National Library of Energy BETA

Sample records for advanced technology investments

  1. Energy Department Invests $60 Million to Advance Nuclear Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Invests 60 Million to Advance Nuclear Technology Energy Department Invests 60 Million to Advance Nuclear Technology June 5, 2015 - 11:18am Addthis News Media Contact 202-586-4940...

  2. Ramping-up Investments in Advanced Vehicle Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Today, Secretary Chu announced the selection of 40 projects across 15 states to receive more than $175 million to accelerate the development and deployment of next-generation vehicle technologies....

  3. North Central Texas Alternative Fuel and Advanced Technology Investments |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce CarbonEnergy Fuel EffectsNorman

  4. North Central Texas Alternative Fuel and Advanced Technology Investments |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce CarbonEnergy Fuel EffectsNormanDepartment of

  5. North Central Texas Alternative Fuel and Advanced Technology Investments |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce CarbonEnergy Fuel EffectsNormanDepartment of Energy

  6. Energy Department Invests $20 Million to Advance Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department Invests 20 Million to Advance Hydrogen Production and Delivery Technologies Energy Department Invests 20 Million to Advance Hydrogen Production and Delivery...

  7. Energy Department Invests More than $20 Million to Advance Fuel...

    Office of Environmental Management (EM)

    More than 20 Million to Advance Fuel Cell Technologies as New Report Shows Unprecedented Growth in Industry Energy Department Invests More than 20 Million to Advance Fuel Cell...

  8. Technology Investment Roadmap 2012 -2017

    E-Print Network [OSTI]

    Hickman, Mark

    Technology Investment Roadmap 2012 - 2017 20 February 2012 #12;2 Contents Introduction & Overview ............................................................................................ 8 Trend 3: Technology Enabled Learning .................................................................................................... 16 2. Technology enabled learning and teaching

  9. Technology Investment Agreements | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Investment Agreements Technology Investment Agreements Guidance Policy Flash 2006-31 - Technology Investment Agreements Financial Assistance Letter 2006-03 - Guidance...

  10. Department of Energy Seeks to Invest up to $130 Million in Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Seeks to Invest up to 130 Million in Advanced Fuel Cell Technology Department of Energy Seeks to Invest up to 130 Million in Advanced Fuel Cell Technology...

  11. Advanced Pattern Material for Investment Casting Applications

    SciTech Connect (OSTI)

    F. Douglas Neece Neil Chaudhry

    2006-02-08

    Cleveland Tool and Machine (CTM) of Cleveland, Ohio in conjunction with Harrington Product Development Center (HPDC) of Cincinnati, Ohio have developed an advanced, dimensionally accurate, temperature-stable, energy-efficient and cost-effective material and process to manufacture patterns for the investment casting industry. In the proposed technology, FOPAT (aFOam PATtern material) has been developed which is especially compatible with the investment casting process and offers the following advantages: increased dimensional accuracy; increased temperature stability; lower cost per pattern; less energy consumption per pattern; decreased cost of pattern making equipment; decreased tooling cost; increased casting yield. The present method for investment casting is "the lost wax" process, which is exactly that, the use of wax as a pattern material, which is then melted out or "lost" from the ceramic shell. The molten metal is then poured into the ceramic shell to produce a metal casting. This process goes back thousands of years and while there have been improvements in the wax and processing technology, the material is basically the same, wax. The proposed technology is based upon an established industrial process of "Reaction Injection Molding" (RIM) where two components react when mixed and then "molded" to form a part. The proposed technology has been modified and improved with the needs of investment casting in mind. A proprietary mix of components has been formulated which react and expand to form a foam-like product. The result is an investment casting pattern with smooth surface finish and excellent dimensional predictability along with the other key benefits listed above.

  12. Energy Department Announces New Investments in Advanced Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces New Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear Power Reactors June 27, 2013 - 2:20pm Addthis News...

  13. Department of Energy to Invest Nearly $18 Million for Advanced...

    Office of Environmental Management (EM)

    Department of Energy to Invest Nearly 18 Million for Advanced Biofuels User Facility Department of Energy to Invest Nearly 18 Million for Advanced Biofuels User Facility March...

  14. Innovation investment area: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The mission of Environmental Management`s (EM) Office of Technology Development (OTD) Innovation Investment Area is to identify and provide development support for two types of technologies that are developed to characterize, treat and dispose of DOE waste, and to remediate contaminated sites. They are: technologies that show promise to address specific EM needs, but require proof-of-principle experimentation; and (2) already proven technologies in other fields that require critical path experimentation to demonstrate feasibility for adaptation to specific EM needs. The underlying strategy is to ensure that private industry, other Federal Agencies, universities, and DOE National Laboratories are major participants in developing and deploying new and emerging technologies. To this end, about 125 different new and emerging technologies are being developed through Innovation Investment Area`s (IIA) two program elements: RDDT&E New Initiatives (RD01) and Interagency Agreements (RD02). Both of these activities are intended to foster research and development partnerships so as to introduce innovative technologies into other OTD program elements for expedited evaluation.

  15. Federal investment in fossil energy technology

    SciTech Connect (OSTI)

    NONE

    1995-03-01

    On February 21, 1995, during a Congressional hearing on the FY 1996 budget request for the Department of Energy`s Office of Fossil Energy, Congressman David Skaggs of the House Appropriations Committee Subcommittee on the Interior and Related Agencies, requested that Assistant Secretary Patricia Godley submit statements from private companies and others on the value of Federal investments in coal, oil and natural gas technology programs. Specifically, Rep. Skaggs asked for public testimony from private industry and others that would cite examples of technology that has been {open_quotes}brought to market viability or near viability that simply would not have happened if left to private investment decisions alone.{close_quotes} The Department responded with the views of more than 280 industry officials, university professors, and State officials. Most of the responses cited specific technologies or advances that would not have been done, or done as quickly, without Federal investment. Others cited the educational opportunities created as part of Department of Energy-sponsored fossil energy university research. Still others cited improvements in the public knowledge base that have benefitted the private sector.

  16. NASA Earth Science Technology Office (ESTO) Decadal Survey Technology Investments

    E-Print Network [OSTI]

    Christian, Eric

    investments · Risks are retired before major dollars are invested: a cost-effective approach to technologyNASA Earth Science Technology Office (ESTO) Decadal Survey Technology Investments January 7, 2009 #12;Overview: Earth Science Technology Office Science Driven, Competed, Actively Managed

  17. Department of Energy to Invest $50 Million to Advance Domestic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Advance Domestic Solar Manufacturing Market, Achieve SunShot Goal Department of Energy to Invest 50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot...

  18. SoCal Edge: Accelerating Investments in Innovative Building Technologi...

    Office of Environmental Management (EM)

    SoCal Edge: Accelerating Investments in Innovative Building Technologies SoCal Edge: Accelerating Investments in Innovative Building Technologies October 26, 2015 - 2:53pm Addthis...

  19. The Geothermal Technologies Office Invests $18 Million for Innovative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Geothermal Technologies Office Invests 18 Million for Innovative Projects The Geothermal Technologies Office Invests 18 Million for Innovative Projects The McGuiness Hills...

  20. Advanced Integrated Systems Technology Development

    E-Print Network [OSTI]

    2013-01-01

    Renewable Energy Technologies Transportation Advanced Integrated Systems Technology Development is the final report for the Advanced Integrated Systems Technology Development project (

  1. Advanced uranium enrichment technologies

    SciTech Connect (OSTI)

    Merriman, R.

    1983-03-10

    The Advanced Gas Centrifuge and Atomic Vapor Laser Isotope Separation methods are described. The status and potential of the technologies are summarized, the programs outlined, and the economic incentives are noted. How the advanced technologies, once demonstrated, might be deployed so that SWV costs in the 1990s can be significantly reduced is described.

  2. Technology Investment Agreements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewableTeach and Learn Teach and LearnTechnology

  3. Implementing Advances in Transport Security Technologies | Department...

    Office of Environmental Management (EM)

    Implementing Advances in Transport Security Technologies Implementing Advances in Transport Security Technologies Implementing Advances in Transport Security Technologies More...

  4. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership...

  5. Advanced Technology Vehicles Manufacturing (ATVM) Loan Program...

    Office of Environmental Management (EM)

    Advanced Technology Vehicles Manufacturing (ATVM) Loan Program Advanced Technology Vehicles Manufacturing (ATVM) Loan Program Advanced Technology Vehicles Manufacturing (ATVM) Loan...

  6. MTCI advanced coal technologies

    SciTech Connect (OSTI)

    Mansour, M.N.; Chandran, R.R. [Manufacturing and Technology Conversion International, Inc., Columbia, MD (United States)

    1994-12-31

    MTCI is pursuing the development and commercialization of several advanced combustion and gasification systems based on pulse combustion technology. The systems include indirectly heated thermochemical reactor, atmospheric pressure pulse combustor, pulsed atmospheric fluidized bed combustor, direct coal-fired gas turbine pulse combustor island, and advanced concept second-generation pressurized fluidized bed combustor island. Although the systems in toto are capable of processing lignite, subbituminous, bituminous, and anthracite coals in an efficient, economical and environmentally acceptable manner, each system is considered ideal for certain coal types. Brief descriptions of the systems, applications, selected test results and technology status are presented.

  7. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  8. February 2000 Advanced Technology Program

    E-Print Network [OSTI]

    of Standards and Technology (NIST) is a cost-sharing program designed to partner the federal governmentFebruary 2000 Advanced Technology Program Information Infrastructure for Healthcare Focused Program: A Brief History ADADVANCEDANCED TECHNOLOGY PRTECHNOLOGY PROGRAMOGRAM NISTIR 6477 National Institute

  9. State Technologies Advancement Collaborative

    SciTech Connect (OSTI)

    David S. Terry

    2012-01-30

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

  10. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Well-to-Wheels Analysis of Energy Use and...

  11. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report 2009avtaehvso.pdf More Documents &...

  12. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Energy Savers [EERE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Advanced Conversion Roadmap Workshop Innovative Topics for Advanced Biofuels...

  13. Advancing Clean Energy Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    DOE/EERE Solar Energy Technologies Program Fact Sheet - Advancing Clean Energy Technology, May 2010.

  14. On the Technology Prospects and Investment Opportunities for Scalable Neuroscience

    E-Print Network [OSTI]

    Cortes, Corinna

    On the Technology Prospects and Investment Opportunities for Scalable Neuroscience Thomas Dean1 Summary 1 2 Introduction 4 3 Evolving Imaging Technologies 6 4 Macroscale Reporting Devices 10 5 Chowdhury 32 C Macroscale Imaging Technologies -- Anjali Datta 35 D Nanoscale Recording and Wireless Readout

  15. SCANNING THE TECHNOLOGY Scanning Advanced

    E-Print Network [OSTI]

    , electronics and software technologies as shown in Fig. 2. A coarse history of the automobile reveals the broadSCANNING THE TECHNOLOGY Scanning Advanced Automobile Technology BY HAMID GHARAVI National Institute of Standards and Technology Guest Editor K. VENKATESH PRASAD Ford Motor Company Guest Editor PETROS IOANNOU

  16. Advances in Technology To Realize

    E-Print Network [OSTI]

    Advances in Technology To Realize Fusion Energy in the International Context Kathryn A. McCarthy Deputy Associate Laboratory Director Nuclear Science & Technology Idaho National Laboratory 2008 AAAS Meeting Boston, Massachusetts February 16, 2008 #12;2 The US Enabling Technology Research Mission

  17. Advanced Propulsion Technology Strategy

    Broader source: Energy.gov [DOE]

    GM is also developing new classes of electrically driven vehicles, leveraging technology first used in their hybrids.

  18. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Broader source: Energy.gov (indexed) [DOE]

    webinarcarbohydratesproduction.pdf More Documents & Publications Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates...

  19. ORNL Crowdsourcing Site Advances Building Technologies Ideas...

    Office of Environmental Management (EM)

    Crowdsourcing Site Advances Building Technologies Ideas to the Market ORNL Crowdsourcing Site Advances Building Technologies Ideas to the Market September 24, 2015 - 4:09pm Addthis...

  20. Three Offshore Wind Advanced Technology Demonstration Projects...

    Energy Savers [EERE]

    Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding...

  1. Energy Storage - Advanced Technology Development Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Development Merit Review Energy Storage - Advanced Technology Development Merit Review This document is a summary of the evaluation and comments provided by the...

  2. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research...

  3. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research and...

  4. Technology Decisions Under Architectural Uncertainty: Informing Investment Decisions Through Tradespace Exploration

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Technology Decisions Under Architectural Uncertainty: Informing Investment Decisions Through this architectural uncertainty, it is difficult to define the value proposition of technology investments. This paper proposes a method for evaluating technology across a tradespace defined by architectural decisions. Main

  5. Advanced Particulate Filter Technologies for Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications...

  6. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel...

  7. Objective assessment of manufacturing technology investments

    E-Print Network [OSTI]

    Rothman, Craig Jeremy

    2012-01-01

    Amgen is a biotechnology company with manufacturing plants throughout the world. New manufacturing technologies are constantly being developed and implemented in order to address cost, quality, regulation, and competitive ...

  8. Evaluation of Representative Smart Grid Investment Project Technologies: Demand Response

    SciTech Connect (OSTI)

    Fuller, Jason C.; Prakash Kumar, Nirupama; Bonebrake, Christopher A.

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of a limited number of demand response technologies and implementations deployed in the SGIG projects.

  9. Vehicle Technologies Office: 2012 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress...

  10. Advanced Technology Briefing to VLT/PAC

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Advanced Technology Briefing to VLT/PAC Mohamed Abdou VLT, San Diego December 10, 1998 #12;M. Abdou VLT/PAC Meeting, Dec. 10, 1998 Advanced Technology ­ Scope Advanced technology is concerned with the longer-term technologies for high power density fusion systems that will have the greatest impact

  11. Subsea completion technology needs advances

    SciTech Connect (OSTI)

    Ledbetter, R.

    1995-09-18

    Subsea technology needs further advances to reduce operational costs before operators will expand the use of subsea well completions in the Gulf of Mexico. They will continue to choose surface completion-oriented systems as long as these are more economical operationally than subsea system. Designs of subsea equipment such as trees, connectors, control pods, umbilicals, and flow lines, must bring about reductions in the cost of both installation and workover compatibility. Remote operated vehicle (ROV) manipulation is one avenue that should be exploited. The bottom line is that significant cooperation between equipment manufacturers and ROV companies is needed to develop advanced ROV technology, and operators should be involved to help guide operational strategies.

  12. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Savers [EERE]

    (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies...

  13. New Advanced Refrigeration Technology Provides Clean Energy,...

    Office of Environmental Management (EM)

    Refrigeration Technology Provides Clean Energy, Low Utility Bills for Supermarkets New Advanced Refrigeration Technology Provides Clean Energy, Low Utility Bills for...

  14. Advanced Thermoelectric Materials and Generator Technology for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM...

  15. Department of Energy Recovery Act Investment in Biomass Technologies

    SciTech Connect (OSTI)

    2010-11-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.

  16. Effects of Advanced Combustion Technologies on Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Technologies on Particulate Matter Emissions Characteristics Effects of Advanced Combustion Technologies on Particulate Matter Emissions Characteristics...

  17. Technology and Architecture: Informing Investment Decisions for the Future of Human Space Exploration

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Technology and Architecture: Informing Investment Decisions for the Future of Human Space;2 #12;3 Technology and Architecture Informing Investment Decisions for the Future of Human Space before the system architecture is defined. This thesis develops a framework for evaluating technologies

  18. Energy Department Announces New Investments in Advanced Nuclear...

    Broader source: Energy.gov (indexed) [DOE]

    low-carbon economy, the Energy Department today announced 3.5 million for four advanced nuclear reactor projects that go beyond traditional light water designs. These projects --...

  19. Vehicle Technologies Office: 2011 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The...

  20. Vehicle Technologies Office: 2010 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The...

  1. Advanced Vehicle Technology Analysis & Evaluation Team

    Broader source: Energy.gov [DOE]

    Presentation on Advanced Vehicle Technology Analysis & Evaluation Team to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  2. Advanced vehicle technology analysis and evaluation activities

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    FY 2007 annual progress report evaluating the technologies and performance characteristics of advanced automotive powertrain components and subsystems in an integrated vehicle systems context.

  3. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)

    SciTech Connect (OSTI)

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-12-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity. Retrofit technologies that address the challenges of slow-speed integral compression are: (1) optimum turndown using a combination of speed and clearance with single-acting operation as a last resort; (2) if single-acting is required, implement infinite length nozzles to address nozzle pulsation and tunable side branch absorbers for 1x lateral pulsations; and (3) advanced valves, either the semi-active plate valve or the passive rotary valve, to extend valve life to three years with half the pressure drop. This next generation of slow-speed compression should attain 95% efficiency, a three-year valve life, and expanded turndown. New equipment technologies that address the challenges of large-horsepower, high-speed compression are: (1) optimum turndown with unit speed; (2) tapered nozzles to effectively reduce nozzle pulsation with half the pressure drop and minimization of mechanical cylinder stretch induced vibrations; (3) tunable side branch absorber or higher-order filter bottle to address lateral piping pulsations over the entire extended speed range with minimal pressure drop; and (4) semi-active plate valves or passive rotary valves to extend valve life with half the pressure drop. This next generation of large-horsepower, high-speed compression should attain 90% efficiency, a two-year valve life, 50% turndown, and less than 0.75 IPS vibration. This program has generated proof-of-concept technologies with the potential to meet these ambitious goals. Full development of these identified technologies is underway. The GMRC has committed to pursue the most promising enabling technologies for their industry.

  4. Obama Administration Announces New Investments to Advance Biofuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and additional cost reductions in the industry. Advancing Commercial-Scale Drop-In Biofuel Substitutes for Diesel and Jet Fuel In his Blueprint for a Secure Energy Future...

  5. Enhancing America's Manufacturing Competitiveness: A Review of the NIST Advanced Technology Program's

    E-Print Network [OSTI]

    #12;#12;Enhancing America's Manufacturing Competitiveness: A Review of the NIST Advanced Technology Program's Investments in Manufacturing Technologies "Manufacturing is an essential part of our economy. Not only are manufactured goods the currency of world trade, but manufacturing is what creates wealth

  6. Advanced Integrated Systems Technology Development

    E-Print Network [OSTI]

    2013-01-01

    building envelope, implementing daylighting and efficient lighting control strategies, and employing advanced

  7. Vehicle Technologies Office Merit Review 2014: Advanced Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about level 1 advanced...

  8. Recent Advances in Chamber Science and Technology

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Recent Advances in Chamber Science and Technology Mohamed Abdou April 8, 2002ISFNT-6 San Diego, USA;HYLIFE-II ALPS/APEX NSTX Li module Liquid Wall Science & Technology are being Advanced in Several MFE with Swirl Flow - Fast liquid adheres to back wall by centrifugal force - Applicable to LM's or molten salts

  9. Energy Department Invests More Than $55 Million to Advance Efficient...

    Energy Savers [EERE]

    an additional 3.7 million in co-funding to support projects focused on beyond lithium ion battery technologies and reducing friction and wear in the powertrain. To read the full...

  10. Energy Department Invests More Than $55 Million to Advance Efficient...

    Office of Environmental Management (EM)

    an additional 3.7 million in co-funding to support projects focused on beyond lithium ion battery technologies and reducing friction and wear in the powertrain. The...

  11. Japan Advanced Institute of Science and Technology Nano Materials Technology

    E-Print Network [OSTI]

    Ogawa, Mizuhito

    started in April 2002 as a renewal of the former Center for New Materials originally established as oneJapan Advanced Institute of Science and Technology Nano Materials Technology (Lecture) Course Center for Nano Materials and Technology #12;The Center for Nano Materials and Technology (CNMT) has

  12. Valuation of Information Technology Investments as Real Options

    E-Print Network [OSTI]

    Schwartz, Eduardo S.; Zozaya-Gorostiza, Carlos

    2000-01-01

    1999) A Case for Using Real Options Pricing Analysis toExpansion Using Real Options Analysis. MIS Quarterly. Vol.Investment Opportunities as Real Options: Getting Started on

  13. Energy Department Invests More Than $55 Million to Advance Efficient

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofofWind Projects |Energy Leaders, Pioneer Advanced

  14. Energy Department Invests More Than $55 Million to Advance Efficient

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofofWind Projects |Energy Leaders, Pioneer AdvancedVehicle

  15. DOE Seeks to Invest up to $60 Million for Advanced Concentrating...

    Energy Savers [EERE]

    an important component of our comprehensive strategy to commercialize and deploy advanced clean, alternative technologies that will allow us to become less reliant on foreign oil,"...

  16. Lighting Business Case -- A Report Analyzing Lighting Technology Opportunities with High Return on Investment Energy Savings for the Federal Sector

    SciTech Connect (OSTI)

    Jones, Carol C.; Richman, Eric E.

    2005-12-30

    This document analyzes lighting technology opportunities with high return on investment energy savings for the Federal sector.

  17. A case for Sandia investment in complex adaptive systems science and technology.

    SciTech Connect (OSTI)

    Colbaugh, Richard; Tsao, Jeffrey Yeenien; Johnson, Curtis Martin; Backus, George A.; Brown, Theresa Jean; Jones, Katherine A.

    2012-05-01

    This white paper makes a case for Sandia National Laboratories investments in complex adaptive systems science and technology (S&T) -- investments that could enable higher-value-added and more-robustly-engineered solutions to challenges of importance to Sandia's national security mission and to the nation. Complex adaptive systems are ubiquitous in Sandia's national security mission areas. We often ignore the adaptive complexity of these systems by narrowing our 'aperture of concern' to systems or subsystems with a limited range of function exposed to a limited range of environments over limited periods of time. But by widening our aperture of concern we could increase our impact considerably. To do so, the science and technology of complex adaptive systems must mature considerably. Despite an explosion of interest outside of Sandia, however, that science and technology is still in its youth. What has been missing is contact with real (rather than model) systems and real domain-area detail. With its center-of-gravity as an engineering laboratory, Sandia's has made considerable progress applying existing science and technology to real complex adaptive systems. It has focused much less, however, on advancing the science and technology itself. But its close contact with real systems and real domain-area detail represents a powerful strength with which to help complex adaptive systems science and technology mature. Sandia is thus both a prime beneficiary of, as well as potentially a prime contributor to, complex adaptive systems science and technology. Building a productive program in complex adaptive systems science and technology at Sandia will not be trivial, but a credible path can be envisioned: in the short run, continue to apply existing science and technology to real domain-area complex adaptive systems; in the medium run, jump-start the creation of new science and technology capability through Sandia's Laboratory Directed Research and Development program; and in the long run, inculcate an awareness at the Department of Energy of the importance of supporting complex adaptive systems science through its Office of Science.

  18. Advanced Integrated Systems Technology Development

    E-Print Network [OSTI]

    2013-01-01

    modeling improvements in EnergyPlus were delayed due to ancomfort systems in EnergyPlus, (4) advancement of personal57 3.1.1 Improved UFAD and DV EnergyPlus

  19. Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels...

  20. Advanced Combustion Technology to Enable High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Enable High Efficiency Clean Combustion Advanced Combustion Technology to Enable High Efficiency Clean Combustion Summary of advanced combustion research at Cummins...

  1. Renaissance in Flow-Cell Technologies: Recent Advancements and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renaissance in Flow-Cell Technologies: Recent Advancements and Future Opportunities Renaissance in Flow-Cell Technologies: Recent Advancements and Future Opportunities Presentation...

  2. ITP Metal Casting: Advanced Melting Technologies: Energy Saving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and...

  3. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D...

  4. EA-1678: Nissan North America, Inc., Advanced Technology Electric...

    Office of Environmental Management (EM)

    8: Nissan North America, Inc., Advanced Technology Electric Vehicle Manufacturing Plant in Smyrna, TN EA-1678: Nissan North America, Inc., Advanced Technology Electric Vehicle...

  5. Fuels and Lubricants to Support Advanced Diesel Engine Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lubricants to Support Advanced Diesel Engine Technology Fuels and Lubricants to Support Advanced Diesel Engine Technology 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  6. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle Research, Development and Deployment Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle Research,...

  7. U.S. Offshore Wind Advanced Technology Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting...

  8. Diversity in Science and Technology Advances National Clean Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diversity in Science and Technology Advances National Clean Energy in Solar Diversity in Science and Technology Advances National Clean Energy in Solar The SunShot Diversity in...

  9. Demonstrating Optimum HCCI Combustion with Advanced Control Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimum HCCI Combustion with Advanced Control Technology Demonstrating Optimum HCCI Combustion with Advanced Control Technology Presentation given at the 2007 Diesel...

  10. Air Cooling Technology for Advanced Power Electronics and Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Power Electronics and Electric Machines Air Cooling Technology for Advanced Power Electronics and Electric Machines 2009 DOE Hydrogen Program and Vehicle Technologies...

  11. Fact Sheet: Advanced Implementation of Energy Storage Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Implementation of Energy Storage Technologies - Community Energy Storage for Grid Support (August 2013) Fact Sheet: Advanced Implementation of Energy Storage Technologies...

  12. Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual...

    Energy Savers [EERE]

    Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual Progress Report Annual report on...

  13. Advanced Heat/Mass Exchanger Technology for Geothermal and solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HeatMass Exchanger Technology for Geothermal and solar Renewable Energy Systems Advanced HeatMass Exchanger Technology for Geothermal and solar Renewable Energy Systems Advanced...

  14. Energy Department Announces $2.5 Million to Advance Technologies...

    Office of Environmental Management (EM)

    .5 Million to Advance Technologies for Clean-Burning, Efficient Biomass Cookstoves Energy Department Announces 2.5 Million to Advance Technologies for Clean-Burning, Efficient...

  15. Advancing Technology Readiness: Wave Energy Testing and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancing Technology Readiness: Wave Energy Testing and Demonstration Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm Addthis Northwest...

  16. Advanced Robotics Minimally invasive surgery (MIS) and robotics technologies have

    E-Print Network [OSTI]

    Lennard, William N.

    Advanced Robotics Minimally invasive surgery (MIS) and robotics technologies have revolutionized robot technologies for clinical use, researchers and clinicians at Canadian Surgical Technologies & Advanced Robotics (CSTAR) are setting international standards for surgical technology, treatment innovation

  17. Technology Decisions Under Architectural Uncertainty: Informing Investment Decisions Through Tradespace Exploration

    E-Print Network [OSTI]

    Battat, Jonathan A.

    Although NASA has yet to choose an architecture for human spaceflight beyond Earth orbit, they must pursue near-term investment in the enabling technologies that will be required for these future systems. Given this ...

  18. Advanced Window and Shading Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL Advanced PetroleumDepartment| Department|Eleanor

  19. Ceramic Technology for Advanced Heat Engines Project

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  20. Advanced Technology Center Overview 2015

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONY PROJECTRecord4 AdvanceEnergy ASCEM

  1. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  2. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2005-11-04

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  3. Secretary Bodman in Illinois Highlights Scientific Research Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    precious gems are used in applications for cell phones, artificial retinas and biosensors. To bolster investments in science necessary to develop advanced technologies,...

  4. Energy Department Invests Over $7 Million to Commercialize Cost...

    Broader source: Energy.gov (indexed) [DOE]

    than 7 million for projects that will help bring cost-effective, advanced hydrogen and fuel cell technologies online faster. This investment - across four projects in Georgia,...

  5. A boom in energy technology innovation despite decades of stagnant investment

    SciTech Connect (OSTI)

    Bettencourt, Luis M [Los Alamos National Laboratory; Trancik, Jessika A [SANTA FE INSTITUTE; Kaur, Jasleen [INDIANA UNIV

    2009-01-01

    Rates of patenting in energy technologies in the United States stagnated during a period of low federal investment in the sector from the mid-1980's through 2000. To analyze the current state of the field, we built a new comprehensive database of energy patents in the USA and worldwide aggregated by nation and technology. We show that innovation in energy technologies, as measured by numbers of new patents, has grown dramatically over the last decade both for renewable and fossil fuel-based technologies, but that traditional investment -government and private support for research and development (R&D) -has not risen commensurately. We also show that while venture capital investment in the sector has increased significantly in the last few years it lags the observed uptick in patenting. We find increasing patenting rates in nations worldwide but also differences in regional priorities, as well as a marked divergence in innovation rates across technologies. Renewable energy technologies - especially solar and wind - currently show the fastest rates of innovation, while patenting levels in nuclear fission have remained low despite relatively high levels of sustained investment. While this sharp increase of innovative activity bodes well for change in the energy sector, the future of emerging technologies may hinge on sustained investment in R&D and favorable incentives for market entry.

  6. Materials challenges in advanced coal conversion technologies

    SciTech Connect (OSTI)

    Powem, C.A.; Morreale, B.D. [National Energy Technology Laboratory, Albany, OR (United States)

    2008-04-15

    Coal is a critical component in the international energy portfolio, used extensively for electricity generation. Coal is also readily converted to liquid fuels and/or hydrogen for the transportation industry. However, energy extracted from coal comes at a large environmental price: coal combustion can produce large quantities of ash and CO{sub 2}, as well as other pollutants. Advanced technologies can increase the efficiencies and decrease the emissions associated with burning coal and provide an opportunity for CO{sub 2} capture and sequestration. However, these advanced technologies increase the severity of plant operating conditions and thus require improved materials that can stand up to the harsh operating environments. The materials challenges offered by advanced coal conversion technologies must be solved in order to make burning coal an economically and environmentally sound choice for producing energy.

  7. Advanced Natural Gas Engine Technology for Heavy Duty Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Engine Technology for Heavy Duty Vehicles Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Natural gas engine technology has evolved to meet the...

  8. CENTER FOR ADVANCED SEPARATION TECHNOLOGY

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby a contractorEnergy, science, and technologyUNCLASSIFIED

  9. Technologies for Advanced Induction Accelerators

    SciTech Connect (OSTI)

    Hernandez, M.A.; Kamin, G.; Hanks, R.; Sharp, W.; Duncan, G.; Sangster, C.; Ahle, L.; Friedman, A.; Grote, D.; Autrey, D.; Halaxa, E; Williams, C.

    2000-04-20

    To harness fusion energy is one of today's greatest technological challenges, and one well worth pursuing. Success in the development of fusion power would result in a virtually inexhaustible source of energy. The fusion reaction, the process that powers the sun and the stars, can be duplicated on Earth. However, to date these fusion processes have been the products of large-scale experimental efforts. They have yet to achieve fusion in a manner that is cost effective and efficient enough to be applied in a commercial reactor. Lawrence Livermore National Laboratory (LLNL) has been centrally involved in the Nation's inertial confinement fusion (ICF) program for over 25 years. Much of the focus of the LLNL ICF Program has been the well-known effort to develop high power, short wavelength laser drivers to create the conditions necessary for the fusion process. But the ICF Program has also been investigating, in collaboration with Lawrence Berkeley National Laboratory (LBNL), the potential of heavy-ion accelerators as possible drivers. The objectives of the Laboratory Directed Research and Development (LDRD) project described in this report have been to develop some of the enabling technologies necessary for this type of heavy-ion fusion (HIF) driver. In particular, to apply adaptive control to the problem of tailored acceleration and steering of a pulsed ion beam.

  10. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Thermal Energy Storage

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Bonebrake, Christopher A.

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of energy storage technologies deployed in the SGIG projects.

  11. Electrochromic Windows: Advanced Processing Technology

    SciTech Connect (OSTI)

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

  12. Department of Energy Recovery Act Investment in Biomass Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the nation. Of this funding, 1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment. arrasummaryfactsheetweb.p...

  13. Advanced Manufacturing Office (Formerly Industrial Technologies Program)

    E-Print Network [OSTI]

    Advanced Manufacturing Office (Formerly Industrial Technologies Program) Leo Christodoulou Jamie August 11, 2011 #12;Background and Opportunity Background Industry accounts for 30% of energy consumption-value industries such as the renewable energy industry. Example materials include low-cost carbon fiber, low

  14. CO2 Emissions Mitigation and Technological Advance: An

    E-Print Network [OSTI]

    PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Updated Analysis of Advanced/2003) #12;PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Analysis of Advanced Technology, by itself, the scope or quantity of greenhouse gas emissions reductions needed to achiev

  15. Energy Department Invests $67 Million to Advanced Nuclear Technology...

    Broader source: Energy.gov (indexed) [DOE]

    to high priority nuclear energy research challenges, including instrumentation and vacuum drying systems associated with the storage of used nuclear fuel, an integrated...

  16. Energy Department Invests $67 Million to Advanced Nuclear Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographic courtesy of

  17. Energy Department Invests $60 Million to Advance Nuclear Technology |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofofWind Projects |

  18. BankInvest Technology AS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColorado State OfficeBaileyBandgapWorldBankInvest

  19. Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Nanolubricants for Improved Energy Efficiency and Reduced Emissions in Engines Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants for Improved Energy...

  20. Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual Progress Report 2010advcombustionengine.pdf More Documents &...

  1. Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual Progress Report 2008advcombustionengine.pdf More Documents &...

  2. Vehicle Technologies Office Merit Review 2014: Advanced Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Heavy-Duty Engine Systems and Emissions Control Modeling and Analysis Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions...

  3. Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual Progress Report 2010advcombustionengine.pdf More Documents &...

  4. The Geothermal Technologies Office Invests $18 Million for Innovative Projects

    Broader source: Energy.gov [DOE]

    In support of a low carbon future, the United States Department of Energy today announced up to $18 million for 32 projects that will advance geothermal energy development in the United States. The...

  5. ARIES-AT: AN ADVANCED TOKAMAK, ADVANCED TECHNOLOGY FUSION POWER PLANT

    E-Print Network [OSTI]

    ARIES-AT: AN ADVANCED TOKAMAK, ADVANCED TECHNOLOGY FUSION POWER PLANT F. Najmabadi, S. C. Jardin*,6 of high-performance tokamak plasmas together with advanced technology in a fusion power plant. Several and advanced technology leads to attractive fusion power plant with excellent safety and environmental

  6. Advanced manufacturing: Technology and international competitiveness

    SciTech Connect (OSTI)

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  7. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar...

    Broader source: Energy.gov (indexed) [DOE]

    the presentation slides from the "Joint Fuel Cell Technologies Office and Advanced Manufacturing Office Webinar" held November 20, 2012. Joint Fuel Cell Technologies Office and...

  8. Green Racing Initiative: Accelerating the Use of Advanced Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Fuels Green Racing Initiative: Accelerating the Use of Advanced Technologies & Renewable Fuels 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program...

  9. Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual Progress Report Annual report on the work of the the Advanced...

  10. Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual Progress Report The Advanced Combustion Engine R&D subprogram...

  11. Energy Department Invests $10M Through the Fuel Cell Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    has selected 11 projects to receive up to 10M in funding in support of innovations in fuel cell and hydrogen fuel technologies. The intention of these selections is to identify...

  12. SoCal Edge: Accelerating Investments in Innovative Building Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy Smooth Brome Monitoring at

  13. Ceramic technology for Advanced Heat Engines Project

    SciTech Connect (OSTI)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  14. Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints

    Broader source: Energy.gov [DOE]

    Analysts may develop scenarios of the deployment of new vehicle technologies for a variety of reasons, ranging from pure thought exercises for hypothesizing about the future, to careful examinations of the possible outcomes of future policies or trends in technology, to examination of the feasibility of broad goals of reducing greenhouse gases and/or oil use. To establish a scenario's plausibility, analysts will seek to make their underlying assumptions clear and to "reality check" the story they tell about technology development and deployment in the marketplace. This report examines two aspects of "reality checking"—(1) whether the timing of the vehicle deployment envisioned by the scenarios corresponds to recognized limits to technology development and market penetration and (2) whether the investments that must be made for the scenario to unfold seem viable from the perspective of the investment community.

  15. VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology

    E-Print Network [OSTI]

    VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology 2012 Annual Report Visiting Committee on Advanced Technology of the National Institute of Standards and Technology U.S. Department of Commerce February 2013 #12;VISITING COMMITTEE ON ADVANCED TECHNOLOGY National

  16. VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology

    E-Print Network [OSTI]

    VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology 2007 Annual Report Visiting Committee on Advanced Technology of the National Institute of Standards and Technology U.S. Department of Commerce March 3, 2008 #12;VISITING COMMITTEE ON ADVANCED TECHNOLOGY National

  17. P.G. Ioannou and L.Y. Liu Advanced Construction Technology System ACTS Advanced Construction Technology System ACTS

    E-Print Network [OSTI]

    a history of long lead-times for technology transfer (CICE B-2 1982). The productivity growth rateP.G. Ioannou and L.Y. Liu Advanced Construction Technology System ­ ACTS 1 Advanced Construction Technology System ­ ACTS By P. G. Ioannou,1 A.M. ASCE, and L. Y. Liu,2 A.M. ASCE ABSTRACT: The Advanced

  18. Technological advancements in NGV station design

    SciTech Connect (OSTI)

    Ledbetter, G.S.; Grimmer, J.E.; Ketcham, E.T.

    1995-12-31

    Hurricane Compressors` SPRINT System (patent pending) is designed to increase the rate of flow from compressed natural gas (CNG) fuel stations and provide greater utilization of stored CNG than is available from traditional compressor stations. Using a novel method of adapting compressor operation to changes in CNG storage system pressures, this advanced technology provides an alternative mechanism for fuel delivery when demand for fuel is high. Transfer of CNG may be made at higher rates of flow than would be possible either from a pressure depleted storage system or directly from the compressor.

  19. CENTER FOR ADVANCED SEPARATION TECHNOLOGY (CAST) PROGRAM

    SciTech Connect (OSTI)

    Yoon, Roe-Hoan; Hull, Christopher

    2014-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations.

  20. Systematic Discrimination of Advanced Hydrogen Production Technologies

    SciTech Connect (OSTI)

    Charles V. Park; Michael W. Patterson

    2010-07-01

    The U.S. Department of Energy, in concert with industry, is developing a high-temperature gas-cooled reactor at the Idaho National Laboratory (INL) to demonstrate high temperature heat applications to produce hydrogen and electricity or to support other industrial applications. A key part of this program is the production of hydrogen from water that would significantly reduce carbon emissions compared to current production using natural gas. In 2009 the INL led the methodical evaluation of promising advanced hydrogen production technologies in order to focus future resources on the most viable processes. This paper describes how the evaluation process was systematically planned and executed. As a result, High-Temperature Steam Electrolysis was selected as the most viable near-term technology to deploy as a part of the Next Generation Nuclear Plant Project.

  1. VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology

    E-Print Network [OSTI]

    VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology FY 2006 Annual Report U.S. Department of Commerce Technology Administration National Institute of Standards and Technology #12;VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology

  2. VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology

    E-Print Network [OSTI]

    VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology 2008 Annual Report Visiting Committee on Advanced Technology of the National Institute of Standards and Technology U.S. Department of Commerce February 24, 2009 #12;VISITING COMMITTEE ON ADVANCED

  3. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Distributed Generation

    SciTech Connect (OSTI)

    Singh, Ruchi; Vyakaranam, Bharat GNVSR

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of addition of renewable resources- solar and wind in the distribution system as deployed in the SGIG projects.

  4. Transportation Energy Futures Series: Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints

    SciTech Connect (OSTI)

    Plotkin, S.; Stephens, T.; McManus, W.

    2013-03-01

    Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could be used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  5. Transportation Energy Futures Series. Vehicle Technology Deployment Pathways. An Examination of Timing and Investment Constraints

    SciTech Connect (OSTI)

    Plotkin, Steve; Stephens, Thomas; McManus, Walter

    2013-03-01

    Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could be used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  6. Advanced Electric Traction System Technology Development

    SciTech Connect (OSTI)

    Anderson, Iver

    2011-01-14

    As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

  7. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2005-01-20

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/Biological Extraction; (4) Modeling and Control; and (5) Environmental Control.

  8. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect (OSTI)

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  9. Institute for Software Technology Ad anced RoboticsAdvanced Robotics

    E-Print Network [OSTI]

    Institute for Software Technology Ad anced RoboticsAdvanced Robotics Human Robot Interaction Gerald Steinbauer Institute for Software Technology Gerald Steinbauer 1 Advanced Robotics ­ Human Robot Interaction #12;Institute for Software Technology Motivation lik t h b t th t· we like to have robots

  10. Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual Progress Report Annual report on the work of the the Advanced Combustion...

  11. Under Secretary of Energy Highlights Advanced Energy Technologies...

    Energy Savers [EERE]

    today visited the General Motors (GM) Advanced Technologies Facility in Honeoye Falls, New York, with Rep. Randy Kuhl (NY-29th), to tour the facility and view new advanced...

  12. Snorre subsea completions advance TFL technology

    SciTech Connect (OSTI)

    Gunnarsson, B.; Tonnessen, S.H. )

    1992-12-01

    Well-service operations on subsea completions at Saga Petroleum's Snorre field performed by TFL (through-flowline) methods. These operations will be carried out by an innovative system that advances the state-of-the-art for TFL technology. The initial field development phase for Snorre includes 10 subsea wells mounted no a large template known as the Subsea Production System, or SPS. The 2 [times] 10 well slot arrangement on the SPS allows additional wells to be drilled as needed to replace the original ten. The template is located 6,500 m (21,320 ft) from the Snorre TLP and is connected to it by two 8-in. production lines, one 8-in. water injection line and two 3-in.-ID TFL service lines. The wells will be completed with dual 3 1/2-in. Tubing strings for TFL service operations. This article will overview the Snorre TFL system and discuss completion design.

  13. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ebinarbiooilsupgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Thermochemical Conversion Proceeses to Aviation Fuels...

  14. Vehicle Technologies Office Merit Review 2014: Advanced Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts - enabling systems and solutions for high efficiency light duty...

  15. Characterization and Development of Advanced Heat Transfer Technologies (Presentation)

    SciTech Connect (OSTI)

    Kelly, K.

    2009-05-01

    This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

  16. Overview of the Batteries for Advanced Transportation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    merit08srinivasanoverview.pdf More Documents & Publications Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Overview and Progress of the...

  17. DOE Vehicle Technologies Program 2009 Merit Review Report - Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Propulsion Materials DOE Vehicle Technologies Program 2009 Merit Review Report - Fuels and Lubricants 2011 Annual Merit Review Results Report - Advanced Combustion Engine...

  18. Asset Management for ADA Compliance Using Advanced Technologies

    E-Print Network [OSTI]

    Bertini, Robert L.

    Asset Management for ADA Compliance Using Advanced Technologies Portland State University Center National Cooperative Highway Research Program (NCHRP), Asset Management Approaches to ADA Compliance, NCHRP

  19. Vehicle Technologies Office Merit Review 2015: Impacts of Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Peer Evaluation meeting about impacts of advanced combustion engines. vss140curran2015p.pdf More Documents & Publications Vehicle Technologies Office Merit Review...

  20. Vehicle Technologies Office Merit Review 2014: Impacts of Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Peer Evaluation Meeting about impacts of advanced combustion engines. vss140curran2014p.pdf More Documents & Publications Vehicle Technologies Office Merit Review...

  1. Sec. Chu Announces the First Auto Loans for Advanced Technologies

    Broader source: Energy.gov [DOE]

    In Dearborn, Michigan Energy Secretary Steven Chu announced $8 billion in conditional loan commitments for the development of innovative, advanced vehicle technologies that will create thousands of...

  2. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...

    Energy Savers [EERE]

    Carbohydrates Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates DOE report-out presentation at the CTAB webinar on carbohydrates. ctabwebinarcarbohydrates...

  3. Vehicle Technologies Office Merit Review 2015: Advanced Combustion and Fuels

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about advanced...

  4. Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual Progress Report 2008advcombustionengine.pdf More Documents & Publications...

  5. Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

  6. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle testing and...

  7. Vehicle Technologies Office Merit Review 2014: Advanced Combustion and Fuels

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion and fuels.

  8. Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology...

    Open Energy Info (EERE)

    Drilled With Advanced Abrasive Slurry Jet Technology To Efficiently Exploit Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July 22,...

  9. Alternative Fuel and Advanced Technology Vehicles Pilot Program...

    Open Energy Info (EERE)

    Program Emissions Benefit Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool...

  10. Workshop on Conversion Technologies for Advanced Biofuels - Bio...

    Energy Savers [EERE]

    Bio-Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading Challenge 2 Logistics and Compatibility with Existing Infrastructure Throughout Supply Chain...

  11. Vehicle Technologies Office Merit Review 2014: Advanced Battery Recycling

    Broader source: Energy.gov [DOE]

    Presentation given by OnTo Technology LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced battery recycling.

  12. Manufacturing Demonstration Facility Technology Collaborations for US Manufacturers in Advanced

    E-Print Network [OSTI]

    applications related to additive manufacturing or carbon fiber and composites will have the highest likelihood in additive manufacturing or carbon fiber and composites. #12;MDF: Technology Collaborations for USManufacturing Demonstration Facility Technology Collaborations for US Manufacturers in Advanced

  13. Advances in Chip Technology, Packaging Enable White LED Breakthroughs

    Broader source: Energy.gov [DOE]

    Significant advances in chip technology have enabled Cree, Inc.'s Santa Barbara Technology Center to demonstrate white LEDs with record efficacies as high as 74 lumens per watt - on par with...

  14. Nick Wright Named Advanced Technologies Group Lead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory's Future Technologies Group (FTG) to assess emerging technologies in architecture, algorithms, parallel programming paradigms and languages. "Computing...

  15. VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology

    E-Print Network [OSTI]

    VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology 1 2009 Annual Report Visiting Committee on Advanced Technology (VCAT) of the National Institute of Standards and Technology U.S. Department of Commerce March 3, 2010 #12;VISITING COMMITTEE

  16. Advanced Technologies in Energy-Economy Models for

    E-Print Network [OSTI]

    Advanced Technologies in Energy-Economy Models for Climate Change Assessment Jennifer F. Morris: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;1 Advanced Technologies in Energy-Economy Models is applied to a global economy-wide model to study the roles of low-carbon alternatives in the power sector

  17. Sec. Chu Announces the First Auto Loans for Advanced Technologies

    SciTech Connect (OSTI)

    Secretary Chu

    2009-07-16

    Energy Secretary Steven Chu announced $8 billion in conditional loan commitments for the development of innovative, advanced vehicle technologies that will create thousands of green jobs while helping reduce the nation’s dangerous dependence on foreign oil. The first three auto loans for advanced technologies were awarded to Ford Motor Company, Nissan Motors and Tesla Motors.

  18. Sec. Chu Announces the First Auto Loans for Advanced Technologies

    ScienceCinema (OSTI)

    Secretary Chu

    2010-09-01

    Energy Secretary Steven Chu announced $8 billion in conditional loan commitments for the development of innovative, advanced vehicle technologies that will create thousands of green jobs while helping reduce the nation?s dangerous dependence on foreign oil. The first three auto loans for advanced technologies were awarded to Ford Motor Company, Nissan Motors and Tesla Motors.

  19. Advanced ignition and propulsion technology program

    SciTech Connect (OSTI)

    Oldenborg, R.; Early, J.; Lester, C.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Reliable engine re-ignition plays a crucial role in enabling commercial and military aircraft to fly safely at high altitudes. This project addressed research elements critical to the optimization of laser-based igniter. The effort initially involved a collaborative research and development agreement with B.F. Goodrich Aerospace and Laser Fare, Inc. The work involved integrated experiments with theoretical modeling to provide a basic understanding of the chemistry and physics controlling the laser-induced ignition of fuel aerosols produced by turbojet engine injectors. In addition, the authors defined advanced laser igniter configurations that minimize laser packaging size, weight, complexity and power consumption. These innovative ignition concepts were shown to reliably ignite jet fuel aerosols over a broad range of fuel/air mixture and a t fuel temperatures as low as -40 deg F. The demonstrated fuel ignition performance was highly superior to that obtained by the state-of-the-art, laser-spark ignition method utilizing comparable laser energy. The authors also developed a laser-based method that effectively removes optically opaque deposits of fuel hydrocarbon combustion residues from laser window surfaces. Seven patents have been either issued or are pending that resulted from the technology developments within this project.

  20. Advanced Lost Foam Casting Technology - Phase V

    SciTech Connect (OSTI)

    Wanliang Sun; Harry E. Littleton; Charles E. Bates

    2004-04-29

    Previous research, conducted under DOE Contracts DE-FC07-89ID12869, DE-FC07-93ID12230 and DE-FC07-95ID113358 made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional developments were needed to improve the process and make it more functional in industrial environments. The current project focused on eight tasks listed as follows: Task 1--Computational Model for the Process and Data Base to Support the Model; Task 2--Casting Dimensional Accuracy; Task 3--Pattern Production; Task 4--Improved Pattern Materials; Task 5--Coating Control; Task 6--In-Plant Case Studies; Task 7--Energy and the Environmental Data; and Task 8--Technology Transfer. This report summarizes the work done on all tasks in the period of October 1, 1999 through September 30, 2004. The results obtained in each task and subtask are summarized in this Executive Summary and details are provided in subsequent sections of the report.

  1. Vehicle Technologies Office: 2013 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary...

  2. Plan for advanced microelectronics processing technology application

    SciTech Connect (OSTI)

    Goland, A.N.

    1990-10-01

    The ultimate objective of the tasks described in the research agreement was to identify resources primarily, but not exclusively, within New York State that are available for the development of a Center for Advanced Microelectronics Processing (CAMP). Identification of those resources would enable Brookhaven National Laboratory to prepare a program plan for the CAMP. In order to achieve the stated goal, the principal investigators undertook to meet the key personnel in relevant NYS industrial and academic organizations to discuss the potential for economic development that could accompany such a Center and to gauge the extent of participation that could be expected from each interested party. Integrated of these discussions was to be achieved through a workshop convened in the summer of 1990. The culmination of this workshop was to be a report (the final report) outlining a plan for implementing a Center in the state. As events unfolded, it became possible to identify the elements of a major center for x-ray lithography on Lone Island at Brookhaven National Laboratory. The principal investigators were than advised to substitute a working document based upon that concept in place of a report based upon the more general CAMP workshop originally envisioned. Following that suggestion from the New York State Science and Technology Foundation, the principals established a working group consisting of representatives of the Grumman Corporation, Columbia University, the State University of New York at Stony Brook, and Brookhaven National Laboratory. Regular meetings and additional communications between these collaborators have produced a preproposal that constitutes the main body of the final report required by the contract. Other components of this final report include the interim report and a brief description of the activities which followed the establishment of the X-ray Lithography Center working group.

  3. Chapter 4: Advancing Clean Electric Power Technologies

    Broader source: Energy.gov (indexed) [DOE]

    dioxide power cycles, hybrid systems matching renewables with nuclear or fossil, and energy storage. Advanced capabilities in materials, computing, and manufacturing can...

  4. Development of Advanced Combustion Technologies for Increased...

    Broader source: Energy.gov (indexed) [DOE]

    Investigation of fuel effects on low-temperature combustion, particularly HCCI PCCI combustion deer09gehrke.pdf More Documents & Publications The Role of Advanced Combustion in...

  5. Vehicle Technologies Office: 2008 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles Advanced Soft Switching Inverter for Reducing Switching and Power Losses...

  6. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    SciTech Connect (OSTI)

    SAMS TL; MENDOZA RE

    2010-08-11

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  7. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    SciTech Connect (OSTI)

    SAMS TL

    2010-07-07

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  8. Neutron Imaging of Advanced Engine Technologies

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Advanced Technology Vehicle Lab Benchmarking- Level 1

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect (OSTI)

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  11. Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking (L1&L2)

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  12. Vehicle Technologies Office Merit Review 2015: Advanced Packaging Technologies and Designs

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  13. Advanced Nuclear Technology: Advanced Light Water Reactors Utility

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics AndBerylliumDepartment of Energy8pt1.doc�47.1Science &LWRS Advanced

  14. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    SciTech Connect (OSTI)

    Liby, Alan L; Rogers, Hiram

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  15. Center for Advanced Separation Technology Honaker, Rick 01 COAL...

    Office of Scientific and Technical Information (OSTI)

    Advanced Separation Technology Honaker, Rick 01 COAL, LIGNITE, AND PEAT; 54 ENVIRONMENTAL SCIENCES The U.S. is the largest producer of mining products in the world. In 2011, U.S....

  16. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation vss063bazzi2011o.pdf More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project...

  17. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting vss063bazzi2012o.pdf More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project...

  18. Vehicle Technologies Office: 2013 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion R&D Annual Progress Report Vehicle Technologies Office: 2013 Advanced Combustion R&D Annual Progress Report This report describes the progress made on the research and...

  19. Live Webcast on Recent Wind Energy Technology Advances

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webcast titled “Recent Wind Technology Advances” on April 16, 2014, from 3:00 to 4:00 p.m. Eastern Standard Time.

  20. Portfolio evaluation of advanced coal technology : research, development, and demonstration

    E-Print Network [OSTI]

    Naga-Jones, Ayaka

    2005-01-01

    This paper evaluates the advanced coal technology research, development and demonstration programs at the U.S. Department of Energy since the 1970s. The evaluation is conducted from a portfolio point of view and derives ...

  1. Seven Universities Selected To Conduct Advanced Turbine Technology Studies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Seven universities have been selected by the U.S. Department of Energy to conduct advanced turbine technology studies under the Office of Fossil Energy's University Turbine Systems Research Program.

  2. Summary Review of Advanced Inverter Technologies for Residential PV Systems

    E-Print Network [OSTI]

    Summary Review of Advanced Inverter Technologies for Residential PV Systems This report summarizes current and emerging standards for residential PV systems and identifies the status of emerging inverter................................................................................................ 7 3. Grid-Connected PV inverters available in US

  3. Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report describes the progress made in the research and development projects supported by the Advanced Combustion Engine subprogram within the DOE Vehicle Technologies Office in 2014. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  4. Institute for Software Technology Ad anced RoboticsAdvanced Robotics

    E-Print Network [OSTI]

    of the medal· two sides of the medal · forward kinematics · inverse kinematics Gerald Steinbauer 8 Advanced Planar 3-R Manipulator l ki ti h i· planar kinematic chain · moves within one plane · all jointsInstitute for Software Technology Ad anced RoboticsAdvanced Robotics Manipulation and Grasping

  5. Advanced Membrane Technology for Hydrocarbon Separations

    SciTech Connect (OSTI)

    2004-07-01

    This factsheet describes a research project whose goal is to develop and demonstrate a membrane technology for superior, robust, low-cost natural gas dehydration.

  6. Cross-cutting Technologies for Advanced Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy eere.energy.gov 2 Cross-cutting Technology Areas: Feedstock Supply and Logistics growth, harvesting, delivery Analysis economic, life-cycle, resource...

  7. Advanced Diesel Engine and Aftertreatment Technology Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Development for Tier 2 Emissions 2003 DEER Conference Presentation: Detroit Diesel Corporation 2003deerbolton1.pdf More Documents & Publications Attaining Tier...

  8. Vehicle Technologies Office: 2009 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Thermal Performance and Reliability of Bonded Interfaces Vehicle Technologies Office Merit Review 2014: Performance and Reliability of Bonded...

  9. Department of Energy Announces up to $70 Million to Advance Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Exploratory Drilling Technologies - The projects will focus on reducing the cost of exploratory drilling. Advanced Well Completion Technologies - These projects will...

  10. Partnerships for Clean Development and Climate: Business and Technology Cooperation Benefits

    E-Print Network [OSTI]

    Sathaye, Jayant A.; Price, Lynn; Kumar, Satish; de la Rue du Can, Stephane; Warfield, Corina; Padmanabhan, S.

    2006-01-01

    renewable energy investments in DG technologies through technology and business partnerships that advance access of electricity supply to rural areas in India.

  11. BASELINE DESIGN/ECONOMICS FOR ADVANCED FISCHER-TROPSCH TECHNOLOGY

    SciTech Connect (OSTI)

    1998-04-01

    Bechtel, along with Amoco as the main subcontractor, developed a Baseline design, two alternative designs, and computer process simulation models for indirect coal liquefaction based on advanced Fischer-Tropsch (F-T) technology for the U. S. Department of Energy's (DOE's) Federal Energy Technology Center (FETC).

  12. Advanced Membrane Separation Technologies for Energy Recovery

    SciTech Connect (OSTI)

    2009-05-01

    This factsheet describes a research project whose goal is to develop novel materials for use in membrane separation technologies for the recovery of waste energy and water from industrial process streams.

  13. Energy Department Invests More than $3 Million to Advance U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographic courtesy ofDepartment of Energy Invests $7Energy

  14. Advanced Combustion Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDIT REPORT:FederalEconomicAdmiralsMeeting,Advanced

  15. Advanced Reactor Technology Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDITLeslie Pezzullo Office ofAdvancedNuclear Reactor

  16. DOE Seeks to Invest up to $90 Million in Advanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    today issued a Funding Opportunity Announcement (FOA) for up to 90 million over four years to advance the research, development and demonstration of next-generation geothermal...

  17. Advanced clean combustion technology in Shanxi province

    SciTech Connect (OSTI)

    Xie, K.-C.

    2004-07-01

    Biomass energy resources in China are first described, along with biomass gasification R & D now underway. In Shanxi province biomass and other regenerative energy is relatively little used but coal resources are large. Hence Shanxi is mainly developing clean coal technology to meet its economic and environmental protection requirements. Clean combustion research at Taiyuan University of Technology includes cofiring of coal and RDF in FBC, gas purification and adsorption, fundamentals of plasma-aided coal pyrolysis and gasification and coal derived liquid fuels from synthesis gas. 5 refs.

  18. Vehicle Technologies Office: Advanced Combustion Strategies

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office (VTO) funds research focused on developing a greater understanding of engine combustion and how emissions form within engine cylinders. This work includes research on low temperature combustion, dilute (lean-burn) gasoline combustion, and clean diesel combustion, all of which can substantially contribute to increasing efficiency and lowering emissions in internal combustion engines.

  19. Advanced Materials Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional Knowledge KiosksAboutHelp & Reference UsersAdvanced

  20. Advanced Technologies and Laboratories - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional Knowledge KiosksAboutHelp &Advanced Simulation

  1. Advanced Technology Vehicles Manufacturing Incentive Program | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONY PROJECTRecord4 AdvanceEnergy ASCEMof

  2. Advanced Oxidation Technology for Pulp Mill Effluent 

    E-Print Network [OSTI]

    Hart, J. R.

    1992-01-01

    TECHNOLOGY FOR PULP MILL EFFLUENT J. ROBERT HART, MANAGER, EPRI PULP & PAPER OFFICE, ATLANTA, GA ABSTRACT The composition of effluent from various pulping processes can exhibit a wide range of physical and chemical parameters. The dissolved solids... and had the necessary accessories to monitor gas and liquid flows, injection and sampling points, and off-gas detection. The ozone was generated with a Griffin Technics HC-l.O ozone generator. This unit is air-cooled and contains two dielectrics...

  3. Guiding SSL Technology Advances | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing Programs | DepartmentINDUSTRIAL TECHNOLOGIES PROGRAMGuiding

  4. Advanced lost foam from casting technology

    SciTech Connect (OSTI)

    Bates, C. E.; Littleton, H. E.; Askeland, D.; Griffin, J.; Miller, B. A.; Sheldon, D. S.

    1996-05-01

    Previous research made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional research was needed to improve the process and make it more functional in an industrial environment. The current project focused on five areas listed as follows: Task 1: Precision Pattern Production Task 2: Pattern Coating Consistency Task 3: Sand Fill and Compaction Effects Task 4: Pattern Gating Task 5: Mechanical Properties of Castings. This report summarizes the work done under the current contract in all five areas in the period of October 1, 1994 through December 31, 1995. Twenty-eight (28) companies jointly participate in the project. These companies represent a variety of disciplines, including pattern designers, pattern producers, coating manufacturers, plant design companies, compaction equipment manufacturers, casting producers, and casting buyers.

  5. Advanced Green Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLCAdema Technologies IncFuel Cell Systems Jump

  6. Advanced Lighting Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery Act RecoveryTechnologies |Appliances & Lighting

  7. Advanced Water Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery Act RecoveryTechnologies |AppliancesWater We're

  8. Brazil advances subsea technology in Marlim pilot

    SciTech Connect (OSTI)

    Not Available

    1993-03-29

    Petroleum Brasileiro SA has extended several water depth records for subsea technology during a pilot project in giant Marlim oil field in the Campos basin off Brazil. Petrobras finished the 10 well Marlim pilot last December. The field's pilot phase was intended to begin early production and enable Petrobras to gather more reservoir data. Ten satellite wells, including two prepilot wells, were completed during the Marlim pilot phase with guidelineless (GLL) wet christmas trees designed and fabricated by FMC Corp., Houston, and CBV Industrial Mechanic SA, Rio de Janeiro. The subsea wells are producing 52,000 b/d of oil and 21.19 MMCfd of gas in water depths of 1,847-2,562 ft. Marlim pilot well flow is routed to a permanent semisubmersible floating production system (FPS). Oil moves from the FPS to a monobuoy that offloads to a shuttle tanker. In addition to marking the first successful uses of purpose-built GLL wet trees, FMC said the Marlim pilot project allowed GLL subsea technology to evolve from conceptual status into a proven deepwater completion method. The paper describes the project.

  9. Technology advances keeping LNG cost-competitive

    SciTech Connect (OSTI)

    Bellow, E.J. Jr.; Ghazal, F.P.; Silverman, A.J.; Myers, S.D.

    1997-06-02

    LNG plants, often very expensive in the past, will in the future need to cost less to build and operate and yet maintain high safety and reliability standards, both during construction and operation. Technical advancements, both in the process and in equipment scaling, manufacturing, and metallurgy, will provide much of the impetus for the improved economics. Although world energy demand is predicted to grow on average of about 2% annually over the next decade, LNG is expected to contribute an increasing portion of this growth with annual growth rates averaging about 7%. This steep growth increase will be propelled mainly by the environmentally friendlier burning characteristics of natural gas and the strong industrial growth in Asian and pacific Rim countries. While LNG is emerging as the fuel of choice for developing economies, its delivered cost to consumers will need to stay competitive with alternate energy supplies if it is to remain in front. The paper discusses LNG process development, treating process, equipment developments (man heat exchanger, compressors, drivers, and pressure vessels), and economy of scale.

  10. Energy Department to Invest up to $5.2 million to Advance Basic...

    Broader source: Energy.gov (indexed) [DOE]

    Inhomogeneous Disordered Dirac Fermions: From Heavy Fermion Superconductors to Graphene South Dakota School of Mines and Technology (Rapid City, SD) DOE Lab: National...

  11. DOE Seeks to Invest up to $90 Million in Advanced Geothermal...

    Energy Savers [EERE]

    The FOA addresses the need for additional technical understanding of enhanced geothermal systems (EGS) to accelerate the technology to a state of commercial readiness....

  12. Recent advances in lithium ion technology

    SciTech Connect (OSTI)

    Levy, S.C.

    1995-01-01

    Lithium ion technology is based on the use of lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells (1) and in 1983 for ambient temperature systems (2) it was not until Sony Energytech announced a new lithium ion rechargeable cell containing a lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these cells have the high energy density, high voltage and fight weight of metallic lithium systems plus a very long cycle life, but without the disadvantages of dendrite formation on charge and the safety considerations associated with metallic lithium.

  13. Advances in amorphous silicon photovoltaic technology

    SciTech Connect (OSTI)

    Carlson, D.E.; Rajan, K.; Arya, R.R.; Willing, F.; Yang, L.

    1998-10-01

    With the advent of new multijunction thin film solar cells, amorphous silicon photovoltaic technology is undergoing a commercial revival with about 30 megawatts of annual capacity coming on-line in the next year. These new {ital a}{endash}Si multijunction modules should exhibit stabilized conversion efficiencies on the order of 8{percent}, and efficiencies over 10{percent} may be obtained in the next several years. The improved performance results from the development of amorphous and microcrystalline silicon alloy films with improved optoelectronic properties and from the development of more efficient device structures. Moreover, the manufacturing costs for these multijunction modules using the new large-scale plants should be on the order of {dollar_sign}1 per peak watt. These new modules may find widespread use in solar farms, photovoltaic roofing, as well as in traditional remote applications. {copyright} {ital 1998 Materials Research Society.}

  14. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-09-01

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  15. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  16. Application of a Tractive Energy Analysis to Quantify the Benefits of Advanced Efficiency Technologies Using Characteristic Drive Cycle Data

    SciTech Connect (OSTI)

    LaClair, Tim J

    2012-01-01

    Accurately predicting the fuel savings that can be achieved with the implementation of various technologies developed for fuel efficiency can be very challenging, particularly when considering combinations of technologies. Differences in the usage of highway vehicles can strongly influence the benefits realized with any given technology, which makes generalizations about fuel savings inappropriate for different vehicle applications. A model has been developed to estimate the potential for reducing fuel consumption when advanced efficiency technologies, or combinations of these technologies, are employed on highway vehicles, particularly medium- and heavy-duty trucks. The approach is based on a tractive energy analysis applied to drive cycles representative of the vehicle usage, and the analysis specifically accounts for individual energy loss factors that characterize the technologies of interest. This tractive energy evaluation is demonstrated by analyzing measured drive cycles from a long-haul trucking fleet and the results of an assessment of the fuel savings potential for combinations of technologies are presented. The results of this research will enable more reliable estimates of the fuel savings benefits that can be realized with particular technologies and technology combinations for individual trucking applications so that decision makers can make informed investment decisions for the implementation of advanced efficiency technologies.

  17. Vehicle Technologies Office Merit Review 2014: Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Daikin America at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

  18. Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking- Level 1

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about level 1 advanced...

  19. Vehicle Technologies Office Merit Review 2014: Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing of advanced...

  20. The Lee Center for Advanced Networking CALIFORNIA INSTITUTE OF TECHNOLOGY

    E-Print Network [OSTI]

    The Lee Center for Advanced Networking CALIFORNIA INSTITUTE OF TECHNOLOGY #12;2 t h e l e e c e n v e r v i e w Natural Information Networks 6 Sense and Respond Systems 10 The Architecture Market Research in the Lee Center 38 Radio Transmitters 40 High-Q for Photons 42 Better Network Design

  1. Recent Advances in Java Technology Theory, Application, Implementation

    E-Print Network [OSTI]

    Power, James

    Recent Advances in Java Technology Theory, Application, Implementation James F. Power John T: Theory, Application, Implementation James F. Power and John T. Waldron (Eds.) First Edition, 2002 trademarks of Sun Microsystems, Inc. in the U.S. and other countries. This work is independent of Sun

  2. Responses to Questions and Answers Advanced Vehicle Technology Manufacturing Solicitation

    E-Print Network [OSTI]

    1 Responses to Questions and Answers Advanced Vehicle Technology Manufacturing Solicitation PON successful applicants after the Notice of Proposed Awards to confirm this role and obtain any additional definition of "manufacturing equipment?" For example, would purchases of tooling or assembly line equipment

  3. World-leading research advancing the frontiers of technology

    E-Print Network [OSTI]

    Department of Physics World-leading research advancing the frontiers of technology inspiring the Departments of Physics, Chemistry and Electronics, and has world-class facilities for nanoscale fabrication CONTENTS World-leading research in a dynamic environment 4 Teaching excellence 6 Graduation studies 7

  4. Institute for Software Technology Ad anced RoboticsAdvanced Robotics

    E-Print Network [OSTI]

    environment ­ no group work 3. practical assignment II (out 13.4, in 22.6) ­ automatically explore a building Advanced Robotics - Organization- 4- 50,0 5 #12;Institute for Software Technology Literature · R Int6. W. Mou and A. Kleiner. Online Learning Terrain Classification for Adaptive Velocity Control

  5. IMPROVING FISHERIES SCIENCE WITH ADVANCED SAMPLING TECHNOLOGIES FEATURE ARTICLE 2

    E-Print Network [OSTI]

    to achieve multidisciplinary objectives in cost-effective ways.The integration of advanced sampling and prioritization of components of uncertainty in stock as- sessments; identifying new technologies, innovative uses at fre- quencies of 18 kHz (upper panel) and 200 kHz (lower panel) covering about 4 n.mi. in Barnabus

  6. FIEA Advancing Wood Technology Forest Industry Engineering Scholarship

    E-Print Network [OSTI]

    Hickman, Mark

    FIEA ­ Advancing Wood Technology Forest Industry Engineering Scholarship Forest Industry, including any NZQA Unit Standards that you have completed. NOTES: 1. The Regulations for this award be received by the Dunedin office of Forest Industry Engineering Association by 1 March 2012

  7. Consumer Views on Transportation and Advanced Vehicle Technologies

    SciTech Connect (OSTI)

    Singer, Mark

    2015-09-01

    Vehicle manufacturers, U.S. Department of Energy laboratories, universities, private researchers, and organizations from countries around the globe are pursuing advanced vehicle technologies that aim to reduce gasoline and diesel consumption. This report details study findings of broad American public sentiments toward issues surrounding advanced vehicle technologies and is supported by the U.S. Department of Energy Vehicle Technology Office (VTO) in alignment with its mission to develop and deploy these technologies to improve energy security, increase mobility flexibility, reduce transportation costs, and increase environmental sustainability. Understanding and tracking consumer sentiments can influence the prioritization of development efforts by identifying barriers to and opportunities for broad acceptance of new technologies. Predicting consumer behavior toward developing technologies and products is inherently inexact. A person's stated preference given in an interview about a hypothetical setting may not match the preference that is demonstrated in an actual situation. This difference makes tracking actual consumer actions ultimately more valuable in understanding potential behavior. However, when developing technologies are not yet available and actual behaviors cannot be tracked, stated preferences provide some insight into how consumers may react in new circumstances. In this context this report provides an additional source to validate data and a new resource when no data are available. This report covers study data captured from December 2005 through June 2015 relevant to VTO research efforts at the time of the studies. Broadly the report covers respondent sentiments about vehicle fuel economy, future vehicle technology alternatives, ethanol as a vehicle fuel, plug-in electric vehicles, and willingness to pay for vehicle efficiency. This report represents a renewed effort to publicize study findings and make consumer sentiment data available to researchers, policy makers, and the public. Planned reports will follow detailing data from new studies targeting the primary challenges to and opportunities for advanced vehicle technology deployment. The effort continually refines study content to maintain and improve the relevance and validity of results.

  8. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    SciTech Connect (OSTI)

    Stadler , Michael; Siddiqui, Afzal; Marnay, Chris; ,, Hirohisa Aki; Lai, Judy

    2009-05-26

    The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case. Finally, we illustrate that the multi-criteria frontier that considers costs and carbon emissions in the presence of demand response dominates the one without it.

  9. Technology: How to build a low-energy future

    Broader source: Energy.gov [DOE]

    Advanced construction technologies promise huge energy savings, says Philip Farese. Investment is needed to bring them to market and to encourage their use.

  10. Advanced Thermionic Technology Program: summary report. Volume 2. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-10-01

    This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This Program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. The technology has previously been developed for astronautical applications. Volume 2 (Part C) concentrates on the progress made in developing and fabricating the ''current generation'' of chemical vapor deposited hot shell thermionic converters and is addressed to those primarily concerned with today's capabilities in terrestrial thermionic technology. 30 refs., 83 figs.

  11. DOE Seeks to Invest up to $60 Million for Advanced Concentrating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and 10 million in the FY 2009 Budget request, to support the development of low-cost Concentrating Solar Power (CSP) technology. Increasing the use of solar energy is an...

  12. Greenhouse Gas Return on Investment: A New Metric for Energy Technology

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01

    Gas INTRODUCTION Alternative energy technologies such asmotivations of alternative energy technologies: mitigatingaddresses the goal of alternative energy technology

  13. DOE Seeks to Invest up to $90 Million in Advanced Geothermal Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10nominateEnergyThisEnergyTechnology |Technology

  14. Greenhouse Gas Return on Investment: A New Metric for Energy Technology

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01

    CarbonPlanet, 2007, Greenhouse Gas Emissions by Country,In this discussion of greenhouse gas emissions and energyGreenhouse Gas Return on Investment: A New Metric for Energy

  15. Energy Department Invests More than $20 Million to Advance Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicleDepartment ofGraphicsPowerDepartment ofTechnologies as

  16. Advanced Lost Foam Casting technology: 1997 summary report

    SciTech Connect (OSTI)

    1997-12-31

    Previous research made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional research was needed to improve the process and make it more functional in an industrial environment. The current project focused on eight tasks listed as follows: Task 1--pyrolysis defects and sand distortion; Task 2--bronze casting technology; Task 3--steel casting technology; Task 4--sand filling and compaction; Task 5--coating technology; Task 6--precision pattern production; Task 7--computational modeling; and Task 8--project management and technology transfer. This report summarizes the work done under the current contract in all eight tasks in the period of October 1, 1995 through December 31, 1997.

  17. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  18. Alternative Fuel and Advanced Technology Commercial Lawn Equipment

    SciTech Connect (OSTI)

    2014-10-10

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  19. Establishment of the Center for Advanced Separation Technologies

    SciTech Connect (OSTI)

    Christopher E. Hull

    2006-09-30

    This Final Technical Report covers the eight sub-projects awarded in the first year and the five projects awarded in the second year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  20. DOE Seeks to Invest up to $60 Million for Advanced Concentrating Solar

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10nominateEnergyThisEnergyTechnology |

  1. Vehicle Technologies Office Merit Review 2015: Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Lambda Technologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced drying process...

  2. Advanced Combustion Engine R&D and Fuels Technology Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine R&D and Fuels Technology Merit Review Advanced Combustion Engine R&D and Fuels Technology Merit Review Merit review of DOE FCVT combustion, emission...

  3. Linkages from DOE's Vehicle Technologies R&D in Advanced Combustion...

    Office of Environmental Management (EM)

    Vehicle Technologies R&D in Advanced Combustion to More Efficient, Cleaner-Burning Engines Linkages from DOE's Vehicle Technologies R&D in Advanced Combustion to More Efficient,...

  4. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    examples due to higher technology costs. To be presented atwe find that at current technology costs, the nursing homeconsidered, and current technology costs from Section 3.2

  5. Greenhouse Gas Return on Investment: A New Metric for Energy Technology

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01

    alternative energy technology – climate change mitigation –alternative energy technologies: mitigating climate change.technology develops to mitigate emissions or to slow the onset of climate

  6. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Kenneth A. Yackly

    2001-06-01

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is optimized for the highest level of performance. The unique feature of an H-technology combined-cycle system is the integrated heat transfer system, which combines both the steam plant reheat process and gas turbine bucket and nozzle cooling. This feature allows the power generator to operate at a higher firing temperature than current technology units, thereby resulting in dramatic improvements in fuel-efficiency. The end result is the generation of electricity at the lowest, most competitive price possible. Also, despite the higher firing temperature of the H System{trademark}, the combustion temperature is kept at levels that minimize emission production. GE has more than 3.6 million fired hours of experience in operating advanced technology gas turbines, more than three times the fired hours of competitors' units combined. The H System{trademark} design incorporates lessons learned from this experience with knowledge gleaned from operating GE aircraft engines. In addition, the 9H gas turbine is the first ever designed using ''Design for Six Sigma'' methodology, which maximizes reliability and availability throughout the entire design process. Both the 7H and 9H gas turbines will achieve the reliability levels of our F-class technology machines. GE has tested its H System{trademark} gas turbine more thoroughly than any previously introduced into commercial service. The H System{trademark} gas turbine has undergone extensive design validation and component testing. Full-speed, no-load testing of the 9H was achieved in May 1998 and pre-shipment testing was completed in November 1999. The 9H will also undergo approximately a half-year of extensive demonstration and characterization testing at the launch site. Testing of the 7H began in December 1999, and full speed, no-load testing was completed in February 2000. The 7H gas turbine will also be subjected to extensive demonstration and characterization testing at the launch site.

  7. Historical Analysis of Investment in Solar Energy Technologies (2000-2007)

    SciTech Connect (OSTI)

    Jennings, C. E.; Margolis, R. M.; Bartlett, J. E.

    2008-12-01

    The solar energy industry experienced unprecedented growth in the eight years from 2000 to 2007, with explosive growth occurring in the latter half of this period. From 2004 to 2007, global private sector investment in solar energy increased by almost twenty-fold, marking a dramatic increase in the short span of four years. This paper examines the timing, magnitude, focus and location of various forms of investment in the solar energy sector. It analyzes their trends to provide an understanding of the growth of the solar industry during the past eight years and to identify emerging themes in this rapidly evolving industry.

  8. Economic convergence of environmental control and advanced technology

    SciTech Connect (OSTI)

    Bolli, R.E.; Haslbeck, J.L. [NOXSO Corp., Bethel Park, PA (United States)

    1995-12-31

    Emerging advanced technologies for environmental control have many advantages over conventional, single pollutant removal processes. Features include high efficiencies, multiple pollutant control and zero waste streams. In the past, the economics for state-of-the-art emission control processes could not compete with proven, low-efficiency scrubbers that create throw away by-products. With the implementation of the Clean Air Act Amendments (CAAA), the entire economic environment has changed. If a single process can provide a facility`s compliance requirements for Title I, Title III and Title IV of the CAAA, its net costs can be lower than conventional technology and actually provide economic incentives for overcontrol. The emission allowance program is maturing and the annual revenues from overcontrol of SO{sub 2} are easily quantified. The economics of NO{sub x} control and offsets are currently being realized as EPA identified Title IV requirements, and facilities begin to realize the impact from Title I NO{sub x} control. Air toxic control from Title III could require yet a third control process for a facility to maintain emission compliance. The costs associated with single control strategies vs. multiple pollutant control processes will be discussed and compared. This paper will also present a specific application of the NOXSO Process and identify the potential advantages that can transform advanced technologies, like NOXSO, into the prudent solution for overall environmental compliance.

  9. Greenhouse Gas Return on Investment: A New Metric for Energy Technology

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01

    the primary goal of alternative energy; and GHG/kWh onlyGas INTRODUCTION Alternative energy technologies such asmotivations of alternative energy technologies: mitigating

  10. Advancement of High Temperature Black Liquor Gasification Technology

    SciTech Connect (OSTI)

    Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

    2008-03-31

    Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the design, specification and procurement of facility upgrades. Chemrec AB is also operating a pressurized, O2-blown gasifier pilot facility in Piteaa, Sweden. There was an exchange of knowledge with the pressurized projects including utilization of the experimental results from facilities in Piteaa, Sweden. Resources at the Georgia Tech Research Corporation (GTRC, a.k.a., the Institute of Paper Science and Technology) were employed primarily to conduct the fundamental investigations on scaling and plugging mechanisms and characterization of green liquor dregs. The project also tapped GTRC expertise in the development of the critical underlying black liquor gasification rate subroutines employed in the CFD code. The actual CFD code development and application was undertaken by Process Simulation, Ltd (PSL) and Simulent, Ltd. PSL focused on the overall integrated gasifier CFD code, while Simulent focused on modeling the black liquor nozzle and description of the black liquor spray. For nozzle development and testing Chemrec collaborated with ETC (Energy Technology Centre) in Piteae utilizing their test facility for nozzle spray investigation. GTI (Gas Technology Institute), Des Plains, IL supported the team with advanced gas analysis equipment during the gasifier test period in June 2005.

  11. NTT Advanced Technology Corporation NTT AT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,MeregNIFE BateriasInternationalNTT Advanced Technology

  12. Comparison of advanced cooling technologies efficiency depending on outside temperature

    SciTech Connect (OSTI)

    Blaise Hamanaka; Haihua Zhao; Phil Sharpe

    2009-09-01

    In some areas, water availability is a serious problem during the summer and could disrupt the normal operation of thermal power plants which needs large amount of water to operate. Moreover, when water quantities are sufficient, there can still be problem created by the waste heat rejected into the water which is regulated in order to limit the impact of thermal pollution on the environment. All these factors can lead to a decrease of electricity production during the summer and during peak hours, when electricity is the most needed. In order to deal with these problems, advanced cooling technologies have been developed and implemented to reduce water consumption and withdrawals but with an effect in the plant efficiency. This report aims at analyzing the efficiency of several cooling technologies with a fixed power plant design and so to produce a reference to be able to compare them.

  13. Advanced Gas Storage Concepts: Technologies for the Future

    SciTech Connect (OSTI)

    Freeway, Katy; Rogers, R.E.; DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D.

    2000-02-01

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  14. Federal Fuel Cell Tax Incentives: An Investment in Clean and Efficient Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 20111,FYDepartmentBillion Investment | Federal Fuel

  15. Results of advanced batter technology evaluations for electric vehicle applications

    SciTech Connect (OSTI)

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1992-01-01

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies (Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R D programs, a comparison of battery technologies, and basic data for modeling.

  16. Results of advanced battery technology evaluations for electric vehicle applications

    SciTech Connect (OSTI)

    DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

    1992-09-01

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies [Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

  17. Advanced Automotive Technologies annual report to Congress, fiscal year 1996

    SciTech Connect (OSTI)

    1998-03-01

    This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy`s Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation.

  18. Advanced Vehicles Group: Center for Transportation Technologies and Systems

    SciTech Connect (OSTI)

    Not Available

    2008-08-01

    Describes R&D in advanced vehicle systems and components (e.g., batteries) by NREL's Advanced Vehicles Group.

  19. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Unknown

    1999-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

  20. Technology investment decisions under uncertainty : a new modeling framework for the electric power sector

    E-Print Network [OSTI]

    Santen, Nidhi

    2013-01-01

    Effectively balancing existing technology adoption and new technology development is critical for successfully managing carbon dioxide (CO2) emissions from the fossil-dominated electric power generation sector. The long ...

  1. Environmental benefits of advanced oil and gas exploration and production technology

    SciTech Connect (OSTI)

    1999-10-01

    THROUGHOUT THE OIL AND GAS LIFE CYCLE, THE INDUSTRY HAS APPLIED AN ARRAY OF ADVANCED TECHNOLOGIES TO IMPROVE EFFICIENCY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE. THIS REPORT FOCUSES SPECIFICALLY ON ADVANCES IN EXPLORATION AND PRODUCTION (E&P) OPERATIONS.

  2. The impact of instrument choice on investment in abatement technologies: a case study of tax versus trade incentives for CCS and Biomass for electricity

    E-Print Network [OSTI]

    Laing, T.; Grubb, Michael

    opportunities for wider deployment of the technology, and may be externally funded, at least partially, through government support. CCS is an immature technology, in comparison with biomass for power, with greater uncertainty over costs and performance... K IN G P A P E R Abstract The impact of instrument choice on investment in abatement technologies: a case study of tax versus trade incentives for CCS and Biomass for electricity EPRG Working Paper 1004 Cambridge Working Paper...

  3. Advanced aircraft engine microlaminated intermetallic composite turbine technology

    SciTech Connect (OSTI)

    Rowe, R.G.; Skelly, D.W.; Jackson, M.R.; Larsen, M. [GE Corporate Research and Development, Schenectady, NY (United States); Lachapelle, D. [GE Aircraft Engines, Cincinnati, OH (United States)

    1996-12-31

    Higher gas path temperatures for greater aircraft engine thrust and efficiency will require both higher temperature gas turbine airfoil materials and optimization of internal cooling technology. Microlaminated composites consisting of very high temperature intermetallic compounds and ductile refractory metals offer a means of achieving higher temperature turbine airfoil capability without sacrificing low temperature fracture resistance. Physical vapor deposition, used to synthesize microlaminated composites, also offers a means of fabricating advanced turbine blade internal cooling designs. The low temperature fracture resistance of microlaminated Nb(Cr)-Cr{sub 2}Nb microlaminated composites approached 20 MPa{radical}m in fracture resistance curves, but the fine grain size of vapor deposited intermetallics indicates a need to develop creep resistant microstructures.

  4. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    with Electric and Thermal Storage Technologies,” ACEEE 2008acid battery) and thermal storage capabilities were added tothe electrical and thermal storage are shown in Table 3 (

  5. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    chillers, energy storage, or solar-based technologies areand the huge solar thermal and heat storage system adoptionon expensive solar-based equipment and energy storage

  6. Acquisition and management of technology-based firms in a trading and investment company

    E-Print Network [OSTI]

    Tanaka, Jin, M.B.A. Massachusetts Institute of Technology

    2012-01-01

    Among several key factors affecting new technology innovation, two important ones that are sometimes disturbed by M&A are long-term p-ans and the commitment of the acquired firm's management team. M&A led by technology ...

  7. Assessing Early Investments in Low Carbon Technologies under Uncertainty: The Case of Carbon Capture and Storage

    E-Print Network [OSTI]

    technologies into the electricity market that emit fewer greenhouse gas (GHG) emissions. We face many of these technologies decrease due to learning-by-doing as their capacity is built out. Given that we face uncertainties stringency of the US GHG emissions policy, the size of the US gas resource, and the cost of electricity from

  8. Potential impacts on advanced technologies on the ATC capacity of high-density terminal areas

    E-Print Network [OSTI]

    Simpson, R. W.

    1986-01-01

    Advanced technologies for airborne systems (automatic flight control, flight displays, navigation) and for ground ATC systems (digital communications, improved surveillance and tracking, automated decision-making) create ...

  9. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Test Procedure Development: Hybrid System Power Rating

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle...

  10. Advanced Technology R&D | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    advancing certain concepts or technologies in order to demonstrate their feasibility and engineering readiness for use in future projects. Long-term, proposal-driven research...

  11. Vehicle Technologies Office Merit Review 2014: Advanced Wireless Power Transfer and Infrastructure Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  12. Vehicle Technologies Office Merit Review 2015: Advanced In-Situ Diagnostic Techniques for Battery Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Brookhaven National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced in...

  13. Vehicle Technologies Office Merit Review 2015: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Cummins at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline turbocharged direct...

  14. Vehicle Technologies Office Merit Review 2014: Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  15. Vehicle Technologies Office Merit Review 2014: Advanced Lean-Burn DI Spark Ignition Fuels Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced lean...

  16. Vehicle Technologies Office Merit Review 2015: Advanced Transmission Selection to Provide Accurate VTO Benefits

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  17. Vehicle Technologies Office Merit Review 2014: Advancing Transportation through Vehicle Electrification – Ram 1500 PHEV

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Chrysler LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancing transportation through...

  18. Vehicle Technologies Office Merit Review 2015: Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  19. Vehicle Technologies Office Merit Review 2014: Advancing Alternative Fuel Markets in Florida

    Broader source: Energy.gov [DOE]

    Presentation given by University of Central Florida at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancing...

  20. Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Ford Motor Companyh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline...

  1. Investments in fossil energy technology: How the government's fossil energy R&D program has made a difference

    SciTech Connect (OSTI)

    1997-03-01

    America has the technological capacity to change its energy future. There is no reason, for example, why our nation must continue following a path of rising oil imports when billions of barrels of crude oil remain in domestic oil fields. There is no reason why we cannot continue to use our abundant supplies of high-value, low-cost coal when we have the scientific know-how to remove virtually all of its pollutants and reduce greenhouse gas emissions. There is no reason why we cannot turn increasingly to clean-burning natural gas and tap the huge supplies we know exist within our borders. We remain a nation rich in the fuels that have powered economic growth. Today 85 percent of the energy we use to heat our homes and businesses, generate our electricity, and fuel our vehicles comes from coal, petroleum and natural gas. As we move toward a new century, the contributions of these fuels will grow. By 2015, the United States is likely to require nearly 20 percent more energy than it uses today, and fossil fuels are projected to supply almost 88 percent of the energy Americans will consume. We have the scientific know-how to continue using our fossil fuel wealth without fear of environmental damage or skyrocketing costs. The key is technology - developing cutting edge concepts that are beyond the private sector's current capabilities. Some of the most important innovations in America's energy industry are the results of investments in the Federal government's fossil energy research and development programs. Today, our air and water are cleaner, our economy is stronger, and our industries are more competitive in the global market because these programs have produced results. This booklet summarizes many of these achievements. It is not a comprehensive list by any means. Still, it provides solid evidence that the taxpayers' investment in government fossil energy research has paid real and measurable dividends.

  2. Updated 11/1/2012 GEORGIA INSTITUTE OF TECHNOLOGY

    E-Print Network [OSTI]

    Li, Mo

    Updated 11/1/2012 GEORGIA INSTITUTE OF TECHNOLOGY OFFICE OF FINANCIAL SERVICES ADMINSTRATION Cash/Investment Management Debt Management Georgia Tech Facilities, Inc. Georgia Advanced Technology Ventures, Inc. Project Accounting Cost Accounting Rate Studies Negotiations Salary, Planning

  3. Advanced technologies for decomtamination and conversion of scrap metal

    SciTech Connect (OSTI)

    Valerie MacNair; Steve Sarten; Thomas Muth; Brajendra Mishra

    1999-05-27

    The Department of Energy (DOE) faces the task of decommissioning much of the vast US weapons complex. One challenge of this effort includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for cleanup of contaminated sites and facilities. Recycling helps to offset the cost of decommissioning and saves valuable space in the waste disposal facilities. It also reduces the amount of environmental effects associated with mining new metals. Work on this project is geared toward finding decontamination and/or recycling alternatives for the RSM contained in the decommissioned gaseous diffusion plants including approximately 40,000 tons of nickel. The nickel is contaminated with Technetium-99, and is difficult to remove using traditional decontamination technologies. The project, titled ``Advanced Technologies for Decontamination and Conversion of Scrap Metal'' was proposed as a four phase project. Phase 1 and 2 are complete and Phase 3 will complete May 31, 1999. Stainless steel made from contaminated nickel barrier was successfully produced in Phase 1. An economic evaluation was performed and a market study of potential products from the recycled metal was completed. Inducto-slag refining, after extensive testing, was eliminated as an alternative to remove technetium contamination from nickel. Phase 2 included successful lab scale and pilot scale demonstrations of electrorefining to separate technetium from nickel. This effort included a survey of available technologies to detect technetium in volumetrically contaminated metals. A new process to make sanitary drums from RSM was developed and implemented. Phase 3 included a full scale demonstration of electrorefining, an evaluation of electro-refining alternatives including direct dissolution, melting of nickel into anodes, a laser cutting demonstration, an investigation of commercial markets for RSM, and refinement of methods to quantify isotopic elements.

  4. ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

  5. Advanced Ground Source Heat Pump Technology for Very-Low-Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ground Source Heat Pump Technology for Very-Low-Energy Buildings Advanced Ground Source Heat Pump Technology for Very-Low-Energy Buildings Three newunder-utilized ground loop...

  6. Project Information Form Project Title Using Connected Vehicle Technology for Advanced Signal Control

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title Using Connected Vehicle Technology for Advanced Signal information. The introduction of Connected Vehicle (CV) technology can potentially address these limitations Control Strategies University UC Riverside Principal Investigator Matthew Barth PI Contact Information

  7. Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry

    SciTech Connect (OSTI)

    None

    2005-11-01

    The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

  8. Advanced Technologies in Energy-Economy Models for Climate Change Assessment

    E-Print Network [OSTI]

    Morris, J.F.

    Considerations regarding the roles of advanced technologies are crucial in energy-economic modeling, as these technologies, while usually not yet commercially viable, could substitute for fossil energy when relevant policies ...

  9. Shared Investment by NIS and National Labs Develops Cutting-Edge Safeguards Technologies

    SciTech Connect (OSTI)

    Anheier, Norman C.; Williams, Laura S.

    2012-04-01

    This article, regarding a new technology for detecting undeclared enrichment at gas centrifuge enrichment plants, was written for the DOE/NNSA NA-24 Highlights, a newsletter intended for public release.

  10. Assessing early investments in low carbon technologies under uncertainty : the case of Carbon Capture and Storage

    E-Print Network [OSTI]

    Ereira, Eleanor Charlotte

    2010-01-01

    Climate change is a threat that could be mitigated by introducing new energy technologies into the electricity market that emit fewer greenhouse gas (GHG) emissions. We face many uncertainties that would affect the demand ...

  11. Technology and architecture : informing investment decisions for the future of human space exploration

    E-Print Network [OSTI]

    Battat, Jonathan Alexander

    2012-01-01

    NASA's detailed programmatic goals, system architectures, and mission designs for future human spaceflight beyond Earth orbit remain unspecified. Given this uncertainty, it is not clear exactly which technologies are ...

  12. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; Aki, Hirohisa; Lai, Judy

    2009-08-10

    The U.S. Department of Energy has launched the commercial building initiative (CBI) in pursuit of its research goal of achieving zero-net-energy commercial buildings (ZNEB), i.e. ones that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge, energy-efficiency technologies and meet their remaining energy needs through on-site renewable energy generation. This paper examines how such buildings may be implemented within the context of a cost- or CO2-minimizing microgrid that is able to adopt and operate various technologies: photovoltaic modules (PV) and other on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive/demand-response technologies. A mixed-integer linear program (MILP) that has a multi-criteria objective function is used. The objective is minimization of a weighted average of the building's annual energy costs and CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the ZNEB objective. Using a commercial test site in northernCalifornia with existing tariff rates and technology data, we find that a ZNEB requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power (CHP) equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve a ZNEB. Additionally, the ZNEB approach does not necessary lead to zero-carbon (ZC) buildings as is frequently argued. We also show a multi-objective frontier for the CA example, whichallows us to estimate the needed technologies and costs for achieving a ZC building or microgrid.

  13. Advanced gas engine cogeneration technology for special applications

    SciTech Connect (OSTI)

    Plohberger, D.C.; Fessl, T.; Gruber, F.; Herdin, G.R. [Jenbacher Energiesystem AG, Jenbach (Austria)

    1995-10-01

    In recent years gas Otto-cycle engines have become common for various applications in the field of power and heat generation. Gas engines are chosen sometimes even to replace diesel engines, because of their clean exhaust emission characteristics and the ample availability of natural gas in the world. The Austrian Jenbacher Energie Systeme AG has been producing gas engines in the range of 300 to 1,600 kW since 1960. The product program covers state-of-the-art natural gas engines as well as advanced applications for a wide range of alterative gas fuels with emission levels comparable to Low Emission (LEV) and Ultra Low Emission Vehicle (ULEV) standards. In recent times the demand for special cogeneration applications is rising. For example, a turnkey cogeneration power plant for a total 14.4 MW electric power and heat output consisting of four JMS616-GSNLC/B spark-fired gas engines specially tuned for high altitude operation has been delivered to the well-known European ski resort of Sestriere. Sestriere is situated in the Italian Alps at an altitude of more than 2,000 m above sea level. The engines feature a turbocharging system tuned to an ambient air pressure of only 80 kPa to provide an output and efficiency of each 1.6 MW and up to 40% {at} 1,500 rpm, respectively. The ever-increasing demand for lower pollutant emissions in the US and some European countries initiates developments in new exhaust aftertreatment technologies. Thermal reactor and Selective Catalytic Reduction (SCR) systems are used to reduce tailpipe CO and NO{sub x} emissions of engines. Both SCR and thermal reactor technology will shift the engine tuning to achieve maximum efficiency and power output. Development results are presented, featuring the ultra low emission potential of biogas and natural gas engines with exhaust aftertreatment.

  14. Advanced membrane separation technology for biosolvents. Final CRADA report.

    SciTech Connect (OSTI)

    Snyder, S. W.; Energy Systems

    2010-02-08

    Argonne and Vertec Biosolvents investigated the stability and perfonnance for a number of membrane systems to drive the 'direct process' for pervaporation-assisted esterification to produce lactate esters. As outlined in Figure 1, the target is to produce ammonium lactate by fennentation. After purification and concentration, ammonium lactate is reacted with ethanol to produce the ester. Esterification is a reversible reaction so to drive the reaction forward, the produced ammonia and water must be rapidly separated from the product. The project focused on selecting pervaporation membranes with (1) acid functionality to facilitate ammonia separation and (2) temperature stability to be able to perform that reaction at as high a temperature as possible (Figure 2). Several classes of commercial membrane materials and functionalized membrane materials were surveyed. The most promising materials were evaluated for scale-up to a pre-commercial application. Over 4 million metric tons per year of solvents are consumed in the U.S. for a wide variety of applications. Worldwide the usage exceeds 10 million metric tons per year. Many of these, such as the chlorinated solvents, are environmentally unfriendly; others, such as the ethylene glycol ethers and N Methyl Pyrrolidone (NMP), are toxic or teratogenic, and many other petroleum-derived solvents are coming under increasing regulatory restrictions. High performance, environmentally friendly solvents derived from renewable biological resources have the potential to replace many of the chlorinated and petrochemical derived solvents. Some of these solvents, such as ethyl lactate; d-limonene, soy methyl esters, and blends ofthese, can give excellent price/perfonnance in addition to the environmental and regulatory compliance benefits. Advancement of membrane technologies, particularly those based on pervaporation and electrodialysis, will lead to very efficient, non-waste producing, and economical manufacturing technologies for production of ethyl lactate and other esters.

  15. Using HCI Guidelines to Foster Technological Advancement in Sub-Saharan Africa

    E-Print Network [OSTI]

    Stringfellow, Catherine V.

    Using HCI Guidelines to Foster Technological Advancement in Sub-Saharan Africa Jamie Thomas Guidelines to Foster Technological Advancement in Sub-Saharan Africa Jamie Thomas, Midwestern State-Saharan Africa (excluding the region of Southern Africa). There are countless obstacles in the way

  16. Value creation and value capture of advanced electricity meter information

    E-Print Network [OSTI]

    Oesterlin, Ulf

    2011-01-01

    Advanced or smart metering has been a hot topic in the electricity community for several years. Despite the excitement about the technology, few business cases are actually able to justify the investment cost. One reason ...

  17. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  18. Advances in crack-arrest technology for reactor pressure vessels

    SciTech Connect (OSTI)

    Bass, B.R.; Pugh, C.E.

    1988-01-01

    The Heavy-Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory (ORNL) under the sponsorship of the US Nuclear Regulatory Commission is continuing to improve the understanding of conditions that govern the initiation, rapid propagation, arrest, and ductile tearing of cracks in reactor pressure vessel (RPV) steels. This paper describes recent advances in a coordinated effort being conducted under the HSST Program by ORNL and several subcontracting groups to develop the crack-arrest data base and the analytical tools required to construct inelastic dynamic fracture models for RPV steels. Large-scale tests are being carried out to generate crack-arrest toughness data at temperatures approaching and above the onset of Charpy upper-shelf behavior. Small- and intermediate-size specimens subjected to static and dynamic loading are being developed and tested to provide additional fracture data for RPV steels. Viscoplastic effects are being included in dynamic fracture models and computer programs and their utility validated through analyses of data from carefully controlled experiments. Recent studies are described that examine convergence problems associated with energy-based fracture parameters in viscoplastic-dynamic fracture applications. Alternative techniques that have potential for achieving convergent solutions for fracture parameters in the context of viscoplastic-dynamic models are discussed. 46 refs., 15 figs., 3 tabs.

  19. ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY

    SciTech Connect (OSTI)

    PROJECT STAFF

    2001-09-01

    OAK A271 ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY. The General Atomics (GA) Advanced Fusion Technology Program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility.

  20. Energy Department Announces New Investments to Train Next Generation...

    Energy Savers [EERE]

    Investments to Train Next Generation of Nuclear Energy Leaders, Advance University-Led Nuclear Innovation Energy Department Announces New Investments to Train Next Generation of...

  1. Small Businesses Receive $2 Million to Advance HVAC Technologies...

    Energy Savers [EERE]

    heat pump technology to develop a new generation of water heaters. This thin film, thermoelectric technology has the potential to significantly reduce the electrical...

  2. Chapter 4: Advancing Clean Electric Power Technologies | Carbon...

    Energy Savers [EERE]

    Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Carbon Dioxide Capture for Natural...

  3. Chapter 4: Advancing Clean Electric Power Technologies | Carbon...

    Energy Savers [EERE]

    Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Carbon Dioxide Capture and Storage...

  4. BPA seeks research partners to advance technology solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transmission technologies, data intelligence, next-generation energy efficiency and demand response technologies, generation asset management. A copy of each roadmap is...

  5. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    SciTech Connect (OSTI)

    Nigle N. Clark

    2006-12-31

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

  6. Crossing the Valley of Death: Policy Options to Advance the Uptake of Energy-Efficient Emerging Technologies in US Industry 

    E-Print Network [OSTI]

    Harris, J.; Bostrom, P.; Lung, R. B.

    2011-01-01

    and private investment, perceived risk, organizational decision-making, and regulatory certainty are all factors that influence the market penetration of emerging industrial technologies. Understanding their interplay is crucial to providing a policy...

  7. Plan for advanced microelectronics processing technology application. Final report

    SciTech Connect (OSTI)

    Goland, A.N.

    1990-10-01

    The ultimate objective of the tasks described in the research agreement was to identify resources primarily, but not exclusively, within New York State that are available for the development of a Center for Advanced Microelectronics Processing (CAMP). Identification of those resources would enable Brookhaven National Laboratory to prepare a program plan for the CAMP. In order to achieve the stated goal, the principal investigators undertook to meet the key personnel in relevant NYS industrial and academic organizations to discuss the potential for economic development that could accompany such a Center and to gauge the extent of participation that could be expected from each interested party. Integrated of these discussions was to be achieved through a workshop convened in the summer of 1990. The culmination of this workshop was to be a report (the final report) outlining a plan for implementing a Center in the state. As events unfolded, it became possible to identify the elements of a major center for x-ray lithography on Lone Island at Brookhaven National Laboratory. The principal investigators were than advised to substitute a working document based upon that concept in place of a report based upon the more general CAMP workshop originally envisioned. Following that suggestion from the New York State Science and Technology Foundation, the principals established a working group consisting of representatives of the Grumman Corporation, Columbia University, the State University of New York at Stony Brook, and Brookhaven National Laboratory. Regular meetings and additional communications between these collaborators have produced a preproposal that constitutes the main body of the final report required by the contract. Other components of this final report include the interim report and a brief description of the activities which followed the establishment of the X-ray Lithography Center working group.

  8. Vehicle Technologies Office: Advanced Combustion Engines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewableTeach andAffordabilityVehicle

  9. Department of Energy Advance Methane Hydrates Science and Technology Projects

    Broader source: Energy.gov [DOE]

    Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

  10. Effects of Advanced Combustion Technologies on Particulate Matter Emissions Characteristics

    Broader source: Energy.gov [DOE]

    Findings of important implications for aftertreatment devices such as EGR coolers and diesel particulate filters, of physico-chemical changes observed in particulate matter during advanced combustion.

  11. Vehicle Technologies Office Merit Review 2014: Advanced in situ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced in situ Diagnostic Techniques for Battery Materials Presentation given by Brookhaven National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

  12. Overview of the Batteries for Advanced Transportation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Advanced Li-ion Chemistries Using Mathematical Modeling (Srinivasan) Mesoscale Simulations of Active Materials for High for High-Power Batteries: Mesoscale...

  13. Advanced Combustion Technology to Enable High Efficiency Clean Combustion

    Broader source: Energy.gov [DOE]

    Summary of advanced combustion research at Cummins to explore strategies for fuel economy improvements (PCCI and HECC) and redced engine-out NOx emissions.

  14. Lighter and Stronger: Improving Clean Energy Technologies Through Advanced Composites

    Office of Energy Efficiency and Renewable Energy (EERE)

    New institute aims to drive down the manufacturing costs and support the widespread use of advanced fiber-reinforced polymer composites.

  15. Physics Educations Technology in an International Baccalaureate/ Advanced Placement High School Classroom

    E-Print Network [OSTI]

    Finkelstein, Noah

    1 Physics Educations Technology in an International Baccalaureate/ Advanced Placement High School. Technology has made its way into high school classrooms. Not only have computers, wireless internet -Century lives, the introduction of this technology into high schools has not been met without controversy

  16. GOVERNMENT FUNDING FOR ADVANCED TECHNOLOGY, A GUIDE TO APPLYING FOR GOVERNMENT GRANTS

    E-Print Network [OSTI]

    Thompson, Anne

    GOVERNMENT FUNDING FOR ADVANCED TECHNOLOGY, A GUIDE TO APPLYING FOR GOVERNMENT GRANTS Edith Allison, WV Sponsored by Petroleum Technology Transfer Council COURSE DESCRIPTION Initiating new technology in an oil or gas field can yield significant benefits in improved recovery and reduced operating costs

  17. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect (OSTI)

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  18. 2008 Annual Progress Report - Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program

    SciTech Connect (OSTI)

    none,

    2009-02-24

    Annual Progress Report for fiscal year 2008 for the Advanced Vehicle Technology Analysis and Evaluation (AVTAE) team activities

  19. FY2009 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program

    SciTech Connect (OSTI)

    none,

    2010-02-19

    Annual Progress Report for fiscal year 2009 for the Advanced Vehicle Technology Analysis and Evaluation (AVTAE) team activities

  20. Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report

    SciTech Connect (OSTI)

    NONE

    1998-12-01

    This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

  1. Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Advanced Technology Vehicle Lab Benchmarking- Level 2 (in-depth)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Health Effects from Advanced Combustion and Fuel Technologies

    SciTech Connect (OSTI)

    Barone, Teresa L; Parks, II, James E; Lewis Sr, Samuel Arthur; Connatser, Raynella M

    2010-01-01

    This document requires a separate file for the figures. It is for DOE's Office of Vehicle Technologies Annual Report

  4. NREL to Advance Technologies for Microgrid Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvesting inServices » NEPA Documents NEPA Documents ToNREL

  5. Spivack, Richard. "Advanced Technology Program Information Infrastructure for Healthcare Focused Program" The Future of Health Technology. ed. Renata Bushko. IOS Press, 2002.

    E-Print Network [OSTI]

    ) at the National Institute of Standards and Technology (NIST) is a cost-sharing program designed to partnerSpivack, Richard. "Advanced Technology Program Information Infrastructure for Healthcare Focused Program" The Future of Health Technology. ed. Renata Bushko. IOS Press, 2002. Advanced Technology Program

  6. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect (OSTI)

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  7. Hydrothermal spallation drilling and advanced energy conversion technologies for Engineered Geothermal Systems

    E-Print Network [OSTI]

    Augustine, Chad R

    2009-01-01

    The purpose of this research was to study the various factors affecting the economic and technical feasibility of Engineered Geothermal Systems, with a special emphasis on advanced drilling technologies. The first part of ...

  8. Vehicle Technologies Office Merit Review 2014: Advanced Climate Systems for EV Extended Range

    Broader source: Energy.gov [DOE]

    Presentation given by Halla Visteon at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced climate systems for EV...

  9. Apply: Solid-State Lighting Advanced Technology R&D - 2014(DE...

    Energy Savers [EERE]

    4 (DE-FOA-0000973) Apply: Solid-State Lighting Advanced Technology R&D - 2014 (DE-FOA-0000973) December 6, 2013 - 4:27pm Addthis This funding opportunity is closed. Through...

  10. Apply: Solid-State Lighting Advanced Technology R&D - 2015 Funding...

    Energy Savers [EERE]

    5 Funding Opportunity Apply: Solid-State Lighting Advanced Technology R&D - 2015 Funding Opportunity October 14, 2014 - 3:57pm Addthis This funding opportunity is closed. The U.S....

  11. Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Technology Competition (AVTC) program is an engineering education program managed by Argonne National Laboratory for the U.S. Department of Energy in partnership with Natural Resources Canada and the U.S. and Canadian auto industries.

  12. Vehicle Technologies Office Merit Review 2015: Advanced Lean-Burn DI Spark Ignition Fuels Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about advanced lean-burn...

  13. Technology enabled re-engineering : a business strategy for advancing Bangladesh

    E-Print Network [OSTI]

    Hasan, Abdullah

    2003-01-01

    A strategy is presented to rapidly advance a developing nation utilizing the power of Information and Communication Technologies (ICT). A banking institution is chosen to be the anchor tenant to spread ICT. A radical ...

  14. Vehicle Technologies Office Merit Review 2015: Advanced Bus and Truck Radial Materials for Fuel Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given by PPG at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced bus and truck radial materials...

  15. Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

  16. Vehicle Technologies Office Merit Review 2015: Advanced Climate Systems for EV Extended Range (ACSforEVER)

    Broader source: Energy.gov [DOE]

    Presentation given by Halla Visteon at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced climate systems for EV...

  17. Advanced Technology Vehicle Benchmark and Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL Advanced Petroleum BasedAdvanced Lockheed

  18. Advanced Technology Vehicle Lab Benchmarking - Level 1 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL Advanced Petroleum BasedAdvanced LockheedEnergy

  19. Advanced Technology Vehicle Lab Benchmarking - Level 1 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL Advanced Petroleum BasedAdvanced

  20. Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL Advanced Petroleum BasedAdvancedDepartment of

  1. Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL Advanced Petroleum BasedAdvancedDepartment

  2. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan

    SciTech Connect (OSTI)

    Bruce Hallbert

    2012-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  3. Vehicle Technologies Office Merit Review 2014: Advancing Alternative...

    Office of Environmental Management (EM)

    Presentation given by University of Central Florida at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  4. Advances in Diesel Engine Technologies for European Passenger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies for European Passenger Vehicles 2002 DEER Conference Presentation: Volkswagen AG 2002deerschindler.pdf More Documents & Publications Accelerating Light-Duty...

  5. DOE Projects to Advance Environmental Science and Technology...

    Broader source: Energy.gov (indexed) [DOE]

    (NETL) has selected nine new projects targeting environmental tools and technology for shale gas and coalbed methane (CBM) production. NETL's goals for these projects are to...

  6. Overview of the Batteries for Advanced Transportation Technologies (BATT) Program

    Broader source: Energy.gov [DOE]

    Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

  7. Advanced Technology Planning for Federal Energy Savings Performance...

    Energy Savers [EERE]

    of Energy national laboratory team to identify the economic feasibility of combined heat and power and renewable energy technologies that can be considered energy conservation...

  8. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vss018cesiel2010...

  9. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss018cesiel2011...

  10. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. vss02sell...

  11. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss018cesiel2012...

  12. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Breaking the Barriers to Cellulosic EtOH OBP and SC publish technology roadmap in 2006 Report concludes biomass recalcitrance is the core barrier to processing...

  13. North Central Texas Alternative Fuel and Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt057ticlark2012o...

  14. North Central Texas Alternative Fuel and Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt057tireese2011...

  15. North Central Texas Alternative Fuel and Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. tiarravt057reese2010...

  16. Joining of Advanced Materials by Plasticity: "An Enabling Technology

    Broader source: Energy.gov [DOE]

    Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

  17. Measurement and Characterization of Unregulated Emissions from Advanced Technologies

    Broader source: Energy.gov [DOE]

    Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

  18. Introduction Recent advances in wireless networking technology and the exponential

    E-Print Network [OSTI]

    Havinga, Paul J.M.

    of semiconductor technology have engendered a new paradigm of computing, called personal mobile computing infrastructure. Two trends ­ multimedia applications and mobile computing ­ will lead to a new application domain applications and services. However, the technological challenges to establishing this paradigm of personal

  19. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    SciTech Connect (OSTI)

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16

    Wolverine Power Supply Cooperative Inc, a member owned cooperative utility based in Cadillac Michigan, proposes to demonstrate the capture, beneficial utilization and storage of CO{sub 2} in the expansion of existing Enhanced Oil Recovery operations. This project is being proposed in response to the US Department of Energy Solicitation DE-FOA-0000015 Section III D, 'Large Scale Industrial CCS projects from Industrial Sources' Technology Area 1. The project will remove 1,000 metric tons per day of CO{sub 2} from the Wolverine Clean Energy Venture 600 MW CFB power plant owned and operated by WPC. CO{sub 2} from the flue gas will be captured using Hitachi's CO{sub 2} capture system and advanced amine technology. The capture system with the advanced amine-based solvent supplied by Hitachi is expected to significantly reduce the cost and energy requirements of CO{sub 2} capture compared to current technologies. The captured CO{sub 2} will be compressed and transported for Enhanced Oil Recovery and CO{sub 2} storage purposes. Enhanced Oil Recovery is a proven concept, widely used to recover otherwise inaccessible petroleum reserves. While post-combustion CO{sub 2} capture technologies have been tested at the pilot scale on coal power plant flue gas, they have not yet been demonstrated at a commercial scale and integrated with EOR and storage operations. Amine-based CO{sub 2} capture is the leading technology expected to be available commercially within this decade to enable CCS for utility and industrial facilities firing coal and waste fuels such as petroleum coke. However, traditional CO{sub 2} capture process utilizing commercial amine solvents is very energy intensive for regeneration and is also susceptible to solvent degradation by oxygen as well as SOx and NO{sub 2} in the flue gas, resulting in large operating costs. The large volume of combustion flue gas with its low CO{sub 2} concentration requires large equipment sizes, which together with the highly corrosive nature of the typical amine-based separation process leads to high plant capital investment. According to recent DOE-NETL studies, MEA-based CCS will increase the cost of electricity of a new pulverized coal plant by 80-85% and reduce the net plant efficiency by about 30%. Non-power industrial facilities will incur similar production output and efficiency penalties when implementing conventional carbon capture systems. The proposed large scale demonstration project combining advanced amine CO{sub 2} capture integrated with commercial EOR operations significantly advances post-combustion technology development toward the DOE objectives of reducing the cost of energy production and improving the efficiency of CO{sub 2} Capture technologies. WPC has assembled a strong multidisciplinary team to meet the objectives of this project. WPC will provide the host site and Hitachi will provide the carbon capture technology and advanced solvent. Burns and Roe bring expertise in overall engineering integration and plant design to the team. Core Energy, an active EOR producer/operator in the State of Michigan, is committed to support the detailed design, construction and operation of the CO{sub 2} pipeline and storage component of the project. This team has developed a Front End Engineering Design and Cost Estimate as part of Phase 1 of DOE Award DE-FE0002477.

  20. innovati nAdvanced Heat Transfer Technologies Increase Vehicle

    E-Print Network [OSTI]

    , converters, and inverters that condition the flow of electrical power between the battery and the electric for demonstration and testing. This test vehicle's battery is being recharged by a photovoltaic system on NREL's campus. Tomorrow's plug-in hybrids will depend heavily on advanced batteries and reliable, cost

  1. SunLab: Advancing Concentrating Solar Power Technology

    SciTech Connect (OSTI)

    1998-11-24

    Concentrating solar power (CSP) technologies, including parabolic troughs, power towers, and dish/engines, have the potential to provide the world with tens of thousands of megawatts of clean, renewable, cost-competitive power.

  2. Demonstrating Optimum HCCI Combustion with Advanced Control Technology

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  3. Combustion Technology Development for an Advanced Glass Melting System 

    E-Print Network [OSTI]

    Stickler, D. B.; Westra, L.; Woodroffe, J.; Jeong, K. M.; Donaldson, L. W.

    1987-01-01

    Concept feasibility of an innovative technology for glass production has recently been demonstrated. It is based on suspension heating of the glass-forming batch minerals while entrained in a combustion flow of preheated air and natural gas...

  4. Advancing clinical gait analysis through technology and policy

    E-Print Network [OSTI]

    Tan, Junjay

    2009-01-01

    Quantitatively analyzing human gait biomechanics will improve our ability to diagnose and treat disability and to measure the effectiveness of assistive devices. Gait analysis is one technology used to analyze walking, but ...

  5. Overview of the Batteries for Advanced Transportation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. es00bduong2010o.pdf More Documents &...

  6. Overview of the Batteries for Advanced Transportation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. es15srinivasan.pdf More Documents &...

  7. Green Investment Horizons: Effects of Policy on the Market for...

    Open Energy Info (EERE)

    Green Investment Horizons: Effects of Policy on the Market for Building Energy Efficiency Technologies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Green Investment...

  8. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    estimate the needed technologies and costs for achieving aexamples due to higher technology costs. To be published inwe find that at current technology costs, the nursing home

  9. Genome-Enabled Advancement of Biomass to Biofuel Technology

    SciTech Connect (OSTI)

    Patrick O'Mullan, PhD

    2010-11-11

    Unlike Saccharomyces and even E. coli, the fundamental microbiology and biochemistry of Clostridium phytofermentans was largely unknown. The genus Clostridia is quite diverse and general methods to manipulate and characterize them often need to be developed. As anaerobes, they often don�t behave the way more classically studied microbes will in fermentation processes. The results from these studies have allowed: 1) A fundamental understanding of the fermentation cycle in C. phytofermentans 2) Requirements to maximize ethanol yield in a fermentation process 3) An understanding of the critical growth and nutritional parameters required to ferment biomass to ethanol 4) Identification of key targets or genes to modify in order increase or improve any of the key traits of C. phytofermentans 5) The development of a genetic system to transform and manipulate the microbe Without these achievements, an industrially significant process for biomass fermentation to ethanol would not be economically possible. The development of a fermentation process with economic return on investment can be successfully developed with the technical learning achieved

  10. Coiled tubing technology advances to a bright future

    SciTech Connect (OSTI)

    Ghiselin, R.

    1998-07-01

    This supplement contains six short articles on coiled tubing, its advantages, performance, and materials. The articles are: Coiled Tubing--On the Brink of a New Millennium; CT Advances Promise a Broad, Dynamic Future; Performance, Safety and Cost Make the Case for HPCT; Fast and Accurate, CTD Helps Drillers Hit Their Targets; Composite Tubing Rapidly Proves Advantages in the Field; and People and Performance are Key to Coiled Tubing Growth.

  11. Renaissance in Flow-Cell Technologies: Recent Advancements and Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTIRegulatory and

  12. Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct.7, 2015Verizon and Verizon WirelessDepartmentSHERMANthe

  13. Neutron Imaging of Advanced Engine Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIXConcentratingInstitutional SavingsDepartment of Energy2

  14. Neutron Imaging of Advanced Engine Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIXConcentratingInstitutional SavingsDepartment of Energy21

  15. New Advanced Refrigeration Technology Provides Clean Energy, Low Utility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIXConcentratingInstitutional SavingsDepartmentEnergyBills

  16. ORNL Crowdsourcing Site Advances Building Technologies Ideas to the Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and ReduceNovember 2014Marketing2014) |D D O O E

  17. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1,an R7-CompatiblePlaying Around

  18. Advanced Thermoelectric Materials and Generator Technology for Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL Advanced PetroleumDepartment of Energy

  19. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S. DepartmentJean Seibert StuckySolar IndustryWashington

  20. Inexpensive Delivery of Compressed Hydrogen with Advanced Vessel Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL ASSISTANCE Supports the deployment ofIndustryPipeline|

  1. Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobsAdvanced Engine CombustionLocator |Data |

  2. Vehicle Technologies Office Merit Review 2015: Impacts of Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobsAdvanced Engine CombustionLocator |DataCathodesTesting

  3. Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobsAdvanced EngineFebruary 12, 2014 EnergyCell

  4. Advanced Window and Shading Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDITLeslie Pezzullo OfficeDepartment ofAdvanced

  5. Comparison of advanced battery technologies for electric vehicles

    SciTech Connect (OSTI)

    Dickinson, B.E.; Lalk, T.R.; Swan, D.H.

    1993-12-31

    Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies: Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge--discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

  6. Advancing the technology base for high-temperature membranes

    SciTech Connect (OSTI)

    Dye, R.C.; Birdsell, S.A.; Snow, R.C. [and others

    1997-10-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project addresses the major issues confronting the implementation of high-temperature membranes for separations and catalysis. We are pursuing high-temperature membrane systems that can have a large impact for DOE and be industrially relevant. A major obstacle for increased use of membranes is that most applications require the membrane material to withstand temperatures above those acceptable for polymer-based systems. Advances made by this project have helped industry and DOE move toward high-temperature membrane applications to improve overall energy efficiency.

  7. The Center for Advanced Ceramics Technology CACT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |Information 5th congressionalNIESLook at the 4TheAdvanced

  8. Overview of the Batteries for Advanced Transportation Technologies (BATT)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT OFER-B-00-020Overview ofU.S.Energy

  9. Overview of the Batteries for Advanced Transportation Technologies (BATT)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT OFER-B-00-020Overview ofU.S.EnergyProgram

  10. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1,an R7-CompatiblePlaying AroundActivity | Department of

  11. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1,an R7-CompatiblePlaying AroundActivity | Department

  12. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1,an R7-CompatiblePlaying AroundActivity |

  13. Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -Energy CostsEnergy City ofPlug-in1: Advanced2:Melissa

  14. Advanced Technologies and Practices - Building America Top Innovations |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONY PROJECTRecord4 AdvanceEnergy ASCEM

  15. Advanced Technology Vehicles Manufacturing Loan Program | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONY PROJECTRecord4 AdvanceEnergy

  16. Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobsAdvanced EngineFebruary 12, 2014 EnergyCellReportMotors

  17. Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobsAdvanced EngineFebruary 12, 2014Motors R&D Annual

  18. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann39.1_Acquisition_of_Information_Resources_0.pdfEnablingManufacturingAdvancing Clean

  19. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    SciTech Connect (OSTI)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  20. Load research manual. Volume 3. Load research for advanced technologies

    SciTech Connect (OSTI)

    Brandenburg, L.; Clarkson, G.; Grund, Jr., C.; Leo, J.; Asbury, J.; Brandon-Brown, F.; Derderian, H.; Mueller, R.; Swaroop, R.

    1980-11-01

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. The manual includes guides to load research literature and glossaries of load research and statistical terms. In Volume 3, special load research procedures are presented for solar, wind, and cogeneration technologies.

  1. Vehicle Technologies Office Merit Review 2014: Advanced in situ Diagnostic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs SearchWater-SavingofCode&Technology for

  2. Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950 TimelineUtility-ScaleTechnology| Department ofReport

  3. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    SciTech Connect (OSTI)

    2010-01-01

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  4. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    ScienceCinema (OSTI)

    None

    2013-05-29

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  5. Advanced Waste Retrieval System. Innovative Technology Summary Report

    SciTech Connect (OSTI)

    2001-09-01

    At West Valley, following the baseline removal operations, bulk waste retrieval methods may be augmented if required, with the deployment of the Advanced Waste Retrieval System (AWRS). The AWRS is a hydraulic boom mounted on a trolley on the Mast-Mounted Tool Delivery System. The boom is about 15 ft long with a pan and tilt mechanism at the end. On the end is a steam jet with a suction tool that can reach down around the tank internal structure and vacuum up zeolite or sludge off the bottom of the tank from a thirty-foot diameter reach. A grinder is included topside in the discharge path to pulverize the zeolite so it can be readily retrieved from the destination tank.

  6. Advanced lost foam casting technology. 1995 summary report

    SciTech Connect (OSTI)

    Bates, C.E.; Littleton, H.E.; Askeland, D.; Griffin, J.; Miller, B.A.; Sheldon, D.S.

    1996-05-01

    Previous research made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional research was needed to improve the process and make it more functional in an industrial environment. The current project focused on five areas listed as follows: Task 1: Precision Pattern Production; Task 2: Pattern Coating Consistency; Task 3: Sand Fill and Compaction Effects; Task 4: Pattern Gating; and Task 5: Mechanical Properties of Castings. This report summarizes the work done under the current contract in all five areas. Twenty-eight (28) companies jointly participate in the project. These companies represent a variety of disciplines, including pattern designers, pattern producers, coating manufacturers, plant design companies, compaction equipment manufacturers, casting producers, and casting buyers. This report summarizes the work done in the past two years and the conclusions drawn from the work.

  7. Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport

    SciTech Connect (OSTI)

    Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

    2013-07-01

    The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

  8. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Technology Assessment

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying caulk toRoadmaps BuildingChapterAdvanced

  9. Advanced Mechanical Heat Pump Technologies for Industrial Applications 

    E-Print Network [OSTI]

    Mills, J. I.; Chappell, R. N.

    1985-01-01

    seven fins per inch are used. The excijangers utilize modular cores consisting/of thirty 5/8-in.-diameter x 48-in.!10n g tubes per row, eight rows deep. Oucting walls, which contain the air/sol ent mixture, are stainless steel. A rofin... HEAT PUMP TECHNOLOGIES FOR INDUSTRIAL APPLICATIONsa James I. Mills D. S. Plaster EG&G Idaho, Inc. Idaho National Engineering Laboratory Idaho Falls, 10 83415 ABSTRACT The Department of Energy (DOE), Office of Industrial Programs (OIP...

  10. Advanced Technology & Discovery at Bangalore | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden DocumentationAccommodationsRegisterLithium-basedNuclear5 Science ofTechnology

  11. Advanced Technology & Discovery at Niskayuna | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden DocumentationAccommodationsRegisterLithium-basedNuclear5 ScienceTechnology

  12. Advanced Biomass Gasification Technologies Inc ABGT | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLCAdema Technologies Inc JumpAdobe SolarPower

  13. Advanced Materials Technologies Available for Licensing - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery Act RecoveryTechnologies |Appliances &

  14. Hydrogen energy for tomorrow: Advanced hydrogen transport and storage technologies

    SciTech Connect (OSTI)

    NONE

    1995-08-01

    The future use of hydrogen to generate electricity, heat homes and businesses, and fuel vehicles will require the creation of a distribution infrastructure of safe, and cost-effective transport and storage. Present storage methods are too expensive and will not meet the performance requirements of future applications. Transport technologies will need to be developed based on the production and storage systems that come into use as the hydrogen energy economy evolves. Different applications will require the development of different types of storage technologies. Utility electricity generation and home and office use will have storage fixed in one location--stationary storage--and size and weight will be less important than energy efficiency and costs of the system. Fueling a vehicle, however, will require hydrogen storage in an ``on-board`` system--mobile storage--with weight and size similar to the gasoline tank in today`s vehicle. Researchers are working to develop physical and solid-state storage systems that will meet these diverse future application demands. Physical storage systems and solid-state storage methods (metal hydrides, gas-on-solids adsorption, and glass microspheres) are described.

  15. Energy Return on Investment - Fuel Recycle

    SciTech Connect (OSTI)

    Halsey, W; Simon, A J; Fratoni, M; Smith, C; Schwab, P; Murray, P

    2012-06-06

    This report provides a methodology and requisite data to assess the potential Energy Return On Investment (EROI) for nuclear fuel cycle alternatives, and applies that methodology to a limited set of used fuel recycle scenarios. This paper is based on a study by Lawrence Livermore National Laboratory and a parallel evaluation by AREVA Federal Services LLC, both of which were sponsored by the DOE Fuel Cycle Technologies (FCT) Program. The focus of the LLNL effort was to develop a methodology that can be used by the FCT program for such analysis that is consistent with the broader energy modeling community, and the focus of the AREVA effort was to bring industrial experience and operational data into the analysis. This cooperative effort successfully combined expertise from the energy modeling community with expertise from the nuclear industry. Energy Return on Investment is one of many figures of merit on which investment in a new energy facility or process may be judged. EROI is the ratio of the energy delivered by a facility divided by the energy used to construct, operate and decommission that facility. While EROI is not the only criterion used to make an investment decision, it has been shown that, in technologically advanced societies, energy supplies must exceed a minimum EROI. Furthermore, technological history shows a trend towards higher EROI energy supplies. EROI calculations have been performed for many components of energy technology: oil wells, wind turbines, photovoltaic modules, biofuels, and nuclear reactors. This report represents the first standalone EROI analysis of nuclear fuel reprocessing (or recycling) facilities.

  16. Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

  17. Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants for Improved Energy Efficiency and Reduced Emissions in Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  18. Vehicle Technologies Office Merit Review 2015: Advancements in Fuel Spray and Combustion Modeling with High Performance Computing Resources

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancements in...

  19. Vehicle Technologies Office Merit Review 2015: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Caterpillar at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  20. Vehicle Technologies Office Merit Review 2014: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Caterpillar at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  1. Vehicle Technologies Office Merit Review 2015: Development of Advanced High-Performance Batteries for 12V Start Stop Vehicle Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Maxwell at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  2. Vehicle Technologies Office Merit Review 2014: Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancement in...

  3. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    SciTech Connect (OSTI)

    Loflin, Leonard; McRimmon, Beth

    2014-12-18

    This report summarizes a project by EPRI to include requirements for small modular light water reactors (smLWR) into the EPRI Utility Requirements Document (URD) for Advanced Light Water Reactors. The project was jointly funded by EPRI and the U.S. Department of Energy (DOE). The report covers the scope and content of the URD, the process used to revise the URD to include smLWR requirements, a summary of the major changes to the URD to include smLWR, and how to use the URD as revised to achieve value on new plant projects.

  4. Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology

    SciTech Connect (OSTI)

    Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

    2005-06-30

    Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

  5. Low Temperature Heat Source Utilization Current and Advanced Technology

    SciTech Connect (OSTI)

    Anderson, James H. Jr.; Dambly, Benjamin W.

    1992-06-01

    Once a geothermal heat source has been identified as having the potential for development, and its thermal, physical, and chemical characteristics have been determined, a method of utilization must be decided upon. This compendium will touch upon some of these concerns, and hopefully will provide the reader with a better understanding of technologies being developed that will be applicable to geothermal development in East Africa, as well as other parts of the world. The appendices contain detailed reports on Down-the-Well Turbo Pump, The Vapor-Turbine Cycle for Geothermal Power Generation, Heat Exchanger Design for Geothermal Power Plants, and a Feasibility Study of Combined Power and Water Desalting Plant Using Hot Geothermal Water. [DJE-2005

  6. Hydropower R&D: Recent Advances in Turbine Passage Technology

    SciTech Connect (OSTI)

    Rinehart, Bennie Nelson; Cada, G. F.

    2000-04-01

    The purpose of this report is to describe the recent and planned R&D activities across the U.S. related to survival of fish entrained in hydroelectric turbines. In this report, we have considered studies that are intended to develop new information that can be used to mitigate turbine-passage mortality. This review focuses on the effects on fish of physical or operational modifications to turbines, comparisons to survival in other downstream passage routes (e.g., bypass systems and spillways), and applications of new modeling, experimental, and technological approaches to develop a greater understanding of the stresses associated with turbine passage. In addition, the emphasis is on biological studies, as opposed to the engineering studies (e.g., turbine index testing) that re often carried out in support of fish passage mitigation efforts.

  7. Residential Customer Enrollment in Time-based Rate and Enabling Technology Programs: Smart Grid Investment Grant Consumer Behavior Study Analysis

    E-Print Network [OSTI]

    Todd, Annika

    2014-01-01

    2011 Assessment of Demand Response & Advanced Metering:Critical Peak Rebate – A demand response program that paysthe benefits from customer demand response enabled by these

  8. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    SciTech Connect (OSTI)

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements – around 530 °C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and reactions going to completion without side reactions, and lower demands on materials of construction. Three university research groups from PSU, USC, and TU as well as a group from ANL have been collaborating on the development of enabling technologies for the Cu-Cl cycle, including experimental work on the Cu-Cl cycle reactions, modeling and simulation, and particularly electrochemical reaction for hydrogen production using a CuCl electrolyzer. The Consortium research was distributed over the participants and organized in the following tasks: (1) Development of CuCl electrolyzer (PSU), (2) Thermodynamic modeling of anolyte solution (PSU), (3) Proton conductive membranes for CuCl electrolysis (PSU), (4) Development of an analytical method for online analysis of copper compounds in highly concentrated aqueous solutions (USC), (5) Electrodialysis as a means for separation and purification of the streams exiting the electrolyzer in the Cu-Cl cycle (USC), (6) Development of nanostructured electrocatalysts for the Cu-Cl electrolysis (USC), (7) Cu-Cl electrolyzer modeling (USC), (8) Aspen Plus modeling of the Cu-Cl thermochemical cycle (TU), (9) International coordination of research on the development of the Cu-Cl thermochemical cycle (ANL). The results obtained in the project clearly demonstrate that the Cu-Cl alternative thermochemical cycle is a promising and viable technology to produce hydrogen efficiently.

  9. Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  10. Impact of Advanced Physics and Technology on the Attractiveness of Tokamak Fusion Power Plants

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    Impact of Advanced Physics and Technology on the Attractiveness of Tokamak Fusion Power Plants--During the past ten years, the ARIES Team has studied a variety of tokamak power plants with different degrees to apply lessons learned from each ARIES design to the next. The results of ARIES tokamak power plant

  11. Introducing Embedded Software and Systems Education and Advanced Learning Technology in an Engineering Curriculum

    E-Print Network [OSTI]

    Koutsoukos, Xenofon D.

    an embedded software and systems speciali- zation in the framework of the current Engineering School by the following four factors: 1. Insertion of the embedded software and systems concentration in the engineeringIntroducing Embedded Software and Systems Education and Advanced Learning Technology

  12. MAE SEMINAR Recent advances in Additive Manufacturing/3D Printing Technologies, Material Science and

    E-Print Network [OSTI]

    Mease, Kenneth D.

    MAE SEMINAR Recent advances in Additive Manufacturing/3D Printing Technologies, Material Science Samueli School of Engineering University of California Irvine 3D printing or Additive Manufacturing in different shapes. 3D printing is also considered distinct from traditional machining techniques, which

  13. A study of advanced training technology: Emerging answers to tough questions

    SciTech Connect (OSTI)

    NONE

    1995-03-01

    This study reports the result of an extensive nationwide review of military, private sector, and other federal agencies and organizations that are implementing a wide variety of advanced training technologies. This report classifies the general categories of advanced training technologies found and provides an overview of each, including specific types and examples. In addition, the research findings present an organizational model for training development linking overall organizational maturity to readiness to implement specific kinds of advanced training technologies. It also presents proposed methods for selecting media, describes the organizations and the data gathered, and provides a summary of implementation success at each organization. This study is organized as a set of five topics. Each topic raises a number of important questions and provides complete or emerging answers. For organizations who have made advanced training selections, this study is a resource to benchmark their success with other organizations who have made similar selections. For new or developing training organizations, this study will help plan their future technology selections by comparing their level of organizational maturity to the documented experiences of similar organizations.

  14. NREL's Hydrogen-Powered Bus Serves as Showcase for Advanced Vehicle Technologies (AVT) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    Brochure describes the hydrogen-powered internal combustion engine (H2ICE) shuttle bus at NREL. The U.S. Department of Energy (DOE) is funding the lease of the bus from Ford to demonstrate market-ready advanced technology vehicles to visitors at NREL.

  15. 'Radiotoxicity Index': An Inappropriate Discriminator for Advanced Fuel Cycle Technology Selection - 12276

    SciTech Connect (OSTI)

    Kessler, John; Sowder, Andrew [Electric Power Research Institute, Charlotte, North Carolina 28262 (United States); Apted, Michael; Kozak, Matthew [Intera, Inc., Denver, Colorado 80235 (United States); Nutt, Mark [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Swift, Peter [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2012-07-01

    A radiotoxicity index (RI) is often used as a figure of merit for evaluating for evaluating the attractiveness of employing an advanced fuel cycle (i.e., a fuel cycle that uses some combination of separations and other reactor technologies, such as fast reactors), rather than continued use of the current 'once-through' fuel cycle. The RI is calculated by multiplying the amount of every radionuclide found in a waste form for some unit amount of waste times the drinking water dose conversion factor, DCF, for each radionuclide, then summing these together. Some argue that if the RI for an advanced fuel cycle is lower than the RI for a once-through fuel cycle, then implementation of the particular advanced fuel cycle has merit because it reduces the radiotoxicity of the waste. Use of an RI for justifying separations technologies and other components of advanced fuel cycles is not only inappropriate, but can be misleading with respect to judging benefits of advance fuel cycle options. The disposal system, through its use of multiple engineered and natural barriers to migration, eliminates most of the radionuclides contributing to the RI such that additional separations technologies will make little difference to peak dose rates. What must also be considered is the health/dose risk caused to workers and the public by the construction and operation of the separations facility itself. Thus, use of RI may lead to selection of separations technologies that may have a negligible effect on lowering the potential health risks associated with disposal, but will increase real worker and public health risks in the near term. The use of the radiotoxicity index (RI) as a figure of merit for justifying advanced fuel cycles involving separations technologies is not only inappropriate, but can be misleading with respect to judging benefits of advance fuel cycle options. The disposal system, through its use of multiple engineered and natural barriers to migration, eliminates most of the radionuclides contributing to the RI such that additional separations technologies will make little difference to peak dose rates. What must also be considered is the health/dose risk caused to workers and the public by the construction and operation of the separations facility itself. Thus, use of RI may lead to selection of separations technologies that may have a negligible effect on lowering the potential health risks associated with disposal, but will increase real worker and public health risks in the near term. (authors)

  16. Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare -- Wastewater Recycling Technology

    SciTech Connect (OSTI)

    Boyd, Brian K.; Parker, Graham B.; Petersen, Joseph M.; Sullivan, Greg; Goetzler, W.; Foley, K. J.; Sutherland, T. A.

    2014-08-14

    The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of a wastewater recycling system installed in the Grand Hyatt Seattle.

  17. Vehicle Technologies Office Merit Review 2015: Fuel Displacement Potential of Advanced Technologies under Different Thermal Conditions

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel displacement...

  18. Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs

    SciTech Connect (OSTI)

    Stephen Holditch; A. Daniel Hill; D. Zhu

    2007-06-19

    The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical issues in tight gas fracturing, in particular the roles of gel damage, polymer loading (water-frac versus gel frac), and proppant concentration on the created fracture conductivity. To achieve this objective, we have designed the experimental apparatus to conduct the dynamic fracture conductivity tests. The experimental apparatus has been built and some preliminary tests have been conducted to test the apparatus.

  19. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect (OSTI)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  20. Energy Saving Melting andRevert Reduction Technology (E0SMARRT): Predicting Pattern Tooling and Casting Dimension for Investment Casting

    SciTech Connect (OSTI)

    Nick Cannell; Dr. Mark Samonds; Adi Sholapurwalla; Sam Scott

    2008-11-21

    The investment casting process is an expendable mold process where wax patterns of the part and rigging are molded, assembled, shelled and melted to produce a ceramic mold matching the shape of the component to be cast. Investment casting is an important manufacturing method for critical parts because of the ability to maintain dimensional shape and tolerances. However, these tolerances can be easily exceeded if the molding components do not maintain their individual shapes well. In the investment casting process there are several opportunities for the final casting shape to not maintain the intended size and shape, such as shrinkage of the wax in the injection tool, the modification of the shape during shell heating, and with the thermal shrink and distortion in the casting process. Studies have been completed to look at the casting and shell distortions through the process in earlier phases of this project. Dr. Adrian Sabau at Oak Ridge National Labs performed characterizations and validations of 17-4 PH stainless steel in primarily fused silica shell systems with good agreement between analysis results and experimental data. Further tasks provided material property measurements of wax and methodology for employing a viscoelastic definition of wax materials into software. The final set of tasks involved the implementation of the findings into the commercial casting analysis software ProCAST, owned and maintained by ESI Group. This included: o the transfer of the wax material property data from its raw form into separate temperature-dependent thermophysical and mechanical property datasets o adding this wax material property data into an easily viewable and modifiable user interface within the pre-processing application of the ProCAST suite, namely PreCAST o and validating the data and viscoelastic wax model with respect to experimental results

  1. Isotope separation and advanced manufacturing technology. Volume 2, No. 2, Semiannual report, April--September 1993

    SciTech Connect (OSTI)

    Kan, Tehmanu; Carpenter, J.

    1993-12-31

    This is the second issue of a semiannual report for the Isotope Separation and Advanced Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives of the ISAM Program include: the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) process, and advanced manufacturing technologies which include industrial laser materials processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. Topics included in this issue are: production plant product system conceptual design, development and operation of a solid-state switch for thyratron replacement, high-performance optical components for high average power laser systems, use of diode laser absorption spectroscopy for control of uranium vaporization rates, a two-dimensional time dependent hydrodynamical ion extraction model, and design of a formaldehyde photodissociation process for carbon and oxygen isotope separation.

  2. First European Conference on Research and Advanced Technologies for Digital Libraries Pisa, Italy September 1-3, 1997

    E-Print Network [OSTI]

    French, James C.

    First European Conference on Research and Advanced Technologies for Digital Libraries Pisa, Italy for Digital Libraries Pisa, Italy September 1-3, 1997 2 What are we trying to do? l Merge bibliographic Conference on Research and Advanced Technologies for Digital Libraries Pisa, Italy September 1-3, 1997 3 What

  3. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    SciTech Connect (OSTI)

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  4. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research

    SciTech Connect (OSTI)

    Speight, J.G.

    1992-01-01

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  5. Condition monitoring through advanced sensor and computational technology : final report (January 2002 to May 2005).

    SciTech Connect (OSTI)

    Kim, Jung-Taek; Luk, Vincent K.

    2005-05-01

    The overall goal of this joint research project was to develop and demonstrate advanced sensors and computational technology for continuous monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This project included investigating and adapting several advanced sensor technologies from Korean and US national laboratory research communities, some of which were developed and applied in non-nuclear industries. The project team investigated and developed sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms. The researchers installed sensors and conducted condition monitoring tests on two test loops, a check valve (an active component) and a piping elbow (a passive component), to demonstrate the feasibility of using advanced sensors and computational technology to achieve the project goal. Acoustic emission (AE) devices, optical fiber sensors, accelerometers, and ultrasonic transducers (UTs) were used to detect mechanical vibratory response of check valve and piping elbow in normal and degraded configurations. Chemical sensors were also installed to monitor the water chemistry in the piping elbow test loop. Analysis results of processed sensor data indicate that it is feasible to differentiate between the normal and degraded (with selected degradation mechanisms) configurations of these two components from the acquired sensor signals, but it is questionable that these methods can reliably identify the level and type of degradation. Additional research and development efforts are needed to refine the differentiation techniques and to reduce the level of uncertainties.

  6. 11.432J / 15.427J Real Estate Finance & Investments II: Macro-Level Analysis & Advanced Topics, Spring 2003

    E-Print Network [OSTI]

    Geltner, David, 1951-

    The evolving organization and operation of real estate capital markets. Sources of real estate capital. Primary and secondary mortgage markets. The investment behavior of real estate assets. The development of REITs and ...

  7. Vehicle Technologies Office Merit Review 2014: Neutron Imaging of Advanced Transportation Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about neutron imaging...

  8. Vehicle Technologies Office Merit Review 2015: Neutron Imaging of Advanced Transportation Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about neutron imaging...

  9. Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking- Level 2 (in-depth)

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about level 2 (in-depth...

  10. Vehicle Technologies Office Merit Review 2014: Impact of Advanced Technologies on Engine Targets

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the impact of...

  11. Design manual for management of solid by-products from advanced coal technologies

    SciTech Connect (OSTI)

    1994-10-01

    Developing coal conversion technologies face major obstacles in byproduct management. This project has developed several management strategies based on field trials of small-scale landfills in an earlier phase of the project, as well as on published/unpublished sources detailing regulatory issues, current industry practice, and reuse opportunities. Field testing, which forms the basis for several of the disposal alternatives presented in this design manual, was limited to byproducts from Ca-based dry SO{sub 2} control technologies, circulating fluidized bed combustion ash, and bubbling bed fluidized bed combustion ash. Data on byproducts from other advanced coal technologies and on reuse opportunities are drawn from other sources (citations following Chapter 3). Field results from the 5 test cases examined under this project, together with results from other ongoing research, provide a basis for predictive modeling of long-term performance of some advanced coal byproducts on exposure to ambient environment. This manual is intended to provide a reference database and development plan for designing, permitting, and operating facilities where advanced coal technology byproducts are managed.

  12. An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies

    SciTech Connect (OSTI)

    Spencer, D.F. [SIMTECHE, Half Moon Bay, CA (United States)

    1997-12-31

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

  13. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    of PV panels, solar thermal equipment, and storage systems.chiller, energy storage, or solar-based technologies areexpensive solar-based equipment and energy storage Intercept

  14. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect (OSTI)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

  15. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Combined Heat and Power Systems Technology Assessment

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy Headquarters Categorical| Department of Energy5: Lighting, HVAC, and6:Advanced

  16. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect (OSTI)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-10

    This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

  17. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    SciTech Connect (OSTI)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini; Wiles Elder

    1999-04-05

    This eleventh quarterly report describes work done during the eleventh three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to two outside contacts.

  18. U.S. Department of Energy Instrumentation and Controls Technology Research for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Wood, Richard Thomas

    2012-01-01

    Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, key DOE programs have substantial ICHMI RD&D elements to their respective research portfolio. This article describes current ICHMI research to support the development of advanced small modular reactors.

  19. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect (OSTI)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-06-01

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

  20. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO[sub 2] per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO[sub 2] emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  1. Advanced regenerative thermal oxidation (RTO) technology for air toxics control - selected case histories

    SciTech Connect (OSTI)

    Seiwert, J.J. Jr.

    1997-12-31

    Advanced design regenerative thermal oxidation (RTO) systems have been developed and are in commercial scale use for control of process emissions containing air toxics (HAPs) and VOCs. High operating temperatures coupled with high thermal energy recovery efficiencies inherent with RTO technology provide for high destruction efficiencies while minimizing formation of objectionable combustion byproducts. These results are achieved with low system operating costs. This paper covers development of advanced design commercial RTO systems for control of air emissions from several important commercial processes: total reduced sulfur (TRS) and other HAPs/VOC emissions from pulp mill processes. Chlorinated organics and other HAPs/VOC emissions from pharmaceutical manufacturing operations. The data presented represent the first commercial scale application of RTO technology to abate emissions from these processes. Particular design features required for each specific process, in order to provide reliable, safe and effective systems, are reviewed. Emissions abatement performance, as well as operational data, are presented for the systems.

  2. Strategic Need for Multi-Purpose Thermal Hydraulic Loop for Support of Advanced Reactor Technologies

    SciTech Connect (OSTI)

    James E. O'Brien; Piyush Sabharwall; Su-Jong Yoon; Gregory K. Housley

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation needs. The experimental database will guide development of appropriate predictive methods and be available for code verification and validation (V&V) related to these systems.

  3. INL - NNL an International Technology Collaboration Case Study - Advanced Fogging Technologies for Decommissioning - 13463

    SciTech Connect (OSTI)

    Banford, Anthony; Edwards, Jeremy [National Nuclear Laboratory, 5th Floor Chadwick House, Birchwood Park, Warrington WA3 6AE(United Kingdom)] [National Nuclear Laboratory, 5th Floor Chadwick House, Birchwood Park, Warrington WA3 6AE(United Kingdom); Demmer, Rick; Rankin, Richard [Idaho National Laboratory, Idaho Falls, ID 83401(United States)] [Idaho National Laboratory, Idaho Falls, ID 83401(United States); Hastings, Jeremy [National Nuclear Laboratory, Central Laboratory Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)] [National Nuclear Laboratory, Central Laboratory Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)

    2013-07-01

    International collaboration and partnerships have become a reality as markets continue to globalize. This is the case in nuclear sector where over recent years partnerships commonly form to bid for capital projects internationally in the increasingly contractorized world and international consortia regularly bid and lead Management and Operations (M and O) / Parent Body Organization (PBO) site management contracts. International collaboration can also benefit research and technology development. The Idaho National Laboratory (INL) and the UK National Nuclear Laboratory (NNL) are internationally recognized organizations delivering leading science and technology development programmes both nationally and internationally. The Laboratories are actively collaborating in several areas with benefits to both the laboratories and their customers. Recent collaborations have focused on fuel cycle separations, systems engineering supporting waste management and decommissioning, the use of misting for decontamination and in-situ waste characterisation. This paper focuses on a case study illustrating how integration of two technologies developed on different sides of the Atlantic are being integrated through international collaboration to address real decommissioning challenges using fogging technology. (authors)

  4. Radioactive Waste Conditioning, Immobilisation, And Encapsulation Processes And Technologies: Overview And Advances (Chapter 7)

    SciTech Connect (OSTI)

    Jantzen, Carol M.; Lee, William E.; Ojovan, Michael I.

    2012-10-19

    The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of low level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate wastes are also discussed. The various processing technologies are cross-referenced to the various types of wasteforms since often a particular type of wasteform can be made by a variety of different processing technologies.

  5. Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect (OSTI)

    Sussman, Alan

    2014-10-21

    This is a final technical report for the University of Maryland work in the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS). The Maryland work focused on software tools for coupling parallel software components built using the Common Component Architecture (CCA) APIs. Those tools are based on the Maryland InterComm software framework that has been used in multiple computational science applications to build large-scale simulations of complex physical systems that employ multiple separately developed codes.

  6. Automatic intrusion recovery with system-wide history B.S., Korea Advanced Institute of Science and Technology (2009)

    E-Print Network [OSTI]

    2009-01-01

    Automatic intrusion recovery with system-wide history by Taesoo Kim B.S., Korea Advanced Institute of Science and Technology (2009) S.M., Massachusetts Institute of Technology (2011) Submitted for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2014 c Massachusetts

  7. Chapter 4: Advancing Clean Electric Power Technologies | Fast-Spectrum Reactors Technology Assessment

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy Headquarters Categorical| Department of Energy Cha-Ching!Chapter 4Technologies

  8. Technology status and project development risks of advanced coal power generation technologies in APEC developing economies

    SciTech Connect (OSTI)

    Lusica, N.; Xie, T.; Lu, T.

    2008-10-15

    The report reviews the current status of IGCC and supercritical/ultrasupercritical pulverized-coal power plants and summarizes risks associated with project development, construction and operation. The report includes an economic analysis using three case studies of Chinese projects; a supercritical PC, an ultrasupercritical PC, and an IGCC plant. The analysis discusses barriers to clean coal technologies and ways to encourage their adoption for new power plants. 25 figs., 25 tabs.

  9. Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology

    SciTech Connect (OSTI)

    Harry Littleton; John Griffin

    2011-07-31

    This project was a subtask of Energy Saving Melting and Revert Reduction Technology (�¢����Energy SMARRT�¢���) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy saving estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU�¢����s/year and 6.46 trillion BTU�¢����s/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).

  10. Retrospective Benefit-Cost Evaluation of U.S. DOE Geothermal Technologies R&D Program Investments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct.7,BreakoutRetooling Michigan:Energy Systems | ii iii

  11. DOE/NETL's advanced NOx emissions control technology R & D program

    SciTech Connect (OSTI)

    Lani, B.W.; Feeley, T.J. III; Miller, C.E.; Carney, B.A.; Murphy, J.T.

    2006-11-15

    Efforts are underway to provide more cost-effective options for coal-fired power plants to meet stringent emissions limits. Several recently completed DOE/NETL R & D projects were successful in achieving the short-term goal of controlling NOx emissions at 0.15 lb/MMBtu using in-furnace technologies. In anticipation of CAIR and possible congressional multi-pollutant legislation, DOE/NETL issued a solicitation in 2004 to continue R & D efforts to meet the 2007 goal and to initiate R & D targeting the 2010 goal of achieving 0.10 lb/MMBtu using in-furnace technologies in lieu of SCR. As a result, four new NOx R & D projects are currently underway and will be completed over the next three years. The article outlines: ALSTOM's Project on developing an enhanced combustion, low NOx burner for tangentially-fired boilers; Babcock and Wilcox's demonstration of an advanced NOx control technology to achieve an emission rate of 0.10 lb/MMBtu while burning bituminous coal for both wall- and cyclone-fired boilers; Reaction Engineering International's (REI) full-scale field testing of advanced layered technology application (ALTA) NOx control for cyclone fired boilers; and pilot-scale testing of ALTA NOx control of coal-fired boilers also by REI. DOE/NETL has begun an R & D effort to optimize performance of SCR controls to achieve the long term goal of 0.01 lb/MMBtu NOx emission rate by 2020. 1 fig.

  12. Stakeholder identification of advanced technology opportunities at international ports of entry

    SciTech Connect (OSTI)

    Parker, S.K.; Icerman, L.

    1997-01-01

    As part of the Advanced Technologies for International and Intermodal Ports of Entry (ATIPE) Project, a diverse group of stakeholders was engaged to help identify problems experienced at inland international border crossings, particularly those at the US-Mexican border. The fundamental issue at international ports of entry is reducing transit time through the required documentation and inspection processes. Examples of other issues or problems, typically manifested as time delays at border crossings, repeatedly mentioned by stakeholders include: (1) lack of document standardization; (2) failure to standardize inspection processes; (3) inadequate information and communications systems; (4) manual fee and tariff collection; (5) inconsistency of processes and procedures; and (6) suboptimal cooperation among governmental agencies. Most of these issues can be addressed to some extent by the development of advanced technologies with the objective of allowing ports of entry to become more efficient while being more effective. Three categories of technologies were unambiguously of high priority to port of entry stakeholders: (1) automated documentation; (2) systems integration; and (3) vehicle and cargo tracking. Together, these technologies represent many of the technical components necessary for pre-clearance of freight approaching international ports of entry. Integration of vehicle and cargo tracking systems with port of entry information and communications systems, as well as existing industry legacy systems, should further enable border crossings to be accomplished consistently with optimal processing times.

  13. Organic light emitting diodes (OLEDs) are a rapidly emerging technology based on organic thin film semiconductors. Recently, there has been substantial investment in their use in displays. At the heart of

    E-Print Network [OSTI]

    Organic light emitting diodes (OLEDs) are a rapidly emerging technology based on organic thin film semiconductors. Recently, there has been substantial investment in their use in displays. At the heart of an OLED are emissive molecules that generate light in response to electrical stimulation. Ideal emitters are efficient

  14. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2013-01-01

    SunLine Transit Agency, which provides public transit services to the Coachella Valley area of California, has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technology (AT) fuel cell bus with a hybrid electric propulsion system, fuel cell power system, and lithium-based hybrid batteries. This report describes operations at SunLine for the AT fuel cell bus and five compressed natural gas buses. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working with SunLine to evaluate the bus in real-world service to document the results and help determine the progress toward technology readiness. NREL has previously published three reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from February 2012 through November 2012.

  15. Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan

    SciTech Connect (OSTI)

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31

    FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development of a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.

  16. Proceedings of the advanced research and technology development direct utilization, instrumentation and diagnostics contractors' review meeting

    SciTech Connect (OSTI)

    Geiling, D.W. (USDOE Morgantown Energy Technology Center, WV (USA)); Goldberg, P.M. (eds.) (USDOE Pittsburgh Energy Technology Center, PA (USA))

    1990-01-01

    The 1990 Advanced Research and Technology Development (AR TD) Direct Utilization, and Instrumentation and Diagnostics Contractors Review Meeting was held September 16--18, 1990, at the Hyatt at Chatham Center in Pittsburgh, PA. The meeting was sponsored by the US Department of Energy (DOE), Office of Fossil Energy, and the Pittsburgh and Morgantown Energy Technology Centers. Each year the meeting provides a forum for the exchange of information among the DOE AR TD contractors and interested parties. This year's meeting was hosted by the Pittsburgh Energy Technology Center and was attended by 120 individuals from industry, academia, national laboratories, and other governmental agencies. Papers were presented on research addressing coal surface, science, devolatilization and combustion, ash behavior, emission controls for gases particulates, fluid bed combustion and utilization in diesels and turbines. Individual reports are processed separately for the data bases.

  17. Advanced Instrumentation, Information, and Control System Technologies: Nondestructive Examination Technologies - FY11 Report

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.

    2011-08-30

    Licensees of commercial nuclear power plants in the US are expected to submit license renewal applications for the period of operation of 60 to 80 years which has also been referred to as long term operation (LTO). The greatest challenges to LTO are associated with degradation of passive components as active components are routinely maintained and repaired or placed through maintenance programs. Some passive component degradation concerns include stress corrosion cracking (SCC) of metal components, radiation induced embrittlement of the reactor pressure vessel (RPV), degradation of buried piping, degradation of concrete containment structures, and degradation of cables. Proactive management of passive component aging employs three important elements including online monitoring of degradation, early detection of degradation at precursor stages, and application of prognostics for the prediction of remaining useful life (RUL). This document assesses several nondestructive examination (NDE) measurement technologies for integration into proactive aging management programs. The assessment is performed by discussing the three elements of proactive aging management identified above, considering the current state of the industry with respect to adopting these key elements, and analyzing measurement technologies for monitoring large cracks in metal components, monitoring early degradation at precursor stages, monitoring the degradation of concrete containment structures, and monitoring the degradation of cables. Specific and general needs have been identified through this assessment. General needs identified include the need for environmentally rugged sensors are needed that can operate reliably in an operating reactor environment, the need to identify parameters from precursor monitoring technologies that are unambiguously correlated with the level of pre-macro defect damage, and a methodology for identifying regions where precursor damage is most likely to initiate.

  18. Chapter 4: Advancing Clean Electric Power Technologies | Wind Power Technology Assessment

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying caulk to 13.1CarbonTechnology

  19. Energy Department Invests $14 Million in Innovative Building...

    Office of Environmental Management (EM)

    14 Million in Innovative Building Efficiency Technologies Energy Department Invests 14 Million in Innovative Building Efficiency Technologies July 15, 2014 - 1:28pm Addthis The...

  20. The Physics Basis For An Advanced Physics And Advanced Technology Tokamak Power Plant Configuration, ARIES-ACT1

    SciTech Connect (OSTI)

    Charles Kessel, et al

    2014-03-05

    The advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2 and triangularity of 0.63. The broadest pressure cases reached wall stabilized ?N ~ 5.75, limited by n=3 external kink mode requiring a conducting shell at b/a = 0.3, and requiring plasma rotation, feedback, and or kinetic stabilization. The medium pressure peaking case reached ?N = 5.28 with BT = 6.75, while the peaked pressure case reaches ?N < 5.15. Fast particle MHD stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling show that about 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while over 95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring about ~ 1.1 MA of external current drive. This current is supplied with 5 MW of ICRF/FW and 40 MW of LHCD. EC was examined and is most effective for safety factor control over ? ~ 0.2-0.6 with 20 MW. The pedestal density is ~ 0.9x1020 /m3 and the temperature is ~ 4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the net power to LH threshold power is 2.8- 3.0 in the flattop.