Powered by Deep Web Technologies
Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Advanced Solar Power ASP | Open Energy Information  

Open Energy Info (EERE)

ASP Jump to: navigation, search Name: Advanced Solar Power (ASP) Place: Israel Sector: Solar Product: Involved in the development and manufacturing of innovative solar energy...

2

Advancing Concentrating Solar Power Research (Fact Sheet)  

SciTech Connect (OSTI)

Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

Not Available

2014-02-01T23:59:59.000Z

3

$60 Million to Fund Projects Advancing Concentrating Solar Power |  

Broader source: Energy.gov (indexed) [DOE]

$60 Million to Fund Projects Advancing Concentrating Solar Power $60 Million to Fund Projects Advancing Concentrating Solar Power $60 Million to Fund Projects Advancing Concentrating Solar Power November 8, 2011 - 10:34am Addthis A 101 video on concentrating solar panel systems. | Courtesy of the Energy Department Jesse Gary Solar Energy Technologies Program On Tuesday, October 25, the Energy Department's SunShot initiative announced a $60 million funding opportunity (FOA) to advance concentrating solar power in the United States. The SunShot program seeks to support research into technologies with potential to dramatically increase efficiency, lower costs, and deliver more reliable performance than existing commercial and near-commercial concentrating solar power (CSP) systems. The Department expects to fund 20 to 22 projects, and we encourage

4

$60 Million to Fund Projects Advancing Concentrating Solar Power |  

Broader source: Energy.gov (indexed) [DOE]

$60 Million to Fund Projects Advancing Concentrating Solar Power $60 Million to Fund Projects Advancing Concentrating Solar Power $60 Million to Fund Projects Advancing Concentrating Solar Power November 8, 2011 - 10:34am Addthis A 101 video on concentrating solar panel systems. | Courtesy of the Energy Department Jesse Gary Solar Energy Technologies Program On Tuesday, October 25, the Energy Department's SunShot initiative announced a $60 million funding opportunity (FOA) to advance concentrating solar power in the United States. The SunShot program seeks to support research into technologies with potential to dramatically increase efficiency, lower costs, and deliver more reliable performance than existing commercial and near-commercial concentrating solar power (CSP) systems. The Department expects to fund 20 to 22 projects, and we encourage

5

Georgia Power - Small and Medium Scale Advanced Solar Initiative (GPASI)  

Broader source: Energy.gov (indexed) [DOE]

Georgia Power - Small and Medium Scale Advanced Solar Initiative Georgia Power - Small and Medium Scale Advanced Solar Initiative (GPASI) (Georgia) Georgia Power - Small and Medium Scale Advanced Solar Initiative (GPASI) (Georgia) < Back Eligibility Agricultural Commercial General Public/Consumer Installer/Contractor Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info Start Date 03/01/2013 State Georgia Program Type Other Incentive Provider GPASI Project Manager '''''Note: The application process for the small and medium scale solar programs began on March 1, 2013 and will continue through March 11, 2013. If completed applications exceed program capacity limit of 45 megawatts (MW), a lottery will be conducted, with Georgia Public Service Commission

6

Advanced Heat Transfer Fluids for Concentrated Solar Power (CSP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Science Computing, Environment & Life Sciences Energy Engineering & Systems Analysis Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Science Highlights Postdoctoral Researchers Advanced Heat Transfer Fluids for Concentrated Solar Power (CSP) Applications November 1, 2011 Tweet EmailPrint The current levelized cost of energy (LCOE) from concentrated solar power (CSP) is ~ $0.11/kWh. The U.S. Department of Energy has set goals to reduce this cost to ~$0.07/kWh with 6 hours of storage by 2015 and to ~$0.05/kWh with 16 hours of storage by 2020. To help meet these goals, scientists at Argonne National Laboratory are working to improve the overall CSP plant efficiency by enhancing the thermophysical properties of heat transfer

7

Energy Department Announces Projects to Advance Cost-Effective Concentrating Solar Power Systems  

Broader source: Energy.gov [DOE]

The Energy Department today announced $10 million for six new research and development projects that will advance innovative concentrating solar power (CSP) technologies. The projects will develop...

8

Energy Department Announces Projects to Advance Cost-Effective Concentrating Solar Power Systems  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $10 million for six new research and development projects that will advance innovative concentrating solar power (CSP) technologies.

9

Funding Opportunity Announcement: Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities  

Broader source: Energy.gov [DOE]

The SunShot Initiative's Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities (CSP: APOLLO) funding opportunity announcement (FOA) seeks transformative projects targeting all components of a concentrating solar power (CSP) plant. Projects should seek to meet the targets set out in the SunShot Vision Study , enabling CSP to become fully cost-competitive with traditional forms of electric power generation. Projects can address challenges in any technical system of the plant, including solar collectors, receivers and heat transfer fluids, thermal energy storage, power cycles, as well as operations and maintenance.

10

Interagency Advanced Power Group, Solar Working Group: Meeting minutes  

SciTech Connect (OSTI)

This report is the minutes of the Solar Working group. The meeting was prompted by the Steering Group`s desire to resolve issues the Solar Working Group.

Not Available

1993-10-14T23:59:59.000Z

11

Advancing State-of-the-Art Concentrating Solar Power Systems  

Office of Energy Efficiency and Renewable Energy (EERE)

New solar receiver for CSP system leads to higher efficiency, increased durability, and reduced cost.

12

Solar energy power generators with advanced thermionic converters for spacecraft applications  

SciTech Connect (OSTI)

This study presents (1) a 50 kW/sub e/ solar energy generator in a geostationary orbit for direct tv-broadcasting and (2) a 10 GW/sub e/ space power plant, with the basic engineering outlines using an advanced thermionic converter proposal given for each. Further, a comparison of the main technical data for the generators with corresponding energy output using (1) advanced thermionic converter and (2) ordinary thermionic converter without auxiliary emitter is shown. 25 refs.

Sahin, S.

1981-01-01T23:59:59.000Z

13

Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Power Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWh/sq meter power production potential As the accompanying map of New Mexico shows, the WIPP site enjoys abundant year-round sunshine. With an average solar power production potential of 6-7 kWh/sq meter per day, one exciting project being studied for location at WIPP is a 30-50 MW Solar Power Tower: The American Solar Energy Society (ASES) is is a national trade association promoting solar energy as a clean source of electricity, and provides a comprehensive resource for additional information. DOE's Office of Energy Efficiency and Renewable Energy is also a comprehensive resource for more information on renewable energy.

14

Solar Impulse's Solar-Powered Plane  

SciTech Connect (OSTI)

Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

2013-07-08T23:59:59.000Z

15

Solar Impulse's Solar-Powered Plane  

ScienceCinema (OSTI)

Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

2014-01-07T23:59:59.000Z

16

Solar Power  

Science Journals Connector (OSTI)

...of desert solar energy farm with 30 percent conversion...85 percent of the solar farm energy now reflected back...Washington, D.C. 20550. Wind Power Martin Wolf (19...counting the cost of the offshore platforms, would thus...15 billion. If these wind generators were placed...

Paul E. Damon

1974-08-09T23:59:59.000Z

17

Advances in solar cell technology  

Science Journals Connector (OSTI)

The advances in solar cell efficiency radiation tolerance and cost over the last decade are reviewed. Potential performance of thin?film solar cells in space are discussed and the cost and the historical trends in production capability of the photovoltaics industry considered with respect to the requirements of satellite solar power systems.

Geoffrey A. Landis; Sheila G. Bailey

1995-01-01T23:59:59.000Z

18

Advances in the integration of solar thermal energy with conventional and non-conventional power plants  

Science Journals Connector (OSTI)

Pollution and increasing fuel prices are the main focus for governments today. The main cause of pollution is existing electricity power plants that use huge quantities of fossil fuel. A new strategy should be applied in the coming decades based on the integration of existing power plants with renewable energy sources, such as solar and wind energy. Hybridization of existing power plants with solar energy is one proven option to overcome the problems of pollution and increasing fuel prices. In this paper, a review of the previous studies and papers for integrating solar thermal energy with conventional and non-conventional power plants was carried out. The focus on hybrid solar conventional power plants includes: the review of studies of hybrid solarsteam cycle power plants, integrated solar combined-cycle systems (ISCCS) and hybrid solargas turbine power plants, while for hybrid solar non-conventional power plants the focus of study is hybrid solargeothermal power plants. The most successful option is ISCCS due to their advantages and the plans for implementation at various power plants in the world like in Tunisia, Egypt, Spain, and Iran.

M.S. Jamel; A. Abd Rahman; A.H. Shamsuddin

2013-01-01T23:59:59.000Z

19

Advances in Concentrating Solar Power Collectors: Mirrors and Solar Selective Coatings  

SciTech Connect (OSTI)

The intention is to explore the feasibility of depositing the coating by lower-cost methods and to perform a rigorous cost analysis after a viable high-temperature solar-selective coating is demonstrated by e-beam.

Kenendy, C. E.

2007-10-10T23:59:59.000Z

20

Solar Power for Autonomous Floats  

Science Journals Connector (OSTI)

Advances in low-power instrumentation and communications now often make energy storage the limiting factor for long-term autonomous oceanographic measurements. Recent advances in photovoltaic cells, with efficiencies now close to 30%, make solar ...

Eric A. DAsaro

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Solar powered desalination system  

E-Print Network [OSTI]

As a clean energy source, solar power is inexhaustible,renewables for energy sources, including solar power. Also,Requirements Energy Source Natural Gas Nuclear Solar Wind

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

22

SOLAR MARKET POWERS SILICON  

Science Journals Connector (OSTI)

SOLAR MARKET POWERS SILICON ... Polysilicon shortages are boon to manufacturers, bane of solar energy industry ... Solar energy is a relatively new market for polysilicon manufacturers. ...

JEAN-FRA&CCEDIL;NOIS TREMBLAY

2006-10-02T23:59:59.000Z

23

Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer the potential for physical flexibility.  

E-Print Network [OSTI]

, Toronto, M5S 3G4, Canada. O ne hundred and twenty thousand terawatts of solar power irradiate EarthAdvances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer

24

Can solar power deliver?  

Science Journals Connector (OSTI)

...Articles 1002 117 Discussion Meeting Issue Can solar power deliver? organized and edited by...S. Roberto Amendolia and Can Li Can solar power deliver? Jenny Nelson 1 2 Christopher...of 15 to a Discussion Meeting Issue Can solar power deliver? . Solar power represents...

2013-01-01T23:59:59.000Z

25

Solar power satellites.  

E-Print Network [OSTI]

??During energy crisis at the end of the Sixties, a new idea to exploit solar energy arose: Solar Power Satellites. These satellites need a huge (more)

Palmas, Alessandro

2013-01-01T23:59:59.000Z

26

HOUSEHOLD SOLAR POWER SYSTEM.  

E-Print Network [OSTI]

?? Photovoltaic power has become one of the most popular research area in new energy field. In this report, the case of household solar power (more)

Jiang, He

2014-01-01T23:59:59.000Z

27

Can solar power deliver?  

Science Journals Connector (OSTI)

...technologies, such as wind power, which often peaks...generators such as nuclear power, enabling it be rapidly...exceeded those for wind, nuclear and gas...Contributions from wind, solar and conventional sources to power generation on the...

2013-01-01T23:59:59.000Z

28

Concentrated Solar Thermoelectric Power  

Broader source: Energy.gov (indexed) [DOE]

SOLAR POWER PROGRAM REVIEW 2013 Receiver Cavity * Receiver cavity can reduce heat loss from black surface or selective surface 18 With blackbody absorber: With 20%...

29

Solar Power Purchase Agreements  

Broader source: Energy.gov [DOE]

Provides an overview of solar power purchase agreements including how they work, benefits and challenges and eligibility. Author: United States Environmental Protection Agency (EPA)

30

Alternative Energy Technologies Solar Power  

E-Print Network [OSTI]

#12;Alternative Energy Technologies Solar Power Photovoltaics Concentrating Solar Power (CSP) Power;Concentrating Solar Power (CSP) Reflector material is Aluminum or Silver Tube material ..... Several possible, Philippines Vanadium ........ Swaziland, Central Africa Zinc ................ Peru, Canada, Mexico Silver

Scott, Christopher

31

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrating Solar Power Solar Energy On February 3, 2011, in Solar Programs Photovoltaics Concentrating Solar Power Sunshine to Petrol Solar Publications Recent Solar Highlights...

32

Solar powered desalination system  

E-Print Network [OSTI]

Production Requirements Energy Source Natural Gas Nuclear SolarSolar Energy Calculator using Google Maps 23 Table 1.24: PV System Power ProductionSolar Desalination Systems34 Table 1.20: Energy Requirements of Desalination Methods.35 Table 1.21: PEC Hydrogen Production.

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

33

NREL: Solar Research - NREL Forges Foundation for Advanced Concentrati...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Forges Foundation for Advanced Concentrating Solar Power Receivers September 16, 2014 As part of DOE's SunShot effort, NREL's Thermal Systems Group is performing research and...

34

An Advanced Solar-Powered Rotary Solid Adsorption Refrigerator with High Performance  

E-Print Network [OSTI]

reported before. Through improving the refrigerant performance of heat and mass transfer in the adsorbent bed, the refrigeration cycle has been advanced from the aspect of utilization of the thermal energy from low-temperature level resources. In addition...

Zheng, A.; Gu, J.

2006-01-01T23:59:59.000Z

35

Sandia National Laboratories: solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

36

Advances in understanding solar energy collection materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding solar energy collection materials Advances in understanding solar energy collection materials A LANL team and collaborators have made advances in the understanding of...

37

NREL: Concentrating Solar Power Research - Laboratory Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Capabilities Laboratory Capabilities To research, develop, and test a variety of concentrating solar power technologies, NREL features the following laboratory capabilities: High-Flux Solar Furnace (HFSF) Large Payload Solar Tracker Advanced Optical Materials Laboratory Advanced Thermal Storage Materials Laboratory Optical Testing Laboratory and Beam Characterization System Receiver Test Laboratory Heat Collection Element (HCE) Temperature Survey Photo of NREL's High-Flux Solar Furnace. NREL's High-Flux Solar Furnace. High-Flux Solar Furnace (HFSF) The power generated at NREL's High-Flux Solar Furnace (HFSF) can be used to expose, test, and evaluate many components-such as receivers, collectors, and reflector materials-used in concentrating solar power systems. The 10-kilowatt HFSF consists of a tracking heliostat and 25 hexagonal

38

Advanced Solar Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Advanced Solar Technologies Inc Place: San Diego, California Sector: Solar Product: California-based domestic and commercial designer and installer of solar energy equipment....

39

Thermal Solar Power Plants Experience  

Science Journals Connector (OSTI)

In parallel with rising interest in solar power generation, several solar thermal facilities of different configuration and size were ... were designed as modest-size experimental or prototype solar power plants ...

W. Grasse; H. P. Hertlein; C.-J. Winter; G. W. Braun

1991-01-01T23:59:59.000Z

40

Concentrating Solar Power Facilities and Solar Potential | Department...  

Office of Environmental Management (EM)

Facilities and Solar Potential Concentrating Solar Power Facilities and Solar Potential Concentrating Solar Power Facilities and CSP Energy Potential Gradient Click icons to filter...

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DOE Solar Decathlon: Team Canada: Advancing Solar Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Northern Lights on the Concordia University campus. Enlarge image Northern Lights on the Concordia University campus. Enlarge image Team Canada's house features solar panels used as a roofing material and triple-glazed, south-facing windows to take advantage of the winter sun that shines on Concordia University's campus. (Courtesy of Concordia University) Who: Team Canada What: Northern Lights Where: Concordia University Loyola Campus 7141 Sherbrooke St. West Montréal, Quebec, Canada H4B 1R6 Map This House Public tours: Not available Solar Decathlon 2005 Team Canada: Advancing Solar Technologies The lone Canadian entry in the U.S. Department of Energy Solar Decathlon 2005 returned to the Loyola campus of Concordia University in Montreal, Quebec, following the competition. The solar-powered house, called Northern Lights, remains in good working order. It is used primarily for research.

42

Saguargo Solar Power Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Saguargo Solar Power Plant Solar Power Plant Saguargo Solar Power Plant Solar Power Plant Jump to: navigation, search Name Saguargo Solar Power Plant Solar Power Plant Facility Saguargo Solar Power Plant Sector Solar Facility Type Concentrating Solar Power Facility Status In Service Developer Solargenix Location Red Rock, Arizona Coordinates 32.54795°, -111.292887° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.54795,"lon":-111.292887,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

43

Sandia National Laboratories: multiscale concentrated solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

concentrated solar power Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar Power, Energy, National Solar Thermal...

44

Sandia National Laboratories: solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recent Solar Highlights On October 31, 2012, in View all Solar Energy News Molten Salt Test Loop Commissioning On October 10, 2012, in Concentrating Solar Power, EC, Energy, News,...

45

Concentrating Solar Power  

Science Journals Connector (OSTI)

Concentrating Solar Power (CSP) has the potential to contribute significantly to the generation of electricity by renewable energy resources in the U.S.. Thermal storage can extend the duty cycle of CSP beyond daytime hours to early evening where the value of electricity is often the highest. The potential solar resource for the southwest U.S. is identified along with the need to add power lines to bring the power to consumers. CSP plants in the U.S. and abroad are described. The CSP cost of electricity at the busbar is discussed. With current incentives CSP is approaching competiveness with conventional gas?fired systems during peak?demand hours when the price of electricity is the highest. It is projected that a mature CSP industry of over 4 GWe will be able to reduce the energy cost by about 50% and that U.S. capacity could be 120 GW by 2050.

Mark Mehos

2008-01-01T23:59:59.000Z

46

Sandia National Laboratories: solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Features of Power Towers for Utilities Because of their practical energy storage, solar power towers have two features that are particularly desirable for utilities: flexible...

47

NREL: Concentrating Solar Power Research - Partnerships  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnerships Partnerships NREL maintains partnerships to advance concentrating solar power research, development, and deployment efforts. Currently, NREL works with Sandia National Laboratories in Albuquerque, New Mexico, through SunLab-a partnership developed by the U.S. Department of Energy to administer its concentrating solar power R&D and analysis activities. SolarPACES Solar Power and Chemical Energy Systems (SolarPACES), an international program of the International Energy Agency, furthers collaborative development, testing, and marketing of CSP plants. NREL represents the U.S. activities and serves on various committees in SolarPACES, which now has 13 members: Algeria, Australia, Egypt, the European Commission, France, Germany, Israel, Mexico, South Africa, South Korea, Spain, Switzerland, and

48

About Solar Powering America | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Powering America About Solar Powering America About Solar Powering America Solar Powering America was formed by the U.S. Department of Energy (DOE), U.S. Department of...

49

Solar Power Purchase Agreements  

Broader source: Energy.gov (indexed) [DOE]

Solar Power Purchase Agreements Solar Power Purchase Agreements Brian Millberg | Energy Manager, City of Minneapolis Direct Ownership * Financial: Even at $3/kW installed cost, simple payback is 18 years (initial electricity cost of $0.10/kWh and 3%/year electricity cost inflation) * Politics: How to justify expense with such a long payback * If RECS begin to have some real value, this would be a positive for ownership. 2 PPA Advantages * No/low up-front costs * City can take advantage of Investment Tax Credits (ITCs) - This leads to low electricity costs * Predictable electricity cost for length of contract * Avoid direct design/rebate/permitting work * No maintenance/operation headaches 3 PPA Financial Case (1 MW system) * PPA allows a developer to reduce system cost through:

50

Capacity Value of Solar Power  

SciTech Connect (OSTI)

Evaluating the capacity value of renewable energy sources can pose significant challenges due to their variable and uncertain nature. In this paper the capacity value of solar power is investigated. Solar capacity value metrics and their associated calculation methodologies are reviewed and several solar capacity studies are summarized. The differences between wind and solar power are examined, the economic importance of solar capacity value is discussed and other assessments and recommendations are presented.

Duignan, Roisin; Dent, Chris; Mills, Andrew; Samaan, Nader A.; Milligan, Michael; Keane, Andrew; O'Malley, Mark

2012-11-10T23:59:59.000Z

51

Advance Power Co | Open Energy Information  

Open Energy Info (EERE)

Advance Power Co Advance Power Co Jump to: navigation, search Name Advance Power Co Place Calpella, California Zip 95418 Sector Hydro, Solar, Wind energy Product Distributor of stand alone and backup power systems based on solar, hydro, wind and fuel cell energy. Coordinates 39.23423°, -123.205162° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.23423,"lon":-123.205162,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Power Technical Management Position On July 12, 2012, in Concentrating Solar Power, Energy, Facilities, Job Listing, National Solar Thermal Test Facility, News,...

53

Energy 101: Concentrating Solar Power  

SciTech Connect (OSTI)

From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

None

2010-01-01T23:59:59.000Z

54

Energy 101: Concentrating Solar Power  

ScienceCinema (OSTI)

From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

None

2013-05-29T23:59:59.000Z

55

Solar Thin Power | Open Energy Information  

Open Energy Info (EERE)

Power Jump to: navigation, search Name: Solar Thin Power Place: New York Sector: Solar Product: Solar Thin Power was formed to seek out solar projects in North America, Asia and...

56

SunShot Initiative: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Power SunShot CSP Team Learn more about the SunShot concentrating solar power program staff by visiting the team's profile pages. Argonne National Laboratory Argonne National Laboratory High-Efficiency Thermal Energy Storage System for CSP University of California Los Angeles University of California Los Angeles High Operating Temperature Liquid Metal Heat Transfer Fluids Jet Propulsion Laborator Jet Propulsion Laboratory Low-Cost, Lightweight Solar Concentrators Abengoa Solar Abengoa Solar Advanced Nitrate Salt Central Receiver Power Plant HiTek Services HiTek Services Low-Cost Heliostat Development The Department of Energy (DOE) supports research and development of concentrating solar power (CSP) technologies as a unique path to achieve SunShot Initiative cost targets with systems that can supply solar power on demand through the use of thermal storage. CSP technologies use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. Thermal energy can then be used to produce electricity via a turbine or heat engine driving a generator.

57

Concentrated solar power on demand .  

E-Print Network [OSTI]

??This thesis describes a new concentrating solar power central receiver system with integral thermal storage. Hillside mounted heliostats direct sunlight into a volumetric absorption molten (more)

Codd, Daniel Shawn

2011-01-01T23:59:59.000Z

58

Center for Advanced Solar Photophysics | Members  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Looking for "Nano-Solutions" to Solar Energy Problems Victor I. Klimov Center for Advanced Solar Photophysics, Chemistry Division, LANL Wednesday, October 10th, 3:00pm Chemistry...

59

Portland Advancing Green Image With Solar Installs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Portland Advancing Green Image With Solar Installs Portland Advancing Green Image With Solar Installs Portland Advancing Green Image With Solar Installs February 22, 2010 - 12:10pm Addthis Laura Smoyer checks the net-metering device in her home, which now uses the sun for about 38 percent of its total energy use. | Department of Energy Photo | Laura Smoyer checks the net-metering device in her home, which now uses the sun for about 38 percent of its total energy use. | Department of Energy Photo | Joshua DeLung A quick Web search reveals that many sources consider Portland, Ore., to be one of the most green-minded cities in the United States. But large upfront costs have been a barrier for citizens looking to install solar power systems in the past. Now, a neighborhood solar initiative is helping communities organize to get solar discounts, meaning the city could become

60

Portland Advancing Green Image With Solar Installs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Portland Advancing Green Image With Solar Installs Portland Advancing Green Image With Solar Installs Portland Advancing Green Image With Solar Installs February 22, 2010 - 12:10pm Addthis Laura Smoyer checks the net-metering device in her home, which now uses the sun for about 38 percent of its total energy use. | Department of Energy Photo | Laura Smoyer checks the net-metering device in her home, which now uses the sun for about 38 percent of its total energy use. | Department of Energy Photo | Joshua DeLung A quick Web search reveals that many sources consider Portland, Ore., to be one of the most green-minded cities in the United States. But large upfront costs have been a barrier for citizens looking to install solar power systems in the past. Now, a neighborhood solar initiative is helping communities organize to get solar discounts, meaning the city could become

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Subsidizing Global Solar Power.  

E-Print Network [OSTI]

?? With national cuts on solar PV subsidies and the current oversupply of panels, the global solar market is clearly threatened by a contraction. Yet, (more)

Arnesson, Daniel

2013-01-01T23:59:59.000Z

62

Solar Power Beginner | Open Energy Information  

Open Energy Info (EERE)

Solar Power Beginner Solar Power Beginner Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Power Beginner Agency/Company /Organization: Solar Power Beginner Sector: Energy Focus Area: Renewable Energy, Solar Topics: Resource assessment Website: www.solarpowerbeginner.com/index.html References: Solar Power Beginner[1] Solar Power Beginner is a website that specializes in providing simple solar information to people who are new to solar power. The site features information on photovoltaic panels[2], solar thermal energy[3], and everyday uses for solar power. Also included are interviews[4] with various experts in the solar industry. References ↑ "Solar Power Beginner" ↑ Solar Panels Page ↑ Solar Thermal Page ↑ Solar Interviews Page Retrieved from

63

SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Foundational Program to Solar Foundational Program to Advance Cell Efficiency to someone by E-mail Share SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on Facebook Tweet about SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on Twitter Bookmark SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on Google Bookmark SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on Delicious Rank SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on Digg Find More places to share SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Diversity in Science and Technology Advances National Clean Energy

64

NREL: Concentrating Solar Power Research - Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrating Solar Power Resource Maps Concentrating Solar Power Resource Maps These direct-normal solar radiation maps-filtered by solar resource and land availability-identify the most economically suitable lands available for deploying of large-scale concentrating solar power plants in the southwestern United States. Each of the following seven states, as well as the southwestern U.S. region, has two maps: the left and right maps represent analyses excluding land with slopes >1% and >3%, respectively. Lower-resolution jpg versions are available below; much higher-resolution pdf files, suitable for plotting large-scale posters, can be requested. You can also access an unfiltered direct-normal solar radiation map of the southwestern United States. Download Adobe Reader. Southwestern U.S.

65

Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller  

E-Print Network [OSTI]

solar thermal technologies. ..Advances in solar thermal electricity technology. Solar107 1. Introduction Solar thermal technologies have been

Poiry, Heather Marie

2011-01-01T23:59:59.000Z

66

Optical Durability of Candidate Solar Reflectors for Concentrating Solar Power  

SciTech Connect (OSTI)

Concentrating solar power (CSP) technologies use large mirrors to collect sunlight to convert thermal energy to electricity. The viability of CSP systems requires the development of advanced reflector materials that are low in cost and maintain high specular reflectance for extended lifetimes under severe outdoor environments. The long-standing goals for a solar reflector are specular reflectance above 90% into a 4 mrad half-cone angle for at least 10 years outdoors with a cost of less than $13.8/m{sup 2} (the 1992 $10.8/m{sup 2} goal corrected for inflation to 2002 dollars) when manufactured in large volumes. Durability testing of a variety of candidate solar reflector materials at outdoor test sites and in laboratory accelerated weathering chambers is the main activity within the Advanced Materials task of the CSP Program at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Test results to date for several candidate solar reflector materials will be presented. These include the optical durability of thin glass, thick glass, aluminized reflectors, front-surface mirrors, and silvered polymer mirrors. The development, performance, and durability of these materials will be discussed. Based on accelerated exposure testing the glass, silvered polymer, and front-surface mirrors may meet the 10 year lifetime goals, but at this time because of significant process changes none of the commercially available solar reflectors and advanced solar reflectors have demonstrated the 10 year or more aggressive 20 year lifetime goal.

Kennedy, C. E.; Terwilliger, K.

2007-01-01T23:59:59.000Z

67

Solar Power Partners AG | Open Energy Information  

Open Energy Info (EERE)

Partners AG Place: Germany Sector: Solar Product: Small Solar project developer with projects located in South Africa and France. References: Solar Power Partners AG1 This...

68

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

69

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NASA's Solar Tower Test of the 1-Meter Aeroshell On August 23, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, Partnership,...

70

Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016.  

SciTech Connect (OSTI)

Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

Reno, Matthew J.; Riehm, Andrew Charles; Hoekstra, Robert John; Munoz-Ramirez, Karina; Stamp, Jason Edwin; Phillips, Laurence R.; Adams, Brian M.; Russo, Thomas V.; Oldfield, Ron A.; McLendon, William Clarence, III; Nelson, Jeffrey Scott; Hansen, Clifford W.; Richardson, Bryan T.; Stein, Joshua S.; Schoenwald, David Alan; Wolfenbarger, Paul R.

2011-02-01T23:59:59.000Z

71

Solar Thermochemical Advanced Reactor System, Wins R&D 100 Award...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Laboratory, the Solar Thermochemical Advanced Reactor System, or STARS, converts natural gas and sunlight into a more energy-rich fuel called syngas, which power plants...

72

New Jersey Solar Power LLC NJ Solar Power | Open Energy Information  

Open Energy Info (EERE)

Solar Power LLC NJ Solar Power Solar Power LLC NJ Solar Power Jump to: navigation, search Name New Jersey Solar Power LLC (NJ Solar Power) Place New Jersey Sector Solar Product A photovoltaic engineering firm which offers and installs a complete line of solar electric products for residential, commercial, and institutional customers. References New Jersey Solar Power LLC (NJ Solar Power)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. New Jersey Solar Power LLC (NJ Solar Power) is a company located in New Jersey . References ↑ "New Jersey Solar Power LLC (NJ Solar Power)" Retrieved from "http://en.openei.org/w/index.php?title=New_Jersey_Solar_Power_LLC_NJ_Solar_Power&oldid=349171

73

Solar Power | Open Energy Information  

Open Energy Info (EERE)

Solar Power Solar Power (Redirected from Solar energy) Jump to: navigation, search Solar Energy Companies Loading map... {"format":"googlemaps3","type":"SATELLITE","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":1000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"99%","height":"300px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":true,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

74

Accurate Solar Power | Open Energy Information  

Open Energy Info (EERE)

Accurate Solar Power Jump to: navigation, search Name: Accurate Solar Power Place: Menlo Park, California Zip: 94025 Product: US manufacturer of microinverters and smart grid...

75

Project Profile: Concentrated Solar Thermoelectric Power | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Thermoelectric Power Project Profile: Concentrated Solar Thermoelectric Power MIT logo The Rohsenow-Kendall Heat Transfer Lab at Massachusetts Institute of...

76

Sandia National Laboratories: Concentrating Solar Power Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Systems Air Force Research Laboratory Testing On November 2, 2012, in Concentrating Solar Power, Facilities, National Solar Thermal Test Facility, News, News & Events,...

77

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrating Solar Power (CSP) On April 13, 2011, in CSP R&D at Sandia Testing Facilities Software & Tools Resources Contacts News Concentrating Solar Power ANNOUNCEMENT: Sandia's...

78

Technology projections for solar dynamic power  

Science Journals Connector (OSTI)

Solar Dynamic power systems can offer many potential benefits to Earth orbiting satellites including high solar-to-electric efficiency long life without performance degradation and high power capability. A recent integrated system test of a 2 kilowatt SD power system in a simulated space environment has successfully demonstrated technology readiness for space flight. Conceptual design studies of SD power systems have addressed several potential mission applications: a 10 kilowatt LEO satellite a low power Space Based Radar and a 30 kilowatt GEO communications satellite. The studies show that with moderate component development SD systems can exhibit excellent mass and deployed area characteristics. Using the conceptual design studies as a basis a SD technology roadmap was generated which identifies the component advances necessary to assure SD systems a competitive advantage for future NASA DOD and commercial missions.

Lee S. Mason

1999-01-01T23:59:59.000Z

79

China Solar Power CSP aka General Solar Power Yantai Co Ltd ...  

Open Energy Info (EERE)

CSP aka General Solar Power Yantai Co Ltd Jump to: navigation, search Name: China Solar Power (CSP) (aka General Solar Power Yantai Co Ltd) Place: China Sector: Solar Product: A...

80

Concentrating On California Solar Power | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Concentrating On California Solar Power Concentrating On California Solar Power Concentrating On California Solar Power June 14, 2011 - 4:22pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What will the project do? Combined, the projects are estimated to create nearly 1,800 jobs and enough energy to power more than 100,000 homes. Today, Secretary Chu announced conditional commitments for approximately $2 billion in loan guarantees to two California concentrating solar power plants. The projects are estimated to create nearly 1,800 jobs and will utilize advanced technologies which can help drive down the cost of solar power. The two plants, the Mojave Solar Project in San Bernardino County, California and the Genesis Solar Project in Riverside County, California,

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Solar powered desalination system  

E-Print Network [OSTI]

1.18: Largest PV Power Plants32 TableTable 1.18: Largest PV Power Plants 19 Power (MW) LocationWorld Canada, Sarnia PV power plant Sarnia (Ontario) Italy,

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

82

Progress Report: Advancing Solar Energy Across America | Department...  

Broader source: Energy.gov (indexed) [DOE]

Progress Report: Advancing Solar Energy Across America Progress Report: Advancing Solar Energy Across America February 12, 2014 - 11:00am Addthis Data courtesy of National...

83

Solar Energy Grid Integration Systems-Advanced Concepts | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Integration Solar Energy Grid Integration Systems-Advanced Concepts Solar Energy Grid Integration Systems-Advanced Concepts On September 1, 2011, DOE announced 25.9...

84

Advanced Materials and Nano Technology for Solar Cells  

E-Print Network [OSTI]

CRUZ ADVANCED MATERIALS AND NANO TECHNOLOGY FOR SOLAR CELLS12 3.2 SILVER NANOHAN ADVANCED MATERIALS AND NANO TECHNOLOGY FOR SOLAR CELLS

Han, Tao

2014-01-01T23:59:59.000Z

85

SunShot Initiative: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrating Solar Power to Concentrating Solar Power to someone by E-mail Share SunShot Initiative: Concentrating Solar Power on Facebook Tweet about SunShot Initiative: Concentrating Solar Power on Twitter Bookmark SunShot Initiative: Concentrating Solar Power on Google Bookmark SunShot Initiative: Concentrating Solar Power on Delicious Rank SunShot Initiative: Concentrating Solar Power on Digg Find More places to share SunShot Initiative: Concentrating Solar Power on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards Staff Photovoltaics Systems Integration Balance of Systems Concentrating Solar Power SunShot CSP Team Learn more about the SunShot concentrating solar power program staff by visiting the team's profile pages. Argonne National Laboratory Argonne National Laboratory

86

Sandia National Laboratories: solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The dishes track the sun in two axes to provide very high concentrations (1500 Wcm of solar power over ... Central Receiver Test Facility On April 4, 2011, in Operated by...

87

One Panel One Roof, DOE Powering Solar Workforce | Department...  

Broader source: Energy.gov (indexed) [DOE]

One Panel One Roof, DOE Powering Solar Workforce One Panel One Roof, DOE Powering Solar Workforce...

88

Solar Power | Open Energy Information  

Open Energy Info (EERE)

Solar Power Solar Power Jump to: navigation, search Solar Energy Companies Loading map... {"format":"googlemaps3","type":"SATELLITE","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":1000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"99%","height":"300px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":true,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

89

Solar energy power generation system  

SciTech Connect (OSTI)

A solar energy power generation system is described which consists of: (a) means for collecting and concentrating solar energy; (b) heat storage means; (c) Stirling engine means for producing power; (d) first heat transfer means for receiving the concentrated solar energy and for transferring heat to the heat storage means; and (e) second heat transfer means for controllably transferring heat from the storage means to the Stirling engine means and including a discharge heat pipe means for transferring heat to the Stirling engine means and further including means for inserting and withdrawing the discharge heat pipe means into and out of the heat storage means.

Nilsson, J.E.; Cochran, C.D.

1986-05-06T23:59:59.000Z

90

U.S. Solar Power Market  

SciTech Connect (OSTI)

The report provides an overview of the domestic market for solar, including a concise look at the steps being taken to grow solar power in the U.S. Topics covered include: an overview of solar power including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving interest in solar power; a description of solar power technologies; a review of the economics of solar power; a discussion of the key markets for solar power; and, profiles of domestic solar cell/module manufacturers.

NONE

2007-08-15T23:59:59.000Z

91

Solar Powered Classroom  

SciTech Connect (OSTI)

A group of fourth graders in Durham, North Carolina, are showing America the way to a clean energy future. They are installing solar panels on their classroom roof for a project that goes above and beyond a normal day in school. From researching solar panel installation, to generating funds for the project via Kickstarter, these are students who put their plans into action. Their accomplishments go beyond the classroom and stress the importance of getting people of all ages involved in renewable energy.

none

2013-06-13T23:59:59.000Z

92

Solar Powered Classroom  

ScienceCinema (OSTI)

A group of fourth graders in Durham, North Carolina, are showing America the way to a clean energy future. They are installing solar panels on their classroom roof for a project that goes above and beyond a normal day in school. From researching solar panel installation, to generating funds for the project via Kickstarter, these are students who put their plans into action. Their accomplishments go beyond the classroom and stress the importance of getting people of all ages involved in renewable energy.

none

2013-06-27T23:59:59.000Z

93

Advanced Solar Photonics | Open Energy Information  

Open Energy Info (EERE)

Photonics Place: Lake Mary, Florida Zip: 32746 Product: Florida-based thin film PV module manufacturer. References: Advanced Solar Photonics1 This article is a stub. You can help...

94

Vehicle Technologies Office: 2012 Advanced Power Electronics...  

Energy Savers [EERE]

2 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress...

95

SunShot Initiative: Baseload Concentrating Solar Power Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrating Solar Power Generation Concentrating Solar Power Generation In 2010, DOE issued the Baseload Concentrating Solar Power (CSP) Generation funding opportunity announcement (FOA). The following projects were selected under this competitive solicitation: Abengoa: Advanced Nitrate Salt Central Receiver Power Plant eSolar: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility General Atomics: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage HiTek: Low-Cost Heliostat Development Infinia: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power PPG: Next-Generation Low-Cost Reflector Rocketdyne: Solar Power Tower Improvements with the Potential to Reduce Costs SENER: High-Efficiency Thermal Storage System for Solar Plants

96

Solar Power In China | Open Energy Information  

Open Energy Info (EERE)

Solar Power In China Solar Power In China Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Working on #ask query to display all Chinese solar companies TODO: query not working: need to select only certain "Place" - China and "Sector" - Solar All Solar PV Anwell Technologies Ltd aka Sungen BSL-Solar Beijing Sijimicoe Solar Energy Beijing Sky Solar Investment Management Co Big China Solar Energy Group CETC Solar Energy Centro Renewables Holding Limited China Innovation Investment Limited China Technology Solar Power Holdings Ltd Hong Kong Taiyang Investment Group Co Ltd Hope Solar Sun Bear Solar Ltd Sunrain Trina Solar Yingli Solar ZTE Energy Co Ltd Investment in Solar China's state-owned banks have provided low-cost loans to China's renewable

97

solar power | OpenEI  

Open Energy Info (EERE)

power power Dataset Summary Description These estimates are derived from the best available solar resource datasets available to NREL by country. These vary in spatial resolution from 1 km to 1 degree (approximately 100 km) depending on the data source. High spatial resolution datasets (1 km to 40 km cells) were modeled to support country or regional projects. Where high resolution datasets were not available, data from NASA's Surface Meteorology and Solar Energy (SSE) version 6 database were used. The data represents total potential solar energy per year as a function of land area per solar class (KWh/m²/day). Source National Renewable Energy Laboratory Date Released Unknown Date Updated Unknown Keywords capacity clean energy energy international National Renewable Energy Laboratory

98

Center for Advanced Solar Photophysics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

exploit the unique physics of nanostructured materials to boost the efficiency of solar energy conversion through novel light-matter interactions, controlled excited-state...

99

IEA-Technology Roadmap: Concentrating Solar Power | Open Energy Information  

Open Energy Info (EERE)

IEA-Technology Roadmap: Concentrating Solar Power IEA-Technology Roadmap: Concentrating Solar Power Jump to: navigation, search Tool Summary Name: IEA-Technology Roadmap: Concentrating Solar Power Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Solar, - Concentrating Solar Power Topics: Implementation, Pathways analysis Resource Type: Guide/manual Website: www.iea.org/papers/2010/csp_roadmap.pdf Cost: Free IEA-Technology Roadmap: Concentrating Solar Power Screenshot References: IEA-CSP Roadmap[1] "This roadmap identifies technology, economy and policy goals and milestones needed to support the development and deployment of CSP, as well as ongoing advanced research in CSF. It also sets out the need for governments to implement strong, balanced policies that favour rapid

100

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia and EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency On March 29, 2013, in Concentrating Solar Power, Energy, Partnership, Photovoltaic, Renewable...

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

102

Concentrating Solar Power (Revised) (Fact Sheet)  

SciTech Connect (OSTI)

The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

Not Available

2010-11-01T23:59:59.000Z

103

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Salt Initial Flow Testing is a Tremendous Success On November 2, 2012, in Concentrating Solar Power, News, Renewable Energy, Solar The Molten Salt Test Loop (MSTL ) system at...

104

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia Workers Received Entrepreneurial Spirit Awards On April 3, 2013, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

105

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety and Health Go Green Initiative On December 19, 2012, in Concentrating Solar Power, Energy, Events, Facilities, National Solar Thermal Test Facility, News, News...

106

Solar Power for Deployment in Populated Areas.  

E-Print Network [OSTI]

??The thesis presents background on solar thermal energy and addresses the structural challenges associated with the deployment of concentrating solar power fields in urban areas. (more)

Hicks, Nathan Andrew

2009-01-01T23:59:59.000Z

107

Solar powered dehumidifier apparatus  

DOE Patents [OSTI]

A thermally insulated light transmitting housing forms a chamber containing a desiccant and having a first gas port open to the ambient and a second gas port connected by a two way valve to a volume to be dried. Solar energy transmitted through the housing heats and dries the desiccant. The increased air pressure due to the heating of the volume to be dried causes the air from the volume to be expelled through the valve into the chamber. The desiccant is then cooled by shielding it from solar energy before the volume cools thereby increasing its moisture absorbing capacity. Then the volume is allowed to cool drawing dehumidified air through the desiccant and the valve into the volume to be dried. This cycle is then repeated.

Jebens, Robert W. (Skillman, NJ)

1980-12-30T23:59:59.000Z

108

Rooftop Solar Potential Distributed Solar Power in NW  

E-Print Network [OSTI]

6/19/2013 1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 in 2012 4 #12;6/19/2013 3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow

109

Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower  

SciTech Connect (OSTI)

HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoas conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

None

2012-01-11T23:59:59.000Z

110

Advanced Power Systems and Controls Laboratory  

E-Print Network [OSTI]

photovoltaic generation facility. Solar panel output is in white, and the response of the XP DPR is in red Solar Power Generation Introduction The rapid growth of wind and solar power is a key driver of the development of grid-scale Battery Energy Storage Systems (BESS). A well implemented BESS co-located with solar

Ben-Yakar, Adela

111

Hainan Tianwen Solar Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Solar Power Co Ltd Place: Hainan Province, China Sector: Solar Product: China-based solar thermal project developer References: Hainan Tianwen Solar Power Co Ltd1 This...

112

Energy 101: Concentrating Solar Power | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy 101: Concentrating Solar Power Energy 101: Concentrating Solar Power Energy 101: Concentrating Solar Power August 6, 2010 - 12:58pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs How does it work? Concentrating solar power technologies use mirrors to reflect sunshine, turning it into an intense beam that's collected as heat. Some of the heat is used to produce electricity immediately. The rest is stored so that the generators can provide power for homes and businesses long after the sun has set Whether capturing the sun's heat from towers, dishes, or troughs, concentrating solar power (CSP) technology is making exciting advances. So exciting, in fact, that the federal government is looking at more than 25 square miles in Nevada to demonstrate new CSP technology research.

113

Advances in Solar Optical Materials  

Science Journals Connector (OSTI)

This review contains several categories of optical materials that are used in the conversion or modification of solar energy for heating, cooling and lighting purposes in buildings and other structures. The ty...

Carl M. Lampert

1989-01-01T23:59:59.000Z

114

TGI Solar Power Group | Open Energy Information  

Open Energy Info (EERE)

TGI Solar Power Group TGI Solar Power Group Jump to: navigation, search Name TGI Solar Power Group Place New York, New York Zip 10001 Sector Solar Product TGI Solar Power Group specialises in the manufacture and integration of thin film PV fabrication lines, PV thin film manufacturing equipment, as well as project development. References TGI Solar Power Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. TGI Solar Power Group is a company located in New York, New York . References ↑ "TGI Solar Power Group" Retrieved from "http://en.openei.org/w/index.php?title=TGI_Solar_Power_Group&oldid=352158" Categories: Clean Energy Organizations Companies Organizations

115

Solar thermionic power plant (II)  

SciTech Connect (OSTI)

It has been shown that the geometric configuration of a central receiver solar electric power plant (SEPP) can be optimized for the high power density and concentration required for the operation of a thermionic converter. The working period of a Thermionic Diode Converter constructed on the top of a SEPP in Riyadh area is found to be 5 to 6 hours per day in winter and 6 to 8 hours in summer. 17 refs.

Abou-Elfotouh, F.; Almassary, M.; Fatmi, H.

1981-01-01T23:59:59.000Z

116

Solar-powered cooling system  

DOE Patents [OSTI]

A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

Farmer, Joseph C

2013-12-24T23:59:59.000Z

117

Energy Department Announces $25 Million to Lower Cost of Concentrating Solar Power  

Office of Energy Efficiency and Renewable Energy (EERE)

Building on the Obama Administrations Climate Action Plan, the Energy Department today announced $25 million in funding to advance concentrating solar power (CSP) system technologies.

118

2014 Concentrating Solar Power Report | Department of Energy  

Energy Savers [EERE]

2014 Concentrating Solar Power Report 2014 Concentrating Solar Power Report Concentrating solar power (CSP) is a technology that harnesses the sun's energy potential and has the...

119

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F.CENTRAL RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE progressCorporation, RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE I,

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

120

Advances in understanding solar energy collection materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding solar energy collection materials Understanding solar energy collection materials Advances in understanding solar energy collection materials A LANL team and collaborators have made advances in the understanding of how carbon nanotubes move charges created by light. November 9, 2012 Efficient energy transport in photovoltaic carbon nanomaterials Efficient energy transport in photovoltaic carbon nanomaterials. A LANL team and collaborators have made advances in the understanding of how carbon nanotubes move charges created by light. The research has applications for cheap, all-carbon-based photovoltaics and light detection elements. Their work measures exciton transport (excitons are small packets of energy made up of positive and negative charges) in carbon nanotubes at room temperature in a colloidal environment. A colloid is a substance that

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

SOLAR ROOF POWERS THE NJIT CAMPUS CENTER  

E-Print Network [OSTI]

SOLAR ROOF POWERS THE NJIT CAMPUS CENTER THE SKY'S THE LIMIT: BERNADETTE MOKE SITS ON THE ROOF, ARE 160 SOLAR PANELS, SOME OF WHICH AUTOMATICALLY FOLLOW THE PATH OF THE SUN. 10 NJITMAGAZINE COVER STORY'S THE LIMIT: SOLAR ROOF POWERS THE NJIT CAMPUS CENTER "The solar panels even move a little at night," says

Bieber, Michael

122

Performance Analysis of XCPC Powered Solar Cooling Demonstration Project  

E-Print Network [OSTI]

available Efficiency solar power Cooling power per capturedavailable Efficiency solar power Cooling power per capturedEq. (3) by integrating the cooling power and dividing by the

Widyolar, Bennett

2013-01-01T23:59:59.000Z

123

Concentrating Solar Power: Technology Overview  

SciTech Connect (OSTI)

Concentrating Solar Power (CSP) has the potential to contribute significantly to the generation of electricity by renewable energy resources in the U.S.. Thermal storage can extend the duty cycle of CSP beyond daytime hours to early evening where the value of electricity is often the highest. The potential solar resource for the southwest U.S. is identified, along with the need to add power lines to bring the power to consumers. CSP plants in the U.S. and abroad are described. The CSP cost of electricity at the busbar is discussed. With current incentives, CSP is approaching competiveness with conventional gas-fired systems during peak-demand hours when the price of electricity is the highest. It is projected that a mature CSP industry of over 4 GWe will be able to reduce the energy cost by about 50%, and that U.S. capacity could be 120 GW by 2050.

Mehos, M.

2008-01-01T23:59:59.000Z

124

NREL: Concentrating Solar Power Research - Southwest Concentrating Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Southwest Concentrating Solar Power 1000-MW Initiative Southwest Concentrating Solar Power 1000-MW Initiative Photos of various concentrating solar power systems. NREL, working through SunLab, supports the U.S. Department of Energy's goal to install 1,000 megawatts (MW) of new concentrating solar power systems in the southwestern United States by 2010. This level of deployment, combined with research and development to reduce technology component costs, could help reduce concentrating solar power electricity costs to $0.07/kilowatt-hour. At this cost, concentrating solar power can compete effectively in the Southwest's energy markets. To achieve the Initiative's goal, the U.S. Department of Energy is partnering with the Western Governors' Association to encourage concentrating solar power installations in Arizona, California, Colorado,

125

Advanced Materials and Nano Technology for Solar Cells  

E-Print Network [OSTI]

MATERIALS AND NANO TECHNOLOGY FOR SOLAR CELLS A thesisADVANCED MATERIALS AND NANO TECHNOLOGY FOR SOLAR CELLS Insilicon layers. The technology to add the intrinsic layer

Han, Tao

2014-01-01T23:59:59.000Z

126

Deming Solar Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Deming Solar Plant Solar Power Plant Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic Developer New Solar Ventures/ Solar Torx 50/50 Location New Mexico Coordinates 34.9727305°, -105.0323635° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9727305,"lon":-105.0323635,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Making Solar Power History at Ivanpah  

Broader source: Energy.gov [DOE]

See photos and relive the best moments from the dedication events for Ivanpah, the world's largest concentrating solar power plant.

128

Starwood Solar I Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Starwood Solar I Solar Power Plant Starwood Solar I Solar Power Plant Jump to: navigation, search Name Starwood Solar I Solar Power Plant Facility Starwood Solar I Sector Solar Facility Type Concentrating Solar Power Developer Lockheed Martin/Starwood Energy Location Harquahala Valley, Arizona Coordinates 33.45729°, -113.1619359° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.45729,"lon":-113.1619359,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

Mojave Solar Park Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Solar Park Solar Power Plant Solar Park Solar Power Plant Jump to: navigation, search Name Mojave Solar Park Solar Power Plant Facility Mojave Solar Park Sector Solar Facility Type Concentrating Solar Power Developer Solel Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Carrizo Energy Solar Farm Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Carrizo Energy Solar Farm Solar Power Plant Carrizo Energy Solar Farm Solar Power Plant Jump to: navigation, search Name Carrizo Energy Solar Farm Solar Power Plant Facility Carrizo Energy Solar Farm Sector Solar Facility Type Concentrating Solar Power Developer Ausra CA II Location Carizzo Plain, California Coordinates 35.1913858°, -119.7260983° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1913858,"lon":-119.7260983,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

Solar energy at Forest Research Solar Power at Alice Holt  

E-Print Network [OSTI]

Solar energy at Forest Research Solar Power at Alice Holt research station provides a renewable to install a solar photovoltaic system to meet some of the research station's energy needs. #12;In January dioxide emissions, when compared with traditional forms of energy generation. · The solar installation

132

Concentrating solar power | Open Energy Information  

Open Energy Info (EERE)

Concentrating solar power Concentrating solar power (Redirected from Concentrating Solar Power) Jump to: navigation, search Concentrating Solar Power Basics (The following text is derived from NREL's concentrating solar power information page.)[1] Concentrating solar power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet our nation's demand for electricity. CSP plants produce power by first using mirrors to focus sunlight to heat a working fluid. Ultimately, this high-temperature fluid is used to spin a turbine or power an engine that drives a generator. And the final product is electricity. Smaller CSP systems can be located directly where the power is needed. Larger, utility-scale CSP applications provide hundreds of megawatts of electricity for the power grid. Both linear concentrator and power tower

133

Concentrating solar power | Open Energy Information  

Open Energy Info (EERE)

Concentrating solar power Concentrating solar power (Redirected from - Concentrating Solar Power) Jump to: navigation, search Concentrating Solar Power Basics (The following text is derived from NREL's concentrating solar power information page.)[1] Concentrating solar power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet our nation's demand for electricity. CSP plants produce power by first using mirrors to focus sunlight to heat a working fluid. Ultimately, this high-temperature fluid is used to spin a turbine or power an engine that drives a generator. And the final product is electricity. Smaller CSP systems can be located directly where the power is needed. Larger, utility-scale CSP applications provide hundreds of megawatts of electricity for the power grid. Both linear concentrator and power tower

134

Solar Power | Open Energy Information  

Open Energy Info (EERE)

Gateway Gateway Edit History Facebook icon Twitter icon » Solar Power (Redirected from Solar) Jump to: navigation, search Solar Energy Companies Loading map... {"format":"googlemaps3","type":"SATELLITE","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":1000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"99%","height":"300px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":true,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

135

Solar powered swimming pool skimmer  

SciTech Connect (OSTI)

This patent describes a swimming pool skimmer assembly. It comprises: a U-shaped housing which includes two spaced-apart pontoons and a leg connecting the pontoons together, a paddle wheel assembly mounted on the housing and including, a motor having an output shaft, a gear reduction assembly connected to the motor output shaft and a paddle wheel means connected to the gear reduction assembly; a debris catcher mounted on the housing adjacent to the paddle wheel; power means on the housing and connected to the motor, including a solar cell array mounted on the housing connecting leg, and electrically connected to the motor, and a solar concentrator mounted on the housing adjacent to the solar cell; and an alarm circuit means connected to the debris catcher.

Distinti, J.A.; Fonti, R.G.

1992-04-21T23:59:59.000Z

136

Energy Department Announces New Concentrating Solar Power Technology  

Broader source: Energy.gov (indexed) [DOE]

New Concentrating Solar Power New Concentrating Solar Power Technology Investments to American Industry, Universities Energy Department Announces New Concentrating Solar Power Technology Investments to American Industry, Universities June 13, 2012 - 2:28pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Building off investments in innovative solar photovoltaic technologies announced at the SunShot Grand Challenge Summit in Denver, Colorado earlier today, the Energy Department announced new investments for 21 total projects to further advance cutting-edge concentrating solar power technologies (CSP). The awards span 13 states for a total of $56 million over three years, subject to congressional appropriations. The research projects, conducted in partnership with private industry, national

137

STATEMENT OF CONSIDERATIONS REQUEST BY AE SOLAR ENERGY INC. ("AE SOLAR") FOR AN ADVANCE WAIVER  

Broader source: Energy.gov (indexed) [DOE]

AE SOLAR ENERGY INC. ("AE SOLAR") FOR AN ADVANCE WAIVER AE SOLAR ENERGY INC. ("AE SOLAR") FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE AWARD NO . DE- EE0005340; W(A) 20 12-009 AE SOLAR has requested a waiver of domestic and foreign patent rights of the United States of America in all subject inventions arising from its participation under the above referenced cooperative agreement entitled "Transforming PV Installations Toward Dispatchable, Schedulable Energy Solutions." The cooperative agreement was made under the Solar Energy Grid Integration Systems - Advanced Concepts (SEGIS-AC) Funding Opportunity Announcement (DE-FOA-0000479). The objectives of SEGIS-AC are to support the development and demonstration of technologies in power electronics that reduce the overall PV system costs, allow high penetrations of solar

138

El Dorado Solar Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Dorado Solar Project Solar Power Plant Dorado Solar Project Solar Power Plant Jump to: navigation, search Name El Dorado Solar Project Solar Power Plant Facility El Dorado Solar Project Sector Solar Facility Type Photovoltaic Developer First Solar/Sempra Generation Location Boulder City, Nevada Coordinates 35.9785911°, -114.8324851° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.9785911,"lon":-114.8324851,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Niland Solar Farm LLC Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Niland Solar Farm LLC Solar Power Plant Niland Solar Farm LLC Solar Power Plant Jump to: navigation, search Name Niland Solar Farm LLC Solar Power Plant Facility Niland Solar Farm LLC Sector Solar Facility Type Photovoltaic Developer First Solar Location Niland, California Coordinates 33.2400366°, -115.5188756° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.2400366,"lon":-115.5188756,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

140

Advanced Solar Electric Inc ASE | Open Energy Information  

Open Energy Info (EERE)

Inc ASE Jump to: navigation, search Name: Advanced Solar Electric Inc (ASE) Place: Thousand Oaks, California Zip: 91320 Product: US-based PV system installer. References: Advanced...

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Solar Millenium Palen Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Palen Solar Power Plant Palen Solar Power Plant Jump to: navigation, search Name Solar Millenium Palen Solar Power Plant Facility Solar Millenium Palen Sector Solar Facility Type Concentrating Solar Power Facility Status Proposed Owner BrightSource Developer Solar Millenium, LLC Location Palen, California Coordinates 33.695923°, -115.225468° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.695923,"lon":-115.225468,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

142

Springerville Generating Station Solar System Solar Power Plant | Open  

Open Energy Info (EERE)

Springerville Generating Station Solar System Solar Power Plant Springerville Generating Station Solar System Solar Power Plant Jump to: navigation, search Name Springerville Generating Station Solar System Solar Power Plant Facility Springerville Generating Station Solar System Sector Solar Facility Type Photovoltaic Developer Tucson Electric Power Location Springerville, Arizona Coordinates 34.1333799°, -109.2859196° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1333799,"lon":-109.2859196,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

AV Solar Ranch I Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AV Solar Ranch I Solar Power Plant AV Solar Ranch I Solar Power Plant Jump to: navigation, search Name AV Solar Ranch I Solar Power Plant Facility AV Solar Ranch I Sector Solar Facility Type Photovoltaic Developer NextLight Renewable Power Location Antelope Valley, California Coordinates 38.70833°, -121.32889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.70833,"lon":-121.32889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

SES Solar Two Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Project Solar Power Plant Project Solar Power Plant Jump to: navigation, search Name SES Solar Two Project Solar Power Plant Facility SES Solar Two Project Sector Solar Facility Type Concentrating Solar Power Developer Stirling Energy Systems, Tessera Solar Location Imperial Valley, California Coordinates 33.03743°, -115.621591° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.03743,"lon":-115.621591,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

145

Solar Millenium Ridgecrest Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Ridgecrest Solar Power Plant Ridgecrest Solar Power Plant Jump to: navigation, search Name Solar Millenium Ridgecrest Solar Power Plant Facility Solar Millenium Ridgecrest Sector Solar Facility Type Concentrating Solar Power Developer Solar Millenium, LLC Location Ridgecrest, California Coordinates 35.6224561°, -117.6708966° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6224561,"lon":-117.6708966,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

146

Solar Power Potential in SE New Mexico  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Power Potential in Southeast New Mexico Solar Power Potential in Southeast New Mexico Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWh/sq meter power production potential As the accompanying map of New Mexico shows, the WIPP site enjoys abundant year-round sunshine. With an average solar power production potential of 6-7 kWh/sq meter per day, one exciting project being studied for location at WIPP is a 30-50 MW Solar Power Tower: The American Solar Energy Society (ASES) is is a national trade association promoting solar energy as a clean source of electricity, and provides a comprehensive resource for additional information. DOE's Office of Energy Efficiency and Renewable Energy is also a comprehensive resource for more information on renewable energy.

147

NREL: News - NREL Assembles Industry Working Group to Advance Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

713 713 NREL Assembles Industry Working Group to Advance Solar Securitization Webinar focusing on SAPC to be held on March 22 March 19, 2013 The U.S. Department of Energy's (DOE)'s National Renewable Energy Laboratory (NREL) recently convened the Solar Access to Public Capital (SAPC) working group with a mission to enable securitization of solar PV assets and associated cash flows in the marketplace. SAPC's primary efforts center on the standardization of power purchase agreements, leases, and other documents relevant to residential and commercial deployment, and the development of robust datasets to assess performance and credit-default risk. These activities are designed to allow projects to be grouped into tradable securities. Securitization is expected to attract additional investors to the solar asset class, enabling the

148

Vehicle Technologies Office: 2009 Advanced Power Electronics...  

Broader source: Energy.gov (indexed) [DOE]

Power Electronics R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report Annual report focusing on understanding and...

149

Solar Power Industries SPI | Open Energy Information  

Open Energy Info (EERE)

Solar Power Industries SPI Solar Power Industries SPI Jump to: navigation, search Name Solar Power Industries (SPI) Place Belle Vernon, Pennsylvania Zip 15012 Product US-based manufacturer of mono and multicrystalline PV cells, modules and systems. References Solar Power Industries (SPI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Power Industries (SPI) is a company located in Belle Vernon, Pennsylvania . References ↑ "Solar Power Industries (SPI)" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Power_Industries_SPI&oldid=351318" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

150

The Advanced Composition Explorer power subsystem  

SciTech Connect (OSTI)

The Johns Hopkins University Applied Physics Laboratory, under contract with NASA Goddard Space Flight Center, has designed and launched the Advanced Composition Explorer (ACE) spacecraft. ACE is a scientific observatory housing ten instruments, and is located in a halo orbit about the L1 Sun-Earth libration point. ACE is providing real-time solar wind monitoring and data on elemental and isotopic matter of solar and galactic origin. The ACE Electrical Power Subsystem (EPS) is a fault tolerant, solar powered, shunt regulated, direct energy transfer architecture based on the Midcourse Space Experiment (MSX) EPS. The differences are that MSX used oriented solar arrays with a nickel hydrogen-battery defined bus, while ACE uses fixed solar panels with a regulated bus decoupled from its nickel cadmium (NiCd) battery. Also, magnetometer booms are mounted on two of the four ACE solar panels. The required accuracy of the magnetometers impose severe requirements on the magnetic fields induced by the solar array. Other noteworthy features include a solar cell degradation experiment, in-flight battery reconditioning, a battery requalified to a high vibrational environment, and an adjustable bus voltage setpoint. The four solar panels consist of aluminum honeycomb substrates covered with 15.1% efficient silicon cells. The cells are strung using silver interconnects and are back-wired to reduce magnetic emissions below 0.1nT. Pyrotechnic actuated, spring loaded hinges deploy the panels after spacecraft separation from the Delta II launch vehicle. Solar cell experiments on two of the panels track cell performance degradation at L1, and also distinguish any hydrazine impingement degradation which may be caused by the thrusters. Each solar panel uses a digital shunt box, containing blocking diodes and MOSFETs, for short-circuit control of its 5 solar strings. A power box contains redundant analog MOSFET shunts, the 90% efficient boost regulator, and redundant battery chargers which provide closed-loop voltage and current limiting. The booster can also be configured in flight to cause a regulated 0.6A discharge to provide partial battery reconditioning. The battery uses 18 spare 12Ah NiCd cells from the retired constellation of Navy navigation satellites. The battery unintentionally received twice the intended amplitude during vibration testing, but a packaging review and cell requalification proved the battery capable of safely operating in the more rugged environment. The control box contains redundant hybrid switching converters, shunt regulation electronics, and a circuit to switch sides in response to bus under or over-voltage. The control box also contains redundant 80C85RH-based processors which digitize all EPS telemetry and decode digital commands communicated over cross-strapped serial links with the redundant spacecraft command and data handling systems.

Panneton, P.E.; Tarr, J.E.; Goliaszewski, L.T.

1998-07-01T23:59:59.000Z

151

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Power Plant Solar Power Ideal Gas Turbine Topping Braytonwill require higher parasitic power for gas circulation. Theefficiency of a solar power plant with gas-turbine topping

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

152

Solar electricity-a low power technology  

Science Journals Connector (OSTI)

The author examines the future potential of solar power with regard to its applications. He suggests that although the large size and small power output of solar cell electric systems are obstacles to high power usage, realistic low power applications can make a valuable contribution to world energy needs

L.B. Harris

1982-01-01T23:59:59.000Z

153

Solar Energy Power Pte Ltd SEP | Open Energy Information  

Open Energy Info (EERE)

Pte Ltd SEP Jump to: navigation, search Name: Solar Energy Power Pte Ltd (SEP) Place: Singapore, Singapore Sector: Solar Product: Solar PV cell manufacturer. References: Solar...

154

Chapter 10 - Solar Thermal Power Systems  

Science Journals Connector (OSTI)

Abstract Chapter 10 deals with solar thermal power systems. Initially, the general design considerations are given followed by the presentation of the three basic technologies. These include the parabolic trough collector system, which includes a description of the PTC power plant and outlook of the technology; the power tower systems and the dish systems. This is followed by the thermal analysis of the basic cycles of solar thermal power plants. Subsequently, solar updraft tower systems are examined, which include the initial steps and first demonstration, and the thermal analysis. Finally, solar ponds are examined, which is a form of large solar collector and storage system that can be used for solar power generation and include practical design considerations, salty water transmission estimation, methods of heat extraction, description of two large experimental solar ponds, and applications of solar ponds.

Soteris A. Kalogirou

2014-01-01T23:59:59.000Z

155

Prescott Airport Solar Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Prescott Airport Solar Plant Solar Power Plant Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar Facility Type Photovoltaic Developer APS Location Prescott, Arizona Coordinates 34.5400242°, -112.4685025° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.5400242,"lon":-112.4685025,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

156

Kings River Conservation District (KRCD) Solar Farm Solar Power Plant |  

Open Energy Info (EERE)

KRCD) Solar Farm Solar Power Plant KRCD) Solar Farm Solar Power Plant Jump to: navigation, search Name Kings River Conservation District (KRCD) Solar Farm Solar Power Plant Facility Kings River Conservation District (KRCD) Solar Farm Sector Solar Facility Type Photovoltaic Developer Cleantech America Location San Joachin Valley, California Coordinates 34.0787104°, -117.8660029° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0787104,"lon":-117.8660029,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

157

Searchlight Solar I Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Searchlight Solar I Solar Power Plant Searchlight Solar I Solar Power Plant Jump to: navigation, search Name Searchlight Solar I Solar Power Plant Facility Searchlight Solar I Sector Solar Facility Type Photovoltaic Developer American Capital Energy Location Searchlight, Nevada Coordinates 35.48428°, -114.937° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.48428,"lon":-114.937,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

158

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

with Sensible- Heat Storage Solar Power Plant with Sulfurof the Solar Power Plant Storage-Vessel Design, . . . . .System for Chemical Storage of Solar Energy. UC Berkeley,

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

159

Pv-Thermal Solar Power Assembly  

DOE Patents [OSTI]

A flexible solar power assembly includes a flexible photovoltaic device attached to a flexible thermal solar collector. The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof or side wall of a building or other structure, by use of adhesive and/or other types of fasteners.

Ansley, Jeffrey H. (El Cerrito, CA); Botkin, Jonathan D. (El Cerrito, CA); Dinwoodie, Thomas L. (Piedmont, CA)

2001-10-02T23:59:59.000Z

160

Beacon Solar Energy Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Solar Power Plant Solar Power Plant Jump to: navigation, search Name Beacon Solar Energy Project Solar Power Plant Facility Beacon Solar Energy Project Sector Solar Facility Type Concentrating Solar Power Developer NextEra Energy Location Kern County, California Coordinates 35.4937274°, -118.8596804° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.4937274,"lon":-118.8596804,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Solar Power Partners Inc | Open Energy Information  

Open Energy Info (EERE)

Partners Inc Partners Inc Jump to: navigation, search Name Solar Power Partners Inc Place Mill Valley, California Zip 94941 Sector Solar Product Mill Valley-based independent power producer (IPP) focused on solar projects in the US References Solar Power Partners Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Power Partners Inc is a company located in Mill Valley, California . References ↑ "Solar Power Partners Inc" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Power_Partners_Inc&oldid=351320" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

162

SunShot Initiative: Solar Energy Grid Integration Systems-Advanced  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grid Integration Systems-Advanced Concepts Grid Integration Systems-Advanced Concepts On September 1, 2011, DOE announced $25.9 million to fund eight solar projects that are targeting ways to develop power electronics and build smarter, more interactive systems and components so that solar energy can be integrated into the electric power distribution and transmission grid at higher levels. Part of the SunShot Systems Integration efforts, the Solar Energy Grid Integration Systems - Advanced Concepts (SEGIS-AC) projects will help advance a smart grid that will handle two-way flows of power and communication, in contrast to the one-way power flow and limited communication that exists today. More information about these projects is available on the SEGIS-AC Projects page at the High Penetration Solar Portal.

163

Solar Thermochemical Advanced Reactor System, Wins R&D 100 Award  

Office of Energy Efficiency and Renewable Energy (EERE)

Solar Thermochemical Advanced Reactor System, or STARS, converts natural gas and sunlight into a more energy-rich fuel called syngas, which power plants can burn to make electricity.

164

Advanced, High Power, Next Scale, Wave Energy Conversion Device...  

Broader source: Energy.gov (indexed) [DOE]

Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy...

165

Mid America Advanced Power Solutions | Open Energy Information  

Open Energy Info (EERE)

Mid America Advanced Power Solutions Jump to: navigation, search Logo: Mid America Advanced Power Solutions Name: Mid America Advanced Power Solutions Place: Swansea, Illinois Zip:...

166

concentrating solar power | OpenEI  

Open Energy Info (EERE)

concentrating solar power concentrating solar power Dataset Summary Description This dataset is part of a larger internal dataset at the National Renewable Energy Laboratory (NREL) that explores various characteristics of large solar electric (both PV and CSP) facilities around the United States. This dataset focuses on the land use characteristics for solar facilities that are either under construction or currently in operation. Source Land-Use Requirements for Solar Power Plants in the United States Date Released June 25th, 2013 (7 months ago) Date Updated Unknown Keywords acres area average concentrating solar power csp Density electric hectares km2 land land requirements land use land-use mean photovoltaic photovoltaics PV solar statistics Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Master Solar Land Use Spreadsheet (xlsx, 1.5 MiB)

167

Solar Powering America Home | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Powering America Home U.S. Department of Energy U.S. Department of Agriculture U.S. Environmental Protection Agency U.S. Department of Housing and Urban Development Solar...

168

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molten Salt Test Loop Melted Salt On October 10, 2012, in Concentrating Solar Power, Energy, News, Renewable Energy, Solar The Molten Salt Test Loop (MSTL) team at Sandia National...

169

Shared Solar Projects Powering Households Throughout America...  

Office of Environmental Management (EM)

with enough rooftop space, the proper roof tilt, and just the right orientation to the Sun had the option to power their homes with solar. The average cost of solar panels has...

170

Game-Changing Advancements in Solar Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Game-Changing Advancements in Solar Energy Game-Changing Advancements in Solar Energy Game-Changing Advancements in Solar Energy Addthis Record-Breaking Solar 1 of 5 Record-Breaking Solar This concentrating photovoltaic (CPV) cell -- which uses a focused lens to magnify light to 418 times the intensity of the sun -- earned an R&D100 Award and set a new world record of 43.5 percent for solar cell conversion efficiency. The technology is based on high-efficiency multijunction research pioneered by the National Renewable Energy Laboratory (NREL). | Photo by Daniel Derkacs/Solar Junction. Date taken: 2012-11-29 09:21 Solar Innovation 2 of 5 Solar Innovation Solar Junction's record-breaking SJ3 solar cell is based on EERE-supported multijunction research. | Photo by Daniel Derkacs/Solar Junction Date taken: 2012-11-29 09:21

171

U.S.Air Force Advanced Power  

E-Print Network [OSTI]

efficiency,improved power distribution,reduced fuel dependency,reduction of noise,heat,and visual signatureU.S.Air Force Advanced Power Technology Office (APTO) U.S.Air Force Advanced Power Technology/Wind Powered Hydrogen Generation for Fuel Cell Applications · Waste-To-Energy APTO/Small Business Innovation

172

Topaz Solar Farm Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Solar Power Plant Solar Power Plant Jump to: navigation, search Name Topaz Solar Farm Solar Power Plant Facility Topaz Solar Farm Sector Solar Facility Type Photovoltaic Developer OptiSolar Location San Luis Obispo County, California Coordinates 35.3102296°, -120.4357631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.3102296,"lon":-120.4357631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

SES Solar Three Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Three Project Solar Power Plant Three Project Solar Power Plant Jump to: navigation, search Name SES Solar Three Project Solar Power Plant Facility SES Solar Three Project Sector Solar Facility Type Photovoltaics Facility Status Proposed Developer Stirling Energy Systems, Tessera Solar Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

174

Interagency Advanced Power Group meeting minutes  

SciTech Connect (OSTI)

This document contains the minutes and viewgraphs from a meeting of military personnel on the subject of power generation and distribution systems for military applications. Topics include heating and cooling systems for standard shelters, SDIO power programs, solar dynamic space power systems, hybrid solar dynamic/ photovoltaic systems, pulsed power technology, high-{Tc} superconductors, and actuators and other electronic equipment for aerospace vehicles. Attendees represented the US Air Force, Army, Navy, and NASA. (GHH)

Not Available

1991-12-31T23:59:59.000Z

175

Interagency Advanced Power Group meeting minutes  

SciTech Connect (OSTI)

This document contains the minutes and viewgraphs from a meeting of military personnel on the subject of power generation and distribution systems for military applications. Topics include heating and cooling systems for standard shelters, SDIO power programs, solar dynamic space power systems, hybrid solar dynamic/ photovoltaic systems, pulsed power technology, high-{Tc} superconductors, and actuators and other electronic equipment for aerospace vehicles. Attendees represented the US Air Force, Army, Navy, and NASA. (GHH)

Not Available

1991-01-01T23:59:59.000Z

176

DOE Seeks to Invest up to $60 Million for Advanced Concentrating Solar  

Broader source: Energy.gov (indexed) [DOE]

DOE Seeks to Invest up to $60 Million for Advanced Concentrating DOE Seeks to Invest up to $60 Million for Advanced Concentrating Solar Power Technologies DOE Seeks to Invest up to $60 Million for Advanced Concentrating Solar Power Technologies April 30, 2008 - 11:31am Addthis WASHINGTON - U.S. Under Secretary of Energy Clarence "Bud" Albright today announced the issuance of the Solar Funding Opportunity Announcement (FOA) for up to $60 million in funding over five years (Fiscal Years 2008-2012), which includes $10 million in FY 2008 appropriations and $10 million in the FY 2009 Budget request, to support the development of low-cost Concentrating Solar Power (CSP) technology. Increasing the use of solar energy is an important component of the Administration's efforts to diversify our nation's energy sources in an

177

DOE Seeks to Invest up to $60 Million for Advanced Concentrating Solar  

Broader source: Energy.gov (indexed) [DOE]

60 Million for Advanced Concentrating 60 Million for Advanced Concentrating Solar Power Technologies DOE Seeks to Invest up to $60 Million for Advanced Concentrating Solar Power Technologies April 30, 2008 - 11:31am Addthis WASHINGTON - U.S. Under Secretary of Energy Clarence "Bud" Albright today announced the issuance of the Solar Funding Opportunity Announcement (FOA) for up to $60 million in funding over five years (Fiscal Years 2008-2012), which includes $10 million in FY 2008 appropriations and $10 million in the FY 2009 Budget request, to support the development of low-cost Concentrating Solar Power (CSP) technology. Increasing the use of solar energy is an important component of the Administration's efforts to diversify our nation's energy sources in an effort to reduce greenhouse gas emissions and enhance our energy security.

178

High-efficiency solar dynamic space power generation system  

SciTech Connect (OSTI)

Space power technologies have undergone significant advances over the past few years, and great emphasis is being placed on the development of dynamic power systems at this time. A design study has been conducted to evaluate the applicability of a combined cycle concept-closed Brayton cycle and organic Rankine cycle coupling-for solar dynamic space power generation systems. In the concept presented in this paper (solar dynamic combined cycle), the waste heat rejected by the closed Brayton cycle working fluid is utilized to heat the organic working fluid of an organic Rankine cycle system. This allows the solar dynamic combined cycle efficiency to be increased compared to the efficiencies of two subsystems (closed Brayton cycle and organic fluid cycle). Also, for small-size space power systems (up to 50 kW), the efficiency of the solar dynamic combined cycle can be comparable with Stirling engine performance. The closed Brayton cycle and organic Rankine cycle designs are based on a great deal of maturity assessed in much previous work on terrestrial and solar dynamic power systems. This is not yet true for the Stirling cycles. The purpose of this paper is to analyze the performance of the new space power generation system (solar dynamic combined cycle). The significant benefits of the solar dynamic combined cycle concept such as efficiency increase, mass reduction, specific area-collector and radiator-reduction, are presented and discussed for a low earth orbit space station application.

Massardo, A. (Dept. di Ingegneria Energetica, Univ. di Genova, 16145 Genova (IT))

1991-08-01T23:59:59.000Z

179

Solar Power | OpenEI Community  

Open Energy Info (EERE)

Solar Power Solar Power Home Rosborne318's picture Submitted by Rosborne318(5) Member 2 December, 2013 - 11:06 Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 pv land use Solar solar land use Solar Power The Shreveport Airport Authority intends to issue a Request for Proposal (RFP) at some future time for renewable energy generation opportunities on Shreveport Airport property. Files: application/pdf icon solar_rfi_complete.pdf Graham7781's picture Submitted by Graham7781(2002) Super contributor 21 February, 2013 - 15:32 Energy Secretary Steven Chu to host DOE's first google hangout at 2 EST DOE energy secretary google hangout OpenEI Solar Power Steven Chu Sunshot Initiative The DOE Energy Secretary Steven Chu will be hosting a google hangout open

180

NREL: Concentrating Solar Power Research - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications NREL develops publications, including technical reports and papers, about its R&D activities in concentrating solar power, as well as related information. Below you'll find a list of selected NREL publications concerning these activities. Also see TroughNet's publications on parabolic trough technology, and market and economic assessment. For other NREL concentrating solar power publications, you can search NREL's Publications Database. Selected Publications These publications are available as Adobe Acrobat PDFs. Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines NREL Subcontract Report Author: David Kearney - Kearney & Associates Publication Date: March 2013 Simulating the Value of Concentrating Solar Power with Thermal Energy

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

InstituteSandia Photovoltaic Systems Symposium On April 15, 2014, in Concentrating Solar Power, Distribution Grid Integration, Energy, Facilities, Grid Integration, News,...

182

Concentrating Solar Power Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of concentrating solar power (CSP) technologies supplemented by specific information to apply CSP within the Federal sector.

183

Concentrating Solar Power: Energy from Mirrors  

SciTech Connect (OSTI)

This fact sheet explains how concentrating solar power technology works and the three types of systems in development today: trough, dish, and central receiver.

Poole, L.

2001-02-27T23:59:59.000Z

184

Solar Electric Power Association | Open Energy Information  

Open Energy Info (EERE)

Solar Electric Power Association Place: Washington, DC Product: Nonprofit organization whose membership consists of more than 100 electric service providers, utilities,...

185

Project Profile: Brayton Solar Power Conversion System  

Broader source: Energy.gov [DOE]

Brayton Energy, under the CSP R&D FOA, is looking to demonstrate the viability and economics of a new concentrating solar thermal power conversion system.

186

Funding Opportunity Announcement: Concentrating Solar Power:...  

Broader source: Energy.gov (indexed) [DOE]

Projects can address challenges in any technical system of the plant, including solar collectors, receivers and heat transfer fluids, thermal energy storage, power...

187

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Transportation R&D Activities View all EC Publications Related Topics Concentrating Solar Power CSP EFRC Energy Energy Efficiency Energy Security Infrastructure...

188

Forward converter for solar power applications .  

E-Print Network [OSTI]

??"Most solar arrays used today are connected in series and have tremendous power losses in partially shaded conditions. This document explores photovoltaic arrays in a (more)

McFowland, Nickolas Arthur, 1987-

2012-01-01T23:59:59.000Z

189

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Power Plant Solar Power Ideal Gas Turbine Topping Braytonefficiency of a solar power plant with gas-turbine toppingfor a solar power plant with Brayton-cycle gas turbine

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

190

Sandia National Laboratories: solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnership, Photovoltaic, Photovoltaic Regional Testing Center (PV RTC), Renewable Energy, Solar, Solar Newsletter, SunShot U.S. Senator Bernie Sanders (I-VT) joined...

191

Sandia National Laboratories: solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Resource Assessment Facilities Contacts About Photovoltaics at Sandia Sandia's solar photovoltaic (PV) work is focused on developing cost-effective, reliable...

192

Modern Solar Facilities Advanced Solar Science, 18 F. Kneer, K. G. Puschmann, A. D. Wittmann (eds.)  

E-Print Network [OSTI]

States. The 4-meter aperture Advanced Technology Solar Telescope (ATST) under the stewardshipModern Solar Facilities ­ Advanced Solar Science, 1­8 F. Kneer, K. G. Puschmann, A. D. Wittmann (eds.) c Universit¨atsverlag G¨ottingen 2007 Ground-Based Solar Facilities in the U.S.A. Carsten Denker

193

NREL: Advanced Power Electronics - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications The National Renewable Energy Laboratory and its partners have produced many papers and presentations related to the Advanced Power Electronics project. For more information about the following documents, contact Sreekant Narumanchi. Software Spray System Evaluation (Software 1.1 MB) Papers 2013 Steady and Unsteady Air Impingement Heat Transfer for Electronics Cooling Applications Paper Source: Arik, M.; Sharma, R.; Lustbader, J.; He, X. (2013). Article No. 111009. Journal of Heat Transfer. Vol. 135(11), November 2013; 8 pp.; NREL Report No. JA-5400-56618. http://dx.doi.org/10.1115/1.4024614 Pool Boiling Heat Transfer Characteristics of HFO-1234yf on Plain and Microporous-Enhanced Surfaces Paper Source: Moreno, G.; Narumanchi, S.; King, C. (2013). Article No. 111014.

194

Mohave Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Mohave Solar Power Plant Mohave Solar Power Plant Facility Mojave Solar Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Owner Mojave Solar LLC, Developer Abengoa Solar, Mohave Sun LLC Location Mohave County, Arizona Coordinates 35.017264°, -117.316607° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.017264,"lon":-117.316607,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

195

Definition: Concentrating solar power | Open Energy Information  

Open Energy Info (EERE)

Dictionary.png Dictionary.png Concentrating solar power Technologies that use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. This thermal energy can then be used to produce electricity via a steam turbine or heat engine that drives a generator.[1][2] View on Wikipedia Wikipedia Definition . ]] File:El-v-01 ubt. jpeg Sustainable energy Renewable energy Anaerobic digestion Hydroelectricity · Geothermal Microgeneration · Solar Tidal · Wave · Wind Energy conservation Cogeneration · Energy efficiency Geothermal heat pump Green building · Passive Solar Sustainable transport Plug-in hybrids · Electric vehicles File:Terra- edge blur. png Environment Portal v · d · e Concentrated solar power (also called concentrating solar power, concentrated solar thermal, and CSP) systems use

196

NREL: Advanced Power Electronics - Research and Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Development Research and Development The Advanced Power Electronics activity focuses on the electric drive system for hybrid electric and fuel cell vehicles. At NREL, we research and develop electronic components and systems that will overcome major technical barriers to commercialization of hybrid, advanced internal combustion, and fuel cell vehicle technologies. Researchers focus on developing advanced power electronics and electric machinery technologies that improve reliability, efficiency, and ruggedness, and dramatically decrease systems costs for advanced vehicles. To accomplish this, the power electronics team investigates cooling and heating of advanced vehicles by looking at the thermal management of motor controllers, inverters, and traction motors with one- and two-phase cooling

197

The design of solar chimney power plant for sustainable power generation.  

E-Print Network [OSTI]

??The solar chimney power plant (SCPP) also known as solar updraft tower is a nonconcentrating solar thermal technology, which employs both solar and wind energy (more)

Asante, David

2014-01-01T23:59:59.000Z

198

Vehicle Technologies Office: 2011 Advanced Power Electronics...  

Energy Savers [EERE]

2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters...

199

A Powerful Dot Of Solar Energy  

Science Journals Connector (OSTI)

A Powerful Dot Of Solar Energy ... The ongoing supermassive thermonuclear explosion that powers the sun emits energy at a mind-boggling rate exceeding 100 trillion trillion watts. ... To meet that challenge, scientists have been searching for ways to make low-cost solar cellsphotovoltaic devices that convert light ... ...

MITCH JACOBY

2013-09-23T23:59:59.000Z

200

Flexible solar panels for frontline power  

E-Print Network [OSTI]

1 Flexible solar panels for frontline power Blast debris x-rays to develop better armour Reducing to improve mission outcomes 6 Solar energy for soldier mobility 8 Reducing the risk of missile strike 10 Major research effort delivers air power enhancement 12 On a whale hunt to save the wildlife 13 Briefs

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Solar Power as a Source of Noise-free Power for Research  

E-Print Network [OSTI]

Solar Power as a Source of Noise-free Power for ResearchState University Keywords: solar energy, reducing backgroundhas been increasing interest in solar convertors, mostly for

Dutta, Akshita; Chorescu, Irinel

2011-01-01T23:59:59.000Z

202

Energy Department Announces New University-Led Projects to Create More Efficient, Lower Cost Concentrating Solar Power Systems  

Office of Energy Efficiency and Renewable Energy (EERE)

As part of the Energy Departments SunShot Initiative, Secretary Steven Chu announced today new investments to advance innovative concentrating solar power (CSP) system technologies.

203

World's Largest Concentrating Solar Power Plant Opens in California  

Broader source: Energy.gov [DOE]

The Ivanpah Solar Electric Generating System, the world’s largest concentrating solar power plant, officially opened on February 13.

204

National Laboratory Concentrating Solar Power Research and Development...  

Broader source: Energy.gov (indexed) [DOE]

& Publications National Laboratory Concentrating Solar Power Research and Development Particle Receiver Integrated with Fludized Bed Scattering Solar Thermal Concentrators...

205

NREL: Concentrating Solar Power Research Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A collage of Concentrating Solar Power photographs. The first photo shows a dish-engine solar system. The second is of a SAIC Stirling dish collector. And the third photo shows a SkyTrough solar concentrator located on a mesa top. A collage of Concentrating Solar Power photographs. The first photo shows a dish-engine solar system. The second is of a SAIC Stirling dish collector. And the third photo shows a SkyTrough solar concentrator located on a mesa top. NREL collaborates with industry to further the research and development (R&D) of concentrating solar power (CSP) plant and solar thermal technologies. NREL's projects in concentrating solar power focus on components R&D and systems analysis related to power tower and parabolic trough technologies: Collectors Receivers Power block Thermal energy storage Analysis. In addition, NREL has received funding through the following competitively awarded projects: 10-megawatt supercritical carbon dioxide (s-CO2) turbine test Near-blackbody, enclosed-particle receiver integrated with a

206

Advancing Solar Through Photovoltaic Technology Innovations | Department of  

Broader source: Energy.gov (indexed) [DOE]

Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy

207

Advancing Solar Through Photovoltaic Technology Innovations | Department of  

Broader source: Energy.gov (indexed) [DOE]

Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy

208

Advanced Accessory Power Supply Topologies  

SciTech Connect (OSTI)

This Cooperative Research and Development Agreement (CRADA) began December 8, 2000 and ended September 30, 2009. The total funding provided by the Participant (General Motors Advanced Technology Vehicles [GM]) during the course of the CRADA totaled $1.2M enabling the Contractor (UT-Battelle, LLC [Oak Ridge National Laboratory, a.k.a. ORNL]) to contribute significantly to the joint project. The initial task was to work with GM on the feasibility of developing their conceptual approach of modifying major components of the existing traction inverter/drive to develop low cost, robust, accessory power. Two alternate methods for implementation were suggested by ORNL and both were proven successful through simulations and then extensive testing of prototypes designed and fabricated during the project. This validated the GM overall concept. Moreover, three joint U.S. patents were issued and subsequently licensed by GM. After successfully fulfilling the initial objective, the direction and duration of the CRADA was modified and GM provided funding for two additional tasks. The first new task was to provide the basic development for implementing a cascaded inverter technology into hybrid vehicles (including plug-in hybrid, fuel cell, and electric). The second new task was to continue the basic development for implementing inverter and converter topologies and new technology assessments for hybrid vehicle applications. Additionally, this task was to address the use of high temperature components in drive systems. Under this CRADA, ORNL conducted further research based on GMs idea of using the motor magnetic core and windings to produce bidirectional accessory power supply that is nongalvanically coupled to the terminals of the high voltage dc-link battery of hybrid vehicles. In order not to interfere with the motors torque, ORNL suggested to use the zero-sequence, highfrequency harmonics carried by the main fundamental motor current for producing the accessory power. Two studies were conducted at ORNL. One was to put an additional winding in the motor slots to magnetically link with the high frequency of the controllable zero-sequence stator currents that do not produce any zero-sequence harmonic torques. The second approach was to utilize the corners of the square stator punching for the high-frequency transformers of the dc/dc inverter. Both approaches were successful. This CRADA validated the feasibility of GMs desire to use the motors magnetic core and windings to produce bidirectional accessory power supply. Three joint U.S. patents with GM were issued to ORNL and GM by the U.S. Patent Office for the research results produced by this CRADA.

Marlino, L.D.

2010-06-15T23:59:59.000Z

209

Siemens Concentrated Solar Power Ltd previously Solel Solar Systems | Open  

Open Energy Info (EERE)

Siemens Concentrated Solar Power Ltd previously Solel Solar Systems Siemens Concentrated Solar Power Ltd previously Solel Solar Systems Jump to: navigation, search Name Siemens Concentrated Solar Power Ltd (previously Solel Solar Systems) Place Beit-Shemesh, Israel Zip 99107 Sector Solar Product Israel-based subsidiary manufacturing solar thermal electricity generation (STEG) components for power plants, also develops some of its own STEG projects. Coordinates 31.75°, 35° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.75,"lon":35,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

210

Nevada Solar One Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Nevada Solar One Solar Power Plant Jump to: navigation, search Name Nevada Solar One Solar Power Plant Facility Nevada Solar One Sector Solar Facility Type Concentrating Solar Power Facility Status In Service Developer Lauren Engineers & Constructors, Acciona Solar Power Inc. Location Boulder City, Nevada Coordinates 35.801003°, -114.976301° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.801003,"lon":-114.976301,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Ultrafast Carrier RelaxationProcesses in Advanced Concept Solar Cells  

Science Journals Connector (OSTI)

We discuss short time carrier relaxation in advanced concept solar cells conditions using ensemble Monte Carlo (EMC) simulation coupled with rate equation and thermodynamic models, to...

Goodnick, Stephen M; Honsberg, Christiana; Zou, Yongjie

212

Solar Power and Me: The Inherent Advantages  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grade Level: Grade Level: 8-12 Subjects: Math: Algebra I and II Length: 90 Minutes LESSON PLAN Solar Power and Me: The Inherent Advantages Solar Power and Me: The Inherent Advantages Northwest Halifax High School Solar Panels Littleton, NC Photo credit: Mike Beebe INTRODUCTION This is a uniquely interdisciplinary high school algebra and solar energy lesson geared toward an Algebra I-II class. It uses data from a 2.1-kilowatt photovoltaic solar panel system at a high school in rural North Carolina, historical energy statistics from the U.S. Energy Information Administrations (EIA) on solar and renewable energy growth in the U.S., and the financial savings accrued from a residential solar photovoltaic system to teach students the basics of renewable energy and best-fit regression

213

Concentrating Solar Power Tower System Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Concentrating Solar Power Tower System Basics Concentrating Solar Power Tower System Basics Concentrating Solar Power Tower System Basics August 20, 2013 - 5:06pm Addthis In power tower concentrating solar power systems, numerous large, flat, sun-tracking mirrors, known as heliostats, focus sunlight onto a receiver at the top of a tall tower. A heat-transfer fluid heated in the receiver is used to generate steam, which, in turn, is used in a conventional turbine generator to produce electricity. Some power towers use water/steam as the heat-transfer fluid. Other advanced designs are experimenting with molten nitrate salt because of its superior heat-transfer and energy-storage capabilities. Individual commercial plants can be sized to produce up to 200 megawatts of electricity. Illustration of a power tower power plant. Sunlight is shown reflecting off a series of heliostats surrounding the tower and onto the receiver at the top of the tower. The hot heat-transfer fluid exiting from the receiver flows down the tower, into a feedwater reheater, and then into a turbine, which generates electricity that is fed into the power grid. The cool heat-transfer fluid exiting the turbine flows into a steam condenser to be cooled and sent back up the tower to the receiver.

214

EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility...  

Broader source: Energy.gov (indexed) [DOE]

Bend, AZ May 3, 2010 EA-1683: Final Environmental Assessment Loan Guarantee to Abengoa Solar Inc. for the Solana Thermal Electric Power Project near Gila Bend, Arizona May 6,...

215

Advanced solar concentrator development in the United States  

SciTech Connect (OSTI)

Sandia National Laboratories is the lead laboratory for the United States Department of Energy's program to develop, build, and test advanced solar concentrators that are low in cost, have high performance, and demonstrate a long lifetime. The principal focus of DOE's concentrator program is on the development of heliostats for central receiver power plants and point focus parabolic dishes for use with a 25-kWe Stirling engine. The status and future plans of DOE's program in each area are reviewed. 29 refs., 7 figs.

Alpert, D.J.

1990-01-01T23:59:59.000Z

216

Texas Solar Power Company | Open Energy Information  

Open Energy Info (EERE)

Solar Power Company Solar Power Company Jump to: navigation, search Logo: Texas Solar Power Company Name Texas Solar Power Company Address 1703 W Koenig Ln Place Austin, Texas Zip 78756 Sector Solar Product Design, sales and installation of renewable energy equipment and systems Website http://www.txspc.com/ Coordinates 30.332798°, -97.736025° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.332798,"lon":-97.736025,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

217

Kammerer Solar Power Facility | Open Energy Information  

Open Energy Info (EERE)

Kammerer Solar Power Facility Kammerer Solar Power Facility Jump to: navigation, search Name Kammerer Solar Power Facility Facility Kammerer Solar Power Facility Sector Solar Facility Type Photovoltaics Facility Status In Service Developer Recurrent Energy Energy Purchaser Sacramento Municipal Utility District Location Elk Grove, California Coordinates 38.363069°, -121.384614° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.363069,"lon":-121.384614,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

218

Concentrating solar power | Open Energy Information  

Open Energy Info (EERE)

Concentrating Solar Power Basics (The following text is derived from NREL's concentrating solar power information page.)[1] Concentrating solar power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet our nation's demand for electricity. CSP plants produce power by first using mirrors to focus sunlight to heat a working fluid. Ultimately, this high-temperature fluid is used to spin a turbine or power an engine that drives a generator. And the final product is electricity. Smaller CSP systems can be located directly where the power is needed. Larger, utility-scale CSP applications provide hundreds of megawatts of electricity for the power grid. Both linear concentrator and power tower systems can be easily integrated with thermal storage, helping to generate

219

NREL: Concentrating Solar Power Research - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Below are news stories related to NREL Concentrating Solar Power research. Subscribe to the RSS feed RSS . Learn about RSS. November 5, 2013 Solar Working Group Releases Standard Contracts A working group representing solar industry stakeholders has developed standard contracts that should help lower transaction costs and make it easier to access low-cost financing for residential and commercial solar power projects. October 24, 2013 NREL Researcher Honored with Hispanic STEM Award A national organization devoted to getting more Hispanics into the fields of science, technology, engineering, and math (STEM), has honored a scientist at the Energy Department's National Renewable Energy Laboratory (NREL) with its annual Outstanding Technical Achievement Award.

220

SunShot Initiative: National Laboratory Concentrating Solar Power Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Laboratory Concentrating National Laboratory Concentrating Solar Power Research to someone by E-mail Share SunShot Initiative: National Laboratory Concentrating Solar Power Research on Facebook Tweet about SunShot Initiative: National Laboratory Concentrating Solar Power Research on Twitter Bookmark SunShot Initiative: National Laboratory Concentrating Solar Power Research on Google Bookmark SunShot Initiative: National Laboratory Concentrating Solar Power Research on Delicious Rank SunShot Initiative: National Laboratory Concentrating Solar Power Research on Digg Find More places to share SunShot Initiative: National Laboratory Concentrating Solar Power Research on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Solar Powering Your Community: A Guide for Local Governments...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Powering Your Community: A Guide for Local Governments (Book), Energy Efficiency & Renewable Energy (EERE) Solar Powering Your Community: A Guide for Local Governments...

222

Hanford Solar Power: Cost Effective and Mobile | Department of...  

Office of Environmental Management (EM)

Hanford Solar Power: Cost Effective and Mobile Hanford Solar Power: Cost Effective and Mobile February 26, 2014 - 12:00pm Addthis EMs Richland Operations Office and its...

223

World's Largest Concentrating Solar Power Plant Opens in California...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

World's Largest Concentrating Solar Power Plant Opens in California World's Largest Concentrating Solar Power Plant Opens in California February 19, 2014 - 12:00am Addthis Ivanpah,...

224

National Laboratory Concentrating Solar Power Research and Development  

Broader source: Energy.gov (indexed) [DOE]

and performance improvements across all major concentrating solar power (CSP) subsystems-solar fields, power plants, receivers, and thermal storage-are necessary to achieve the...

225

Pasadena Water and Power - Solar Power Installation Rebate | Department of  

Broader source: Energy.gov (indexed) [DOE]

Pasadena Water and Power - Solar Power Installation Rebate Pasadena Water and Power - Solar Power Installation Rebate Pasadena Water and Power - Solar Power Installation Rebate < Back Eligibility Commercial Institutional Local Government Nonprofit Residential State Government Savings Category Solar Buying & Making Electricity Program Info State California Program Type Utility Rebate Program Rebate Amount Systems up to 30 kW have the option of receiving an expected performance based buydown (EPBB) or a performance based incentive (PBI). Systems larger than 30 kW are only eligible for the PBI. EPBB (effective 6/1/12): Residential: $1.40/watt AC Commercial and all PPAs: $0.85/watt AC Non-profits and Government: $1.60/watt AC Income-qualified residential: $4.00/watt PBI (effective 6/1/12): Residential: $0.212/kWh Commercial and all PPAs: $0.129/kWh

226

NREL: Concentrating Solar Power Research - Working with Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with Us Working with Us NREL's interaction with industrial, university, and government partners is the key to moving advanced concentrating solar power technologies into the marketplace and the U.S. economy. We provide opportunities to develop technology partnerships, license our technology, and use our facilities. Developing Technology Partnerships NREL offers a variety of technology partnership agreements to help you gain access to our research expertise in concentrating solar power, including our laboratory and modeling and analysis capabilities. You can: Work collaboratively with us on a concentrating solar power research project through a Cooperative Research and Development Agreement Pay NREL to conduct research without your collaboration through a Work-for-Others agreement.

227

SunLab: Concentrating Solar Power Program Overview  

SciTech Connect (OSTI)

DOE's Concentrating Solar Power (CSP) program is collaborating with its partners in the private sector to develop two new solar technologies -- power towers and dish/engines -- to meet the huge commercial potential for solar power. Concentrating solar power plants produce electric power by first converting the sun's energy into heat, and then to electricity in a conventional generator.

NONE

1998-11-24T23:59:59.000Z

228

Stateline Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Stateline Solar Power Plant Stateline Solar Power Plant Jump to: navigation, search Name Stateline Solar Power Plant Facility Stateline Sector Solar Facility Type Photovoltaic Developer First Solar Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Keahole Solar Power | Open Energy Information  

Open Energy Info (EERE)

Keahole Solar Power Keahole Solar Power Jump to: navigation, search Name Keahole Solar Power Place Kona, Hawaii Sector Solar Product Hawaii-based solar thermal project developer which has partnered with equipment provider Sopogy to build projects in the Hawaiian islands. Coordinates 19.64014°, -155.995678° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.64014,"lon":-155.995678,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

Concentrating Solar Power Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Basics Basics Concentrating Solar Power Basics August 20, 2013 - 4:38pm Addthis Text Version This solar concentrator has a fixed-focus faceted dish with a concentration of about 250 suns. This system can be used for large fields connected to the utility grid, hydrogen generation, or water pumping. Credit: Science Applications International Corporation / PIX 13464 Concentrating solar power (CSP) technologies use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. This thermal energy can then be used to produce electricity via a steam turbine or heat engine that drives a generator. Concentrating solar power offers a utility-scale, firm, dispatchable renewable energy option that can help meet our nation's demand for

231

Blythe Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Blythe Solar Power Plant Blythe Solar Power Plant Jump to: navigation, search Name Blythe Solar Power Plant Facility Blythe Sector Solar Facility Type Photovoltaic Developer First Solar Location Blythe, California Coordinates 33.6172329°, -114.5891744° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.6172329,"lon":-114.5891744,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

232

The Solar Wind Power from Magnetic Flux  

Science Journals Connector (OSTI)

Observations of the fast, high-latitude solar wind throughout Ulysses' three orbits show that solar wind power correlates remarkably well with the Sun's total open magnetic flux. These observations support a recent model of the solar wind energy and particle sources, where magnetic flux emergence naturally leads to an energy flux proportional to the strength of the large-scale magnetic field. This model has also been shown to be consistent with X-ray observations of the Sun and a variety of other stars over 12 decades of magnetic flux. The observations reported here show that the Sun delivers ~600 kW Wb?1 to power the solar wind, and that this power to magnetic flux relation has been extremely stable over the last 15 years. Thus, the same law that governs energy released in the corona and from other stars also applies to the total energy in the solar wind.

N. A. Schwadron; D. J. McComas

2008-01-01T23:59:59.000Z

233

Sandia National Laboratories: solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

234

Maximizing efficiency of solar-powered systems by load matching  

Science Journals Connector (OSTI)

Solar power is an important source of renewable energy for many low-power systems. Matching the power consumption level with the supply level can make a great difference in the efficiency of power utilization. This paper proposes a source-tracking power ... Keywords: load matching, photovoltaics, power management, power model, solar energy, solar-aware

Dexin Li; Pai H. Chou

2004-08-01T23:59:59.000Z

235

Advanced Solar Products | Open Energy Information  

Open Energy Info (EERE)

Products Products Jump to: navigation, search Name Advanced Solar Products Place Flemington, New Jersey Zip 8822 Product New Jersey-based PV systems installer and project developer. Coordinates 39.266175°, -80.132549° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.266175,"lon":-80.132549,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

Concentrating Solar Power (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet describing the overall capabilities of the NREL CSP Program: collector/receiver characterization, advanced reflector and absorber materials, thermal storage and advanced heat transfer fluids, and CSP modeling and analysis.

Not Available

2010-08-01T23:59:59.000Z

237

Maximizing Efficiency of Solar-Powered Systems by Load Matching  

E-Print Network [OSTI]

energy. However, solar powered sys- tems must also consider the output level of the solar panel for power be counterproductive. Another problem that is of particular importance to solar pan- els is load matching. Solar panels is around 0.7­1.2, solar panels have a much larger Ri value as a function of the solar output and current

Shinozuka, Masanobu

238

Cardiff University Distinguished Lecture Symposium Advances in Solar Energy  

E-Print Network [OSTI]

Cardiff University Distinguished Lecture Symposium Advances in Solar Energy Thursday 22nd March prospects for inorganic thin film photovoltaic solar cells for large scale energy generation 2:55 Dr Emyr:50 Professor James Durrant (Imperial College London, England) Photochemical approaches to solar energy

Martin, Ralph R.

239

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSP Resources On September 26, 2012, in CSP Images & Videos On September 26, 2012, in Image Gallery Videos Concentrating Solar Power Image Gallery A picture says a thousand words,...

240

Solar Power Inc SPI | Open Energy Information  

Open Energy Info (EERE)

SPI Jump to: navigation, search Name: Solar Power Inc (SPI) Place: Roseville, California Zip: 95661 Product: US-based manufacturer of PV modules with a factory in Shenzhen, China;...

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Cost Analysis of Solar Power Plants  

Science Journals Connector (OSTI)

The factors influencing the desirability of solar power plants (SPPs), and of SPP investment decisions, will be discussed in this chapter. The numerical details presented axe based, as far as possible, on actu...

H. P. Hertlein; H. Klaiss; J. Nitsch

1991-01-01T23:59:59.000Z

242

SunShot Concentrating Solar Power Program  

Broader source: Energy.gov [DOE]

This poster, originally presented at the Concentrating Solar Power program review, summarizes the DOE SunShot Initiative's goals as well as the strategy for CSP funding opportunity announcements.

243

Concentrating Solar Power: Energy from Mirrors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mirror mirror on the wall, what's the Mirror mirror on the wall, what's the greatest energy source of all? The sun. Enough energy from the sun falls on the Earth everyday to power our homes and businesses for almost 30 years. Yet we've only just begun to tap its potential. You may have heard about solar electric power to light homes or solar thermal power used to heat water, but did you know there is such a thing as solar thermal-electric power? Electric utility companies are using mirrors to concentrate heat from the sun to produce environmentally friendly electricity for cities, especially in the southwestern United States. The southwestern United States is focus- ing on concentrating solar energy because it's one of the world's best areas for sun- light. The Southwest receives up to twice the sunlight as other regions in the coun-

244

Multi-objective optimization of solar tower power plants  

E-Print Network [OSTI]

Multi-objective optimization of solar tower power plants Pascal Richter Center for Computational · Optimization of solar tower power plants 1/20 #12;Introduction ­ Solar tower power plants Solar tower PS10 (11 MW) in Andalusia, Spain · Solar tower with receiver · Heliostat field with self-aligning mirrors

Ábrahám, Erika

245

EECBG Success Story: Historic Virginia Market Powered by Solar...  

Broader source: Energy.gov (indexed) [DOE]

Historic Virginia Market Powered by Solar Energy EECBG Success Story: Historic Virginia Market Powered by Solar Energy November 3, 2010 - 5:29pm Addthis Solar panels at the...

246

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

provide solar power plant energy storage for a reasonablefor Chemical Storage of Solar Energy. UC Berkeley, M.S.for a solar power plant without energy storage for nighttime

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

247

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

for concentrating solar-thermal energy use a large number ofBoth solar power plants absorb thermal energy in high-of a solar power plant that converts thermal energy into

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

248

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Design. Propofied Solar Cooling Tower Type Wet-Cooled Powerdry-cooling tower was used in the proposed solar power plantTower Power-Generation Subsystem Summary An Overall Summary of the Proposed Solar

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

249

Feasibility study of a solar chimney power plant in Jordan  

Science Journals Connector (OSTI)

A solar chimney power plant system is theoretically designed for ... by mathematical software. The actual values of solar irradiation in Jordan are used in the ... simulation to predict the power output of the solar

Aiman Al Alawin; Omar Badran; Ahmad Awad; Yaser Abdelhadi

2012-10-01T23:59:59.000Z

250

DOE Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer  

Broader source: Energy.gov (indexed) [DOE]

Funds 15 New Projects to Develop Solar Power Storage and Heat Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer Projects For Up to $67.6 Million DOE Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer Projects For Up to $67.6 Million September 19, 2008 - 3:43pm Addthis WASHINGTON - U.S. Department of Energy (DOE) today announced selections for negotiations of award under the Funding Opportunity Announcement (FOA), Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for Concentrating Solar Power Generation. These 15 new projects, for up to approximately $67.6 million, will facilitate the development of lower-cost energy storage for concentrating solar power (CSP) technology. These projects support President Bush's Solar America Initiative, which aims to make solar energy cost-competitive with conventional forms of electricity

251

Solar thermal electric power information user study  

SciTech Connect (OSTI)

The results of a series of telephone interviews with groups of users of information on solar thermal electric power are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from five solar thermal electric power groups of respondents are analyzed: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Utilities, Electric Power Engineers, and Educators. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

1981-02-01T23:59:59.000Z

252

Sandia National Laboratories: solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

26, 2012, in This area of the site allows industry partners to install full-scale solar dishes for long-term reliability testing and evaluation. There are currently ten SES...

253

Solar Power Systems Web Monitoring  

E-Print Network [OSTI]

All over the world the peak demand load is increasing and the load factor is decreasing year-by-year. The fossil fuel is considered insufficient thus solar energy systems are becoming more and more useful, not only in terms of installation but monitoring of these systems is very crucial. Monitoring becomes very important when there are a large number of solar panels. Monitoring would allow early detection if the output falls below required level or one of the solar panel out of 1000 goes down. In this study the target is to monitor and control a developed solar panel by using available internet foundation. This web-enabled software will provide more flexibility over the system such as transmitting data from panel to the host computer and disseminating information to relevant stake holders barring any geographical barrier. The software would be built around web server with dynamic HTML and JAVA, this paper presents the preliminary design of the proposed system.

Kumar, Bimal Aklesh

2011-01-01T23:59:59.000Z

254

Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)  

SciTech Connect (OSTI)

This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

2013-10-01T23:59:59.000Z

255

SunShot Initiative: Concentrating Solar Power Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrating Solar Power Staff Concentrating Solar Power Staff to someone by E-mail Share SunShot Initiative: Concentrating Solar Power Staff on Facebook Tweet about SunShot Initiative: Concentrating Solar Power Staff on Twitter Bookmark SunShot Initiative: Concentrating Solar Power Staff on Google Bookmark SunShot Initiative: Concentrating Solar Power Staff on Delicious Rank SunShot Initiative: Concentrating Solar Power Staff on Digg Find More places to share SunShot Initiative: Concentrating Solar Power Staff on AddThis.com... Accomplishments Visiting the SunShot Office Fellowships Postdoctoral Research Contacts Staff Concentrating Solar Power Staff The SunShot Initiative concentrating solar power (CSP) program competitively funds and actively manages the efforts of industry, national laboratories, and universities working to make large-scale dispatchable

256

Online short-term solar power forecasting  

SciTech Connect (OSTI)

This paper describes a new approach to online forecasting of power production from PV systems. The method is suited to online forecasting in many applications and in this paper it is used to predict hourly values of solar power for horizons of up to 36 h. The data used is 15-min observations of solar power from 21 PV systems located on rooftops in a small village in Denmark. The suggested method is a two-stage method where first a statistical normalization of the solar power is obtained using a clear sky model. The clear sky model is found using statistical smoothing techniques. Then forecasts of the normalized solar power are calculated using adaptive linear time series models. Both autoregressive (AR) and AR with exogenous input (ARX) models are evaluated, where the latter takes numerical weather predictions (NWPs) as input. The results indicate that for forecasts up to 2 h ahead the most important input is the available observations of solar power, while for longer horizons NWPs are the most important input. A root mean square error improvement of around 35% is achieved by the ARX model compared to a proposed reference model. (author)

Bacher, Peder; Madsen, Henrik [Informatics and Mathematical Modelling, Richard Pedersens Plads, Technical University of Denmark, Building 321, DK-2800 Lyngby (Denmark); Nielsen, Henrik Aalborg [ENFOR A/S, Lyngsoe Alle 3, DK-2970 Hoersholm (Denmark)

2009-10-15T23:59:59.000Z

257

2008 Annual Merit Review Results Summary - 5. Advanced Power...  

Broader source: Energy.gov (indexed) [DOE]

5. Advanced Power Electronics 2008 Annual Merit Review Results Summary - 5. Advanced Power Electronics DOE Vehicle Technologies Annual Merit Review 2008meritreview5.pdf More...

258

Air Cooling Technology for Advanced Power Electronics and Electric...  

Broader source: Energy.gov (indexed) [DOE]

Air Cooling Technology for Advanced Power Electronics and Electric Machines Air Cooling Technology for Advanced Power Electronics and Electric Machines 2009 DOE Hydrogen Program...

259

Development of an Advanced Combined Heat and Power (CHP) System...  

Broader source: Energy.gov (indexed) [DOE]

an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2011 Development of an Advanced Combined Heat and Power (CHP) System...

260

Advanced Materials and Concepts for Portable Power Fuel Cells...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Materials and Concepts for Portable Power Fuel Cells Advanced Materials and Concepts for Portable Power Fuel Cells These slides were presented at the 2010 New Fuel Cell...

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Ivanpah: World's Largest Concentrating Solar Power Plant  

Broader source: Energy.gov [DOE]

The Ivanpah Solar Energy Generating System has the capacity to generate 392 megawattsof clean electricity -- enough to power 94,400 average American homes. As the first commercial deployment of innovative power tower CSP technology in the United States, the Ivanpah project was the recipient of a $1.6 billion loan guarantee from the Departments Loan Programs Office (LPO).

262

ADVANCED REFLECTIVE FILMS AND PANELS FOR NEXT GENERATION SOLAR COLLECTORS  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

263

Concentrated Solar Thermoelectric Power (Fact Sheet)  

SciTech Connect (OSTI)

Massachusetts Institute of Technology (MIT) is one of the 2012 SunShot CSP R&D awardees for their advanced power cycles. This fact sheet explains the motivation, description, and impact of the project.

Not Available

2012-09-01T23:59:59.000Z

264

Solar Powered Radioactive Air Monitoring Stations  

SciTech Connect (OSTI)

Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

Barnett, J. M.; Bisping, Lynn E.; Gervais, Todd L.

2013-10-30T23:59:59.000Z

265

SunShot Concentrating Solar Power Program | Department of Energy  

Office of Environmental Management (EM)

Program SunShot Concentrating Solar Power Program This PowerPoint slide deck, entitled "SunShot Concentrating Solar Power Program," was originally presented by Ranga Pitchumani at...

266

SunShot Concentrating Solar Power Program Update | Department...  

Office of Environmental Management (EM)

Program Update SunShot Concentrating Solar Power Program Update This PowerPoint slide deck, entitled "SunShot Concentrating Solar Power Program Update," was originally presented by...

267

Excise Tax Exemption for Solar- or Wind-Powered Systems  

Broader source: Energy.gov [DOE]

Massachusetts law exempts any "solar or wind powered climatic control unit and any solar or wind powered water heating unit or any other type unit or system powered thereby," that qualifies for the...

268

Ground Breaking of Blythe Solar Power Project | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ground Breaking of Blythe Solar Power Project Ground Breaking of Blythe Solar Power Project Ground Breaking of Blythe Solar Power Project June 20, 2011 - 2:16pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy What will the project do? Blythe Solar Power Project will generate 1,000 megawatts of solar power, enough to power more than 300,000 single-family homes a year. Back in April, I had the pleasure of announcing that the Department of Energy had extended our largest conditional loan guarantee for a solar project - $2.1 billion to support a concentrating solar thermal power plant near Blythe, California. Last Friday, the Blythe Solar Power Project broke ground, beginning construction of a project that upon completion will generate 1,000 megawatts of solar power, enough to power more than 300,000

269

SunShot Initiative: Concentrating Solar Power Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to SunShot Initiative: Concentrating Solar Power Newsletter to someone by E-mail Share SunShot Initiative: Concentrating Solar Power Newsletter on Facebook Tweet about SunShot Initiative: Concentrating Solar Power Newsletter on Twitter Bookmark SunShot Initiative: Concentrating Solar Power Newsletter on Google Bookmark SunShot Initiative: Concentrating Solar Power Newsletter on Delicious Rank SunShot Initiative: Concentrating Solar Power Newsletter on Digg Find More places to share SunShot Initiative: Concentrating Solar Power Newsletter on AddThis.com... Publications Newsletter Resource Center Multimedia Meetings & Workshops Solar Innovation Timeline Solar Career Map Glossary Concentrating Solar Power Newsletter

270

Sierra Solar Power Inc | Open Energy Information  

Open Energy Info (EERE)

Sierra Solar Power Inc Sierra Solar Power Inc Jump to: navigation, search Name Sierra Solar Power Inc Place Sunnyvale, California Zip 94086 Product Developer of an undisclosed thin-film PV technology and headquartered in Silicon Valley, the company plans to manufacture PV modules in China. Coordinates 32.780338°, -96.547405° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.780338,"lon":-96.547405,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

Blythe Solar Power Project PA/FEIS  

Broader source: Energy.gov (indexed) [DOE]

BLYTHE SOLAR POWER PROJECT BLYTHE SOLAR POWER PROJECT Volume 1 of 2 August 2010 DOI Control #: FES 10-41 Publication Index #: BLM/CA/ES-2010-015+1793 NEPA Tracking # DOI-BLM-CA-060-0010-0013-EIS United States Department of the Interior Bureau of Land Management 120 1 Bird Center Drive Palm Springs, CA 92262 Phone (760) 833-7100 IFax (760) 833-7199 http://www.blm.gov/ca/palmsprings/ In reply refer to: CACA 048811 August 20, 20 I0 Dear Reader: Enclosed is the Proposed Resource Management Plan-AmendmentlFinal Environmental Impact Statement (PAlFEIS) for the California Desert Conservation Area (CDCA) Plan and Blythe Solar Power Project (BSPP). The Bureau of Land Management (BLM) prepared the PAIFEIS in consultation with cooperating agencies, taking into account public comments received during the National Environmental

272

Energy 101: Concentrating Solar Power | Department of Energy  

Energy Savers [EERE]

From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP...

273

Solar Powering Your Community: A Guide for Local Governments...  

Broader source: Energy.gov (indexed) [DOE]

SOLAR ENERGY TECHNOLOGIES PROGRAM SOLAR POWERING YOUR COMMUNITY: A GUIDE FOR LOCAL GOVERNMENTS Second edition Cities and local communities across the country are recognizing that...

274

Sandia National Laboratories: reduce the cost of solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the cost of solar power Launch of Solar Testing Site in Vermont On November 27, 2013, in Energy, Facilities, News, News & Events, Partnership, Photovoltaic, Photovoltaic Regional...

275

Orbits design for Leo space based solar power satellite system.  

E-Print Network [OSTI]

?? Space Based Solar Power satellites use solar arrays to generate clean, green, and renewable electricity in space and transmit it to earth via microwave, (more)

Addanki, Neelima Krishna Murthy

2011-01-01T23:59:59.000Z

276

Process Technology and Advanced Concepts: Organic Solar Cells (Fact Sheet)  

SciTech Connect (OSTI)

Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts: Organic Solar Cell that includes scope, core competencies and capabilities, and contact/web information.

Not Available

2011-06-01T23:59:59.000Z

277

SunShot Initiative: Concentrating Solar Power Competitive Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrating Solar Power Concentrating Solar Power Competitive Awards to someone by E-mail Share SunShot Initiative: Concentrating Solar Power Competitive Awards on Facebook Tweet about SunShot Initiative: Concentrating Solar Power Competitive Awards on Twitter Bookmark SunShot Initiative: Concentrating Solar Power Competitive Awards on Google Bookmark SunShot Initiative: Concentrating Solar Power Competitive Awards on Delicious Rank SunShot Initiative: Concentrating Solar Power Competitive Awards on Digg Find More places to share SunShot Initiative: Concentrating Solar Power Competitive Awards on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative

278

California City Implements Solar-Powered Trash Compactors | Department of  

Broader source: Energy.gov (indexed) [DOE]

California City Implements Solar-Powered Trash Compactors California City Implements Solar-Powered Trash Compactors California City Implements Solar-Powered Trash Compactors June 16, 2010 - 11:30am Addthis Riverside, Calif., used a portion of its EECBG funds to buy 25 solar-powered trash compactors. | Courtesy of BigBelly Solar Riverside, Calif., used a portion of its EECBG funds to buy 25 solar-powered trash compactors. | Courtesy of BigBelly Solar This summer, Riverside, Calif., is harnessing the power of the sun in an effort aimed at slashing waste, costs and greenhouse gases. The city used $153,040 of its $2,850,600 Energy Efficiency and Conservation Block Grant (EECBG) to buy 25 solar-powered compactors from Waste Management, Inc., a distributor for U.S. manufacturer BigBelly Solar. Called BigBelly Solar Compactors, these containers have the same blueprint

279

Integrated Solar Power Converters: Wafer-Level Sub-Module Integrated DC/DC Converter  

SciTech Connect (OSTI)

Solar ADEPT Project: CU-Boulder is developing advanced power conversion components that can be integrated into individual solar panels to improve energy yields. The solar energy that is absorbed and collected by a solar panel is converted into useable energy for the grid through an electronic component called an inverter. Many large, conventional solar energy systems use one, central inverter to convert energy. CU-Boulder is integrating smaller, microinverters into individual solar panels to improve the efficiency of energy collection. The Universitys microinverters rely on electrical components that direct energy at high speeds and ensure that minimal energy is lost during the conversion processimproving the overall efficiency of the power conversion process. CU-Boulder is designing its power conversion devices for use on any type of solar panel.

None

2012-02-09T23:59:59.000Z

280

SunShot Initiative: Baseload Concentrating Solar Power Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrating Solar Concentrating Solar Power Generation to someone by E-mail Share SunShot Initiative: Baseload Concentrating Solar Power Generation on Facebook Tweet about SunShot Initiative: Baseload Concentrating Solar Power Generation on Twitter Bookmark SunShot Initiative: Baseload Concentrating Solar Power Generation on Google Bookmark SunShot Initiative: Baseload Concentrating Solar Power Generation on Delicious Rank SunShot Initiative: Baseload Concentrating Solar Power Generation on Digg Find More places to share SunShot Initiative: Baseload Concentrating Solar Power Generation on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

SunShot Initiative: Concentrated Solar Thermoelectric Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrated Solar Thermoelectric Concentrated Solar Thermoelectric Power to someone by E-mail Share SunShot Initiative: Concentrated Solar Thermoelectric Power on Facebook Tweet about SunShot Initiative: Concentrated Solar Thermoelectric Power on Twitter Bookmark SunShot Initiative: Concentrated Solar Thermoelectric Power on Google Bookmark SunShot Initiative: Concentrated Solar Thermoelectric Power on Delicious Rank SunShot Initiative: Concentrated Solar Thermoelectric Power on Digg Find More places to share SunShot Initiative: Concentrated Solar Thermoelectric Power on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

282

Gulf Power - Solar PV Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gulf Power - Solar PV Program Gulf Power - Solar PV Program Gulf Power - Solar PV Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $10,000/installation Program Info State Florida Program Type Utility Rebate Program Rebate Amount $2/watt Provider Energy Efficiency '''''All funding has currently been reserved and new applications are no longer being accepted. See Gulf Power's [http://www.gulfpower.com/renewable/solarElectricity.asp Solar PV] web site for more information.''''' Gulf Power offers a Solar PV rebate to residential and commercial customers. Gulf Power will provide a $2/watt rebate with a $10,000 per system maximum. In addition, Gulf Power has a Solar for Schools program, providing capital funding for PV systems. Gulf Power has worked with the Florida Solar Energy

283

Characterization of the Solar Power Resource in Europe and  

E-Print Network [OSTI]

;1 Characterization of the Solar Power Resource in Europe and Assessing Benefits of Co-Location with Wind Power Europe from a companion assessment, we assess the benefits of co-location of solar and wind powerCharacterization of the Solar Power Resource in Europe and Assessing Benefits of Co

284

Potential of Concentrating Solar Power in Canada  

Science Journals Connector (OSTI)

Abstract In this paper, results of an analysis to assess the potential of concentrating solar thermal power applications in Canada are presented. First, a direct normal solar resource (DNI) resource map for Canada is introduced. This map indicates the locations where the DNI is the highest in Canada and is derived from the most recent Perez's SUNY satellite-based solar resource model Version number 3. Second, the methodology and results of a GIS analysis to identify the locations of the most suitable lands for concentrating solar thermal power (CSP) applications in Canada are discussed. The total areas of the CSP-suitable lands are presented in a tabulated and a map formats for each of the Canadian provinces where there is a maximum DNI solar resource. Third and finally, results of a technical economical analysis for two CSP system designs are discussed. The two CSP systems considered include parabolic trough with synthetic oil heat transfer fluid with and without storage, molten salt power tower with and without storage.

R. Djebbar; D. Belanger; D. Boutin; E. Weterings; M. Poirier

2014-01-01T23:59:59.000Z

285

NREL: Concentrating Solar Power Research - Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects Projects NREL's concentrating solar power (CSP) projects focus on components R&D and systems analysis related to power tower and parabolic trough technologies. We support the U.S. Department of Energy (DOE) in its CSP deployment efforts in the following areas: Collectors Receivers Power block Thermal energy storage Analysis. NREL received funding from DOE for concentrating solar power research projects. Through a competitive process, NREL was selected to lead the following projects: Novel Components to Overcome Existing Barriers-Particle Receiver Integrated with a Fluidized Bed Thermodynamic Cycle to Revolutionize CSP Systems-10-Megawatt Supercritical Carbon Dioxide (s-CO2) Turbine Test Nanomaterials for thermal energy storage in CSP plants In addition to these efforts, NREL is also a key partner on two other

286

SunShot Initiative: Concentrating Solar Power Competitive Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Competitive Awards Competitive Awards Graphic showing five color blocks in a circular formation that represent the technical goals and cost targets for each component in the CSP system along with the associated competitive funding opportunity. Enlarge image DOE funds concentrating solar power (CSP) research and development (R&D) projects through competitive solicitations, which are released for public response as financial opportunity announcements. The following projects represent recent and ongoing research efforts: Concentrating Solar Power R&D (2007) Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for CSP (2008) CSP ARRA (2009) Baseload (2010) CSP SunShot R&D (2012) MURI HOT Fluids (2012) CSP Heat Integration for Baseload Renewable Energy Deployment (2013)

287

SunShot Concentrating Solar Power Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0.05 0.04 0.09 2010 Cost Reductions 0.07 Solar Field 0.02 Power Block 0.02 ReceiverHeat Transfer 0.04 Thermal Storage 0.01 0.02 0.02 6kWh SunShot Target (2020) 0.01...

288

Collaborating Towards a Common Goal to Advance America's Solar Industry |  

Broader source: Energy.gov (indexed) [DOE]

Collaborating Towards a Common Goal to Advance America's Solar Collaborating Towards a Common Goal to Advance America's Solar Industry Collaborating Towards a Common Goal to Advance America's Solar Industry June 21, 2012 - 6:07pm Addthis Attendees gather to discuss, collaborate at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Attendees gather to discuss, collaborate at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Justin Vandenbroeck Intern, Office of Energy Efficiency and Renewable Energy Change takes more than desire -- it takes collaboration, communication, and a common goal. This idea was perhaps best exemplified at the SunShot Grand Challenge Summit in Denver. As a former participant in the Solar Decathlon and a current Energy Department intern, I attended the Summit to

289

Collaborating Towards a Common Goal to Advance America's Solar Industry |  

Broader source: Energy.gov (indexed) [DOE]

Collaborating Towards a Common Goal to Advance America's Solar Collaborating Towards a Common Goal to Advance America's Solar Industry Collaborating Towards a Common Goal to Advance America's Solar Industry June 21, 2012 - 6:07pm Addthis Attendees gather to discuss, collaborate at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Attendees gather to discuss, collaborate at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Justin Vandenbroeck Intern, Office of Energy Efficiency and Renewable Energy Change takes more than desire -- it takes collaboration, communication, and a common goal. This idea was perhaps best exemplified at the SunShot Grand Challenge Summit in Denver. As a former participant in the Solar Decathlon and a current Energy Department intern, I attended the Summit to

290

Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps Advance America's Solar Leadership  

Broader source: Energy.gov [DOE]

Announcing the launch of Agua Caliente, a utility-scale solar plant that will generate enough clean electricity to power thousands of homes.

291

Concentrating Solar Power Services CSP Services | Open Energy Information  

Open Energy Info (EERE)

Concentrating Solar Power Services CSP Services Concentrating Solar Power Services CSP Services Jump to: navigation, search Name Concentrating Solar Power Services (CSP Services) Place Cologne, Germany Zip D-51143 Sector Solar Product A spin-out of the DLR Institute of Technical Thermodynamics, providing consulting, due diligence and component testing for Solar Thermal Electricity Generation (STEG). References Concentrating Solar Power Services (CSP Services)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Concentrating Solar Power Services (CSP Services) is a company located in Cologne, Germany . References ↑ "Concentrating Solar Power Services (CSP Services)" Retrieved from "http://en.openei.org/w/index.php?title=Concentrating_Solar_Power_Services_CSP_Services&oldid=343830

292

Mulk Renewable Energy Aditya Solar Power Industries JV | Open Energy  

Open Energy Info (EERE)

Mulk Renewable Energy Aditya Solar Power Industries JV Mulk Renewable Energy Aditya Solar Power Industries JV Jump to: navigation, search Name Mulk Renewable Energy & Aditya Solar Power Industries JV Place United Arab Emirates Sector Solar Product UAE-based company that is developing a 200MW solar thermal plant in Sharjah. References Mulk Renewable Energy & Aditya Solar Power Industries JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Mulk Renewable Energy & Aditya Solar Power Industries JV is a company located in United Arab Emirates . References ↑ "Mulk Renewable Energy & Aditya Solar Power Industries JV" Retrieved from "http://en.openei.org/w/index.php?title=Mulk_Renewable_Energy_Aditya_Solar_Power_Industries_JV&oldid=348970"

293

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications AMaterials for Concentrating Solar Power Plant Applications

Roshandell, Melina

2013-01-01T23:59:59.000Z

294

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,Thermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

295

Merchant vessel advanced power systems. Final report  

SciTech Connect (OSTI)

This study identifies and evaluates potential highly advanced propulsion power plants which may have marine applications beyond the year 2000. Various promising current technologies were screened and an evaluation of each plant concept and its suitability for use as a merchant ship propulsion system is contained in this report.

Baham, G.J.; Swensson, G.

1982-01-01T23:59:59.000Z

296

Review Article Solar-Thermal Powered Desalination: Its Significant  

E-Print Network [OSTI]

1 Review Article Solar-Thermal Powered Desalination: Its Significant Challenges and Potential John@kau.edu.sa Abstract Solar-desalination systems are desalination systems that are powered by solar energy. With the goal of identifying the key technical challenges and potential opportunities solar-desalination, we

Reif, John H.

297

E-Print Network 3.0 - advanced power plants Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plants Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced power plants...

298

E-Print Network 3.0 - advanced power system Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

system Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced power system...

299

E-Print Network 3.0 - advanced power electronics Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electronics Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced power electronics...

300

E-Print Network 3.0 - advanced power plant Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plant Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced power plant...

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

E-Print Network 3.0 - advanced power electronic Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electronic Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced power electronic...

302

Fourth Graders Power Their Classroom with Solar Energy | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fourth Graders Power Their Classroom with Solar Energy Fourth Graders Power Their Classroom with Solar Energy June 23, 2013 - 7:00pm Addthis Watch as the students in Aaron Sebens'...

303

High-Temperature Solar Selective Coating Development for Power...  

Broader source: Energy.gov (indexed) [DOE]

High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2 High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2...

304

Helping Ensure High-Quality Installation of Solar Power Technologies...  

Energy Savers [EERE]

Ensure High-Quality Installation of Solar Power Technologies Helping Ensure High-Quality Installation of Solar Power Technologies April 15, 2013 - 12:00am Addthis The Midwest...

305

Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered...  

Energy Savers [EERE]

Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered Energy Systems Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered Energy Systems May 1, 2014 - 9:33am...

306

Concentrating Solar Power Program Review 2013 (Book) (Revised)  

SciTech Connect (OSTI)

This U.S. Department of Energy (DOE) Concentrating Solar Power Program Review Meeting booklet will be provided to attendees at the Concentrating Solar Power Review Meeting in Phoenix, Arizona on April 23-25, 2013.

Not Available

2013-06-01T23:59:59.000Z

307

Energy Parameter Estimation in Solar Powered Wireless Sensor Networks  

Science Journals Connector (OSTI)

The operation of solar powered wireless sensor networks is associated with ... the main challenges is the high variability of solar power input and battery capacity, due to factors such as weather, ... sensor net...

Mustafa Mousa; Christian Claudel

2014-01-01T23:59:59.000Z

308

SEP Success Story: Solar Field Powers Historic Garden Holiday...  

Energy Savers [EERE]

SEP Success Story: Solar Field Powers Historic Garden Holiday Display SEP Success Story: Solar Field Powers Historic Garden Holiday Display December 21, 2011 - 1:26pm Addthis This...

309

Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting  

E-Print Network [OSTI]

Piwko, 2010: Western wind and solar integration study. NRELsources such as wind and solar power. Integration of this

Mathiesen, Patrick James

2013-01-01T23:59:59.000Z

310

Concentrating Solar Power: Best Practices Handbook for the Collection and  

Open Energy Info (EERE)

Concentrating Solar Power: Best Practices Handbook for the Collection and Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Solar Topics: Resource assessment, Technology characterizations Resource Type: Dataset, Guide/manual, Lessons learned/best practices Website: www.nrel.gov/docs/fy10osti/47465.pdf Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data Screenshot References: CSP Guide[1] Logo: Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data

311

Icon Solar Power, LLC | Open Energy Information  

Open Energy Info (EERE)

Icon Solar Power, LLC Icon Solar Power, LLC Jump to: navigation, search Name Icon Solar Power, LLC Address 862 East Crescentville Rd. Place Cincinnati, Ohio Zip 45246 Sector Geothermal energy, Solar Product String representation "Agriculture;Bus ... g and education" is too long. Phone number 513-396-7777 Website http://www.iconsolarpower.com Coordinates 39.3016177°, -84.4536249° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3016177,"lon":-84.4536249,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

312

Solar Power Prospector | Open Energy Information  

Open Energy Info (EERE)

Solar Power Prospector Solar Power Prospector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Power Prospector Agency/Company /Organization: NREL Sector: Energy Focus Area: Solar Topics: Resource assessment, Technology characterizations Resource Type: Dataset, Maps, Software/modeling tools User Interface: Website Website: maps.nrel.gov/node/10 Country: United States Web Application Link: maps.nrel.gov/prospector Cost: Free OpenEI Keyword(s): Featured, Energy Efficiency and Renewable Energy (EERE) Tools Northern America Coordinates: 39.7412019515°, -105.172290802° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7412019515,"lon":-105.172290802,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

313

Solar Powering America by Recognizing Communities Funding Opportunity  

Broader source: Energy.gov [DOE]

DOE's SunShot Initiative is accepting applications for the Solar Powering America by Recognizing Communities funding opportunity.

314

Center for Advanced Solar Photophysics | Members  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering quantum dot solids for solar cells Matt Law University of California - Irvine Wednesday, November 14th, 11:00am Chemistry Division Auditorium, TA-46, Bld. 535, Rm. 103...

315

Center for Advanced Solar Photophysics | Members  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

103 Abstract Over the past several years, the search for more efficient solutions to solar energy conversion has intensified, in large part driven by concerns over the impact of...

316

Center for Advanced Solar Photophysics | Members  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical Spectroscopy of Individual Nanocrystal Quantum Dots Han Htoon Softmatter Nanotechnology and Advanced Spectroscopy, Los Alamos National Laboratory, Los Alamos, New Mexico...

317

Center for Advanced Solar Photophysics | Members  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Under Hydrostatic Pressure Richard Schaller Softmatter Nanotechnology and Advanced Spectroscopy, Chemistry Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545,...

318

Center for Advanced Solar Photophysics | Members  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Chemistry of Colloidal Nanocrystal Quantum Dots Jeffrey Pietryga Softmatter Nanotechnology and Advanced Spectroscopy, Chemistry Division Los Alamos National Laboratory, Los...

319

Techno-economic Appraisal of Concentrating Solar Power Systems (CSP).  

E-Print Network [OSTI]

?? The diffusion of Concentrating Solar Power Systems (CSP) systems is currently taking place at a much slower pace than photovoltaic (PV) power systems. This (more)

Gasti, Maria

2013-01-01T23:59:59.000Z

320

A Solar Power System for High Altitude Airships.  

E-Print Network [OSTI]

??This research is intended to produce a power system suitable for an aerostat operating at 67,500 ft and powered only by solar energy. A battery (more)

Mei, Qiang

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

SUPPORTING SOLAR ENERGY DEVELOPMENT THROUGH GREEN POWER MARKETS Blair Swezey  

E-Print Network [OSTI]

SUPPORTING SOLAR ENERGY DEVELOPMENT THROUGH GREEN POWER MARKETS Blair Swezey Lori Bird Christy are still developing, participation in these programs is supporting a significant amount of new solar energy in part through green power marketing. This paper describes the use of solar energy in green power

322

New Advanced System Utilizes Industrial Waste Heat to Power Water...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Water Reuse ADVANCED MANUFACTURING OFFICE New Advanced System Utilizes Industrial Waste Heat to Power Water Purification Introduction As population growth and associated factors...

323

Advanced Power Plant Development and Analysis Methodologies  

SciTech Connect (OSTI)

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

2006-06-30T23:59:59.000Z

324

Advanced Power Plant Development and Analyses Methodologies  

SciTech Connect (OSTI)

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

G.S. Samuelsen; A.D. Rao

2006-02-06T23:59:59.000Z

325

SolarPower Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Ltd Jump to: navigation, search Name SolarPower Ltd Place Netanya, Israel Sector Solar Product Israel-based designer, supplier and installer of solar energy systems. Coordinates 32.343948°, 34.871971° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.343948,"lon":34.871971,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

Solar and Alternative Power Supply: An Instrument towards Ecologically Sound Power Consumption?  

Science Journals Connector (OSTI)

Solar power and power produced by other renewable energies and supplied by power utilities are means towards replacing fossil fuels and ... friendly electricity production and consumption. We classify solar and a...

Sonja Gehrig; Nicole North

2001-01-01T23:59:59.000Z

327

Reducing the Cost of Energy from Parabolic Trough Solar Power Plants: Preprint  

SciTech Connect (OSTI)

Parabolic trough solar technology is the most proven and lowest cost large-scale solar power technology available today, primarily because of the nine large commercial-scale solar power plants that are operating in the California Mojave Desert. However, no new plants have been built during the past ten years because the cost of power from these plants is more expensive than power from conventional fossil fuel power plants. This paper reviews the current cost of energy and the potential for reducing the cost of energy from parabolic trough solar power plant technology based on the latest technological advancements and projected improvements from industry and sponsored R&D. The paper also looks at the impact of project financing and incentives on the cost of energy.

Price, H.; Kearney, D.

2003-01-01T23:59:59.000Z

328

Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators  

E-Print Network [OSTI]

Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators to eventually optimise the reactor geometry for ammonia-based solar energy storage with troughs, which.1. Storing Solar Energy with Ammonia H2 / N2 gas liquid NH3 Heat Exchangers Power Generation (Steam Cycle

329

Energy 101: Concentrating Solar Power | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Concentrating Solar Power Concentrating Solar Power Energy 101: Concentrating Solar Power Addthis Below is the text version for the Energy 101: Concentrating Solar Power video. The video opens with the words "Energy 101: Concentrating Solar Power." OK. Take the natural heat from the sun, reflect it against a mirror, focus all of that heat on one area, send it through a power system, and you've got a renewable way of making electricity. It's called concentrating solar power, or CSP. Caption: Concentrating Solar Power (CSP): Focuses the sun's heat to make steam and electricity. Now, there are many types of CSP technologies. Towers, dishes, linear mirrors, and troughs. The video goes through a quick panorama of several different types, and several different views, of all of the different types of CSP. Finally, it

330

President Obama Discusses Solar Power in Nevada | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Discusses Solar Power in Nevada Discusses Solar Power in Nevada President Obama Discusses Solar Power in Nevada March 22, 2012 - 10:26am Addthis President Barack Obama delivers remarks on energy after a tour of a solar panel field at the Copper Mountain Solar 1 Facility, the largest photovoltaic plant operating in the country with nearly one million solar panels powering 17,000 homes, in Boulder City, Nevada, March 21, 2012. | Official White House Photo by Lawrence Jackson. President Barack Obama delivers remarks on energy after a tour of a solar panel field at the Copper Mountain Solar 1 Facility, the largest photovoltaic plant operating in the country with nearly one million solar panels powering 17,000 homes, in Boulder City, Nevada, March 21, 2012. | Official White House Photo by Lawrence Jackson.

331

SEMATECH: A Model for Advancing Solar Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

SEMATECH: A Model for Advancing Solar Technology SEMATECH: A Model for Advancing Solar Technology SEMATECH: A Model for Advancing Solar Technology May 24, 2011 - 11:22am Addthis SEMATECH brings 14 companies together to help them share and collaborate in their most expensive and difficult manufacturing development projects. Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs One of the hardest parts for start-up companies producing an emerging technology is the cost to test and develop more efficient manufacturing processes -- and to win the clean energy race, energy technologies not only need to be invented in America, but made in America too. That's why consortiums like SEMATECH in Albany, New York, are so important. Back in the '80s and '90s, SEMATECH breathed new life into the

332

Concentrating Solar Power Hybrid System Study: Cooperative Research and Development Final Report, CRADA Number CRD-13-506  

SciTech Connect (OSTI)

The purpose of this PTS is to collaboratively leverage the collective resources at General Electric Global Research (GEGRC) and National Renewable Energy Laboratories (NREL) in the areas of concentrating solar power hybrid systems to advance state-of-the-art concentrating solar and conventional power generation system integration.

Turchi, C.

2014-09-01T23:59:59.000Z

333

Engineered Sequestration and Advanced Power Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia University. Predictions of innovative energy technologies for the next century usually include everything from fusion to photovoltaics with the one notable exception of fossil fuels. Because of fears of diminishing supplies, pollution and climate change, the public is reluctant to consider these hydrocarbon fuels for the energy needs of the twenty- first century. An energy strategy for the new century, however, cannot ignore fossil fuels. Contrary to popular belief, they are plentiful and inexpensive. While it is true that fossil fuels are limited by their environmental impact, new technologies to eliminate environmental concerns are currently being developed. Managing the emission of

334

NREL: Advanced Power Electronics - About the Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Project About the Project The Vehicle Technologies Program supports the development of technologies that will achieve transportation energy security through a U.S. highway vehicle fleet that consists of affordable, full-function cars and trucks that are free from petroleum dependence and harmful emissions, without sacrificing mobility, safety, and vehicle choice. The electric drive system is the technology foundation for hybrid electric and fuel cell vehicles. NREL focuses on developing advanced power electronics and electric machinery technologies that improve and dramatically decrease vehicle systems costs, under DOE's Power Electronics and Electric Machines (PEEM) subactivity. NREL supports the PEEM project goals to ensure high reliability, efficiency, and ruggedness; and

335

E-Print Network 3.0 - advanced technology solar Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

physics. Wafer silicon photovoltaic technology. Survey... Photovoltaics: Advanced Solar Energy Conversion, by M. A. Green (Springer, 2006) Solar Electricity, by T... Spring 2012...

336

Advanced Power Electronics and Electric Motors Annual Report -- 2013  

SciTech Connect (OSTI)

This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

Narumanchi, S.; Bennion, K.; DeVoto, D.; Moreno, G.; Rugh, J.; Waye, S.

2015-01-01T23:59:59.000Z

337

NREL: Energy Analysis - Concentrating Solar Power Results - Life Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrating Solar Power Results - Life Cycle Assessment Harmonization Concentrating Solar Power Results - Life Cycle Assessment Harmonization Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power (Factsheet) Cover of the Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power Download the Factsheet Flowchart that shows the life cycle stages for concentrating solar power systems. For help reading this chart, please contact the webmaster. Figure 1. Process flow diagram illustrating the life cycle stages for concentrating solar power (CSP) systems. The yellow box defined by the grey line shows the systems boundaries assumed in harmonization. Enlarge image NREL developed and applied a systematic approach to review literature on life cycle assessments of concentrating solar power (CSP) systems, identify

338

Concentrating Solar Power Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Concentrating Solar Power Resources and Technologies Concentrating Solar Power Resources and Technologies Concentrating Solar Power Resources and Technologies October 7, 2013 - 11:47am Addthis Photo of a CSP dish glistening in the sun. Multiple solar mirrors reflect sunlight onto a collector. CSP systems concentrate solar heat onto a collector, which powers a turbine to generate electricity. This page provides a brief overview of concentrating solar power (CSP) technologies supplemented by specific information to apply CSP within the Federal sector. Overview Concentrating solar power technologies produce electricity by concentrating the sun's energy using reflective devices, such as troughs or mirror panels, to reflect sunlight onto a receiver. The resulting high-temperature heat is used to power a conventional turbine to produce electricity.

339

Thermal Stress and Reliability for Advanced Power Electronics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Power Electronic Thermal System Performance and Integration Thermal Performance and...

340

Integrated Combined Heat and Power/Advanced Reciprocating Internal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and PowerAdvanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications Development of an Improved Modular Landfill Gas Cleanup and...

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Florida Power and Light - Solar Rebate Program (Florida) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Florida Power and Light - Solar Rebate Program (Florida) Florida Power and Light - Solar Rebate Program (Florida) Florida Power and Light - Solar Rebate Program (Florida) < Back Eligibility Agricultural Commercial Industrial Institutional Low-Income Residential Multi-Family Residential Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Florida Program Type Utility Rebate Program Rebate Amount Solar Water Heater (Residential): $1,000/system Solar Water Heater (Business): $30/1,000 BTUh per day Solar PV (Residential): $2/DC Watt Solar PV (Commercial): $2/DC Watt (Up to 10kW), $1.50/DC Watt (10kW - 25kW), $1/DC Watt (25kW or larger) Provider Customer Service Note:The Florida Power and Light (FPL) 2013 solar PV rebate program is fully subscribed and the limited "standby list" is full. Customers on the

342

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

edge of disruptive solar technology that could replace thewe develop a new solar technology and a suite of analysisin parabolic trough solar power technology. Journal of Solar

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

343

Gulf Power - Solar Thermal Water Heating Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,000 Program Info State Florida Program Type Utility Rebate Program Provider Energy Efficiency '''''This program reopened on October 3, 2011 for 2012 applications. Funding is limited and must be reserved through online application before the installation of qualifying solar water heating systems. See Gulf Power's [http://www.gulfpower.com/renewable/solarThermal.asp Solar Water Heating] web site for more information.''''' Gulf Power offers a Solar Thermal Water Heating rebate to customers who install water heaters. This program started after the original pilot

344

Low-cost distributed solar-thermal-electric power generation  

E-Print Network [OSTI]

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed: Solar Thermal Collectors, Solar Thermal Electricity, Stirling Engine 1. INTRODUCTION In this paper, we

Sanders, Seth

345

Advanced Plasma Power APP | Open Energy Information  

Open Energy Info (EERE)

Power APP Power APP Jump to: navigation, search Name Advanced Plasma Power (APP) Place London, Greater London, United Kingdom Zip EC2A 1BR Product London-based geoplasma process technology developer for waste-to-energy systems. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

Space Solar Power(SSP) | Open Energy Information  

Open Energy Info (EERE)

Solar Power(SSP) Solar Power(SSP) Jump to: navigation, search Space Solar Power (SSP) is the name commonly given to the concept of deploying a system of satellites and ground receivers that would collect the sun's energy at GeoSynchronous Earth Orbit (GEO is an orbit 35,000 km above the Earth's equator) [1] and beam that energy, via wireless power transmission (WPT) to Earth for use. Many names have been given to such satellites and systems since Peter Glaser first invented the concept in 1968: Solar Power Satellites (SPS), Satellite Solar Power Systems (SSPS), Space-Based Solar Power (SBSP), Power Satellites, Sunsats, etc., The numerous existing communication satellites (comsats) differ from the envisioned SSP Satellites, or sunsats, in that sunsats would optimize for

347

Solar-powered unmanned aerial vehicles  

SciTech Connect (OSTI)

An analysis was performed to determine the impact of various power system components and mission requirements on the size of solar-powered high altitude long endurance (HALE)-type aircraft. The HALE unmanned aerial vehicle (UAV) has good potential for use in many military and civil applications. The primary power system components considered in this study were photovoltaic (PV) modules for power generation and regenerative fuel cells for energy storage. The impact of relevant component performance on UAV size and capability were considered; including PV module efficiency and mass, power electronics efficiency, and fuel cell specific energy. Mission parameters such as time of year, flight altitude, flight latitude, and payload mass and power were also varied to determine impact on UAV size. The aircraft analysis method used determines the required aircraft wing aspect ratio, wing area, and total mass based on maximum endurance or minimum required power calculations. The results indicate that the capacity of the energy storage system employed, fuel cells in this analysis, greatly impacts aircraft size, whereas the impact of PV module efficiency and mass is much less important. It was concluded that an energy storage specific energy (total system) of 250--500 Whr/kg is required to enable most useful missions, and that PV cells with efficiencies greater than {approximately} 12% are suitable for use.

Reinhardt, K.C.; Lamp, T.R.; Geis, J.W. [Wright Lab., Wright Patterson AFB, OH (United States). Aero Propulsion and Power Directorate; Colozza, A.J. [NYMA Corp., Brookpark, OH (United States). Aerospace Technology Development

1996-12-31T23:59:59.000Z

348

Solar electric power plant due to start up  

Science Journals Connector (OSTI)

In early April of this year, Solar One, a central receiver pilot plant designed to show that solar energy can be harnessed by utilities to produce electricity on a commercial scale, will begin producing power. ... With a rated maximum power output to the utility grid of 10.8 MW, Solar One is the world's largest solarpowered electrical generating facility. ...

RUDY M. BAUM

1982-03-15T23:59:59.000Z

349

Sustainable Heat Power Europe GmbH formerly Solar Heat Power Europe GmbH |  

Open Energy Info (EERE)

Heat Power Europe GmbH formerly Solar Heat Power Europe GmbH Heat Power Europe GmbH formerly Solar Heat Power Europe GmbH Jump to: navigation, search Name Sustainable Heat & Power Europe GmbH (formerly Solar Heat & Power Europe GmbH) Place Hamburg, Schleswig-Holstein, Germany Sector Solar Product Engineering company involved in the project development, design and construction of solar thermal, PV and biogas power plants. References Sustainable Heat & Power Europe GmbH (formerly Solar Heat & Power Europe GmbH)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sustainable Heat & Power Europe GmbH (formerly Solar Heat & Power Europe GmbH) is a company located in Hamburg, Schleswig-Holstein, Germany .

350

An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions  

E-Print Network [OSTI]

fast charging, and solar power availability pose a challengeevent to a fixed SOC from solar power and/or the grid in athem without considering solar power availability and the

Zhao, Hengbing; Burke, Andrew

2014-01-01T23:59:59.000Z

351

NREL: Concentrating Solar Power Research - Systems Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Analysis Systems Analysis Featured Resource Learn more about NREL's capabilities in modeling and analysis of CSP Systems. NREL and other national laboratories support U.S. Department of Energy (DOE) systems analysis activities to evaluate and validate the cost, performance, durability, and grid penetration impacts for concentrating solar power (CSP) technologies. DOE's systems analysis program focuses on the greatest opportunities for impact, based on estimates of the current and future costs of CSP plants, subsystems, and components. Opportunities and Potential Impact The DOE SunShot Initiative to reduce the installed cost of solar energy systems by 75% by the end of the decade will require low-cost configurations that are easy to integrate into the electric grid. Systems

352

Simulation of long term solar power feed-in and solar balancing potential in European countries Simulation of long term solar power feed-in and  

E-Print Network [OSTI]

.4 0.6 0.8 1 Hourly incremental P/Pnom (%) CumulatedFrequency PV Offshore wind Europe, 2Simulation of long term solar power feed-in and solar balancing potential in European countries Simulation of long term solar power feed-in and solar balancing potential in European countries Kabitri Nag

Heinemann, Detlev

353

Asola Advanced and Automotive Solar Systems GmbH | Open Energy Information  

Open Energy Info (EERE)

Asola Advanced and Automotive Solar Systems GmbH Asola Advanced and Automotive Solar Systems GmbH Jump to: navigation, search Name Asola Advanced and Automotive Solar Systems GmbH Place Erfurt, Germany Zip D-99428 Sector Solar Product German manufacturer of PV modules and spherical solar sun roofs for the automotive industry. References Asola Advanced and Automotive Solar Systems GmbH[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Asola Advanced and Automotive Solar Systems GmbH is a company located in Erfurt, Germany . References ↑ "Asola Advanced and Automotive Solar Systems GmbH" Retrieved from "http://en.openei.org/w/index.php?title=Asola_Advanced_and_Automotive_Solar_Systems_GmbH&oldid=34237

354

Fourth Graders Power Their Classroom with Solar Energy | Department of  

Broader source: Energy.gov (indexed) [DOE]

Fourth Graders Power Their Classroom with Solar Energy Fourth Graders Power Their Classroom with Solar Energy Fourth Graders Power Their Classroom with Solar Energy June 23, 2013 - 7:00pm Addthis Watch as the students in Aaron Sebens' fourth grade class complete a project that goes above and beyond a normal day in school. Minh Le Minh Le Program Manager, Solar Program LEARN MORE Watch Aaron's students explain how their solar panels work. Find out the Top 6 Things You Didn't Know About Solar. A group of fourth graders in Durham, North Carolina, are showing America the way to a clean energy future. After learning all about solar and other energy sources, Aaron Sebens -- a teacher at Central Park School for Children -- and his fourth grade class came up with a bold idea: make their classroom solar-powered. The video above documents the students' journey from idea to reality --

355

Breakout Session: Solar as a Base Load Power Source  

Broader source: Energy.gov [DOE]

Does solar have a future as a base load electricity source? This session explores a vision in which solar power plants can provide dispatchability, predictability, and reliability comparable to...

356

EECBG Success Story: Police Station Triples Solar Power - and...  

Broader source: Energy.gov (indexed) [DOE]

Solar Power - and Savings July 19, 2010 - 11:00am Addthis North Community Police Substation upgraded its solar energy system with the help of Recovery Act funds. The...

357

Augmentation of thermal power stations with solar energy  

Science Journals Connector (OSTI)

A new concept of integration of a solar concentrator field with a modern thermal power station is proposed. Such a configuration ... and infrastructure as a base load facility and solar energy to reduce the fuel ...

BR Pai

1991-06-01T23:59:59.000Z

358

Numerical Investigation of Solar Chimney Power Plant in UAE  

Science Journals Connector (OSTI)

This paper presents a numerical simulation results for a steady air flow inside a solar chimney power plant. A standard k-epsilon turbulence model is used to model a prototype solar chimney that was built in Al A...

Mohammad O. Hamdan; Saud Khashan

2014-01-01T23:59:59.000Z

359

Simulation Calculation on Solar Chimney Power Plant System  

Science Journals Connector (OSTI)

It is unpractical to establish a Solar Chimney Power Plant System (SCPPS) used to ... flow field of the SCPPS which caused by solar radiation intensity have been analyzed. The calculated ... as well as the differ...

HuiLan Huang; Hua Zhang; Yi Huang; Feng Lu

2007-01-01T23:59:59.000Z

360

Operation and Maintenance Methods in Solar Power Plants  

Science Journals Connector (OSTI)

A solar chimney power plant has a high chimney (tower), with a height of up ... , the roof curves upward to join the chimney, creating a funnel. The sun heats ... is absorbed by the water within the dark solar pa...

Mustapha Hatti

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NREL: Concentrating Solar Power Research - Collector R&D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Energy Storage R&D Thermal Energy Storage R&D Featured Resource Learn more about NREL's capabilities in thermal storage and advanced heat transfer fluids. Thermal energy storage (TES) research at NREL focuses on reducing the costs of thermal storage and electricity from concentrating solar power (CSP) plants. NREL's TES effort contributes to these goals through materials and systems development, analysis, and modeling. CSP systems may include TES-a means of storing thermal energy for later use-to generate electricity any time when it is most needed and valuable, whether during the day, night, or cloudy intervals. Opportunities and Potential Impact TES usually reduces the levelized cost of electricity (LCOE) compared to a system without storage because of better utilization of the power block.

362

Green Power Network: Third-Party Solar Financing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On-site Renewable Energy Third-Party Solar Financing Third-Party Solar Financing Third-Party Ownership of Distributed Solar Power Systems Historically, the up-front cost of solar has discouraged many residential and commercial customers who may otherwise wish to generate their electricity with solar power. The provision of this initial investment through traditional financing arrangements can often lead to prohibitively high interest rates on loans for a solar system rendering the economics of the investment unfavorable. In the late 2000s, solar installers and developers began to develop the concept of providing solar electricity to a customer - or, the service of generating electricity from solar panels - without requiring that the customer own a solar electric system.

363

ADVANCED POWER SYSTEMS ASH BEHAVIOR IN POWER SYSTEMS  

SciTech Connect (OSTI)

The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: ? Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. ? Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. ? Identify the relationship between the temperature of critical viscosity (Tcv ) as measured in a viscometer and the crystallization occurring in the melt. ? Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. ? Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. ? Evaluate corrosion for alloys being used in supercritical combustion systems.

CHRISTOPHER J. ZYGARLICKE; DONALD P. MCCOLLOR; JOHN P. KAY; MICHAEL L. SWANSON

1998-09-01T23:59:59.000Z

364

DOE to Invest More than $5 Million for Concentrating Solar Power |  

Broader source: Energy.gov (indexed) [DOE]

DOE to Invest More than $5 Million for Concentrating Solar Power DOE to Invest More than $5 Million for Concentrating Solar Power DOE to Invest More than $5 Million for Concentrating Solar Power November 29, 2007 - 4:45pm Addthis Additional $7.2 Million Available to Help National Labs Commercialize Proven Technologies WASHINGTON, DC - U.S. Department of Energy (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner today announced DOE will invest $5.2 million in funding to support the development of low-cost Concentrating Solar Power (CSP). As part of the Department's technology transfer efforts, DOE will also make available a Technology Commercialization Development Fund (TCDF) of up to $7.2 million to three of DOE's National Laboratories to support commercialization of clean energy technologies. Together, these projects will help advance President Bush's

365

DOE to Invest More than $5 Million for Concentrating Solar Power |  

Broader source: Energy.gov (indexed) [DOE]

More than $5 Million for Concentrating Solar Power More than $5 Million for Concentrating Solar Power DOE to Invest More than $5 Million for Concentrating Solar Power November 29, 2007 - 4:45pm Addthis Additional $7.2 Million Available to Help National Labs Commercialize Proven Technologies WASHINGTON, DC - U.S. Department of Energy (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner today announced DOE will invest $5.2 million in funding to support the development of low-cost Concentrating Solar Power (CSP). As part of the Department's technology transfer efforts, DOE will also make available a Technology Commercialization Development Fund (TCDF) of up to $7.2 million to three of DOE's National Laboratories to support commercialization of clean energy technologies. Together, these projects will help advance President Bush's

366

Experimental Performance of a Solar Collector in Solar Chimney Power Plant System  

Science Journals Connector (OSTI)

Solar chimney power plant has been proposed as a device to economically generate electricity from solar energy in large scale in the future. There are many factors to influence on the performance of the solar collector. This paper describes details of ... Keywords: generate electricity, thermal storage material, pebbles, solar collector

Huilan Huang; Gang Li; Hua Zhang

2010-06-01T23:59:59.000Z

367

Development of a Solar-Powered Adsorption Cooling Tube  

Science Journals Connector (OSTI)

Solar energy shows much attraction for these scientists because it is clean, renewable, and environmentally protected. ... The disadvantages of the second generation solar-powered adsorption cooling tube are that (1) the heat loss from the solar collector is considerable, (2) because the condenser and evaporator are the same part of the solar cooling tube, the condensing heat significantly affects the refrigeration capacity in the condensing/chilled-water tank, and (3) the cooling water pipe cannot be maintained easily. ... A solar-powered adsorption refrigeration system consisting of solar cooling tubes has the advantages of a simple structure, low cost, and high efficiency. ...

Xiaodong Ma; Zhenyan Liu; Huizhong Zhao

2006-11-10T23:59:59.000Z

368

ADVANCED CO2 CYCLE POWER GENERATION  

SciTech Connect (OSTI)

Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2004-01-01T23:59:59.000Z

369

ADVANCED CO2 CYCLE POWER GENERATION  

SciTech Connect (OSTI)

Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2003-10-01T23:59:59.000Z

370

Capacity Value of Concentrating Solar Power Plants  

SciTech Connect (OSTI)

This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2011-06-01T23:59:59.000Z

371

NREL: Concentrating Solar Power Research - Data and Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data and Resources Data and Resources For concentrating solar power technologies, NREL features the following online solar radiation resource data and solar resource maps, as well as data for renewable energy power plants. Also see TroughNet's data and resources specifically for parabolic trough technology. Concentrating Solar Power Projects around the World NREL, in conjunction with SolarPACES (Solar Power and Chemical Energy Systems), maintains a database of CSP projects around the world with plants that are either operational, under construction, or under development. CSP technologies include parabolic trough, linear Fresnel reflector, power tower, and dish/engine systems. Each project profile includes background information, a listing of project participants, and data on the power-plant

372

Project Sponsors: California Energy CommissionADVANCED POWER & ENERGY www.apep.uci.edu  

E-Print Network [OSTI]

Project Sponsors: California Energy CommissionADVANCED POWER & ENERGY PROGRAM www coincident time period (i.e., hourly resolution of 2005). Wind, solar, geothermal, and hydroelectric The Renewable Energy Secure Community (RESCO) project is a program sponsored by the California Energy Commission

Mease, Kenneth D.

373

Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine  

E-Print Network [OSTI]

Geothermal 2.5 Wind 0.22 Solar 0.02 Coal 110 Natural Gas 107 Residential 50 Vehicle 39 Freight 40 Air 129.30am Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine electric drive Plug in Hybrid Electric Vehicle (P-HEVs), long range electric vehi cle (EV) and sm art grid

Levi, Anthony F. J.

374

Consumers Power, Inc. - Solar Energy System Rebate | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Inc. - Solar Energy System Rebate Inc. - Solar Energy System Rebate Consumers Power, Inc. - Solar Energy System Rebate < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate $3,000 for PV Program Info State Oregon Program Type Utility Rebate Program Rebate Amount SWH: $500/system PV: $500/kW Provider Consumers Power, Inc. Consumers Power, Inc. (CPI) offers rebates to its residential customers who install solar water heating systems or solar photovoltaic (PV) systems from October 1, 2012 to September 30, 2013. The rebate for solar water heaters is $500 for systems with a collector area greater than 31 square feet. Systems used for hot tubs or swimming pools are not eligible. The rebate for solar PV systems is $500 per kilowatt-DC (kW), with a maximum rebate

375

SES Calico Solar One Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Calico Solar One Project Solar Power Plant Calico Solar One Project Solar Power Plant Jump to: navigation, search Name SES Calico Solar One Project Solar Power Plant Facility SES Calico Solar One Project Sector Solar Facility Type Photovoltaics Facility Status Proposed Developer Stirling Energy Systems, Tessera Solar Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

376

Tonopah Airport Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Tonopah Airport Solar Power Plant Tonopah Airport Solar Power Plant Jump to: navigation, search Name Tonopah Airport Solar Power Plant Facility Tonopah Airport Solar Sector Solar Facility Type Concentrating Solar Power Developer Solar Millenium, LLC Location Nye County, Nevada Coordinates 38.5807111°, -116.0413889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5807111,"lon":-116.0413889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

377

Combined desalination and power generation using solar energy.  

E-Print Network [OSTI]

??Integrated desalination and power generation using solar energy is a prospective way to help solve the twin challenges of energy and fresh water shortage, while (more)

Zhao, Y

2009-01-01T23:59:59.000Z

378

Category:Concentrating Solar Power | Open Energy Information  

Open Energy Info (EERE)

This is the Concentrating Solar Power category. This category currently contains no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:ConcentratingSo...

379

Gansu Huadian Jiayuguan Solar Power | Open Energy Information  

Open Energy Info (EERE)

developer. A JV between China Huadian New Energy Development and Shanghai Aerospace Automobile Electromechanical Co Ltd. References: Gansu Huadian Jiayuguan Solar Power1 This...

380

National Laboratory Concentrating Solar Power Research and Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Concentrating Solar Power Research and Development Motivation The U.S. Department of Energy (DOE) launched the SunShot Initiative as a collaborative national endeavor to make...

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NREL: Concentrating Solar Power Research - NREL Forges Foundation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

targets with systems that can supply solar power on demand through the use of thermal energy storage. The thermal energy from the receiver can be stored and subsequently...

382

Sandia National Laboratories: PNM Distributed Energy Solar Power...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PNM Distributed Energy Solar Power Program Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution...

383

Parabolic Trough Solar Thermal Electric Power Plants (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the potential for parabolic trough solar thermal electric power plants, especially in the Southwestern U.S.

Not Available

2006-07-01T23:59:59.000Z

384

Solar Powering Your Community: A Guide for Local Governments...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Powering Your Community: A Guide for Local Governments, 2nd Edition (Fact Sheet), Solar Energy Technologies Program (SETP) This fact sheet outlines the content of the second...

385

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

ollection subsystem uses heliostats and a central receiverhr Installed Cost of the Heliostats* - Installed Cost of thein Chapter 4. Table 2-4. Heliostats Reference Solar Power

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

386

Sandia National Laboratories: character-izing solar-power-plant...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

character-izing solar-power-plant output variability Sandia PV Team Publishes Book Chapter On January 21, 2014, in Computational Modeling & Simulation, Energy, Modeling & Analysis,...

387

The system architecting process for a solar power satellite concept.  

E-Print Network [OSTI]

??This thesis discusses the system architecting process for a Solar Power Satellite (SPS) concept.The heuristic approach allows a spectrum of concepts to be narrowed to (more)

Bidwell, Joseph Grady

2006-01-01T23:59:59.000Z

388

Why did the solar power sector develop quickly in Japan? .  

E-Print Network [OSTI]

??The solar power sector grew quickly in Japan during the decade 1994 to 2003. During this period, annual installations increased 32-fold from 7MW in 1994 (more)

Rogol, Michael G

2007-01-01T23:59:59.000Z

389

Rock bed thermal storage for concentrating solar power plants.  

E-Print Network [OSTI]

??ENGLISH ABSTRACT: Concentrating solar power plants are a promising means of generating electricity. However, they are dependent on the sun as a source of energy, (more)

Allen, Kenneth Guy

2014-01-01T23:59:59.000Z

390

Analysis of solar power generation on California turkey ranches.  

E-Print Network [OSTI]

??The objective of this thesis is to conduct a net present value analysis of installing a solar power generation system on company owned turkey grow (more)

Palermo, Rick

2009-01-01T23:59:59.000Z

391

A Scheduling Algorithm for Consistent Monitoring Results with Solar Powered High-Performance Wireless Embedded Systems  

E-Print Network [OSTI]

A Scheduling Algorithm for Consistent Monitoring Results with Solar Powered High but critical task for solar powered wireless high power embedded systems. Our algorithm relies on an energy

Simunic, Tajana

392

Solar-Powered, School-Zone Safety | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar-Powered, School-Zone Safety Solar-Powered, School-Zone Safety Solar-Powered, School-Zone Safety November 8, 2010 - 9:00am Addthis Solar-powered flashing LED beacons are making Bethany, OK, schoolchildren safer by reminding drivers to abide by posted school-zone speeds. | Photo Courtesy of Bethany, OK | Solar-powered flashing LED beacons are making Bethany, OK, schoolchildren safer by reminding drivers to abide by posted school-zone speeds. | Photo Courtesy of Bethany, OK | Joshua DeLung What does this project do? $207,225 Recovery Act grant helps install 47 flashing beacons at schools. $7,560 avoided electric-bill costs yearly through use of solar technology. 50,000-hour life on LED beacons flashing 3 hours daily, 180 days each year. Nothing grabs drivers' attention quite like flashing lights - luckily,

393

Solar-Powered, School-Zone Safety | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar-Powered, School-Zone Safety Solar-Powered, School-Zone Safety Solar-Powered, School-Zone Safety November 8, 2010 - 9:00am Addthis Solar-powered flashing LED beacons are making Bethany, OK, schoolchildren safer by reminding drivers to abide by posted school-zone speeds. | Photo Courtesy of Bethany, OK | Solar-powered flashing LED beacons are making Bethany, OK, schoolchildren safer by reminding drivers to abide by posted school-zone speeds. | Photo Courtesy of Bethany, OK | Joshua DeLung What does this project do? $207,225 Recovery Act grant helps install 47 flashing beacons at schools. $7,560 avoided electric-bill costs yearly through use of solar technology. 50,000-hour life on LED beacons flashing 3 hours daily, 180 days each year. Nothing grabs drivers' attention quite like flashing lights - luckily,

394

Rocky Flats Site Expands Solar Power for Treating Groundwater | Department  

Broader source: Energy.gov (indexed) [DOE]

Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater April 17, 2013 - 1:26pm Addthis Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. DOE was able to minimize impacts to the habitat of a federally protected mouse and provide the potential for relatively easy relocation by mounting the solar panels on the side of the conex box that houses the batteries and other system equipment.

395

Rocky Flats Site Expands Solar Power for Treating Groundwater | Department  

Broader source: Energy.gov (indexed) [DOE]

Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater April 17, 2013 - 1:26pm Addthis Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. DOE was able to minimize impacts to the habitat of a federally protected mouse and provide the potential for relatively easy relocation by mounting the solar panels on the side of the conex box that houses the batteries and other system equipment.

396

Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting  

E-Print Network [OSTI]

J.B. , 2004: Probabilistic wind power forecasts using localforecast intervals for wind power output using NWP-predictedsources such as wind and solar power. Integration of this

Mathiesen, Patrick James

2013-01-01T23:59:59.000Z

397

Sandia National Laboratories: Concentrating Solar Power (CSP...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to, (1) novel research, development, and demonstration in reflector systems for efficient solar energy collection; (2) large-scale metrology; (3) receivers for solar-to-thermal...

398

Modeling and Simulation of Solar Chimney Power Plant with and without the Effect of Thermal Energy Storage Systems.  

E-Print Network [OSTI]

??A solar updraft tower power plant sometimes also called 'solar chimney' or just solar tower is a solar thermal power plant utilizing a (more)

Daba, Robera

2011-01-01T23:59:59.000Z

399

Powering the planet: Chemical challenges in solar energy utilization  

Science Journals Connector (OSTI)

...Chemical challenges in solar energy utilization 10...Department of Chemistry, Massachusetts Institute of Technology...renewable energy resources, solar energy is by far the...Future of Nuclear Power ( Massachusetts Institute of Technology...Washington, DC ). 13 Solar Energy Utilization Workshop...

Nathan S. Lewis; Daniel G. Nocera

2006-01-01T23:59:59.000Z

400

Solar and wind resource complementarity: Advancing options for renewable electricity integration in Ontario, Canada  

Science Journals Connector (OSTI)

In Ontario (Canada), the integration of renewable power is a priority policy goal. Since 2004, the circumstances under which the integration of renewable power is evaluated have changed due to successive changes in price as well as concerns that its over-production may add to grid congestion. This research investigates the value of increasing complementarity (both proximate and geographically dispersed) of wind and solar resources as a means by which electricity planners and researchers might advance electricity sustainability in Ontario. More specifically, this paper asks the following questions: 1) Does the combination of solar and wind resources in selected locations in Ontario serve to smooth out power production, i.e., decrease instances of both high and low values, as compared to either resource producing individually? 2) Can this smoothness be further improved by dispersing these resources geographically amongst locations? and 3) Does increasing the number of locations with solar and wind resources further smooth out power production? Three years (20032005) of synchronous, hourly measurements of solar irradiance and wind speeds from Environment Canadas Canadian Weather Energy and Engineering Data Sets (CWEEDS) are used to derive dimensionless indices for four locations in Ontario (Toronto, Wiarton, Sault Ste. Marie and Ottawa). These indices are used to develop three transparent and accessible methods of analysis: (1) graphical representation; (2) percentile ranking; and (3) using a theoretical maximum as a proxy for capacity. The article concludes that the combination of solar and wind within locations and amongst two locations improves smoothness in power production, as compared to when each resource is produced on its own; moreover, it is further improved once more than two resources and two locations are combined. However, there is neither further benefit, nor drawback, associated with the geographic dispersion of complementarity between solar in one location and wind in another, when compared to both resources in one location.

Christina E. Hoicka; Ian H. Rowlands

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Advanced Power Projects | Open Energy Information  

Open Energy Info (EERE)

Projects Projects Jump to: navigation, search Name Advanced Power Projects Place Fremont, California Zip 94539 Sector Efficiency Product Gas turbine efficiency company, developing a simplified combined cycle system to lower system fuel consumption and lower emissions. Coordinates 44.2605°, -88.880509° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2605,"lon":-88.880509,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

402

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Cecil. E. A. , Research on Dry-Type Cooling _T_o_w_e_r~s~f~oTower Type Wet-Cooled Power Plant Solar-Power Plant Dry-Cool

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

403

Wireless electricity (Power) transmission using solar based power satellite technology  

Science Journals Connector (OSTI)

In the near future due to extensive use of energy, limited supply of resources and the pollution in environment from present resources e.g. (wood, coal, fossil fuel) etc, alternative sources of energy and new ways to generate energy which are efficient, cost effective and produce minimum losses are of great concern. Wireless electricity (Power) transmission (WET) has become a focal point as research point of view and nowadays lies at top 10 future hot burning technologies that are under research these days. In this paper, we present the concept of transmitting power wirelessly to reduce transmission and distribution losses. The wired distribution losses are 70 75% efficient. We cannot imagine the world without electric power which is efficient, cost effective and produce minimum losses is of great concern. This paper tells us the benefits of using WET technology specially by using Solar based Power satellites (SBPS) and also focuses that how we make electric system cost effective, optimized and well organized. Moreover, attempts are made to highlight future issues so as to index some emerging solutions.

M Maqsood; M Nauman Nasir

2013-01-01T23:59:59.000Z

404

In Arizona, Helping Communities Realize the Promise of Solar Power |  

Broader source: Energy.gov (indexed) [DOE]

In Arizona, Helping Communities Realize the Promise of Solar Power In Arizona, Helping Communities Realize the Promise of Solar Power In Arizona, Helping Communities Realize the Promise of Solar Power May 15, 2012 - 3:07pm Addthis 1 of 4 Image: Darrylee Cohen 2 of 4 Image: Darrylee Cohen 3 of 4 Image: Darrylee Cohen 4 of 4 Image: Darrylee Cohen Phoenix, Arizona Greg Stanton Greg Stanton Mayor, City of Phoenix What are the key facts? The City of Phoenix launched Solar Phoenix 2, the largest city-sponsored residential solar program. Solar Phoenix 2 puts solar panels on 1,000 roofs in the city and saves families 10 to 15 percent in monthly energy costs. The program is expected to create more than 150 jobs and infuse $25 million into the local economy. Editor's Note: The opinions expressed within this guest post are those of Phoenix Mayor Greg Stanton.

405

Waverly Light and Power - Residential Solar Thermal Rebates | Department of  

Broader source: Energy.gov (indexed) [DOE]

Solar Thermal Rebates Solar Thermal Rebates Waverly Light and Power - Residential Solar Thermal Rebates < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $3,500 Program Info Start Date 07/01/2009 State Iowa Program Type Utility Rebate Program Rebate Amount 30/sq. foot of collector area Provider Waverly Light and Power Waverly Light and Power (WL&P) offers rebates for solar hot water heating systems to its residential customers. All purchases must be pre-approved through WL&P's solar water heater application process. In addition, residential customers must obtain a county-issued permit prior to installing a solar water heating system. There is a limit of one rebate per address. Funding is available until the rebate fund is exhausted.

406

San Joaquin Solar 1 & 2 Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

San Joaquin Solar 1 & 2 Solar Power Plant San Joaquin Solar 1 & 2 Solar Power Plant Jump to: navigation, search Name San Joaquin Solar 1 & 2 Solar Power Plant Facility San Joaquin Solar 1 & 2 Sector Solar Facility Type Hybrid Developer Martifer Renewables Location Fresno County, California Coordinates 36.9858984°, -119.2320784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.9858984,"lon":-119.2320784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

407

Projects To Develop Novel Monitoring Networks for Advanced Power Systems  

Broader source: Energy.gov (indexed) [DOE]

To Develop Novel Monitoring Networks for Advanced Power To Develop Novel Monitoring Networks for Advanced Power Systems Selected Projects To Develop Novel Monitoring Networks for Advanced Power Systems Selected September 1, 2010 - 1:00pm Addthis Washington, DC - Five projects that will develop technologically sophisticated monitoring networks for advanced fossil energy power systems have been selected for continued research by the U.S. Department of Energy (DOE). The projects will support efforts by the Office of Fossil Energy's (FE) Advanced Research--Coal Utilization Science (CUS) Program to study novel approaches in model development and validation; monitoring refractory health; and wireless, self-powered sensors for advanced, next-generation power systems. They will monitor the status of equipment, materials

408

Map of Solar Power Plants/Data | Open Energy Information  

Open Energy Info (EERE)

Solar Power Plants/Data Solar Power Plants/Data < Map of Solar Power Plants Jump to: navigation, search Download a CSV file of the table below: CSV FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate HeatRate WindTurbineManufacturer FacilityStatus AV Solar Ranch I Solar Power Plant Photovoltaics NextLight Renewable Power Antelope Valley, California 230 MW230,000 kW 230,000,000 W 230,000,000,000 mW 0.23 GW 2.3e-4 TW Agua Caliente Solar Power Plant Photovoltaics NextLight Renewable Power Yuma County, Arizona 280 MW280,000 kW 280,000,000 W 280,000,000,000 mW 0.28 GW 2.8e-4 TW Agua Caliente Solar Project Utility scale solar First Solar Yuma County, Arizona 290 MW290,000 kW 290,000,000 W 290,000,000,000 mW

409

A Method of Decreasing Power Output Fluctuation of Solar Chimney Power Generating Systems  

Science Journals Connector (OSTI)

Severe fluctuation of power output is a common problem in the various generating systems of renewable energies. The hybrid energy storage system with water and soil is adopted to decrease the fluctuation of solar chimney power generating systems in the ... Keywords: Solar chimney power generating system, power output fluctuation, hybrid energy storage layer, collector, chimney

Meng Fanlong; Ming Tingzhen; Pan Yuan

2011-01-01T23:59:59.000Z

410

CFD analysis for solar chimney power plants  

Science Journals Connector (OSTI)

Abstract Solar chimney power plants are investigated numerically using ANSYS Fluent and an in-house developed Computational Fluid Dynamics (CFD) code. Analytical scaling laws are verified by considering a large range of scales with tower heights between 1m (sub-scale laboratory model) and 1000m (largest envisioned plant). A model with approximately 6m tower height is currently under construction at the University of Arizona. Detailed time-dependent high-resolution simulations of the flow in the collector and chimney of the model provide detailed insight into the fluid dynamics and heat transfer mechanisms. Both transversal and longitudinal convection rolls are identified in the collector, indicating the presence of a RayleighBnardPoiseuille instability. Local separation is observed near the chimney inflow. The flow inside the chimney is fully turbulent.

Hermann F. Fasel; Fanlong Meng; Ehsan Shams; Andreas Gross

2013-01-01T23:59:59.000Z

411

Strategies in tower solar power plant optimization  

E-Print Network [OSTI]

A method for optimizing a central receiver solar thermal electric power plant is studied. We parametrize the plant design as a function of eleven design variables and reduce the problem of finding optimal designs to the numerical problem of finding the minimum of a function of several variables. This minimization problem is attacked with different algorithms both local and global in nature. We find that all algorithms find the same minimum of the objective function. The performance of each of the algorithms and the resulting designs are studied for two typical cases. We describe a method to evaluate the impact of design variables in the plant performance. This method will tell us what variables are key to the optimal plant design and which ones are less important. This information can be used to further improve the plant design and to accelerate the optimization procedure.

Ramos, A

2012-01-01T23:59:59.000Z

412

Martin Next Generation Solar Energy Center Solar Power Plant | Open Energy  

Open Energy Info (EERE)

Center Solar Power Plant Center Solar Power Plant Jump to: navigation, search Name Martin Next Generation Solar Energy Center Solar Power Plant Facility Martin Next Generation Solar Energy Center Sector Solar Facility Type Concentrating Solar Power Facility Status In Service Developer FPL Energy Location Martin County, Florida Coordinates 27.051214°, -80.553389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.051214,"lon":-80.553389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

STATEMENT OF CONSIDERATIONS REQUEST BY ABENGOA SOLAR INC. (ASI) FOR AN ADVANCE WAIVER OF  

Broader source: Energy.gov (indexed) [DOE]

GO 180036; W(A) 2011-056 GO 180036; W(A) 2011-056 ASI has requested a waiver of domestic and foreign patent rights of the United States of America in all subject inventions arising from its participation under the above referenced cooperative agreement entitled "Development of Advanced Polymeric Reflector for CSP Applications." According to the Statement of Project Objectives and AS I' s petition, the objective of the project funded by the cooperative agreement is "to develop and scale-up a previously demonstrated advanced solar reflector material (ASRM) [a polymeric reflective film] for use in Concentrating Solar Power (CSP) applications. This technology is promising both for it's [sic] potential lower cost to traditional reflectors, but also because the design flexibility and durability

414

Solana Generating Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Solar Power Plant Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Developer Abengoa Solar Location Gila Bend, Arizona Coordinates 32.916163°, -112.968727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.916163,"lon":-112.968727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

415

Burbank Water and Power - Solar Water Heater Rebate Program (California) |  

Broader source: Energy.gov (indexed) [DOE]

Burbank Water and Power - Solar Water Heater Rebate Program Burbank Water and Power - Solar Water Heater Rebate Program (California) Burbank Water and Power - Solar Water Heater Rebate Program (California) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State California Program Type Utility Rebate Program Rebate Amount $1,500 Provider Rebates Burbank Water and Power is providing incentives for the purchase of solar water heaters. Incentives are only available to residential customers with electric water heaters. There is a limit of one solar water heater per year per property. Applicants must provide access to their residence for a pre-inspection to verify the existing use of an electric water heater. Customers must comply with all code and permit requirements. More

416

Don Ana Sun Tower Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Don Ana Sun Tower Solar Power Plant Don Ana Sun Tower Solar Power Plant Jump to: navigation, search Name Don Ana Sun Tower Solar Power Plant Facility Don Ana Sun Tower Sector Solar Facility Type Concentrating Solar Power Developer NRG Energy/eSolar Location Dona Ana County, New Mexico Coordinates 32.485767°, -106.7234639° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.485767,"lon":-106.7234639,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

417

Alpine SunTower Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

SunTower Solar Power Plant SunTower Solar Power Plant Jump to: navigation, search Name Alpine SunTower Solar Power Plant Facility Alpine SunTower Sector Solar Facility Type Concentrating Solar Power Developer NRG Energy/eSolar Location Lancaster, California Coordinates 34.6867846°, -118.1541632° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.6867846,"lon":-118.1541632,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power  

E-Print Network [OSTI]

Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power Over the last thirty years, more than 100 life cycle assessments (LCAs) have been conducted and published for a variety of utility-scale concentrating solar power (CSP) systems. These LCAs have yielded wide-ranging results. Variation could

419

Thermal Stress and Reliability for Advanced Power Electronics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Performance and Reliability of Bonded Interfaces Physics of Failure of Electrical Interconnects Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines...

420

Advanced Power Electronics and Electric Motors R&D  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies to the Marketplace Advancing Power Electronics and Electric Motors More Fuel Efficient Vehicles on the Road * Ames Laboratory * Argonne National Laboratory * Oak...

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Minnesota Power - Solar-Thermal Water Heating Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Minnesota Power - Solar-Thermal Water Heating Rebate Program Minnesota Power - Solar-Thermal Water Heating Rebate Program Minnesota Power - Solar-Thermal Water Heating Rebate Program < Back Eligibility Commercial Industrial Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Single-family unit: $2,000 Two- to three-family units: $4,000 Multi-family units (four or more): $10,000 Businesses: $25,000 Program Info Start Date 03/2010 Expiration Date 12/31/2013 State Minnesota Program Type Utility Rebate Program Rebate Amount 25% of costs Provider Minnesota Power Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings; $10,000 for buildings

422

Linear Concentrator System Basics for Concentrating Solar Power |  

Broader source: Energy.gov (indexed) [DOE]

Linear Concentrator System Basics for Concentrating Solar Power Linear Concentrator System Basics for Concentrating Solar Power Linear Concentrator System Basics for Concentrating Solar Power August 20, 2013 - 4:45pm Addthis Photo of numerous parallel rows of parabolic trough collectors tracking the sun. Cooling towers and other generator equipment are in the midst of the troughs, and two water tanks are in the background. The Solar Electric Generating Station IV power plant in California consists of many parallel rows of parabolic trough collectors that track the sun. The cooling towers can be seen with the water plume rising into the air, and white water tanks are in the background. Credit: Sandia National Laboratory / PIX 14955 Linear concentrating solar power (CSP) collectors capture the sun's energy with large mirrors that reflect and focus the sunlight onto a linear

423

Solar thermal power plants for the Spanish electricity market  

Science Journals Connector (OSTI)

Solar thermal power plants are at present the cheapest technology for solar electricity production. At good sites Levelised Electricity Costs (LEC) of 11 Ct/kWh have been achieved in commercially operated power plants. Economy of scale and further technical improvements will reduce the LEC for future projects. On the 27th of March 2004 in Spain the existing feed-in-law has been modified in order to support the erection of solar thermal power plants and thus make use of the huge solar potential of Spain. A payment of approx. 21 Ct/kWh, guaranteed for the first 25 years of operation, makes the erection and operation of solar thermal power plants very profitable for possible investors on the Spanish peninsula. This paper will present the present situation in Spain and the planned power plant projects. For one specific project the set-up is presented in more detail.

M. Eck; F. Rueda; S. Kronshage; C. Schillings; F. Trieb; E. Zarza

2007-01-01T23:59:59.000Z

424

Reliability Modeling for the Advanced Electric Power Grid  

Science Journals Connector (OSTI)

The advanced electric power grid promises a self-healing infrastructure using distributed, ... and control network that can dynamically change the power grid to achieve higher dependability. The goal is ... them ...

Ayman Z. Faza; Sahra Sedigh

2007-01-01T23:59:59.000Z

425

Optimization of advanced telecommunication algorithms from power and performance perspective  

E-Print Network [OSTI]

This thesis investigates optimization of advanced telecommunication algorithms from power and performance perspectives. The algorithms chosen are MIMO and LDPC. MIMO is implemented in custom ASIC for power optimization ...

Khan, Zahid

2011-11-22T23:59:59.000Z

426

Police Station Triples Solar Power - and Savings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Police Station Triples Solar Power - and Savings Police Station Triples Solar Power - and Savings Police Station Triples Solar Power - and Savings July 19, 2010 - 11:00am Addthis North Community Police Substation upgraded its solar energy system with the help of Recovery Act funds. The city’s electric bill will be about $5,000 cheaper. | Courtesy of the City of Henderson North Community Police Substation upgraded its solar energy system with the help of Recovery Act funds. The city's electric bill will be about $5,000 cheaper. | Courtesy of the City of Henderson Stephen Graff Former Writer & editor for Energy Empowers, EERE The Henderson, Nev., police department is going above and beyond the call of duty by tripling the size of its solar panel system on its LEED-certified station, saving the city thousands of dollars in energy

427

Solar and Wind Powering Wyoming Home | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar and Wind Powering Wyoming Home Solar and Wind Powering Wyoming Home Solar and Wind Powering Wyoming Home March 17, 2010 - 4:41pm Addthis Solar panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Solar panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Stephen Graff Former Writer & editor for Energy Empowers, EERE Terry Sandstrom never thought he would run his house entirely on renewable energy, but when faced with a $100,000 price tag to get connected to the grid, he had to look at alternative options. The man who spent his entire life in houses pulling energy from the grid now has 12 solar panels on his front lawn and a wind turbine in the backyard."I had no involvement in the renewable energy process until I got up here," says Terry, who moved from

428

Solar and Wind Powering Wyoming Home | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar and Wind Powering Wyoming Home Solar and Wind Powering Wyoming Home Solar and Wind Powering Wyoming Home March 17, 2010 - 4:41pm Addthis Solar panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Solar panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Stephen Graff Former Writer & editor for Energy Empowers, EERE Terry Sandstrom never thought he would run his house entirely on renewable energy, but when faced with a $100,000 price tag to get connected to the grid, he had to look at alternative options. The man who spent his entire life in houses pulling energy from the grid now has 12 solar panels on his front lawn and a wind turbine in the backyard."I had no involvement in the renewable energy process until I got up here," says Terry, who moved from

429

Rankline-Brayton engine powered solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2012-03-13T23:59:59.000Z

430

Rankine-Brayton engine powered solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2009-12-29T23:59:59.000Z

431

Historic Virginia Market Powered by Solar Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Historic Virginia Market Powered by Solar Energy Historic Virginia Market Powered by Solar Energy Historic Virginia Market Powered by Solar Energy November 3, 2010 - 11:00am Addthis Solar panels at the Community Market Building in Danville, Va., have generated 36.4 MWh of energy since March. | Photo Courtesy of Danville Solar panels at the Community Market Building in Danville, Va., have generated 36.4 MWh of energy since March. | Photo Courtesy of Danville Joshua DeLung The historic building where area farmers sell produce straight from the field to consumers is now home to Danville, Virg.'s first renewable energy project - a 154-panel solar energy system. The city, steeped in history, has taken this significant leap toward a new energy future by using a $202,000 Energy Efficiency and Conservation Block

432

Solar Power Generates Big Savings in Salinas, California | Department of  

Broader source: Energy.gov (indexed) [DOE]

Solar Power Generates Big Savings in Salinas, California Solar Power Generates Big Savings in Salinas, California Solar Power Generates Big Savings in Salinas, California October 15, 2012 - 4:40pm Addthis A portion of the new 141 kilowatt solar photovoltaic energy system at Monterey County’s Laurel Yard Complex in Salinas, California. The system is expected to save the county thousands of dollars a year in energy costs. Click here to see a panoramic view of the entire solar array. | Photo courtesy of Santa Cruz Westside Electric, DBA Sandbar. A portion of the new 141 kilowatt solar photovoltaic energy system at Monterey County's Laurel Yard Complex in Salinas, California. The system is expected to save the county thousands of dollars a year in energy costs.

433

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

434

Comparison of conventional solar chimney power plants and sloped solar chimney power plants using second law analysis  

Science Journals Connector (OSTI)

Abstract In the present paper the performance of solar chimney power plants based on second law analysis is investigated for various configurations. A comparison is made between the conventional solar chimney power plant (CSCPP) and the sloped solar chimney power plant (SSCPP). The appropriate entropy generation number and second-law efficiency for solar chimney power plants are proposed in this study. Results show that there is the optimum collector size that provides the minimum entropy generation and the maximum second-law efficiency. The second-law efficiency of both systems increases with the increasing of the system height. The study reveals the influence of various effects that change pressure and temperature of the systems. It was found that SSCPP is thermodynamically better than CSCPP for some configurations. The results obtained here are expected to provide information that will assist in improving the overall efficiency of the solar chimney power plant.

Atit Koonsrisuk

2013-01-01T23:59:59.000Z

435

Energy Department Support Brings Game-Changing Advancements in Solar Energy  

Broader source: Energy.gov (indexed) [DOE]

Department Support Brings Game-Changing Advancements in Department Support Brings Game-Changing Advancements in Solar Energy Energy Department Support Brings Game-Changing Advancements in Solar Energy November 29, 2012 - 10:37am Addthis Record-Breaking Solar 1 of 5 Record-Breaking Solar This concentrating photovoltaic (CPV) cell -- which uses a focused lens to magnify light to 418 times the intensity of the sun -- earned an R&D100 Award and set a new world record of 43.5 percent for solar cell conversion efficiency. The technology is based on high-efficiency multijunction research pioneered by the National Renewable Energy Laboratory (NREL). | Photo by Daniel Derkacs/Solar Junction. Date taken: 2012-11-29 09:21 Solar Innovation 2 of 5 Solar Innovation Solar Junction's record-breaking SJ3 solar cell is based on EERE-supported

436

Energy Department Support Brings Game-Changing Advancements in Solar Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Support Brings Game-Changing Advancements in Energy Department Support Brings Game-Changing Advancements in Solar Energy Energy Department Support Brings Game-Changing Advancements in Solar Energy November 29, 2012 - 10:37am Addthis Record-Breaking Solar 1 of 5 Record-Breaking Solar This concentrating photovoltaic (CPV) cell -- which uses a focused lens to magnify light to 418 times the intensity of the sun -- earned an R&D100 Award and set a new world record of 43.5 percent for solar cell conversion efficiency. The technology is based on high-efficiency multijunction research pioneered by the National Renewable Energy Laboratory (NREL). | Photo by Daniel Derkacs/Solar Junction. Date taken: 2012-11-29 09:21 Solar Innovation 2 of 5 Solar Innovation Solar Junction's record-breaking SJ3 solar cell is based on EERE-supported

437

How Do Wind and Solar Power Affect Grid Operations: The Western Wind and Solar Integration Study  

SciTech Connect (OSTI)

The Western Wind and Solar Integration Study is one of the largest regional wind and solar integration studies to date, examining the operational impact of up to 35% wind, photovoltaics, and concentrating solar power on the WestConnect grid in Arizona, Colorado, Nevada, New Mexico, and Wyoming. This paper reviews the scope of the study, the development of wind and solar datasets, and the results to date on three scenarios.

Lew, D.; Milligan, M.; Jordan, G.; Freeman, L.; Miller, N.; Clark, K.; Piwko, R.

2009-01-01T23:59:59.000Z

438

Sensitivity of Concentrating Solar Power Trough Performance, Cost and Financing with Solar Advisor Model  

SciTech Connect (OSTI)

A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM) was developed to support the federal R&D community and the solar industry. This model, developed by staff at NREL and Sandia National Laboratory, is able to model the costs, finances, and performance of concentrating solar power and photovoltaics (PV). Currently, parabolic troughs and concentrating PV are the two concentrating technologies modeled within the SAM environment.

Blair, N.; Mehos, M.; Christensen, C.

2008-03-01T23:59:59.000Z

439

Vehicle Technologies Office: 2008 Advanced Power Electronics...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies An integrated approach towards efficient, scalable, and low...

440

GV1 Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

GV1 Solar Power Plant GV1 Solar Power Plant Jump to: navigation, search Name GV1 Solar Power Plant Facility GV1 Sector Solar Facility Type Concentrating Solar Power Developer Greenvolts Location Tracy, California Coordinates 37.7396513°, -121.4252227° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7396513,"lon":-121.4252227,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

SEGS VI Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

SEGS VI Solar Power Plant SEGS VI Solar Power Plant Jump to: navigation, search Name SEGS VI Solar Power Plant Facility SEGS VI Sector Solar Facility Type Concentrating Solar Power Developer Luz Location Kramer Junction, California Coordinates 34.9925°, -117.540833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9925,"lon":-117.540833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

442

Dillard Road Solar Power Facility | Open Energy Information  

Open Energy Info (EERE)

Dillard Road Solar Power Facility Dillard Road Solar Power Facility Jump to: navigation, search Name Dillard Road Solar Power Facility Facility Dillard Road Solar Power Facility Sector Solar Facility Type Photovoltaics Facility Status In Service Developer Recurrent Energy Energy Purchaser Sacramento Municipal Utility District Location Elk Grove, California Coordinates 38.465275°, -121.17847° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.465275,"lon":-121.17847,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

443

Golden Hills Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Hills Solar Power Plant Hills Solar Power Plant Jump to: navigation, search Name Golden Hills Solar Power Plant Facility Golden Hills Solar Sector Solar Facility Type Photovoltaic Developer PowerWorks Location Alameda County, California Coordinates 37.6016892°, -121.7195459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6016892,"lon":-121.7195459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

444

SEGS IX Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

IX Solar Power Plant IX Solar Power Plant Jump to: navigation, search Name SEGS IX Solar Power Plant Facility SEGS IX Sector Solar Facility Type Concentrating Solar Power Developer Luz Location Harper Lake, California Coordinates 35.0305°, -117.29° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.0305,"lon":-117.29,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

445

Alameda Municipal Power - Solar Photovoltaics Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Solar Photovoltaics Rebate Program Solar Photovoltaics Rebate Program Alameda Municipal Power - Solar Photovoltaics Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Program Info Expiration Date December 31, 2017 State California Program Type Utility Rebate Program Rebate Amount Program is closed Provider Alameda Power and Telecom '''''Note: Alameda Municipal Power had a budget of $4.2 million to support this program. The utility has allocated the full budget and is no longer accepting applications. The information below is provided for historical purposes. ''''' Alameda Municipal Power offers an incentive program to customers who install solar photovoltaic (PV) systems. Rebates will be provided to commercial and residential customers on a per-watt AC basis, which, in

446

SEGS IV Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Solar Power Plant Solar Power Plant Jump to: navigation, search Name SEGS IV Solar Power Plant Facility SEGS IV Sector Solar Facility Type Concentrating Solar Power Developer Luz Location Kramer Junction, California Coordinates 34.9925°, -117.540833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9925,"lon":-117.540833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

447

Dominion Virginia Power - Solar Purchase Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dominion Virginia Power - Solar Purchase Program Dominion Virginia Power - Solar Purchase Program Dominion Virginia Power - Solar Purchase Program < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Multi-Family Residential Nonprofit Residential State Government Savings Category Solar Buying & Making Electricity Program Info Start Date 6/20/2013 Expiration Date 6/20/2018 State Virginia Program Type Performance-Based Incentive Rebate Amount $0.15/kWh In March 2013, the Virginia State Corporation Commission approved a rate program for Dominion Virginia Power customers that install solar PV systems. The rate was approved at 15 cents per kWh with a 5 year contract. Both residential and nonresidential customers are eligible for the program. The program is capped 3 MW, with 60% of the capacity reserved for

448

SEGS VIII Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

VIII Solar Power Plant VIII Solar Power Plant Jump to: navigation, search Name SEGS VIII Solar Power Plant Facility SEGS VIII Sector Solar Facility Type Concentrating Solar Power Developer Luz Location Harper Lake, California Coordinates 35.0305°, -117.29° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.0305,"lon":-117.29,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

Bruceville Road Solar Power Facility | Open Energy Information  

Open Energy Info (EERE)

Bruceville Road Solar Power Facility Bruceville Road Solar Power Facility Jump to: navigation, search Name Bruceville Road Solar Power Facility Facility Bruceville Solar Power Facility Sector Solar Facility Type Photovoltaics Facility Status In Service Developer Recurrent Energy Energy Purchaser Sacramento Municipal Utility District Location Elk Grove, California Coordinates 38.347479°, -121.412498° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.347479,"lon":-121.412498,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

Concentrating Solar Power Tower System Basics | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

which, in turn, is used in a conventional turbine generator to produce electricity. Some power towers use watersteam as the heat-transfer fluid. Other advanced designs are...

451

Sandia National Laboratories: Advanced Materials Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

452

NREL: Vehicles and Fuels Research - Advanced Power Electronics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Search More Search Options Site Map The electric drive system is the technology foundation for hybrid electric and fuel cell vehicles. That's why NREL's Advanced Power Electronics project supports and promotes the design, development, and demonstration of power electronic components and systems that will overcome major technical barriers to the commercialization of hybrid, advanced internal combustion, and fuel cell vehicle technologies. In support of DOE's Vehicle Technologies Office, our researchers focus on developing advanced power electronics and electric machinery technologies that improve reliability, efficiency, and ruggedness, and dramatically decrease systems costs for advanced vehicles. Key components for these vehicles include the motor controller, DC to DC converters, and inverters

453

Project Sponsors: California Energy Commission Advanced Power and Energy Program  

E-Print Network [OSTI]

Project Sponsors: California Energy Commission Advanced Power and Energy Program ADVANCED POWER by the California Energy Commission (CEC) in its 2012 solicitation After the intersections were scored, Voronoi & ENERGY PROGRAM www.apep.uci.edu RESULTS For each of the specified 68 station locations, nearby major

Mease, Kenneth D.

454

System and method for advanced power management  

DOE Patents [OSTI]

A power management system is provided that includes a power supply means comprising a plurality of power supply strings, a testing means operably connected to said plurality of power supply strings for evaluating performance characteristics of said plurality of power supply strings, and a control means for monitoring power requirements and comprising a switching means for controlling switching of said plurality of power supply strings to said testing means.

Atcitty, Stanley (Albuquerque, NM); Symons, Philip C. (Surprise, AZ); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM)

2009-07-28T23:59:59.000Z

455

E-Print Network 3.0 - advanced nuclear power Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: advanced nuclear power Page: << < 1 2 3 4 5 > >> 1 Nuclear Engineering Graduate Program Summary: Power...

456

Analysis of advanced solar hybrid desiccant cooling systems for buildings  

SciTech Connect (OSTI)

This report describes an assessment of the energy savings possible from developing hybrid desiccant/vapor-compression air conditioning systems. Recent advances in dehumidifier design for solar desiccant cooling systems have resulted in a dehumidifier with a low pressure drop and high efficiency in heat and mass transfer. A recent study on hybrid desiccant/vapor compression systems showed a 30%-80% savings in resource energy when compared with the best conventional systems with vapor compression. A system consisting of a dehumidifier with vapor compression subsystems in series was found to be the simplest and best overall performer.

Schlepp, D.; Schultz, K.

1984-10-01T23:59:59.000Z

457

Test and evaluation of a solar powered gas turbine system  

Science Journals Connector (OSTI)

This paper describes the test and the results of a first prototype solar powered gas turbine system, installed during 2002 in the CESA-1 tower facility at Plataforma Solar de Almera (PSA) in Spain. The main goals of the project were to develop a solar receiver cluster able to provide pressurized air of 1000C and solve the problems arising from the coupling of the receivers with a conventional gas turbine to demonstrate the operability of the system. The test set-up consists of the heliostat field of the CESA-1 facility providing the concentrated solar power, a pressurized solar receiver cluster of three modules of 400kWth each which convert the solar power into heat, and a modified helicopter engine (OST3) with a generator coupled to the grid. The first test phase at PSA started in December 2002 with the goal to reach a temperature level of 800C at the combustor air inlet by the integration of solar energy. This objective was achieved by the end of this test phase in March 2003, and the system could be operated at 230kWe power to grid without major problems. In the second test phase from June 2003 to August 2003 the temperature level was increased to almost 1000C. The paper describes the system configuration, the component efficiencies and the operation experiences of the first 100h of solar operation of this very successful first test of a solar operated Brayton gas turbine system.

Peter Heller; Markus Pfnder; Thorsten Denk; Felix Tellez; Antonio Valverde; Jess Fernandez; Arik Ring

2006-01-01T23:59:59.000Z

458

Corona Department of Water and Power - Solar Partnership Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Corona Department of Water and Power - Solar Partnership Rebate Corona Department of Water and Power - Solar Partnership Rebate Program Corona Department of Water and Power - Solar Partnership Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential:$3,660 Commercial: $30,500 Program Info State California Program Type Utility Rebate Program Rebate Amount $1.22 per watt-AC Provider Corona Department of Water and Power Corona Department of Water and Power is providing rebates for residential and commercial photovoltaic (PV) systems. The rebate amount for 2013 is $1.22 per watt up to $3,660 for residential systems and $30,500 for commercial systems. Customers must submit an application and receive approval prior to beginning the installation. See website above for

459

The Year of Concentrating Solar Power: Five New Plants to Power America with Clean Energy  

Office of Energy Efficiency and Renewable Energy (EERE)

Learn about a new report that explains why 2014 is the year for concentrating solar power in the U.S.

460

E-Print Network 3.0 - ace solar occultation Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

solar occultation Search Powered by Explorit Topic List Advanced Search Sample search results for: ace solar occultation Page: << < 1 2 3 4 5 > >> 1 Solar Occultation Measurements...

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Amargosa Farm Road Solar Energy Project Solar Power Plant | Open Energy  

Open Energy Info (EERE)

Amargosa Farm Road Solar Energy Project Solar Power Plant Amargosa Farm Road Solar Energy Project Solar Power Plant Jump to: navigation, search Name Amargosa Farm Road Solar Energy Project Solar Power Plant Facility Amargosa Farm Road Solar Energy Project Sector Solar Facility Type Concentrating Solar Power Developer Solar Millenium, LLC, MAN Ferrostaal Inc Location Nye County, Nevada Coordinates 38.5807111°, -116.0413889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5807111,"lon":-116.0413889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

462

Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint  

SciTech Connect (OSTI)

Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The results show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.

Zhang, J.; Hodge, B. M.; Florita, A.; Lu, S.; Hamann, H. F.; Banunarayanan, V.

2013-10-01T23:59:59.000Z

463

SCE Roof Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

SCE Roof Project Solar Power Plant SCE Roof Project Solar Power Plant Jump to: navigation, search Name SCE Roof Project Solar Power Plant Facility SCE Roof Project Sector Solar Facility Type Photovoltaic Developer First Solar Location California Coordinates 36.778261°, -119.4179324° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.778261,"lon":-119.4179324,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

464

Cimarron I Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

I Solar Power Plant I Solar Power Plant Jump to: navigation, search Name Cimarron I Solar Power Plant Facility Cimarron I Sector Solar Facility Type Photovoltaic Developer First Solar Location Colfax County, New Mexico Coordinates 36.5799757°, -104.4723301° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.5799757,"lon":-104.4723301,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

465

Leshan Xintianyuan Solar Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Leshan Xintianyuan Solar Power Co Ltd Leshan Xintianyuan Solar Power Co Ltd Jump to: navigation, search Name Leshan Xintianyuan Solar Power Co Ltd Place Leshan, Sichuan Province, China Sector Solar Product Producer for wafer, PV cell, modules and related solar PV system. Coordinates 29.56921°, 103.759918° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.56921,"lon":103.759918,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

466

Silicon Valley Power - Solar Electric Buy Down Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Solar Electric Buy Down Program Solar Electric Buy Down Program Silicon Valley Power - Solar Electric Buy Down Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $20,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Incentives step down over time as installed capacity goals are met. Check program web site for current incentive level. '''Rebate levels as of 9/20/12:''' Residential: $2.00/watt AC Commercial (up to 100 kW): $1.10/watt AC Commercial (>100 kW to 1 MW): $0.15/kWh for 5 years Provider Silicon Valley Power Silicon Valley Power (SVP) offers incentives for the installation of new grid-connected solar electric (photovoltaic, or PV) systems. Incentive levels will step down over the life of the program as certain installed

467

Emcore/SunPeak Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Emcore/SunPeak Solar Power Plant Emcore/SunPeak Solar Power Plant < Emcore Jump to: navigation, search Name Emcore/SunPeak Solar Power Plant Facility Emcore/SunPeak Sector Solar Facility Type Concentrating Photovoltaic Developer SunPeak Solar Location Albuquerque, New Mexico Coordinates 35.0844909°, -106.6511367° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.0844909,"lon":-106.6511367,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

468

Kinmac Solar formerly Lucky Power Technology Co Ltd | Open Energy  

Open Energy Info (EERE)

Kinmac Solar formerly Lucky Power Technology Co Ltd Kinmac Solar formerly Lucky Power Technology Co Ltd Jump to: navigation, search Name Kinmac Solar (formerly Lucky Power Technology Co Ltd) Place Hsinchu, Taiwan Sector Solar Product Taiwan-based manufacturer of solar modules, chargers, inverters, batteries and related products. Coordinates 24.69389°, 121.148064° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.69389,"lon":121.148064,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

469

Americans for Solar Power ASPv | Open Energy Information  

Open Energy Info (EERE)

ASPv ASPv Jump to: navigation, search Name Americans for Solar Power (ASPv) Place Tempe, Arizona Zip 85282 Sector Solar Product Americans for Solar Power (ASPv) strives to make solar power economic and convenient for American electricity consumers to generate and consume their own solar electricity. Coordinates 33.42551°, -111.937419° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.42551,"lon":-111.937419,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

470

Desert Sunlight Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Sunlight Solar Power Plant Sunlight Solar Power Plant Jump to: navigation, search Name Desert Sunlight Solar Power Plant Facility Desert Sunlight Sector Solar Facility Type Photovoltaic Developer First Solar Location Desert Center, California Coordinates 33.7541038°, -115.3311778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7541038,"lon":-115.3311778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

471

Burbank Water and Power - Residential and Commercial Solar Support Program  

Broader source: Energy.gov (indexed) [DOE]

Burbank Water and Power - Residential and Commercial Solar Support Burbank Water and Power - Residential and Commercial Solar Support Program Burbank Water and Power - Residential and Commercial Solar Support Program < Back Eligibility Commercial Industrial Low-Income Residential Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate Maximum payment of 400,000 per year for performance-based incentives Program Info Start Date 1/1/2010 Expiration Date 12/31/2016 State California Program Type Utility Rebate Program Rebate Amount PV rebates will be awarded via lottery on August 12, 2013 Residential PV: $1.28/W CEC-AC Commercial PV (less than 30 kW): $0.97/W CEC-AC Commercial PV (30 kW or larger): ineligible at this time Solar Water Heaters (residential domestic hot water only; not pools):

472

Solaren Space Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Solaren Space Solar Power Plant Solaren Space Solar Power Plant Jump to: navigation, search Name Solaren Space Solar Power Plant Facility Solaren Space Solar Sector Solar Facility Type Photovoltaic Developer Solaren Corp Generating Capacity (MW) 200.0200 MW 200,000 kW 200,000,000 W 200,000,000,000 mW 0.2 GW References [1] Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

473

Esar Solar Power Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Esar Solar Power Pvt Ltd Esar Solar Power Pvt Ltd Jump to: navigation, search Name Esar Solar Power Pvt Ltd Place Jaipur, Rajasthan, India Sector Solar Product Jaipur-based solar project developer. Coordinates 26.89876°, 75.79636° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.89876,"lon":75.79636,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

474

Concentrating Solar Power | Department of Energy  

Office of Environmental Management (EM)

technologies use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. Thermal energy can then be used to produce...

475

Powering of a Solar Heated Swimming Pool  

Science Journals Connector (OSTI)

To drive the pumps of a 2.100 m2 solar thermal system that heats an outdoors swimming pool. This need is hourly in phase with...

Marc Van Gysel

1984-01-01T23:59:59.000Z

476

Sandia National Laboratories: Solar Power International  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2013 On September 24, 2013, in Conferences, Energy, Events, News & Events, Renewable Energy, Seminars & Conferences, Solar, Workshops Sandia will host PV Bankability workshop...

477

Sandia National Laboratories: Solar Power International (SPI...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Workshop On September 10, 2012, in Energy, News, Partnership, Photovoltaic, Renewable Energy, Solar Achieving High Penetrations of PV: Streamlining Interconnection and Managing...

478

Force-optimized alignment for optical control of the Advanced Technology Solar Telescope  

Science Journals Connector (OSTI)

We present formalism and analysis of three active alignment reconstruction techniques applied to the Advanced Technology Solar Telescope. The three reconstructors generate optical...

Upton, Robert; Cho, Myung; Rimmele, Thomas

2010-01-01T23:59:59.000Z

479

Advanced Heat/Mass Exchanger Technology for Geothermal and solar Renewable Energy Systems  

Broader source: Energy.gov [DOE]

Advanced Heat/Mass Exchanger Technology for Geothermal and solar Renewable Energy Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

480

PS10 Solar Power Tower Xi Jing, Fang  

E-Print Network [OSTI]

the solar energy to the grid in 2007 Operating cash flow 1.4 millions in 2007.Operating cash flow 1PS10 Solar Power Tower Xi Jing, Fang #12;Overview Magnitudes , Cost & TechnologiesMagnitudes , Cost Technological ,Social Problems and PolicyTechnological ,Social Problems and Policy ChallengesChallenges #12

Prevedouros, Panos D.

Note: This page contains sample records for the topic "advanced solar power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Advanced Technology Solar Telescope 4.2 m Off-axis Primary Mirror Fabrication  

Science Journals Connector (OSTI)

Advanced optical surfacing technologies are applied for the Advanced Technology Solar Telescope 4.2 m off-axis primary mirror fabrication. A newly developed Stressed lap and IR...

Kim, Dae Wook; Oh, Chang Jin; Su, Peng; Burge, James H

482

Turbine layout for and optimization of solar chimney power conversion units.  

E-Print Network [OSTI]

??ENGLISH ABSTRACT: The power conversion unit of a large solar chimney power plant converts the fluid power, first into mechanical power, and then into electrical (more)

Fluri, Thomas Peter

2008-01-01T23:59:59.000Z

483

Long Island Power Authority - Residential Solar Water Heating Rebate  

Broader source: Energy.gov (indexed) [DOE]

Long Island Power Authority - Residential Solar Water Heating Long Island Power Authority - Residential Solar Water Heating Rebate Program Long Island Power Authority - Residential Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,500 or 50% of installed cost; $2,000 for systems purchased by 12/31/13 Program Info Funding Source LIPA Efficiency Long Island Program Start Date December 2010 State New York Program Type Utility Rebate Program Rebate Amount $20 per kBTU (based on SRCC collector rating) Bonus Incentive for systems purchased by 12/31/13: 2 Collector system: $500 bonus rebate 1 Collector system: $250 bonus rebate Provider Long Island Power Authority '''''Note: For system purchased by December 31, 2013, LIPA is providing a

484

Madison Gas and Electric - Clean Power Partner Solar Buyback Program |  

Broader source: Energy.gov (indexed) [DOE]

Madison Gas and Electric - Clean Power Partner Solar Buyback Madison Gas and Electric - Clean Power Partner Solar Buyback Program Madison Gas and Electric - Clean Power Partner Solar Buyback Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info Start Date 03/06/2007 (systems installed prior to this date do not qualify) State Wisconsin Program Type Performance-Based Incentive Rebate Amount $0.25/kWh Provider Madison Gas and Electric '''''The Clean Power Partners Program has reached the 1 MW cap. Applicants can be placed on a waiting list or participate in MGE's [http://www.mge.com/Home/rates/cust_gen.htm net metering program].''''' Customer-generators enrolled in the Madison Gas and Electric (MGE) green

485

High Plains Ranch Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

High Plains Ranch Solar Power Plant High Plains Ranch Solar Power Plant Jump to: navigation, search Name High Plains Ranch Solar Power Plant Facility High Plains Ranch Sector Solar Facility Type Photovoltaic Developer Sun Power Location Carizzo Plain, California Coordinates 35.1913858°, -119.7260983° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1913858,"lon":-119.7260983,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

486

Linear Concentrator System Basics for Concentrating Solar Power...  

Office of Environmental Management (EM)

towers and other generator equipment are in the midst of the troughs, and two water tanks are in the background. The Solar Electric Generating Station IV power plant in...

487

Category:Solar Power in China | Open Energy Information  

Open Energy Info (EERE)

3 pages are in this category, out of 3 total. A All Solar PV C China Guangdong Nuclear Power Company China Guodian Corporation Retrieved from "http:en.openei.orgw...

488

Analytic model of solar power plant with a Stirling engine  

Science Journals Connector (OSTI)

An analytic model is proposed of a solar power plant (SPP) with a Stirling engine that is based on the isothermal model of the Stirling engine (SE) working process and is improved...

I. A. Tursunbaev

2007-03-01T23:59:59.000Z

489

Excise Tax Deduction for Solar- or Wind-Powered Systems  

Broader source: Energy.gov [DOE]

In Massachusetts, businesses may deduct from net income, for state excise tax purposes, expenditures paid or incurred from the installation of any "solar or wind powered climatic control unit and...

490

GreyStone Power- Solar Water Heating Program  

Broader source: Energy.gov [DOE]

GreyStone Power, an electricity cooperative serving 103,000 customers in Georgia, introduced a solar water heating rebate in March 2009. This $500 rebate is available to customers regardless of...

491

Solar Thermal Power Generation and Industrial Process Heat  

Science Journals Connector (OSTI)

A solar chimney power plant consists of a transparent tubular chimney over 200m tall rising from a...2 covered with a transparent material (Haaf et al. 1983). At the base of the chimney is located a turbine driv...

Brian Norton

2014-01-01T23:59:59.000Z

492

SEPCO - Solar Electric Power Company | Open Energy Information  

Open Energy Info (EERE)

SEPCO - Solar Electric Power Company SEPCO - Solar Electric Power Company Jump to: navigation, search Logo: SEPCO - Solar Electric Power Company Name SEPCO - Solar Electric Power Company Address 1521 SE Palm Court Place Stuart, Florida Zip 34994 Sector Solar Product Commercial Solar Lighting & Off Grid Solar Power Systems Year founded 1994 Number of employees 11-50 Company Type For Profit Phone number 772-220-6615 Website http://www.sepco-solarlighting Coordinates 27.170937°, -80.232438° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.170937,"lon":-80.232438,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

493

Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint  

SciTech Connect (OSTI)

India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

2014-04-01T23:59:59.000Z

494

Variability of Photovoltaic Power in the State of Gujarat Using High Resolution Solar Data  

SciTech Connect (OSTI)

India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

Hummon, M.; Cochran, J.; Weekley, A.; Lopez, A.; Zhang, J.; Stoltenberg, B.; Parsons, B.; Batra, P.; Mehta, B.; Patel, D.

2014-03-01T23:59:59.000Z

495

Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat (Presentation)  

SciTech Connect (OSTI)

India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

2014-04-01T23:59:59.000Z

496

Power Electronics Design of a Solar Powered In-car Wireless Tag for Asset Tracking and Parking Applications  

E-Print Network [OSTI]

Power Electronics Design of a Solar Powered In-car Wireless Tag for Asset Tracking and Parking and testing of a power conditioning circuit for a solar powered in-car wireless tag for asset tracking. A suitable solar cell was chosen for its high power density. Charging circuit, hysteresis control circuit

497

Hybrid solar central receiver for combined cycle power plant  

DOE Patents [OSTI]

A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

Bharathan, Desikan (Lakewood, CO); Bohn, Mark S. (Golden, CO); Williams, Thomas A. (Arvada, CO)

1995-01-01T23:59:59.000Z

498

Planting the Seed: Greening the Grid with Concentrating Solar Power  

SciTech Connect (OSTI)

In the United States and around the world, interest in concentrating solar power (CSP) is growing rapidly and its use is increasing. This solar thermal technology can meet a significant share of our electricity demand. Yet, while CSP's market share rises, concerns about the potential impact of CSP-generated electricity on the stability and operation of the U.S. power grid might create barriers to its future expansion in America.

Mehos, M.; Kabel, D.; Smithers, P.

2009-05-01T23:59:59.000Z

499

Current status of research on optimum sizing of stand-alone hybrid solarwind power generation systems  

Science Journals Connector (OSTI)

Solar and wind energy systems are omnipresent, freely available, environmental friendly, and they are considered as promising power generating sources due to their availability and topological advantages for local power generations. Hybrid solarwind energy systems, uses two renewable energy sources, allow improving the system efficiency and power reliability and reduce the energy storage requirements for stand-alone applications. The hybrid solarwind systems are becoming popular in remote area power generation applications due to advancements in renewable energy technologies and substantial rise in prices of petroleum products. This paper is to review the current state of the simulation, optimization and control technologies for the stand-alone hybrid solarwind energy systems with battery storage. It is found that continued research and development effort in this area is still needed for improving the systems performance, establishing techniques for accurately predicting their output and reliably integrating them with other renewable or conventional power generation sources.

Wei Zhou; Chengzhi Lou; Zhongshi Li; Lin Lu; Hongxing Yang

2010-01-01T23:59:59.000Z

500

Sandia National Laboratories: Advanced Materials Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Laboratory Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy...