Sample records for advanced technology investments

  1. Ramping-up Investments in Advanced Vehicle Technologies

    Broader source: Energy.gov [DOE]

    Today, Secretary Chu announced the selection of 40 projects across 15 states to receive more than $175 million to accelerate the development and deployment of next-generation vehicle technologies....

  2. Energy Department Invests More Than $55 Million to Advance Efficient...

    Energy Savers [EERE]

    Invests More Than 55 Million to Advance Efficient Vehicle Technologies Energy Department Invests More Than 55 Million to Advance Efficient Vehicle Technologies August 15, 2014 -...

  3. SWOT Technology Investments September 19, 2008

    E-Print Network [OSTI]

    Christian, Eric

    1 SWOT Technology Investments Overview September 19, 2008 Robert Bauer Earth Science Technology Office HyspIRI Technology Investment Overview October 22, 2008 Janice L. Buckner Earth Science Technology Office #12;2 ·Advances in Earth science are often enabled by advances in technology ·In many cases

  4. Technology Investment Roadmap 2012 -2017

    E-Print Network [OSTI]

    Hickman, Mark

    Technology Investment Roadmap 2012 - 2017 20 February 2012 #12;2 Contents Introduction & Overview................................................................... 23 #12;3 Introduction & Overview This Technology Investment Roadmap (TIR) has been developed

  5. DOE Seeks to Invest up to $90 Million in Advanced Geothermal...

    Energy Savers [EERE]

    DOE Seeks to Invest up to 90 Million in Advanced Geothermal Energy Technology and Research DOE Seeks to Invest up to 90 Million in Advanced Geothermal Energy Technology and...

  6. Technology Investment Agreements | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Guidance Policy Flash 2006-31 - Technology Investment Agreements Financial Assistance Letter 2006-03 - Guidance for Awarding Technology Investment Agreements Final Rule - Financial...

  7. Advanced Pattern Material for Investment Casting Applications

    SciTech Connect (OSTI)

    F. Douglas Neece Neil Chaudhry

    2006-02-08T23:59:59.000Z

    Cleveland Tool and Machine (CTM) of Cleveland, Ohio in conjunction with Harrington Product Development Center (HPDC) of Cincinnati, Ohio have developed an advanced, dimensionally accurate, temperature-stable, energy-efficient and cost-effective material and process to manufacture patterns for the investment casting industry. In the proposed technology, FOPAT (aFOam PATtern material) has been developed which is especially compatible with the investment casting process and offers the following advantages: increased dimensional accuracy; increased temperature stability; lower cost per pattern; less energy consumption per pattern; decreased cost of pattern making equipment; decreased tooling cost; increased casting yield. The present method for investment casting is "the lost wax" process, which is exactly that, the use of wax as a pattern material, which is then melted out or "lost" from the ceramic shell. The molten metal is then poured into the ceramic shell to produce a metal casting. This process goes back thousands of years and while there have been improvements in the wax and processing technology, the material is basically the same, wax. The proposed technology is based upon an established industrial process of "Reaction Injection Molding" (RIM) where two components react when mixed and then "molded" to form a part. The proposed technology has been modified and improved with the needs of investment casting in mind. A proprietary mix of components has been formulated which react and expand to form a foam-like product. The result is an investment casting pattern with smooth surface finish and excellent dimensional predictability along with the other key benefits listed above.

  8. Department of Energy to Invest Nearly $18 Million for Advanced...

    Energy Savers [EERE]

    Department of Energy to Invest Nearly 18 Million for Advanced Biofuels User Facility Department of Energy to Invest Nearly 18 Million for Advanced Biofuels User Facility March...

  9. DOE Seeks to Invest up to $90 Million in Advanced Geothermal...

    Office of Environmental Management (EM)

    90 Million in Advanced Geothermal Energy Technology and Research DOE Seeks to Invest up to 90 Million in Advanced Geothermal Energy Technology and Research June 18, 2008 - 1:29pm...

  10. Innovation investment area: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The mission of Environmental Management`s (EM) Office of Technology Development (OTD) Innovation Investment Area is to identify and provide development support for two types of technologies that are developed to characterize, treat and dispose of DOE waste, and to remediate contaminated sites. They are: technologies that show promise to address specific EM needs, but require proof-of-principle experimentation; and (2) already proven technologies in other fields that require critical path experimentation to demonstrate feasibility for adaptation to specific EM needs. The underlying strategy is to ensure that private industry, other Federal Agencies, universities, and DOE National Laboratories are major participants in developing and deploying new and emerging technologies. To this end, about 125 different new and emerging technologies are being developed through Innovation Investment Area`s (IIA) two program elements: RDDT&E New Initiatives (RD01) and Interagency Agreements (RD02). Both of these activities are intended to foster research and development partnerships so as to introduce innovative technologies into other OTD program elements for expedited evaluation.

  11. WE INVEST IN TECHNOLOGY. NOW LET US INVEST IN YOU. Leap Technology Program

    E-Print Network [OSTI]

    Virginia Tech

    WE INVEST IN TECHNOLOGY. NOW LET US INVEST IN YOU. Leap Technology Program Fidelity Investments innovation, and effective deployment of leading-edge technologies. Our entry-level technology training, Quality Assurance, Mainframe Development and Technology Infrastructure and Engineering (TIE). Upon

  12. NASA Earth Science Technology Office (ESTO) Decadal Survey Technology Investments

    E-Print Network [OSTI]

    Christian, Eric

    investments · Risks are retired before major dollars are invested: a cost-effective approach to technologyNASA Earth Science Technology Office (ESTO) Decadal Survey Technology Investments January 7, 2009 #12;Overview: Earth Science Technology Office Science Driven, Competed, Actively Managed

  13. The Geothermal Technologies Office Invests $18 Million for Innovative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Geothermal Technologies Office Invests 18 Million for Innovative Projects The Geothermal Technologies Office Invests 18 Million for Innovative Projects The McGuiness Hills...

  14. Advanced Propulsion Technology Strategy

    Broader source: Energy.gov (indexed) [DOE]

    Alternative Sources) Hydrogen Time ADVANCED PROPULSION TECHNOLOGY STRATEGY DOWNSIZED TURBO GAS ENGINE CHEVROLET CRUZE 1.4L TURBO ECOTEC Downsized SIDI Turbo Boosting HCCI -...

  15. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis...

  16. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

  17. Qualifying Advanced Energy Manufacturing Investment Tax Credit

    Broader source: Energy.gov [DOE]

    2013 Update: Phase II of the Qualifying Advanced Energy Project is open. Required concept papers are due to the U.S. Department of Energy (DOE) by April 9, 2013. The U.S. DOE will review concept...

  18. February 2000 Advanced Technology Program

    E-Print Network [OSTI]

    of Standards and Technology (NIST) is a cost-sharing program designed to partner the federal governmentFebruary 2000 Advanced Technology Program Information Infrastructure for Healthcare Focused Program: A Brief History ADADVANCEDANCED TECHNOLOGY PRTECHNOLOGY PROGRAMOGRAM NISTIR 6477 National Institute

  19. State Technologies Advancement Collaborative

    SciTech Connect (OSTI)

    David S. Terry

    2012-01-30T23:59:59.000Z

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

  20. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research and...

  1. Advanced Technology Vehicles Manufacturing Incentive Program...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

  2. Nick Wright Named Advanced Technologies Group Lead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nick Wright Named Advanced Technologies Group Lead Nick Wright Named Advanced Technologies Group Lead February 4, 2013 Nick Nick Wright has been named head of the National Energy...

  3. Three Offshore Wind Advanced Technology Demonstration Projects...

    Office of Environmental Management (EM)

    Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding September...

  4. Development of Advanced Combustion Technologies for Increased...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Technologies for Increased Thermal Efficiency Development of Advanced Combustion Technologies for Increased Thermal Efficiency Investigation of fuel effects on...

  5. Objective assessment of manufacturing technology investments

    E-Print Network [OSTI]

    Rothman, Craig Jeremy

    2012-01-01T23:59:59.000Z

    Amgen is a biotechnology company with manufacturing plants throughout the world. New manufacturing technologies are constantly being developed and implemented in order to address cost, quality, regulation, and competitive ...

  6. Guiding SSL Technology Advances

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's solid-state lighting (SSL) program builds collaborative industry and research community to guise SSL technology innovation. Provides an overview of DOE's SSL program and its comprehensive approach based on long-term relationships with the SSL industry and community. (April 2015)

  7. Evaluation of Representative Smart Grid Investment Project Technologies: Demand Response

    SciTech Connect (OSTI)

    Fuller, Jason C.; Prakash Kumar, Nirupama; Bonebrake, Christopher A.

    2012-02-14T23:59:59.000Z

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of a limited number of demand response technologies and implementations deployed in the SGIG projects.

  8. Technology Investment Agreements | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|Idaho |EnergyTankless or Demand-TypeTechnology

  9. Advanced Technology Briefing to VLT/PAC

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Advanced Technology Briefing to VLT/PAC Mohamed Abdou VLT, San Diego December 10, 1998 #12;M. Abdou VLT/PAC Meeting, Dec. 10, 1998 Advanced Technology ­ Scope Advanced technology is concerned with the longer-term technologies for high power density fusion systems that will have the greatest impact

  10. Advanced Thermoelectric Materials and Generator Technology for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM...

  11. Advanced Diesel Engine and Aftertreatment Technology Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Aftertreatment Technology Development for Tier 2 Emissions Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003 DEER Conference...

  12. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Savers [EERE]

    (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies...

  13. NERSC Frontiers in Advanced Storage Technology Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage R&D Frontiers in Advanced Storage Technologies (FAST) project Working with vendors to develop new functionality in storage technologies generally not yet available to...

  14. Effects of Advanced Combustion Technologies on Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Technologies on Particulate Matter Emissions Characteristics Effects of Advanced Combustion Technologies on Particulate Matter Emissions Characteristics...

  15. Technology and Architecture: Informing Investment Decisions for the Future of Human Space Exploration

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Technology and Architecture: Informing Investment Decisions for the Future of Human Space AND ASTRONAUTICS AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY SEPTEMBER 2012 © 2012 Massachusetts Institute of Technology. All rights reserved. Signature of Author

  16. Advanced Modular Inverter Technology Development

    SciTech Connect (OSTI)

    Adam Szczepanek

    2006-02-04T23:59:59.000Z

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

  17. Technology Decisions Under Architectural Uncertainty: Informing Investment Decisions Through Tradespace Exploration

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Technology Decisions Under Architectural Uncertainty: Informing Investment Decisions Through§ Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 DOI: 10.2514/1.A32562 Although NASA has-term investment in the enabling technologies that will be required for these future systems. Given

  18. Numerical Investigation of Advanced Compressor Technologies

    Broader source: Energy.gov [DOE]

    The purpose of the work was to explore advanced boost technologies to support clean diesel combustion, such as HCCI/LTC applications.

  19. Vehicle Technologies Office: Advanced Battery Development, System...

    Broader source: Energy.gov (indexed) [DOE]

    materials and applied battery research into full battery systems for vehicles. The Vehicle Technologies Office's (VTO) Advanced Battery Development, System Analysis, and...

  20. Advanced Vehicle Technology Analysis & Evaluation Team

    Broader source: Energy.gov [DOE]

    Presentation on Advanced Vehicle Technology Analysis & Evaluation Team to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  1. Vehicle Technologies Office: 2011 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    Motors R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Electro-thermal-mechanical...

  2. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Energy Savers [EERE]

    Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. ctabwebinarcarbohyd...

  3. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Office of Environmental Management (EM)

    Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production....

  4. Energy Department Announces New Investments in Advanced Nuclear...

    Broader source: Energy.gov (indexed) [DOE]

    said Energy Secretary Ernest Moniz. With support from the Energy Department, private industry and the Department's national laboratories have achieved significant advances that...

  5. Secretary Chu Announces Nearly $80 Million Investment for Advanced...

    Broader source: Energy.gov (indexed) [DOE]

    of nearly 80 million under the American Recovery and Reinvestment Act for advanced biofuels research and fueling infrastructure that will help support the development of a clean...

  6. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)

    SciTech Connect (OSTI)

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-12-01T23:59:59.000Z

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity. Retrofit technologies that address the challenges of slow-speed integral compression are: (1) optimum turndown using a combination of speed and clearance with single-acting operation as a last resort; (2) if single-acting is required, implement infinite length nozzles to address nozzle pulsation and tunable side branch absorbers for 1x lateral pulsations; and (3) advanced valves, either the semi-active plate valve or the passive rotary valve, to extend valve life to three years with half the pressure drop. This next generation of slow-speed compression should attain 95% efficiency, a three-year valve life, and expanded turndown. New equipment technologies that address the challenges of large-horsepower, high-speed compression are: (1) optimum turndown with unit speed; (2) tapered nozzles to effectively reduce nozzle pulsation with half the pressure drop and minimization of mechanical cylinder stretch induced vibrations; (3) tunable side branch absorber or higher-order filter bottle to address lateral piping pulsations over the entire extended speed range with minimal pressure drop; and (4) semi-active plate valves or passive rotary valves to extend valve life with half the pressure drop. This next generation of large-horsepower, high-speed compression should attain 90% efficiency, a two-year valve life, 50% turndown, and less than 0.75 IPS vibration. This program has generated proof-of-concept technologies with the potential to meet these ambitious goals. Full development of these identified technologies is underway. The GMRC has committed to pursue the most promising enabling technologies for their industry.

  7. Assessing Early Investments in Low Carbon Technologies under Uncertainty: The Case of Carbon Capture and Storage

    E-Print Network [OSTI]

    Assessing Early Investments in Low Carbon Technologies under Uncertainty: The Case of Carbon and Policy Program #12;2 #12;3 Assessing Early Investments in Low Carbon Technologies under Uncertainty: The Case of Carbon Capture and Storage By Eleanor Ereira Submitted to the Engineering Systems Division

  8. Energy Department Invests $20 Million to Advance Hydrogen Production...

    Office of Environmental Management (EM)

    Developing technologies that can economically produce and deliver hydrogen to power fuel cells from diverse, domestic, and renewable resources can enable substantial...

  9. Valuation of Information Technology Investments as Real Options

    E-Print Network [OSTI]

    Schwartz, Eduardo S.; Zozaya-Gorostiza, Carlos

    2000-01-01T23:59:59.000Z

    1999) A Case for Using Real Options Pricing Analysis toExpansion Using Real Options Analysis. MIS Quarterly. Vol.Investment Opportunities as Real Options: Getting Started on

  10. ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE

    Broader source: Energy.gov (indexed) [DOE]

    AND ENGINEERING Under the Advanced Fuels Cycle Initiative, Transmutation Science and Engineering is divided into four subprograms: Physics, Structural Materials, Materials...

  11. Lighting Business Case -- A Report Analyzing Lighting Technology Opportunities with High Return on Investment Energy Savings for the Federal Sector

    SciTech Connect (OSTI)

    Jones, Carol C.; Richman, Eric E.

    2005-12-30T23:59:59.000Z

    This document analyzes lighting technology opportunities with high return on investment energy savings for the Federal sector.

  12. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels Cross-cutting...

  13. A case for Sandia investment in complex adaptive systems science and technology.

    SciTech Connect (OSTI)

    Colbaugh, Richard; Tsao, Jeffrey Yeenien; Johnson, Curtis Martin; Backus, George A.; Brown, Theresa Jean; Jones, Katherine A.

    2012-05-01T23:59:59.000Z

    This white paper makes a case for Sandia National Laboratories investments in complex adaptive systems science and technology (S&T) -- investments that could enable higher-value-added and more-robustly-engineered solutions to challenges of importance to Sandia's national security mission and to the nation. Complex adaptive systems are ubiquitous in Sandia's national security mission areas. We often ignore the adaptive complexity of these systems by narrowing our 'aperture of concern' to systems or subsystems with a limited range of function exposed to a limited range of environments over limited periods of time. But by widening our aperture of concern we could increase our impact considerably. To do so, the science and technology of complex adaptive systems must mature considerably. Despite an explosion of interest outside of Sandia, however, that science and technology is still in its youth. What has been missing is contact with real (rather than model) systems and real domain-area detail. With its center-of-gravity as an engineering laboratory, Sandia's has made considerable progress applying existing science and technology to real complex adaptive systems. It has focused much less, however, on advancing the science and technology itself. But its close contact with real systems and real domain-area detail represents a powerful strength with which to help complex adaptive systems science and technology mature. Sandia is thus both a prime beneficiary of, as well as potentially a prime contributor to, complex adaptive systems science and technology. Building a productive program in complex adaptive systems science and technology at Sandia will not be trivial, but a credible path can be envisioned: in the short run, continue to apply existing science and technology to real domain-area complex adaptive systems; in the medium run, jump-start the creation of new science and technology capability through Sandia's Laboratory Directed Research and Development program; and in the long run, inculcate an awareness at the Department of Energy of the importance of supporting complex adaptive systems science through its Office of Science.

  14. COLLOQUIUM: Advanced Simulation for Technology Innovation and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27, 2015, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Advanced Simulation for Technology Innovation and Science Discovery Dr. Scott Stanton ANSYS, Inc. Colloquium...

  15. 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced Combustion Advanced combustion research and development merit review results 2010amr04.pdf...

  16. Advanced Combustion Technology to Enable High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Enable High Efficiency Clean Combustion Advanced Combustion Technology to Enable High Efficiency Clean Combustion Summary of advanced combustion research at Cummins...

  17. Demonstrating Optimum HCCI Combustion with Advanced Control Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimum HCCI Combustion with Advanced Control Technology Demonstrating Optimum HCCI Combustion with Advanced Control Technology Presentation given at the 2007 Diesel...

  18. Advanced Natural Gas Engine Technology for Heavy Duty Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    ALTERNATIVE. EVERY Advanced Natural Gas Engine Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Technology for Heavy Duty Vehicles Dr. Mostafa M Kamel Dr. Mostafa M...

  19. Green Racing: Accelerating the Use of Advanced Technologies ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Use of Advanced Technologies & Renewable Fuels, Developing Market Acceptance Green Racing: Accelerating the Use of Advanced Technologies & Renewable Fuels, Developing...

  20. Green Racing Initiative: Accelerating the Use of Advanced Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Racing Initiative: Accelerating the Use of Advanced Technologies & Renewable Fuels Green Racing Initiative: Accelerating the Use of Advanced Technologies & Renewable Fuels 2011 DOE...

  1. ITP Metal Casting: Advanced Melting Technologies: Energy Saving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and...

  2. Oregon: DOE Advances Game-Changing EGS Geothermal Technology...

    Office of Environmental Management (EM)

    DOE Advances Game-Changing EGS Geothermal Technology at the Newberry Volcano Oregon: DOE Advances Game-Changing EGS Geothermal Technology at the Newberry Volcano April 9, 2013 -...

  3. Overview of the Batteries for Advanced Transportation Technologies...

    Energy Savers [EERE]

    the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Presentation from the U.S....

  4. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D...

  5. Air Cooling Technology for Advanced Power Electronics and Electric...

    Broader source: Energy.gov (indexed) [DOE]

    Air Cooling Technology for Advanced Power Electronics and Electric Machines Air Cooling Technology for Advanced Power Electronics and Electric Machines 2009 DOE Hydrogen Program...

  6. DOE Seeking Proposals to Advance Distributed Wind Turbine Technology...

    Office of Environmental Management (EM)

    Seeking Proposals to Advance Distributed Wind Turbine Technology and Manufacturing DOE Seeking Proposals to Advance Distributed Wind Turbine Technology and Manufacturing December...

  7. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar...

    Broader source: Energy.gov (indexed) [DOE]

    Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Presentation slides from the joint Fuel Cell...

  8. U.S. Offshore Wind Advanced Technology Demonstration Projects...

    Energy Savers [EERE]

    U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration...

  9. Foreign direct investment, intra-organizational proximity, and technological capability : the case of China's automobile industry

    E-Print Network [OSTI]

    Nam, Kyung-min

    2010-01-01T23:59:59.000Z

    This dissertation consists of three self-contained essays, each of which examines part of the causal link among inward/outward foreign direct investment (FDI), intra-organizational proximity, and in-house technology ...

  10. Energy Department Invests $7 Million to Commercialize Fuel Cells...

    Energy Savers [EERE]

    than 7 million for projects that will help bring cost-effective, advanced hydrogen and fuel cell technologies online faster. This investment-across four projects in Georgia,...

  11. Department of Energy Recovery Act Investment in Biomass Technologies...

    Energy Savers [EERE]

    and deployment. arrasummaryfactsheetweb.pdf More Documents & Publications Algae Biofuels Technology Bioenergy Technologies Office Overview Growing America's Energy...

  12. Ceramic Technology for Advanced Heat Engines Project

    SciTech Connect (OSTI)

    Not Available

    1990-08-01T23:59:59.000Z

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  13. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2005-11-04T23:59:59.000Z

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  14. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2006-05-15T23:59:59.000Z

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  15. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect (OSTI)

    Christopher E. Hull

    2006-09-30T23:59:59.000Z

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  16. A boom in energy technology innovation despite decades of stagnant investment

    SciTech Connect (OSTI)

    Bettencourt, Luis M [Los Alamos National Laboratory; Trancik, Jessika A [SANTA FE INSTITUTE; Kaur, Jasleen [INDIANA UNIV

    2009-01-01T23:59:59.000Z

    Rates of patenting in energy technologies in the United States stagnated during a period of low federal investment in the sector from the mid-1980's through 2000. To analyze the current state of the field, we built a new comprehensive database of energy patents in the USA and worldwide aggregated by nation and technology. We show that innovation in energy technologies, as measured by numbers of new patents, has grown dramatically over the last decade both for renewable and fossil fuel-based technologies, but that traditional investment -government and private support for research and development (R&D) -has not risen commensurately. We also show that while venture capital investment in the sector has increased significantly in the last few years it lags the observed uptick in patenting. We find increasing patenting rates in nations worldwide but also differences in regional priorities, as well as a marked divergence in innovation rates across technologies. Renewable energy technologies - especially solar and wind - currently show the fastest rates of innovation, while patenting levels in nuclear fission have remained low despite relatively high levels of sustained investment. While this sharp increase of innovative activity bodes well for change in the energy sector, the future of emerging technologies may hinge on sustained investment in R&D and favorable incentives for market entry.

  17. Research on advanced photovoltaic manufacturing technology

    SciTech Connect (OSTI)

    Jester, T.; Eberspacher, C. (Siemens Solar Industries, Camarillo, CA (United States))

    1991-11-01T23:59:59.000Z

    This report outlines opportunities for significantly advancing the scale and economy of high-volume manufacturing of high-efficiency photovoltaic (PV) modules. We propose to pursue a concurrent effort to advance existing crystalline silicon module manufacturing technology and to implement thin film CuInSe{sub 2} (CIS) module manufacturing. This combination of commercial-scale manufacturing of high-efficiency crystalline silicon modules and of pilot-scale manufacturing of low-cost thin film CIS technology will support continued, rapid growth of the US PV industry.

  18. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Thermal Energy Storage

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Bonebrake, Christopher A.

    2012-02-14T23:59:59.000Z

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of energy storage technologies deployed in the SGIG projects.

  19. CO2 Emissions Mitigation and Technological Advance: An

    E-Print Network [OSTI]

    PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Updated Analysis of Advanced/2003) #12;PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Analysis of Advanced Technology of atmospheric CO2 concentrations at 450 parts per million by volume (ppmv) and 550 ppmv in MiniCAM. Each

  20. Electrochromic Windows: Advanced Processing Technology

    SciTech Connect (OSTI)

    SAGE Electrochromics, Inc

    2006-12-13T23:59:59.000Z

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

  1. Advanced Manufacturing Office (Formerly Industrial Technologies Program)

    E-Print Network [OSTI]

    Advanced Manufacturing Office (Formerly Industrial Technologies Program) Leo Christodoulou Jamie August 11, 2011 #12;Background and Opportunity Background Industry accounts for 30% of energy consumption-value industries such as the renewable energy industry. Example materials include low-cost carbon fiber, low

  2. Advanced technologies for perimeter intrusion detection sensors

    SciTech Connect (OSTI)

    Williams, J.D.

    1995-03-01T23:59:59.000Z

    The development of integrated circuit fabrication techniques and the resulting devices have contributed more to the advancement of exterior intrusion detectors and alarm assessment devices than any other technology. The availability of this technology has led to the improvements in and further development of smaller more powerful computers, microprocessors, solid state memories, solid state cameras, thermal imagers, low-power lasers, and shorter pulse width and higher frequency electronic circuitry. This paper presents information on planning a perimeter intrusion detection system, identifies the site characteristics that affect its performance, and describes improvements to perimeter intrusion detection sensors and assessment devices that have been achieved by using integrated circuit technology.

  3. Advanced energy design and operation technologies

    SciTech Connect (OSTI)

    Brambley, M.R.; Crawley, D.B.

    1988-09-01T23:59:59.000Z

    Current practice in design of commercial buildings does not adequately consider the relationships between design decisions and energy performance. Estimates indicate that if energy criteria were integral to the design process, more than 15% of the energy used in new buildings could be conserved. This could be done using readily available energy-efficient design knowledge, without any increase in first costs. Furthermore, building design necessarily involves assumptions concerning use and operation of the building once it is built. Currently, operations practices intended by the designer are not adequately transferred during commissioning to building operators for use as guides during operation. Advanced technologies for overcoming these problems are described in this paper. The advanced energy design and operations technologies will consist of an intelligent automated design advisor that utilizes artificial intelligence and other advanced computer technologies to provide assistance to and encourage interaction among all participants in the design process. Assistance will be provided at all points in the building design process, especially in the early phases of design (e.g., during building programming) where decisions can have particularly significant impacts on energy consumption. The technology used for the design advisor will facilitate transfer of critical operation guidance to building operators and, coupled with monitoring technology, provide feedback on performance to the design process. 4 refs., 1 fig.

  4. Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual...

    Broader source: Energy.gov (indexed) [DOE]

    Annual report on the work of the the Advanced Combustion Engine R&D subprogram that focuses on developing advanced ICE technologies for all highway transportation vehicles....

  5. Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Nanolubricants for Improved Energy Efficiency and Reduced Emissions in Engines Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants for Improved Energy...

  6. Vehicle Technologies Office Merit Review 2014: Advancing Alternative...

    Energy Savers [EERE]

    Office Merit Review 2014: Advancing Alternative Fuel Markets in Florida Vehicle Technologies Office Merit Review 2014: Advancing Alternative Fuel Markets in Florida Presentation...

  7. EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing...

    Broader source: Energy.gov (indexed) [DOE]

    Dearborn, Inc., for Advanced Technology Vehicles Manufacturing Project in Dearborn, Michigan February 18, 2011 EA-1834: Finding of No Significant Impact Proposed Advanced...

  8. advanced integration technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Advanced Microslice Technologies for Hyperspectral Imaging We present the design for a novel snapshot hyperspectral imager based on the use of advanced micro-optics...

  9. Energy Department Invests $10M Through the Fuel Cell Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cell Technologies Office (FCTO) has selected 11 projects to receive up to 10M in funding in support of innovations in fuel cell and hydrogen fuel technologies. The intention...

  10. Energy Department Invests $60 Million to Advance Nuclear Technology |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen O'KaneSystemsDepartment of Energy News Media

  11. Energy Department Invests $67 Million to Advanced Nuclear Technology |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNF &Department of

  12. North Central Texas Alternative Fuel and Advanced Technology Investments |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy North AmericanDepartment of

  13. North Central Texas Alternative Fuel and Advanced Technology Investments |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy North AmericanDepartment ofDepartment of

  14. North Central Texas Alternative Fuel and Advanced Technology Investments |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy North AmericanDepartment ofDepartment

  15. Energy Department Invests $60 Million to Advance Nuclear Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |in STEM Education |DepartmentSolarDepartmentDepartment of

  16. Energy Department Invests $67 Million to Advanced Nuclear Technology |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014Compliance Rates | Department ofDepartment of

  17. ARIES-AT: AN ADVANCED TOKAMAK, ADVANCED TECHNOLOGY FUSION POWER PLANT

    E-Print Network [OSTI]

    California at San Diego, University of

    ARIES-AT: AN ADVANCED TOKAMAK, ADVANCED TECHNOLOGY FUSION POWER PLANT F. Najmabadi, S. C. Jardin*,6 of high-performance tokamak plasmas together with advanced technology in a fusion power plant. Several and advanced technology leads to attractive fusion power plant with excellent safety and environmental

  18. Ceramic technology for advanced heat engines project

    SciTech Connect (OSTI)

    Not Available

    1990-09-01T23:59:59.000Z

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  19. Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual...

    Broader source: Energy.gov (indexed) [DOE]

    10advcombustionengine.pdf More Documents & Publications Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2011...

  20. Advances in Diesel Engine Technologies for European Passenger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Technologies for European Passenger Vehicles Advances in Diesel Engine Technologies for European Passenger Vehicles 2002 DEER Conference Presentation: Volkswagen AG...

  1. advanced technology opportunities: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modern day high technology society. I have identified in Table 1, for various biomass feedstocks, the barriers... Waller, J. 12 SCANNING THE TECHNOLOGY Scanning Advanced...

  2. Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual Progress Report The Advanced Combustion Engine R&D subprogram...

  3. Advanced Technology and Alternative Fuel Vehicle Basics | Department...

    Energy Savers [EERE]

    Advanced Technology and Alternative Fuel Vehicle Basics Advanced Technology and Alternative Fuel Vehicle Basics August 20, 2013 - 9:00am Addthis Photo of a large blue truck with...

  4. Advanced pyrochemical technologies for minimizing nuclear waste

    SciTech Connect (OSTI)

    Bronson, M.C.; Dodson, K.E.; Riley, D.C.

    1994-06-01T23:59:59.000Z

    The Department of Energy (DOE) is seeking to reduce the size of the current nuclear weapons complex and consequently minimize operating costs. To meet this DOE objective, the national laboratories have been asked to develop advanced technologies that take uranium and plutonium, from retired weapons and prepare it for new weapons, long-term storage, and/or final disposition. Current pyrochemical processes generate residue salts and ceramic wastes that require aqueous processing to remove and recover the actinides. However, the aqueous treatment of these residues generates an estimated 100 liters of acidic transuranic (TRU) waste per kilogram of plutonium in the residue. Lawrence Livermore National Laboratory (LLNL) is developing pyrochemical techniques to eliminate, minimize, or more efficiently treat these residue streams. This paper will present technologies being developed at LLNL on advanced materials for actinide containment, reactors that minimize residues, and pyrochemical processes that remove actinides from waste salts.

  5. Advanced Oxidation Technology for Pulp Mill Effluent

    E-Print Network [OSTI]

    Hart, J. R.

    ADVANCED OXIDATION TECHNOLOGY FOR PULP MILL EFFLUENT J. ROBERT HART, MANAGER, EPRI PULP & PAPER OFFICE, ATLANTA, GA ABSTRACT The composition of effluent from various pulping processes can exhibit a wide range of physical and chemical... an oxidation and photolysis process. AOP FEASIBILITY STUDY The application of AOP for the treatment of pulp mill effluent was demonstrated in an EPRI Co-funded Project (1). This Project had the industrial support of about twenty companies and utilities...

  6. advanced information technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    imperative. Proposed: Highly Coordinated Model - The IT directors serve Minnesota, University of 2 ADVANCED TECHNOLOGY PROGRAM INFORMATION INFRASTRUCTURE FOR HEALTHCARE...

  7. Institute for Software Technology Ad anced RoboticsAdvanced Robotics

    E-Print Network [OSTI]

    Interaction #12;Institute for Software Technology Application Areas Gerald Steinbauer 3 Advanced RoboticsInstitute for Software Technology Ad anced RoboticsAdvanced Robotics Human Robot Interaction Gerald Steinbauer Institute for Software Technology Gerald Steinbauer 1 Advanced Robotics ­ Human Robot Interaction

  8. VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology

    E-Print Network [OSTI]

    VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology 2007 Annual Report Visiting Committee on Advanced Technology of the National Institute of Standards and Technology U.S. Department of Commerce March 3, 2008 #12;VISITING COMMITTEE ON ADVANCED TECHNOLOGY National

  9. Ceramic technology for Advanced Heat Engines Project

    SciTech Connect (OSTI)

    Johnson, D.R.

    1991-07-01T23:59:59.000Z

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  10. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Hugh W. Rimmer

    2004-05-12T23:59:59.000Z

    This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

  11. Foreign Direct Investment, Intra-organizational Proximity, and Technological Capability: The Case of China's Automobile Industry

    E-Print Network [OSTI]

    direct investment (FDI), intra-organizational proximity, and in-house technology development performances partners, the IJV arrangement is likely to create a "passive" learning mode where foreign firms determine-by-doing practices. Accordingly, outward FDI can augment "active" nature in the "passive" learning mode created

  12. P.G. Ioannou and L.Y. Liu Advanced Construction Technology System ACTS Advanced Construction Technology System ACTS

    E-Print Network [OSTI]

    .G. Ioannou and L.Y. Liu Advanced Construction Technology System ­ ACTS 2 INTRODUCTION The rising cost, and to decrease costs. New technology provides a driving force to change decisions at the design stageP.G. Ioannou and L.Y. Liu Advanced Construction Technology System ­ ACTS 1 Advanced Construction

  13. IPIRG programs - advances in pipe fracture technology

    SciTech Connect (OSTI)

    Wilkowski, G.; Olson, R.; Scott, P. [Batelle, Columbus, OH (United States)

    1997-04-01T23:59:59.000Z

    This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

  14. CO2 Emissions Mitigation and Technological Advance: An

    E-Print Network [OSTI]

    PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Updated Analysis of Advanced/2003) #12;PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Analysis of Advanced Technology electricity 16.9 29.0 44.7 65.7 89.2 114.3 145.2 174.8 EJ/yr building trad biomass 23.5 29.9 32.1 27.9 22.9 17

  15. Advanced Mechanical Heat Pump Technologies for Industrial Applications

    E-Print Network [OSTI]

    Mills, J. I.; Chappell, R. N.

    , advanced chemical and mechanical heat pump technologies are being developed for industrial application. Determining which technologies are appropriate for particular industrial applications and then developing those technologies is a stepped process which...

  16. VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology

    E-Print Network [OSTI]

    VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology FY 2006 Annual Report U.S. Department of Commerce Technology Administration National Institute of Standards and Technology #12;VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology

  17. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    SciTech Connect (OSTI)

    Charles M. Boyer II; Ronald J. MacDonald P.G.

    2002-04-01T23:59:59.000Z

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger--Holditch Reservoir Technologies (H-RT) joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden and Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners previously provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have enhanced and streamlined our software, and we are beta-testing the final stages of our new Microsoft{trademark} Access/Excel based software. We have processed all well information and identified potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, the final technical report is almost finished and a draft version is being reviewed by Gary Covatch.

  18. Systematic Discrimination of Advanced Hydrogen Production Technologies

    SciTech Connect (OSTI)

    Charles V. Park; Michael W. Patterson

    2010-07-01T23:59:59.000Z

    The U.S. Department of Energy, in concert with industry, is developing a high-temperature gas-cooled reactor at the Idaho National Laboratory (INL) to demonstrate high temperature heat applications to produce hydrogen and electricity or to support other industrial applications. A key part of this program is the production of hydrogen from water that would significantly reduce carbon emissions compared to current production using natural gas. In 2009 the INL led the methodical evaluation of promising advanced hydrogen production technologies in order to focus future resources on the most viable processes. This paper describes how the evaluation process was systematically planned and executed. As a result, High-Temperature Steam Electrolysis was selected as the most viable near-term technology to deploy as a part of the Next Generation Nuclear Plant Project.

  19. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Distributed Generation

    SciTech Connect (OSTI)

    Singh, Ruchi; Vyakaranam, Bharat GNVSR

    2012-02-14T23:59:59.000Z

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of addition of renewable resources- solar and wind in the distribution system as deployed in the SGIG projects.

  20. Advanced Electric Traction System Technology Development

    SciTech Connect (OSTI)

    Anderson, Iver

    2011-01-14T23:59:59.000Z

    As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

  1. Transportation Energy Futures Series: Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints

    SciTech Connect (OSTI)

    Plotkin, S.; Stephens, T.; McManus, W.

    2013-03-01T23:59:59.000Z

    Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could be used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  2. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2005-01-20T23:59:59.000Z

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/Biological Extraction; (4) Modeling and Control; and (5) Environmental Control.

  3. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect (OSTI)

    Christopher Hull

    2009-10-31T23:59:59.000Z

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  4. advanced simulation technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of high-performance tokamak plasmas together with advanced technology in a fusion power plant. Several to ARIES-RS that led to plasmas with higher N and . Advanced...

  5. advanced simulation technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of high-performance tokamak plasmas together with advanced technology in a fusion power plant. Several to ARIES-RS that led to plasmas with higher N and . Advanced...

  6. Under Secretary of Energy Highlights Advanced Energy Technologies...

    Energy Savers [EERE]

    today visited the General Motors (GM) Advanced Technologies Facility in Honeoye Falls, New York, with Rep. Randy Kuhl (NY-29th), to tour the facility and view new advanced energy...

  7. ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT

    SciTech Connect (OSTI)

    Charles M. Boyer II; Ronald J. MacDonald P.G.

    2002-01-01T23:59:59.000Z

    As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have continued to enhance and streamline our software, and we are testing the final stages of our new Microsoft{trademark} Access/Excel based software. We are continuing to process the information and are identifying potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, preparation of the final technical report is underway. During this quarter, we have presented our project and discussed the software to numerous Petroleum Technology Transfer Council (PTTC) workshops located in various regions of the United States.

  8. Vehicle Technologies Office Merit Review 2014: Advanced in situ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in situ Diagnostic Techniques for Battery Materials Vehicle Technologies Office Merit Review 2014: Advanced in situ Diagnostic Techniques for Battery Materials Presentation given...

  9. advanced technologies based: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ramezan 135 A backcast methodology for planning and justification of advanced manufacturing technology acquisition: A model of capability building process. Open Access Theses...

  10. Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth...

    Broader source: Energy.gov (indexed) [DOE]

    3008 HYbrid4 DOE strategic goalsbarriers addressed - F: Constant advances in technology - D: Lack of standardized test protocols - E: Computational models, design and...

  11. Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth...

    Broader source: Energy.gov (indexed) [DOE]

    Other Institutions 13 J1711 HEV & PHEV test procedures In-depth Benchmarking DOE technology evaluation * DOE requests * National Lab requests AVTA (Advanced Vehicle Testing...

  12. Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual Progress Report 2008advcombustionengine.pdf More Documents & Publications...

  13. Vehicle Technologies Office Merit Review 2014: Advanced Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts - enabling systems and solutions for high efficiency light duty vehicles....

  14. Vehicle Technologies Office Merit Review 2014: Advanced Combustion and Fuels

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion and fuels.

  15. Advanced Technology Planning for Energy Savings Performance Contracts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to deploy advanced technologies using energy savings performance contracts (ESPC). A federal project executive (FPE) will work with a project facilitator and a U.S....

  16. Overview of the Batteries for Advanced Transportation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. es15srinivasan.pdf More Documents & Publications Overview of the Batteries for Advanced Transportation Technologies (BATT) Program BATT Program- Summary and...

  17. Overview of the Batteries for Advanced Transportation Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    es00bduong2010o.pdf More Documents & Publications Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of...

  18. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle testing and...

  19. Climate Change Mitigation: An Analysis of Advanced Technology Scenarios

    SciTech Connect (OSTI)

    Clarke, Leon E.; Wise, Marshall A.; Placet, Marylynn; Izaurralde, R Cesar; Lurz, Joshua P.; Kim, Son H.; Smith, Steven J.; Thomson, Allison M.

    2006-09-18T23:59:59.000Z

    This report documents a scenario analysis that explores three advanced technology pathways toward climate stabilization using the MiniCAM model.

  20. Alternative Fuel and Advanced Technology Vehicles Pilot Program...

    Open Energy Info (EERE)

    Program Emissions Benefit Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool...

  1. Advanced Ceramic Materials and Packaging Technologies for Realizing...

    Broader source: Energy.gov (indexed) [DOE]

    Thermal Hydraulic Laboratory Project start date: November 15, 2012 Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power...

  2. Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

  3. Overview of the Batteries for Advanced Transportation Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Tien Duong Hybrid Electric Systems U.S. Department of Energy Annual Merit Review Overview of the Batteries for Advanced Transportation Technologies (BATT) Program June 8, 2010...

  4. advanced technology transportation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Websites Summary: 1 NATIONAL INSTITUTE FOR ADVANCED TRANSPORTATION TECHNOLOGY FUNDING PERIOD JULY 1, 2005 THROUGH JUNE 30, 2006 - FY05 PREPARED FOR UNIVERSITY...

  5. IMPROVING FISHERIES SCIENCE WITH ADVANCED SAMPLING TECHNOLOGIES FEATURE ARTICLE 2

    E-Print Network [OSTI]

    of advanced sam- pling technologies for providing accurate, precise, and timely population estimates density) in red. Echogram images are vertically exag- gerated to highlight features and patterns

  6. advanced materials technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hiring areas are: Novel Sustainable Materials Alpay, S. Pamir 3 ADVANCED COMPOSITE MATERIALS TECHNOLOGY FOR ROTORCRAFT Andrew Makeev*, University of Texas at Arlington,...

  7. advanced technological materials: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hiring areas are: Novel Sustainable Materials Alpay, S. Pamir 3 ADVANCED COMPOSITE MATERIALS TECHNOLOGY FOR ROTORCRAFT Andrew Makeev*, University of Texas at Arlington,...

  8. Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology...

    Open Energy Info (EERE)

    Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To Efficiently Exploit Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last...

  9. Vehicle Technologies Office Merit Review 2015: Advanced Combustion and Fuels

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about advanced...

  10. Air Cooling Technology for Advanced Power Electronics and Electric...

    Broader source: Energy.gov (indexed) [DOE]

    Desikan Bharathan National Renewable Energy Laboratory Friday May 22, 2009 Air Cooling Technology for Advanced Power Electronics and Electric Machines ape12bharathan This...

  11. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading...

    Office of Environmental Management (EM)

    Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading PNNL report-out at the CTAB webinar on Bio-Oil Upgrading. ctabwebinarbiooilsupgrading.pdf More...

  12. Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

    Broader source: Energy.gov (indexed) [DOE]

    International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels - Bio-Oil Production. ctabwebinarbiooilsproduction.pdf More Documents &...

  13. Sec. Chu Announces the First Auto Loans for Advanced Technologies

    Broader source: Energy.gov [DOE]

    In Dearborn, Michigan Energy Secretary Steven Chu announced $8 billion in conditional loan commitments for the development of innovative, advanced vehicle technologies that will create thousands of...

  14. advanced combustion technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 101 Using HCI Guidelines to Foster Technological Advancement in Sub-Saharan Africa Computer Technologies and...

  15. Vehicle Technologies Office Merit Review 2014: Advanced Battery Recycling

    Broader source: Energy.gov [DOE]

    Presentation given by OnTo Technology LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced battery recycling.

  16. Advances in Chip Technology, Packaging Enable White LED Breakthroughs

    Broader source: Energy.gov [DOE]

    Significant advances in chip technology have enabled Cree, Inc.'s Santa Barbara Technology Center to demonstrate white LEDs with record efficacies as high as 74 lumens per watt - on par with...

  17. Advancing healthcare technology through insight, innovation, and leadership

    E-Print Network [OSTI]

    Soloveichik, David

    Advancing healthcare technology through insight, innovation, and leadership Master of Translational medical technologies and improving healthcare delivery? Successful medical innovation requires more than of medical innovators. Applications are open to engineers, scientists, and clinicians with a passion

  18. Energy Department Announces New Concentrating Solar Power Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    approach to American energy, these SunShot investments will help American companies and technologies advance cutting-edge solar technologies that will help U.S....

  19. Investing in Math Education

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investing in Math Education 1663 Los Alamos science and technology magazine Latest Issue:January 2015 All Issues submit Investing in Math Education Making good on the Lab's...

  20. VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology

    E-Print Network [OSTI]

    VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology 1 2009 Annual Report Visiting Committee on Advanced Technology (VCAT) of the National Institute of Standards and Technology U.S. Department of Commerce March 3, 2010 #12;VISITING COMMITTEE

  1. Sec. Chu Announces the First Auto Loans for Advanced Technologies

    SciTech Connect (OSTI)

    Secretary Chu

    2009-07-16T23:59:59.000Z

    Energy Secretary Steven Chu announced $8 billion in conditional loan commitments for the development of innovative, advanced vehicle technologies that will create thousands of green jobs while helping reduce the nation’s dangerous dependence on foreign oil. The first three auto loans for advanced technologies were awarded to Ford Motor Company, Nissan Motors and Tesla Motors.

  2. Sec. Chu Announces the First Auto Loans for Advanced Technologies

    ScienceCinema (OSTI)

    Secretary Chu

    2010-09-01T23:59:59.000Z

    Energy Secretary Steven Chu announced $8 billion in conditional loan commitments for the development of innovative, advanced vehicle technologies that will create thousands of green jobs while helping reduce the nation?s dangerous dependence on foreign oil. The first three auto loans for advanced technologies were awarded to Ford Motor Company, Nissan Motors and Tesla Motors.

  3. Contract, Renegotiation, and Hold Up: Results on the Technology of Trade and Investment

    E-Print Network [OSTI]

    Buzard, Kristy; Watson, Joel

    2010-01-01T23:59:59.000Z

    state, gross of any investment costs. In fact, we show thatnot including any sunk investment costs from Date 2 in thefrom trade (gross of investment cost) is B(a, ?) = 8a ? 2a 2

  4. Vehicle Technologies Office: 2010 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    APEEM subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is...

  5. Novel Catalytic Fuel Reforming Using Micro-Technology with Advanced Separations Technology

    E-Print Network [OSTI]

    Novel Catalytic Fuel Reforming Using Micro-Technology with Advanced Separations Technology Patricia by the combustion of membrane raffinate for the production of clean hydrogen by steam reforming natural gas. Advanced membrane technology is being used to remove CO and CO2 from the reformate. The fuel processor

  6. ADVANCES IN TECHNOLOGY-BASED EDUCATION: TOWARDS A KNOWLEDGE

    E-Print Network [OSTI]

    Lobo, Fernando

    these technologies in a natural way. In our opinion, this preparation must start soon, during pre-school, becauseADVANCES IN TECHNOLOGY-BASED EDUCATION: TOWARDS A KNOWLEDGE BASED SOCIETY Proceedings of the II International Conference on Multimedia and Information & Communication Technologies in Education m-ICTE2003 www

  7. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    SciTech Connect (OSTI)

    SAMS TL; MENDOZA RE

    2010-08-11T23:59:59.000Z

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  8. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    SciTech Connect (OSTI)

    SAMS TL

    2010-07-07T23:59:59.000Z

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  9. 2004 Physics and Advanced Technologies In the News

    SciTech Connect (OSTI)

    Hazi, A

    2005-11-01T23:59:59.000Z

    Several outstanding research activities in the Physics and Advanced Technology Directorate in 2004 were featured in ''Science & Technology Review'', the monthly publication of the Lawrence Livermore National Laboratory. Reprints of those articles accompany this report. Here we summarize other science and technology highlights, as well as the awards and recognition received by members of the Directorate in 2004.

  10. SEC. 3012. TECHNOLOGY INNOVATION PROGRAM. (a) REPEAL OF ADVANCED TECHNOLOGY PROGRAM.--Section 28

    E-Print Network [OSTI]

    Magee, Joseph W.

    SEC. 3012. TECHNOLOGY INNOVATION PROGRAM. (a) REPEAL OF ADVANCED TECHNOLOGY PROGRAM.--Section 28 of the National Institute of Standards and Technology Act (15 U.S.C. 278n) is repealed. (b) ESTABLISHMENT OF TECHNOLOGY INNOVATION PROGRAM.-- The National Institute of Standards and Technology Act (15 U.S.C. 271 et seq

  11. Advanced Vehicle Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activities that provide data critical to the development and commercialization of next-generation vehicles Vehicle Electrification Advancing the future of electric vehicles...

  12. Recent Advances in Chamber Science and Technology

    E-Print Network [OSTI]

    Abdou, Mohamed

    with RAFS Advanced: He gas cooling system with SiC/SiC Research on several advanced concepts: FLiBe, Li, Li cooled blanket system for higher thermal efficiency - High temperature gas cooled blanket system with Si Programs on Chamber/Blanket · Recent Progress on Liquid Walls - IFE & MFE - Basic Principles - Plasma

  13. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect (OSTI)

    Jon Carmack

    2014-01-01T23:59:59.000Z

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  14. Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking (L1&L2)

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  15. Vehicle Technologies Office Merit Review 2015: Advanced Packaging Technologies and Designs

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  16. Gelcasting Alumina Cores for Investment Casting

    SciTech Connect (OSTI)

    Janney, M A; Klug, F J

    2001-01-01T23:59:59.000Z

    General Electric currently uses silica investment casting cores for making superalloy turbine blades. The silica core technology does not provide the degree of dimensional control needed for advanced turbine system manufacture. The sum of the various process variables in silica core manufacturing produces cores that have more variability than is allowed for in advanced, power-generation gas turbine airfoils.

  17. Advanced Technology Vehicle Lab Benchmarking- Level 1

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Neutron Imaging of Advanced Engine Technologies

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Hugh W. Rimmer

    2003-11-15T23:59:59.000Z

    The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (a) Solid-solid separation (b) Solid-liquid separation (c) Chemical/Biological Extraction (d) Modeling and Control, and (e) Environmental Control. Distribution of funds is being handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. The first of these solicitations, referred to as the CAST II-Round 1 RFP, was issued on October 28, 2002. Thirty-eight proposals were received by the December 10, 2002 deadline for this RFP-eleven (11) Solid-Solid Separation, seven (7) Solid-Liquid Separation, ten (10) Chemical/Biological Extraction, six (6) Modeling & Control and four (4) Environmental Control. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. This process took some 7 months to complete but 17 projects (one joint) were in place at the constituent universities (three at Virginia Tech, two at West Virginia University, three at University of Kentucky, three at University of Utah, three at Montana Tech, three at New Mexico Tech, and one at the University of Nevada, Reno) by May 17, 2003. These projects are listed by category, along with brief abstracts of their aims and objectives.

  20. Several engine technology advances show potential in labs; Part 2

    SciTech Connect (OSTI)

    McCoy, J.J. (Tenneco Gas Co., Houston, TX (United States)); Willson, B. (Colorado State Univ., Fort Collins, CO (United States). Engines and Energy Conservation Lab.)

    1994-07-01T23:59:59.000Z

    Cutting fuel consumption and reducing emissions are dominant goals of stationary gas engine operators. Recent technology advances show promise and could result in money-saving retrofit options. Selected new technologies include sensors, actuators--defined as anything controlling the engine: fuel and ignition--and control techniques. An attractive feature of most of these technologies is that they can be retrofitting onto existing engines, allowing the potential for improved performance at a fraction of engine replacement cost. This paper describes these technologies.

  1. Vehicle Technologies Office: 2013 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion R&D Annual Progress Report Vehicle Technologies Office: 2013 Advanced Combustion R&D Annual Progress Report This report describes the progress made on the research and...

  2. Live Webcast on Recent Wind Energy Technology Advances

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webcast titled “Recent Wind Technology Advances” on April 16, 2014, from 3:00 to 4:00 p.m. Eastern Standard Time.

  3. Summary Review of Advanced Inverter Technologies for Residential PV Systems

    E-Print Network [OSTI]

    Summary Review of Advanced Inverter Technologies for Residential PV Systems This report summarizes current and emerging standards for residential PV systems and identifies the status of emerging inverter................................................................................................ 7 3. Grid-Connected PV inverters available in US

  4. advanced composites technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 ADVANCED COMPOSITE MATERIALS TECHNOLOGY FOR ROTORCRAFT Andrew Makeev*, University of Texas at Arlington,...

  5. advanced technology composite: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 ADVANCED COMPOSITE MATERIALS TECHNOLOGY FOR ROTORCRAFT Andrew Makeev*, University of Texas at Arlington,...

  6. Portfolio evaluation of advanced coal technology : research, development, and demonstration

    E-Print Network [OSTI]

    Naga-Jones, Ayaka

    2005-01-01T23:59:59.000Z

    This paper evaluates the advanced coal technology research, development and demonstration programs at the U.S. Department of Energy since the 1970s. The evaluation is conducted from a portfolio point of view and derives ...

  7. Workshop on Conversion Technologies for Advanced Biofuels - Bio...

    Office of Environmental Management (EM)

    Bio-Oils Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils Introduction presentation report-out at the CTAB webinar on bio-oils. ctabwebinarbiooilsintro.pdf...

  8. Seven Universities Selected To Conduct Advanced Turbine Technology Studies

    Broader source: Energy.gov [DOE]

    Seven universities have been selected by the U.S. Department of Energy to conduct advanced turbine technology studies under the Office of Fossil Energy's University Turbine Systems Research Program.

  9. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    SciTech Connect (OSTI)

    Liby, Alan L [ORNL; Rogers, Hiram [ORNL

    2013-10-01T23:59:59.000Z

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  10. advanced radiation technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced radiation technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 February 2000 Advanced...

  11. advanced technology air: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced technology air First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 U.S.Air Force Advanced Power...

  12. advanced processing technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced processing technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 ADVANCED PLASMA-ETCHING...

  13. advanced treatment technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced treatment technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Advanced Robotics...

  14. advanced technology clinical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced technology clinical First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Advancing clinical gait...

  15. advanced sequenching technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced sequenching technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 February 2000 Advanced...

  16. advanced safeguards technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced safeguards technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 February 2000 Advanced...

  17. advanced separation technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced separation technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 February 2000 Advanced...

  18. advanced oxidation technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced oxidation technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Advanced Oxidation...

  19. advanced hsi technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced hsi technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 February 2000 Advanced...

  20. Vehicle Technologies Office: 2008 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    waste heat recovery devices for vehicles Vehicle Technologies Office Merit Review 2014: Thermal Control of Power Electronics of Electric Vehicles with Small Channel Coolant Boiling...

  1. Advanced Technology Development and Mitigation | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Technology Development and Mitigation This sub-program includes laboratory code and computer engineering and science projects that pursue long-term simulation and computing goals...

  2. Vehicle Technologies Office: 2012 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog...

  3. Vehicle Technologies Office: 2013 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road...

  4. Vehicle Technologies Office: 2009 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    2009apeemreport.pdf More Documents & Publications Thermal Performance and Reliability of Bonded Interfaces Vehicle Technologies Office Merit Review 2014: Performance and...

  5. MD/HD Advanced Technology Evaluations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of new technology vs conventional * 6-12 month, on-road evaluations * Obtain and analyze data such as: - Operating costmile - Fuel economy - Unscheduled maintenance - Scheduled...

  6. advanced technology aircraft: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology aircraft First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 February 2000 Advanced Technology...

  7. advanced technology program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology program First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 February 2000 Advanced Technology...

  8. advanced thermionic technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thermionic technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 February 2000 Advanced Technology...

  9. BASELINE DESIGN/ECONOMICS FOR ADVANCED FISCHER-TROPSCH TECHNOLOGY

    SciTech Connect (OSTI)

    None

    1998-04-01T23:59:59.000Z

    Bechtel, along with Amoco as the main subcontractor, developed a Baseline design, two alternative designs, and computer process simulation models for indirect coal liquefaction based on advanced Fischer-Tropsch (F-T) technology for the U. S. Department of Energy's (DOE's) Federal Energy Technology Center (FETC).

  10. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect (OSTI)

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01T23:59:59.000Z

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

  11. Advanced Capacitor Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki HomeASNAddGlobe Jump to:AdvancedAdvanced

  12. Advanced Vehicle Technology Analysis and Evaluation Team

    E-Print Network [OSTI]

    Set ­ Models · Conventional, hybrid and electric vehicles · Fuel consumption and performance Testing · Advanced Powertrain Research Facility · ReFuel Facility Fleet Testing · Industry/Government LabFuelReFuel FacilityFacility Fleet TestingFleet Testing ·· Industry/GovernmentIndustry/Government ModelModel Validation

  13. Vehicle Technologies Office Merit Review 2014: Advanced Technology...

    Energy Savers [EERE]

    - Level 1 Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  14. Advanced Turbine Technology Applications Project (ATTAP)

    SciTech Connect (OSTI)

    Not Available

    1989-04-01T23:59:59.000Z

    Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System Program. This program is oriented to provide the United States automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990s. The ATTAP test bed engine, carried over from the previous AGT101 project, is used for verification testing of the durability of ceramic components, and their suitability for service at Reference Powertrain Design conditions. This report reviews the effort conducted in the first 16 months of the project on development of ceramic technology, review and update of the Reference Powertrain Design, and improvements made to the test bed engine and rigs. Appendices include reports of progress made by the major subcontractors to GAPD on the ATTAP: Carborundum, Norton/TRW Ceramics, and Garrett Ceramic Components Division. 147 figs., 49 tabs.

  15. Fracturing technology poised for rapid advancement

    SciTech Connect (OSTI)

    Von Flatern, R.

    1993-10-01T23:59:59.000Z

    This paper summarizes the advances and current status of hydraulic fracturing and the industry's ability to design and predict the results. Although modeling techniques have improved over the years, there still is no model which can be considered very reliable. The paper considers alternatives to help improve the reliability of these models such as on-site quality control. This quality control aspect entails the site-specific tailoring of a fracturing fluid to be better suited for the target fracturing zone environment and adjusting the fluid properties accordingly. It also entails various methods for fluid injection and placement of propping agents. Some future trends in hydraulic fracturing are also discussed.

  16. Advanced Green Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio:Ads-tec GmbH Jump to:AdvancedAECAdvanced

  17. Advanced Vehicle Technologies Awardees | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJune 17, 2015EnergyTheAdvancedReactor

  18. Advanced Reactor Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVM LoanActiveMission »Advanced ModelingNuclear

  19. Advances in Transportation Technologies | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth SitePresentations |StateNuclear Energy Projects4 Status ReportAdvances in

  20. Advanced Propulsion Technology Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartment ofDepartment ofMachines Advanced||Propulsion

  1. Advanced AMR Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki HomeASNAddGlobe Jump to:Advanced AMR

  2. Advances in cold cathode physics and technology

    SciTech Connect (OSTI)

    Nation, J.A. [Cornell Univ., Ithaca, NY (United States)] [Cornell Univ., Ithaca, NY (United States); Schaechter, L. [Technion, Haifa (Israel). Electrical Engineering Dept.] [Technion, Haifa (Israel). Electrical Engineering Dept.; Mako, F.M.; Len, L.K.; Peter, W. [FM Technologies, Inc., Fairfax, VA (United States)] [FM Technologies, Inc., Fairfax, VA (United States); Tang, C.M. [Creatv MicroTech, Inc., Potomac, MD (United States)] [Creatv MicroTech, Inc., Potomac, MD (United States); Srinivasan-Rao, T. [Brookhaven National Lab., Upton, NY (United States)] [Brookhaven National Lab., Upton, NY (United States)

    1999-05-01T23:59:59.000Z

    The authors review recent progress in the physics and technology of cold cathode electron emitters. The characteristics of emission from field emitter arrays, photocathodes, and ferroelectrics are presented, together with a summary of the understanding of the physics involved. The paper concludes with a description of L-band micropulse gun, based on secondary emission in an RF cavity. Emphasis is placed on cathode development for electron guns to drive microwave tubes and RF accelerators.

  3. Innovative technology summary report: advanced worker protection system

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    The Advanced Worker Protection System (AWPS) is a liquid-air-based, self-contained breathing and cooling system with a duration of 2 hrs. AWPS employs a patented system developed by Oceaneering Space Systems (OSS), which was supported by the Department of Energy's (DOE's) Morgantown Energy Technology Center through a cost sharing research and development contract. The heart of the system is the life-support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack is combined with advanced protective garments, an advanced liquid cooling garment (LCG), a respirator, and communications and support equipment.

  4. Application of a Tractive Energy Analysis to Quantify the Benefits of Advanced Efficiency Technologies Using Characteristic Drive Cycle Data

    SciTech Connect (OSTI)

    LaClair, Tim J [ORNL

    2012-01-01T23:59:59.000Z

    Accurately predicting the fuel savings that can be achieved with the implementation of various technologies developed for fuel efficiency can be very challenging, particularly when considering combinations of technologies. Differences in the usage of highway vehicles can strongly influence the benefits realized with any given technology, which makes generalizations about fuel savings inappropriate for different vehicle applications. A model has been developed to estimate the potential for reducing fuel consumption when advanced efficiency technologies, or combinations of these technologies, are employed on highway vehicles, particularly medium- and heavy-duty trucks. The approach is based on a tractive energy analysis applied to drive cycles representative of the vehicle usage, and the analysis specifically accounts for individual energy loss factors that characterize the technologies of interest. This tractive energy evaluation is demonstrated by analyzing measured drive cycles from a long-haul trucking fleet and the results of an assessment of the fuel savings potential for combinations of technologies are presented. The results of this research will enable more reliable estimates of the fuel savings benefits that can be realized with particular technologies and technology combinations for individual trucking applications so that decision makers can make informed investment decisions for the implementation of advanced efficiency technologies.

  5. Advanced Solar Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/Curium Vitrification4thColorado Zip:Technologies

  6. Advanced evaporator technology progress report FY 1992

    SciTech Connect (OSTI)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A. [and others

    1995-01-01T23:59:59.000Z

    This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

  7. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-09-01T23:59:59.000Z

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  8. Recent technological advances in thin film solar cells

    SciTech Connect (OSTI)

    Ullal, H.S.; Zwelbel, K.; Surek, T.

    1990-03-01T23:59:59.000Z

    High-efficiency, low-cost thin film solar cells are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. This paper reviews the substantial advances made by several thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, cadmium telluride, and polycrystalline silicon. Recent examples of utility demonstration projects of these emerging materials are also discussed. 8 refs., 4 figs.

  9. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-12-01T23:59:59.000Z

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  10. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  11. Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion Battery Technology ? High Voltage Electrolyte

    Broader source: Energy.gov [DOE]

    Presentation given by Daikin America at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

  12. Vehicle Technologies Office Merit Review 2014: Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte

    Broader source: Energy.gov [DOE]

    Presentation given by Daikin America at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

  13. Vehicle Technologies Office Merit Review 2014: Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing of advanced...

  14. Technology advances keeping LNG cost-competitive

    SciTech Connect (OSTI)

    Bellow, E.J. Jr.; Ghazal, F.P.; Silverman, A.J. [Mobil Technology Co., Dallas, TX (United States); Myers, S.D. [Mobil Oil Corp., Fairfax, VA (United States)

    1997-06-02T23:59:59.000Z

    LNG plants, often very expensive in the past, will in the future need to cost less to build and operate and yet maintain high safety and reliability standards, both during construction and operation. Technical advancements, both in the process and in equipment scaling, manufacturing, and metallurgy, will provide much of the impetus for the improved economics. Although world energy demand is predicted to grow on average of about 2% annually over the next decade, LNG is expected to contribute an increasing portion of this growth with annual growth rates averaging about 7%. This steep growth increase will be propelled mainly by the environmentally friendlier burning characteristics of natural gas and the strong industrial growth in Asian and pacific Rim countries. While LNG is emerging as the fuel of choice for developing economies, its delivered cost to consumers will need to stay competitive with alternate energy supplies if it is to remain in front. The paper discusses LNG process development, treating process, equipment developments (man heat exchanger, compressors, drivers, and pressure vessels), and economy of scale.

  15. Recent advances in lithium ion technology

    SciTech Connect (OSTI)

    Levy, S.C.

    1995-01-01T23:59:59.000Z

    Lithium ion technology is based on the use of lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells (1) and in 1983 for ambient temperature systems (2) it was not until Sony Energytech announced a new lithium ion rechargeable cell containing a lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these cells have the high energy density, high voltage and fight weight of metallic lithium systems plus a very long cycle life, but without the disadvantages of dendrite formation on charge and the safety considerations associated with metallic lithium.

  16. advanced technology development: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced technology development First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Portfolio evaluation of...

  17. advanced concept technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concept technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Memory Hierarchy: Advanced Concepts...

  18. advanced robotics technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    robotics technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Advanced Robotics Minimally...

  19. advanced remote technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced remote technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Remote foods shopping robot...

  20. advanced nmr technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced nmr technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Analysis of Inorganic Materials...

  1. advanced communications technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    communications technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Abstract--Rapid advances in...

  2. advanced fabrication technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fabrication technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Advances in IC fabrication...

  3. advanced communication technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    communication technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Abstract--Rapid advances in...

  4. advanced robotic technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    robotic technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Advanced Robotics Minimally invasive...

  5. Responses to Questions and Answers Advanced Vehicle Technology Manufacturing Solicitation

    E-Print Network [OSTI]

    1 Responses to Questions and Answers Advanced Vehicle Technology Manufacturing Solicitation PON successful applicants after the Notice of Proposed Awards to confirm this role and obtain any additional definition of "manufacturing equipment?" For example, would purchases of tooling or assembly line equipment

  6. advancing nuclear technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advancing nuclear technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Programme A. Nuclear Power...

  7. Advanced Visualization Technology for Terascale Particle Accelerator Simulations

    E-Print Network [OSTI]

    Ma, Kwan-Liu

    Advanced Visualization Technology for Terascale Particle Accelerator Simulations Kwan-Liu Ma £ Greg-performance computing, particle accelerators, perception, point-based rendering, scientific visualization, field lines Introduction Particle accelerators have helped enable some of the most remarkable discoveries of the 20th

  8. Buffer Minimization in Pass Transistor Logic Advanced Technology Group

    E-Print Network [OSTI]

    Zhou, Hai

    function cells and four inverters with various drive capabilities. The approach in [2] also utilizesBuffer Minimization in Pass Transistor Logic Hai Zhou Advanced Technology Group Synopsys, Inc are inverters, where phase assignment need to be done with buffer insertion. Exper­ iments are done on MCNC

  9. Advanced Thermionic Technology Program: summary report. Volume 2. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-10-01T23:59:59.000Z

    This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This Program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. The technology has previously been developed for astronautical applications. Volume 2 (Part C) concentrates on the progress made in developing and fabricating the ''current generation'' of chemical vapor deposited hot shell thermionic converters and is addressed to those primarily concerned with today's capabilities in terrestrial thermionic technology. 30 refs., 83 figs.

  10. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    SciTech Connect (OSTI)

    Stadler , Michael; Siddiqui, Afzal; Marnay, Chris; ,, Hirohisa Aki; Lai, Judy

    2009-05-26T23:59:59.000Z

    The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case. Finally, we illustrate that the multi-criteria frontier that considers costs and carbon emissions in the presence of demand response dominates the one without it.

  11. Greenhouse Gas Return on Investment: A New Metric for Energy Technology

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01T23:59:59.000Z

    Gas INTRODUCTION Alternative energy technologies such asmotivations of alternative energy technologies: mitigatingaddresses the goal of alternative energy technology

  12. Stimulating Investment in Renewable Resources and Clean Coal Technology through a Carbon Tax:

    E-Print Network [OSTI]

    Nellie Zhao; Servia Rindfleish; Jay Foley; Jelena Pesic

    Energy supply and demand in China and India will be of premier importance to both nations in upcoming years. Both nations have ambitious goals for development, involving the expansion of the electricity supply to rural regions, as well as an increase in GDP, which will be accompanied by an increased demand for energy. The current distribution of electrical energy supply in each nation raises many concerns about sustainability and environmental viability. Electricity generation in both China and India relies heavily on coal, which raises environmental concern. Although there are likely to be severe consequences for continuing with the current energy mixes in China and India, there is also considerable resistance to change related to the generating cost of renewable energy supplies as well as the initial capital investment involved in changing infrastructures. Because mitigating environmental damages and social costs associated with CO2 emissions is not immediately economically beneficial on its own, the possibility of a tax on CO2 is introduced at three rates which serves to both internalize the costs associated with carbon emissions and motivate the restructuring of the energy distributions in India and China with more supply being met by renewables. An optimization routine based on Monte Carlo sampling was written and applied to this problem of determining optimal energy mixes for India and China based on the three tax rates. The substitution of clean coal technology for standard coal, which seems promising for both countries, is also investigated using the same optimization routine. Projections of electrical energy demand in 2030 were used as reference points for the investigation.

  13. Vehicle Technologies Office Merit Review 2015: Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Lambda Technologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced drying process...

  14. The Impact of DOE Building Technology Energy Efficiency Programs on U.S. Employment, Income, and Investment

    SciTech Connect (OSTI)

    Scott, Michael J.; Roop, Joseph M.; Schultz, Robert W.; Anderson, Dave M.; Cort, Katherine A.

    2008-07-31T23:59:59.000Z

    To more fully evaluate its programs to increase the energy efficiency of the U.S. residential and commercial building stock, the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) assesses the macroeconomic impacts of those programs, specifically on national employment, wage income, and (most recently) investment. The analysis is conducted using the Impact of Sector Energy Technologies (ImSET) model, a special-purpose 188-sector input-output model of the U.S. economy designed specifically to evaluate the impacts of energy efficiency investments and saving. For the analysis described in the paper, ImSET was amended to provide estimates of sector-by-sector capital requirements and investment. In the scenario of the Fiscal Year (FY) 2005 Buildings Technology (BT) program, the technologies and building practices being developed and promoted by the BT program have the prospect of saving about 2.9×1015 Btu in buildings by the year 2030, about 27% of the expected growth in buildings energy consumption by the year 2030. The analysis reported in the paper finds that, by the year 2030, these savings have the potential to increase employment by up to 446,000 jobs, increase wage income by $7.8 billion, reduce needs for capital stock in the energy sector and closely related supporting industries by about $207 billion (and the corresponding annual level of investment by $13 billion), and create net capital savings that are available to grow the nation’s future economy.

  15. DOE Seeks to Invest up to $90 Million in Advanced Geothermal Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2ViolatingRegulationsTechnology |Technology

  16. Faculty Expertise Index Advanced Artificial Intelligence, Technology, & Control Systems Development for Biological &

    E-Print Network [OSTI]

    Amin, S. Massoud

    Faculty Expertise Index Advanced Artificial Intelligence, Technology, & Control Systems Development-Paul Schirle-Keller Food Additives ­ Artificial Sweeteners ­ Ted Labuza Food Analysis Chromatographic Processing (see Phytochemicals, Advanced Artificial Intelligence) Canning Technology ­ Ted Labuza Cheese

  17. Department of Energy Announces up to $70 Million to Advance Technology...

    Office of Environmental Management (EM)

    up to 70 Million to Advance Technology and Reduce Cost of Geothermal Energy Department of Energy Announces up to 70 Million to Advance Technology and Reduce Cost of Geothermal...

  18. Establishment of the Center for Advanced Separation Technologies

    SciTech Connect (OSTI)

    Christopher E. Hull

    2006-09-30T23:59:59.000Z

    This Final Technical Report covers the eight sub-projects awarded in the first year and the five projects awarded in the second year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  19. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01T23:59:59.000Z

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  20. Clean Fuel Advanced Technology Awarded Projects Organization Project Descriptions

    E-Print Network [OSTI]

    Clean Fuel Advanced Technology Awarded Projects Organization Project Descriptions amount awarded - Miranda station Biodiesel (B100/B85) Pump1,3 $9,847 $13,633 $23,480 -141 152 916 92 Friends of Great Smoky Mountains National Park Biodiesel (B50) Tanks1,3 $33,681 $13,204 $46,885 -16 18 110 11 Duke Energy 2 Hybrid

  1. ESTABLISHMENT OF THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Hugh W. Rimmer

    2003-07-01T23:59:59.000Z

    Technical Progress Report describes progress made on the eight sub-projects awarded in the first year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of activity only.

  2. Greenhouse Gas Return on Investment: A New Metric for Energy Technology

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01T23:59:59.000Z

    to decision making beyond energy technology. ACKNOWLEDGMENTSA New Metric for Energy Technology Corinne Reich-Weiser ,INTRODUCTION Alternative energy technologies such as solar,

  3. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    examples due to higher technology costs. To be presented atwe find that at current technology costs, the nursing homeconsidered, and current technology costs from Section 3.2

  4. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    these renewable energy and storage technologies would makeequipment and energy storage technologies. Nevertheless, thechillers, energy storage, or solar-based technologies are

  5. Advanced Thermionic Technology Program: summary report. Volume 1. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-10-01T23:59:59.000Z

    This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. The technology has previously been developed for astronautical applications. The report is organized in four volumes, each focused as much as possible on the needs of a particular audience. Volume 1 contains Part A, the Executive Summary. This Executive Summary describes the accomplishments of the Program in brief, but assumes the reader's familiarity with the thermionic process and the technical issues associated with the Program. For this reason, Volume 1 also contains Part B, a minimally technical overview of the Advanced Thermionic Technology Program. Volume 2 (Part C) concentrates on the progress made in developing and fabricating the ''current generation'' of chemical vapor deposited hot shell thermionic converters and is addressed to those primarily concerned with today's capabilities in terrestrial thermionic technology. Volume 3 (Part D) contains the results of systems studies of primary interest to those involved in identifying and evaluating applications for thermionics. Volume 4 (Part E) is a highly technical discussion of the attempts made by the program to push the state-of-the-art beyond the current generation of converters and is directed toward potential researchers engaged in this same task. These technical discussions are complemented with Appendices where appropriate.

  6. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Kenneth A. Yackly

    2001-06-01T23:59:59.000Z

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is optimized for the highest level of performance. The unique feature of an H-technology combined-cycle system is the integrated heat transfer system, which combines both the steam plant reheat process and gas turbine bucket and nozzle cooling. This feature allows the power generator to operate at a higher firing temperature than current technology units, thereby resulting in dramatic improvements in fuel-efficiency. The end result is the generation of electricity at the lowest, most competitive price possible. Also, despite the higher firing temperature of the H System{trademark}, the combustion temperature is kept at levels that minimize emission production. GE has more than 3.6 million fired hours of experience in operating advanced technology gas turbines, more than three times the fired hours of competitors' units combined. The H System{trademark} design incorporates lessons learned from this experience with knowledge gleaned from operating GE aircraft engines. In addition, the 9H gas turbine is the first ever designed using ''Design for Six Sigma'' methodology, which maximizes reliability and availability throughout the entire design process. Both the 7H and 9H gas turbines will achieve the reliability levels of our F-class technology machines. GE has tested its H System{trademark} gas turbine more thoroughly than any previously introduced into commercial service. The H System{trademark} gas turbine has undergone extensive design validation and component testing. Full-speed, no-load testing of the 9H was achieved in May 1998 and pre-shipment testing was completed in November 1999. The 9H will also undergo approximately a half-year of extensive demonstration and characterization testing at the launch site. Testing of the 7H began in December 1999, and full speed, no-load testing was completed in February 2000. The 7H gas turbine will also be subjected to extensive demonstration and characterization testing at the launch site.

  7. DOE Seeks to Invest up to $60 Million for Advanced Concentrating Solar

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2ViolatingRegulationsTechnology |

  8. DOE Seeks to Invest up to $90 Million in Advanced Geothermal Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions andDefinition of Showerheadand CoalTechnology and

  9. Historical Analysis of Investment in Solar Energy Technologies (2000-2007)

    SciTech Connect (OSTI)

    Jennings, C. E.; Margolis, R. M.; Bartlett, J. E.

    2008-12-01T23:59:59.000Z

    The solar energy industry experienced unprecedented growth in the eight years from 2000 to 2007, with explosive growth occurring in the latter half of this period. From 2004 to 2007, global private sector investment in solar energy increased by almost twenty-fold, marking a dramatic increase in the short span of four years. This paper examines the timing, magnitude, focus and location of various forms of investment in the solar energy sector. It analyzes their trends to provide an understanding of the growth of the solar industry during the past eight years and to identify emerging themes in this rapidly evolving industry.

  10. Microstructural characterization of solders and brazes for advanced packaging technology

    SciTech Connect (OSTI)

    Romig, A.D. Jr.; Frear, D.R.; Hlava, P.F.; Hosking, F.M.; Stephens, J.J.; Vianco, P.T.

    1991-01-01T23:59:59.000Z

    Historically, the electronics industry has always attempted to increase the speed of electronic components and decrease the size of electronic assemblies by developing and manufacturing smaller and faster basic level components (e.g., integrated circuits). However, it is now becoming apparent that the next significant advancement in electronic assembly size and speed may come not as a result of smaller and faster devices, but rather as a consequence of smaller and more closely spaced packages. This increased packaging density will occur at early levels of assembly as industry moves towards multichip modules. It will also occur at later packaging steps as industry continues to expand the use of surface mount technology (SMT) and mixed mounting technology (through hole attachment as well as SMT on one circuit board). Furthermore, there will be an increased propensity to use higher packaging density on printed wiring boards (PWB) and to place more PWB's in a given volume at yet the next level of packaging. One class of materials on which this advanced packaging technology will place severe new demands will be the alloys used to join assemblies and subassemblies (e.g. solders and brazes). These materials will be taxed both from the perspective of enhanced manufacturability as well as greater in-service robustness. It is the objective of this paper, through the use of selected case studies, to illustrate how advanced microstructural characterization techniques can be used to improve packaging technology. The specific case studies discussed are: (1) Microstructural Characterization of Solders, (2) Microstructural Characterization of Solder Joint Embrittlement of Leaded, Surface Mount Transistors (3) Microstructural Characterization of Metal/Ceramic Brazes in Electronic Applications, and (4) Microstructural Characterization of Direct Brazing of Graphite to Copper. 25 refs., 16 figs.

  11. Using Advanced Scientific Diving Technologies to Assess the Underwater Environment

    SciTech Connect (OSTI)

    Southard, John A.; Williams, Greg D.; Sargeant, Susan L.; Diefenderfer, Heida L.; Blanton, Michael L.

    2003-03-31T23:59:59.000Z

    Scientific diving can provide unique information for addressing complex environmental issues in the marine environment and is applied to a variety of increasingly important issues throughout Puget Sound, including habitat degradation, endangered species, biological availability of contaminants, and the effects of overwater structures and shoreline protection features. The Pacific Northwest National Laboratory, Battelle Marine Sciences Laboratory uses trained scientific divers in conjunction with advanced technologies to collect in-situ information best obtained through direct observation and requiring minimal environmental disturbance. For example, advances in underwater communications allow divers to discuss observations and data collection techniques in real time, both with each other and with personnel on the surface. Other examples include the use of Dual frequency IDentification SONar (DIDSON), an underwater camera used to capture digital images of benthic structures, fish, and organisms during low light and high turbidity levels; the use of voice-narrated underwater video; and the development of sediment collection methods yielding one-meter cores. The combination of using trained scientific SCUBA divers and advanced underwater technologies is a key element in addressing multifaceted environmental problems, resulting in a more comprehensive understanding of the underwater environment and more reliable data with which to make resource management decisions.

  12. Utility advanced turbine systems (ATS) technology readiness testing

    SciTech Connect (OSTI)

    NONE

    2000-09-15T23:59:59.000Z

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  13. Advancement of High Temperature Black Liquor Gasification Technology

    SciTech Connect (OSTI)

    Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

    2008-03-31T23:59:59.000Z

    Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the design, specification and procurement of facility upgrades. Chemrec AB is also operating a pressurized, O2-blown gasifier pilot facility in Piteaa, Sweden. There was an exchange of knowledge with the pressurized projects including utilization of the experimental results from facilities in Piteaa, Sweden. Resources at the Georgia Tech Research Corporation (GTRC, a.k.a., the Institute of Paper Science and Technology) were employed primarily to conduct the fundamental investigations on scaling and plugging mechanisms and characterization of green liquor dregs. The project also tapped GTRC expertise in the development of the critical underlying black liquor gasification rate subroutines employed in the CFD code. The actual CFD code development and application was undertaken by Process Simulation, Ltd (PSL) and Simulent, Ltd. PSL focused on the overall integrated gasifier CFD code, while Simulent focused on modeling the black liquor nozzle and description of the black liquor spray. For nozzle development and testing Chemrec collaborated with ETC (Energy Technology Centre) in Piteae utilizing their test facility for nozzle spray investigation. GTI (Gas Technology Institute), Des Plains, IL supported the team with advanced gas analysis equipment during the gasifier test period in June 2005.

  14. Advanced Technology and Alternative Fuel Vehicle Basics | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03Energy Advanced Technology and Alternative

  15. Advancing Solar Through Photovoltaic Technology Innovations | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03Energy Advanced Technology andClean Energy

  16. Advanced Technology & Discovery at Bangalore | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 PowerAdvancedInstitute EngineeringTechnology

  17. Advanced Technology & Discovery at Niskayuna | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 PowerAdvancedInstituteTechnology & Discovery

  18. Advanced Technology & Discovery at Shanghai | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 PowerAdvancedInstituteTechnology &

  19. Greenhouse Gas Return on Investment: A New Metric for Energy Technology

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01T23:59:59.000Z

    the energy offset by a new energy installation. The averagea situation where a new energy technology is being installedany case ; therefore the new energy technology is preventing

  20. Comparison of advanced cooling technologies efficiency depending on outside temperature

    SciTech Connect (OSTI)

    Blaise Hamanaka; Haihua Zhao; Phil Sharpe

    2009-09-01T23:59:59.000Z

    In some areas, water availability is a serious problem during the summer and could disrupt the normal operation of thermal power plants which needs large amount of water to operate. Moreover, when water quantities are sufficient, there can still be problem created by the waste heat rejected into the water which is regulated in order to limit the impact of thermal pollution on the environment. All these factors can lead to a decrease of electricity production during the summer and during peak hours, when electricity is the most needed. In order to deal with these problems, advanced cooling technologies have been developed and implemented to reduce water consumption and withdrawals but with an effect in the plant efficiency. This report aims at analyzing the efficiency of several cooling technologies with a fixed power plant design and so to produce a reference to be able to compare them.

  1. Advanced environmental control technology for flue gas cleanup

    SciTech Connect (OSTI)

    Pennline, H.W.; Drummond, C.J.

    1987-01-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) oversees a substantial research and development effort to develop advanced environmental control technology for coal-fired sources. This Flue Gas Cleanup Program is currently divided into five areas: combined SO/sub 2//NO/sub x/ control, SO/sub 2/ control, particulate control, NO/sub x/ control, and small-scale boiler emission control. Projects in these areas range from basic research studies to proof-of-concept-scale evaluations. Projects in the DOE program are conducted by universities, national laboratories, industrial organizations, and in-house research at the Pittsburgh Energy Technology Center. An overview of the program, together with brief descriptions of the status of individual projects are given.

  2. Advanced Gas Storage Concepts: Technologies for the Future

    SciTech Connect (OSTI)

    Freeway, Katy (PB-KBB Inc.); Rogers, R.E. (Mississippi State University); DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D. (RESPEC)

    2000-02-01T23:59:59.000Z

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  3. Stimulating Investment in Renewable Resources and Clean Coal Technology through a Carbon Tax:

    E-Print Network [OSTI]

    Nellie Zhao; Servia Rindfleish; Jay Foley; Jelena Pesic

    three tax rates. The substitution of clean coal technology for standard coal, which seems promising for

  4. Utility Advanced Turbine Systems (ATS) technology readiness testing

    SciTech Connect (OSTI)

    NONE

    1999-05-01T23:59:59.000Z

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  5. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Unknown

    1998-10-01T23:59:59.000Z

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between Ge and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially be GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished from 4Q97 through 3Q98.

  6. Utility Advanced Turbine Systems (ATS) Technology Readiness Testing

    SciTech Connect (OSTI)

    NONE

    1998-10-29T23:59:59.000Z

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. This report summarizes work accomplished in 2Q98. The most significant accomplishments are listed in the report.

  7. Advanced Automotive Technologies annual report to Congress, fiscal year 1996

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy`s Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation.

  8. Advanced Vehicles Group: Center for Transportation Technologies and Systems

    SciTech Connect (OSTI)

    Not Available

    2008-08-01T23:59:59.000Z

    Describes R&D in advanced vehicle systems and components (e.g., batteries) by NREL's Advanced Vehicles Group.

  9. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Unknown

    1999-10-01T23:59:59.000Z

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

  10. Technology investment decisions under uncertainty : a new modeling framework for the electric power sector

    E-Print Network [OSTI]

    Santen, Nidhi

    2013-01-01T23:59:59.000Z

    Effectively balancing existing technology adoption and new technology development is critical for successfully managing carbon dioxide (CO2) emissions from the fossil-dominated electric power generation sector. The long ...

  11. Informing public policy on science and innovation: the Advanced Technology Program's experience

    E-Print Network [OSTI]

    Informing public policy on science and innovation: the Advanced Technology Program's experience of Agriculture and the Kauffman Foundation. Keywords Innovation measurement Á Data Enclave Á Advanced Technology related to the processes of innovation and technological change, and the effects of government policy

  12. Environmental benefits of advanced oil and gas exploration and production technology

    SciTech Connect (OSTI)

    None

    1999-10-01T23:59:59.000Z

    THROUGHOUT THE OIL AND GAS LIFE CYCLE, THE INDUSTRY HAS APPLIED AN ARRAY OF ADVANCED TECHNOLOGIES TO IMPROVE EFFICIENCY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE. THIS REPORT FOCUSES SPECIFICALLY ON ADVANCES IN EXPLORATION AND PRODUCTION (E&P) OPERATIONS.

  13. Investing in a New Era of Manufacturing Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report: I11IG002 InvestigationFuel830,Investing in a New

  14. Updated 11/1/2012 GEORGIA INSTITUTE OF TECHNOLOGY

    E-Print Network [OSTI]

    Li, Mo

    Updated 11/1/2012 GEORGIA INSTITUTE OF TECHNOLOGY OFFICE OF FINANCIAL SERVICES ADMINSTRATION Cash/Investment Management Debt Management Georgia Tech Facilities, Inc. Georgia Advanced Technology Ventures, Inc. Project Accounting Cost Accounting Rate Studies Negotiations Salary, Planning

  15. Reviewing the impact of advanced control room technology

    SciTech Connect (OSTI)

    Wilhelmsen, C.A.; Gertman, D.I.; Ostrom, L.T.; Nelson, W.R.; Galyean, W.J.; Byers, J.C.

    1992-01-01T23:59:59.000Z

    Progress to date on assessing the nature of the expected changes in human performance and risk associated with the introduction of digital control, instrumentation, and display systems is presented. Expected changes include the shift toward more supervisory tasks, development of intervention strategies, and reallocation of function between human and machine. Results are reported in terms of the scope of new technology, human performance issues, and crews experience with digital control systems in a variety of industries petrochemical and aerospace. Plans to conduct a limited Probabilistic Risk Assessment/Human Reliability Assessment (PRA/HRA) comparison between a conventional NUREG-1150 series plant and that same plant retrofit with distributed control and advanced instrumentation and display are also presented. Changes needed to supplement existing HRA modeling methods and quantification techniques are discussed.

  16. Reviewing the impact of advanced control room technology

    SciTech Connect (OSTI)

    Wilhelmsen, C.A.; Gertman, D.I.; Ostrom, L.T.; Nelson, W.R.; Galyean, W.J.; Byers, J.C.

    1992-08-01T23:59:59.000Z

    Progress to date on assessing the nature of the expected changes in human performance and risk associated with the introduction of digital control, instrumentation, and display systems is presented. Expected changes include the shift toward more supervisory tasks, development of intervention strategies, and reallocation of function between human and machine. Results are reported in terms of the scope of new technology, human performance issues, and crews experience with digital control systems in a variety of industries petrochemical and aerospace. Plans to conduct a limited Probabilistic Risk Assessment/Human Reliability Assessment (PRA/HRA) comparison between a conventional NUREG-1150 series plant and that same plant retrofit with distributed control and advanced instrumentation and display are also presented. Changes needed to supplement existing HRA modeling methods and quantification techniques are discussed.

  17. Vehicle Technologies Office Merit Review 2015: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development

    Broader source: Energy.gov [DOE]

    Presentation given by Cummins at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline turbocharged direct...

  18. Vehicle Technologies Office Merit Review 2014: Advanced Lean-Burn DI Spark Ignition Fuels Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced lean...

  19. Vehicle Technologies Office Merit Review 2014: Advancing Transportation through Vehicle Electrification – Ram 1500 PHEV

    Broader source: Energy.gov [DOE]

    Presentation given by Chrysler LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancing transportation through...

  20. Voluntary Protection Program Onsite Review, Advanced Technologies and Laboratories, Inc., Hanford – Feb 2014

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Advanced Technologies and Laboratories, Inc., Hanford is performing at a level deserving DOE-VPP Star recognition.

  1. advanced coal-combustion technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  2. advanced coal-combustion technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  3. FIA-12-0065 - In the Matter of Advanced Technology Corporation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    issued by the Department of Energy's Oak Ridge Office (ORO). The Appellant, the Advanced Technology Corporation, contested the adequacy of ORO's search of its email and fax...

  4. Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Companyh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline...

  5. Vehicle Technologies Office Merit Review 2014: Advanced Wireless Power Transfer and Infrastructure Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  6. Vehicle Technologies Office Merit Review 2015: Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  7. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Test Procedure Development: Hybrid System Power Rating

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle...

  8. Vehicle Technologies Office Merit Review 2015: Advanced In-Situ Diagnostic Techniques for Battery Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Brookhaven National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced in...

  9. Potential impacts on advanced technologies on the ATC capacity of high-density terminal areas

    E-Print Network [OSTI]

    Simpson, R. W.

    1986-01-01T23:59:59.000Z

    Advanced technologies for airborne systems (automatic flight control, flight displays, navigation) and for ground ATC systems (digital communications, improved surveillance and tracking, automated decision-making) create ...

  10. Vehicle Technologies Office Merit Review 2014: Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  11. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Unknown

    1999-04-01T23:59:59.000Z

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

  12. advanced metal-membrane technology-commercialization: Topics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  13. advanced modeling technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  14. advanced technology applications: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  15. advanced technology moves: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Ecology Websites Summary: . Gulachek, Senior Director, Strategy Management, OIT 12;Goals Support and advance academic prioritiesAdvancing Excellence in...

  16. Acquisition and management of technology-based firms in a trading and investment company

    E-Print Network [OSTI]

    Tanaka, Jin, M.B.A. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Among several key factors affecting new technology innovation, two important ones that are sometimes disturbed by M&A are long-term p-ans and the commitment of the acquired firm's management team. M&A led by technology ...

  17. Advanced Technologies in Energy-Economy Models for Climate Change Assessment

    E-Print Network [OSTI]

    Morris, J.F.

    Considerations regarding the roles of advanced technologies are crucial in energy-economic modeling, as these technologies, while usually not yet commercially viable, could substitute for fossil energy when relevant policies ...

  18. Advanced Sequencing Technology - Final Technical Report for period February 1, 1994 to January 31, 1997

    SciTech Connect (OSTI)

    Gesteland, Raymond F.

    1997-01-31T23:59:59.000Z

    OAK-B135 This project is to develop advanced technologies for DNA sequencing and genotyping. The core technologies are automated probing of multiplexed membranes and high throughput electro-spray mass spectrometry.

  19. Investments in fossil energy technology: How the government's fossil energy R&D program has made a difference

    SciTech Connect (OSTI)

    None

    1997-03-01T23:59:59.000Z

    America has the technological capacity to change its energy future. There is no reason, for example, why our nation must continue following a path of rising oil imports when billions of barrels of crude oil remain in domestic oil fields. There is no reason why we cannot continue to use our abundant supplies of high-value, low-cost coal when we have the scientific know-how to remove virtually all of its pollutants and reduce greenhouse gas emissions. There is no reason why we cannot turn increasingly to clean-burning natural gas and tap the huge supplies we know exist within our borders. We remain a nation rich in the fuels that have powered economic growth. Today 85 percent of the energy we use to heat our homes and businesses, generate our electricity, and fuel our vehicles comes from coal, petroleum and natural gas. As we move toward a new century, the contributions of these fuels will grow. By 2015, the United States is likely to require nearly 20 percent more energy than it uses today, and fossil fuels are projected to supply almost 88 percent of the energy Americans will consume. We have the scientific know-how to continue using our fossil fuel wealth without fear of environmental damage or skyrocketing costs. The key is technology - developing cutting edge concepts that are beyond the private sector's current capabilities. Some of the most important innovations in America's energy industry are the results of investments in the Federal government's fossil energy research and development programs. Today, our air and water are cleaner, our economy is stronger, and our industries are more competitive in the global market because these programs have produced results. This booklet summarizes many of these achievements. It is not a comprehensive list by any means. Still, it provides solid evidence that the taxpayers' investment in government fossil energy research has paid real and measurable dividends.

  20. R and D plans for advanced computer and control technologies

    SciTech Connect (OSTI)

    Ipakchi, A.; Wong, D.J. (Science Applications International Corp., San Diego, CA (USA)); Wells, B. (Ohio Edison Co., Akron, OH (USA)); Skedzielewski, D. (Delmarva Power and Light Co., Wilmington, DE (USA)); Taft, C. (Southern Co. Services, Inc., Birmingham, AL (USA)); Valli, J. (Cleveland Electric Illuminating Co., OH (USA))

    1990-02-01T23:59:59.000Z

    Competition, rising cost, and changes in technology have prompted many US electric utilities to consider new methods of power plant operation. One approach is the introduction of automation in an effort to increase productivity, reliability, efficiency, flexibility, and performance. The rapid advancement of computer technology has opened new opportunities for more sophisticated control and monitoring than ever before. The application of automation, though, has been through the use of a deluge of independent, specialized systems dedicated to specific needs. The utilities' quick adoption of these systems for solving specific problems has created Islands of automation''. These islands cannot pass information or communicate with one another. Each requires their own separate computer and terminal. The redundancy of data and sensors in order to collect needed information for each independent system have added to the confusion in the plant. These independent systems have rapidly pushed the key issue of integration to the forefront for plant automation. There is still a need for further development of techniques and technologies for plant automation, but the key issue is integration. This report presents the results of an EPRI sponsored study and planning project. The purpose of this project was to identify the current automation issues facing the utility power industry, and to develop a seven year R D plan for EPRI in this area. In addition to the R D plan, the report presents the results of a survey, and discusses topics such as plant-wide automation systems' architecture, communications, and man-machine interface. 25 refs., 33 figs., 13 tabs.

  1. Advanced technologies for decomtamination and conversion of scrap metal

    SciTech Connect (OSTI)

    Valerie MacNair; Steve Sarten; Thomas Muth; Brajendra Mishra

    1999-05-27T23:59:59.000Z

    The Department of Energy (DOE) faces the task of decommissioning much of the vast US weapons complex. One challenge of this effort includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for cleanup of contaminated sites and facilities. Recycling helps to offset the cost of decommissioning and saves valuable space in the waste disposal facilities. It also reduces the amount of environmental effects associated with mining new metals. Work on this project is geared toward finding decontamination and/or recycling alternatives for the RSM contained in the decommissioned gaseous diffusion plants including approximately 40,000 tons of nickel. The nickel is contaminated with Technetium-99, and is difficult to remove using traditional decontamination technologies. The project, titled ``Advanced Technologies for Decontamination and Conversion of Scrap Metal'' was proposed as a four phase project. Phase 1 and 2 are complete and Phase 3 will complete May 31, 1999. Stainless steel made from contaminated nickel barrier was successfully produced in Phase 1. An economic evaluation was performed and a market study of potential products from the recycled metal was completed. Inducto-slag refining, after extensive testing, was eliminated as an alternative to remove technetium contamination from nickel. Phase 2 included successful lab scale and pilot scale demonstrations of electrorefining to separate technetium from nickel. This effort included a survey of available technologies to detect technetium in volumetrically contaminated metals. A new process to make sanitary drums from RSM was developed and implemented. Phase 3 included a full scale demonstration of electrorefining, an evaluation of electro-refining alternatives including direct dissolution, melting of nickel into anodes, a laser cutting demonstration, an investigation of commercial markets for RSM, and refinement of methods to quantify isotopic elements.

  2. Advanced Wind Technology: New Challenges for a New Century

    SciTech Connect (OSTI)

    Thresher, R.; Laxson, A.

    2006-06-01T23:59:59.000Z

    This paper describes the growth, advances, and challenges faced by the wind energy industry in 2006.

  3. Assessing early investments in low carbon technologies under uncertainty : the case of Carbon Capture and Storage

    E-Print Network [OSTI]

    Ereira, Eleanor Charlotte

    2010-01-01T23:59:59.000Z

    Climate change is a threat that could be mitigated by introducing new energy technologies into the electricity market that emit fewer greenhouse gas (GHG) emissions. We face many uncertainties that would affect the demand ...

  4. Shared Investment by NIS and National Labs Develops Cutting-Edge Safeguards Technologies

    SciTech Connect (OSTI)

    Anheier, Norman C.; Williams, Laura S.

    2012-04-01T23:59:59.000Z

    This article, regarding a new technology for detecting undeclared enrichment at gas centrifuge enrichment plants, was written for the DOE/NNSA NA-24 Highlights, a newsletter intended for public release.

  5. Technology and architecture : informing investment decisions for the future of human space exploration

    E-Print Network [OSTI]

    Battat, Jonathan Alexander

    2012-01-01T23:59:59.000Z

    NASA's detailed programmatic goals, system architectures, and mission designs for future human spaceflight beyond Earth orbit remain unspecified. Given this uncertainty, it is not clear exactly which technologies are ...

  6. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; Aki, Hirohisa; Lai, Judy

    2009-08-10T23:59:59.000Z

    The U.S. Department of Energy has launched the commercial building initiative (CBI) in pursuit of its research goal of achieving zero-net-energy commercial buildings (ZNEB), i.e. ones that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge, energy-efficiency technologies and meet their remaining energy needs through on-site renewable energy generation. This paper examines how such buildings may be implemented within the context of a cost- or CO2-minimizing microgrid that is able to adopt and operate various technologies: photovoltaic modules (PV) and other on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive/demand-response technologies. A mixed-integer linear program (MILP) that has a multi-criteria objective function is used. The objective is minimization of a weighted average of the building's annual energy costs and CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the ZNEB objective. Using a commercial test site in northernCalifornia with existing tariff rates and technology data, we find that a ZNEB requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power (CHP) equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve a ZNEB. Additionally, the ZNEB approach does not necessary lead to zero-carbon (ZC) buildings as is frequently argued. We also show a multi-objective frontier for the CA example, whichallows us to estimate the needed technologies and costs for achieving a ZC building or microgrid.

  7. Federal Fuel Cell Tax Incentives: An Investment in Clean and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Tax Incentives: An Investment in Clean and Efficient Technologies Federal Fuel Cell Tax Incentives: An Investment in Clean and Efficient Technologies A brief created by...

  8. advanced sensing technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new technological opportunity are only profitable at times when repeated incremental innovation has nearly exhausted existing technological opportunity and driven...

  9. advanced technology center: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    consumer information. Referral Date: Consumer's Name: Date of Birth Assistive Technology Assessment Computer Skills Assessment Assistive TechnologyComputer...

  10. Advanced Vehicle Technology Competition: Challenge-X 2008 DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    combustion, energy storage technology, electric machines, high power electronics, fuel cells, vehicle simulation modeling, and other critical technologies Explore technical...

  11. Value creation and value capture of advanced electricity meter information

    E-Print Network [OSTI]

    Oesterlin, Ulf

    2011-01-01T23:59:59.000Z

    Advanced or smart metering has been a hot topic in the electricity community for several years. Despite the excitement about the technology, few business cases are actually able to justify the investment cost. One reason ...

  12. Advanced gas engine cogeneration technology for special applications

    SciTech Connect (OSTI)

    Plohberger, D.C.; Fessl, T.; Gruber, F.; Herdin, G.R. [Jenbacher Energiesystem AG, Jenbach (Austria)

    1995-10-01T23:59:59.000Z

    In recent years gas Otto-cycle engines have become common for various applications in the field of power and heat generation. Gas engines are chosen sometimes even to replace diesel engines, because of their clean exhaust emission characteristics and the ample availability of natural gas in the world. The Austrian Jenbacher Energie Systeme AG has been producing gas engines in the range of 300 to 1,600 kW since 1960. The product program covers state-of-the-art natural gas engines as well as advanced applications for a wide range of alterative gas fuels with emission levels comparable to Low Emission (LEV) and Ultra Low Emission Vehicle (ULEV) standards. In recent times the demand for special cogeneration applications is rising. For example, a turnkey cogeneration power plant for a total 14.4 MW electric power and heat output consisting of four JMS616-GSNLC/B spark-fired gas engines specially tuned for high altitude operation has been delivered to the well-known European ski resort of Sestriere. Sestriere is situated in the Italian Alps at an altitude of more than 2,000 m above sea level. The engines feature a turbocharging system tuned to an ambient air pressure of only 80 kPa to provide an output and efficiency of each 1.6 MW and up to 40% {at} 1,500 rpm, respectively. The ever-increasing demand for lower pollutant emissions in the US and some European countries initiates developments in new exhaust aftertreatment technologies. Thermal reactor and Selective Catalytic Reduction (SCR) systems are used to reduce tailpipe CO and NO{sub x} emissions of engines. Both SCR and thermal reactor technology will shift the engine tuning to achieve maximum efficiency and power output. Development results are presented, featuring the ultra low emission potential of biogas and natural gas engines with exhaust aftertreatment.

  13. Advanced membrane separation technology for biosolvents. Final CRADA report.

    SciTech Connect (OSTI)

    Snyder, S. W.; Energy Systems

    2010-02-08T23:59:59.000Z

    Argonne and Vertec Biosolvents investigated the stability and perfonnance for a number of membrane systems to drive the 'direct process' for pervaporation-assisted esterification to produce lactate esters. As outlined in Figure 1, the target is to produce ammonium lactate by fennentation. After purification and concentration, ammonium lactate is reacted with ethanol to produce the ester. Esterification is a reversible reaction so to drive the reaction forward, the produced ammonia and water must be rapidly separated from the product. The project focused on selecting pervaporation membranes with (1) acid functionality to facilitate ammonia separation and (2) temperature stability to be able to perform that reaction at as high a temperature as possible (Figure 2). Several classes of commercial membrane materials and functionalized membrane materials were surveyed. The most promising materials were evaluated for scale-up to a pre-commercial application. Over 4 million metric tons per year of solvents are consumed in the U.S. for a wide variety of applications. Worldwide the usage exceeds 10 million metric tons per year. Many of these, such as the chlorinated solvents, are environmentally unfriendly; others, such as the ethylene glycol ethers and N Methyl Pyrrolidone (NMP), are toxic or teratogenic, and many other petroleum-derived solvents are coming under increasing regulatory restrictions. High performance, environmentally friendly solvents derived from renewable biological resources have the potential to replace many of the chlorinated and petrochemical derived solvents. Some of these solvents, such as ethyl lactate; d-limonene, soy methyl esters, and blends ofthese, can give excellent price/perfonnance in addition to the environmental and regulatory compliance benefits. Advancement of membrane technologies, particularly those based on pervaporation and electrodialysis, will lead to very efficient, non-waste producing, and economical manufacturing technologies for production of ethyl lactate and other esters.

  14. Modeling and Analysis in Support of Decision Making for Technological Investment

    SciTech Connect (OSTI)

    Lenhart, S

    2003-06-11T23:59:59.000Z

    Engineering design, resource allocation, military operations, and investment strategies share a major common trait, which is, to a large extent, independent of their different origins, specific features, and intended goals. The unifying trait is the fact that, in any of these endeavors, one has to make reasonable choices, at multiple levels of decision making, among various possible and sometimes competing prospective solutions to an important and consequential practical problem. While the specifics of the problem depend on application, context, additional constraints, etc., the ultimate--albeit imprecise--goal in all these activities is to ''optimize performance,'' which is to have maximal success/profit/return with minimal time/effort/investment. In general, the underlying system is ruled by complex and often unknown dynamics, and affected by various uncertainties, which are unknown as well; on the other hand, there are numerous levels of decision making, which result in a hierarchical structure in the decision process (tree) that is both asynchronous and non-deterministic. Usually, indifferent of the specific application, as one lowers the level of decision making, alternatives depend on fewer independent variables and models become more detailed and physics/engineering based. On the contrary, at higher levels, various components aggregate and decision making is based more on fuzzier criteria instead of readily quantifiable physics/engineering details. Moreover, decisions are strongly influenced by the educational and personal biases of the people who take them. In some instances, this may blur, if not totally obfuscate objective comparisons between various options. Therefore, a crucial point in decision-making is properly understanding and quantifying the tradeoffs, including all their future relevant consequences. Since the interaction between various choices is an intricate nonlinear process, the focus shifts from the dynamics itself to the overall performance and affordability. This is not unreasonable, since oftentimes major upgrades on some components have little impact, while minor upgrades of other components turn out to be critical. To illustrate the approach, we assume that one deals with only two levels. At the lower level, physical/engineering processes are described by continuous and/or discrete, analytic and/or computer models. These models are supposed to be deterministic (e.g. dynamics as ruled by well established physical laws), but their outcome may depend in an unpredictable way on: (i) small nonlinearities unaccounted for in the model development and/or (ii) factors that--at the specific level of modelization--may be treated as stochastic terms (weather conditions, human factors, political circumstances, fluctuations in the quality of carburant, wear and tear, etc.) To this extent, the outcomes of the model processes may be considered stochastic variables/fields with a certain probability distribution function (PDF). Upon many realizations of the model, one can get reliable information about the essential features of this PDF.

  15. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01T23:59:59.000Z

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  16. Fact Sheet: Advanced Implementation of Energy Storage Technologies...

    Energy Savers [EERE]

    flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems, visit the Energy Storage page. Advanced...

  17. ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY

    SciTech Connect (OSTI)

    PROJECT STAFF

    2001-09-01T23:59:59.000Z

    OAK A271 ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY. The General Atomics (GA) Advanced Fusion Technology Program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility.

  18. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    SciTech Connect (OSTI)

    Nigle N. Clark

    2006-12-31T23:59:59.000Z

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

  19. advanced technologies demonstrated: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and derives ... Naga-Jones, Ayaka 2005-01-01 3 New Technology Demonstration Program Energy Storage, Conversion and Utilization Websites Summary: Management Technology - Part 4...

  20. DOE Vehicle Technologies Program 2009 Merit Review Report - Advanced...

    Broader source: Energy.gov (indexed) [DOE]

    4.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials DOE Vehicle Technologies Program 2009 Merit Review Report -...

  1. American Recovery and Reinvestment Act of 2009: Bioenergy Technologies Office Investments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM -AliciaBioenergy Technologies Office has awarded

  2. Technological Advancements and Error Rates in Radiation Therapy Delivery

    SciTech Connect (OSTI)

    Margalit, Danielle N., E-mail: dmargalit@partners.org [Harvard Radiation Oncology Program, Boston, MA (United States); Harvard Cancer Consortium and Brigham and Women's Hospital/Dana Farber Cancer Institute, Boston, MA (United States); Chen, Yu-Hui; Catalano, Paul J.; Heckman, Kenneth; Vivenzio, Todd; Nissen, Kristopher; Wolfsberger, Luciant D.; Cormack, Robert A.; Mauch, Peter; Ng, Andrea K. [Harvard Cancer Consortium and Brigham and Women's Hospital/Dana Farber Cancer Institute, Boston, MA (United States)

    2011-11-15T23:59:59.000Z

    Purpose: Technological advances in radiation therapy (RT) delivery have the potential to reduce errors via increased automation and built-in quality assurance (QA) safeguards, yet may also introduce new types of errors. Intensity-modulated RT (IMRT) is an increasingly used technology that is more technically complex than three-dimensional (3D)-conformal RT and conventional RT. We determined the rate of reported errors in RT delivery among IMRT and 3D/conventional RT treatments and characterized the errors associated with the respective techniques to improve existing QA processes. Methods and Materials: All errors in external beam RT delivery were prospectively recorded via a nonpunitive error-reporting system at Brigham and Women's Hospital/Dana Farber Cancer Institute. Errors are defined as any unplanned deviation from the intended RT treatment and are reviewed during monthly departmental quality improvement meetings. We analyzed all reported errors since the routine use of IMRT in our department, from January 2004 to July 2009. Fisher's exact test was used to determine the association between treatment technique (IMRT vs. 3D/conventional) and specific error types. Effect estimates were computed using logistic regression. Results: There were 155 errors in RT delivery among 241,546 fractions (0.06%), and none were clinically significant. IMRT was commonly associated with errors in machine parameters (nine of 19 errors) and data entry and interpretation (six of 19 errors). IMRT was associated with a lower rate of reported errors compared with 3D/conventional RT (0.03% vs. 0.07%, p = 0.001) and specifically fewer accessory errors (odds ratio, 0.11; 95% confidence interval, 0.01-0.78) and setup errors (odds ratio, 0.24; 95% confidence interval, 0.08-0.79). Conclusions: The rate of errors in RT delivery is low. The types of errors differ significantly between IMRT and 3D/conventional RT, suggesting that QA processes must be uniquely adapted for each technique. There was a lower error rate with IMRT compared with 3D/conventional RT, highlighting the need for sustained vigilance against errors common to more traditional treatment techniques.

  3. Impact of Advanced Physics and Technology on the Attractiveness of Tokamak Fusion Power Plants

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    of extrapolation in plasma physics and technology from present database. Continuation of research has allowed usImpact of Advanced Physics and Technology on the Attractiveness of Tokamak Fusion Power Plants physics and fusion technology directions. Our results indicate that for the same plasma physics (e

  4. Department of Energy Advance Methane Hydrates Science and Technology Projects

    Broader source: Energy.gov [DOE]

    Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

  5. U.S. Advanced Manufacturing and Clean Energy Technology Challenges

    Broader source: Energy.gov (indexed) [DOE]

    Technical Assistance 12 Advanced Manufacturing Office (AMO): Purpose Laser Processing for Additive Manufacturing Carbon Fiber from Microwave Assisted Plasma Process AMO's Purpose...

  6. Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual...

    Energy Savers [EERE]

    the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions...

  7. Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth...

    Broader source: Energy.gov (indexed) [DOE]

    Reduce cost, increase energy of energy storage Low-cost power electronics Modeling Simulation and Laboratory and Field Testing "VTO is advancing the large-scale, cost-...

  8. Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth...

    Broader source: Energy.gov (indexed) [DOE]

    Reduce cost, increase energy of energy storage Low-cost power electronics Modeling Simulation and Laboratory and Field Testing "VTP is advancing the large-scale, cost-...

  9. Lighter and Stronger: Improving Clean Energy Technologies Through Advanced Composites

    Office of Energy Efficiency and Renewable Energy (EERE)

    New institute aims to drive down the manufacturing costs and support the widespread use of advanced fiber-reinforced polymer composites.

  10. Advancing manufacturing technology that is imperative to prevent...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industry is a cornerstone of the American economy and embodies the innovation and productivity that have allowed the United States to be the dominant leader in advanced...

  11. Overview of the Batteries for Advanced Transportation Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Material BATT and the Battery Industry Block copolymer electrolytes for Li-metal batteries (Balsara) being commercialized by Seeo, Inc. Advanced cathode materials (Manthiram)...

  12. Vehicle Technologies Office Merit Review 2014: Advancing New...

    Broader source: Energy.gov (indexed) [DOE]

    Merit Review 2014: Advancing New Mexico's Alternative Fuels Presentation given by New Mexico Department of Energy, Minerals & Natural Resources at 2014 DOE Hydrogen and Fuel Cells...

  13. Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

  14. Spivack, Richard. "Advanced Technology Program Information Infrastructure for Healthcare Focused Program" The Future of Health Technology. ed. Renata Bushko. IOS Press, 2002.

    E-Print Network [OSTI]

    ) at the National Institute of Standards and Technology (NIST) is a cost-sharing program designed to partnerSpivack, Richard. "Advanced Technology Program Information Infrastructure for Healthcare Focused Program" The Future of Health Technology. ed. Renata Bushko. IOS Press, 2002. Advanced Technology Program

  15. advanced optical technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Technologies" to a scientist with outstanding contributions in the areas of optics, photonics and optical technologies. The prize money is 100,000 to be used for salary...

  16. Advanced Technology Vehicle Lab Benchmarking- Level 2 (in-depth)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Health Effects from Advanced Combustion and Fuel Technologies

    SciTech Connect (OSTI)

    Barone, Teresa L [ORNL; Parks, II, James E [ORNL; Lewis Sr, Samuel Arthur [ORNL; Connatser, Raynella M [ORNL

    2010-01-01T23:59:59.000Z

    This document requires a separate file for the figures. It is for DOE's Office of Vehicle Technologies Annual Report

  18. Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Advanced Combustion Technology to Enable High Efficiency Clean...

    Broader source: Energy.gov (indexed) [DOE]

    for Efficiency Improvement Controls Variable Valve Actuation Variable Intake Swirl Turbo Technology Electrically Driven Components Aftertreatment Integration of Cummins...

  20. Despite technological advances in surgery and anesthesia during the last few decades, the incidence of postoperative

    E-Print Network [OSTI]

    Mandal, Pravat K.

    SUMMARY Despite technological advances in surgery and anesthesia during the last few decades inhalational agents currently used in anesthesia (volatile anesthetics: isoflurane, desflurane and sevoflurane dysfunction. However, such infor- mation is crucial to improve anesthesia performance and patient safety

  1. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect (OSTI)

    Per F. Peterson

    2010-03-01T23:59:59.000Z

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  2. Hydrothermal spallation drilling and advanced energy conversion technologies for Engineered Geothermal Systems

    E-Print Network [OSTI]

    Augustine, Chad R

    2009-01-01T23:59:59.000Z

    The purpose of this research was to study the various factors affecting the economic and technical feasibility of Engineered Geothermal Systems, with a special emphasis on advanced drilling technologies. The first part of ...

  3. Vehicle Technologies Office Merit Review 2015: Advanced Lean-Burn DI Spark Ignition Fuels Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about advanced lean-burn...

  4. Enzyme and Microbial Technology 37 (2005) 487496 Recent advances in the bioremediation of persistent

    E-Print Network [OSTI]

    Zhao, Huimin

    2005-01-01T23:59:59.000Z

    Enzyme and Microbial Technology 37 (2005) 487­496 Recent advances in the bioremediation engineering, the bioremediation of persistent organic pollutants (POPs) using genetically modified and applications of these biomolecular tools for enhancing the capability of microorganisms to bioremediate three

  5. Vehicle Technologies Office Merit Review 2015: Advanced Bus and Truck Radial Materials for Fuel Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given by PPG at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced bus and truck radial materials...

  6. Vehicle Technologies Office Merit Review 2015: Advanced Climate Systems for EV Extended Range (ACSforEVER)

    Broader source: Energy.gov [DOE]

    Presentation given by Halla Visteon at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced climate systems for EV...

  7. Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01T23:59:59.000Z

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

  8. Vehicle Technologies Office Merit Review 2014: Advanced Climate Systems for EV Extended Range

    Broader source: Energy.gov [DOE]

    Presentation given by Halla Visteon at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced climate systems for EV...

  9. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    SciTech Connect (OSTI)

    T. R. Allen; J. B. Benson; J. A. Foster; F. M. Marshall; M. K. Meyer; M. C. Thelen

    2009-05-01T23:59:59.000Z

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team projects and faculty/staff exchanges. In June of 2008, the first week-long ATR NSUF Summer Session was attended by 68 students, university faculty and industry representatives. The Summer Session featured presentations by 19 technical experts from across the country and covered topics including irradiation damage mechanisms, degradation of reactor materials, LWR and gas reactor fuels, and non-destructive evaluation. High impact research results from leveraging the entire research infrastructure, including universities, industry, small business, and the national laboratories. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. Current partner facilities include the MIT Reactor, the University of Michigan Irradiated Materials Testing Laboratory, the University of Wisconsin Characterization Laboratory, and the University of Nevada, Las Vegas transmission Electron Microscope User Facility. Needs for irradiation of material specimens at tightly controlled temperatures are being met by dedication of a large in-pile pressurized water loop facility for use by ATR NSUF users. Several environmental mechanical testing systems are under construction to determine crack growth rates and fracture toughness on irradiated test systems.

  10. advanced conversion technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas S. Piwonka 1997-01-01 25 Energy Conversion Advanced Heat Transport Loop and Power Cycle Chang Oh CiteSeer Summary: ii iii The Department of Energy and the Idaho...

  11. advanced technology systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    133 An Overview on Advance Metering System CiteSeer Summary: Abstract The term "Smart meter " typically refers to an electrical meter, but the term is also starting to be...

  12. advanced propeller technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute, Institute for Advanced created the energy institute in 2008 with seed funding that included a 3.6 million start-up grant from Rollins, Andrew M. 3 February 2000...

  13. Development and application of a probabilistic evaluation method for advanced process technologies

    SciTech Connect (OSTI)

    Frey, H.C.; Rubin, E.S.

    1991-04-01T23:59:59.000Z

    The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

  14. Development and application of a probabilistic evaluation method for advanced process technologies. Final report

    SciTech Connect (OSTI)

    Frey, H.C.; Rubin, E.S.

    1991-04-01T23:59:59.000Z

    The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

  15. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan

    SciTech Connect (OSTI)

    Bruce Hallbert

    2012-09-01T23:59:59.000Z

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  16. advanced vehicle technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From: Hannah J. Moore Oak Ridge Institute for Science and Education Graphic Design: Debbie Bain Lindsey Marlar Oak Ridge 11 Battery Technology for Electric and Hybrid...

  17. advanced technology vehicle: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From: Hannah J. Moore Oak Ridge Institute for Science and Education Graphic Design: Debbie Bain Lindsey Marlar Oak Ridge 11 Battery Technology for Electric and Hybrid...

  18. Advancing Technology Readiness: Wave Energy Testing and Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    National Marine Renewable Energy Center (NNMREC), verified the functionality of the Wave Energy Technology - New Zealand (WET-NZ) device through wave tank testing and...

  19. Small Businesses Receive $2 Million to Advance HVAC Technologies...

    Office of Environmental Management (EM)

    suitable for a 50 gallon unit, which is both more efficient than current mechanical compressors, but also scalable. The technology uses a new high performance, low cost membrane...

  20. advanced laser technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Microdrilling of Polymers with Ultraviolet Laser Paris-Sud XI, Universit de 86 Technology Assessment of Laser-Assisted Materials Processing in Space CiteSeer Summary: ....

  1. advanced technological research: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Renewable Energy Center California Off-shore Wind Technology Assessment 12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE...

  2. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss018cesiel2012...

  3. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss018cesiel2011...

  4. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. vss02sell...

  5. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vss018cesiel2010...

  6. Advanced Technologies and Practices - Building America Top Innovations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in specific technologies and construction practices that improve the building envelope; heating, ventilation, and air conditioning (HVAC); water heating components; and indoor...

  7. advanced technology solar: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UMore Park Overview 4 Solar Optimization 7 Passive Solar 8 Solar Technologies 10 District Solar Energy 13 Optimal Solar Layout 14 Payback & State Incentives 15 UMore Park...

  8. Vehicle Technologies Office Merit Review 2014: Advanced Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Analysis Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  9. Idaho National Laboratory Testing of Advanced Technology Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss021francfort2011o.pdf More Documents & Publications Vehicle...

  10. Advanced Vehicle Technology Competition: Challenge-X 2008 DOE...

    Energy Savers [EERE]

    More Documents & Publications EcoCAR the Next Generation IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR...

  11. FIEA Advancing Wood Technology Forest Industry Engineering Scholarship

    E-Print Network [OSTI]

    Hickman, Mark

    year. Forestry and wood products companies, key product suppliers, researchers and technology qualification. This FIEA Scholarship has also been set up to encourage and support an outstanding student

  12. Energy Department Announces $2.5 Million to Advance Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. The Energy Department also works through the Clean...

  13. STATEMENT OF CONSIDERATIONS REQUEST BY ADVANCED TECHNOLOGY MATERIALS...

    Broader source: Energy.gov (indexed) [DOE]

    also states that there are other competitive technologies, specifically amine-based absorption , which are mature and have significant advantages associated with their incumbency...

  14. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    21st Century Truck Partnership, the Army will demonstrate technology that converts waste heat from an exhaust system to electricity used in its Stryker vehicle. | Photo courtesy...

  15. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    SciTech Connect (OSTI)

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16T23:59:59.000Z

    Wolverine Power Supply Cooperative Inc, a member owned cooperative utility based in Cadillac Michigan, proposes to demonstrate the capture, beneficial utilization and storage of CO{sub 2} in the expansion of existing Enhanced Oil Recovery operations. This project is being proposed in response to the US Department of Energy Solicitation DE-FOA-0000015 Section III D, 'Large Scale Industrial CCS projects from Industrial Sources' Technology Area 1. The project will remove 1,000 metric tons per day of CO{sub 2} from the Wolverine Clean Energy Venture 600 MW CFB power plant owned and operated by WPC. CO{sub 2} from the flue gas will be captured using Hitachi's CO{sub 2} capture system and advanced amine technology. The capture system with the advanced amine-based solvent supplied by Hitachi is expected to significantly reduce the cost and energy requirements of CO{sub 2} capture compared to current technologies. The captured CO{sub 2} will be compressed and transported for Enhanced Oil Recovery and CO{sub 2} storage purposes. Enhanced Oil Recovery is a proven concept, widely used to recover otherwise inaccessible petroleum reserves. While post-combustion CO{sub 2} capture technologies have been tested at the pilot scale on coal power plant flue gas, they have not yet been demonstrated at a commercial scale and integrated with EOR and storage operations. Amine-based CO{sub 2} capture is the leading technology expected to be available commercially within this decade to enable CCS for utility and industrial facilities firing coal and waste fuels such as petroleum coke. However, traditional CO{sub 2} capture process utilizing commercial amine solvents is very energy intensive for regeneration and is also susceptible to solvent degradation by oxygen as well as SOx and NO{sub 2} in the flue gas, resulting in large operating costs. The large volume of combustion flue gas with its low CO{sub 2} concentration requires large equipment sizes, which together with the highly corrosive nature of the typical amine-based separation process leads to high plant capital investment. According to recent DOE-NETL studies, MEA-based CCS will increase the cost of electricity of a new pulverized coal plant by 80-85% and reduce the net plant efficiency by about 30%. Non-power industrial facilities will incur similar production output and efficiency penalties when implementing conventional carbon capture systems. The proposed large scale demonstration project combining advanced amine CO{sub 2} capture integrated with commercial EOR operations significantly advances post-combustion technology development toward the DOE objectives of reducing the cost of energy production and improving the efficiency of CO{sub 2} Capture technologies. WPC has assembled a strong multidisciplinary team to meet the objectives of this project. WPC will provide the host site and Hitachi will provide the carbon capture technology and advanced solvent. Burns and Roe bring expertise in overall engineering integration and plant design to the team. Core Energy, an active EOR producer/operator in the State of Michigan, is committed to support the detailed design, construction and operation of the CO{sub 2} pipeline and storage component of the project. This team has developed a Front End Engineering Design and Cost Estimate as part of Phase 1 of DOE Award DE-FE0002477.

  16. Seminar Center for Advanced Vehicle Technologies Thursday, 04/29 -2:00pm

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    Advisor to the CEO Maxwell Technologies, Inc. Abstract We live in an era of unprecedented interestSeminar ­ Center for Advanced Vehicle Technologies Thursday, 04/29 - 2:00pm 101 Bevill Hall The Role and Future of Power Electronics in Energy Storage Systems John M. Miller, PE, Ph.D. Technical

  17. Center for Advanced Separation Technology | SciTech Connect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA Series ofTransformingCement (2010Center

  18. Bore II - Advanced Wellbore Technology Characterizes Groundwater Flow and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewindParticle

  19. Analysis of Petroleum Technology Advances Through Applied Research by Independent Oil Producers

    SciTech Connect (OSTI)

    Brashear, Jerry P.; North, Walter B.; Thomas Charles P.; Becker, Alan B.; Faulder, David D.

    2000-01-12T23:59:59.000Z

    Petroleum Technology Advances Through Applied Research by Independent Oil Producers is a program of the National Oil Research Program, U.S. Department of Energy. Between 1995 and 1998, the program competitively selected and cost-shared twenty-two projects with small producers. The purpose was to involve small independent producers in testing technologies of interest to them that would advance (directly or indirectly) one or more of four national program objectives: (1) Extend the productive life of reservoirs; (2) Increase production and/or reserves; (3) Improve environmental performance; and (4) Broaden the exchange of technology information.

  20. The role of advanced technology in the future of the power generation industry

    SciTech Connect (OSTI)

    Bechtel, T.F.

    1994-10-01T23:59:59.000Z

    This presentation reviews the directions that technology has given the power generation industry in the past and how advanced technology will be the key for the future of the industry. The topics of the presentation include how the industry`s history has defined its culture, how today`s economic and regulatory climate has constrained its strategy, and how certain technology options might give some of the players an unfair advantage.

  1. Technical analysis of US Army Weapons Systems and related advanced technologies of military interest. Final report

    SciTech Connect (OSTI)

    NONE

    1991-06-14T23:59:59.000Z

    This report summarizes the activities and accomplishments of an US Army technology security project designed to identify and develop effective policy guidelines for militarily critical technologies in specific Army systems and in broad generic technology areas of military interest, Individual systems analyses are documented in separate Weapons Systems Technical Assessments (WSTAs) and the general generic technology areas are evaluated in the Advanced Technology Assessment Reports (ATARs), However, specific details of these assessments are not addressed here, only recommendations regarding aspects of the defined approach, methodology, and format are provided and discussed.

  2. Renaissance in Flow-Cell Technologies: Recent Advancements and...

    Office of Environmental Management (EM)

    Presentation by Mike Perry, United Technologies Research Center, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC. flowcells2012perry.pdf...

  3. advanced technology demonstration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology demonstration First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Manufacturing Demonstration...

  4. STATEMENT OF CONSIDERATIONS REQUEST BY ADVANCED TECHNOLOGY MATERIALS...

    Broader source: Energy.gov (indexed) [DOE]

    to practice in the course of ATMI's subcontract work for United Technologies Corporation Fuel Cells (UTCFC) under Cooperative Agreement Number DE-FC04-02AL67616 entitled "The...

  5. Combustion Technology Development for an Advanced Glass Melting System

    E-Print Network [OSTI]

    Stickler, D. B.; Westra, L.; Woodroffe, J.; Jeong, K. M.; Donaldson, L. W.

    Concept feasibility of an innovative technology for glass production has recently been demonstrated. It is based on suspension heating of the glass-forming batch minerals while entrained in a combustion flow of preheated air and natural gas...

  6. advanced turbine technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbines (FOWT) is a technology that stands to spearhead the rapid growth of the offshore wind energy sector and allow the exploration of vast high quality wind resources over...

  7. advanced technology trend: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the use of accelerator on-chip or off-chip, in addition to the traditional architectural models. On the verge of this technological abundance, assessing the performance trade-offs...

  8. Advancing clinical gait analysis through technology and policy

    E-Print Network [OSTI]

    Tan, Junjay

    2009-01-01T23:59:59.000Z

    Quantitatively analyzing human gait biomechanics will improve our ability to diagnose and treat disability and to measure the effectiveness of assistive devices. Gait analysis is one technology used to analyze walking, but ...

  9. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    estimate the needed technologies and costs for achieving aexamples due to higher technology costs. To be published inwe find that at current technology costs, the nursing home

  10. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    these renewable energy and storage technologies would makechiller, energy storage, or solar-based technologies areStorage Technologies,” ACEEE 2008 Summer Study on Energy

  11. Advances in Materials Science for Environmental and Energy Technologies II

    SciTech Connect (OSTI)

    Matyas, Dr Josef [Pacific Northwest National Laboratory (PNNL); Ohji, Tatsuki [Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Tec; Liu, Xingbo [West Virginia University, Morgantown; Paranthaman, Mariappan Parans [ORNL; Devanathan, Ram [Pacific Northwest National Laboratory (PNNL); Fox, Kevin [Savannah River National Laboratory (SRNL); Singh, Mrityunjay [NASA-Glenn Research Center, Cleveland; Wong-ng, Winnie [National Institute of Standards and Technology (NIST), Gaithersburg, MD

    2013-01-01T23:59:59.000Z

    The Materials Science and Technology 2012 Conference and Exhibition (MS&T'12) was held October 7-11, 2012, in Pittsburgh, Pennsylvania. One of the major themes of the conference was Environmental and Energy Issues. Papers from five of the symposia held under that theme are invluded in this volume. These symposia included Materials Issues in Nuclear Waste Management for the 21st Century; Green Technologies for Materials Manufacturing and Processing IV; Energy Storage: Materials, Systems and Applications; Energy Conversion-Photovoltaic, Concentraing Solar Power and Thermoelectric; and Materials Development for Nuclear Applications and Extreme Environments.

  12. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    SciTech Connect (OSTI)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01T23:59:59.000Z

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  13. advanced technology proposal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology proposal First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Proposed Research Center Biomedical...

  14. advanced technology hov: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology hov First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Influence of barrier separated HOV lane...

  15. advanced sequencing technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sequencing technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 DNA sequencing: Clinical...

  16. advanced spacecraft technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spacecraft technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 NASATP2014216648REV1 Small...

  17. A EUROPEAN ADVANCED TECHNOLOGY PROGRAMME FOR ADS ACCELERATOR DEVELOPMENT*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    associated to a fast digital feedback system. A programme for the remaining R&D, focused on experimental as such a reactor. Consecutive to the initial work of the Technical Working Group on ADS technology [1], the project in 2002 [2], and studied 3 versions of an XADS: both a molten-metal (eutectic Pb-Bi) and a gas cooled ADS

  18. ATTAP: Advanced Turbine Technology Applications Project. Annual report, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Purpose of ATTAP is to bring the automotive gas turbine engine to a technology state at which industry can make commercialization decisions. Activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing.

  19. Advanced Robotics Minimally invasive surgery (MIS) and robotics technologies have

    E-Print Network [OSTI]

    Denham, Graham

    and the opportunity to perform long-distance procedures. From developing regional brain cooling techniques to applying the implementation of new technologies and techniques into clinical practice through research, education and health of microsurgical techniques for skull-based tumours and use of ultrasound for delivering pain blocks · CSTAR

  20. advanced nuclear technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Programme A. Nuclear Power...

  1. Advanced accelerator technologies - a snowmass `96 subgroup summary

    SciTech Connect (OSTI)

    Chattopadhyay, S.; Whittum, D.; Wurtele, J.

    1996-07-01T23:59:59.000Z

    We address the collider physics issues, concepts and technologies of (e{sup +}e{sup -}{gamma}) colliders at a cm. energy of 5 TeV and a luminosity of 10{sup 35} cm{sup -2}s{sup -1}.

  2. advanced construction technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    construction technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 P.G. Ioannou and L.Y. Liu...

  3. advanced construction technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    construction technologies First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 P.G. Ioannou and L.Y. Liu...

  4. advanced web technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    web technologies First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Accolade Web Engineering...

  5. PNNL Advances Hydrogen-Fueled Vehicle Technologies | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOfEnergyOutreachPNNL Advances Hydrogen-Fueled

  6. Advanced Technology Vehicles Manufacturing (ATVM) Loan Program | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVM LoanActiveMission »AdvancedServices »Sensorsof

  7. Advancing Fuel Cell Technology at Los Alamos | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVM LoanActiveMission »AdvancedServices

  8. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUEValidationAdvancedProcessConstructionDepartment

  9. Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report | Department of Energy AdvancedReportMotors

  10. Advancing Technology Readiness: Wave Energy Testing and Demonstration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISO 50001EnergyNewsletter AdvancedWindow

  11. Advanced Lithium Ion Battery Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power andAdvancedCMWG Breakout Session

  12. Advanced Technology & Discovery at Munich | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 PowerAdvancedInstitute

  13. Advancing manufacturing technology that is imperative to prevent erosion of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14Scripting for Advanced Workflowsa minour

  14. COLLOQUIUM: Advanced Simulation for Technology Innovation and Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience,Institute for AdvancedDiscovery |

  15. Advanced Battery Technologies Inc ABAT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki HomeASNAddGlobe Jump to:Advanced AMRFactoryABAT

  16. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  17. Engine technology advances show potential in labs: Part 1. [Retrofitting engine systems on gas distribution networks

    SciTech Connect (OSTI)

    McCoy, J.J. (Tenneco Gas Co., Houston, TX (United States)); Willson, B. (Colorado State Univ., Fort Collins, CO (United States))

    1994-06-01T23:59:59.000Z

    Cutting fuel consumption and reducing emissions are dominant goals of stationary gas engine operators. Recent technology advances show promise and could result in money-saving retrofit options. Selected new technologies include sensors, actuators--defined as anything controlling the engine: fuel and ignition--and control techniques. An attractive feature of most of these technologies is that they can be retrofitted onto existing engines, allowing the potential for improved performance at a fraction of engine replacement cost. This paper reviews these new technologies and how they perform.

  18. ADVANCING TECHNOLOGY AND METHODOLOGY TO STREAMLINE ENVIRONMENTAL COMPLIANCE

    SciTech Connect (OSTI)

    Ben Grunewald; Paul Jehn

    2002-11-15T23:59:59.000Z

    By early 2000, fifteen oil and gas State Agencies were using RBDMS or a RBDMS utility to handle a significant amount or all of their data management needs. There are three additional State slated to begin implementation this year. There are an additional twelve State agencies that are not utilizing this technology that have proven to be very useful for so many other States. This project will allow for the base RBDMS install in all State oil and gas agency that desire it.

  19. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect (OSTI)

    Unknown

    1999-04-01T23:59:59.000Z

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H{sub 2}S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct.

  20. Load research manual. Volume 3. Load research for advanced technologies

    SciTech Connect (OSTI)

    None

    1980-11-01T23:59:59.000Z

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. The manual includes guides to load research literature and glossaries of load research and statistical terms. In Volume 3, special load research procedures are presented for solar, wind, and cogeneration technologies.

  1. Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport

    SciTech Connect (OSTI)

    Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

    2013-07-01T23:59:59.000Z

    The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

  2. Innovative experimental particle physics through technological advances: Past, present and future

    SciTech Connect (OSTI)

    Cheung, Harry W.K.; /Fermilab

    2005-01-01T23:59:59.000Z

    This mini-course gives an introduction to the techniques used in experimental particle physics with an emphasis on the impact of technological advances. The basic detector types and particle accelerator facilities will be briefly covered with examples of their use and with comparisons. The mini-course ends with what can be expected in the near future from current technology advances. The mini-course is intended for graduate students and post-docs and as an introduction to experimental techniques for theorists.

  3. Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

  4. Vehicle Technologies Office Merit Review 2015: Advancements in Fuel Spray and Combustion Modeling with High Performance Computing Resources

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancements in...

  5. Vehicle Technologies Office Merit Review 2014: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Caterpillar at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  6. Vehicle Technologies Office Merit Review 2015: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Caterpillar at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  7. Vehicle Technologies Office Merit Review 2015: Development of Advanced High-Performance Batteries for 12V Start Stop Vehicle Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Maxwell at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  8. Vehicle Technologies Office Merit Review 2014: Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancement in...

  9. The Value of Advanced Technologies in the U.S. Buildings Sector in Climate Change Mitigation

    SciTech Connect (OSTI)

    Kyle, G. Page; Clarke, Leon E.; Smith, Steven J.

    2008-05-01T23:59:59.000Z

    There is a wide body of research focused on the potential of advanced technologies to reduce energy consumption in buildings. How such improvements relate to global climate change, however, is less clear, due to the complexity of the climate change issue, and the implications for the energy system as a whole that need to be considered. This study uses MiniCAM, an integrated assessment model, to examine the contributions of several suites of advanced buildings technologies in meeting national carbon emissions reduction targets, as part of a global policy to mitigate climate change by stabilizing atmospheric CO2 concentrations at 450 ppmv. Focal technology areas include building shells, heat pumps for HVAC and water heating applications, solid-state lighting, and miscellaneous electric equipment. We find that advanced heat pumps and energy-efficient miscellaneous electric equipment show the greatest potential to reduce aggregate building sector future energy consumption and policy costs, but that all focal areas are important for reducing energy consumption. Because of assumed availability of low-cost, emissions-reduced electricity generation technologies in these scenarios, heat pumps are especially important for facilitating fuel-switching towards electricity. Buildings sector energy consumption is reduced by 28% and policy costs are reduced by 17% in a scenario with advanced technologies in all focal areas.

  10. Technology Advancements to Lower Costs of Electrochromic Window Glazing

    SciTech Connect (OSTI)

    Mark Burdis; Neil Sbar

    2008-07-13T23:59:59.000Z

    An Electrochromic (EC) Window is a solar control device that can electronically regulate the flow of sunlight and heat. In the case of the SageGlass{reg_sign} EC window, this property derives from a proprietary all-ceramic, intrinsically durable thin-film stack applied to an inner surface of a glass double-pane window. As solar irradiation and temperatures change, the window can be set to an appropriate level of tint to optimize the comfort and productivity of the occupants as well as to minimize building energy usage as a result of HVAC and lighting optimization. The primary goal of this project is to replace certain batch processes for EC thin film deposition resulting in a complete in-line vacuum process that will reduce future capital and labor coats, while increasing throughput and yields. This will require key technology developments to replace the offline processes. This project has enabled development of the next generation of electrochromic devices suitable for large-scale production. Specifically, the requirements to produce large area devices cost effectively require processes amenable to mass production, using a variety of different substrate materials, having minimal handling and capable of being run at high yield. The present SageGlass{reg_sign} production process consists of two vacuum steps separated by an atmospheric process. This means that the glass goes through several additional handling steps, including venting and pumping down to go from vacuum to atmosphere and back, which can only serve to introduce additional defects associated with such processes. The aim of this project therefore was to develop a process which would eliminate the need for the atmospheric process. The overall project was divided into several logical tasks which would result in a process ready to be implemented in the present SAGE facility. Tasks 2 and 3 were devoted to development and the optimization of a new thin film material process. These tasks are more complicated than would be expected, as it has been determined in the past that there are a number of interactions between the new material and the layers beneath, which have an important effect on the behavior of the device. The effects of these interactions needed to be understood in order for this task to be successful. Tasks 4 and 5 were devoted to production of devices using the novel technology developed in the previous tasks. In addition, characterization tests were required to ensure the devices would perform adequately as replacements for the existing technology. Each of these tasks has been achieved successfully. In task 2, a series of potential materials were surveyed, and ranked in order of desirability. Prototype device structures were produced and characterized in order to do this. This satisfied the requirements for Task 2. From the results of this relatively extensive survey, the number of candidate materials was reduced to one or two. Small devices were made in order to test the functionality of such samples, and a series of optimization experiments were carried out with encouraging results. Devices were fabricated, and some room temperature cycling carried out showing that there are no fundamental problems with this technology. This series of achievements satisfied the requirements for Tasks 3 and 4. The results obtained from Task 3 naturally led to scale-up of the process, so a large cathode was obtained and installed in a spare slot in the production coater, and a series of large devices fabricated. In particular, devices with dimensions of 60-inch x 34-inch were produced, using processes which are fully compatible with mass production. Testing followed, satisfying the requirements for Task 5. As can be seen from this discussion, all the requirements of the project have therefore been successfully achieved. The devices produced using the newly developed technology showed excellent optical properties, often exceeding the performance of the existing technology, equivalent durability results, and promise a significantly simplified manufacturing approach, the

  11. Fuels and Lubricants to Support Advanced Diesel Engine Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies ProgramOutfitted with SCREngines | Department

  12. Funding Opportunity Announcement Webinar: Technology Advancement for Rapid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies ProgramOutfittedof Energydetails to Module

  13. Funding Opportunity: Technology Advancement for Rapid Development of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies ProgramOutfittedof Energydetails

  14. Advanced Technology Development and Mitigation | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of the Administrator NNSAAdministration Technology

  15. Vehicle Technologies Office: Advanced Combustion Engines | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter-Japan JointTechnologiesDepartment ofServiceEnergy

  16. Department of Energy Announces Advanced Vehicle Technology Competition,

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal Nuclear Energy PartnershipTechnologyFieldEcoCar2:

  17. Green Racing Initiative: Accelerating the Use of Advanced Technologies &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal TechnologiesGeothermalGoGreat GreenPurchasing under

  18. Green Racing: Accelerating the Use of Advanced Technologies & Renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal TechnologiesGeothermalGoGreat GreenPurchasing

  19. Advanced Diesel Engine Technology Development for HECC | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergy Technology Development

  20. Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment ofEnergy Technology

  1. Idaho National Laboratory Testing of Advanced Technology Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum Technology Vision 2020WasteImplementation

  2. Hydrogen energy for tomorrow: Advanced hydrogen transport and storage technologies

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The future use of hydrogen to generate electricity, heat homes and businesses, and fuel vehicles will require the creation of a distribution infrastructure of safe, and cost-effective transport and storage. Present storage methods are too expensive and will not meet the performance requirements of future applications. Transport technologies will need to be developed based on the production and storage systems that come into use as the hydrogen energy economy evolves. Different applications will require the development of different types of storage technologies. Utility electricity generation and home and office use will have storage fixed in one location--stationary storage--and size and weight will be less important than energy efficiency and costs of the system. Fueling a vehicle, however, will require hydrogen storage in an ``on-board`` system--mobile storage--with weight and size similar to the gasoline tank in today`s vehicle. Researchers are working to develop physical and solid-state storage systems that will meet these diverse future application demands. Physical storage systems and solid-state storage methods (metal hydrides, gas-on-solids adsorption, and glass microspheres) are described.

  3. Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency 

    E-Print Network [OSTI]

    Kiliccote, S.; Piette, M. A.

    2005-01-01T23:59:59.000Z

    ICEBO 2005 Conference Paper September 1, 2005 LBNL # 58179 ADVANCED CONTROL TECHNOLOGIES AND STRATEGIES LINKING DEMAND RESPONSE AND ENERGY EFFICIENCY Sila Kiliccote Mary Ann Piette Lawrence Berkeley National Laboratory Berkeley..., and nationwide status is outlined. The role of energy management and control systems for DR is described. Building systems such as HVAC and lighting that utilize control technologies and strategies for energy efficiency are mapped on to DR and demand...

  4. Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  5. Novel buried contact technology for advanced silicon solar cells

    SciTech Connect (OSTI)

    Ni Dheasuna, C.; Mathewson, A.; Hecking, L.; Wrixon, G.T. [National Microelectronics Research Centre, Cork (Ireland)

    1994-12-31T23:59:59.000Z

    Increased efficiency of silicon solar cells has resulted in the increased complexity and cost of manufacture. Optical properties can be enhanced by increasing the optical path length, while minimizing both bulk and surface recombination. Conventional silicon based solar cells are fabricated by a series of physical or chemical vapor deposition processes followed by photolithography and etching processes for each layer. These repeated deposition and etching cycles are not only difficult to perform but they also generate severe surface topography. This topography is a major cause of yield loss and reliability problems for advanced solar cells. These problems are especially severe for high aspect ratio contact holes. An alternative method of performing this metallization inexpensively and reliably is by the use of electroless plating. As the plating process occurs selectively on Si and not on the surface passivation layer, thick metal films (Ni and Cu) can be deposited which depend entirely upon the depth of the trench used. The advantages of electroless plating as an alternative to standard metallization will be presented.

  6. Low Temperature Heat Source Utilization Current and Advanced Technology

    SciTech Connect (OSTI)

    Anderson, James H. Jr.; Dambly, Benjamin W.

    1992-06-01T23:59:59.000Z

    Once a geothermal heat source has been identified as having the potential for development, and its thermal, physical, and chemical characteristics have been determined, a method of utilization must be decided upon. This compendium will touch upon some of these concerns, and hopefully will provide the reader with a better understanding of technologies being developed that will be applicable to geothermal development in East Africa, as well as other parts of the world. The appendices contain detailed reports on Down-the-Well Turbo Pump, The Vapor-Turbine Cycle for Geothermal Power Generation, Heat Exchanger Design for Geothermal Power Plants, and a Feasibility Study of Combined Power and Water Desalting Plant Using Hot Geothermal Water. [DJE-2005

  7. Hydropower R&D: Recent Advances in Turbine Passage Technology

    SciTech Connect (OSTI)

    Rinehart, Bennie Nelson; Cada, G. F.

    2000-04-01T23:59:59.000Z

    The purpose of this report is to describe the recent and planned R&D activities across the U.S. related to survival of fish entrained in hydroelectric turbines. In this report, we have considered studies that are intended to develop new information that can be used to mitigate turbine-passage mortality. This review focuses on the effects on fish of physical or operational modifications to turbines, comparisons to survival in other downstream passage routes (e.g., bypass systems and spillways), and applications of new modeling, experimental, and technological approaches to develop a greater understanding of the stresses associated with turbine passage. In addition, the emphasis is on biological studies, as opposed to the engineering studies (e.g., turbine index testing) that re often carried out in support of fish passage mitigation efforts.

  8. Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology

    SciTech Connect (OSTI)

    Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

    2005-06-30T23:59:59.000Z

    Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

  9. advanced technology multi-institutional: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced technology multi-institutional First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 February 2000...

  10. Project Summary Advances in video technology are being incorporated into today's healthcare practice. For example,

    E-Print Network [OSTI]

    Oh, JungHwan

    Project Summary Advances in video technology are being incorporated into today's healthcare a large body of knowledge in medical image analysis, video data generated during these procedures, analyze, and provide user-friendly and efficient access to the medical, scientific, or educational content

  11. NREL's Hydrogen-Powered Bus Serves as Showcase for Advanced Vehicle Technologies (AVT) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01T23:59:59.000Z

    Brochure describes the hydrogen-powered internal combustion engine (H2ICE) shuttle bus at NREL. The U.S. Department of Energy (DOE) is funding the lease of the bus from Ford to demonstrate market-ready advanced technology vehicles to visitors at NREL.

  12. Acceptance Test Report for the 241-AN-107 Enraf Advanced Technology Gauges

    SciTech Connect (OSTI)

    Dowell, J.L.; Enderlin, V.R.

    1995-06-01T23:59:59.000Z

    This Acceptance Test Report covers the results of the execution of the Acceptance Test Procedure for the 241-AN-107 Enraf Advanced Technology Gauges. The test verified the proper operation of the gauges to measure waste density and level in the 241-AN-107 tank.

  13. MAE SEMINAR Recent advances in Additive Manufacturing/3D Printing Technologies, Material Science and

    E-Print Network [OSTI]

    Mease, Kenneth D.

    MAE SEMINAR Recent advances in Additive Manufacturing/3D Printing Technologies, Material Science Samueli School of Engineering University of California Irvine 3D printing or Additive Manufacturing in different shapes. 3D printing is also considered distinct from traditional machining techniques, which

  14. Saving Energy and Improving IAQ through Application of Advanced Air Cleaning Technologies

    E-Print Network [OSTI]

    Saving Energy and Improving IAQ through Application of Advanced Air Cleaning Technologies Table 1 equipment and people from particles. Criteria for Air Cleaning Reducing ventilation rates to save energy, we may be able use air cleaning systems and reduce rates of ventilation (i.e., reduce rates

  15. The Market Acceptance of Advanced Automotive Technologies (MA3T) Model

    E-Print Network [OSTI]

    vehicles (PHEV), extended-range electric vehicle (EREV), battery electric vehicles (BEV) and fuel cell Vehicles by 2015 Using MA3T Model." The 26th International Battery, Hybrid and Fuel Cell Electric Vehicle: Energy Environment Safety Security Vehicle Technologies T he Market Acceptance of Advanced Automotive

  16. Chain ReAKTing: Collaborative Advanced Knowledge Technologies in the Combechem Grid

    E-Print Network [OSTI]

    Chen-Burger, Yun-Heh (Jessica)

    and the Combechem grid. The deeper integration supports the publication at source research objective of Combechem.g. the smart laboratory (smart- tea.org), grid-enabled instrumentation, data tracking for analysis, methodologyChain ReAKTing: Collaborative Advanced Knowledge Technologies in the Combechem Grid Michelle

  17. CONTROL-THEORY AND ADVANCED TECHNOLOGY Vol. 8, No.1, pp.17-35, March, 1992

    E-Print Network [OSTI]

    Benmei, Chen

    CONTROL-THEORY AND ADVANCED TECHNOLOGY Vol. 8, No.1, pp.17-35, March, 1992 C91012R @MITA PRESS basis, The method is applicable to systems where the transfer function from the control input to the controlled output is right- invertible and has no invariant zeros on the jw axis, Two applications are also

  18. A study of advanced training technology: Emerging answers to tough questions

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This study reports the result of an extensive nationwide review of military, private sector, and other federal agencies and organizations that are implementing a wide variety of advanced training technologies. This report classifies the general categories of advanced training technologies found and provides an overview of each, including specific types and examples. In addition, the research findings present an organizational model for training development linking overall organizational maturity to readiness to implement specific kinds of advanced training technologies. It also presents proposed methods for selecting media, describes the organizations and the data gathered, and provides a summary of implementation success at each organization. This study is organized as a set of five topics. Each topic raises a number of important questions and provides complete or emerging answers. For organizations who have made advanced training selections, this study is a resource to benchmark their success with other organizations who have made similar selections. For new or developing training organizations, this study will help plan their future technology selections by comparing their level of organizational maturity to the documented experiences of similar organizations.

  19. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    SciTech Connect (OSTI)

    The Pennsylvania State Univeristy: Serguei Lvov, Mike Chung, Mark Fedkin, Victor Balashov, Elena, Chalkova, Nikolay Akinfiev; University of South Carolina: Carol Stork, Thomas Davis, Francis Gadala-Maria, Thomas Stanford, John Weidner; Tulane University: Victor Law, John Prindle; Lewis, ANL: Michele

    2011-01-06T23:59:59.000Z

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world�s hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements - around 530 oC and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and reactions going to completion without side reactions, and lower demands on materials of construction. Three university research groups from PSU, USC, and TU as well as a group from ANL have been collaborating on the development of enabling technologies for the Cu-Cl cycle, including experimental work on the Cu-Cl cycle reactions, modeling and simulation, and particularly electrochemical reaction for hydrogen production using a CuCl electrolyzer. The Consortium research was distributed over the participants and organized in the following tasks: (1) Development of CuCl electrolyzer (PSU), (2) Thermodynamic modeling of anolyte solution (PSU), (3) Proton conductive membranes for CuCl electrolysis (PSU), (4) Development of an analytical method for online analysis of copper compounds in highly concentrated aqueous solutions (USC), (5) Electrodialysis as a means for separation and purification of the streams exiting the electrolyzer in the Cu-Cl cycle (USC), (6) Development of nanostructured electrocatalysts for the Cu-Cl electrolysis (USC), (7) Cu-Cl electrolyzer modeling (USC), (8) Aspen Plus modeling of the Cu-Cl thermochemical cycle (TU), (9) International coordination of research on the development of the Cu-Cl thermochemical cycle (ANL). The results obtained in the project clearly demonstrate that the Cu-Cl alternative thermochemical cycle is a promising and viable technology to produce hydrogen efficiently.

  20. Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare – Wastewater Recycling Technology

    SciTech Connect (OSTI)

    Boyd, Brian K.; Parker, Graham B.; Petersen, Joseph M.; Sullivan, Greg; Goetzler, W.; Foley, K. J.; Sutherland, T. A.

    2014-08-14T23:59:59.000Z

    The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of a wastewater recycling system installed in the Grand Hyatt Seattle.

  1. Vehicle Technologies Office Merit Review 2015: Fuel Displacement Potential of Advanced Technologies under Different Thermal Conditions

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel displacement...

  2. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect (OSTI)

    Kevin L Kenney

    2011-09-01T23:59:59.000Z

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  3. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    SciTech Connect (OSTI)

    None

    1988-02-01T23:59:59.000Z

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  4. Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs

    SciTech Connect (OSTI)

    Stephen Holditch; A. Daniel Hill; D. Zhu

    2007-06-19T23:59:59.000Z

    The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical issues in tight gas fracturing, in particular the roles of gel damage, polymer loading (water-frac versus gel frac), and proppant concentration on the created fracture conductivity. To achieve this objective, we have designed the experimental apparatus to conduct the dynamic fracture conductivity tests. The experimental apparatus has been built and some preliminary tests have been conducted to test the apparatus.

  5. Condition monitoring through advanced sensor and computational technology : final report (January 2002 to May 2005).

    SciTech Connect (OSTI)

    Kim, Jung-Taek (Korea Atomic Energy Research Institute, Daejon, Korea); Luk, Vincent K.

    2005-05-01T23:59:59.000Z

    The overall goal of this joint research project was to develop and demonstrate advanced sensors and computational technology for continuous monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This project included investigating and adapting several advanced sensor technologies from Korean and US national laboratory research communities, some of which were developed and applied in non-nuclear industries. The project team investigated and developed sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms. The researchers installed sensors and conducted condition monitoring tests on two test loops, a check valve (an active component) and a piping elbow (a passive component), to demonstrate the feasibility of using advanced sensors and computational technology to achieve the project goal. Acoustic emission (AE) devices, optical fiber sensors, accelerometers, and ultrasonic transducers (UTs) were used to detect mechanical vibratory response of check valve and piping elbow in normal and degraded configurations. Chemical sensors were also installed to monitor the water chemistry in the piping elbow test loop. Analysis results of processed sensor data indicate that it is feasible to differentiate between the normal and degraded (with selected degradation mechanisms) configurations of these two components from the acquired sensor signals, but it is questionable that these methods can reliably identify the level and type of degradation. Additional research and development efforts are needed to refine the differentiation techniques and to reduce the level of uncertainties.

  6. Engineering design and analysis of advanced physical fine coal cleaning technologies

    SciTech Connect (OSTI)

    Gallier, P.W.

    1990-10-20T23:59:59.000Z

    The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cycloning, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level. The ASPEN PLUS process simulation package will be extended to handle coal cleaning applications. Algorithms for predicting the process performance, equipment size, and flowsheet economics of commercial coal cleaning devices and related ancillary equipment will be incorporated into the coal cleaning simulator. The work plan for the froth quarter called for completion of the washability interpolation routine, gravity separation models, and dewatering models. As these items were completed, work in the areas of size reduction, classification and froth flotation were scheduled to begin. As each model was completed, testing and validation procedures were scheduled to begin. Costing models were also planned to be implemented and tested as each of the gravity separation models were completed. 1 tab.

  7. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  8. Design manual for management of solid by-products from advanced coal technologies

    SciTech Connect (OSTI)

    NONE

    1994-10-01T23:59:59.000Z

    Developing coal conversion technologies face major obstacles in byproduct management. This project has developed several management strategies based on field trials of small-scale landfills in an earlier phase of the project, as well as on published/unpublished sources detailing regulatory issues, current industry practice, and reuse opportunities. Field testing, which forms the basis for several of the disposal alternatives presented in this design manual, was limited to byproducts from Ca-based dry SO{sub 2} control technologies, circulating fluidized bed combustion ash, and bubbling bed fluidized bed combustion ash. Data on byproducts from other advanced coal technologies and on reuse opportunities are drawn from other sources (citations following Chapter 3). Field results from the 5 test cases examined under this project, together with results from other ongoing research, provide a basis for predictive modeling of long-term performance of some advanced coal byproducts on exposure to ambient environment. This manual is intended to provide a reference database and development plan for designing, permitting, and operating facilities where advanced coal technology byproducts are managed.

  9. An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies

    SciTech Connect (OSTI)

    Spencer, D.F. [SIMTECHE, Half Moon Bay, CA (United States)

    1997-12-31T23:59:59.000Z

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

  10. Vehicle Technologies Office Merit Review 2015: Neutron Imaging of Advanced Transportation Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about neutron imaging...

  11. Vehicle Technologies Office Merit Review 2014: Neutron Imaging of Advanced Transportation Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about neutron imaging...

  12. Vehicle Technologies Office Merit Review 2014: Impact of Advanced Technologies on Engine Targets

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the impact of...

  13. Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking- Level 2 (in-depth)

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about level 2 (in-depth...

  14. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect (OSTI)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14T23:59:59.000Z

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

  15. 11.432J / 15.427J Real Estate Finance & Investments II: Macro-Level Analysis & Advanced Topics, Spring 2003

    E-Print Network [OSTI]

    Geltner, David, 1951-

    The evolving organization and operation of real estate capital markets. Sources of real estate capital. Primary and secondary mortgage markets. The investment behavior of real estate assets. The development of REITs and ...

  16. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect (OSTI)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-10T23:59:59.000Z

    This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

  17. Advanced Reactor Licensing: Experience with Digital I&C Technology in Evolutionary Plants

    SciTech Connect (OSTI)

    Wood, RT

    2004-09-27T23:59:59.000Z

    This report presents the findings from a study of experience with digital instrumentation and controls (I&C) technology in evolutionary nuclear power plants. In particular, this study evaluated regulatory approaches employed by the international nuclear power community for licensing advanced l&C systems and identified lessons learned. The report (1) gives an overview of the modern l&C technologies employed at numerous evolutionary nuclear power plants, (2) identifies performance experience derived from those applications, (3) discusses regulatory processes employed and issues that have arisen, (4) captures lessons learned from performance and regulatory experience, (5) suggests anticipated issues that may arise from international near-term deployment of reactor concepts, and (6) offers conclusions and recommendations for potential activities to support advanced reactor licensing in the United States.

  18. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO[sub 2] per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO[sub 2] emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  19. Strategic Need for Multi-Purpose Thermal Hydraulic Loop for Support of Advanced Reactor Technologies

    SciTech Connect (OSTI)

    James E. O'Brien; Piyush Sabharwall; Su-Jong Yoon; Gregory K. Housley

    2014-09-01T23:59:59.000Z

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation needs. The experimental database will guide development of appropriate predictive methods and be available for code verification and validation (V&V) related to these systems.

  20. PON-10-603 Advanced Medium-and Heavy-Duty Vehicle Technologies Pre-Commercial Demonstrations Questions and Answers

    E-Print Network [OSTI]

    -for-profit technology entities might include, but are not limited to: CalETC CALSTART California Biodiesel AlliancePON-10-603 Advanced Medium- and Heavy-Duty Vehicle Technologies Pre-Commercial Demonstrations-for-profit technology entity who will be responsible for administering the block grant and coordinating projects