has been shown to be an effective method for solving the neutron transport equation in large domains on massively parallel architectures. In the limit of very large number of processors, the speed of the algorithm, and its suitability for unstructured meshes, i.e. other than an ordered Cartesian grid, is limited by the construction of four matrix operators required for obtaining the solution in each sub-domain. The existing algorithm used for construction of these matrix operators, termed the differential mesh sweep, is computationally expensive and was developed for a structured grid. This work proposes the use of a new algorithm for construction of these operators based on the construction of a single, fundamental matrix representing the transport of a particle along every possible path throughout the sub-domain mesh. Each of the operators is constructed by multiplying an element of this fundamental matrix by two factors dependent only upon the operator being constructed and on properties of the emitting and incident cells. The ITMM matrix operator construction time for the new algorithm is demonstrated to be shorter than the existing algorithm in all tested cases with both isotropic and anisotropic scattering considered. While also being a more efficient algorithm on a structured Cartesian grid, the new algorithm is promising in its geometric robustness and potential for being applied to an unstructured mesh, with the ultimate goal of application to an unstructured tetrahedral mesh on a massively parallel architecture. (authors)

  13. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-06-01

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed this quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. To date, there has been little research on soil carbon on rangelands, and since rangeland constitutes a major land use in the Big Sky region, this is important in achieving a better understanding of terrestrial sinks. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. Progress on other deliverables is noted in the PowerPoint presentations. A series of meetings held during the second quarter have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. Finally, the education and outreach efforts have resulted in a comprehensive plan and process which serves as a guide for implementing the outreach activities under Phase I. While we are still working on the public website, we have made many presentations to stakeholders and policy makers, connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmentally-friendly energy production. In addition, we have laid plans for integration of our outreach efforts with the students, especially at the tribal colleges and at the universities involved in our partnership. This includes collaboration with the film and media arts departments at MSU, with outreach effort

  14. State Technologies Advancement Collaborative

    SciTech Connect (OSTI)

    David S. Terry

    2012-01-30

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

  15. Industry/Utility Partnerships: Formula for Success 

    E-Print Network [OSTI]

    Smith, W. R.; Spriggs, H. D.

    1995-01-01

    /UTILITY PARTNERSHIPS: FORMULA FOR SUCCESS William R. Smith, PE, Business Development, Houston Lighting & Power Company, Houston, TX 77046 H. D. Spriggs, PhD, President, Matrix 2000, Leesburg, VA 22075 ABSTRACT Industry/utility partnerships are created when... be a strong partnership between HL&P and its customers. HL&P must help them to find real solutions to their most pressing problems and both parties must win. HL&P's customers must keep their costs low, maintain operating flexibility, meet...

  16. The Space Optical Clocks Project: Development of high-performance transportable and breadboard optical clocks and advanced subsystems

    E-Print Network [OSTI]

    S. Schiller; A. Görlitz; A. Nevsky; S. Alighanbari; S. Vasilyev; C. Abou-Jaoudeh; G. Mura; T. Franzen; U. Sterr; S. Falke; Ch. Lisdat; E. Rasel; A. Kulosa; S. Bize; J. Lodewyck; G. M. Tino; N. Poli; M. Schioppo; K. Bongs; Y. Singh; P. Gill; G. Barwood; Y. Ovchinnikov; J. Stuhler; W. Kaenders; C. Braxmaier; R. Holzwarth; A. Donati; S. Lecomte; D. Calonico; F. Levi

    2012-06-17

    The use of ultra-precise optical clocks in space ("master clocks") will allow for a range of new applications in the fields of fundamental physics (tests of Einstein's theory of General Relativity, time and frequency metrology by means of the comparison of distant terrestrial clocks), geophysics (mapping of the gravitational potential of Earth), and astronomy (providing local oscillators for radio ranging and interferometry in space). Within the ELIPS-3 program of ESA, the "Space Optical Clocks" (SOC) project aims to install and to operate an optical lattice clock on the ISS towards the end of this decade, as a natural follow-on to the ACES mission, improving its performance by at least one order of magnitude. The payload is planned to include an optical lattice clock, as well as a frequency comb, a microwave link, and an optical link for comparisons of the ISS clock with ground clocks located in several countries and continents. Undertaking a necessary step towards optical clocks in space, the EU-FP7-SPACE-2010-1 project no. 263500 (SOC2) (2011-2015) aims at two "engineering confidence", accurate transportable lattice optical clock demonstrators having relative frequency instability below 1\\times10^-15 at 1 s integration time and relative inaccuracy below 5\\times10^-17. This goal performance is about 2 and 1 orders better in instability and inaccuracy, respectively, than today's best transportable clocks. The devices will be based on trapped neutral ytterbium and strontium atoms. One device will be a breadboard. The two systems will be validated in laboratory environments and their performance will be established by comparison with laboratory optical clocks and primary frequency standards. In this paper we present the project and the results achieved during the first year.

  17. Better Buildings Residential Network Case Study: Partnerships...

    Office of Environmental Management (EM)

    from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. BBRN Case Study: Partnerships More Documents & Publications Better Buildings Network...

  18. Spotlight on Seattle, Washington: Community Partnerships Work...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revised July 2011 Version 2 Spotlight on Seattle, Washington: Community Partnerships Work to Extend Program Reach Getting Started 1 Seattle Moves the Needle With the Help of Its...

  19. Federal Utility Partnership Working Group Utility Partners

    Broader source: Energy.gov [DOE]

    Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

  20. Testimonials - Partnerships in LED Lighting - Philips Lumileds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LED Lighting - Philips Lumileds Lighting, LLC Testimonials - Partnerships in LED Lighting - Philips Lumileds Lighting, LLC Addthis An error occurred. Try watching this video on...

  1. Federal Utility Partnership Working Group - Utility Interconnection...

    Energy Savers [EERE]

    Federal Utility Partnership Working Group (FUPWG) meeting-discusses solarphotovoltaic (PV) projects to connect with utility in California and their issues. fupwgfall12jewell.pd...

  2. Fuel Effects on Ignition and Their Impact on Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Advanced Combustion Engines Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st...

  3. Injection System and Engine Strategies for Advanced Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006deerparche.pdf More Documents & Publications Advanced...

  4. Sustainable Transportation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  5. R&D and deployment valuation of intelligent transportation systems : a case example of the intersection collision avoidance systems

    E-Print Network [OSTI]

    Hodota, Kenichi

    2006-01-01

    Compared with investments in the conventional infrastructure, those in Intelligent Transportation Technology (ITS) include various uncertainties. Because deployment of ITS requires close public-private partnership, projects ...

  6. Transportation megaproject procurement : benefits and challenges for PPPs and alternative delivery strategies, and the resulting implications for Crossrail

    E-Print Network [OSTI]

    Kay, Michael A. (Michael Adam)

    2009-01-01

    This thesis evaluates the applicability of public-private partnerships (PPPs) and alternative delivery strategies to transportation megaprojects. There has been tremendous expansion of innovative procurement and financing ...

  7. NREL Technology Partnership Agreement Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:News Releases |NREL Technology Partnership

  8. NREL: Energy Systems Integration - Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatial AnalysisPartnerships Watch how NREL is

  9. NETL Partnership and Licensing Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof Energy Moving Basic NERSC TrainingPartnerships and

  10. Sandia National Laboratories: Partnership Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque Albuquerque Housing EducationImage Gallery MembersPartnership

  11. Nuclear Waste Partnership (NWP) Quality Assurance Program Description...

    Office of Environmental Management (EM)

    Waste Partnership (NWP) Quality Assurance Program Description (QAPD) Nuclear Waste Partnership (NWP) Quality Assurance Program Description (QAPD) The documents included in this...

  12. Sandia Energy - The National Algae Testbed Public-Private Partnership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The National Algae Testbed Public-Private Partnership Kick-Off Meeting at Arizona State University Home Renewable Energy Energy Biofuels Partnership News News & Events Systems...

  13. 21st Century Truck Partnership Roadmap Roadmap and Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers -...

  14. 21st Century Truck Partnership - Roadmap and Technical White...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    21st Century Truck Partnership - Roadmap and Technical White Papers Appendix of Supporting Information - 21CTP-0003, December 2006 21st Century Truck Partnership - Roadmap and...

  15. February 5, 2014 Webinar - The Cementitious Barriers Partnership...

    Energy Savers [EERE]

    - The Cementitious Barriers Partnership Toolbox, Version 2.0 February 5, 2014 Webinar - Tools and Capabilities of the Cementitious Barriers Partnership Toolbox, Version 2.0 David...

  16. Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small-Scale Reactors Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small-Scale Reactors GNEP will provide...

  17. Energy Department Announces New Private Sector Partnership to...

    Energy Savers [EERE]

    Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate...

  18. Energy Department Announces New Private Sector Partnership to...

    Energy Savers [EERE]

    New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects October 9,...

  19. Innovation and Coordination at the Callifornia Fuel Cell Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation and Coordination at the Callifornia Fuel Cell Partnership Innovation and Coordination at the Callifornia Fuel Cell Partnership Presented at Refueling Infrastructure for...

  20. Global Nuclear Energy Partnership Inaugural Steering Group Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Nuclear Energy Partnership Inaugural Steering Group Meeting Makes Marked Progress Global Nuclear Energy Partnership Inaugural Steering Group Meeting Makes Marked Progress...

  1. Federal Utility Partnership Working Group 2011 Meeting: Washington...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Meeting: Washington Update Federal Utility Partnership Working Group 2011 Meeting: Washington Update Presentation-given at the Fall 2011 Federal Utility Partnership Working...

  2. Energy Department to Award $6 Million to State Partnerships to...

    Energy Savers [EERE]

    to Award 6 Million to State Partnerships to Increase Energy Efficiency Energy Department to Award 6 Million to State Partnerships to Increase Energy Efficiency September 19, 2006...

  3. Shared Value in Utility and Efficiency Partnerships | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Residential Energy Efficiency Solutions Conference: Shared Value in Utility and Efficiency Partnerships, July 10, 2012. Presents four case studies highlighting partnerships between...

  4. New Energy Department Partnership Creates Solar Bridges to Energy...

    Energy Savers [EERE]

    New Energy Department Partnership Creates Solar Bridges to Energy Security New Energy Department Partnership Creates Solar Bridges to Energy Security July 7, 2015 - 3:21pm Addthis...

  5. Knowledge Partnership for Measuring Air Pollution and Greenhouse...

    Open Energy Info (EERE)

    Knowledge Partnership for Measuring Air Pollution and Greenhouse Gas Emissions in Asia Jump to: navigation, search Name Knowledge Partnership for Measuring Air Pollution and...

  6. DOE NSF Partnership to Address Critical Challenges in Hydrogen...

    Office of Environmental Management (EM)

    NSF Partnership to Address Critical Challenges in Hydrogen Production from Solar Water Splitting DOE NSF Partnership to Address Critical Challenges in Hydrogen Production from...

  7. Energy Smart Federal Partnership: Program Partners and Resources

    Broader source: Energy.gov [DOE]

    Presentation covers program partners and resources for the Energy Smart Partnership and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  8. Annual Report: National Risk Assessment Partnership (30 September...

    Office of Scientific and Technical Information (OSTI)

    National Risk Assessment Partnership (30 September 2012) Citation Details In-Document Search Title: Annual Report: National Risk Assessment Partnership (30 September 2012) The U.S....

  9. Renewing America's Nuclear Power Partnership for Energy Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8,...

  10. FreedomCAR and Fuel Partnership 2009 Highlights of Technical...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications FreedomCAR and Fuel Partnership 2008 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2006 Highlights of Technical...

  11. FreedomCAR and Fuel Partnership 2004 Highlights of Technical...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications FreedomCAR and Fuel Partnership 2006 Highlights of Technical Accomplishments FreedomCAR Partnership 2003 Highlights of Technical Accomplishments...

  12. FreedomCAR and Fuel Partnership 2007 Highlights of Technical...

    Broader source: Energy.gov (indexed) [DOE]

    7. 2007fcfpaccomplishmentsrpt.pdf More Documents & Publications FreedomCAR and Fuel Partnership 2008 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2006...

  13. FreedomCAR and Fuel Partnership 2005 Highlights of Technical...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications FreedomCAR Partnership 2003 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2004 Highlights of Technical...

  14. Funding Opportunity Coming Soon: Building America Industry Partnership...

    Office of Environmental Management (EM)

    Building America Industry Partnerships Funding Opportunity Coming Soon: Building America Industry Partnerships October 28, 2015 - 11:51am Addthis The Building Technologies Office...

  15. Energy Technology Partnership (ETP) Energy Industry Doctorates

    E-Print Network [OSTI]

    Painter, Kevin

    Energy Technology Partnership (ETP) Energy Industry Doctorates in Low Carbon Energy Technologies for Guidance 1. Introduction The Energy Technology Partnership (ETP) has established an Energy Industry for `industry-ready', post-doctoral researchers to enhance energy industry innovation and knowledge exchange

  16. NEW SOLAR HOMES PARTNERSHIP Fourth Edition

    E-Print Network [OSTI]

    NEW SOLAR HOMES PARTNERSHIP GUIDEBOOK Fourth Edition CALIFORNIA ENERGY COMMISSION Edmund The New Solar Homes Partnership (NSHP) Program is part of a statewide solar program known as the California Solar Initiative (CSI). The NSHP provides financial incentives for installing solar energy

  17. Creating and Sustaining a PK-16 Partnership

    E-Print Network [OSTI]

    Deng, Bo

    ) masters program that educates and supports teams of outstanding middle level math teachers who will become, Lincoln Public Schools Jim Harrington, Omaha Public Schools Julie Thomas, University of Nebrska Partnership proposal to the National Science Foundation to create the Math in the Middle Institute Partnership

  18. NEW SOLAR HOMES PARTNERSHIP DRAFT GUIDEBOOK

    E-Print Network [OSTI]

    NEW SOLAR HOMES PARTNERSHIP DRAFT GUIDEBOOK Fourth Edition JANUARY 2012 CEC3002011006CMD2 The New Solar Homes Partnership (NSHP) Program is part of a statewide solar program known as the California Solar Initiative (CSI). The NSHP provides financial incentives for installing solar energy

  19. Hollings Manufacturing Extension Partnership: A Commercialization Collaborator

    E-Print Network [OSTI]

    bottom-line efficiencies through the employment of lean manufacturing techniques and other productivityHollings Manufacturing Extension Partnership: A Commercialization Collaborator MEP · MANUFACTURING Manufacturing Extension Partnership (MEP) works with small and mid-sized U.S. manufacturers to help them create

  20. SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION

    SciTech Connect (OSTI)

    Brian McPherson; Rick Allis; Barry Biediger; Joel Brown; Jim Cappa; George Guthrie; Richard Hughes; Eugene Kim; Robert Lee; Dennis Leppin; Charles Mankin; Orman Paananen; Rajesh Pawar; Tarla Peterson; Steve Rauzi; Jerry Stuth; Genevieve Young

    2004-11-01

    The Southwest Partnership Region includes six whole states, including Arizona, Colorado, Kansas, New Mexico, Oklahoma, and Utah, roughly one-third of Texas, and significant portions of adjacent states. The Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. The main objective of the Southwest Partnership project is to achieve an 18% reduction in carbon intensity by 2012. The Partnership made great progress in this first year. Action plans for possible Phase II carbon sequestration pilot tests in the region are almost finished, including both technical and non-technical aspects necessary for developing and carrying out these pilot tests. All partners in the Partnership are taking an active role in evaluating and ranking optimum sites and technologies for capture and storage of CO{sub 2} in the Southwest Region. We are identifying potential gaps in all aspects of potential sequestration deployment issues.

  1. Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Email Astrophysics & Cosmology Ed Fenimore Email Climate Manvendra K. Dubey Email Geophysics W. Scott Baldridge Email Space Physics Josef Koller Email Collaborations between Los...

  2. Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser

  3. Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/O StreamsParticipantsParties agree to settlePartnering

  4. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

  5. Federal Utility Partnership Working Group Seminar: Washington Update

    Broader source: Energy.gov [DOE]

    Presentation covers the Federal Utility Partnership Working Group Seminar: Washington Update on May 22, 2013.

  6. Research & Strategic Partnerships www.pdx.edu/research

    E-Print Network [OSTI]

    Bertini, Robert L.

    Research & Strategic Partnerships www.pdx.edu/research Research & Strategic Partnerships 3rd Year Report Page 1 Research and Strategic Partnerships Third Year Review: ReTHINKing Research at PSU J. Fink of the Research and Strategic Partnerships (RSP) Office, we provide an over- view of the organization's current

  7. Clean Cities: Cutting Petroleum Use in Transportation Since 1993 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Clean Cities program, which builds partnerships to reduce petroleum use in transportation in communities across the country.

  8. Indicators that matter : measuring transportation performance in Ahmedabad

    E-Print Network [OSTI]

    Osborne, James Clark, M.C.P. Massachusetts Institute of Technology

    2012-01-01

    In light of the growing challenges of planning for transportation in India, this thesis proposes that a set of indicators, sensitive to local conditions, developed, implemented and managed through a collaborative partnership ...

  9. New partnership uses advanced computer science modeling to address...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  10. Scientific Discovery through Advanced Computing (SciDAC-3) Partnership...

    Office of Scientific and Technical Information (OSTI)

    (United States) Publication Date: 2014-01-15 OSTI Identifier: 1147164 Report Number(s): ORNLTM--201421 R&D Project: KP1703020 DOE Contract Number: AC05-00OR22725 Resource Type:...

  11. Private-Public Partnerships for U.S. Advanced Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary AreasDepartment of2 (08-93) Previously DOE FBTOrelated toImprove

  12. Gas Technology Institute (Partnership for Advanced Residential Retrofit) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: Energy ResourcesMaui Area (DOEMaui Area (DOEOpen Energy

  13. Fact Sheet: Energy Storage Technology Advancement Partnership (October

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report to Congress MoreHyd rog enOffice|DOE and Sandia

  14. Partnerships Help Advance Small Modular Reactor Technology | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidential PermitDAYS - WE NEED A CHANGEof The Department of

  15. Brazil-NETL Advanced Fossil Fuels Partnerships | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossence JumpJersey Logo:BraxenergyInformation

  16. New partnership uses advanced computer science modeling to address climate

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPoster Session |SecurityNSDDfor 5th

  17. Brazil-NETL Advanced Fossil Fuels Partnerships | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac BiomassInformationSystemsBradfieldBravo

  18. Scientific Discovery through Advanced Computing (SciDAC-3) Partnership

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail. (Conference) | SciTechsaturated fracturedConnectSciTech ConnectProject

  19. Scientific Discovery through Advanced Computing (SciDAC-3) Partnership

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail. (Conference) | SciTechsaturated fracturedConnectSciTech

  20. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergyGet Current: SwitchGlenn PodonskyReactors |

  1. Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 20111,FY 2007TrafficDepartmentinofDNV KEMA TheClean

  2. SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION

    SciTech Connect (OSTI)

    Brian McPherson

    2005-08-01

    The Southwest Partnership on Carbon Sequestration completed several more tasks during the period of October 1, 2004--March 31, 2005. The main objective of the Southwest Partnership project is to achieve an 18% reduction in carbon intensity by 2012. Action plans for possible Phase 2 carbon sequestration pilot tests in the region are completed, and a proposal was developed and submitted describing how the Partnership may develop and carry out appropriate pilot tests. The content of this report focuses on Phase 1 objectives completed during this reporting period.

  3. Partnerships | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUserPartnerships PartnershipsPartnerships

  4. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T. Wight, Gregory Dreier, Ken Borland, Nicholas

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

  5. Public-Private Partnerships for Energy Efficiency Programming, Successes of the Massachusetts Energy Efficiency Partnership 

    E-Print Network [OSTI]

    Winkler, E.

    2005-01-01

    stream_source_info ESL-IE-05-05-40.pdf.txt stream_content_type text/plain stream_size 3457 Content-Encoding UTF-8 stream_name ESL-IE-05-05-40.pdf.txt Content-Type text/plain; charset=UTF-8 Public-Private Partnerships... for Energy Efficiency Programming, Successes of the Massachusetts Energy Efficiency Partnership Eric Winkler, University of Massachusetts The Massachusetts Energy Efficiency Partnership is a public-private partnership between State and Federal energy...

  6. Public private partnership in infrastructure financing

    E-Print Network [OSTI]

    Ahmed, Anas

    2014-01-01

    The global financial crisis, which was unique in its magnitude and after effects, has generated significant interest in Public Private Partnership (PPP). Lack of investments and deteriorated infrastructure challenges ...

  7. Canadian Art Partnership Program in Finland

    E-Print Network [OSTI]

    Ketovuori, Mikko Mr.

    2011-01-01

    of arts education, Finland and Canada? An integrated view.Partnership Program in Finland In the UNESCO’s “Wow Factor”Bamford suggests that Finland has a special relationship to

  8. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with local stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.

  9. Superconducting Partnership with Readiness Review Update

    E-Print Network [OSTI]

    1 Superconducting Partnership with Industry: Readiness Review Update Mike Gouge, ORNL Steve Ashworth, LANL Paul Bakke, DOE-Golden DOE 2004 Superconductivity Peer Review July 27-29, 2004 #12;2 SPI

  10. Research Grant Funds The Accountability Partnership

    E-Print Network [OSTI]

    Kavanagh, Karen L.

    sources; and reimbursements for expenditures received from other sources or institutions must be disclosed Accountability Partnership Grant Holders Institutions Agencies Parliament Tax payers #12;The Memorandum information Clear, concise requirements for fund use Timely response to inquiries Consultation on major

  11. The Building America Industrialized Housing Partnership (BAIHP) 

    E-Print Network [OSTI]

    Chandra, S.; McCloud, M.; Moyer, N.; Beal, D.; Chasar, D.; McIlvaine, J.; Parker, D.; Sherwin, J.; Martin, E.; Fonorow, K.; Mullens, M.; Lubliner, M.; McSorley, M.

    2002-01-01

    The Building America Industrialized Housing Partnership (BAIHP) is one of five competitively selected U.S. DOE Building America teams and began work on 9/1/99. BAIHP focuses on improving the energy efficiency, durability ...

  12. The Gas/Electric Partnership 

    E-Print Network [OSTI]

    Schmeal, W. R.; Royall, D.; Wrenn, K. F. Jr.

    1997-01-01

    The electric and gas industries are each in the process of restructuring and "converging" toward one mission: providing energy. Use of natural gas in generating electric power and use of electricity in transporting natural gas will increase...

  13. The AMTEX Partnership Quarterly report

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The AMTEX Partnership is a collaborative research and development program among the U.S. Integrated Textile Industry, the Department of Energy, The DOE laboratories, other federal agencies and laboratories, and universities. The goal of AMTEX is to strengthen the competitiveness of this vital U.S. industry and thereby preserve and create American jobs. The AMTEX Operating committee met on March 17, 1994 and approved the general direction and scope of the Industry R&D Road Map. All the Cooperative Research and Development Agreements (CRADAs) for the Demand Activated Manufacturing Project were completed and all nine labs were funded and underway by the end of March, 1994. Work was also initiated for three additional projects: Computer Aided Fabric Evaluation (CAFE), Textile Resource Conservation (TReC), and Sensors for Agile Manufacturing (SFAM). The plan for a Cotton Biotechnology project was completed and reviewed by the Industry Technical Advisory Committee. In addition, an `impact study` on the topic of flexible fiber production was conducted by an industry group led by the fiber manufacturers.

  14. CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership

    E-Print Network [OSTI]

    READY BUILDINGS Solar access, easements, rights now and future Technical design ­ rCUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership Rooftop Solar Challenge 1 Sunshot #12;WASHINGTON PV CONTEXTWASHINGTON PV CONTEXT 285 cities, 39

  15. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Climate Action Partnership. Contribution of Food Greenhouse Gas Emissions

    E-Print Network [OSTI]

    similar to the Land and Food Systems (LFS) Orchard Garden, 0.019 tons of Carbon Dioxide (CO2) emissions an external source. This study attempts to quantify the GHG emissions from the transportation of the food Partnership. Contribution of Food Greenhouse Gas Emissions Reductions: Moving UBC Beyond Climate Neutral

  16. FEMP and Department of Transportation Partnership Wins GreenGov...

    Office of Environmental Management (EM)

    Steve Renzi, and Eugene Tumblin. Late last month, staff members from the Federal Energy Management Program (FEMP) were recognized with a GreenGov Presidential Green Team...

  17. National Parks Move Forward on Sustainable Transportation in Partnership

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department ofDepartment ofEnergy NationalNational Parks Clean

  18. Partnerships Drive New Transportation Solutions - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/O StreamsParticipantsParties agree to

  19. Emerging patterns in cross-sector partnerships national lab partnerships: what works and what doesn`t

    SciTech Connect (OSTI)

    Tarter, C.B.

    1997-06-16

    All elements of the research triad in this country - universities, federal laboratories, and industrial labs - have spent a good part of the last decade in a very changeable and changing environment. In the area of partnerships with industry there have been a lot of experiments, such as the Advanced Technology Program (ATP), the Technology Reinvestment Program (TRP), and the Department of Energy`s (DOE) analog, the Technology Transfer Initiative (TM). We now have, at least in principle, gained enough experience with cross-sector partnerships to make some observations on what works and what doesn`t. My judgments are preliminary and driven by the idiosyncrasies of my own lab. I think the general themes at Livermore are reflected in other DOE national security labs and, at least to some extent, in other federal labs. Although we share some features in common with universities and industrial labs, I think the nature of our funding sources, and the way in which we are affected by global political factors such as the Cold War, pose a somewhat special set of circumstances for our institutions.

  20. Faculty of Engineering Global partnerships

    E-Print Network [OSTI]

    Mottram, Nigel

    , through to energy and advanced healthcare. Industrial links are a key part of our research strategy and we. Interaction and Graphics. Page 18. Electrical Energy Management. Page 13. Electrical Energy Management. Page. The Faculty has also received many large grants from UK research councils and other major funders to support

  1. NSF/DOE Thermoelectrics Partnership: Purdue Â… GM Partnership on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOrigin ofAllenDepartment of EnergyThermoelectrics

  2. Overview of Commercial Building Partnerships in Higher Education

    SciTech Connect (OSTI)

    Schatz, Glenn

    2013-03-01

    Higher education uses less energy per square foot than most commercial building sectors. However, higher education campuses house energy-intensive laboratories and data centers that may spend more than this average; laboratories, in particular, are disproportionately represented in the higher education sector. The Commercial Building Partnership (CBP), a public/private, cost-shared program sponsored by the U.S. Department of Energy (DOE), paired selected commercial building owners and operators with representatives of DOE, its national laboratories, and private-sector technical experts. These teams explored energy-saving measures across building systems–including some considered too costly or technologically challenging–and used advanced energy modeling to achieve peak whole-building performance. Modeling results were then included in new construction or retrofit designs to achieve significant energy reductions.

  3. Transportation Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    share of petroleum use, carbon dioxide (a primary greenhouse gas) emissions, and air pollution, advances in fuel cell power systems for transportation could substantially improve...

  4. Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Technology Competition (AVTC) program is an engineering education program managed by Argonne National Laboratory for the U.S. Department of Energy in partnership with Natural Resources Canada and the U.S. and Canadian auto industries.

  5. University/NETL Student Partnership Program

    SciTech Connect (OSTI)

    Gerald Holder; Jonathan Mathews; Thomas Wilson; Steven Chuang; Cristina Amon; Turgay Ertekin; Karl Johnson; Goodarz Ahmadi; David Sholl

    2006-10-31

    The University/National Energy Technology Laboratory (NETL) Student Partnership Program stimulated basic and applied research in Energy and Environmental Science areas through NETL's Office of Science and Technology (OST). This Partnership Program supported the education of graduate students in Energy and Environmental Sciences, while fostering increased scientific interaction between NETL and the participating universities, by providing graduate student support for research at a NETL facility under the joint supervision of NETL and university faculty. Projects were intended to enhance a previously established scientific or engineering relationship or to create a new relationship. Major areas of research under the Partnership Program included CO{sub 2} sequestration, granular solids flow, multi-phase flow in porous solids, gas hydrates, nanotubes, acid-mine flow identification and remediation, water-gas shift reaction, circulating fluidized beds, slurry bubble column, fuel desulphurization, carbon fibers, and fuel cells.

  6. Federal-Contractor Partnership Allows Continued Waste Processing...

    Office of Environmental Management (EM)

    Federal-Contractor Partnership Allows Continued Waste Processing in Oak Ridge Federal-Contractor Partnership Allows Continued Waste Processing in Oak Ridge July 29, 2015 - 12:00pm...

  7. Departments of State and Energy Establish Global Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State and Energy Establish Global Partnership to Green U.S. Embassies and Consulates Departments of State and Energy Establish Global Partnership to Green U.S. Embassies and...

  8. SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (SECARB)

    SciTech Connect (OSTI)

    Kenneth J. Nemeth

    2004-09-01

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is on schedule and within budget projections for the work completed during the first year of its two year program. Work during the semiannual period (third and fourth quarter) of the project (April 1--September 30, 2004) was conducted within a ''Task Responsibility Matrix.'' Under Task 1.0 Define Geographic Boundaries of the Region, Texas and Virginia were added during the second quarter of the project and no geographical changes occurred during the third or fourth quarter of the project. Under Task 2.0 Characterize the Region, general mapping and screening of sources and sinks has been completed, with integration and Geographical Information System (GIS) mapping ongoing. The first step focused on the macro level characterization of the region. Subsequent characterization will focus on smaller areas having high sequestration potential. Under Task 3.0 Identify and Address Issues for Technology Deployment, SECARB has completed a preliminary assessment of safety, regulatory, permitting, and accounting frameworks within the region to allow for wide-scale deployment of promising terrestrial and geologic sequestration approaches. Under Task 4.0 Develop Public Involvement and Education Mechanisms, SECARB has conducted a survey and focus group meeting to gain insight into approaches that will be taken to educate and involve the public. Task 5.0 and 6.0 will be implemented beginning October 1, 2004. Under Task 5.0 Identify the Most Promising Capture, Sequestration, and Transport Options, SECARB will evaluate findings from work performed during the first year and shift the focus of the project team from region-wide mapping and characterization to a more detailed screening approach designed to identify the most promising opportunities. Under Task 6.0 Prepare Action Plans for Implementation and Technology Validation Activity, the SECARB team will develop an integrated approach to implementing and setting up measurement, monitoring and verification (MMV) programs for the most promising opportunities. During this semiannual period special attention was provided to Texas and Virginia, which were added to the SECARB region, to ensure a smooth integration of activities with the other 9 states. Milestones completed and submitted during the third and fourth quarter included: Q3-FY04--Complete initial development of plans for GIS; and Q4-FYO4--Complete preliminary action plan and assessment for overcoming public perception issues.

  9. Sandia Energy - Sandia, SRI International Sign Pact to Advance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia, SRI International Sign Pact to Advance Hydrogen and Natural Gas Research for Transportation Home Energy Transportation Energy CRF Facilities News News & Events Livermore...

  10. Auto/Steel Partnership: Hydroforming Materials and Lubricant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroforming Materials and Lubricant Lightweight Rear Chassis Structures Future Generation Passenger Compartment AutoSteel Partnership: Hydroforming Materials and Lubricant...

  11. Federal Utility Partnership Working Group: Welcome to Portland

    Broader source: Energy.gov [DOE]

    Presentation covers welcoming attendees to Portland at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  12. NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery Development for commercialization of...

  13. Partnerships with Purpose INDUSTRY-LED RESEARCH COLLABORATIONS

    E-Print Network [OSTI]

    Wapstra, Erik

    of Revolution Design Gary Davidson at the Incat shipyard in Hobart. 2 PARTNERSHIPS WITH PURPOSE 2014 #12

  14. 27 Jan 2003 Smart Optics Faraday Partnership 1 Smart Optics

    E-Print Network [OSTI]

    Greenaway, Alan

    27 Jan 2003 Smart Optics Faraday Partnership 1 Smart Optics Technologies, Techniques and Space Applications Alan Greenaway Physics, EPS Heriot-Watt University #12;27 Jan 2003 Smart Optics Faraday Partnership 2 Smart? · The Smart Optics Faraday Partnership interprets `Smart Optics' to mean: ­ `... includes

  15. TEXAS TRANSPORTATION INSTITUTE THE TEXAS A&M UNIVERSITY SYSTEM

    E-Print Network [OSTI]

    .Sc. Center for Sustainable Mobility, Virginia Tech Transportation Institute 3500 Transportation ResearchD. Center for Sustainable Mobility, Virginia Tech Transportation Institute 3500 Transportation Research) NOx Emissions Testing Expanding MOBILE6 Rates to Accommodate High Speeds Sponsored By Houston Advanced

  16. COMMISSION GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP

    E-Print Network [OSTI]

    Partnership provides financial incentives for installing solar energy systems on new residential buildings for solar homes that incorporate high levels of energy efficiency and highperforming solar energy systems, Energy Commission, PV, solar energy system, energy efficiency, standards, Title 24 Part 6, tier

  17. NEW SOLAR HOMES PARTNERSHIP DRAFT GUIDEBOOK

    E-Print Network [OSTI]

    for installing solar energy systems on new residential buildings. The expected performance of the solar energy of energy efficiency and high performing solar energy systems. This Guidebook details the eligibility: New Solar Homes Partnership, NSHP, Energy Commission, PV, Solar energy system, energy efficiency

  18. Strategic Partnership for Sustainable Energy Innovation

    E-Print Network [OSTI]

    ecando Strategic Partnership for Sustainable Energy Innovation and Climate Change Mitigation www.eit-energy and innovators developing sustainable energy solutions eCANDO sets out to achieving the following major outputs: Sustainable energy solutions independent of nuclear energy Highly qualified innovators that will be global

  19. Industrial Partnership Prosperity Game{trademark}

    SciTech Connect (OSTI)

    Boyak, K.; Berman, M.; Beck, D.

    1998-02-01

    Prosperity Games TM are an outgrowth and adaptation move/countermove and seminar War Games. Prosperity Games TM are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education, and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games TM are unique in that both the game format and the player contributions vary from game to game. This report documents the Industry Partnership Prosperity Game sponsored by the Technology Partnerships and Commercialization Center at Sandia National Laboratories. Players came from the Sandia line organizations, the Sandia business development and technology partnerships organizations, the US Department of Energy, academia, and industry The primary objectives of this game were to: explore ways to increase industry partnerships to meet long-term Sandia goals; improve Sandia business development and marketing strategies and tactics; improve the process by which Sandia develops long-term strategic alliances. The game actions and recommendations of these players provided valuable insights as to what Sandia can do to meet these objectives.

  20. Reaching Wider South West Wales Partnership Strategy

    E-Print Network [OSTI]

    Martin, Ralph R.

    1 Reaching Wider South West Wales Partnership Strategy 2011-14 #12;2 `Poverty is when someone patterns, customs and activities.' Joseph Rowntree Foundation Monitoring poverty and social exclusion in Communities First areas of high relative poverty. It interlocks with higher education strategic approaches

  1. Advanced power electronics and electric machinery program

    SciTech Connect (OSTI)

    None, None

    2007-12-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as "FreedomCAR" (derived from "Freedom" and "Cooperative Automotive Research"), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001.

  2. Final Scientifc Report - Hydrogen Education State Partnership Project

    SciTech Connect (OSTI)

    Leon, Warren

    2012-02-03

    Under the leadership of the Department of Energy Hydrogen and Fuel Cells program, Clean Energy States Alliance (CESA) educated and worked with state leaders to encourage wider deployment of fuel cell and hydrogen technologies. Through outreach to state policymakers, legislative leaders, clean energy funds, energy agencies, and public utility commissions, CESA worked to accomplish the following objectives of this project: 1. Provide information and technical assistance to state policy leaders and state renewable energy programs in the development of effective hydrogen fuel cell programs. 2. Identify and foster hydrogen program best practices. 3. Identify and promote strategic opportunities for states and the Department of Energy (DOE) to advance hydrogen technology deployment through partnerships, collaboration, and targeted activities. Over the three years of this project, CESA, with our partner National Conference of State Legislatures (NCSL), was able to provide credible information on fuel cell policies, finance, and technical assistance to hundreds of state officials and other stakeholders. CESA worked with its membership network to effectively educate state clean energy policymakers, program managers, and decision makers about fuel cell and hydrogen technologies and the efforts by states to advance those technologies. With the assistance of NCSL, CESA gained access to an effective forum for outreach and communication with state legislators from all 50 states on hydrogen issues and policies. This project worked to educate policymakers and stakeholders with the potential to develop and deploy stationary and portable fuel cell technologies.

  3. Partnerships to continue moving toward zero emissions

    E-Print Network [OSTI]

    California at Davis, University of

    Institute for Energy, Environment and the Economy, Institute of Transportation Studies transportation goals Zero Emission MAP makes available technical assistance to states that zero emission vehicles are critical to achieve sustainable transportation

  4. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Peer Evaluation Meeting arravt072vssmackie2013o.pdf More Documents & Publications Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  5. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    Clean Cities' National Clean Fleets Partnership establishes strategic alliances with large fleets to help them explore and adopt alternative fuels and fuel economy measures to cut petroleum use. The initiative leverages the strength of nearly 100 Clean Cities coalitions, nearly 18,000 stakeholders, and more than 20 years of experience. It provides fleets with top-level support, technical assistance, robust tools and resources, and public acknowledgement to help meet and celebrate fleets' petroleum-use reductions.

  6. MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (MRCSP)

    SciTech Connect (OSTI)

    David Ball; Judith Bradbury; Rattan Lal; Larry Wickstrom; Neeraj Gupta; Robert Burns; Bob Dahowski

    2004-04-30

    This is the first semiannual report for Phase I of the Midwest Carbon Sequestration Partnership (MRCSP). The project consists of nine tasks to be conducted over a two year period that started in October 2003. The makeup of the MRCSP and objectives are described. Progress on each of the active Tasks is also described and where possible, for those Tasks at some point of completion, a summary of results is presented.

  7. European Partnerships and Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicleDepartmentMedia AdvisoriesProgramEuropean Partnerships

  8. Southeast Regional Carbon Sequestration Partnership (SECARB)

    SciTech Connect (OSTI)

    Kenneth J. Nemeth

    2005-09-30

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is a diverse partnership covering eleven states involving the Southern States Energy Board (SSEB) an interstate compact; regulatory agencies and/or geological surveys from member states; the Electric Power Research Institute (EPRI); academic institutions; a Native American enterprise; and multiple entities from the private sector. Figure 1 shows the team structure for the partnership. In addition to the Technical Team, the Technology Coalition, an alliance of auxiliary participants, in the project lends yet more strength and support to the project. The Technology Coalition, with its diverse representation of various sectors, is integral to the technical information transfer, outreach, and public perception activities of the partnership. The Technology Coalition members, shown in Figure 2, also provide a breadth of knowledge and capabilities in the multiplicity of technologies needed to assure a successful outcome to the project and serve as an extremely important asset to the partnership. The eleven states comprising the multi-state region are: Alabama; Arkansas; Florida; Georgia; Louisiana; Mississippi; North Carolina; South Carolina; Tennessee; Texas; and Virginia. The states making up the SECARB area are illustrated in Figure 3. The primary objectives of the SECARB project include: (1) Supporting the U.S. Department of Energy (DOE) Carbon Sequestration Program by promoting the development of a framework and infrastructure necessary for the validation and deployment of carbon sequestration technologies. This requires the development of relevant data to reduce the uncertainties and risks that are barriers to sequestration, especially for geologic storage in the SECARB region. Information and knowledge are the keys to establishing a regional carbon dioxide (CO{sub 2}) storage industry with public acceptance. (2) Supporting the President's Global Climate Change Initiative with the goal of reducing greenhouse gas intensity by 18 percent by 2012. A corollary to the first objective, this objective requires the development of a broad awareness across government, industry, and the general public of sequestration issues and establishment of the technological and legal frameworks necessary to achieve the President's goal. The information developed by the SECARB team will play a vital role in achieving the President's goal for the southeastern region of the United States. (3) Evaluating options and potential opportunities for regional CO{sub 2} sequestration. This requires characterization of the region regarding the presence and location of sources of greenhouse gases (GHGs), primarily CO{sub 2}, the presence and location of potential carbon sinks and geological parameters, geographical features and environmental concerns, demographics, state and interstate regulations, and existing infrastructure.

  9. Partnering with Industry to Advance Biofuels and Bioproducts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01

    Fact sheet describing NREL's Integrated Biorefinery Research Facility, a biochemical pilot plant and partnership facility containing equipment and lab space for pretreatement, enzymatic hydrolysis, fermentation, compositional analysis, and downstream processing. For more than 30 years, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has been at the leading edge of research and technology advancements to develop renewable fuels and bioproducts. NREL works to develop cost-competitive alternatives to conventional transportation fuels and value-added biobased chemicals that can be used to manufacture clothing, plastics, lubricants, and other products. NREL is developing technologies and processes to produce a range of sustainable, energy-dense advanced biofuels that are compatible with our existing transportation fuel infrastructure. As part of that effort, NREL's National Bioenergy Center has entered into more than 90 collaborations in the past five years with companies ranging in size from start-ups to those that appear on Fortune magazine's Fortune 100 list. The new Integrated Biorefinery Research Facility (IBRF) showcases NREL's commitment to collaboration and to meeting the nation's biofuels and bioproducts development and deployment goals. Designed to speed the growth of the biofuels and bioproducts industries, the IBRF is a unique $33.5 million pilot facility capable of supporting a variety of projects. The IBRF is available to industry partners who work with NREL through cooperative research and development, technical, and analytical service agreements. With 27,000 ft2 of high bay space, the IBRF provides industry partners with the opportunity to operate, test, and develop their own biorefining technology and equipment.

  10. Devolution, School/Community/Family Partnerships, and Inclusive Education

    E-Print Network [OSTI]

    Sailor, Wayne

    2002-01-01

    Devolution and Partnerships 7 CHAPTER 1 Devolution, School/Community/Family Partnerships, and Inclusive Education Wayne Sailor 7 Whole-School Success and Inclusive Education. Copyright © 2002 by Teachers College, Columbia University. All rights... in special education, and its present focus in general education. Next, the chapter examines the implications of the devolution revolution. It then reviews school/community partnership models and how these models affect, and in turn are affected by...

  11. Transport Infrastructure and the Environment: Sustainable Mobility and Urbanism

    E-Print Network [OSTI]

    Cervero, Robert

    2013-01-01

    ideas for advancing sustainable urbanism and mobility willand sustainable transport and urbanism everywhere --the Environment: Sustainable Mobility and Urbanism Robert

  12. LEAD COMMISSIONER DRAFT GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP

    E-Print Network [OSTI]

    LEAD COMMISSIONER DRAFT GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP GUIDEBOOK Seventh Edition Lead COMMISSION Edmund G. Brown, Jr., Governor #12;CALIFORNIA ENERGY COMMISSION Andrew McAllister Lead

  13. Testimonials - Partnerships in R&D - Air Products and Chemicals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Products and Chemicals Incorporated Testimonials - Partnerships in R&D - Air Products and Chemicals Incorporated Addthis An error occurred. Try watching this video on...

  14. 12th Annual Bridging Partnerships Small Business Symposium

    Broader source: Energy.gov [DOE]

    You’re Invited: Join the U.S. Department of Energy and Hanford Site Prime Contractors for the Bridging Partnerships Small Business Symposium!

  15. Testimonials - Partnerships in Fuel Cells - GE Global Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells - GE Global Research Testimonials - Partnerships in Fuel Cells - GE Global Research Addthis An error occurred. Try watching this video on www.youtube.com, or enable...

  16. Auto/Steel Partnership: AHSS Stamping, Strain Rate Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AHSS Stamping, Strain Rate Characterization, Sheet Steel Fatigue, AHSS Joining AutoSteel Partnership: AHSS Stamping, Strain Rate Characterization, Sheet Steel Fatigue, AHSS...

  17. Auto/Steel Partnership: Fatigue of AHSS Strain Rate Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fatigue of AHSS Strain Rate Characterization AutoSteel Partnership: Fatigue of AHSS Strain Rate Characterization 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

  18. Using Partnerships to Drive Demand and Provide Services in Communities...

    Broader source: Energy.gov (indexed) [DOE]

    Program Multifamily and Low-Income Peer Exchange Call: Using Partnerships to Drive Demand and Provide Services in Communities, February 2, 2012. Call Slides and Discussion...

  19. Utility Partnership Program Agency Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    agencies are partners in the Utility Partnership Program or have engaged in a utility energy service contract project. Agricultural Research Service Bureau of Prisons Bureau of...

  20. Nuclear Waste Partnership (NWP) Corrective Action Plan Addendum...

    Office of Environmental Management (EM)

    Addendum Radiological Release Event Phase II Nuclear Waste Partnership (NWP) Corrective Action Plan Addendum Radiological Release Event Phase II On Friday, February 14, 2014 there...

  1. Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck...

    Office of Environmental Management (EM)

    - Truck Fire and Radiological Release Phase I Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck Fire and Radiological Release Phase I Submittal of the Underground Salt...

  2. Cooley joins Y-12's Global Security and Strategic Partnerships...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to have someone with Jill's depth and breadth of expertise on our staff," said Morris Hassler of Global Security and Strategic Partnerships. "Her international experience...

  3. Departments of Energy and Commerce Announce New Partnership to...

    Energy Savers [EERE]

    Departments of Energy and Commerce Announce New Partnership to Further Cooperation on Renewable Energy Modeling and Forecasting Departments of Energy and Commerce Announce New...

  4. NREL Partnerships to Help the Grid Accommodate More Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Partnerships to Help the Grid Accommodate More Renewable Energy June 15, 2015 The Energy Department's National Renewable Energy Laboratory (NREL) announces five new...

  5. Testimonials- Partnerships in Battery Technologies- Capstone Turbine Corporation

    Broader source: Energy.gov [DOE]

    Robert Gleason, Senior Vice President of Product Development for Capstone Turbine Corporation describes the benefits of a strategic partnership with the U.S. Department of Energy.

  6. Testimonials - Partnerships in Combined Heat and Power Technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combined Heat and Power Technologies - Cummins Inc. Testimonials - Partnerships in Combined Heat and Power Technologies - Cummins Inc. Addthis An error occurred. Try watching this...

  7. Sandia Energy - Standards and Industry Outreach/Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security for Electric Infrastructure National Supervisory Control and Data Acquisition (SCADA) Standards and Industry OutreachPartnerships Standards and Industry Outreach...

  8. Exploring Partnerships to Further Building Code Compliance Enhancement

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), identifies opportunities for municipal and state partnerships to ensure better building code compliance.

  9. Federal Utility Partnership Working Group: Atlanta Gas Light Resources

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—lists Altanta Gas Light (AGL) resources and features a map of its footprint.

  10. University-Industry-National Laboratory Partnership to Improve...

    Office of Environmental Management (EM)

    University-Industry-National Laboratory Partnership to Improve Building Efficiency by Equipment Health Monitoring with Virtual Intelligent Sensing University-Industry-National...

  11. 2nd Global Nuclear Energy Partnership Ministerial Opening Session...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in May, I said I hoped we would be "laying the groundwork for a new global nuclear power partnership; an international approach that allows developed and developing nations...

  12. Secretary Chu Announces New Partnerships Under the Energy and...

    Energy Savers [EERE]

    by developing clean energy resources, increasing energy security and reducing energy poverty. ECPA is part an innovative approach to regional partnerships that includes the...

  13. NREL Success Stories - SkyFuel Partnership Reflects Bright Future

    ScienceCinema (OSTI)

    Jorgensen, Gary; Gee, Randy

    2013-05-29

    NREL Scientists and SkyFuel share a story about how their partnership has resulted in a revolutionary concentrating solar power technology ReflecTech Mirror Film.

  14. ENERGY INVESTMENT PARTNERSHIPS: HOW STATE AND LOCAL GOVERNMENTS...

    Energy Savers [EERE]

    AND LOCAL GOVERNMENTS ARE ENGAGING PRIVATE CAPITAL TO DRIVE CLEAN ENERGY INVESTMENTS Energy Investment Partnerships-sometimes referred to as Green Banks--are newly emerging...

  15. Global Nuclear Energy Partnership Fact Sheet - Demonstrate More...

    Office of Environmental Management (EM)

    Demonstrate More Proliferation-Resistant Recycling Global Nuclear Energy Partnership Fact Sheet - Demonstrate More Proliferation-Resistant Recycling Under GNEP, the U.S. will work...

  16. Federal-Tribal Partnership on Climate Change Action Rounds Corner...

    Broader source: Energy.gov (indexed) [DOE]

    Federal-Tribal Partnership on Climate Change Action Rounds Corner, Shifts Into High Gear at 2013 Tribal Nations Conference David Conrad David Conrad Deputy Director, Office of...

  17. Utility Energy Service Contract Partnership Meetings and Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    how to: Successfully complete a utility partnership Determine the appropriate funding mechanism Perform and review audits and the proposal process Measure and verify energy...

  18. Voluntary Initiative: Partnership Toolkit, from the U.S. Department...

    Energy Savers [EERE]

    201402f7gvsuinterviewformatted1-28-13.pdf Case Study - EnergyWorks in Philadelphia, Pennsylvania, video about faith-based partnerships: https:www.youtube.com...

  19. Establishing & Maintaining a Strategic Partnership with the Chief...

    Office of Environmental Management (EM)

    Chief Financial Officer Neal Elliot of the American Council for an Energy-Efficient Economy shares insights on how to establish and maintain a partnership with the Chief...

  20. The 21st Century Truck Partnership | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2002deerhowden.pdf More Documents & Publications 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 Roadmap and Technical...

  1. Global Nuclear Energy Partnership Inaugural Steering Group Meeting...

    Energy Savers [EERE]

    Inaugural Steering Group Meeting Makes Marked Progress Global Nuclear Energy Partnership Inaugural Steering Group Meeting Makes Marked Progress December 19, 2007 - 4:58pm Addthis...

  2. Global Nuclear Energy Partnership Steering Group Members Approve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steering Group Members Approve Transformation to the International Framework for Nuclear Energy Cooperation Global Nuclear Energy Partnership Steering Group Members Approve...

  3. Florida Solar Energy Center (Building America Partnership for...

    Open Energy Info (EERE)

    Florida Solar Energy Center (Building America Partnership for Improved Residential Construction Jump to: navigation, search Name: Florida Solar Energy Center (Building America...

  4. Strengthening Public-Private Partnerships to Accelerate Global...

    Open Energy Info (EERE)

    Strengthening Public-Private Partnerships to Accelerate Global Electricity Technology Deployment Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Strengthening...

  5. Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced...

    Office of Environmental Management (EM)

    Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP will help prevent misuse of civilian nuclear facilities...

  6. FreedomCAR and Fuel Partnership 2006 Highlights of Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Technical Accomplishments FreedomCAR and Fuel Partnership 2006 Highlights of Technical Accomplishments Report containing brief summaries of key technical...

  7. FreedomCAR and Fuel Partnership 2010 Highlights of Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Technical Accomplishments FreedomCAR and Fuel Partnership 2010 Highlights of Technical Accomplishments This report summarizes key technical accomplishments achieved in...

  8. FreedomCAR Partnership 2003 Highlights of Technical Accomplishments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2003 Highlights of Technical Accomplishments FreedomCAR Partnership 2003 Highlights of Technical Accomplishments Report highlighting specific accomplishments that the FreedomCAR...

  9. FreedomCAR and Fuel Partnership 2008 Highlights of Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Technical Accomplishments FreedomCAR and Fuel Partnership 2008 Highlights of Technical Accomplishments Report containing brief summaries of key technical...

  10. NSF/DOE Thermoelectric Partnership: High-Performance Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery NSFDOE Thermoelectric Partnership: High-Performance Thermoelectric...

  11. NSF/DOE Thermoelectric Partnership: Inorganic-Organic Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inorganic-Organic Hybrid Thermoelectrics NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

  12. DOE/NSF Thermoelectric Partnership Project SEEBECK Saving Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Sharing Knowledge DOENSF Thermoelectric Partnership Project SEEBECK Saving Energy Effectively By Engaging in Collaborative Research and Sharing Knowledge 2012 DOE...

  13. DOE/NSF Thermoelectric Partnership Project SEEBECK Saving Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    research and sharing Knowledge DOENSF Thermoelectric Partnership Project SEEBECK Saving Energy Effectively By Engaging in Collaborative research and sharing Knowledge 2011 DOE...

  14. An Innovative Three-Dimensional Heterogeneous Coarse-Mesh Transport Method for Advanced and Generation IV Reactor Core Analysis and Design

    SciTech Connect (OSTI)

    Farzad Rahnema

    2009-11-12

    This project has resulted in a highly efficient method that has been shown to provide accurate solutions to a variety of 2D and 3D reactor problems. The goal of this project was to develop (1) an accurate and efficient three-dimensional whole-core neutronics method with the following features: based sollely on transport theory, does not require the use of cross-section homogenization, contains a highly accurate and self-consistent global flux reconstruction procedure, and is applicable to large, heterogeneous reactor models, and to (2) create new numerical benchmark problems for code cross-comparison.

  15. Global Nuclear Energy Partnership Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    R.A. Wigeland

    2008-10-01

    Abstract: The proposed Global Nuclear Energy Partnership (GNEP) Program, which is part of the President’s Advanced Energy Initiative, is intended to support a safe, secure, and sustainable expansion of nuclear energy, both domestically and internationally. Domestically, the GNEP Program would promote technologies that support economic, sustained production of nuclear-generated electricity, while reducing the impacts associated with spent nuclear fuel disposal and reducing proliferation risks. The Department of Energy (DOE) proposed action envisions changing the United States nuclear energy fuel cycle from an open (or once-through) fuel cycle—in which nuclear fuel is used in a power plant one time and the resulting spent nuclear fuel is stored for eventual disposal in a geologic repository—to a closed fuel cycle in which spent nuclear fuel would be recycled to recover energy-bearing components for use in new nuclear fuel. At this time, DOE has no specific proposed actions for the international component of the GNEP Program. Rather, the United States, through the GNEP Program, is considering various initiatives to work cooperatively with other nations. Such initiatives include the development of grid-appropriate reactors and the development of reliable fuel services (to provide an assured supply of fresh nuclear fuel and assist with the management of the used fuel) for nations who agree to employ nuclear energy only for peaceful purposes, such as electricity generation.

  16. Annual Report: National Risk Assessment Partnership (30 September 2012)

    SciTech Connect (OSTI)

    Bromhal, Grant; Guthrie, George

    2014-01-06

    The U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) is conducting research to advance the science and engineering knowledge base for technologies that will accelerate the business case for CO{sub 2} capture and storage, including prediction and quantification of risks that may relate to potential liabilities. As part of this effort, NETL, through its Office of Research and Development (ORD), is leading a multi-laboratory effort that leverages broad technical capabilities across the DOE complex: the National Risk Assessment Partnership (NRAP). NRAP involves five DOE national laboratories: NETL, Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Pacific Northwest National Laboratory (PNNL). This team is working together to develop a science-based method for quantifying the likelihood of risks (and associated potential liabilities) for CO{sub 2} storage sites. NRAP is an effort that harnesses the breadth of capabilities across the DOE National Laboratory (NL) system into a mission-focused platform that will develop the integrated science base that can be applied to risk assessment for long-term storage of CO{sub 2}.

  17. Southwest Regional Partnership on Carbon Sequestration

    SciTech Connect (OSTI)

    Brian McPherson

    2006-04-01

    The Southwest Partnership on Carbon Sequestration completed several more tasks during the period of April 1, 2005-September 30, 2005. The main objective of the Southwest Partnership project is to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. While Phase 2 planning is well under way, the content of this report focuses exclusively on Phase 1 objectives completed during this reporting period. Progress during this period was focused in the three areas: geological carbon storage capacity in New Mexico, terrestrial sequestration capacity for the project area, and the Integrated Assessment Model efforts. The geologic storage capacity of New Mexico was analyzed and Blanco Mesaverde (which extends into Colorado) and Basin Dakota Pools were chosen as top two choices for the further analysis for CO{sub 2} sequestration in the system dynamics model preliminary analysis. Terrestrial sequestration capacity analysis showed that the four states analyzed thus far (Arizona, Colorado, New Mexico and Utah) have relatively limited potential to sequester carbon in terrestrial systems, mainly due to the aridity of these areas, but the large land area offered could make up for the limited capacity per hectare. Best opportunities were thought to be in eastern Colorado/New Mexico. The Integrated Assessment team expanded the initial test case model to include all New Mexico sinks and sources in a new, revised prototype model in 2005. The allocation mechanism, or ''String of Pearls'' concept, utilizes potential pipeline routes as the links between all combinations of the source to various sinks. This technique lays the groundwork for future, additional ''String of Pearls'' analyses throughout the SW Partnership and other regions as well.

  18. Geologic selection methodology for transportation corridor routing 

    E-Print Network [OSTI]

    Shultz, Karin Wilson

    2002-01-01

    A lack of planning techniques and processes on long, linear, cut and cover-tunneling route transportation systems has resulted because of the advancement of transportation systems into underground corridors. The proposed methodology is tested...

  19. Building America Industrialized Housing Partnership (BAIHP II)

    SciTech Connect (OSTI)

    Abernethy, Bob; Chandra, Subrato; Baden, Steven; Cummings, Jim; Cummings, Jamie; Beal, David; Chasar, David; Colon, Carlos; Dutton, Wanda; Fairey, Philip; Fonorow, Ken; Gil, Camilo; Gordon, Andrew; Hoak, David; Kerr, Ryan; Peeks, Brady; Kosar, Douglas; Hewes, Tom; Kalaghchy, Safvat; Lubliner, Mike; Martin, Eric; McIlvaine, Janet; Moyer, Neil; Liguori, Sabrina; Parker, Danny; Sherwin, John; Stroer, Dennis; Thomas-Rees, Stephanie; Daniel, Danielle; McIlvaine, Janet

    2010-11-30

    This report summarizes the work conducted by the Building America Industrialized Housing Partnership (BAIHP - www.baihp.org) during the final budget period (BP5) of our contract, January 1, 2010 to November 30, 2010. Highlights from the four previous budget periods are included for context. BAIHP is led by the Florida Solar Energy Center (FSEC) of the University of Central Florida. With over 50 Industry Partners including factory and site builders, work in BP5 was performed in six tasks areas: Building America System Research Management, Documentation and Technical Support; System Performance Evaluations; Prototype House Evaluations; Initial Community Scale Evaluations; Project Closeout, Final Review of BA Communities; and Other Research Activities.

  20. NREL Technology Partnerships: Fiscal Year 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:News Releases |NREL Technology6 New Partnership

  1. People, partnerships and path to success

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUserPartnershipsNews >

  2. ORISE: Partnership Development in Health Communication

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE TheForensic ScienceHowNewsPartnership Development The

  3. Energy Smart Federal Partnership: Partnering to Provide Technical Assistance, Financial Incentives, and More

    Broader source: Energy.gov [DOE]

    Presentation covers technical and financial incentives for the Energy Smart Federal Partnership and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  4. Energy Department Invests $600,000 in University-Industry Partnerships...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Invests 600,000 in University-Industry Partnerships to Enhance Building Efficiency Energy Department Invests 600,000 in University-Industry Partnerships to Enhance Building...

  5. THE ADVANCED COURSE IN ENGINEERING ON CYBER A Learning Community for Developing Cyber-Security Leaders

    E-Print Network [OSTI]

    THE ADVANCED COURSE IN ENGINEERING ON CYBER SECURITY A Learning Community for Developing Cyber-Security: The Advanced Course in Engineering on Cyber Security (ACE-CS) is a public-private partnership to develop top ROTC cadets into the next generation of cyber security leaders. Modeled after the General Electric

  6. THE ADVANCED COURSE IN ENGINEERING ON CYBER A Learning Community for Developing Cyber-Security Leaders

    E-Print Network [OSTI]

    Older, Susan

    THE ADVANCED COURSE IN ENGINEERING ON CYBER SECURITY A Learning Community for Developing Cyber-Security in Engineering on Cyber Security (ACE-CS) is a public- private partnership to develop top ROTC cadets into the next generation of cyber security leaders. Modeled after the General Electric Advanced Course

  7. Strategic Plan 2012-2017: Partnerships for a

    E-Print Network [OSTI]

    Huang, Haiying

    1 Strategic Plan 2012-2017: Partnerships for a Just Society #12;A Letter of Support Dear Friends of the School. In our strategic plan we have created a living document that points to an exciting collective Century academic enterprise. The "Strategic Plan 2012-2017: Partnerships for a Just Society", is a road

  8. Partnerships for Energy-Water Research Bob Goldstein Mike Hightower

    E-Print Network [OSTI]

    Keller, Arturo A.

    Partnerships for Energy-Water Research Bob Goldstein Mike Hightower Electric Power Research Institute Sandia National Laboratories Partnerships for Energy-Water Research Bob Goldstein Mike Hightower Electric Power Research Institute Sandia National Laboratories #12;Big PictureBig Picture · Water

  9. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being applied to algal biofuels processes. Analysts are also testing algal fuel properties to measure energy content and ensure compatibility with existing fueling infrastructure. (5) Cross-Cutting Analysis - NREL scientists and engineers are conducting rigorous techno-economic analyses of algal biofuels processes. In addition, they are performing a full life cycle assessment of the entire algae-to-biofuels process.

  10. Sustainable Transport

    E-Print Network [OSTI]

    Webber, Melvin

    2006-01-01

    THOUGHT PIECE Sustainable Transport by Melvin M. Webberwant to sustain any mode of transport only if we judge it todraconian in rejecting transport modes that have failed in

  11. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

  12. Obama Administration Announces New Partnership on Unconventional...

    Office of Environmental Management (EM)

    play a key role in America's energy future. Already, technological advancements like hydraulic fracturing - innovation supported by public research - have allowed development of...

  13. FreedomCAR and fuel partnership plan

    SciTech Connect (OSTI)

    None, None

    2006-03-01

    Plan that details the research effort necessary to develop the technologies to reduce dependence of the nation's personal transportation system on imported oil and minimize harmful vehicle emissions.

  14. Advanced sensors

    SciTech Connect (OSTI)

    Elliot, T.C.

    1994-08-01

    This article examines how advances in sensor technology are beginning to close the gap with advances in other parts of the control and sensing loops; these advances are needed to more easily meet new EPA regulations and demand for more efficient power plant operation. Topics of the article include fiberoptic sensors, sensors for the air side of the plant, and water side sensors.

  15. FINAL REPORT: Adopting Biophysics Methods in Pursuit of Biogeophysical Research: Advancing the Measurement and Modeling of Electrical Signatures of Microbe-Mineral Transformations Impacting Contaminant Transport

    SciTech Connect (OSTI)

    PRODAN, CAMELIA; SLATER, LEE; NTARLAGIANNIS, DIMITRIOS

    2012-09-01

    This exploratory project involved laboratory experiments to investigate three hypotheses: (H1) Physics-based modeling of low-frequency dispersions (henceforth referred to as alpha) measured in broadband dielectric spectroscopy (DS) data can quantify pore-scale geometric changes impacting contaminant transport resulting from biomineralization; (H2) Physics-based modeling of high-frequency dispersions (henceforth referred to as beta) measured in broadband dielectric spectroscopy data can quantify rates of mineral growth in/on the cell wall; (H3) Application of this measurement and modeling approach can enhance geophysical interpretation of bioremediation experiments conducted at the RIFLE IFC by providing constraints on bioremediation efficiency (biomass concentration, mineral uptake within the cell wall, biomineralization rate). We tested H1 by performing DS measurements (alpha and beta range) on iron (Fe) particles of dimensions similar to microbial cells, dispersed within agar gels over a range of Fe concentrations. We have tested the ability of the physics-based modeling to predict volume concentrations of the Fe particles by assuming that the Fe particles are polarizable inclusions within an otherwise nonpolarizable medium. We evaluated the smallest volume concentration that can be detected with the DS method. Similar experiments and modeling have been performed on the sulfate-reducing bacteria D. vulgaris. Synchrotron x-ray absorption measurements were conducted to determine the local structure of biominerals coatings on D. vulgaris which were grown in the presence of different Fe concentrations. We imaged the mineral growth on cell wall using SEM. We used dielectric spectroscopy to differentiate between iron sulfide precipitates of biotic and abiotic nature. Biotic measurements were made on D. vulgaris bacteria grown in the presence of different concentrations of iron to form different thicknesses of iron sulfide precipitates around themselves and abiotic measurements were made on different concentrations of pyrrhotite particles suspended in agar. Results show a decrease in dielectric permittivity as a function of frequency for biotic minerals and an opposite trend is observed for abiotic minerals. Our results suggest that dielectric spectroscopy offers a noninvasive and fast approach for distinguishing between abiotic and biotic mineral precipitates.

  16. Adopting Biophysics Methods in Pursuit of Biogeophysical Research: Advancing the measurement and modeling of electrical signatures of microbe-mineral transformations impacting contaminant transport

    SciTech Connect (OSTI)

    Prodan, Camelia [NJIT

    2013-06-14

    This exploratory project involved laboratory experiments to investigate three hypotheses: (H1) Physics-based modeling of low-frequency dispersions (henceforth referred to as alpha) measured in broadband dielectric spectroscopy (DS) data can quantify pore-scale geometric changes impacting contaminant transport resulting from biomineralization; (H2) Physics-based modeling of high-frequency dispersions (henceforth referred to as beta) measured in broadband dielectric spectroscopy data can quantify rates of mineral growth in/on the cell wall; (H3) Application of this measurement and modeling approach can enhance geophysical interpretation of bioremediation experiments conducted at the RIFLE IFC by providing constraints on bioremediation efficiency (biomass concentration, mineral uptake within the cell wall, biomineralization rate). We tested H1 by performing DS measurements (alpha and beta range) on iron (Fe) particles of dimensions similar to microbial cells, dispersed within agar gels over a range of Fe concentrations. We have tested the ability of the physics-based modeling to predict volume concentrations of the Fe particles by assuming that the Fe particles are polarizable inclusions within an otherwise nonpolarizable medium. We evaluated the smallest volume concentration that can be detected with the DS method. Similar experiments and modeling have been performed on the sulfate-reducing bacteria D. vulgaris. Synchrotron x-ray absorption measurements were conducted to determine the local structure of biominerals coatings on D. vulgaris which were grown in the presence of different Fe concentrations. We imaged the mineral growth on cell wall using SEM. We used dielectric spectroscopy to differentiate between iron sulfide precipitates of biotic and abiotic nature. Biotic measurements were made on D. vulgaris bacteria grown in the presence of different concentrations of iron to form different thicknesses of iron sulfide precipitates around themselves and abiotic measurements were made on different concentrations of pyrrhotite particles suspended in agar. Results show a decrease in dielectric permittivity as a function of frequency for biotic minerals and an opposite trend is observed for abiotic minerals. Our results suggest that dielectric spectroscopy offers a noninvasive and fast approach for distinguishing between abiotic and biotic mineral precipitates.

  17. Community Development Finance Institutions-Opportunities for Partnerships with Energy Efficiency Programs Transcript.doc

    Office of Energy Efficiency and Renewable Energy (EERE)

    Community Development Finance Institutions-Opportunities for Partnerships with Energy Efficiency Programs Transcript.doc

  18. Lessons & Examples for Establishing Partnerships Between Grantees & Financial Institutions (Text Version)

    Broader source: Energy.gov [DOE]

    Transcript of the webinar, "Lessons & Examples for Establishing Partnerships Between Grantees & Financial Institutions."

  19. Community Development Finance Institutions- Opportunities for Partnerships with Energy Efficiency Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Community Development Finance Institutions- Opportunities for Partnerships with Energy Efficiency Programs

  20. Regional partnerships lead US carbon sequestration efforts

    SciTech Connect (OSTI)

    NONE

    2007-07-01

    During the sixth annual conference on carbon capture and sequestration, 7-10 May 2007, a snapshot was given of progress on characterization efforts and field validation tests being carried out through the Carbon Sequestration Regional Partnership Initiative. The initiative is built on the recognition that geographical differences in fossil fuel/energy use and CO{sub 2} storage sinks across North America will dictate approaches to carbon sequestration. The first characterization phase (2003-2005) identified regional opportunities and developed frameworks to validate and deploy technologies. The validation phase (2005-2009) includes 10 enhanced oil recovery/enhanced gas recovery field tests in progress in Alberta and six US states and is applying lessons learned from these operations to sequestration in unmineable coal seams. Storage in saline formations are the focus of 10 field tests, and terrestrial sequestration will be studied in 11 other projects. 1 tab., 3 photos.

  1. Global Nuclear Energy Partnership Waste Treatment Baseline

    SciTech Connect (OSTI)

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  2. Transportation Energy Futures Analysis Snapshot

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  3. EPAct Alternative Fuel Transportation Program: Success Story (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    This success story highlights the EPAct Alternative Fuel Transportation Program's series of workshops that bring fleets regulated under the Energy Policy Act of 1992 (EPAct) together with Clean Cities stakeholders and fuel providers to form and strengthen regional partnerships and initiate projects that will deploy more alternative fuel infrastructure.

  4. Commercial Buildings Partnerships - Overview of Higher Education Projects

    SciTech Connect (OSTI)

    Parrish, Kristen; Robinson, Alastair; Regnier, Cindy

    2013-02-01

    The Commercial Building Partnership (CBP), a public/private, cost-shared program sponsored by the U.S. Department of Energy (DOE), paired selected commercial building owners and operators with representatives of DOE, its national laboratories, and private-sector technical experts. These teams explored energy-saving measures across building systems – including some considered too costly or technologically challenging – and used advanced energy modeling to achieve peak whole-building performance. Modeling results were then included in new construction or retrofit designs to achieve significant energy reductions. CBP design goals aimed to achieve 50 percent energy savings compared to ANSI/ASHRAE/IES Standard 90.1-2004 for new construction, while retrofits are designed to consume at least 30 percent less energy than either Standard 90.1-2004 or current consumption. After construction and commissioning of the project, laboratory staff continued to work with partners to collect and analyze data for verification of the actual energy reduction. CBP projects represent diverse building types in commercial real estate, including lodging, grocery, retail, higher education, office, and warehouse/storage facilities. Partners also commit to replicating low-energy technologies and strategies from their CBP projects throughout their building portfolios. As a result of CBP projects, five sector overviews (Lodging, Food Sales, General Merchandise, Higher Education, Offices) were created to capture successful strategies and recommended energy efficiency measures that could broadly be applied across these sectors. These overviews are supplemented with individual case studies providing specific details on the decision criteria, modeling results, and lessons learned on specific projects. Sector overviews and CBP case studies will also be updated to reflect verified data and replication strategies as they become available.

  5. Partnership Logging Accidents Cornelis de Hoop, LA Forest Products Lab

    E-Print Network [OSTI]

    , · Sonny Mills, LA Dept. of Labor · Greg Honaker, OSHA #12;OSHA -- LA Logging Council Strategic Partnership startup procedures. · Safe maintenance & repair procedures. · Safe work flow. · Minimize risk to fellers

  6. Commercial Building Partnership Retail Food Sales Energy Savings Overview

    SciTech Connect (OSTI)

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  7. Lateral stakeholder alignment in the Global Water Partnership

    E-Print Network [OSTI]

    Parrot, Katherine W

    2007-01-01

    This research evaluates stakeholder alignment in a global multi-stakeholder organization called the Global Water Partnership (GWP). The GWP represents a new breed of organization, a Global Multi-Stakeholder Network ...

  8. ATP3 Algae Testbed Public-Private Partnership

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy ATP3 Algae Testbed Public-Private Partnership John A. McGowen, Director of Operations and Program, Arizona State University, AzCATI and ATP3

  9. Testimonials - Partnerships in Solid-State Lighting - Soraa,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soraa, Inc. Testimonials - Partnerships in Solid-State Lighting - Soraa, Inc. Addthis An error occurred. Try watching this video on www.youtube.com, or enable JavaScript if it is...

  10. Testimonials - Partnerships in Solid-State Lighting - Cree, Inc...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cree, Inc. Testimonials - Partnerships in Solid-State Lighting - Cree, Inc. Addthis An error occurred. Try watching this video on www.youtube.com, or enable JavaScript if it is...

  11. Commercial Building Partnership General Merchandise Energy Savings Overview

    SciTech Connect (OSTI)

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  12. Federal Utility Partnership Working Group- Utility Interconnection Panel

    Broader source: Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses solar/photovoltaic (PV) projects to connect with utility in California and their issues.

  13. EPRI Partnership for Industrial Competitiveness (EPIC): The Plant Survey Experience 

    E-Print Network [OSTI]

    Smith, W. M.; Appelbaum, B.

    1994-01-01

    EPRI's Partnership for Industrial Competitiveness (EPIC), comprised of over 15 EPRI member utilities, was established in 1992 to help electric utilities identify, develop, and implement competitiveness improvement opportunities for their industrial...

  14. Global Nuclear Energy Partnership Members Convene in Jordan For...

    Energy Savers [EERE]

    Members Convene in Jordan For Second Steering Group Meeting Global Nuclear Energy Partnership Members Convene in Jordan For Second Steering Group Meeting May 15, 2008 - 12:00pm...

  15. Meaning of Family-Professional Partnerships: Japanese Mothers' Perspectives

    E-Print Network [OSTI]

    Maho, Kasahara; Turnbull, Ann P.

    2005-01-01

    TMs study inquired into the meaning of family-professional partnerships from the perspective offapanese families of children with disabilities. Data were collected from 30 mothers who participated in focus groups and/or interviews infapan...

  16. Accessible Cities and Regions: A Framework for Sustainable Transport and Urbanism in the 21st Century

    E-Print Network [OSTI]

    Cervero, Robert

    2005-01-01

    Framework for Sustainable Transport and Urbanism in the 21stfor advancing sustainable transport and urbanism in comingcurrency as a sustainable form of urbanism that directly

  17. The Midwest Regional Carbon Sequestration Partnership (MRCSP)

    SciTech Connect (OSTI)

    James J. Dooley; Robert Dahowski; Casie Davidson

    2005-12-01

    This final report summarizes the Phase I research conducted by the Midwest regional Carbon Sequestration Partnership (MRCSP). The Phase I effort began in October 2003 and the project period ended on September 31, 2005. The MRCSP is a public/private partnership led by Battelle with the mission of identifying the technical, economic, and social issues associated with implementation of carbon sequestration technologies in its seven state geographic region (Indiana, Kentucky, Maryland, Michigan, Ohio, Pennsylvania, and West Virginia) and identifying viable pathways for their deployment. It is one of seven partnerships that together span most of the U.S. and parts of Canada that comprise the U.S. Department of Energy's (DOE's) Regional Carbon Sequestration Program led by DOE's national Energy Technology Laboratory (NETL). The MRCSP Phase I research was carried out under DOE Cooperative Agreement No. DE-FC26-03NT41981. The total value of Phase I was $3,513,513 of which the DOE share was $2,410,967 or 68.62%. The remainder of the cost share was provided in varying amounts by the rest of the 38 members of MRCSP's Phase I project. The next largest cost sharing participant to DOE in Phase I was the Ohio Coal Development Office within the Ohio Air Quality Development Authority (OCDO). OCDO's contribution was $100,000 and was contributed under Grant Agreement No. CDO/D-02-17. In this report, the MRCSP's research shows that the seven state MRCSP region is a major contributor to the U. S. economy and also to total emissions of CO2, the most significant of the greenhouse gases thought to contribute to global climate change. But, the research has also shown that the region has substantial resources for sequestering carbon, both in deep geological reservoirs (geological sequestration) and through improved agricultural and land management practices (terrestrial sequestration). Geological reservoirs, especially deep saline reservoirs, offer the potential to permanently store CO2 for literally 100s of years even if all the CO2 emissions from the region's large point sources were stored there, an unlikely scenario under any set of national carbon emission mitigation strategies. The terrestrial sequestration opportunities in the region have the biophysical potential to sequester up to 20% of annual emissions from the region's large point sources of CO2. This report describes the assumptions made and methods employed to arrive at the results leading to these conclusions. It also describes the results of analyses of regulatory issues in the region affecting the potential for deployment of sequestration technologies. Finally, it describes the public outreach and education efforts carried out in Phase I including the creation of a web site dedicated to the MRCSP at www.mrcsp.org.

  18. Introduction to DMFCs - Advanced Materials and Concepts for Portable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Materials and Concepts for Portable Power Fuel Cells High temperature membranes for DMFC (and PEFC) applications Fuel Cells for Transportation - FY 2001 Progress Report...

  19. CEMENTITIOUS BARRIERS PARTNERSHIP ACCOMPLISHMENTS AND RELEVANCE TO THE DOE COMPLEX

    SciTech Connect (OSTI)

    Burns, H.; Langton, C.; Flach, G.; Kosson, D.

    2010-11-15

    The Cementitious Barriers Partnership (CBP) was initiated to reduce risk and uncertainties in the performance assessments that directly impact U.S. Department of Energy (DOE) environmental cleanup and closure programs. The CBP is supported by the DOE Office of Environmental Management (DOE-EM) and has been specifically addressing the following critical EM program needs: (i) the long-term performance of cementitious barriers and materials in nuclear waste disposal facilities and (ii) increased understanding of contaminant transport behavior within cementitious barrier systems to support the development and deployment of adequate closure technologies. To accomplish this, the CBP has two initiatives: (1) an experimental initiative to increase understanding of changes in cementitious materials over long times (> 1000 years) over changing conditions and (2) a modeling initiative to enhance and integrate a set of computational tools validated by laboratory and field experimental data to improve understanding and prediction of the long-term performance of cementitious barriers and waste forms used in nuclear applications. In FY10, the CBP developed the initial phase of an integrated modeling tool that would serve as a screening tool which could help in making decisions concerning disposal and tank closure. The CBP experimental programs are underway to validate this tool and provide increased understanding of how CM changes over time and under changing conditions. These initial CBP products that will eventually be enhanced are anticipated to reduce the uncertainties of current methodologies for assessing cementitious barrier performance and increase the consistency and transparency of the DOE assessment process. These tools have application to low activity waste forms, high level waste tank closure, D&D and entombment of major nuclear facilities, landfill waste acceptance criteria, and in-situ grouting and immobilization of vadose zone contamination. This paper summarizes the recent work provided by the CBP to support DOE operations and regulatory compliance and the accomplishments over the past 2 years. Impacts of this work include: (1) a forum for DOE-NRC technical exchange, (2) material characterization to support PA predictions, (3) reducing uncertainty in PA predictions, (4) establishing base case performance to improve PA predictions, and (5) improving understanding and quantification of moisture and contaminant transport used in PAs. Additional CBP accomplishments include: sponsorship of a national test bed workshop to obtain collaboration in establishing the path forward in obtaining actual data to support future predictions on cementitious barrier performance evaluations, and participation in an International Atomic Energy Agency (IAEA) Cooperative Research Project on the use of cementitious barriers for low-level radioactive waste treatment and disposal.

  20. Commercial Building Partnerships Replication and Diffusion

    SciTech Connect (OSTI)

    Antonopoulos, Chrissi A.; Dillon, Heather E.; Baechler, Michael C.

    2013-09-16

    This study presents findings from survey and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, PNNL gathered quantitative and qualitative data relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners’ replication efforts of technologies and approaches used in the CBP project to the rest of the organization’s building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States.

  1. CEMENTITIOUS BARRIERS PARTNERSHIP FY13 MID-YEAR REPORT

    SciTech Connect (OSTI)

    Burns, H.; Flach, G.; Langton, C.; KOSSON, D.; BROWN, K.; SAMSON, E.; MEEUSSEN, J.; SLOOT, H.; GARBOCZI, E.

    2013-05-01

    In FY2013, the Cementitious Barriers Partnership (CBP) is continuing in its effort to develop and enhance software tools demonstrating tangible progress toward fulfilling the objective of developing a set of tools to improve understanding and prediction of the long?term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. In FY2012, the CBP released the initial inhouse “Beta?version” of the CBP Software Toolbox, a suite of software for simulating reactive transport in cementitious materials and important degradation phenomena. The current primary software components are LeachXS/ORCHESTRA, STADIUM, and a GoldSim interface for probabilistic analysis of selected degradation scenarios. THAMES is a planned future CBP Toolbox component (FY13/14) focused on simulation of the microstructure of cementitious materials and calculation of resultant hydraulic and constituent mass transfer parameters needed in modeling. This past November, the CBP Software Toolbox Version 1.0 was released that supports analysis of external sulfate attack (including damage mechanics), carbonation, and primary constituent leaching. The LeachXS component embodies an extensive material property measurements database along with chemical speciation and reactive mass transport simulation cases with emphasis on leaching of major, trace and radionuclide constituents from cementitious materials used in DOE facilities, such as Saltstone (Savannah River) and Cast Stone (Hanford), tank closure grouts, and barrier concretes. STADIUM focuses on the physical and structural service life of materials and components based on chemical speciation and reactive mass transport of major cement constituents and aggressive species (e.g., chloride, sulfate, etc.). The CBP issued numerous reports and other documentation that accompanied the “Version 1.0” release including a CBP Software Toolbox User Guide and Installation Guide. These documents, as well as, the presentations from the CBP Software Toolbox Demonstration and User Workshop, which are briefly described below, can be accessed from the CBP webpage at http://cementbarriers.org/. The website was recently modified to describe the CBP Software Toolbox and includes an interest form for application to use the software. The CBP FY13 program is continuing research to improve and enhance the simulation tools as well as develop new tools that model other key degradation phenomena not addressed in Version 1.0. Also efforts to continue to verify the various simulation tools thru laboratory experiments and analysis of field specimens are ongoing to quantify and reduce the uncertainty associated with performance assessments are ongoing. This mid?year report also includes both a summary on the FY13 software accomplishments in addition to the release of Version 1.0 of the CBP Software Toolbox and the various experimental programs that are providing data for calibration and validation of the CBP developed software. The focus this year for experimental studies was to measure transport in cementitious material by utilization of a leaching method and reduction capacity of saltstone field samples. Results are being used to calibrate and validate the updated carbonation model.

  2. Advanced Vehicle Electrification and Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Advancing Transportation Through Vehicle Electrification- PHEV

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Advances in Transportation Technologies | Department of Energy

    Office of Environmental Management (EM)

    Group Topic Groups Rail Archived Documents Analyzing Fuel Saving Opportunities through Driver Feedback Mechanisms Analysis of maximizing the Synergy between PHEVsEVs and PV...

  5. Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NRELDepartmentJune 2,2-13)536 AlternativeEfficiency, and

  6. The International Partnership for the Hydrogen Economy

    E-Print Network [OSTI]

    . . Distributed Generation TransportationBiomass Hydro Wind Solar Geothermal Coal Nuclear Natural Gas Oil With to showroom so that the first car driven by a child born today could be powered by hydrogen, and pollution, France, Germany, Iceland, India, Italy, Republic of Korea, Russia, United Kingdom #12;7 IPHE Vision "The

  7. Advanced Post-Irradiation Examination Capabilities Alternatives Analysis Report

    SciTech Connect (OSTI)

    Jeff Bryan; Bill Landman; Porter Hill

    2012-12-01

    An alternatives analysis was performed for the Advanced Post-Irradiation Capabilities (APIEC) project in accordance with the U.S. Department of Energy (DOE) Order DOE O 413.3B, “Program and Project Management for the Acquisition of Capital Assets”. The Alternatives Analysis considered six major alternatives: ? No Action ? Modify Existing DOE Facilities – capabilities distributed among multiple locations ? Modify Existing DOE Facilities – capabilities consolidated at a few locations ? Construct New Facility ? Commercial Partnership ? International Partnerships Based on the alternatives analysis documented herein, it is recommended to DOE that the advanced post-irradiation examination capabilities be provided by a new facility constructed at the Materials and Fuels Complex at the Idaho National Laboratory.

  8. Advanced Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden DocumentationAccommodationsRegister /Advanced Energy Systems Advanced

  9. Cementitious Barriers Partnership FY2013 End-Year Report

    SciTech Connect (OSTI)

    Flach, G. P.; Langton, C. A.; Burns, H. H.; Smith, F. G.; Kosson, D. S.; Brown, K. G.; Samson, E.; Meeussen, J. C.L.; van der Sloot, H. A.; Garboczi, E. J.

    2013-11-01

    In FY2013, the Cementitious Barriers Partnership (CBP) demonstrated continued tangible progress toward fulfilling the objective of developing a set of software tools to improve understanding and prediction of the long?term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. In November 2012, the CBP released “Version 1.0” of the CBP Software Toolbox, a suite of software for simulating reactive transport in cementitious materials and important degradation phenomena. In addition, the CBP completed development of new software for the “Version 2.0” Toolbox to be released in early FY2014 and demonstrated use of the Version 1.0 Toolbox on DOE applications. The current primary software components in both Versions 1.0 and 2.0 are LeachXS/ORCHESTRA, STADIUM, and a GoldSim interface for probabilistic analysis of selected degradation scenarios. The CBP Software Toolbox Version 1.0 supports analysis of external sulfate attack (including damage mechanics), carbonation, and primary constituent leaching. Version 2.0 includes the additional analysis of chloride attack and dual regime flow and contaminant migration in fractured and non?fractured cementitious material. The LeachXS component embodies an extensive material property measurements database along with chemical speciation and reactive mass transport simulation cases with emphasis on leaching of major, trace and radionuclide constituents from cementitious materials used in DOE facilities, such as Saltstone (Savannah River) and Cast Stone (Hanford), tank closure grouts, and barrier concretes. STADIUM focuses on the physical and structural service life of materials and components based on chemical speciation and reactive mass transport of major cement constituents and aggressive species (e.g., chloride, sulfate, etc.). THAMES is a planned future CBP Toolbox component focused on simulation of the microstructure of cementitious materials and calculation of resultant hydraulic and constituent mass transfer parameters needed in modeling. Two CBP software demonstrations were conducted in FY2013, one to support the Saltstone Disposal Facility (SDF) at SRS and the other on a representative Hanford high?level waste tank. The CBP Toolbox demonstration on the SDF provided analysis on the most probable degradation mechanisms to the cementitious vault enclosure caused by sulfate and carbonation ingress. This analysis was documented and resulted in the issuance of a SDF Performance Assessment Special Analysis by Liquid Waste Operations this fiscal year. The two new software tools supporting chloride attack and dual?regime flow will provide additional degradation tools to better evaluate performance of DOE and commercial cementitious barriers. The CBP SRNL experimental program produced two patent applications and field data that will be used in the development and calibration of CBP software tools being developed in FY2014. The CBP software and simulation tools varies from other efforts in that all the tools are based upon specific and relevant experimental research of cementitious materials utilized in DOE applications. The CBP FY2013 program involved continuing research to improve and enhance the simulation tools as well as developing new tools that model other key degradation phenomena not addressed in Version 1.0. Also efforts to continue to verify the various simulation tools through laboratory experiments and analysis of field specimens are ongoing and will continue into FY2014 to quantify and reduce the uncertainty associated with performance assessments. This end?year report summarizes FY2013 software development efforts and the various experimental programs that are providing data for calibration and validation of the CBP developed software.

  10. Roadmap and Technical White Papers for 21st Century Truck Partnership...

    Energy Savers [EERE]

    Roadmap and Technical White Papers for 21st Century Truck Partnership Roadmap and Technical White Papers for 21st Century Truck Partnership Roadmap document for 21st Century Truck...

  11. Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry

    SciTech Connect (OSTI)

    NONE

    1995-04-01

    An overview of the Department of Energy`s Office of Industrial Technologies and its private sector partnerships is presented. Commercial success stories and real-world benefits of the technology partnerships are discussed.

  12. DOE and FreedomCAR and Fuel Partnership Hydrogen Delivery and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE and FreedomCAR and Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop DOE and FreedomCAR and Fuel Partnership Hydrogen Delivery and On-Board Storage...

  13. A review of collaborative partnerships as a strategy for improving community health

    E-Print Network [OSTI]

    Fawcett, Stephen B.; Tsai Roussos, Stergios

    2000-01-01

    Collaborative partnerships (people and organizations from multiple sectors working together in common purpose) are a prominent strategy for community health improvement. This review examines evidence about the effects of collaborative partnerships...

  14. Complex School-University Partnerships: University and University-System Leaders’ Experiences 

    E-Print Network [OSTI]

    Martin, Dorian Noel

    2015-03-26

    The purpose of this study was to explore the experiences of university and university-system mid-level leaders’ experiences in complex partnerships in which they have been involved. A complex partnership was defined as a codified ongoing...

  15. UNIVERSITY OF CALGARY International Development Partnerships and Diffusion of Renewable Energy

    E-Print Network [OSTI]

    Maurer, Frank

    UNIVERSITY OF CALGARY International Development Partnerships and Diffusion of Renewable Energy, such as kerosene. Renewable energy technologies are being acknowledged as suitable solutions for remote rural into the nature of international NGO-driven development partnerships in rural renewable energy

  16. Annual meeting of Big Sky Carbon Sequestration Partnership to be held Oct. 28, 29 | ...

    E-Print Network [OSTI]

    ... Annual meeting of Big Sky Carbon Sequestration Partnership to be held ... meeting of the Big Sky Carbon Sequestration Partnership to be held ... science policy and technology of carbon capture and storage (CCS). Panels ...

  17. REGULATORY PARTNERSHIP STATEMENT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7, 2011 |1Administration~I.OJ)REFFPARTNERSHIP STATEMENT

  18. Partnership Website Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT P -Particle Receiver IntegratedPartnersProject

  19. International Partnership for Geothermal Technology Launches Website |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S. Department of EnergyPresentation | Department of

  20. Voluntary Initiative: Partnerships Toolkit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobsAdvancedVeteran LeadershipVisionFinal U.S.

  1. Natural Gas-optimized Advanced Heavy-duty Engine

    E-Print Network [OSTI]

    Natural Gas-optimized Advanced Heavy-duty Engine Transportation Research PIER Transportation the research and development of an advanced natural gas engine concepts that can be used in the heavy duty Treatment System) simulations have been performed and reported. · The EATS hardware for engine tests has

  2. Appendix of Supporting Information for the 21st Century Truck Technology Partnership

    SciTech Connect (OSTI)

    2009-01-18

    Appendix contains supporting information to the 21st Century Truck Partnership's Roadmap and Technical White Papers (21CTP-003)

  3. University of California | Supporting Research, Partnerships, Solutions | Research Grants Program Office 2015

    E-Print Network [OSTI]

    Research Grants Program Office, UC Office of the President

    2015-01-01

    University of California Research Grants Program Office 300Supporting Research, Partnerships,Solutions Research Grants Program Office Discoveries that

  4. Visualization of Fuel Cell Water Transport and Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies Fundamental Issues in Subzero PEMFC Startup and Operation Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization...

  5. Fuel Cells For Transportation - 1999 Annual Progress Report Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1999 Annual Progress Report Energy Conversion Team Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Developing Advanced PEM Fuel Cell Technologies...

  6. Partnerships > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUserPartnerships Partnerships StrategicIn This

  7. The mission of Sugarbeet Advancement is to generate research and utilize

    E-Print Network [OSTI]

    programming, and identifying promotional and financial support to accomplish established goals. Partnership of Agribusiness The Sugarbeet Advancement Committee is pleased to provide you with the eighth edition of the "On University Extension programs and materials are available to all without regard to race, color, natio

  8. Learning to Export: Building farmers' capabilities through partnerships in Kenya LEARNING TO EXPORT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Learning to Export: Building farmers' capabilities through partnerships in Kenya Bolo, M.O LEARNING TO EXPORT: BUILDING FARMERS' CAPABILITIES THROUGH PARTNERSHIPS IN KENYA'S FLOWER INDUSTRY Maurice Ochieng the participation of smallholder farmers, the government of Kenya is promoting `farmer ­ exporter' partnerships

  9. Termination of Domestic Partnership Signature of faculty/staff/student domestic partner

    E-Print Network [OSTI]

    Arnold, Jonathan

    Termination of Domestic Partnership Signature of faculty/staff/student domestic partner Printed as of ________________________. I certify I have mailed a copy of this Termination to my above named former domestic partner. We the domestic partnership is terminated. In the event more than one such Termination of Domestic Partnership

  10. Non-Tracial Free Transport and Applications

    E-Print Network [OSTI]

    Nelson, Brent Andrew

    2015-01-01

    tracial transport . . . . . . . . . . . . . . . . . . . .the transport element . . . . . . . . . . . . . .Free Transport . . . . . . . . . . . .

  11. A Competitive Advantage Conveniently located minutes from Highway 401, the 38-acre Advanced

    E-Print Network [OSTI]

    Lennard, William N.

    Manufacturing Park is a unique partnership between the City of London, Western University and Fanshawe College and transportation sectors ­ this multi-functional, collaborative centre is anchored by The Collider and two unique's largest applied research organization · Unique in Canada, will make London the leading site for composite

  12. Solar Outreach Partnership | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy SmoothEquipment CertificationSolarSoft Costs »

  13. Southeast Regional Carbon Sequestration Partnership (SECARB)

    SciTech Connect (OSTI)

    Kathryn A. Baskin

    2004-03-31

    Work during the first six months of the project mainly concentrated on contracts execution and collection of data to characterize the region and input of that data into the geographical information system (GIS) system. Data was collected for source characterization, transportation options and terrestrial options. In addition, discussions were held to determine the extent of the geologic information that would be needed for the project. In addition, activities associated with the regulatory, permitting and safety issues were completed. Outreach activities are in the formative stages.

  14. Forest Carbon Partnership Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood,Pevafersa JV Jump to:BioFordFords,

  15. A Component Approach to Collaborative Scientific Software Development: Tools and Techniques Utilized by the Quantum Chemistry Science Application Partnership

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kenny, Joseph P.; Janssen, Curtis L.; Gordon, Mark S.; Sosonkina, Masha; Windus, Theresa L.

    2008-01-01

    Cutting-edge scientific computing software is complex, increasingly involving the coupling of multiple packages to combine advanced algorithms or simulations at multiple physical scales. Component-based software engineering (CBSE) has been advanced as a technique for managing this complexity, and complex component applications have been created in the quantum chemistry domain, as well as several other simulation areas, using the component model advocated by the Common Component Architecture (CCA) Forum. While programming models do indeed enable sound software engineering practices, the selection of programming model is just one building block in a comprehensive approach to large-scale collaborative development which must also addressmore »interface and data standardization, and language and package interoperability. We provide an overview of the development approach utilized within the Quantum Chemistry Science Application Partnership, identifying design challenges, describing the techniques which we have adopted to address these challenges and highlighting the advantages which the CCA approach offers for collaborative development.« less

  16. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    year's meeting in partnership with the Western Governors' Association, Western Interstate Energy Board and Tribal Caucus. This 2015 NTSF meeting will bring together representatives...

  17. 2015 Chevron North Sea Limited Chevron University Partnership

    E-Print Network [OSTI]

    Painter, Kevin

    of the crude oil and natural gas industry, including exploration and production, manufacturing, marketing Limited Overview The University Partnership Program, or UPP, is a global program developed in conjunction of the Chevron Europe, Eurasia and Middle East Exploration and Production Operating Company, one of four

  18. 12th Annual Bridging Partnerships Small Business Symposium

    Broader source: Energy.gov [DOE]

    Sponsored by the U.S. Department of Energy's Office of Small and Disadvantaged Business Utilization and the Hanford Small Business Council, the 12th Annual Bridging Partnerships Small Business Symposium is an opportunity to meet and network business peers, government officials and stakeholders. The Symposium includes breakout sessions, networking availabilities and a business opportunity expo.

  19. Pinellas Plant: Child Care/Partnership School safety assessment

    SciTech Connect (OSTI)

    NONE

    1989-11-01

    The Albuquerque Operations Office through the Pinellas Plant Area Office is involved in a joint venture to establish a Partnership School and a Day Care Facility at the Plant. The venture is unique in that it is based on a partnership with the local county school system. The county school system will provide the teachers, supplies and classroom furnishings for the operation of the school for pre-kindergarten, kindergarten, first and second grade during regular school hours. The Government will provide the facility and its normal operating and maintenance costs. A Day Care Facility will also be available for children from infancy through the second grade for outside school hours. The day care will be operated as a non-profit corporation. Fees paid by parents with children in the day care center will cove the cost of staff, food, supplies and liability insurance. Again, the government will provide the facility and its normal operating and maintenance costs. Between 75 and 90 children are expected in the first year of operation. The Partnership School will consist of one class each for pre-kindergarten, kindergarten and first grade. Second grade will be added in 1990. The total estimated number of children for both the Child Care and Partnership School should not exceed 200 children. Expected benefits include reduced absenteeism, tardiness and turnover and thus increased productivity. The program will be an asset in recruiting and retaining the best workforce. Other benefits include improved education for the children.

  20. In partnership with http://www.nrcs.usda.gov

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    bits of granola in a breakfast bowl (Figure 2). The top of ground water is called the water table). In most California regions, the water table is between 10 and 100 feet below the land surface (in someIn partnership with http://www.nrcs.usda.gov Farm Water Quality Planning A Water Quality

  1. LAUNCH A PARTNERSHIP WITH UofT ENGINEERING

    E-Print Network [OSTI]

    Toronto, University of

    LAUNCH A PARTNERSHIP WITH UofT ENGINEERING TODAY U of T Engineering is partnering with industry of T Engineering delivers solutions to help you succeed. We have a strong track record -- of success OF THE VICE-DEAN, RESEARCH FACULTY OF APPLIED SCIENCE & ENGINEERING UNIVERSITY OF TORONTO 416-946-3038 | vdr

  2. First Impressions in a Glowing Host-Microbe Partnership

    E-Print Network [OSTI]

    McFall-Ngai, Margaret

    #12;First Impressions in a Glowing Host-Microbe Partnership Jennifer J. Wernegreen1,* 1Nicholas://dx.doi.org/10.1016/j.chom.2013.07.015 Despite the clear significance of beneficial animal-microbe associations & Microbe, Kremer et al. (2013) reveal that first contact within the squid-vibrio symbiosis triggers

  3. In partnership with http://www.nrcs.usda.gov

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    In partnership with http://www.nrcs.usda.gov Farm Water Quality Planning A Water Quality is part of the Farm Water Quality Planning (FWQP) series, developed for a short course that provides training for grow- ers of irrigated crops who are interested in implementing water quality protection prac

  4. Public-Private R&D Partnerships Pete Devlin

    E-Print Network [OSTI]

    R&D Program U.S. DOE Solar/PV Program U.S. DOE Solar/PV Program National Center for PV at NREL Partnership · Photovoltaic (PV) Manufacturing #12;3 #12;4 SECA: Making Fuels Cells a Reality 2011 - 2015 to develop SOFC technology concept - Have ready access to markets - Coordinate with manufacturing projects

  5. Public-Private Partnerships for Clean Energy Manufacturing

    SciTech Connect (OSTI)

    2015-09-01

    As part of its mission, CEMI builds partnerships around strategic priorities to increase U.S. clean energy manufacturing competitiveness. This requires an “all-hands-on-deck” approach that involves the nation’s private and public sectors, universities, think tanks, and labor leaders working together.

  6. The Anti-Violence Partnership: A Community Collaboration at the

    E-Print Network [OSTI]

    Hayden, Nancy J.

    activities · Providing technical assistance in anti-violence collaboration and coalition- building; policy1 The Anti-Violence Partnership: A Community Collaboration at the University of Vermont Seventh, SafeSpace David Battick, Coordinator, Project Safe Choices, Spectrum Youth and Family Services Sherry

  7. The Future of the Hollings Manufacturing Extension Partnership

    E-Print Network [OSTI]

    Magee, Joseph W.

    of Standards and Technology, U.S. Department of Commerce #12;The Future of the Hollings Manufacturing Extension Partnership A Program of the National Institute of Standards and Technology U.S. Department of Commerce 2 pressure to cut costs, improve quality, meet environmental and international standards, and get to market

  8. A City/Institutional Partnership Northwestern University/Evanston

    E-Print Network [OSTI]

    A City/Institutional Partnership Northwestern University/Evanston Research Park 1 Presentation park Grow a new economic "knowledge sector" Expand tax base: create better jobs Position Evanston Basic Industry Research Lab (BIRL) · Wanted new industry connections for sponsored research & BIRL

  9. Transportation Statistics Annual Report 1997

    SciTech Connect (OSTI)

    Fenn, M.

    1997-01-01

    This document is the fourth Transportation Statistics Annual Report (TSAR) prepared by the Bureau of Transportation Statistics (BTS) for the President and Congress. As in previous years, it reports on the state of U.S. transportation system at two levels. First, in Part I, it provides a statistical and interpretive survey of the system—its physical characteristics, its economic attributes, aspects of its use and performance, and the scale and severity of unintended consequences of transportation, such as fatalities and injuries, oil import dependency, and environment impacts. Part I also explores the state of transportation statistics, and new needs of the rapidly changing world of transportation. Second, Part II of the report, as in prior years, explores in detail the performance of the U.S. transportation system from the perspective of desired social outcomes or strategic goals. This year, the performance aspect of transportation chosen for thematic treatment is “Mobility and Access,” which complements past TSAR theme sections on “The Economic Performance of Transportation” (1995) and “Transportation and the Environment” (1996). Mobility and access are at the heart of the transportation system’s performance from the user’s perspective. In what ways and to what extent does the geographic freedom provided by transportation enhance personal fulfillment of the nation’s residents and contribute to economic advancement of people and businesses? This broad question underlies many of the topics examined in Part II: What is the current level of personal mobility in the United States, and how does it vary by sex, age, income level, urban or rural location, and over time? What factors explain variations? Has transportation helped improve people’s access to work, shopping, recreational facilities, and medical services, and in what ways and in what locations? How have barriers, such as age, disabilities, or lack of an automobile, affected these accessibility patterns? How are commodity flows and transportation services responding to global competition, deregulation, economic restructuring, and new information technologies? How do U.S. patterns of personal mobility and freight movement compare with other advanced industrialized countries, formerly centrally planned economies, and major newly industrializing countries? Finally, how is the rapid adoption of new information technologies influencing the patterns of transportation demand and the supply of new transportation services? Indeed, how are information technologies affecting the nature and organization of transportation services used by individuals and firms?

  10. Advanced Safeguards Approaches for New Reprocessing Facilities

    SciTech Connect (OSTI)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Richard; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-06-24

    U.S. efforts to promote the international expansion of nuclear energy through the Global Nuclear Energy Partnership (GNEP) will result in a dramatic expansion of nuclear fuel cycle facilities in the United States. New demonstration facilities, such as the Advanced Fuel Cycle Facility (AFCF), the Advanced Burner Reactor (ABR), and the Consolidated Fuel Treatment Center (CFTC) will use advanced nuclear and chemical process technologies that must incorporate increased proliferation resistance to enhance nuclear safeguards. The ASA-100 Project, “Advanced Safeguards Approaches for New Nuclear Fuel Cycle Facilities,” commissioned by the NA-243 Office of NNSA, has been tasked with reviewing and developing advanced safeguards approaches for these demonstration facilities. Because one goal of GNEP is developing and sharing proliferation-resistant nuclear technology and services with partner nations, the safeguards approaches considered are consistent with international safeguards as currently implemented by the International Atomic Energy Agency (IAEA). This first report reviews possible safeguards approaches for the new fuel reprocessing processes to be deployed at the AFCF and CFTC facilities. Similar analyses addressing the ABR and transuranic (TRU) fuel fabrication lines at AFCF and CFTC will be presented in subsequent reports.

  11. National facility for advanced computational science: A sustainable path to scientific discovery

    SciTech Connect (OSTI)

    Simon, Horst; Kramer, William; Saphir, William; Shalf, John; Bailey, David; Oliker, Leonid; Banda, Michael; McCurdy, C. William; Hules, John; Canning, Andrew; Day, Marc; Colella, Philip; Serafini, David; Wehner, Michael; Nugent, Peter

    2004-04-02

    Lawrence Berkeley National Laboratory (Berkeley Lab) proposes to create a National Facility for Advanced Computational Science (NFACS) and to establish a new partnership between the American computer industry and a national consortium of laboratories, universities, and computing facilities. NFACS will provide leadership-class scientific computing capability to scientists and engineers nationwide, independent of their institutional affiliation or source of funding. This partnership will bring into existence a new class of computational capability in the United States that is optimal for science and will create a sustainable path towards petaflops performance.

  12. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  13. TEM Examination of Advanced Alloys Irradiated in ATR

    SciTech Connect (OSTI)

    Jian Gan, PhD

    2007-09-01

    Successful development of materials is critical to the deployment of advanced nuclear power systems. Irradiation studies of candidate materials play a vital role for better understanding materials performance under various irradiation environments of advanced system designs. In many cases, new classes of materials have to be investigated to meet the requirements of these advanced systems. For applications in the temperature range of 500 800şC which is relevant to the fast neutron spectrum burner reactors for the Global Nuclear Energy Partnership (GNEP) program, oxide dispersion strengthened (ODS) and ferritic martensitic steels (e.g., MA957 and others) are candidates for advanced cladding materials. In the low temperature regions of the core (<600şC), alloy 800H, HCM12A (also called T 122) and HT 9 have been considered.

  14. [Interstate Clean Transportation]. Final Report for FG02-99EE50591

    SciTech Connect (OSTI)

    Wendt, Lee

    2002-07-19

    The Interstate Clean Transportation (ICTC) purpose is to develop a public-private partnership dedicated to accelerating the market penetration of clean, alternative fuel vehicles (AFVs) in interstate goods movement. In order to foster project development, the ICTC activity sought to increase awareness of heavy-duty AFVs among truck fleet operators.

  15. Grand challenge problems in environmental modeling and remediation: groundwater contaminant transport

    SciTech Connect (OSTI)

    Todd Arbogast; Steve Bryant; Clint N. Dawson; Mary F. Wheeler

    1998-08-31

    This report describes briefly the work of the Center for Subsurface Modeling (CSM) of the University of Texas at Austin (and Rice University prior to September 1995) on the Partnership in Computational Sciences Consortium (PICS) project entitled Grand Challenge Problems in Environmental Modeling and Remediation: Groundwater Contaminant Transport.

  16. Advancing Innovation Through Partnerships 2011-2012 Technology Transfer Progress Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E R N A NA LY S I S WORKSHOP S E

  17. Auto/Steel Partnership: Advanced High-Strength Steel Research and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research atDepartmentAudits and6Auidt Report:(AO)Auto

  18. U.S.-India Partnership to Advance Clean Energy: A Progress Report (June

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950 Timeline ofTurkeyProgram |2012) | Department of

  19. Southwest Regional Partnership on Carbon Sequestration Phase II

    SciTech Connect (OSTI)

    James Rutledge

    2011-02-01

    The Southwest Regional Partnership (SWP) on Carbon Sequestration designed and deployed a medium-scale field pilot test of geologic carbon dioxide (CO2) sequestration in the Aneth oil field. Greater Aneth oil field, Utah's largest oil producer, was discovered in 1956 and has produced over 455 million barrels of oil (72 million m3). Located in the Paradox Basin of southeastern Utah, Greater Aneth is a stratigraphic trap producing from the Pennsylvanian Paradox Formation. Because it represents an archetype oil field of the western U.S., Greater Aneth was selected as one of three geologic pilots to demonstrate combined enhanced oil recovery (EOR) and CO2 sequestration under the auspices of the SWP on Carbon Sequestration, sponsored by the U.S. Department of Energy. The pilot demonstration focuced on the western portion of the Aneth Unit as this area of the field was converted from waterflood production to CO2 EOR starting in late 2007. The Aneth Unit is in the northwestern part of the field and has produced 149 million barrels (24 million m3) of the estimated 450 million barrels (71.5 million m3) of the original oil in place - a 33% recovery rate. The large amount of remaining oil makes the Aneth Unit ideal to demonstrate both CO2 storage capacity and EOR by CO2 flooding. This report summarizes the geologic characterization research, the various field monitoring tests, and the development of a geologic model and numerical simulations conducted for the Aneth demonstration project. The Utah Geological Survey (UGS), with contributions from other Partners, evaluated how the surface and subsurface geology of the Aneth Unit demonstration site will affect sequestration operations and engineering strategies. The UGS-research for the project are summarized in Chapters 1 through 7, and includes (1) mapping the surface geology including stratigraphy, faulting, fractures, and deformation bands, (2) describing the local Jurassic and Cretaceous stratigraphy, (3) mapping the Desert Creek zone reservoir, Gothic seal, and overlying aquifers, (4) characterizing the depositional environments and diagenetic events that produced significant reservoir heterogeneity, (5) describing the geochemical, petrographic, and geomechanical properties of the seal to determine the CO2 or hydrocarbon column it could support, and (6) evaluating the production history to compare primary production from vertical and horizontal wells, and the effects of waterflood and wateralternating- gas flood programs. The field monitoring demonstrations were conducted by various Partners including New Mexico Institute of Mining and Technology, University of Utah, National Institute of Advanced Industrial Science and Technology, Japan, Los Alamos National Laboratory and Cambridge Geosciences. The monitoring tests are summarized in Chapters 8 through 12, and includes (1) interwell tracer studies during water- and CO2-flood operations to characterize tracer behavoirs in anticipation of CO2-sequestration applications, (2) CO2 soil flux monitoring to measure background levels and variance and assess the sensitivity levels for CO2 surface monitoring, (3) testing the continuous monitoring of self potential as a means to detect pressure anomalies and electrochemical reaction due to CO2 injection, (4) conducting time-lapse vertical seismic profiling to image change near a CO2 injection well, and (5) monitoring microseismicity using a downhole string of seismic receivers to detect fracture slip and deformation associated with stress changes. Finally, the geologic modeling and numerical simulation study was conducted by researcher at the University of Utah. Chapter 13 summarizes their efforts which focused on developing a site-specific geologic model for Aneth to better understand and design CO2 storage specifically tailored to oil reservoirs.

  20. Technical Report of Accomplishments of the Weatherization Leveraging Partnership Project

    SciTech Connect (OSTI)

    Economic Opportunity Studies

    2007-09-30

    The Weatherization Leveraging Partnership Project was established to provide three types of technical assistance support to W.A.P. network organizations seeking to achieve the Weatherization Plus goal of expanding their non-federal resources. It provided: (1) Analysis that profiled W.A.P.-eligible household energy characteristics and finances for all in determining efficiency investment targets and goals; (2) Detailed information on leveraged partnerships linked from many sources and created a website with finding aids to meet the needs the network identified. There are five major market segments with related, but different, technical assistance needs; (3) Direct, sustained assistance in preparing strategies, analyses, and communications for a limited set of local network initiatives that were in early stages of initiating or changing their resource expansion strategies. The Project identified trends in the challenges that weatherizers initiatives encountered; it designed materials and tools, including the dynamic www.weatherizationplus.org website, to meet the continuing and the emerging needs.

  1. Dimensions of Family and Professional Partnerships: Constructive Guidelines for Collaboration

    E-Print Network [OSTI]

    Blue-Banning, Martha; Summers, Jean Ann; Frankland, H. Corine; Lord Nelson, Louise G.; Beegle, Gwen

    2004-01-01

    . They identified from the literature a series of interpersonal relationship attitudes, skills, values, and beliefs that appear to contribute to effective partnerships among families, professionals, and agencies. Interpersonal relationships among Early Head... professional focus groups were conducted in both Round One and Round Two - one for direct service providers and one for program administrators from education, health, and social service agencies in the community. Service provider/program ad- ministrator...

  2. Secretary Chu Announces New Partnerships Under the Energy and Climate

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1Research and Fueling Infrastructure | DepartmentPartnership

  3. Partnership for Energy Sector Climate Resilience | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergyPartnership for Energy Sector Climate Resilience

  4. Advanced LIGO

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration

    2014-11-17

    The Advanced LIGO gravitational wave detectors are second generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid- and high- frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

  5. Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specific Binding ORNL discovery holds potential for separations, sensors, batteries, biotech and more Home | Science & Discovery | Advanced Materials Advanced Materials |...

  6. High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint

    SciTech Connect (OSTI)

    Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

    2012-06-01

    Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

  7. Possible Pathways for Increasing Natural Gas Use for Transportation (Presentation)

    SciTech Connect (OSTI)

    Zigler, B.

    2014-10-01

    A collaborative partnership of DOE National Laboratories is working with DOE to identify critical RD&D needs to significantly increase the speed and breadth of NG uptake into the transportation sector. Drivers for increased utilization of natural gas for transportation are discussed. Key needs in research, development, and deployment are proposed, as well as possible pathways to address those needs. This presentation is intended to serve as a catalyst to solicit input from stakeholders regarding what technical areas they deem the most important.

  8. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;Institute of Transportation Studies University of California, Davis One TRANSPORTATION ENERGY PATHWAYS CHAPTER 4: COMPARING FUEL ECONOMIES AND COSTS OF ADVANCED VS. CONVENTIONAL

  9. U.S. and New Zealand Take Steps to Launch International Partnership...

    Office of Environmental Management (EM)

    first EDIN Steering Committee meeting, which will take place in late August. State of Hawaii Governor Linda Lingle also attended the EDIN launch and praised the partnership,...

  10. Partnerships for vaccine development: building capacity to strengthen developing country health and innovation 

    E-Print Network [OSTI]

    Hanlin, Rebecca

    2008-01-01

    Product Development Public-Private Partnerships (PDPs) are mechanisms used to incentivise health innovation for neglected diseases. PDPs undertaking clinical trial research in developing countries work – collaborate – ...

  11. Successful Partnerships and Lessons from the Field, Part 1, Webinar Transcript

    Broader source: Energy.gov [DOE]

    Part 1-Successful Partnerships and Lessons from the Field Webinar Transcript, from the U.S. Department of Energy Technical Assistance Program (TAP).

  12. Partnering with Utilities Part 1: Successful Partnerships and Lessons from the Field

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assistance Program (TAP), provides information on how to create successful partnerships with utility companies (Part 1).

  13. Overcoming Persistent Barriers to Energy Efficiency in Multifamily Housing through Partnerships

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Overcoming Persistent Barriers to Energy Efficiency in Multifamily Housing through Partnerships.

  14. Funding Opportunity Webinar – Building America Industry Partnerships for High Performance Housing Innovations

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of the “Building America Industry Partnerships for High Performance Housing Innovations” Funding Opportunity Announcement, DE-FOA-0001117.

  15. Funding Opportunity Webinar – Building America Industry Partnerships for High Performance Housing Innovations (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the Funding Opportunity Webinar, Building America Industry Partnerships for High Performance Housing Innovations, presented in November 2014.

  16. CX-007596: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ohio Advanced Transportation Partnership CX(s) Applied: B5.23 Date: 01/25/2012 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  17. CX-006893: Categorical Exclusion Determination | Department of...

    Energy Savers [EERE]

    Exclusion Determination Ohio Advanced Transportation PartnershipFrito Lay Columbus Propane Fueling Infrastructure CX(s) Applied: B5.1 Date: 09282011 Location(s): Columbus,...

  18. Sandia Energy - Sandia-California Partners with Japanese National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Japanese National Institute of Advanced Industrial Science and Technology (AIST) in Hydrogen-Materials Research Home Energy Transportation Energy CRF Facilities Partnership News...

  19. President Obama Announces Major Initiative to Spur Biofuels Industry...

    Energy Savers [EERE]

    years in partnership with the private sector to produce advanced drop-in aviation and marine biofuels to power military and commercial transportation. The initiative responds to a...

  20. Transportation Plan 

    E-Print Network [OSTI]

    Boreo, Andrea; Li, Wei; Wunnenbuger, Douglas; Giusti, Cecilia; Cooper, John T.; Masterson, Jaimie

    2015-01-01

    Mobility throughout a community ensures freedom of movement and enhances quality of life. Traffic congestion, pollution, urban sprawl, social exclusion, safety and health can decrease mobility and should be a part of a sustainable transportation...

  1. electrifyingthefuture transportation

    E-Print Network [OSTI]

    Birmingham, University of

    programme of electrification and the potential introduction of diesel hybrids. The Department for Transport vehicles Wind turbine systems Industrial equipment The lab has full ethernet capability which will enable

  2. FEMP and Department of Transportation Partnership Wins GreenGov Award |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 2011 CX-006821:for EnergyEnergyDepartment of

  3. Alternative Fuel and Advanced Vehicle Tools (AFAVT), AFDC (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    The Alternative Fuels and Advanced Vehicles Web site offers a collection of calculators, interactive maps, and informational tools to assist fleets, fuel providers, and others looking to reduce petroleum consumption in the transportation sector.

  4. AVCEM: Advanced-Vehicle Cost and Energy Use Model

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    California 95616 PHONE: WEB: FAX: http://its.ucdavis.edu/ AVCEM: ADVANCED-VEHICLE COST AND ENERGY-Cost and Energy Use Model Overview of AVCEM Mark A. Delucchi Institute of Transportation Studies ? University of California,

  5. An overview of spent-fuel processing in the global nuclear-energy partnership

    SciTech Connect (OSTI)

    Laidler, James J.

    2008-07-01

    Spent nuclear fuel is being generated at a prodigious rate in the U.S. and in other countries with robust nuclear-power-generation infrastructures, and the annual rate of production is likely to triple by 2050. The U.S. is engaged in the development of commercial light-water-reactor spent- fuel-treatment processes that are intended to meet certain rigorous criteria for separations efficiency, waste management benefits, and economy of industrial-scale operations. Aqueous solvent-extraction processes are the technology of choice, and a variety of process options have been designed and tested for technical feasibility. In general, the processes involve substantial partitioning of the constituents of spent nuclear fuel, so that effective use can be made of the recovered unburned uranium and other fissile isotopes that can be recycled as fuel for contemporary or advanced reactors. Those constituents that are destined for disposal as waste are also separated in order that they can be placed into durable waste forms that are expressly tailored for a particular disposition pathway. The U.S. is also working with international partners as part of the Global Nuclear Energy Partnership (GNEP) to develop a consistent worldwide approach to the treatment of spent fuel and the disposition of wastes arising from such processing. (authors)

  6. 2014 CATEE: Collaboration is the Key- Public/Private Partnerships 

    E-Print Network [OSTI]

    Lin, L.

    2014-01-01

    stream_source_info ESL-KT-14-11-24.pdf.txt stream_content_type text/plain stream_size 9508 Content-Encoding UTF-8 stream_name ESL-KT-14-11-24.pdf.txt Content-Type text/plain; charset=UTF-8 2014 CATEE Collaboration... is the Key - Public/Private Partnerships November 19, 2014 Lisa Lin, Sustainability Manager, City of Houston ESL-KT-14-11-24 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 City of Houston Energy Efficiency Programs 2000...

  7. Sandia National Laboratories: Working with Sandia: Technology Partnerships:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRDUniversity Partnerships Potential Suppliers

  8. Potential partnerships and funding from a variety of sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document outlinesPotential partnerships and funding

  9. Potential partnerships and funding from a variety of sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document outlinesPotential partnerships and

  10. Big Sky Carbon Sequestration Partnership | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColoradoBelcherCarbon Sequestration Partnership Jump

  11. Clean Energy Partnership CEP German Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,ThermalCubaParker,GeorgiaValleyClean EconomyPartnership CEP

  12. Advanced Motors

    SciTech Connect (OSTI)

    Knoth, Edward A.; Chelluri, Bhanumathi; Schumaker, Edward J.

    2012-12-14

    Project Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, ���������������¢��������������������������������Motors and Generators for the 21st Century���������������¢�������������������������������. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can be met with a variety of bonded magnet compositions. The torque ripple was found to drop significantly by using thinner magnet segments. The powder co-filling and subsequent compaction processing allow for thinner magnet structures to be formed. Torque ripple can be further reduced by using skewing and pole shaping techniques. The techniques can be incorporated into the rotor during the powder co-filling process.

  13. Solargenix Energy Advanced Parabolic Trough Development

    SciTech Connect (OSTI)

    Gee, R. C.; Hale, M. J.

    2005-11-01

    The Solargenix Advanced Trough Development Project was initiated in the Year 2000 with the support of the DOE CSP Program and, more recently, with the added support of the Nevada Southwest Energy Partnership. Parabolic trough plants are the most mature solar power technology, but no large-scale plants have been built in over a decade. Given this lengthy lull in deployment, our first Project objective was development of improved trough technology for near-term deployment, closely patterned after the best of the prior-generation troughs. The second objective is to develop further improvements in next-generation trough technology that will lead to even larger reductions in the cost of the delivered energy. To date, this Project has successfully developed an advanced trough, which is being deployed on a 1-MW plant in Arizona and will soon be deployed in a 64-MW plant in Nevada. This advanced trough offers a 10% increase in performance and over an 20% decrease in cost, relative to prior-generation troughs.

  14. ADVANCED MATERIALS Membranes for Clean Water

    E-Print Network [OSTI]

    ADVANCED MATERIALS Membranes for Clean Water Objective This project provides measurement solutions that probe the surface and internal structure of polymer membranes used in water purification, and correlate that structure to the transport of water and other species through the membrane. Our methods are focused

  15. Contact: Tom Rogers, rogerstc@ornl.gov 865-241-2149 Director, Industrial Partnerships

    E-Print Network [OSTI]

    Contact: Tom Rogers, rogerstc@ornl.gov 865-241-2149 Tom Rogers Director, Industrial Partnerships and Economic Development Tom Rogers was named Director of Industrial Partnerships and Economic Development with industrial partners, forging new ORNL entrepreneurial support efforts, and leading a number of strategic

  16. Managing Change: Introducing a Partnership Model of Care Management into the Scottish Borders

    E-Print Network [OSTI]

    Mottram, Nigel

    Managing Change: Introducing a Partnership Model of Care Management into the Scottish Borders Trust Overview In 1996 the Scottish Borders undertook a comprehensive review of its care management arrangements. A decision was taken to pilot a new model of care management, the partnership model, in two

  17. A methodology for determining the relationship between air transportation demand and the level of service

    E-Print Network [OSTI]

    Eriksen, Steven Edward

    1976-01-01

    Introduction: Within the last ten years significant advances in the state-of-the art in air travel demand analysis stimulated researchers in the domestic air transportation field. Among these advances, researchers in ...

  18. Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology Program Annual Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oak Ridge National Laboratory supports the Vehicle Technologies Office by conducting work in advanced power electronics and electric machines; transportation policy and analysis; fuel economy outreach; fuels technologies; advanced combustion engines; propulsion materials; and vehicle systems.

  19. Building Stronger State Partnerships with the US Department of Energy (Energy Assurance)

    SciTech Connect (OSTI)

    Mike Keogh

    2011-09-30

    From 2007 until 2011, the National Association of Regulatory Utility Commissioners (NARUC) engaged in a partnership with the National Energy Technology Lab (NETL) to improve State-Federal coordination on electricity policy and energy assurance issues. This project allowed State Public Utility Commissioners and their staffs to engage on the most cutting-edge level in the arenas of energy assurance and electricity policy. Four tasks were outlined in the Statement of Performance Objectives: Task 1 - Training for Commissions on Critical Infrastructure Topics; Task 2 - Analyze and Implement Recommendations on Energy Assurance Issues; Task 3 - Ongoing liaison activities & outreach to build stronger networks between federal agencies and state regulators; and Task 4 - Additional Activities. Although four tasks were prescribed, in practice these tasks were carried out under two major activity areas: the critical infrastructure and energy assurance partnership with the US Department of Energy's Infrastructure Security and Emergency Response office, and the National Council on Electricity Policy, a collaborative which since 1994 has brought together State and Federal policymakers to address the most pressing issues facing the grid from restructuring to smart grid implementation. On Critical Infrastructure protection, this cooperative agreement helped State officials yield several important advances. The lead role on NARUC's side was played by our Committee on Critical Infrastructure Protection. Key lessons learned in this arena include the following: (1) Tabletops and exercises work - They improve the capacity of policymakers and their industry counterparts to face the most challenging energy emergencies, and thereby equip these actors with the capacity to face everything up to that point as well. (2) Information sharing is critical - Connecting people who need information with people who have information is a key success factor. However, exposure of critical infrastructure information to bad actors also creates new vulnerabilities. (3) Tensions exist between the transparency-driven basis of regulatory activity and the information-protection requirements of asset protection. (4) Coordination between states is a key success factor - Because comparatively little federal authority exists over electricity and other energy infrastructure, the interstate nature of these energy grids defy centralized command and control governance. Patchwork responses are a risk when addressed at a state-by-state level. Coordination is the key to ensuring consistent response to shared threats. In Electricity Policy, the National Council on Electricity Policy continued to make important strides forward. Coordinated electricity policy among States remains the best surrogate for an absent national electricity policy. In every area from energy efficiency to clean coal, State policies are driving the country's electricity policy, and regional responses to climate change, infrastructure planning, market operation, and new technology deployment depend on a forum for bringing the States together.

  20. Advanced Thermal Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal models power density cost lifetime Advanced Thermal Interface Materials Advanced Heat Transfer Technologies Air Cooling Thermal System Performance and Integration Thermal...