Sample records for advanced solar power

  1. Georgia Power- Advanced Solar Initiative

    Broader source: Energy.gov [DOE]

    Note: According to Georgia Power's website, the Advanced Solar Initiative's final program guidelines are due to be published on June 25th and the bidding period for is expected to open on July 10,...

  2. Advancing Concentrating Solar Power Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  3. $60 Million to Fund Projects Advancing Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The SunShot initiative announces a $60 million funding opportunity (FOA) to advance concentrating solar power in the United States.

  4. Solar-thermal hybridization of Advanced Zero Emissions Power Plants

    E-Print Network [OSTI]

    El Khaja, Ragheb Mohamad Fawaz

    2012-01-01T23:59:59.000Z

    Carbon Dioxide emissions from power production are believed to have significant contributions to the greenhouse effect and global warming. Alternative energy resources, such as solar radiation, may help abate emissions but ...

  5. Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems: Preprint

    SciTech Connect (OSTI)

    Ma, Z.; Turchi, C. S.

    2011-03-01T23:59:59.000Z

    The research will characterize and evaluate advanced S-CO2 Brayton cycle power generation with a modular power tower CSP system.

  6. Advancing State-of-the-Art Concentrating Solar Power Systems...

    Energy Savers [EERE]

    to American Industry, Universities Washington: When Life Gives You Solar, Make Syngas Energy Department Announces New University-Led Projects to Create More Efficient,...

  7. Solar energy power generators with advanced thermionic converters for spacecraft applications

    SciTech Connect (OSTI)

    Sahin, S.

    1981-01-01T23:59:59.000Z

    This study presents (1) a 50 kW/sub e/ solar energy generator in a geostationary orbit for direct tv-broadcasting and (2) a 10 GW/sub e/ space power plant, with the basic engineering outlines using an advanced thermionic converter proposal given for each. Further, a comparison of the main technical data for the generators with corresponding energy output using (1) advanced thermionic converter and (2) ordinary thermionic converter without auxiliary emitter is shown. 25 refs.

  8. Effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    SciTech Connect (OSTI)

    Latta, A.F.; Bowyer, J.M.; Fujita, T.; Richter, P.H.

    1980-02-01T23:59:59.000Z

    This study determines the performance and cost of four 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States. The solar plants are conceptualized to begin commercial operation in the year 2000. It is assumed that major subsystem performance will have improved substantially as compared to that of pilot plants currently operating or under construction. The net average annual system efficiency is therefore roughly twice that of current solar thermal electric power plant designs. Similarly, capital costs reflecting goals based on high-volume mass production that are considered to be appropriate for the year 2000 have been used. These costs, which are approximately an order of magnitude below the costs of current experimental projects, are believed to be achievable as a result of the anticipated sizeable solar penetration into the energy market in the 1990 to 2000 timeframe. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrators comprise the advanced collector concepts studied. All concepts exhibit their best performance when sited in regional areas such as the sunbelt where the annual insolation is high. The regional variation in solar plant performance has been assessed in relation to the expected rise in the future cost of residential and commercial electricity in the same regions. A discussion of the regional insolation data base, a description of the solar systems performance and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades are given.

  9. Solar Impulse's Solar-Powered Plane

    SciTech Connect (OSTI)

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2013-07-08T23:59:59.000Z

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  10. Solar Impulse's Solar-Powered Plane

    ScienceCinema (OSTI)

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2014-01-07T23:59:59.000Z

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  11. Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems

    Broader source: Energy.gov [DOE]

    This is a presentation by Yiping Liu from Sporian Microsystems at the 2013 SunShot Concentrating Solar Power Program Review.

  12. Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  13. Advances in Concentrating Solar Power Collectors: Mirrors and Solar Selective Coatings

    SciTech Connect (OSTI)

    Kenendy, C. E.

    2007-10-10T23:59:59.000Z

    The intention is to explore the feasibility of depositing the coating by lower-cost methods and to perform a rigorous cost analysis after a viable high-temperature solar-selective coating is demonstrated by e-beam.

  14. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

  15. Sandia National Laboratories: Concentrating Solar Power: Efficiently...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

  16. An Advanced Solar-Powered Rotary Solid Adsorption Refrigerator with High Performance

    E-Print Network [OSTI]

    Zheng, A.; Gu, J.

    2006-01-01T23:59:59.000Z

    In this paper, according to practical consideration, a new solar powered rotary solid adsorption refrigerator system adopting activated carbon fibre + ethanol as its adsorption pair has been designed with higher performance. Moreover, the principle...

  17. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01T23:59:59.000Z

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  18. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    are many solar photovoltaic power plants internationally andUSA, Blythe, CA Solar electric power plant, Blythe USA, SanTX Blue Wing solar electric power plant USA, Jacksonville,

  19. Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov (indexed) [DOE]

    CONCENTRATING SOLAR POWER PROGRAM REVIEW 2013 Concentrated Solar Thermoelectric Power Principal Investigator: Prof. Gang Chen Massachusetts Institute of Technology Cambridge, MA...

  20. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    of the electrical power output to the solar power input), aSolar Energy Calculator using Google Maps 23 Table 1.24: PV System Power Production Average Daily Irradiance (kWh/m2) Instillation Efficiency Labeled Efficiency Output

  1. Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou areInnovationPriorityImpulseSolarThermal

  2. Georgia Power- Small and Medium Scale Advanced Solar Initiative (GPASI) (Georgia)

    Broader source: Energy.gov [DOE]

    '''''Note: The application process for the small and medium scale solar programs began on March 1, 2013 and will continue through March 11, 2013. If completed applications exceed program capacity...

  3. Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  4. Alternative Energy Technologies Solar Power

    E-Print Network [OSTI]

    Scott, Christopher

    #12;Alternative Energy Technologies Solar Power Photovoltaics Concentrating Solar Power (CSP) Power;Concentrating Solar Power (CSP) Reflector material is Aluminum or Silver Tube material ..... Several possible ............... Mexico, Canada, Peru Alumina ............Guinea, Brazil, Australia, Jamaica Manganese ....... S. Africa

  5. Space Solar Power Program

    SciTech Connect (OSTI)

    Arif, H.; Barbosa, H.; Bardet, C.; Baroud, M.; Behar, A.; Berrier, K.; Berthe, P.; Bertrand, R.; Bibyk, I.; Bisson, J.; Bloch, L.; Bobadilla, G.; Bourque, D.; Bush, L.; Carandang, R.; Chiku, T.; Crosby, N.; De Seixas, M.; De Vries, J.; Doll, S.; Dufour, F.; Eckart, P.; Fahey, M.; Fenot, F.; Foeckersperger, S.; Fontaine, J.E.; Fowler, R.; Frey, H.; Fujio, H.; Gasa, J.M.; Gleave, J.; Godoe, J.; Green, I.; Haeberli, R.; Hanada, T.; Ha

    1992-08-01T23:59:59.000Z

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  6. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar power Recent Solar Highlights On October 31, 2012, in View all Solar Energy News Molten Salt Test Loop Commissioning On October 10, 2012, in Concentrating Solar Power, EC,...

  7. Advances in understanding solar energy collection materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding solar energy collection materials Advances in understanding solar energy collection materials A LANL team and collaborators have made advances in the understanding of...

  8. U.S.Air Force Advanced Power

    E-Print Network [OSTI]

    Tractor · Robins AFB H2 Fuel Cell Forklift/Toolcat · Fisher-Tropsch Synthetic FuelTest · Robins E-85 Effort · Solar - Electric Drive U.S.Air Force Advanced PowerTechnology Office Our Customers TheWarfighter Homeland Defense RefuelerFuel Cell MB-4Fuel Cell Microgrid Hydrogen Refueling Station Renewable Wind Power Renewable Solar

  9. Advancing State-of-the-Art Concentrating Solar Power Systems | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVM LoanActiveMission »AdvancedServicesDepartmentof

  10. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Regional Test Center (RTC). The RTC will enable research on integrating solar panels into the statewide smart grid and help reduce the cost of solar power. The...

  11. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multiple Exciton Generation Solar Cells Joseph M. Luther Center for Advanced Solar Photophysics, National Renewable Energy Laboratory, Golden, CO Wednesday, October 24th, 3:00pm...

  12. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power National Solar Thermal Testing Facility Beam Profiling On November 2, 2012, in Concentrating Solar Power, News, Renewable Energy, Solar On Thursday, June...

  13. Sandia National Laboratories: multiscale concentrated solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concentrated solar power Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar Power, Energy, National Solar Thermal...

  14. NREL: Concentrating Solar Power Research - NREL Forges Foundation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Forges Foundation for Advanced Concentrating Solar Power Receivers September 16, 2014 As part of DOE's SunShot effort, NREL's Thermal Systems Group is performing research and...

  15. The solar electric power outlook

    SciTech Connect (OSTI)

    Kemp, J.W.

    1995-12-31T23:59:59.000Z

    The outlook for solar electric power plants is discussed. The following topics are discussed: Amoco/Envon solar vision, multi-megawatt solar power projects, global carbon dioxide emission estimates, pollution and electric power generation, social costs of pollution economies of scale, thin-film power module, rooftop market strategy, regulatory issues regarding rooftop systems, and where do we go from here?

  16. Energy 101: Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power...

  17. Concentrating Solar Power: Efficiently Leveraging Equilibrium...

    Office of Environmental Management (EM)

    Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage Concentrating Solar Power: Efficiently Leveraging Equilibrium...

  18. Concentrating Solar Power Resources and Technologies | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Resources and Technologies Concentrating Solar Power Resources and Technologies Photo of a CSP dish glistening in the sun. Multiple solar mirrors reflect...

  19. Sandia National Laboratories: Concentrating Solar Power Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Systems Air Force Research Laboratory Testing On November 2, 2012, in Concentrating Solar Power, Facilities, National Solar Thermal Test Facility, News,...

  20. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Sandia Wins Funding for High-Temperature Falling-Particle Solar-Energy Receiver On August 8, 2012, in Concentrating Solar Power, Energy, Facilities,...

  1. Energy 101: Concentrating Solar Power

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  2. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01T23:59:59.000Z

    and C. Y. Zhao, "A review of solar collectors and thermalenergy storage in solar thermal applications," Appliedon photovoltaic/thermal hybrid solar technology," Applied

  3. Solar thermal power system

    DOE Patents [OSTI]

    Bennett, Charles L.

    2010-06-15T23:59:59.000Z

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  4. Gulf Power- Solar PV Program

    Broader source: Energy.gov [DOE]

    '''''All funding has currently been reserved and new applications are no longer being accepted. See Gulf Power's [http://www.gulfpower.com/renewable/solarElectricity.asp Solar PV] web site for more...

  5. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    direct solar radiation onto the PEC cell and tracking isTracking Concentration…………………….39 Figure 1.20: PV-RO System……………………………………………………………..42 Figure 1.21: Solar

  6. Georgia Power- Solar Buyback Program

    Broader source: Energy.gov [DOE]

    Georgia Power, the state's largest utility, has established a green power program, that allows the company to purchase limited solar generation at a premium price based on other customers volunta...

  7. Optical Durability of Candidate Solar Reflectors for Concentrating Solar Power

    SciTech Connect (OSTI)

    Kennedy, C. E.; Terwilliger, K.

    2007-01-01T23:59:59.000Z

    Concentrating solar power (CSP) technologies use large mirrors to collect sunlight to convert thermal energy to electricity. The viability of CSP systems requires the development of advanced reflector materials that are low in cost and maintain high specular reflectance for extended lifetimes under severe outdoor environments. The long-standing goals for a solar reflector are specular reflectance above 90% into a 4 mrad half-cone angle for at least 10 years outdoors with a cost of less than $13.8/m{sup 2} (the 1992 $10.8/m{sup 2} goal corrected for inflation to 2002 dollars) when manufactured in large volumes. Durability testing of a variety of candidate solar reflector materials at outdoor test sites and in laboratory accelerated weathering chambers is the main activity within the Advanced Materials task of the CSP Program at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Test results to date for several candidate solar reflector materials will be presented. These include the optical durability of thin glass, thick glass, aluminized reflectors, front-surface mirrors, and silvered polymer mirrors. The development, performance, and durability of these materials will be discussed. Based on accelerated exposure testing the glass, silvered polymer, and front-surface mirrors may meet the 10 year lifetime goals, but at this time because of significant process changes none of the commercially available solar reflectors and advanced solar reflectors have demonstrated the 10 year or more aggressive 20 year lifetime goal.

  8. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    USA, Jacksonville, FL Jacksonville Solar Energy Generation Facility Constructed Systems that produce electricity

  9. Solar Power Beaming: From Space to Earth

    SciTech Connect (OSTI)

    Rubenchik, A M; Parker, J M; Beach, R J; Yamamoto, R M

    2009-04-14T23:59:59.000Z

    Harvesting solar energy in space and power beaming the collected energy to a receiver station on Earth is a very attractive way to help solve mankind's current energy and environmental problems. However, the colossal and expensive 'first step' required in achieving this goal has to-date stifled its initiation. In this paper, we will demonstrate that recent advance advances in laser and optical technology now make it possible to deploy a space-based system capable of delivering 1 MW of energy to a terrestrial receiver station, via a single unmanned commercial launch into Low Earth Orbit (LEO). Figure 1 depicts the overall concept of our solar power beaming system, showing a large solar collector in space, beaming a coherent laser beam to a receiving station on Earth. We will describe all major subsystems and provide technical and economic discussion to support our conclusions.

  10. Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Riehm, Andrew Charles; Hoekstra, Robert John; Munoz-Ramirez, Karina; Stamp, Jason Edwin; Phillips, Laurence R.; Adams, Brian M.; Russo, Thomas V.; Oldfield, Ron A.; McLendon, William Clarence, III; Nelson, Jeffrey Scott; Hansen, Clifford W.; Richardson, Bryan T.; Stein, Joshua S.; Schoenwald, David Alan; Wolfenbarger, Paul R.

    2011-02-01T23:59:59.000Z

    Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

  11. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SolarReserve Is Testing Prototype Heliostats at NSTTF On March 3, 2015, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

  12. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

  13. Solar Electric Grid Integration- Advanced Concepts (SEGIS-AC) Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Solar Electric Grid Integration – Advanced Concepts (SEGIS-AC) program, DOE is funding solar projects that are targeting ways to develop power electronics and build smarter, more...

  14. Sandia National Laboratories: Solar Power International

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Power International Sandia to host PV Bankability workshop at Solar Power International (SPI) 2013 On September 24, 2013, in Conferences, Energy, Events, News & Events,...

  15. ADVANCED REFLECTIVE FILMS AND PANELS FOR NEXT GENERATION SOLAR...

    Office of Environmental Management (EM)

    ADVANCED REFLECTIVE FILMS AND PANELS FOR NEXT GENERATION SOLAR COLLECTORS ADVANCED REFLECTIVE FILMS AND PANELS FOR NEXT GENERATION SOLAR COLLECTORS This presentation was delivered...

  16. Solar synthesis of advanced materials: A solar industrial program initiative

    SciTech Connect (OSTI)

    Lewandowski, A.

    1992-06-01T23:59:59.000Z

    This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000{degrees}C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including the following: Metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).

  17. Concentrated solar power on demand

    E-Print Network [OSTI]

    Codd, Daniel Shawn

    2011-01-01T23:59:59.000Z

    This thesis describes a new concentrating solar power central receiver system with integral thermal storage. Hillside mounted heliostats direct sunlight into a volumetric absorption molten salt pool, which also functions ...

  18. One Panel One Roof, DOE Powering Solar Workforce | Department...

    Broader source: Energy.gov (indexed) [DOE]

    One Panel One Roof, DOE Powering Solar Workforce One Panel One Roof, DOE Powering Solar Workforce...

  19. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

  20. Portland Advancing Green Image With Solar Installs

    Broader source: Energy.gov [DOE]

    A quick Internet search reveals that many sources consider Portland, Ore., to be one of the most green-minded cities in the United States. But large upfront costs have been a barrier for citizens looking to install solar power systems in the past. Now, a neighborhood solar initiative is helping communities organize to get solar discounts, meaning the city could become even greener.

  1. Rooftop Solar Potential Distributed Solar Power in NW

    E-Print Network [OSTI]

    1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 Renewables;3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow at annual rate of 13% and solar thermal

  2. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum Dot Photovoltaic Strategies Hunter McDaniel Center for Advanced Solar Photophysics, LANL Wednesday, October 31st, 1:30pm Chemistry Division Auditorium, TA-46, Bld. 535, Rm....

  3. Concentrating Solar Power: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01T23:59:59.000Z

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  4. EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solana Concentrating Solar Power Facility, Gila Bend, AZ May 3, 2010 EA-1683: Final Environmental Assessment Loan Guarantee to Abengoa Solar Inc. for the Solana Thermal...

  5. Solar Powered Classroom

    SciTech Connect (OSTI)

    none

    2013-06-13T23:59:59.000Z

    A group of fourth graders in Durham, North Carolina, are showing America the way to a clean energy future. They are installing solar panels on their classroom roof for a project that goes above and beyond a normal day in school. From researching solar panel installation, to generating funds for the project via Kickstarter, these are students who put their plans into action. Their accomplishments go beyond the classroom and stress the importance of getting people of all ages involved in renewable energy.

  6. Solar Powered Classroom

    ScienceCinema (OSTI)

    none

    2013-06-27T23:59:59.000Z

    A group of fourth graders in Durham, North Carolina, are showing America the way to a clean energy future. They are installing solar panels on their classroom roof for a project that goes above and beyond a normal day in school. From researching solar panel installation, to generating funds for the project via Kickstarter, these are students who put their plans into action. Their accomplishments go beyond the classroom and stress the importance of getting people of all ages involved in renewable energy.

  7. Advancements in solar neutrino physics

    E-Print Network [OSTI]

    Vito Antonelli; Lino Miramonti

    2013-04-23T23:59:59.000Z

    We review the results of solar neutrino physics, with particular attention to the data obtained and the analyses performed in the last decades, which were determinant to solve the solar neutrino problem (SNP), proving that neutrinos are massive and oscillating particles and contributing to refine the solar models. We also discuss the perspectives of the presently running experiments in this sector and of the ones planned for the near future and the impact they can have on elementary particle physics and astrophysics.

  8. Advanced Power Systems and Controls Laboratory

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    Solar Power Generation Introduction The rapid growth of wind and solar power is a key driver] · 80% loss of power output in seconds · Ramp Rates >100 MW/min · Poses a threat to grid stability developed for wind and solar applications. The test platform can be run with up to four 1.5MVA power

  9. The Solarex Solar Power Industrial Facility

    E-Print Network [OSTI]

    Macomber, H. L.; Bumb, D. R.

    1984-01-01T23:59:59.000Z

    The Solarex Corporation has designed, built and operated an industrial facility which is totally powered by a Solarex solar electric power system. The solar power system, energy-conserving building and manufacturing operations were treated as a...

  10. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect (OSTI)

    None

    2012-01-11T23:59:59.000Z

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  11. Concentrating Solar Power (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01T23:59:59.000Z

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  12. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power, Energy, Energy Storage, Facilities,...

  13. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia and EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency On March 29, 2013, in Concentrating Solar Power, Energy, Partnership, Photovoltaic, Renewable...

  14. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molten Salt Test Loop Pump Installed On August 30, 2012, in Concentrating Solar Power, Energy, Energy Storage Systems, News, Renewable Energy, Solar The pump was delivered and...

  15. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power, Facilities, National Solar Thermal Test Facility, News, News & Events, Renewable Energy, Solar Recently, personnel from the Air Force Research Laboratory in Albuquerque...

  16. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Sectors in the United States View all EC Publications Related Topics Concentrating Solar Power CRF CSP EFRC Energy Energy Efficiency Energy Security National Solar Thermal...

  17. Rooftop Solar Potential Distributed Solar Power in NW

    E-Print Network [OSTI]

    6/19/2013 1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 in 2012 4 #12;6/19/2013 3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow

  18. Solar powered dehumidifier apparatus

    DOE Patents [OSTI]

    Jebens, Robert W. (Skillman, NJ)

    1980-12-30T23:59:59.000Z

    A thermally insulated light transmitting housing forms a chamber containing a desiccant and having a first gas port open to the ambient and a second gas port connected by a two way valve to a volume to be dried. Solar energy transmitted through the housing heats and dries the desiccant. The increased air pressure due to the heating of the volume to be dried causes the air from the volume to be expelled through the valve into the chamber. The desiccant is then cooled by shielding it from solar energy before the volume cools thereby increasing its moisture absorbing capacity. Then the volume is allowed to cool drawing dehumidified air through the desiccant and the valve into the volume to be dried. This cycle is then repeated.

  19. GMP Solar Power

    Broader source: Energy.gov [DOE]

    Green Mountain Power, an investor-owned electric utility operating in Vermont, offers a credit to customers with net-metered photovoltaic (PV) systems. In addition to the benefits of net metering,...

  20. WATER POWER SOLAR POWER WIND POWER

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment(GATE)ActionSolar Water Heat Water

  1. Solar thermionic power plant (II)

    SciTech Connect (OSTI)

    Abou-Elfotouh, F.; Almassary, M.; Fatmi, H.

    1981-01-01T23:59:59.000Z

    It has been shown that the geometric configuration of a central receiver solar electric power plant (SEPP) can be optimized for the high power density and concentration required for the operation of a thermionic converter. The working period of a Thermionic Diode Converter constructed on the top of a SEPP in Riyadh area is found to be 5 to 6 hours per day in winter and 6 to 8 hours in summer. 17 refs.

  2. Solar-powered cooling system

    DOE Patents [OSTI]

    Farmer, Joseph C

    2013-12-24T23:59:59.000Z

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  3. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    is the fraction of available solar power incident on theoutput per available solar power and characterizes theintegral of available solar power over the operational time

  4. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F.CENTRAL RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE progressCorporation, RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE I,

  5. Solar and wind power advancing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables TablesPrices GlobalPetroleum3

  6. SOLAR ROOF POWERS THE NJIT CAMPUS CENTER

    E-Print Network [OSTI]

    Bieber, Michael

    SOLAR ROOF POWERS THE NJIT CAMPUS CENTER THE SKY'S THE LIMIT: BERNADETTE MOKE SITS ON THE ROOF, ARE 160 SOLAR PANELS, SOME OF WHICH AUTOMATICALLY FOLLOW THE PATH OF THE SUN. 10 NJITMAGAZINE COVER STORY'S THE LIMIT: SOLAR ROOF POWERS THE NJIT CAMPUS CENTER "The solar panels even move a little at night," says

  7. Solar energy at Forest Research Solar Power at Alice Holt

    E-Print Network [OSTI]

    Solar energy at Forest Research Solar Power at Alice Holt research station provides a renewable to install a solar photovoltaic system to meet some of the research station's energy needs. #12;In January dioxide emissions, when compared with traditional forms of energy generation. · The solar installation

  8. Funding Opportunity Announcement: Solar Bankability Data to Advance...

    Energy Savers [EERE]

    Data to Advance Transactions and Access (SB-DATA) Funding Opportunity Announcement: Solar Bankability Data to Advance Transactions and Access (SB-DATA) Funding Number:...

  9. EA-1784: Fotowatio Nevada Solar, LLC's Apex Solar Power Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    County, NV July 1, 2010 DOI-BLM-NV-S010-2010-0149-EA: Bureau of Land Management's Final Environmental Assessment Fotowatio Nevada Solar, LLC's APEX Solar Power Project in Clark...

  10. Advanced research in solar-energy storage

    SciTech Connect (OSTI)

    Luft, W.

    1983-01-01T23:59:59.000Z

    The Solar Energy Storage Program at the Solar Energy Research Institute is reviewed. The program provides research, systems analyses, and economic assessments of thermal and thermochemical energy storage and transport. Current activities include experimental research into very high temperature (above 800/sup 0/C) thermal energy storage and assessment of novel thermochemical energy storage and transport systems. The applications for such high-temperature storage are thermochemical processes, solar thermal-electric power generation, cogeneration of heat and electricity, industrial process heat, and thermally regenerative electrochemical systems. The research results for five high-temperature thermal energy storage technologies and two thermochemical systems are described.

  11. Concentrating Solar Power (Fact Sheet), SunShot Initiative, U...

    Broader source: Energy.gov (indexed) [DOE]

    Concentrating Solar Power Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar...

  12. Statement of work for solar thermal power systems and photovoltaic solar-energy systems technical support services

    SciTech Connect (OSTI)

    none,

    1982-01-01T23:59:59.000Z

    Work is broken down in the following areas: solar thermal central receiver systems analysis; advanced solar thermal systems analysis and engineering; thermal power systems support; total energy systems mission analysis; irrigation and small community mission analysis; photovoltaics mission analysis; Solar Thermal Test Facility and Central Receiver Pilot Plant systems engineering. (LEW)

  13. Pv-Thermal Solar Power Assembly

    DOE Patents [OSTI]

    Ansley, Jeffrey H. (El Cerrito, CA); Botkin, Jonathan D. (El Cerrito, CA); Dinwoodie, Thomas L. (Piedmont, CA)

    2001-10-02T23:59:59.000Z

    A flexible solar power assembly includes a flexible photovoltaic device attached to a flexible thermal solar collector. The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof or side wall of a building or other structure, by use of adhesive and/or other types of fasteners.

  14. EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Riverside County, CA December 10, 2010 EIS-0449: Notice of Adoption of the Final Environmental Impact Statement Blythe Solar Power Project December 10, 2010 EIS-0449:...

  15. Multi-objective optimization of solar tower power plants

    E-Print Network [OSTI]

    Ábrahåm, Erika

    Multi-objective optimization of solar tower power plants Pascal Richter Center for Computational · Optimization of solar tower power plants 1/20 #12;Introduction ­ Solar tower power plants Solar tower PS10 (11 of the solar tower Pascal Richter · Optimization of solar tower power plants 2/20 #12;Model of solar tower

  16. Consumers Power, Inc.- Solar Energy System Rebate

    Broader source: Energy.gov [DOE]

    Consumers Power, Inc. (CPI) offers rebates to its residential customers who install solar water heating systems or solar photovoltaic (PV) systems from October 1, 2012 to September 30, 2013. The...

  17. Hybrid solar-fossil fuel power generation

    E-Print Network [OSTI]

    Sheu, Elysia J. (Elysia Ja-Zeng)

    2012-01-01T23:59:59.000Z

    In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

  18. Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller

    E-Print Network [OSTI]

    Poiry, Heather Marie

    2011-01-01T23:59:59.000Z

    2004) “Advances in solar thermal electricity technology”.1: Comparison of the pros and cons for various solar thermalof Three Concentrating Solar Thermal Units Designed with

  19. Funding Opportunity Announcement: Concentrating Solar Power:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the plant, including solar collectors, receivers and heat transfer fluids, thermal energy storage, power cycles, as well as operations and maintenance. The total federal...

  20. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measuring the effects of aerodynamicheating on radar transmissions ... Concentrating Solar Power (CSP) On April 13, 2011, in CSP R&D at Sandia Testing Facilities Software &...

  1. Concentrating Solar Power Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of concentrating solar power (CSP) technologies supplemented by specific information to apply CSP within the Federal sector.

  2. Advanced Power Electronic Interfaces for Distributed

    E-Print Network [OSTI]

    Advanced Power Electronic Interfaces for Distributed Energy Systems Part 2: Modeling, Development Electronic Interfaces for Distributed Energy Systems Part 2: Modeling, Development, and Experimental, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter S

  3. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Partnership Projects On April 14, 2011, in National Solar Thermal Test Facility (NSTTF) The Tower at the National Solar Thermal Test Facility (NSTTF) offers a complete...

  4. Solar Decathlon: Powered by the Sun (Revised)

    SciTech Connect (OSTI)

    Not Available

    2005-08-01T23:59:59.000Z

    The Solar Decathlon is a collegiate competition to design and build the most energy efficient, solar-powered house. It is also an event on the National Mall in Washington D.C. to which the public is invited. This gatefold brochure describes the Solar Decathlon 2005 competition and event, including a schedule of activities.

  5. Union Training Future Electricians in Solar Power

    Broader source: Energy.gov [DOE]

    Electricians in Indiana believe solar power is the future, and they are preparing for it. The International Brotherhood of Electrical Workers Local 725 (IBEW 725) in Terre Haute, Ind., purchased 60 solar panels and plans to train its members in solar installation.

  6. Vehicle Technologies Office: 2011 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    Motors R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Electro-thermal-mechanical...

  7. Solar Power as a Source of Noise-free Power for Research

    E-Print Network [OSTI]

    Dutta, Akshita; Chorescu, Irinel

    2011-01-01T23:59:59.000Z

    Solar Power as a Source of Noise-free Power for ResearchState University Keywords: solar energy, reducing backgroundhas been increasing interest in solar convertors, mostly for

  8. Concentrating Solar Power Commercial Application Study

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Solar Power Electricity Generation Report to Congress U.S. Department of Energy This report is being of the Treasury and General Government Appropriations Act for Fiscal Year 2001 (Public Law 106

  9. PV/thermal solar power assembly

    DOE Patents [OSTI]

    Ansley, Jeffrey H.; Botkin, Jonathan D.; Dinwoodie, Thomas L.

    2004-01-13T23:59:59.000Z

    A flexible solar power assembly (2) includes a flexible photovoltaic device (16) attached to a flexible thermal solar collector (4). The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof (20, 25) or side wall of a building or other structure, by use of adhesive and/or other types of fasteners (23).

  10. The Sacramento power utility experience in solar

    SciTech Connect (OSTI)

    Smeloff, E. [Sacramento Municipal Utility District (SMUD), CA (United States)

    1993-12-31T23:59:59.000Z

    An overview of the development of three solar power technologies for use in Sacramento, California is provided. A central receiver power plant, Solar One, is being converted to a molten salt design with thermal energy storage by the Sacramento Municipal Utility District (SMUD) and six other utilities. SMUD is also investigating a solar dish/sterling engine system and technologies to reduce photovoltaic conversion costs.

  11. Reliability Evaluation of Electric Power Generation Systems with Solar Power

    E-Print Network [OSTI]

    Samadi, Saeed

    2013-11-08T23:59:59.000Z

    Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as wind or solar, however...

  12. Advanced Accessory Power Supply Topologies

    SciTech Connect (OSTI)

    Marlino, L.D.

    2010-06-15T23:59:59.000Z

    This Cooperative Research and Development Agreement (CRADA) began December 8, 2000 and ended September 30, 2009. The total funding provided by the Participant (General Motors Advanced Technology Vehicles [GM]) during the course of the CRADA totaled $1.2M enabling the Contractor (UT-Battelle, LLC [Oak Ridge National Laboratory, a.k.a. ORNL]) to contribute significantly to the joint project. The initial task was to work with GM on the feasibility of developing their conceptual approach of modifying major components of the existing traction inverter/drive to develop low cost, robust, accessory power. Two alternate methods for implementation were suggested by ORNL and both were proven successful through simulations and then extensive testing of prototypes designed and fabricated during the project. This validated the GM overall concept. Moreover, three joint U.S. patents were issued and subsequently licensed by GM. After successfully fulfilling the initial objective, the direction and duration of the CRADA was modified and GM provided funding for two additional tasks. The first new task was to provide the basic development for implementing a cascaded inverter technology into hybrid vehicles (including plug-in hybrid, fuel cell, and electric). The second new task was to continue the basic development for implementing inverter and converter topologies and new technology assessments for hybrid vehicle applications. Additionally, this task was to address the use of high temperature components in drive systems. Under this CRADA, ORNL conducted further research based on GM’s idea of using the motor magnetic core and windings to produce bidirectional accessory power supply that is nongalvanically coupled to the terminals of the high voltage dc-link battery of hybrid vehicles. In order not to interfere with the motor’s torque, ORNL suggested to use the zero-sequence, highfrequency harmonics carried by the main fundamental motor current for producing the accessory power. Two studies were conducted at ORNL. One was to put an additional winding in the motor slots to magnetically link with the high frequency of the controllable zero-sequence stator currents that do not produce any zero-sequence harmonic torques. The second approach was to utilize the corners of the square stator punching for the high-frequency transformers of the dc/dc inverter. Both approaches were successful. This CRADA validated the feasibility of GM’s desire to use the motor’s magnetic core and windings to produce bidirectional accessory power supply. Three joint U.S. patents with GM were issued to ORNL and GM by the U.S. Patent Office for the research results produced by this CRADA.

  13. Solar-Powered Smart Wireless Camera Network for Outdoor Monitoring

    E-Print Network [OSTI]

    Abas, Kevin Mathys

    2015-01-01T23:59:59.000Z

    Solar-Powered Wireless Visual SensorProtocols . . . . . . . . . . . . . Solar HarvestingCard B MSP430 Firmware Source C Solar Harvesting Efficiency

  14. Concentrating Solar Power: Best Practices Handbook for the Collection...

    Open Energy Info (EERE)

    Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Concentrating Solar...

  15. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    High-temperature, Solar Collectors for Mass Production.by tracking type solar collectors and the power productionvi List of Symbols solar collector inlet aperture area (m

  16. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    Summary of the Proposed Solar Power Plant Design The ImpactGenerated by this Solar Power Plant The Impact of StorageVessel Design on the Solar Power Plant III I;l f> (I Q I)

  17. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of StorageDesign on the Solar Power Plant III I;l f> (I Q I) II (I

  18. Solar-powered aroma generator

    SciTech Connect (OSTI)

    Spector, D.

    1986-02-04T23:59:59.000Z

    In combination with a switch-controlled electric light bulb having a threaded plug and a threaded socket disposed in a room which is also subject to natural ambient light, a switchless aroma generator is installed in the room which is automatically activated only when the electric light bulb is switched on. The activated generator functions to discharge an air current into the room which conveys an aromatic vapor to modify the atmosphere. The generator described in this patent consists of: A.) an air-permeable cartridge containing an aroma supply which is exuded into the atmosphere at a relatively rapid rate as an air current is forced through the cartridge; B.) a fan driven by a low-voltage, direct-current motor having predetermined power requirements, the fan being arranged to force an air current through the cartridge; C.) a housing incorporating the cartridge and the motordriven fan, the housing containing an apparatus for mounting it on a wall in the room; and D.) a solar cell assembly producing a direct-current output placed in close proximity to the bulb in the room and irradiated when the bulb is switched on. The assembly is connected to the motor to supply power, the electrical relationship of the assembly to the motor being such that the cell output is sufficient to power the motor only when the bulb is switched on to irradiate the assembly, and is insufficient when the bulb is switched off. The cell output then depends on ambient light in the room, and the operation of the generator is coordinated with that of the bulb despite the absence of a wired connection between and an aroma is generated only when the bulb is switched on.

  19. Solar Powering Your Community: A Guide for Local Governments; Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    DOE/EERE Solar America Cities Fact Sheet - Solar Powering Your Community: A Guide for Local Governments, July 2009.

  20. High-Temperatuer Solar Selective Coating Development for Power...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperatuer Solar Selective Coating Development for Power Tower Receivers High-Temperatuer Solar Selective Coating Development for Power Tower Receivers This presentation was...

  1. 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power...

    Broader source: Energy.gov (indexed) [DOE]

    Concentrating Solar Power 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power The 2014 SunShot Initiative Portfolio Book outlines the progress towards the goals...

  2. National Laboratory Concentrating Solar Power Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory Concentrating Solar Power Research and Development National Laboratory Concentrating Solar Power Research and Development This fact sheet describes the current...

  3. National Laboratory Concentrating Solar Power Research and Development

    Broader source: Energy.gov (indexed) [DOE]

    and performance improvements across all major concentrating solar power (CSP) subsystems-solar fields, power plants, receivers, and thermal storage-are necessary to achieve the...

  4. Hanford Solar Power: Cost Effective and Mobile | Department of...

    Office of Environmental Management (EM)

    Solar Power: Cost Effective and Mobile Hanford Solar Power: Cost Effective and Mobile February 26, 2014 - 12:00pm Addthis EMs Richland Operations Office and its contractors...

  5. Solar Powering America by Recognizing Communities Funding Opportunity...

    Energy Savers [EERE]

    Solar Powering America by Recognizing Communities Funding Opportunity Solar Powering America by Recognizing Communities Funding Opportunity March 5, 2015 5:00PM EST U.S. Department...

  6. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    solar powered cooling system by producing a seamless output of cooling powersolar COP is the ratio of cooling output per available solar power

  7. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    insure constant output from a solar power plant. However. aoutput from the steam turbines is maintained. Equipment design for the proposed solar power

  8. Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller

    E-Print Network [OSTI]

    Poiry, Heather Marie

    2011-01-01T23:59:59.000Z

    Cooling: First Ever Non-tracking solar collectors powering aCooling: First Ever Non-tracking solar collectors powering athe first ever non-tracking solar powered double effect

  9. Cardiff University Distinguished Lecture Symposium Advances in Solar Energy

    E-Print Network [OSTI]

    Martin, Ralph R.

    Cardiff University Distinguished Lecture Symposium Advances in Solar Energy Thursday 22nd March prospects for inorganic thin film photovoltaic solar cells for large scale energy generation 2:55 Dr Emyr:50 Professor James Durrant (Imperial College London, England) Photochemical approaches to solar energy

  10. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01T23:59:59.000Z

    Fact sheet describing the overall capabilities of the NREL CSP Program: collector/receiver characterization, advanced reflector and absorber materials, thermal storage and advanced heat transfer fluids, and CSP modeling and analysis.

  11. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  12. Maximizing Efficiency of Solar-Powered Systems by Load Matching

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    energy. However, solar powered sys- tems must also consider the output level of the solar panel for power be counterproductive. Another problem that is of particular importance to solar pan- els is load matching. Solar panels is around 0.7­1.2, solar panels have a much larger Ri value as a function of the solar output and current

  13. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2012, in CSP Images & Videos On September 26, 2012, in Image Gallery Videos Concentrating Solar Power Image Gallery A picture says a thousand words, especially on the World Wide...

  14. Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller

    E-Print Network [OSTI]

    Poiry, Heather Marie

    2011-01-01T23:59:59.000Z

    to buffer the incoming solar power to the glycol loop so asarea the available power to the solar thermal collector was

  15. ADVANCED POWER SYSTEMS ANALYSIS TOOLS

    SciTech Connect (OSTI)

    Robert R. Jensen; Steven A. Benson; Jason D. Laumb

    2001-08-31T23:59:59.000Z

    The use of Energy and Environmental Research Center (EERC) modeling tools and improved analytical methods has provided key information in optimizing advanced power system design and operating conditions for efficiency, producing minimal air pollutant emissions and utilizing a wide range of fossil fuel properties. This project was divided into four tasks: the demonstration of the ash transformation model, upgrading spreadsheet tools, enhancements to analytical capabilities using the scanning electron microscopy (SEM), and improvements to the slag viscosity model. The ash transformation model, Atran, was used to predict the size and composition of ash particles, which has a major impact on the fate of the combustion system. To optimize Atran key factors such as mineral fragmentation and coalescence, the heterogeneous and homogeneous interaction of the organically associated elements must be considered as they are applied to the operating conditions. The resulting model's ash composition compares favorably to measured results. Enhancements to existing EERC spreadsheet application included upgrading interactive spreadsheets to calculate the thermodynamic properties for fuels, reactants, products, and steam with Newton Raphson algorithms to perform calculations on mass, energy, and elemental balances, isentropic expansion of steam, and gasifier equilibrium conditions. Derivative calculations can be performed to estimate fuel heating values, adiabatic flame temperatures, emission factors, comparative fuel costs, and per-unit carbon taxes from fuel analyses. Using state-of-the-art computer-controlled scanning electron microscopes and associated microanalysis systems, a method to determine viscosity using the incorporation of grey-scale binning acquired by the SEM image was developed. The image analysis capabilities of a backscattered electron image can be subdivided into various grey-scale ranges that can be analyzed separately. Since the grey scale's intensity is dependent on the chemistry of the particle, it is possible to map chemically similar areas which can also be related to the viscosity of that compound at temperature. A second method was also developed to determine the elements associated with the organic matrix of the coals, which is currently determined by chemical fractionation. Mineral compositions and mineral densities can be determined for both included and excluded minerals, as well as the fraction of the ash that will be represented by that mineral on a frame-by-frame basis. The slag viscosity model was improved to provide improved predictions of slag viscosity and temperature of critical viscosity for representative Powder River Basin subbituminous and lignite coals.

  16. Solar Power Industries SPI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolar Energy sro Jump to:SolarSolarSolar Power

  17. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    for concentrating solar-thermal energy use a large number ofBoth solar power plants absorb thermal energy in high-of a solar power plant that converts thermal energy into

  18. Energy Department Announces Projects to Advance Cost-Effective...

    Office of Environmental Management (EM)

    Projects to Advance Cost-Effective Concentrating Solar Power Systems Energy Department Announces Projects to Advance Cost-Effective Concentrating Solar Power Systems May 21, 2014 -...

  19. Air Cooling Technology for Advanced Power Electronics and Electric...

    Broader source: Energy.gov (indexed) [DOE]

    Air Cooling Technology for Advanced Power Electronics and Electric Machines Air Cooling Technology for Advanced Power Electronics and Electric Machines 2009 DOE Hydrogen Program...

  20. 2008 Annual Merit Review Results Summary - 5. Advanced Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5. Advanced Power Electronics 2008 Annual Merit Review Results Summary - 5. Advanced Power Electronics DOE Vehicle Technologies Annual Merit Review 2008meritreview5.pdf More...

  1. Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

    2013-10-01T23:59:59.000Z

    This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

  2. Reliability Evaluation of Electric Power Generation Systems with Solar Power 

    E-Print Network [OSTI]

    Samadi, Saeed

    2013-11-08T23:59:59.000Z

    reliability evaluation of generation systems including Photovoltaic (PV) and Concentrated Solar Power (CSP) plants. Unit models of PV and CSP are developed first, and then generation system model is constructed to evaluate the reliability of generation systems...

  3. Solar Power Systems Web Monitoring

    E-Print Network [OSTI]

    Kumar, Bimal Aklesh

    2011-01-01T23:59:59.000Z

    All over the world the peak demand load is increasing and the load factor is decreasing year-by-year. The fossil fuel is considered insufficient thus solar energy systems are becoming more and more useful, not only in terms of installation but monitoring of these systems is very crucial. Monitoring becomes very important when there are a large number of solar panels. Monitoring would allow early detection if the output falls below required level or one of the solar panel out of 1000 goes down. In this study the target is to monitor and control a developed solar panel by using available internet foundation. This web-enabled software will provide more flexibility over the system such as transmitting data from panel to the host computer and disseminating information to relevant stake holders barring any geographical barrier. The software would be built around web server with dynamic HTML and JAVA, this paper presents the preliminary design of the proposed system.

  4. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26, 2012, in This area of the site allows industry partners to install full-scale solar dishes for long-term reliability testing and evaluation. There are currently ten SES...

  5. SOLAR POWERING OF HIGH EFFICIENCY ABSORPTION CHILLER

    SciTech Connect (OSTI)

    Randy C. Gee

    2004-11-15T23:59:59.000Z

    This is the Final Report for two solar cooling projects under this Cooperative Agreement. The first solar cooling project is a roof-integrated solar cooling and heating system, called the Power Roof{trademark}, which began operation in Raleigh, North Carolina in late July 2002. This system provides 176 kW (50 ton) of solar-driven space cooling using a unique nonimaging concentrating solar collector. The measured performance of the system during its first months of operation is reported here, along with a description of the design and operation of this system. The second solar cooling system, with a 20-ton capacity, is being retrofit to a commercial office building in Charleston, South Carolina but has not yet been completed.

  6. Concentrated Solar Thermoelectric Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    Massachusetts Institute of Technology (MIT) is one of the 2012 SunShot CSP R&D awardees for their advanced power cycles. This fact sheet explains the motivation, description, and impact of the project.

  7. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    D. , The Central Reciever Power Plant: An Environmental,of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of Storage

  8. Modern Solar Facilities Advanced Solar Science, 18 F. Kneer, K. G. Puschmann, A. D. Wittmann (eds.)

    E-Print Network [OSTI]

    physics in the United States are periodically evaluated by panels of the National Research Council (ParkerModern Solar Facilities ­ Advanced Solar Science, 1­8 F. Kneer, K. G. Puschmann, A. D. Wittmann (eds.) c Universitšatsverlag Gšottingen 2007 Ground-Based Solar Facilities in the U.S.A. Carsten Denker

  9. Solar Powered Radioactive Air Monitoring Stations

    SciTech Connect (OSTI)

    Barnett, J. M.; Bisping, Lynn E.; Gervais, Todd L.

    2013-10-30T23:59:59.000Z

    Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

  10. advanced solar hybrid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to improve the modeling of the coupling of lower hybrid (LH) waves from the antenna to a cold inhomogeneous Boyer, Edmond 10 Advancements in solar neutrino physics CERN Preprints...

  11. Sandia National Laboratories: solar thermal power plant components

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility, News, News & Events, Partnership,...

  12. Sandia National Laboratories: reduce the cost of solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Regional Test Center (RTC). The RTC will enable research on integrating solar panels into the statewide smart grid and help reduce the cost of solar power. The...

  13. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    Concentrating Solar Combined Heat and Power Systemfor Distributed Concentrating Solar Combined Heat and Powerin parabolic trough solar power technology. Journal of Solar

  14. Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?

    E-Print Network [OSTI]

    Allen, Michael F.; McHughen, Alan

    2011-01-01T23:59:59.000Z

    habitat loss from solar and thermal power expansions (Photovoltaic vs Solar Thermal. In: Planetary Stewardship.of the vegetation for thermal solar power units. The net C

  15. Carrizo Energy Solar Farm Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermitsGreenCarrizo Energy Solar Farm Solar Power Plant

  16. Nevada Solar One Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergyPPCR) JumpAirWork (Water Right)Solar One Solar Power

  17. Integrated Solar Power Converters: Wafer-Level Sub-Module Integrated DC/DC Converter

    SciTech Connect (OSTI)

    None

    2012-02-09T23:59:59.000Z

    Solar ADEPT Project: CU-Boulder is developing advanced power conversion components that can be integrated into individual solar panels to improve energy yields. The solar energy that is absorbed and collected by a solar panel is converted into useable energy for the grid through an electronic component called an inverter. Many large, conventional solar energy systems use one, central inverter to convert energy. CU-Boulder is integrating smaller, microinverters into individual solar panels to improve the efficiency of energy collection. The University’s microinverters rely on electrical components that direct energy at high speeds and ensure that minimal energy is lost during the conversion process—improving the overall efficiency of the power conversion process. CU-Boulder is designing its power conversion devices for use on any type of solar panel.

  18. Green Mountain Power- Solar GMP

    Broader source: Energy.gov [DOE]

    Green Mountain Power, an investor-owned electric utility operating in Vermont, offers a credit to customers with net-metered photovoltaic (PV) systems. In addition to the benefits of net metering,...

  19. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    of sites suitable for a solar plant with sulfur oxide TableProcess for a Steam Solar Electric Plant Report No. LBL-Summary of the Proposed Solar Power Plant Design The Impact

  20. Advances in Solar Radiometry and Metrology

    SciTech Connect (OSTI)

    Myers, D.; Andreas, A.; Reda, I.; Gotseff, P.; Wilcox, S.; Stoffel, T.; Anderberg, M.

    2005-01-01T23:59:59.000Z

    The Solar Radiometry and Metrology task at the National Renewable Energy Laboratory (NREL) provides traceable optical radiometric calibrations and measurements to photovoltaic (PV) researchers and the PV industry. Traceability of NREL solar radiometer calibrations to the World Radiometric Reference (WRR) was accomplished during the NREL Pyrheliometer Comparison in October 2003. The task has calibrated 10 spectral and more than 180 broadband radiometers for solar measurements. Other accomplishments include characterization of pyranometer thermal offset errors with laboratory and spectral modeling tools; developing a simple scheme to correct pyranometer data for known responsivity variations; and measuring detailed spectral distributions of the NREL High Intensity Pulsed Solar Simulator (HIPSS) as a function of lamp voltage and time. The optical metrology functions support the NREL Measurement and Characterization Task effort for ISO 17025 accreditation of NREL Solar Reference Cell Calibrations. Optical metrology functions have been integrated into the NREL quality system and audited for ISO17025 compliance.

  1. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,” Eurosun 2010,COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A Thesis

  2. Implications of geographic diversity for short-term variability and predictability of solar power.

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01T23:59:59.000Z

    Term variability of solar power,” Lawrence Berkeley Nationaldue to wind and solar power,” Environmental Science &and Predictability of Solar Power Andrew D. Mills and Ryan

  3. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications AMaterials for Concentrating Solar Power Plant Applications

  4. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    FOR CONCENTRATING SOLAR POWER PLANTS,” Eurosun 2010, Graz,STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa, Ontario: 1999.Concentrated Solar Thermal Power Plants A Thesis submitted

  5. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications Afor Concentrating Solar Power Plant Applications by Melina

  6. Solar thermophotovoltaic space power system

    SciTech Connect (OSTI)

    Horne, W.E. (Boeing Aerospace Co., Seattle, WA); Day, A.C. (NASA, Marshall Space Flight Center, Huntsville, AL)

    1980-01-01T23:59:59.000Z

    A study has been performed on the technical feasibility and cost of a TPV system for an alternative space power supply. An analysis of six previous studies has been performed and a consistent optical, thermal, and electrical model developed. A search of the literature for materials data has been augmented by an experimental test program on materials and breadboard subsystems of the TPV. These data have been used in the model to determine the technical feasibility and the degree of performance that might be expected from such a system. A system design study was then conducted to optimize the launch configuration, the weight, and the cost of the TPV space power system. Results from this study were used to define a specific design which could be used in a detailed cost analysis. A cost analysis was then performed to determine the relative costs of the TPV power system. It appears that a system having a specific power greater than 150 W/kg can be produced for approximately 30 dollars per watt.

  7. Concentrated Solar Power Generation Systems: The SAIC Dish

    E-Print Network [OSTI]

    Hemmers, Oliver

    Concentrated Solar Power Generation Systems: The SAIC Dish Center for Energy Research at UNLV #12;Concentrating Solar Dishes Work has been underway at UNLV's Center for Energy Research since 2001 in the use of concentrating solar dishes for electrical power generation. One of these solar dishes was marketed by Science

  8. ZIMPOL-3: a powerful solar polarimeter Renzo Ramellia, Silvano Balemib, Michele Biandaa, Ivan Defilippisb, Luca Gammab, Stephan

    E-Print Network [OSTI]

    ZIMPOL-3: a powerful solar polarimeter Renzo Ramellia, Silvano Balemib, Michele Biandaa, Ivan ABSTRACT The area of high precision solar spectropolarimetry has made great advances in recent years implemented for the scientific observations at the solar observatory at Istituto Ricerche Solari Locarno

  9. Advanced crystallization techniques of ''solar grade'' silicon

    SciTech Connect (OSTI)

    Gasparini, M.; Alessandri, M.; Calligarich, C.; Pizzini, S.; Rava, P.; Redaelli, F.; Sardi, L.

    1982-09-01T23:59:59.000Z

    Microstructural, electrical and photovoltaic characteristics of polycristalline silicon solar cells fabricated with silicon ingots containing 5, 100 and 500 ppmw iron are reported and discussed. All silicon ingots were grown by the directional solidification technique in graphite or special quartz molds and doped intentionally with iron, in order to evaluate the potentiality of the D.S. technique when employed with solar silicon feedstocks. Results indicate that structural breakdown limits the amount of the ingot which is usable for solar cells fabrication, but also that efficiencies in excess of 10% are obtained using the ''good'' region of the ingot.

  10. High-Temperature Solar Selective Coating Development for Power...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q1 High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q1...

  11. High-Temperature Solar Selective Coating Development for Power...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2 High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2...

  12. Concentrating Solar Power (Fact Sheet), SunShot Initiative, U...

    Broader source: Energy.gov (indexed) [DOE]

    Concentrating Solar Power (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE) Concentrating Solar Power (Fact Sheet), SunShot Initiative, U.S. Department of Energy...

  13. Concentrating Solar Power Program Review 2013 (Book) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01T23:59:59.000Z

    This U.S. Department of Energy (DOE) Concentrating Solar Power Program Review Meeting booklet will be provided to attendees at the Concentrating Solar Power Review Meeting in Phoenix, Arizona on April 23-25, 2013.

  14. Energy 101: Concentrating Solar Power | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    101: Concentrating Solar Power Energy 101: Concentrating Solar Power August 6, 2010 - 12:58pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs How...

  15. Solar-powered carousel for hands-on teaching

    E-Print Network [OSTI]

    Shea, Erin C. (Erin Colleen)

    2005-01-01T23:59:59.000Z

    This thesis is the design of a solar-powered carousel that informs the public about the setup and capabilities of solar-powered systems. It is designed as a mobile tool that can be moved among college campuses, businesses, ...

  16. advanced 3d power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  17. advanced power plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  18. advanced nuclear power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  19. advanced power group: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  20. advanced power converters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  1. advanced power train: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  2. advanced power systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  3. advanced power sources: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  4. advanced large power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  5. advanced radioisotope power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  6. advanced power production: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  7. advanced power reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  8. advanced power plants: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  9. advanced power system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  10. aries advanced power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  11. Solar Powering America by Recognizing Communities Funding Opportunity

    Broader source: Energy.gov [DOE]

    DOE's SunShot Initiative is accepting applications for the Solar Powering America by Recognizing Communities funding opportunity.

  12. Advanced Power Plant Development and Analyses Methodologies

    SciTech Connect (OSTI)

    G.S. Samuelsen; A.D. Rao

    2006-02-06T23:59:59.000Z

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  13. Advanced Power Plant Development and Analysis Methodologies

    SciTech Connect (OSTI)

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

    2006-06-30T23:59:59.000Z

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  14. A Novel Solar-Fossil Hybrid Power Plant

    SciTech Connect (OSTI)

    Brown, Daryl R.

    2014-01-01T23:59:59.000Z

    This is a short article prepared for Power Magazine about our development of a solar-powered steam-methane reformer.

  15. SUPPORTING SOLAR ENERGY DEVELOPMENT THROUGH GREEN POWER MARKETS Blair Swezey

    E-Print Network [OSTI]

    SUPPORTING SOLAR ENERGY DEVELOPMENT THROUGH GREEN POWER MARKETS Blair Swezey Lori Bird Christy are still developing, participation in these programs is supporting a significant amount of new solar energy in part through green power marketing. This paper describes the use of solar energy in green power

  16. NREL Develops Sub-Hour Solar Power Data Set

    E-Print Network [OSTI]

    from photovoltaic and concentrating solar power plants of various sizes. Researchers measure global into their electric power systems. Large-scale deployment of solar energy requires a favorable environment and requirements. Utilities need tools and data to study and enable high solar penetrations on their power systems

  17. ARIES-AT: AN ADVANCED TOKAMAK, ADVANCED TECHNOLOGY FUSION POWER PLANT

    E-Print Network [OSTI]

    California at San Diego, University of

    ARIES-AT: AN ADVANCED TOKAMAK, ADVANCED TECHNOLOGY FUSION POWER PLANT F. Najmabadi, S. C. Jardin*,6 of high-performance tokamak plasmas together with advanced technology in a fusion power plant. Several and advanced technology leads to attractive fusion power plant with excellent safety and environmental

  18. Energy Department Announces New Concentrating Solar Power Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    approach to American energy, these SunShot investments will help American companies and technologies advance cutting-edge solar technologies that will help U.S....

  19. Concentrating Solar Power Hybrid System Study: Cooperative Research and Development Final Report, CRADA Number CRD-13-506

    SciTech Connect (OSTI)

    Turchi, C.

    2014-09-01T23:59:59.000Z

    The purpose of this PTS is to collaboratively leverage the collective resources at General Electric Global Research (GEGRC) and National Renewable Energy Laboratories (NREL) in the areas of concentrating solar power hybrid systems to advance state-of-the-art concentrating solar and conventional power generation system integration.

  20. Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators

    E-Print Network [OSTI]

    Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators to eventually optimise the reactor geometry for ammonia-based solar energy storage with troughs, which.1. Storing Solar Energy with Ammonia H2 / N2 gas liquid NH3 Heat Exchangers Power Generation (Steam Cycle

  1. Recent technological advances in thin film solar cells

    SciTech Connect (OSTI)

    Ullal, H.S.; Zwelbel, K.; Surek, T.

    1990-03-01T23:59:59.000Z

    High-efficiency, low-cost thin film solar cells are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. This paper reviews the substantial advances made by several thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, cadmium telluride, and polycrystalline silicon. Recent examples of utility demonstration projects of these emerging materials are also discussed. 8 refs., 4 figs.

  2. Progress to Develop an Advanced Solar-Selective Coating

    SciTech Connect (OSTI)

    Kennedy, C. E.

    2008-03-01T23:59:59.000Z

    The progress to develop a durable advanced solar-selective coating will be described. Experimental work has focused on modeling high-temperature, solar-selective coatings; depositing the individual layers and modeled coatings; measuring the optical, thermal, morphology, and compositional properties and using the data to validate the modeled and deposited properties; re-optimizing the coating; and testing the coating performance and durability.

  3. SOLAR ENERGY PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1978

    E-Print Network [OSTI]

    authors, Various

    2011-01-01T23:59:59.000Z

    operating threshold (the solar plant is in operationof advanced concept solar power plants. For conditions ofis essential if solar power plants are ever to supply a

  4. Solar Power Systems Find A Professional Solar Energy Installer For Any

    E-Print Network [OSTI]

    Lovley, Derek

    Solar Power Systems Find A Professional Solar Energy Installer For Any Type Of System www.CleanEnergyAuthority.com Install Solar Panels Enter Your Zip Code & Connect To Pre-Screened Solar Panel Installers www.ServiceMagic.com Biomass Pumps Reliable metering for apps from microflow to scale-up & pilot plant www.isco.com The Solar

  5. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    SciTech Connect (OSTI)

    Narumanchi, S.; Bennion, K.; DeVoto, D.; Moreno, G.; Rugh, J.; Waye, S.

    2015-01-01T23:59:59.000Z

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  6. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01T23:59:59.000Z

    simulating solar photovoltaic (PV) power plant output givenfor simulating the power output of a solar photovoltaic (PV)

  7. Advanced Materials and Concepts for Portable Power Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    2010 Fuel Cell Projects Kick-off Meeting Washington, DC - September 28, 2010 Advanced Materials and Concepts for Portable Power Fuel Cells for Portable Power Fuel Cells Piotr...

  8. Advanced Soft Switching Inverter for Reducing Switching and Power...

    Energy Savers [EERE]

    Soft Switching Inverter for Reducing Switching and Power Losses Advanced Soft Switching Inverter for Reducing Switching and Power Losses Presentation from the U.S. DOE Office of...

  9. Overview: Advanced Power Electronics and Electric Motors (APEEM...

    Broader source: Energy.gov (indexed) [DOE]

    rogers.pdf More Documents & Publications Advanced Power Electronics and Electric Motors R&D Advnaced Power Electronics and Electric Machines (APEEM) R&D Program Overview Electric...

  10. Advanced Thermal Interface Materials (TIMs) for Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interface Materials (TIMs) for Power Electronics Advanced Thermal Interface Materials (TIMs) for Power Electronics 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

  11. Thermal Stress and Reliability for Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Power Electronic Thermal System Performance and Integration...

  12. Lab Tests Demonstrate Effectiveness of Advanced Power Strips (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01T23:59:59.000Z

    NREL engineers evaluate the functionalities of advanced power strips and help consumers choose the right one for their plug loads.

  13. Advanced Power Batteries for Renewable Energy Applications 3.09

    SciTech Connect (OSTI)

    Rodney Shane

    2011-09-30T23:59:59.000Z

    This report describes the research that was completed under project title â?? Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  14. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA Series ofTransformingCement

  15. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA Series ofTransformingCementAndrei

  16. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA Series ofTransformingCementAndreiSergei

  17. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA Series

  18. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA SeriesNanocrystal Quantum Dots:

  19. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA SeriesNanocrystal Quantum Dots:The

  20. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA SeriesNanocrystal Quantum Dots:TheUnder

  1. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA SeriesNanocrystal Quantum

  2. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA SeriesNanocrystal QuantumOptical

  3. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA SeriesNanocrystal QuantumOpticalAuger

  4. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA SeriesNanocrystal

  5. Funding Opportunity Announcement: Concentrating Solar Power: Advanced

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: Congestion Study CommentsStolar,NEACEnergy AviationThisProjects

  6. Advanced Solar Power ASP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio:Ads-tec GmbHRenewableEnergy CompanyASEASP

  7. Review Article Solar-Thermal Powered Desalination: Its Significant

    E-Print Network [OSTI]

    Reif, John H.

    @kau.edu.sa Abstract Solar-desalination systems are desalination systems that are powered by solar energy review the technologies for solar energy systems used for capturing and concentrating heat energy- desalination systems that (i) first transform solar energy into electrical energy and then (ii) employed

  8. PV/thermal solar power assembly | OSTI, US Dept of Energy, Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PVthermal solar power assembly Re-direct Destination: A flexible solar power assembly (2) includes a flexible photovoltaic device (16) attached to a flexible thermal solar...

  9. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01T23:59:59.000Z

    Model (WVM) for Solar PV Power Plants Matthew Lave, Janoutput of a solar photovoltaic (PV) plant was presented andsimulating solar photovoltaic (PV) power plant output given

  10. Design considerations for concentrating solar power tower systems employing molten salt.

    SciTech Connect (OSTI)

    Moore, Robert Charles; Siegel, Nathan Phillip; Kolb, Gregory J.; Vernon, Milton E.; Ho, Clifford Kuofei

    2010-09-01T23:59:59.000Z

    The Solar Two Project was a United States Department of Energy sponsored project operated from 1996 to 1999 to demonstrate the coupling of a solar power tower with a molten nitrate salt as a heat transfer media and for thermal storage. Over all, the Solar Two Project was very successful; however many operational challenges were encountered. In this work, the major problems encountered in operation of the Solar Two facility were evaluated and alternative technologies identified for use in a future solar power tower operating with a steam Rankine power cycle. Many of the major problems encountered can be addressed with new technologies that were not available a decade ago. These new technologies include better thermal insulation, analytical equipment, pumps and values specifically designed for molten nitrate salts, and gaskets resistant to thermal cycling and advanced equipment designs.

  11. Solar Thermochemical Advanced Reactor System, Wins R&D 100 Award...

    Office of Environmental Management (EM)

    Solar Thermochemical Advanced Reactor System, Wins R&D 100 Award Solar Thermochemical Advanced Reactor System, Wins R&D 100 Award October 16, 2014 - 5:24pm Addthis Developed...

  12. Department of Energy Announces $8.5 Million to Advance Solar...

    Office of Environmental Management (EM)

    8.5 Million to Advance Solar Energy Grid Integration Systems Department of Energy Announces 8.5 Million to Advance Solar Energy Grid Integration Systems September 7, 2010 -...

  13. SunShot-funded Advanced Inverter Testing Enables 2,500 Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunShot-funded Advanced Inverter Testing Enables 2,500 Solar Energy Systems to Connect to Hawaii's Electric Grid SunShot-funded Advanced Inverter Testing Enables 2,500 Solar Energy...

  14. Optimisation of Concentrating Solar Thermal Power Plants with Neural Networks

    E-Print Network [OSTI]

    Ábrahåm, Erika

    , Germany 2 Fraunhofer Institute for Solar Energy Systems, Freiburg, Germany Abstract. The exploitation of solar power for energy supply is of in- creasing importance. While technical development mainly takes, wind, and biomass energy. Among such tech- nologies, concentrating solar thermal power (CSP) plants

  15. Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power

    E-Print Network [OSTI]

    . A facility with solar fraction less than 1 is a hybrid operating plant that combusts naturLife Cycle Greenhouse Gas Emissions from Concentrating Solar Power Over the last thirty years, more-scale concentrating solar power (CSP) systems. These LCAs have yielded wide-ranging results. Variation could

  16. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    12] Kalogirou, S. A. (2004). Solar thermal collectors andD. (2004). Advances in solar thermal electricity technology.December). Distributed solar-thermal/electric generation.

  17. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heat can also be efficiently and cheaply stored to produce electricity when the sun ... Solar Energy On February 3, 2011, in Solar Programs Photovoltaics Concentrating Solar...

  18. An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andrew

    2014-01-01T23:59:59.000Z

    fast charging, and solar power availability pose a challengeevent to a fixed SOC from solar power and/or the grid in athem without considering solar power availability and the

  19. Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?

    E-Print Network [OSTI]

    Allen, Michael F.; McHughen, Alan

    2011-01-01T23:59:59.000Z

    D EVELOPMENT I SSUES Solar Power in the Desert: Are the2 Most of the large-scale solar power projects utilize largethat will be affected by solar power facilities. There are

  20. Peak power tracking for a solar buck charger

    E-Print Network [OSTI]

    Cohen, Jeremy Michael, M. Eng. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    This thesis discusses the design, implementation, and testing of a buck converter with peak power tracking. The peak power tracker uses a perturb and observe algorithm to actively track the solar panel's peak power point ...

  1. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    process configurations for solar power plants with sensible-heatsolar power plant with sensible-heat storage since the chemical~heat storage processsolar power plant with a sulfur-oxide storage process. chemical~heat

  2. Madison Gas & Electric- Clean Power Partner Solar Buyback Program

    Broader source: Energy.gov [DOE]

    Customer-generators enrolled in the Madison Gas & Electric (MGE) green power purchase program (Green Power Tomorrow) are eligible to receive a special rate for the power produced from solar p...

  3. Waverly Light and Power- Residential Solar Thermal Rebates

    Broader source: Energy.gov [DOE]

    Waverly Light and Power (WL&P) offers rebates for solar hot water heating systems to its residential customers. All purchases must be pre-approved through WL&P's solar water heater...

  4. Concentrating Solar Power | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercialization andComputer SimulationsConcentrating Solar Power

  5. Sandia Energy - Solar Power International (SPI) Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSiting andSolar GlarePower

  6. SunShot Concentrating Solar Power Research

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski -Blueprint |EnergyEnergyofSummary:Seats Solar Power

  7. Concentrating Solar Power Basics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submitCollector/Receiver Characterization We use a variety ofSolar

  8. Concentrating solar power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentrating Solar Power Basics (The following text is derived

  9. Spheral Solar Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast ColoradoOhio: Energy Resources JumpSpheral Solar Power

  10. Concentrating solar power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) |Use of Solar Resource Data | Open

  11. Low-cost distributed solar-thermal-electric power generation

    E-Print Network [OSTI]

    Sanders, Seth

    Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach discuss the technical and economic feasibility of a low-cost distributed solar-thermal-electric power technologies should be judged by output power per dollar rather than by efficiency or other technical merits

  12. ePOWER Seminar AC solar cells: A new breed of PV power generation

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    -noon Walter Light Hall, Room 302 Abstract: A solar cell inside a photovoltaic (PV) panel inherently produces ePOWER Seminar AC solar cells: A new breed of PV power generation Professor Faisal Khan Assistant will provide a guideline for solar cell designers to fabricate various discrete components in a power converter

  13. advanced technology solar: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UMore Park Overview 4 Solar Optimization 7 Passive Solar 8 Solar Technologies 10 District Solar Energy 13 Optimal Solar Layout 14 Payback & State Incentives 15 UMore Park...

  14. NREL: News - NREL Teams with SolarCity to Maximize Solar Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    114 NREL Teams with SolarCity to Maximize Solar Power on Electrical Grids Both are working together with the Hawaiian Electric Companies to analyze and enable higher penetrations...

  15. Optimization of Multiple Receivers Solar Power Tower systems

    E-Print Network [OSTI]

    2015-04-08T23:59:59.000Z

    Apr 8, 2015 ... Solar Power Tower (SPT) systems are known as one of the most promising ...... An appropriate control is required to adapt the mass flow in the ...

  16. Funding Opportunity Announcement: Solar Powering America by Recognizin...

    Office of Environmental Management (EM)

    support, contact SPARC@ee.doe.gov. SunShot Home About Concentrating Solar Power Photovoltaics Systems Integration Soft Costs Technology to Market Success Stories Financial...

  17. 2014 SunShot Initiative Concentrating Solar Power Subprogram...

    Office of Environmental Management (EM)

    Integration Subprogram Overview SunShot Home About Concentrating Solar Power Photovoltaics Systems Integration Soft Costs Technology to Market Success Stories Financial...

  18. World's Largest Concentrating Solar Power Plant Opens in California...

    Office of Environmental Management (EM)

    Guarantees for BrightSource Energy SunShot Home About Concentrating Solar Power Photovoltaics Systems Integration Soft Costs Technology to Market Success Stories Financial...

  19. Department of Veterans Affairs, FONSI - Rooftop solar PV power...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Department of Veterans Affairs, FONSI - Ground mounted solar photovoltaic power at San Joaquin National Cemetery Department of Energy Technical...

  20. Solar Powering Your Community: A Guide for Local Governments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Guide for Local Governments (Book), Energy Efficiency & Renewable Energy (EERE) Solar Powering Your Community: A Guide for Local Governments (Book), Energy Efficiency &...

  1. Sandia National Laboratories: character-izing solar-power-plant...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    character-izing solar-power-plant output variability Sandia PV Team Publishes Book Chapter On January 21, 2014, in Computational Modeling & Simulation, Energy, Modeling & Analysis,...

  2. Sandia National Laboratories: simulating solar-power-plant output...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulating solar-power-plant output variability Sandia PV Team Publishes Book Chapter On January 21, 2014, in Computational Modeling & Simulation, Energy, Modeling & Analysis,...

  3. Optimization of Multiple Receivers Solar Power Tower systems

    E-Print Network [OSTI]

    Emilio Carrizosa

    2015-03-26T23:59:59.000Z

    Mar 26, 2015 ... Abstract: In this article a new procedure to optimize the design of a Multiple Receivers Solar Power Tower system is presented. The proposed ...

  4. Sandia National Laboratories: PNM Distributed Energy Solar Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PNM Distributed Energy Solar Power Program Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution...

  5. Drivers and Barriers in the Current Concentrated Solar Power...

    Open Energy Info (EERE)

    the four major types of concentrating solar power technologies (CSP): parabolic trough, tower concentrators, linear Fresnel lenses and dish engine systems. It also provides an...

  6. Advanced PID type fuzzy logic power system stabilizer

    SciTech Connect (OSTI)

    Hiyama, Takashi; Kugimiya, Masahiko; Satoh, Hironori (Kumamoto Univ. (Japan). Dept. of Electrical Engineering and Computer Science)

    1994-09-01T23:59:59.000Z

    An advanced fuzzy logic control scheme has been proposed for a micro-computer based power system stabilizer to enhance the overall stability of power systems. The proposed control scheme utilizes the PID information of the generator speed. The input signal to the stabilizer is the real power output of a study unit. Simulations show the effectiveness of the advanced fuzzy logic control scheme.

  7. Solar Powering America Home | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    megawatts of solar on federally-assisted housing. Featured Videos Inside the White House: Solar Panels SunShot Tech to Market SunShot Solar PV SunShot Identity Video Community...

  8. Solar Power Purchase Agreements | Department of Energy

    Office of Environmental Management (EM)

    NREL PV Projects - FUPWG Meeting: "Going Coastal for Energy Efficiency" Tool to Compare Solar Energy Program Financing Options Tucson's Solar Experience: Developing PV with RFPs...

  9. Second generation PFB for advanced power generation

    SciTech Connect (OSTI)

    Robertson, A.; Van Hook, J.

    1995-11-01T23:59:59.000Z

    Research is being conducted under a United States Department of Energy (USDOE) contract to develop a new type of coal-fueled plant for electric power generation. This new type of plant-called an advanced or second-generation pressurized fluidized bed combustion (APFBC) plant-offers the promise of 45-percent efficiency (HHV), with emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. This paper summarizes the pilot plant R&D work being conducted to develop this new type of plant. Although pilot plant testing is still underway, preliminary estimates indicate the commercial plant Will perform better than originally envisioned. Efficiencies greater than 46 percent are now being predicted.

  10. Connective Power: Solar Electrification and Social Change in Kenya

    E-Print Network [OSTI]

    Jacobson, Arne

    Connective Power: Solar Electrification and Social Change in Kenya ARNE JACOBSON * Humboldt State development, Africa, Kenya 1. INTRODUCTION Solar electrification has emerged as a leading alternative to grid technology advocates, but my research in Kenya indicates that solar electrification is, at best, only loosely

  11. PS10 Solar Power Tower Xi Jing, Fang

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    area equivalent of 17 American Football Tower Solar receiver 4 vertical panels 18ft*39ft Steam turbinePS10 Solar Power Tower Xi Jing, Fang #12;Overview Magnitudes , Cost & TechnologiesMagnitudes , Cost Government . #12;Further ExplanationFurther Explanation Plataforma Solar de SanlĂșcar la Mayor,PSSM Megawatts

  12. Air Cooling Technology for Advanced Power Electronics and Electric...

    Broader source: Energy.gov (indexed) [DOE]

    Desikan Bharathan National Renewable Energy Laboratory Friday May 22, 2009 Air Cooling Technology for Advanced Power Electronics and Electric Machines ape12bharathan This...

  13. Thermal Stress and Reliability for Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance and Reliability of Bonded Interfaces Physics of Failure of Electrical Interconnects Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines...

  14. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    Concentrating Solar Combined Heat and Power Systemcombined heat and power systems . . . . . . . Verificationmyth eight – worldwide power systems are economically and

  15. Strategies in tower solar power plant optimization

    E-Print Network [OSTI]

    Ramos, A

    2012-01-01T23:59:59.000Z

    A method for optimizing a central receiver solar thermal electric power plant is studied. We parametrize the plant design as a function of eleven design variables and reduce the problem of finding optimal designs to the numerical problem of finding the minimum of a function of several variables. This minimization problem is attacked with different algorithms both local and global in nature. We find that all algorithms find the same minimum of the objective function. The performance of each of the algorithms and the resulting designs are studied for two typical cases. We describe a method to evaluate the impact of design variables in the plant performance. This method will tell us what variables are key to the optimal plant design and which ones are less important. This information can be used to further improve the plant design and to accelerate the optimization procedure.

  16. Optimization of advanced telecommunication algorithms from power and performance perspective 

    E-Print Network [OSTI]

    Khan, Zahid

    2011-11-22T23:59:59.000Z

    This thesis investigates optimization of advanced telecommunication algorithms from power and performance perspectives. The algorithms chosen are MIMO and LDPC. MIMO is implemented in custom ASIC for power optimization ...

  17. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    Solar Water Heater power systems that rely on batteries. Solar Water HeaterSolar water heater is becoming more popular because they are

  18. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01T23:59:59.000Z

    Term Variability of Solar Power," LBNL Report No. 3884E,High penetration of solar power is highly desirable from ansimilarity to the shape of solar power fluctuations [11].

  19. Comment on "Air Emissions Due to Wind and Solar Power" and Supporting Information

    E-Print Network [OSTI]

    Mills, Andrew D.

    2011-01-01T23:59:59.000Z

    due to wind and solar power. Environ. Sci. Technol. (2)Emissions Due to Wind and Solar Power” Andrew Mills, ? , †due to wind and solar power. Environ. Sci. Technol. (2)

  20. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

  1. Rankline-Brayton engine powered solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2012-03-13T23:59:59.000Z

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  2. Rankine-Brayton engine powered solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2009-12-29T23:59:59.000Z

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  3. How Do Wind and Solar Power Affect Grid Operations: The Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Freeman, L.; Miller, N.; Clark, K.; Piwko, R.

    2009-01-01T23:59:59.000Z

    The Western Wind and Solar Integration Study is one of the largest regional wind and solar integration studies to date, examining the operational impact of up to 35% wind, photovoltaics, and concentrating solar power on the WestConnect grid in Arizona, Colorado, Nevada, New Mexico, and Wyoming. This paper reviews the scope of the study, the development of wind and solar datasets, and the results to date on three scenarios.

  4. Sensitivity of Concentrating Solar Power Trough Performance, Cost and Financing with Solar Advisor Model

    SciTech Connect (OSTI)

    Blair, N.; Mehos, M.; Christensen, C.

    2008-03-01T23:59:59.000Z

    A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM) was developed to support the federal R&D community and the solar industry. This model, developed by staff at NREL and Sandia National Laboratory, is able to model the costs, finances, and performance of concentrating solar power and photovoltaics (PV). Currently, parabolic troughs and concentrating PV are the two concentrating technologies modeled within the SAM environment.

  5. Design and Analysis of Micro-Solar Power Systems for Wireless Sensor Networks

    E-Print Network [OSTI]

    Culler, David E.

    design guidelines for micro-solar power systems. Keywords-- Micro-Solar Power Systems, Solar Energy Har of the four components of a micro- solar power system models various design choices. Based on this modelDesign and Analysis of Micro-Solar Power Systems for Wireless Sensor Networks Jaein Jeong, Xiaofan

  6. Sandia National Laboratories: Concentrating Solar Power (CSP...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies andor validating technological concepts using Sandia's expertise and infrastructure, including the National Solar Thermal Test Facility. Areas of possible...

  7. Florida Power and Light- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Note: This program will not be offered after 2015. More information is available on FPL's solar rebate web site.

  8. Advanced Materials and Nano Technology for Solar Cells

    E-Print Network [OSTI]

    Han, Tao

    2014-01-01T23:59:59.000Z

    Solar Energy Materials and Solar Cells 93.6 (2009): 670-673.1-3: The structure diagram of c-Si solar cell and HIT solarof flexible CIGS solar cells and modules." Solar Energy

  9. Powering Your Water Heater Using Solar Energy 

    E-Print Network [OSTI]

    Miller, Daniel

    2013-02-13T23:59:59.000Z

    This report is a detailed overview of my research on solar water heating. Solar water heaters may be used to either supplement or even replace a standard water heater. In addition to being environmentally friendly, solar heaters can save a homeowner...

  10. System and method for advanced power management

    DOE Patents [OSTI]

    Atcitty, Stanley (Albuquerque, NM); Symons, Philip C. (Surprise, AZ); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM)

    2009-07-28T23:59:59.000Z

    A power management system is provided that includes a power supply means comprising a plurality of power supply strings, a testing means operably connected to said plurality of power supply strings for evaluating performance characteristics of said plurality of power supply strings, and a control means for monitoring power requirements and comprising a switching means for controlling switching of said plurality of power supply strings to said testing means.

  11. President Obama Announces Commitments and Executive Actions to Advance Solar Deployment

    Broader source: Energy.gov [DOE]

    Today, President Obama announced more than 300 private and public sector commitments to create jobs and cut carbon pollution by advancing solar deployment and energy efficiency. The commitments...

  12. Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.; Lu, S.; Hamann, H. F.; Banunarayanan, V.

    2013-10-01T23:59:59.000Z

    Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The results show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.

  13. Novel buried contact technology for advanced silicon solar cells

    SciTech Connect (OSTI)

    Ni Dheasuna, C.; Mathewson, A.; Hecking, L.; Wrixon, G.T. [National Microelectronics Research Centre, Cork (Ireland)

    1994-12-31T23:59:59.000Z

    Increased efficiency of silicon solar cells has resulted in the increased complexity and cost of manufacture. Optical properties can be enhanced by increasing the optical path length, while minimizing both bulk and surface recombination. Conventional silicon based solar cells are fabricated by a series of physical or chemical vapor deposition processes followed by photolithography and etching processes for each layer. These repeated deposition and etching cycles are not only difficult to perform but they also generate severe surface topography. This topography is a major cause of yield loss and reliability problems for advanced solar cells. These problems are especially severe for high aspect ratio contact holes. An alternative method of performing this metallization inexpensively and reliably is by the use of electroless plating. As the plating process occurs selectively on Si and not on the surface passivation layer, thick metal films (Ni and Cu) can be deposited which depend entirely upon the depth of the trench used. The advantages of electroless plating as an alternative to standard metallization will be presented.

  14. Solar Power Innovations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolar Energy sro Jump to:SolarSolarSolar

  15. Solar Power Prospector | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolar Energy sro Jump to:SolarSolarSolarJump to:

  16. Solar Power | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolar Energy sro Jump to:SolarSolarSolarJump

  17. FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced Computational Kernels OBJECTIVE The U of the power grid will also have to evolve to insure accurate and timely simulations. On the other hand, the software tools available for power grid simulation today are primarily sequential single core programs

  18. Solar thermal powered desalination: membrane versus distillation technologies

    E-Print Network [OSTI]

    Solar thermal powered desalination: membrane versus distillation technologies G. Burgess and K Canberra ACT 0200 AUSTRALIA E-mail: greg.burgess@anu.edu.au Multiple Effect Distillation (MED) is generally assisted) desalination has been conducted. Solar thermal driven Multiple Effect Distillation (MED) has been

  19. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint

    SciTech Connect (OSTI)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01T23:59:59.000Z

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  20. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat (Presentation)

    SciTech Connect (OSTI)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01T23:59:59.000Z

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  1. Variability of Photovoltaic Power in the State of Gujarat Using High Resolution Solar Data

    SciTech Connect (OSTI)

    Hummon, M.; Cochran, J.; Weekley, A.; Lopez, A.; Zhang, J.; Stoltenberg, B.; Parsons, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-03-01T23:59:59.000Z

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  2. Florida Power and Light- Solar Rebate Program (Florida)

    Broader source: Energy.gov [DOE]

    Note:The Florida Power and Light (FPL) 2013 solar PV rebate program is fully subscribed and the limited "standby list" is full. Customers on the standby list will be contacted in the numerical...

  3. GreyStone Power- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    GreyStone Power, an electricity cooperative serving 103,000 customers in Georgia, introduced a solar water heating rebate in March 2009. This $500 rebate is available to customers regardless of...

  4. Minnesota Power- Solar-Thermal Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings;...

  5. Burbank Water and Power- Solar Water Heater Rebate Program (California)

    Broader source: Energy.gov [DOE]

    Burbank Water and Power is providing incentives for the purchase of solar water heaters. Incentives are only available to residential customers with electric water heaters. There is a limit of one...

  6. Power Electronics Design of a Solar Powered In-car Wireless Tag for Asset Tracking and Parking Applications

    E-Print Network [OSTI]

    description Figure 1 shows the system block diagram. Maximum output power of the solar cell is extractedPower Electronics Design of a Solar Powered In-car Wireless Tag for Asset Tracking and Parking and testing of a power conditioning circuit for a solar powered in-car wireless tag for asset tracking

  7. EPIC-RoofNet: An Experimental Testbed for Solar-powered Wireless Sensor Networks

    E-Print Network [OSTI]

    Nasipuri, Asis

    EPIC-RoofNet: An Experimental Testbed for Solar-powered Wireless Sensor Networks Amitangshu Pal experiments on solar-powered sensor nodes. Due to constraints in cost and size, the solar panels of solar energy available at such solar-powered sensor nodes can be highly unpredictable and at times

  8. Hybrid solar central receiver for combined cycle power plant

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO); Bohn, Mark S. (Golden, CO); Williams, Thomas A. (Arvada, CO)

    1995-01-01T23:59:59.000Z

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  9. Hybrid solar central receiver for combined cycle power plant

    DOE Patents [OSTI]

    Bharathan, D.; Bohn, M.S.; Williams, T.A.

    1995-05-23T23:59:59.000Z

    A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

  10. Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    power to the host-customers under long- term power sales agreements. Duke Energy North Carolina Solar

  11. Parabolic Trough Solar Power for Competitive U.S. Markets

    SciTech Connect (OSTI)

    Henry W. Price

    1998-11-01T23:59:59.000Z

    Nine parabolic trough power plants located in the California Mojave Desert represent the only commercial development of large-scale solar power plants to date. Although all nine plants continue to operate today, no new solar power plants have been completed since 1990. Over the last several years, the parabolic trough industry has focused much of its efforts on international market opportunities. Although the power market in developing countries appears to offer a number of opportunities for parabolic trough technologies due to high growth and the availability of special financial incentives for renewables, these markets are also plagued with many difficulties for developers. In recent years, there has been some renewed interest in the U.S. domestic power market as a result of an emerging green market and green pricing incentives. Unfortunately, many of these market opportunities and incentives focus on smaller, more modular technologies (such as photovoltaics or wind power), and as a result they tend to exclude or are of minimum long-term benefit to large-scale concentrating solar power technologies. This paper looks at what is necessary for large-scale parabolic trough solar power plants to compete with state-of-the-art fossil power technology in a competitive U.S. power market.

  12. Results of Laboratory Testing of Advanced Power Strips: Preprint

    SciTech Connect (OSTI)

    Earle, L.; Sparn, B.

    2012-08-01T23:59:59.000Z

    This paper describes the results of a laboratory investigation to evaluate the technical performance of advanced power strip (APS) devices when subjected to a range of home entertainment center and home office usage scenarios.

  13. Microprocessor control of power sharing and solar array peak power tracking for high power (2. 5 kW) switching power converters

    SciTech Connect (OSTI)

    Speer, J.H. Jr.

    1981-01-01T23:59:59.000Z

    A prototype system of twin power converters for solar array supplement of spacecraft power buses is described. Analog circuits are used for inner control loops and a microprocessor directs power sharing and peak power tracking. 3 refs.

  14. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    SciTech Connect (OSTI)

    PROJECT STAFF

    2011-10-31T23:59:59.000Z

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially replaces some of the primary oxide cations with selected secondary cations. This causes a lattice charge imbalance and increases the anion vacancy density. Such vacancies enhance the ionic mass transport and lead to faster re-oxidation. Reoxidation fractions of Mn3O4 to Mn2O3 and CoO to Co3O4 were improved by up to 16 fold through the addition of a secondary oxide. However, no improvement was obtained in barium based mixed oxides. In addition to enhancing the short term re-oxidation kinetics, it was found that the use of mixed oxides also help to stabilize or even improve the TES properties after long term thermal cycling. Part of this improvement could be attributed to a reduced grain size in the mixed oxides. Based on the measurement results, manganese-iron, cobalt-aluminum and cobalt iron mixed oxides have been proposed for future engineering scale demonstration. Using the cobalt and manganese mixed oxides, we were able to demonstrate charge and discharge of the TES media in both a bench top fixed bed and a rotary kiln-moving bed reactor. Operations of the fixed bed configuration are straight forward but require a large mass flow rate and higher fluid temperature for charging. The rotary kiln makes direct solar irradiation possible and provides significantly better heat transfer, but designs to transport the TES oxide in and out of the reactor will need to be defined. The final reactor and system design will have to be based on the economics of the CSP plant. A materials compatibility study was also conducted and it identified Inconel 625 as a suitable high temperature engineering material to construct a reactor holding either cobalt or manganese mixed oxides. To assess the economics of such a CSP plant, a packed bed reactor model was established as a baseline. Measured cobalt-aluminum oxide reaction kinetics were applied to the model and the influences of bed properties and process parameters on the overall system design were investigated. The optimal TES system design was found to be a network of eight fixed bed reactors at 18.75 MWth each with charge and

  15. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    power to local residences or businesses. Although it may seem that the decreased efficiency of solar-

  16. Advancing beyond current generation dye-sensitized solar cells Thomas W. Hamann,ab

    E-Print Network [OSTI]

    Advancing beyond current generation dye-sensitized solar cells Thomas W. Hamann,ab Rebecca A The most efficient dye-sensitized solar cells (DSSCs) have had essentially the same configuration on the fabrication and character- ization of new architectures for dye-sensitized solar cells. He now holds

  17. Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller

    E-Print Network [OSTI]

    Poiry, Heather Marie

    2011-01-01T23:59:59.000Z

    research focused on solar powered cooling which has amounted to systemscooling system in 2009, the year I graduated with my B.S. and I chose to continue this research

  18. Vehicle Technologies Office: 2008 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    waste heat recovery devices for vehicles Vehicle Technologies Office Merit Review 2014: Thermal Control of Power Electronics of Electric Vehicles with Small Channel Coolant Boiling...

  19. Vehicle Technologies Office: 2012 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog...

  20. Vehicle Technologies Office: 2013 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road...

  1. Sandia National Laboratories: advanced auxiliary power units...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    auxiliary power units (including biofuels) Sandia Participated in the 3rd Annual Technology Forum of the U.S.-China Clean Energy Research Center - Clean Vehicles Consortium...

  2. Kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal power plants

    SciTech Connect (OSTI)

    Bowyer, J.M.

    1984-04-15T23:59:59.000Z

    The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module has been estimated. Results obtained by elementary cycle analyses have been shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration has been given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs have not been considered here.

  3. EA-1878: U.S. Department of Energy Loan Guarantee to Southwestern Solar Power, LLC for the Southwestern Solar Power Project in Palmdale, California, and near Tucson, Arizona

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide a DOE loan guarantee to Solar Power, LLC, for the Southwestern Solar Power Project in Palmdale, California, and near Tucson, Arizona. NOTE: EA has been cancelled.

  4. Power generation considerations in a solar biomodal receiver

    SciTech Connect (OSTI)

    Rochow, R.F. [NovaTech, Lynchburg, VA (United States); Miles, B.J. [Babcock and Wilcox, Lynchburg, VA (United States)

    1996-12-31T23:59:59.000Z

    The Integrated Solar Upper Stage (ISUS), or solar bimodal stage provides both propulsive thrust for efficient orbital transfer(s) and electrical power generation for the spacecraft. The combined propulsive and power systems allow the solar bimodal system to effectively compete for a variety of missions. Once on station, thermionic converters are used to supply continuous electrical power to the satellite, even during periods when the spacecraft is in the Earth`s shadow. The key to continuous power supply is thermal energy storage. The ISUS propulsion system also benefits through the use of thermal storage. By utilizing a graphite receiver, large amounts of sensible heat can be stored for later power generation. Waste heat is radiated to space through the use of heat pipes. Clearly, the graphite mass must be minimized without sacrificing electrical power capability. Voltage and current characteristics are carefully designed to operate within acceptable ranges. The detailed design of the receiver/absorber/converter (RAC) power system must meet these requirements with as little impact to the remainder of the bimodal system as possible. This paper addresses the key design considerations of a solar bimodal receiver as a power plant. Factors including the thermal storage and heat transfer from the graphite receiver to the thermionic converters, the support structures, electrical insulation and converter string design will be discussed.

  5. Solar Power and the Electric Grid, Energy Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01T23:59:59.000Z

    In today's electricity generation system, different resources make different contributions to the electricity grid. This fact sheet illustrates the roles of distributed and centralized renewable energy technologies, particularly solar power, and how they will contribute to the future electricity system. The advantages of a diversified mix of power generation systems are highlighted.

  6. Update on the Solar Power Satellite transmitter design

    SciTech Connect (OSTI)

    Brown, W.C.

    1986-01-01T23:59:59.000Z

    A number of remaining problems in the conceptual design of the transmitting antenna for the Solar Power Satellite have been solved as a result of additional technology development. Much of the technology was derived from the conceptual design of a ground-based transmitting antenna for beaming power to a high altitude airship or airplane.

  7. AV Solar Ranch I Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S.ratios inAS 42.05, AlaskaASEMAV Solar

  8. Siemens Concentrated Solar Power Ltd previously Solel Solar Systems | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG Solar GmbH Jump to: navigation, searchSidingEnergy

  9. Solar Millenium Palen Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore Jump to: navigation, searchMillenium Palen Solar

  10. SES Solar Three Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY) JumpLand FocusSCSENDECO2 JumpSolar Three

  11. Starwood Solar I Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr County, Texas:Starwood Solar

  12. Niland Solar Farm LLC Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy Resources Jump to:Nigeria: Energy ResourcesNiland Solar Farm

  13. Topaz Solar Farm Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePty LtdOpenHabitatandWind FarmSolar Farm

  14. Advanced Nanomaterials for High-Efficiency Solar Cells

    SciTech Connect (OSTI)

    Chen, Junhong [University of Wisconsin-Milwaukee] [University of Wisconsin-Milwaukee

    2013-11-29T23:59:59.000Z

    Energy supply has arguably become one of the most important problems facing humankind. The exponential demand for energy is evidenced by dwindling fossil fuel supplies and record-high oil and gas prices due to global population growth and economic development. This energy shortage has significant implications to the future of our society, in addition to the greenhouse gas emission burden due to consumption of fossil fuels. Solar energy seems to be the most viable choice to meet our clean energy demand given its large scale and clean/renewable nature. However, existing methods to convert sun light into electricity are not efficient enough to become a practical alternative to fossil fuels. This DOE project aims to develop advanced hybrid nanomaterials consisting of semiconductor nanoparticles (quantum dots or QDs) supported on graphene for cost-effective solar cells with improved conversion efficiency for harvesting abundant, renewable, clean solar energy to relieve our global energy challenge. Expected outcomes of the project include new methods for low-cost manufacturing of hybrid nanostructures, systematic understanding of their properties that can be tailored for desired applications, and novel photovoltaic cells. Through this project, we have successfully synthesized a number of novel nanomaterials, including vertically-oriented graphene (VG) sheets, three-dimensional (3D) carbon nanostructures comprising few-layer graphene (FLG) sheets inherently connected with CNTs through sp{sup 2} carbons, crumpled graphene (CG)-nanocrystal hybrids, CdSe nanoparticles (NPs), CdS NPs, nanohybrids of metal nitride decorated on nitrogen-doped graphene (NG), QD-carbon nanotube (CNT) and QD-VG-CNT structures, TiO{sub 2}-CdS NPs, and reduced graphene oxide (RGO)-SnO{sub 2} NPs. We further assembled CdSe NPs onto graphene sheets and investigated physical and electronic interactions between CdSe NPs and the graphene. Finally we have demonstrated various applications of these nanomaterials in solar cells (both as photoanodes and counter electrodes), gas sensors, and energy storage devices. This research is potentially transformative since the availability of affordable hybrid nanostructures and their fundamental properties will enable various innovative applications of the multifunctional hybrid nanostructures and thus will accelerate new discoveries and inventions in nanoscience and nanotechnology.

  15. Kansas City Power & Light- Solar PV Rebates

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light and its affiliate Kansas City Power and Light Greater Missouri Operations (collectively referred to as KCP&L) offer rebates to their customers for the installation...

  16. Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies

    SciTech Connect (OSTI)

    Zhang, Yabei; Smith, Steven J.

    2007-08-16T23:59:59.000Z

    This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

  17. SolarPower Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore Jump to:Voltaic MalaysiaSolarLabSolarPACES

  18. Advanced Materials and Nano Technology for Solar Cells

    E-Print Network [OSTI]

    Han, Tao

    2014-01-01T23:59:59.000Z

    price has been reduced by 3/4. 1.2.2 SOLAR CELL CLASSIFICATION Generally, solar cells achieve the Photovoltaic

  19. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    solar CHP system supplying arbitrary heat and power outputs.e Electrical power output of system Q Solar CHP to PV yearlysolar Rankine CHP system, sized equally in terms of peak power output,

  20. Implications of Wide-Area Geographic Diversity for Short- Term Variability of Solar Power

    E-Print Network [OSTI]

    Mills, Andrew

    2010-01-01T23:59:59.000Z

    2010. Quantifying PV power output variability. Solar EnergyOutput power correlation between adjacent wind power plants. Journal of Solarpower system demonstrate that scaling the output from an individual solar

  1. Advanced Inverter Functions to Support High Levels of Distributed Solar: Policy and Regulatory Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01T23:59:59.000Z

    This paper explains how advanced inverter functions (sometimes called 'smart inverters') contribute to the integration of high levels of solar PV generation onto the electrical grid and covers the contributions of advanced functions to maintaining grid stability. Policy and regulatory considerations associated with the deployment of advanced inverter functions are also introduced.

  2. A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan; Stein, Joshua S

    2013-01-01T23:59:59.000Z

    Model (WVM) for Solar PV Power Plants Matthew Lave, Jansolar photovoltaic (PV) power plant output given a singleproduce a simulated power plant output. The WVM is validated

  3. A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL PARTICLES

    E-Print Network [OSTI]

    Hunt, Arlon J.

    2011-01-01T23:59:59.000Z

    of advanced concept solar power plants. For conditions ofthe operation of a solar power plant is very small. Plantof the plant is minimal. CONCLUSIONS A new type of solar

  4. Solar two: A molten salt power tower demonstration

    SciTech Connect (OSTI)

    Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States); Sutherland, J.P. [Southern California Edison, Rosemead, CA (United States); Gould, W.R. Jr. [Bechtel Corp., San Francisco, CA (United States)

    1995-08-01T23:59:59.000Z

    A consortium of United States utility concerns led by the Southern California Edison Company (SCE) is conducting a cooperative project with the US Department of Energy (DOE), Sandia National Laboratories, and industry to convert the 10-MW Solar One Power Tower Pilot Plant to molten nitrate salt technology. The conversion involves installation of a new receiver, a new thermal storage system, and a new steam generator; it utilizes Solar One`s heliostat field and turbine generator. Successful operation of the converted plant, called Solar Two, will reduce economic risks in building initial commercial power tow projects and accelerate the commercial acceptance of this promising renewable energy technology. The estimated cost of Solar Two, including its three-year test period, is $48.5 million. The plant will begin operation in early 1996.

  5. Advanced RF power sources for linacs

    SciTech Connect (OSTI)

    Wilson, P.B.

    1996-10-01T23:59:59.000Z

    In order to maintain a reasonable over-all length at high center-of-mass energy, the main linac of an electron-positron linear collider must operate at a high accelerating gradient. For copper (non-superconducting) accelerator structures, this implies a high peak power per unit length and a high peak power per RF source, assuming a limited number of discrete sources are used. To provide this power, a number of devices are currently under active development or conceptual consideration: conventional klystrons with multi-cavity output structures, gyroklystrons, magnicons, sheet-beam klystrons, multiple-beam klystrons and amplifiers based on the FEL principle. To enhance the peak power produced by an rf source, the SLED rf pulse compression scheme is currently in use on existing linacs, and new compression methods that produce a flatter output pulse are being considered for future linear colliders. This paper covers the present status and future outlook for the more important rf power sources and pulse compression systems. It should be noted that high gradient electron linacs have applications in addition to high-energy linear colliders; they can, for example, serve as compact injectors for FEL`s and storage rings.

  6. Gain Scheduled Control of a Solar Power Plant Tor A. Johansen1

    E-Print Network [OSTI]

    Johansen, Tor Arne

    Gain Scheduled Control of a Solar Power Plant Tor A. Johansen1 , Kenneth J. Hunt2 and Idar Petersen to a pilot-scale solar power plant is described. A eld of parabolic collectors focus the solar radiation onto. Solar power plant, nonlinear control, gain scheduling, system identi cation. 1 Introduction

  7. Characterization of the Solar Power Resource in Europe and Assessing Benefits of Co-Location with Wind Power Installations

    E-Print Network [OSTI]

    Bozonnat, C.

    The extent, availability and reliability of solar power generation are assessed over Europe, and—following a previously developed methodology—special attention is given to the intermittency of solar power. Combined with ...

  8. Power Quality Improvement in Microgrid Using Advanced Active Power Conditioner

    E-Print Network [OSTI]

    unknown authors

    Abstract:- Wind energy conversion systems are now occupying important space in the research of renewable energy sources with microgrid. The main challenge in wind power generation is power quality problem and their connection with the distribution network in microgrid. The main factor behind poor

  9. Microsoft PowerPoint - Advances_Singley

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovember 5-6, 2001DepartmentApproved for9/2014 1 Advances

  10. Harnessing the Power of the Sun, Solar Impulse Plane Lands in DC Area

    Broader source: Energy.gov [DOE]

    Today, Secretary Moniz spoke at an event welcoming the arrival of the solar-powered Solar Impulse plane at Dulles International Airport near Washington, D.C.

  11. Reducing Office Plug Loads through Simple and Inexpensive Advanced Power Strips: Preprint

    SciTech Connect (OSTI)

    Metzger, I.; Sheppy, M.; Cutler, D.

    2013-07-01T23:59:59.000Z

    This paper documents the process (and results) of applying Advanced Power Strips with various control approaches.

  12. Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

    Broader source: Energy.gov [DOE]

    Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

  13. Wide Bandgap Semiconductors for Power Electronics, Optoelectronics, and Advanced Communications

    E-Print Network [OSTI]

    Li, Mo

    for hybrid and electric vehicles, solar photovoltaic inverters, power supply miniaturization and efficiency reliability and efficiency. Georgia Tech also has leading expertise in the metrology of the temperature and stresses in GaN electronics to verify device performance and yield new insight into device reliability

  14. Solar thermal power systems. Annual technical progress report, FY 1979

    SciTech Connect (OSTI)

    Braun, Gerald W.

    1980-06-01T23:59:59.000Z

    The Solar Thermal Power Systems Program is the key element in the national effort to establish solar thermal conversion technologies within the major sectors of the national energy market. It provides for the development of concentrating mirror/lens heat collection and conversion technologies for both central and dispersed receiver applications to produce electricity, provide heat at its point of use in industrial processes, provide heat and electricity in combination for industrial, commercial, and residential needs, and ultimately, drive processes for production of liquid and gaseous fuels. This report is the second Annual Technical Progress Report for the Solar Thermal Power Systems Program and is structured according to the organization of the Solar Thermal Power Systems Program on September 30, 1979. Emphasis is on the technical progress of the projects rather than on activities and individual contractor efforts. Each project description indicates its place in the Solar Thermal Power Systems Program, a brief history, the significant achievements and real progress during FY 1979, also future project activities as well as anticipated significant achievements are forecast. (WHK)

  15. Newman Unit 1 advanced solar repowering advanced conceptual design. Final report

    SciTech Connect (OSTI)

    none,

    1982-04-01T23:59:59.000Z

    The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical power generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)

  16. Concentrating Solar Power Facilities and Solar Potential | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010

  17. Prescott Airport Solar Plant Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power RentalAreas- CovePresciencePrescott

  18. NREL: Concentrating Solar Power Research - Southwest Concentrating Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemical andWhat IsThermalReceiverResearchPower

  19. Improved Solar Power Plant Efficiency: Low Cost Solar Irradiance Sensor -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |HotImpactControlInnovation PortalEnergy

  20. Designing of Hybrid Power Generation System using Wind energy- Photovoltaic Solar energy- Solar energy with Nanoantenna

    E-Print Network [OSTI]

    All the natural wastage energies are used for production of Electricity. Thus, the Electrical Power or Electricity is available with a minimum cost and pollution free to anywhere in the world at all times. This process reveals a unique step in electricity generation and availability from natural resources without hampering the ecological balance. This paper describes a new and evolving Electrical Power Generation System by integrating simultaneously photovoltaic Solar Energy, solar Energy with Nano-antenna, Wind Energy and non conventional energy sources. We can have an uninterrupted power supply irrespective of the natural condition without any sort of environmental pollution. Moreover this process yields the least production cost for electricity generation. Utilization of lightning energy for generation of electricity reveals a new step. The set-up consists of combination of photo-voltaic solar-cell array & Nano-anteena array, a mast mounted wind generator, lead-acid storage batteries, an inverter unit to convert DC power to AC power, electrical lighting loads and electrical heating loads, several fuse and junction boxes and associated wiring, and test instruments for measuring voltages, currents, power factors, and harmonic contamination data throughout the system. This hybrid solar-wind power generating system will extensively use in the Industries and also in external use like home appliance.

  1. Solar thermoelectrics for small scale power generation

    E-Print Network [OSTI]

    Amatya, Reja

    2012-01-01T23:59:59.000Z

    In the past two decades, there has been a surge in the research of new thermoelectric (TE) materials, driven party by the need for clean and sustainable power generation technology. Utilizing the Seebeck effect, the ...

  2. Solar Powering America Home | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmart Metersof Energy LEDMarketReadySolar

  3. Aditya Solar Power Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio: Energy955°,6671°,MultiphaseAditya Solar

  4. Prosperity Solar Power Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook icon TwitterZip Jump to: navigation,Prosperity Solar

  5. Sandia Energy - Concentrating Solar Power (CSP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's Sequim BayCaptureCloudConcentrating Solar

  6. Solar Powering America Home | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergySafely Delivering DOE'sEnergy3Decathlon:of EnergySolar

  7. Stateline Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity CorpSpringfield,WindForeignForest

  8. Jupiter Solar Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New Energy Co LtdJinzhouJoeSolar,Junco

  9. South West Solar Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolarSolkarTopicsSouthNew Jersey:South

  10. Texas Solar Power Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheasternInformation TengchongTex-La ElectricTexas RetailSolar

  11. Solar Power Purchase Agreements | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWorkSunShot Solar Manufacturing TechnologyofReady

  12. Hyperspectral Polymer Solar Cells, Integrated Power for Microsystems

    SciTech Connect (OSTI)

    Stiebitz, Paul

    2014-05-27T23:59:59.000Z

    The purpose of this research is to address a critical technology barrier to the deployment of next generation autonomous microsystems – the availability of efficient and reliable power sources. The vast majority of research on microsystems has been directed toward the development and miniaturization of sensors and other devices that enhance their intelligence, physical, and networking capabilities. However, the research into power generating and power storage technologies has not keep pace with this development. This research leveraged the capabilities of RIT’s NanoPower Research Laboratories (NPRL) in materials for advanced lithium ion batteries, nanostructured photovoltaics, and hybrid betavoltaics to develop reliable power sources for microsystems.

  13. Microsoft PowerPoint - Advances_Taylor

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel Microsoft PowerPoint -of 16 MarNational

  14. Fusion Engineering and Design 82 (2007) 217236 Advanced power core system for the

    E-Print Network [OSTI]

    California at San Diego, University of

    2007-01-01T23:59:59.000Z

    . Keywords: Advanced tokamak; Power plant studies; Power core system; Blanket and divertor design; Power. Introduction The ARIES-AT power plant was evolved to assess and highlight the benefit of advanced technologies Engineering and Design 82 (2007) 217­236 ties on the performance of advanced tokamak power plants [1

  15. Software Framework for Advanced Power Plant Simulations

    SciTech Connect (OSTI)

    John Widmann; Sorin Munteanu; Aseem Jain; Pankaj Gupta; Mark Moales; Erik Ferguson; Lewis Collins; David Sloan; Woodrow Fiveland; Yi-dong Lang; Larry Biegler; Michael Locke; Simon Lingard; Jay Yun

    2010-08-01T23:59:59.000Z

    This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. These include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.

  16. Title: CEL Solar Photovoltaic Power Project in El Salvador Principal Investigator: Abbas Ghassemi

    E-Print Network [OSTI]

    Johnson, Eric E.

    environment for El Salvador · Create partnerships with leading U.S. solar industry companies · SelectTitle: CEL Solar Photovoltaic Power Project in El Salvador Principal Investigator: Abbas Ghassemi solar resource, studying different technology options, anticipating performance, and evaluating

  17. Where solar thermal meets photovoltaic for high-efficiency power conversion

    E-Print Network [OSTI]

    Bierman, David M. (David Matthew)

    2014-01-01T23:59:59.000Z

    To develop disruptive techniques which generate power from the Sun, one must understand the aspects of existing technologies that limit performance. Solar thermal and solar photovoltaic schemes dominate today's solar market ...

  18. President Obama Announces Commitments and Executive Actions to Advance Solar Deployment and Energy Efficiency

    Broader source: Energy.gov [DOE]

    On May 9, 2014, President Obama announced more than 300 private and public sector commitments to create jobs and cut carbon pollution by advancing solar deployment and energy efficiency.

  19. Value of Concentrating Solar Power and Thermal Energy Storage

    SciTech Connect (OSTI)

    Sioshansi, R.; Denholm, P.

    2010-02-01T23:59:59.000Z

    This paper examines the value of concentrating solar power (CSP) and thermal energy storage (TES) in four regions in the southwestern United States. Our analysis shows that TES can increase the value of CSP by allowing more thermal energy from a CSP plant?s solar field to be used, by allowing a CSP plant to accommodate a larger solar field, and by allowing CSP generation to be shifted to hours with higher energy prices. We analyze the sensitivity of CSP value to a number of factors, including the optimization period, price and solar forecasting, ancillary service sales, capacity value and dry cooling of the CSP plant. We also discuss the value of CSP plants and TES net of capital costs.

  20. Apparatus for advancing a wellbore using high power laser energy

    DOE Patents [OSTI]

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02T23:59:59.000Z

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  1. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect (OSTI)

    David Liscinsky

    2002-10-20T23:59:59.000Z

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated system that exceeds the U.S. Department of Energy (DOE) goal of 40% (HHV) efficiency at emission levels well below the DOE suggested limits; and (5) An advanced biofueled power system whose levelized cost of electricity can be competitive with other new power system alternatives.

  2. Solar Power Tower Design Basis Document, Revision 0

    SciTech Connect (OSTI)

    ZAVOICO,ALEXIS B.

    2001-07-01T23:59:59.000Z

    This report contains the design basis for a generic molten-salt solar power tower. A solar power tower uses a field of tracking mirrors (heliostats) that redirect sunlight on to a centrally located receiver mounted on top a tower, which absorbs the concentrated sunlight. Molten nitrate salt, pumped from a tank at ground level, absorbs the sunlight, heating it up to 565 C. The heated salt flows back to ground level into another tank where it is stored, then pumped through a steam generator to produce steam and make electricity. This report establishes a set of criteria upon which the next generation of solar power towers will be designed. The report contains detailed criteria for each of the major systems: Collector System, Receiver System, Thermal Storage System, Steam Generator System, Master Control System, and Electric Heat Tracing System. The Electric Power Generation System and Balance of Plant discussions are limited to interface requirements. This design basis builds on the extensive experience gained from the Solar Two project and includes potential design innovations that will improve reliability and lower technical risk. This design basis document is a living document and contains several areas that require trade-studies and design analysis to fully complete the design basis. Project- and site-specific conditions and requirements will also resolve open To Be Determined issues.

  3. Characterization of the Solar Power Resource in Europe and

    E-Print Network [OSTI]

    Characterization of the Solar Power Resource in Europe and Assessing Benefits of Co to mitigate and adapt to unavoidable global environmental changes. Being data-driven, the Program uses for Global Change Science (CGCS) and the Center for Energy and Environmental Policy Research (CEEPR

  4. Diabetes hope P7 Solar energy powers on P12

    E-Print Network [OSTI]

    Liley, David

    Diabetes hope P7 Solar energy powers on P12 Post Designer stamps her cultural identity www destined way Kellie Penfold collaBoration is the currency in our Knowledge-Based econoMy australia australia's economic and social capacities. deputy vice-chancellor (research) Professor andrew Flitman 03

  5. Fast Photovoltaic Array Reconfiguration for Partial Solar Powered Vehicles

    E-Print Network [OSTI]

    Pedram, Massoud

    Fast Photovoltaic Array Reconfiguration for Partial Solar Powered Vehicles Jaemin Kim1 , Yanzhi during cruising using innovative fast photovoltaic array (PV) reconfiguration. Use of all the vehicle sur to install more PV modules, but it also results in severe performance degradation due to inherent partial

  6. Minnesota Power- Solar-Electric (PV) Rebate Program

    Broader source: Energy.gov [DOE]

    Minnesota Power offers a rebate of $1,000 per kilowatt (kW) DC for grid-connected solar-electric (PV) systems, with a maximum award of $20,000 per customer or 60% installed costs per customer. This...

  7. Why did the solar power sector develop quickly in Japan?

    E-Print Network [OSTI]

    Rogol, Michael G

    2007-01-01T23:59:59.000Z

    The solar power sector grew quickly in Japan during the decade 1994 to 2003. During this period, annual installations increased 32-fold from 7MW in 1994 to 223MW in 2003, and annual production increased 22-fold, from 16MW ...

  8. LOW POWER UPCONVERSION FOR SOLAR FUELS PHOTOCHEMISTRY

    SciTech Connect (OSTI)

    Castellano, Felix N. [Bowling Green State University

    2013-08-05T23:59:59.000Z

    Earth abundant copper(I) diimine complexes represent a renewable and economically feasible alternative to commonly used heavy metal containing chromophores. In the metal-to-ligand charge transfer (MLCT) excited state, copper(I) diimine complexes typically undergo a significant structural rearrangement, leading to molecules with large Stokes shifts and very short excited state lifetimes, thereby limiting their usefulness as sensitizers in bimolecular electron and triplet energy transfer reactions. Strategically placed bulky substituents on the coordinating phenanthroline ligands have proven useful in restricting the transiently produced excited state Jahn-Teller distortion, leading to longer-lived excited states. By combining bulky sec-butyl groups in the 2- and 9- positions with methyl groups in the 3-,4-, 7-, and 8- positions, a remarkably long-lived (2.8 ?s in DCM) copper(I) bis-phenanthroline complex, [Cu(dsbtmp)2]+, has been synthesized and characterized. Unlike other copper(I) diimine complexes, [Cu(dsbtmp)2]+ also retains a ?s lifetime in coordinating solvents such as acetonitrile and water as a result of the cooperative sterics inherent in the molecular design. Preliminary results on the use of this complex in hydrogen-forming homogeneous photocatalysis is presented. Photon upconversion based on sensitized triplet-triplet annihilation (TTA) represents a photochemical means to generate high-energy photons (or high-energy chemical products) from low-energy excitation, having potential applications in solar energy conversion and solar fuels producing devices. For the first time, synthetically facile and earth abundant Cu(I) MLCT sensitizers have been successfully incorporated into two distinct photochemical upconversion schemes, affording both red-to-green and orange-to-blue wavelength conversions. Preliminary results on aqueous-based photochemical upconversion as well as intramolecular Sn(IV) porphyrins containing axially coordinated aromatic hydrocarbon chromophores poised for upconversion photochemistry are also presented.

  9. Solar-powered turbocompressor heat pump system

    DOE Patents [OSTI]

    Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

    1982-08-12T23:59:59.000Z

    The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

  10. TECHNICAL ADVANCE EVE (external variance estimation) increases statistical power

    E-Print Network [OSTI]

    Buehlmann, Peter

    TECHNICAL ADVANCE EVE (external variance estimation) increases statistical power for detecting Institute of Plant Sciences & Zurich­Basel Plant Science Center, ETH Zurich, CH-8092 Zurich, Switzerland, our simulation studies suggest that even limited numbers of replicates will usually result in good

  11. BORON NITRIDE CAPACITORS FOR ADVANCED POWER ELECTRONIC DEVICES

    SciTech Connect (OSTI)

    N. Badi; D. Starikov; C. Boney; A. Bensaoula; D. Johnstone

    2010-11-01T23:59:59.000Z

    This project fabricates long-life boron nitride/boron oxynitride thin film -based capacitors for advanced SiC power electronics with a broad operating temperature range using a physical vapor deposition (PVD) technique. The use of vapor deposition provides for precise control and quality material formation.

  12. Project Sponsors: California Air Resources Board ADVANCED POWER & ENERGY

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Emissions Flow chart of STREET modeling methodology Impacts of Plug-In Hybrid Vehicles and Grid GenerationProject Sponsors: California Air Resources Board Toyota ADVANCED POWER & ENERGY PROGRAM www renewable wind energy penetrations and PHEV penetrations. The outcome of each scenario consists of spatially

  13. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect (OSTI)

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01T23:59:59.000Z

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

  14. Utility Grid-Connected Distributed Power Systems National Solar Energy Conference

    E-Print Network [OSTI]

    Utility Grid-Connected Distributed Power Systems National Solar Energy Conference ASES Solar 96 at least half of its energy obtained from energy efficiency and renewable resources by the year 2000. Solar energy, distributed generation resource. Investments made in solar power today are expected to provide

  15. Software and codes for analysis of concentrating solar power technologies.

    SciTech Connect (OSTI)

    Ho, Clifford Kuofei

    2008-12-01T23:59:59.000Z

    This report presents a review and evaluation of software and codes that have been used to support Sandia National Laboratories concentrating solar power (CSP) program. Additional software packages developed by other institutions and companies that can potentially improve Sandia's analysis capabilities in the CSP program are also evaluated. The software and codes are grouped according to specific CSP technologies: power tower systems, linear concentrator systems, and dish/engine systems. A description of each code is presented with regard to each specific CSP technology, along with details regarding availability, maintenance, and references. A summary of all the codes is then presented with recommendations regarding the use and retention of the codes. A description of probabilistic methods for uncertainty and sensitivity analyses of concentrating solar power technologies is also provided.

  16. Operation of Concentrating Solar Power Plants in the Western Wind and Solar Integration Phase 2 Study

    SciTech Connect (OSTI)

    Denholm, P.; Brinkman, G.; Lew, D.; Hummon, M.

    2014-05-01T23:59:59.000Z

    The Western Wind and Solar Integration Study (WWSIS) explores various aspects of the challenges and impacts of integrating large amounts of wind and solar energy into the electric power system of the West. The phase 2 study (WWSIS-2) is one of the first to include dispatchable concentrating solar power (CSP) with thermal energy storage (TES) in multiple scenarios of renewable penetration and mix. As a result, it provides unique insights into CSP plant operation, grid benefits, and how CSP operation and configuration may need to change under scenarios of increased renewable penetration. Examination of the WWSIS-2 results indicates that in all scenarios, CSP plants with TES provides firm system capacity, reducing the net demand and the need for conventional thermal capacity. The plants also reduced demand during periods of short-duration, high ramping requirements that often require use of lower efficiency peaking units. Changes in CSP operation are driven largely by the presence of other solar generation, particularly PV. Use of storage by the CSP plants increases in the higher solar scenarios, with operation of the plant often shifted to later in the day. CSP operation also becomes more variable, including more frequent starts. Finally, CSP output is often very low during the day in scenarios with significant PV, which helps decrease overall renewable curtailment (over-generation). However, the configuration studied is likely not optimal for High Solar Scenario implying further analysis of CSP plant configuration is needed to understand its role in enabling high renewable scenarios in the Western United States.

  17. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    SciTech Connect (OSTI)

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01T23:59:59.000Z

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  18. Gasification CFD Modeling for Advanced Power Plant Simulations

    SciTech Connect (OSTI)

    Zitney, S.E.; Guenther, C.P.

    2005-09-01T23:59:59.000Z

    In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

  19. advanced coal-based power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  20. The Solarex Solar Power Industrial Facility 

    E-Print Network [OSTI]

    Macomber, H. L.; Bumb, D. R.

    1984-01-01T23:59:59.000Z

    building is 50 with serne areas as high as R-70. The waste heat fran production equipment is collected and distributed by a specially design d system to heat the building during the winter. A DC powered ground-water-to-air heat pump provid~ back...-up for heating. The cooling load of the .I building is low due to the efficient energy des~gn; however, an air conditioner will assist cooling reqUired. 2. ELEMENTS OF THE PV SYSI'EM 2.1 PV Array The Photovoltaic (PV) array consists of 52 series strings...

  1. Sierra Solar Power Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAirPower PartnersSiEnergyDevelopment at 12 and

  2. Solar Thin Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformationSodaAtlassource HistoryPower Place:

  3. Bay Solar Power Design | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtriaPower SystemsRhode Island:BatteryBatticBay

  4. Solar Powering Your Community: A Guide for Local Governments, 2nd Edition (Fact Sheet), Solar Energy Technologies Program (SETP)

    Broader source: Energy.gov [DOE]

    This fact sheet outlines the content of the second edition of the DOE publication Solar Powering Your Local Community: A Guide for Local Governments.

  5. advanced solar thermal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have significant contributions to the greenhouse effect and global warming. Alternative energy resources, such as solar radiation, may help abate emissions but ... El Khaja,...

  6. Implications of geographic diversity for short-term variability and predictability of solar power.

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01T23:59:59.000Z

    Output power correlation between adjacent wind power plants,” Journal of Solarpower system demonstrate that scaling the output from an individual solar

  7. A comparison of reversible chemical reactions for solar thermochemical power generation

    E-Print Network [OSTI]

    Boyer, Edmond

    453 A comparison of reversible chemical reactions for solar thermochemical power generation O. M storage of the reaction products. A number of reactions have been proposed for solar thermochemical power to be a good choice for first generation solar thermochemical power generation. Revue Phys. Appl. 15 (1980) 453

  8. UHF Solar Powered Active Oscillator Antenna on Low Cost Flexible Substrate for Wireless Identification Applications

    E-Print Network [OSTI]

    Tentzeris, Manos

    UHF Solar Powered Active Oscillator Antenna on Low Cost Flexible Substrate for Wireless nature of the circuit and providing operational autonomy by harvesting solar power without affecting, solar power harvesting. I. INTRODUCTION The increasing use of RFIDs and wireless sensor networks

  9. Solar power conversion efficiency in modulated silicon nanowire photonic Alexei Deinega and Sajeev John

    E-Print Network [OSTI]

    John, Sajeev

    Solar power conversion efficiency in modulated silicon nanowire photonic crystals Alexei Deinega://jap.aip.org/about/rights_and_permissions #12;Solar power conversion efficiency in modulated silicon nanowire photonic crystals Alexei Deinegaa that using only 1 lm of silicon, sculpted in the form of a modulated nanowire photonic crystal, solar power

  10. A Practical Theory of Micro-Solar Power Sensor Networks JAEIN JEONG, Cisco Systems

    E-Print Network [OSTI]

    California at Berkeley, University of

    9 A Practical Theory of Micro-Solar Power Sensor Networks JAEIN JEONG, Cisco Systems DAVID CULLER, University of California, Berkeley Building a micro-solar power system is challenging because it must address develop a practical theory of micro-solar power systems that is materialized in a simulation suite

  11. Solar-powered WirelessMesh Networksfor Environmental Monitoring Torsten Braun, Thomas Staub, Benjamin Nyffenegger

    E-Print Network [OSTI]

    Braun, Torsten

    Solar-powered WirelessMesh Networksfor Environmental Monitoring Torsten Braun, Thomas Staub the development and experiencesof a solar-power driven wirelessmesh network for connectingsensorsin rural is available. II. SOLAR-POWER DRIVEN WIRELESS MESH NETWORK DEPLYOMENT AND OPERATION In a technology project

  12. Design and Analysis of Micro-Solar Power Systems for Wireless

    E-Print Network [OSTI]

    California at Berkeley, University of

    Design and Analysis of Micro- Solar Power Systems for Wireless Sensor Networks Jaein Jeong UC in Richmond Field Station Trio Heliomote #12;3 Our Contributions · Model for micro-solar power system guideline for micro-solar power systems. #12;4 Organization · System Architecture · Model for Each Component

  13. Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine

    E-Print Network [OSTI]

    Ponce, V. Miguel

    Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine Dr will describe the design of a high temperature solar receiver capable of driving a gas turbine for power conclusions regarding the best way to operate a solar powered gas turbine have been obtained

  14. Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News

    E-Print Network [OSTI]

    Lovley, Derek

    Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News TUESDAY 25 MAY, 2010 | | Solar Power To Help Convert Carbon Dioxide Into Fuel by Energy Matters Microbiologist Derek Lovley dioxide into transportation fuels, with the help of special micro-organisms and solar power. The team

  15. Solar Power Forecasting at UC San Diego Jan Kleissl, Dept of Mechanical & Aerospace Engineering, UCSD

    E-Print Network [OSTI]

    Fainman, Yeshaiahu

    show 2 cloud layers. Vaisala Fig. 4: Observed solar power output (black line) and simulation (Fig. 4). Tier 3: Power output forecast As cloud related solar radiation reductions are observed algorithm to determine actual expected solar power output at each PV array over the hour ahead. #12;

  16. 2007 IEEE Canada Electrical Power Conference Solar Photovoltaic Array's Shadow Evaluation

    E-Print Network [OSTI]

    Lehman, Brad

    whether the maximum output power of the solar photovoltaic arrays under the system is sufficiently cost, and the the "shading factor," which is defined as the ratio of the non- maximum output power of the solar photovoltaic solar PV arrays: effects on performance, and in particular the output power of * In the numerical method

  17. A unified model for radiation-resistance of advanced space solar cells

    SciTech Connect (OSTI)

    Yamaguchi, Masafumi [Toyota Technical Inst., Nagoya (Japan); Katsumoto, Shingo [Univ. of Tokyo (Japan); Amano, Chikara [NTT Opto-Electrical Labs., Kanagawa (Japan)

    1994-12-31T23:59:59.000Z

    1-MeV electron irradiation effects on MBE-grown InGaAs and AlGaAs solar cells have been examined in comparison with previous results for radiation damage of InP and GaAs solar cells in order to clarify radiation-resistance of advanced space solar cells. Moreover, 1-MeV electron irradiation results of several space solar cells such as InP, InGaP, InGaAsP, GaAs, AlGaAs, InGaAs, Si, Ge, and CuInSe{sub 2} cells have also been analyzed by considering their damage constants, bandgap energies and optical absorption coefficients. The authors believe that this study will provide a unified model for radiation-resistance of advanced space solar cells.

  18. Repowering flexibility of coal-based advanced power systems

    SciTech Connect (OSTI)

    Bajura, R.A.; Bechtel, T.F.; Schmidt, D.K.; Wimer, J.G.

    1995-03-01T23:59:59.000Z

    The Department of Energy`s (DOE`s) Morgantown Energy Technology Center (METC) helps enhance the economic competitiveness, environmental quality, and national well-being of the U.S. by developing advanced power-generation systems. The potential market for advanced power-generation systems is large. In the U.S., electric demand is estimated to grow at about 1 percent per year through the year 2010. The total power generation market also includes new-capacity as well as replacement of existing power plants as they age. Thus, the market for power systems over the next 15 years is estimated to be about 279,000 megawatts (MW), but could range from as much as 484,000 MW to as little as 153,000 MW. These predictions are summarized. Over the next 15 years, the replacement market is potentially much larger than the expansion market because of the large base of aging power plants in the U.S.

  19. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect (OSTI)

    Mekhiche, Mike [Principal Investigator] [Principal Investigator; Dufera, Hiz [Project Manager] [Project Manager; Montagna, Deb [Business Point of Contact] [Business Point of Contact

    2012-10-29T23:59:59.000Z

    The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  20. A solar photovoltaic power system for use in Antarctica

    SciTech Connect (OSTI)

    Kohout, L.L.; Merolla, A.; Colozza, A.

    1993-12-01T23:59:59.000Z

    A solar photovoltaic power system was designed and built at the NASA Lewis Research Center as part of the NASA/NSF Antarctic Space Analog Program. The system was installed at a remote field camp at Lake Hoare in the Dry Valleys, and provided a six-person field team with electrical power for personal computers and printers, lab equipment, lighting, and a small microwave oven. The system consists of three silicon photovoltaic sub-arrays delivering a total of 1.5 kWe peak power, three lead-acid gel battery modules supplying 2.4 kWh, and an electrical distribution system which delivers 120 Vac and 12 Vdc to the user. The system was modularized for ease of deployment and operation. Previously the camp has been powered by diesel generators, which have proven to be both noisy and polluting. The NSF, in an effort to reduce their dependence on diesel fuel from both an environmental and cost standpoint, is interested in the use of alternate forms of energy, such as solar power. Such a power system also will provide NASA with important data on system level deployment and operation in a remote location by a minimally trained crew, as well as validate initial integration concepts.

  1. A NEW SOLAR THERMAL RECEIVER UTILIZING A SMALL PARTICLE HEAT EXCHANGER

    E-Print Network [OSTI]

    Hunt, Arlon J.

    2011-01-01T23:59:59.000Z

    of advanced concept solar power plants. For conditions ofthe operation of a solar power plant is very small. Plantplant has the additional advantage of not requiring cooling water, an important feature since arid areas are the best solar

  2. Project Sponsors:ADVANCED POWER & ENERGY www.apep.uci.edu

    E-Print Network [OSTI]

    Mease, Kenneth D.

    -load power is unable to adjust to renewable variability, introducing curtailment of wind and solar power due-induced exponential capacity effects for a 50/50 mix of wind and solar power HiGRID Tool Development of the Holistic on Grid CO2 Emissions This highlights the importance of increasing the flexibility of balancing power

  3. Space-based solar power generation using a distributed network of satellites and methods for efficient space power transmission

    E-Print Network [OSTI]

    McLinko, Ryan M.

    Space-based solar power (SSP) generation is being touted as a solution to our ever-increasing energy consumption and dependence on fossil fuels. Satellites in Earth's orbit can capture solar energy through photovoltaic ...

  4. Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (CSP)

    SciTech Connect (OSTI)

    Stoffel, T.; Renne, D.; Myers, D.; Wilcox, S.; Sengupta, M.; George, R.; Turchi, C.

    2010-09-01T23:59:59.000Z

    As the world looks for low-carbon sources of energy, solar power stands out as the most abundant energy resource. Harnessing this energy is the challenge for this century. Photovoltaics and concentrating solar power (CSP) are two primary forms of electricity generation using sunlight. These use different technologies, collect different fractions of the solar resource, and have different siting and production capabilities. Although PV systems are most often deployed as distributed generation sources, CSP systems favor large, centrally located systems. Accordingly, large CSP systems require a substantial investment, sometimes exceeding $1 billion in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need to have reliable data about the solar resource available at specific locations to predict the daily and annual performance of a proposed CSP plant. Without these data, no financial analysis is possible. This handbook presents detailed information about solar resource data and the resulting data products needed for each stage of the project.

  5. 3/30/2014 Tinywindmills could power future smartphones (maybe) -Liliputing http://liliputing.com/2014/01/tiny-windmills-power-future-smartphones-maybe.html 1/7

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    companies already offer solar-powered smartphone cases, but fully recharging your phone with solar power can for a reasonable amount of time. But if the technology advances it could pose an alternative to solar power or hand

  6. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

    2014-06-01T23:59:59.000Z

    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  7. Solar Powering Your Community: A Guide for Local Governments; Second Edition

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    DOE designed this guide "Solar Powering Your Community: A Guide for Local Governments" to assist local government officials and stakeholders in designing and implementing strategic local solar plans. The 2011 edition contains the most recent lessons and successes from the 25 Solar America Cities and other communities promoting solar energy. Because DOE recognizes that there is no one path to solar market development, this guide introduces a range of policy and program options that can help a community build a local solar infrastructure.

  8. Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller

    E-Print Network [OSTI]

    Poiry, Heather Marie

    2011-01-01T23:59:59.000Z

    Based Performance Analysis of a Solar Absorption Cooling andExperimental Investigation of a Solar Adsorption ChillerKreith, Jan F. Kreider. "Solar Cooling." Principles of Solar

  9. Solar Two is a concentrating solar power plant that can supply electric power "on demand"

    E-Print Network [OSTI]

    Laughlin, Robert B.

    . Solar One used water as a working fluid to generate the steam required to drive a conven- tional turbine steam, and electricity is produced by a conventional steam turbine. After the molten salt has cooled to about 285°C (550°F) in producing the steam, it is again pumped to the top of the tower to be heated

  10. innovati nNREL Confirms Large Potential for Grid Integration of Wind, Solar Power

    E-Print Network [OSTI]

    innovati nNREL Confirms Large Potential for Grid Integration of Wind, Solar Power To fully harvest a database of potential wind power sites and detailed, time-dependent estimates of the power that would the nation's bountiful wind and solar resources, it is critical to know how much electrical power from

  11. Fusion Engineering and Design 80 (2006) 7998 Advanced power core system for the

    E-Print Network [OSTI]

    California at San Diego, University of

    2006-01-01T23:59:59.000Z

    operating parameters. © 2005 Elsevier B.V. All rights reserved. Keywords: Advanced tokamak; Power plant. Introduction The ARIES-AT power plant was evolved to assess and highlight the benefit of advanced technologies understanding and modeling capabili- ties on the performance of advanced tokamak power plants [1]. The design

  12. A 927 MHz Solar Powered Active Antenna Oscillator Beacon Signal Generator

    E-Print Network [OSTI]

    Tentzeris, Manos

    . Properly placed solar cells and a regulator are used to bias the device by scavenging solar energy from technology, which scavenges through solar energy the power necessary for operation. Starting from a folded the radiation performances. After that, solar cells were properly inserted for energy scavenging purposes

  13. "Diffusion of Innovation: Solar Oven Use in Lesotho (Africa)." Grundy, William and Roy Grundy. Advances in Solar Cooking: Proceedings of the 2nd International Conference on Solar Cooker Use and Technology. Shyam S. Nandwani, ed. July 12-15, 1994.

    E-Print Network [OSTI]

    Noble, William Stafford

    "Diffusion of Innovation: Solar Oven Use in Lesotho (Africa)." Grundy, William and Roy Grundy. Advances in Solar Cooking: Proceedings of the 2nd International Conference on Solar Cooker Use and Technology. Shyam S. Nandwani, ed. July 12-15, 1994. pp. 240-247. 1 DIFFUSION OF INNOVATION: SOLAR OVEN USE

  14. Maximum Power Transfer Tracking in a Solar USB Charger for Smartphones

    E-Print Network [OSTI]

    Pedram, Massoud

    chargers do not perform the maximum power point tracking [2], [3] of the solar panel. We excludeMaximum Power Transfer Tracking in a Solar USB Charger for Smartphones Abstract--Battery life poor capacity utilization during solar energy harvesting. In this paper, we propose and demonstrate

  15. Energy Policy 32 (2004) 289297 The potential of solar electric power for meeting future US energy

    E-Print Network [OSTI]

    Delaware, University of

    Energy Policy 32 (2004) 289­297 The potential of solar electric power for meeting future US energy needs: a comparison of projections of solar electric energy generation and Arctic National Wildlife of solar electric power in the form of photovoltaics to meet future US energy demand with the projected

  16. Utilizing Solar Power in Wireless Sensor Networks Thiemo Voigt, Hartmut Ritter, Jochen Schiller

    E-Print Network [OSTI]

    Voigt, Thiemo

    Utilizing Solar Power in Wireless Sensor Networks Thiemo Voigt, Hartmut Ritter, Jochen Schiller propose to utilize solar power in wireless sensor networks, establishing a topology where ­ changing over propose and evaluate two protocols that perform solar- aware routing. The presented simulation results

  17. Solar Powering Your Community: A Guide for Local Governments...

    Broader source: Energy.gov (indexed) [DOE]

    * Solar mapping tools * Developing solar-ready building guidelines * Hosting of wholesale PV systems * Identifying optimal solar installation sites PIX 08466 and 14898...

  18. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    Linear Fresnel Solar Plant……………………………………………………..20 Figure5 – Linear Fresnel Solar Plant parabolic concentrators (Bermejo, 2010, Solar absorption cooling plant in Seiville,

  19. Investigating the Correlation Between Wind and Solar Power Forecast Errors in the Western Interconnection: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.

    2013-05-01T23:59:59.000Z

    Wind and solar power generations differ from conventional energy generation because of the variable and uncertain nature of their power output. This variability and uncertainty can have significant impacts on grid operations. Thus, short-term forecasting of wind and solar generation is uniquely helpful for power system operations to balance supply and demand in an electricity system. This paper investigates the correlation between wind and solar power forecasting errors.

  20. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE: Preprint

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B. M.

    2014-09-01T23:59:59.000Z

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This study examines the value of improved solar power forecasting for the Independent System Operator-New England system. The results show how 25% solar power penetration reduces net electricity generation costs by 22.9%.

  1. Solar Foundational Program to Advance Cell Efficiency Round 1

    Broader source: Energy.gov [DOE]

    The first round of the Foundational Program to Advance Cell Efficiency (F-PACE) program supported 18 projects working to create the technical foundation for significant increases in photovoltaic ...

  2. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    output P e Electrical power output of system Q Solar CHP to1.5, the CHP system cost of electrical power is obtained.thermal to electrical power output R of this system is (1 ?

  3. Economic Benefits of Advanced Materials in Nuclear Power Systems

    SciTech Connect (OSTI)

    Busby, Jeremy T [ORNL

    2009-01-01T23:59:59.000Z

    One of the key obstacles for the commercial deployment of advanced fast reactors (for either transuranic element burning or power generation) is the capital cost. There is a perception of higher capital cost for fast reactor systems than advanced light water reactors (ALWR). However, the cost estimates for a fast reactor come with a large uncertainty due to the fact that far fewer fast reactors have been built than LWR facilities. Furthermore, the large variability of industrial cost estimates complicates accurate comparisons. For example, under the Gen IV program, the Japanese Sodium Fast Reactor (JSFR) has a capital cost estimate that is lower than current LWR s, and considerably lower than that for the PRISM design (which is arguably among the most mature of today s fast reactor designs). Further reductions in capital cost must be made in US fast reactor systems to be considered economically viable. Three key approaches for cost reduction can be pursued. These include design simplifications, new technologies that allow reduced capital costs, and simulation techniques that help optimize system design. While it is plausible that improved materials will provide opportunities for both simplified design and reduced capital cost, the economic benefit of advanced materials has not been quantitatively analyzed. The objective of this work is to examine the potential impact of advanced materials on the capital investment costs of fast nuclear reactors.

  4. Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to the Rooftop

    SciTech Connect (OSTI)

    Michael Deck; Rick Russell

    2010-01-05T23:59:59.000Z

    Soliant Energy is a venture-capital-backed startup focused on bringing advanced concentrating solar panels to market. Our fundamental innovation is that we are the first company to develop a racking solar concentrator specifically for commercial rooftop applications, resulting in the lowest LCOE for rooftop electricity generation. Today, the commercial rooftop segment is the largest and fastest-growing market in the solar industry. Our concentrating panels can make a major contribution to the SAI's objectives: reducing the cost of solar electricity and rapidly deploying capacity. Our commercialization focus was re-shaped in 2009, shifting from an emphasis solely on panel efficiency to LCOE. Since the inception of the SAI program, LCOE has become the de facto standard for comparing commercial photovoltaic systems. While estimation and prediction models still differ, the emergence of performance-based incentive (PBI) and feed-in tariff (FIT) systems, as well as power purchase agreement (PPA) financing structures make LCOE the natural metric for photovoltaic systems. Soliant Energy has designed and demonstrated lower-cost, higher-power solar panels that consists of 6 (500X) PV module assemblies utilizing multi-junction cells and an integrated two-axis tracker. In addition, we have designed and demonstrated a prototype 1000X panel assembly with 8. Cost reductions relative to conventional flat panel PV systems were realized by (1) reducing the amount of costly semiconductor material and (2) developing strategies and processes to reduce the manufacturing costs of the entire system. Performance gains against conventional benchmarks were realized with (1) two-axis tracking and (2) higher-efficiency multi-junction PV cells capable of operating at a solar concentration ratio of 1000X (1000 kW/m2). The program objectives are: (1) Develop a tracking/concentrating solar module that has the same geometric form factor as a conventional flat, roof mounted photovoltaic (PV) panel - the Soliant module will produce more power and cost less than conventional panels of the same size; (2) Target LCOE: $0.079/kWh in 2010; (3) Target efficiency - 26% in 2010 (22% for 2008 prototype, 24% for 2009 pilot); and (4) Target performance - equivalent to 650Wp in 2010 (490W for 2008 prototype, 540W for 2009 pilot).

  5. Newman Unit 1 advanced solar repowering. Final report

    SciTech Connect (OSTI)

    none,

    1982-04-01T23:59:59.000Z

    The five appendices give the selection process and system specification of the Newman Unit 1 solar repowering system, including the conceptual design drawings and diagrams; input data for the simulation program; and a review of the most important characteristics of the existing plant. (LEW)

  6. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    of a solar-thermal-assisted HVAC system, Energy andsolar thermal absorption cooling system with a cold store, Solar energy,solar thermal cooling and heating system for a building: Experimental and model based performance analysis and design, Solar energy,

  7. Center for Advanced Power & Environmental TechnologyCenter for Advanced Power & Environmental Technology (APET)(APET)

    E-Print Network [OSTI]

    Fujimoto, Hiroshi

    ) (HP) (PV) (FC) H H2 2 (FC) H2 University of Tokyo #12; Ubiquitous Power Grid 0.1 0.2 0.3 luctuation[Hz] 200 400 600 put[MW] with Pitch(Battery 160MW) wihtout Pitch(Battery 560MW) -0 3 -0.2 -0.1 0 temFrequencyF -400 -200 0 BatteryOutp 0 500 1000 1500 2000 2500 3000 3500 4000 -0

  8. Concentrating Solar Power (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE)

    Broader source: Energy.gov [DOE]

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade.

  9. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    Distributed solar-thermal/electric generation. Technicalthermal load to absorb the energy rejected from the electric power generationthermal efficiency, (2) solar-electric efficiency, (3) fraction of Carnot efficiency for electrical generation, (

  10. Dual-temperature Kalina cycle for geothermal-solar hybrid power systems

    E-Print Network [OSTI]

    Boghossian, John G

    2011-01-01T23:59:59.000Z

    This thesis analyzes the thermodynamics of a power system coupling two renewable heat sources: low-temperature geothermal and a high-temperature solar. The process, referred to as a dual-temperature geothermal-solar Kalina ...

  11. Georgia Power- Residential Solar and Heat Pump Water Heater Rebate (Georgia)

    Broader source: Energy.gov [DOE]

    Georgia Power customers may be eligible for rebates up to $250 each toward the installation costs of a 50 gallon or greater solar water heater or heat pump water heater. The solar water heater or...

  12. Testing and modeling of a solar thermophotovoltaic power system

    SciTech Connect (OSTI)

    Stone, K.W. [McDonnell Douglas, 5301 Bolsa Ave, Huntington Bch., California 92647 (United States); Chubb, D.L.; Wilt, D.M. [NASA Lewis Research Center, 21000 Brookpark Rd., Cleveland, Ohio 44135 (United States); Wanlass, M.W. [National Renewable Energy Lab, 1617 Cole Boulevard, Golden, Colorado 80401 (United States)

    1996-02-01T23:59:59.000Z

    A solar thermophotovoltaic (STPV) power system has attractive attributes for both space and terrestrial applications. This paper presents the results of testing by McDonnell Douglas Aerospace (MDA) over the last year with components furnished by the NASA Lewis Research Center (LeRC) and the National Renewable Energy Lab (NREL). The testing has included a large scale solar TPV testbed system and small scale laboratory STPV simulator using a small furnace. The testing apparatus, instrumentation, and operation are discussed, including a description of the emitters and photovoltaic devices that have been tested. Over 50 on-sun tests have been conducted with the testbed system. It has accumulated over 300 hours of on-sun time, and 1.5 MWh of thermal energy incident on the receiver material while temperatures and I-V measurements were taken. A summary of the resulting test data is presented that shows the measured performance at temperatures up to 1220{degree}C. The receiver materials and PV cells have endured the high temperature operation with no major problems. The results of this investigation support MDA belief that STPV is a viable power system for both space and terrestrial power applications. {copyright} {ital 1996 American Institute of Physics.}

  13. Towards Space Solar Power - Examining Atmospheric Interactions of Power Beams with the HAARP Facility

    E-Print Network [OSTI]

    Leitgab, M

    2014-01-01T23:59:59.000Z

    In the most common space solar power (SSP) system architectures, solar energy harvested by large satellites in geostationary orbit is transmitted to Earth via microwave radiation. Currently, only limited information about the interactions of microwave beams with energy densities of several tens to hundreds of W/m$^2$ with the different layers of the atmosphere is available. Governmental bodies will likely require detailed investigations of safety and atmospheric effects of microwave power beams before issuing launch licenses for SSP satellite systems. This paper proposes to collect representative and comprehensive data of the interaction of power beams with the atmosphere by extending the infrastructure of the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. Estimates of the transmission infrastructure performance as well as measurement devices and scientific capabilities of possible upgrade scenarios will be discussed. The proposed upgrade of the HAARP facility is expected to d...

  14. Advanced Power Electronics and Electric Machines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartment ofDepartment ofMachines Advanced Power

  15. Sea Solar Power International Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScotts Corners, New York: EnergySea Solar Power

  16. Sandia Energy - Concentrating Solar Power Technical Management Position

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLong LifetimeConcentrating Solar Power

  17. SEGS I Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector: WindRiegotec Internacional ltdaSEGS I Solar Power

  18. Space-Based Solar Power | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmartOverview - 2015Space-Based Solar Power

  19. Project Profile: Solar Power Tower Improvements with the Potential to

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 |of Energy TEES logoSolar PowerBostonModule

  20. Helping Ensure High-Quality Installation of Solar Power Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar Power ProjectHawai'iPresented By: WALTER

  1. Agua Caliente Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAgua Caliente Solar Power Plant Jump to:

  2. Map of Solar Power Plants | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconvertersourcesource History View New PagesSolar Power

  3. Nellis AFB Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to: navigation,Nebraska/WindNeedham,AFB Solar Power

  4. Desert Sunlight Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan: EnergyKansas: EnergySprings,Solar Power Plant Jump

  5. SunPower Italia formerly Solar Solutions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL ElecStrategicStoriesSunJoi Solar Inc JumpSunPower Italia

  6. Making Solar Power History at Ivanpah | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9November 6,Bradbury Effective Use ofSenseSolar

  7. Concentrating Solar Power: Best Practices Handbook for the Collection and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) |Use of Solar Resource Data | Open Energy

  8. Solar Energy Grid Integration Systems-Advanced Concepts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS September 9,AwardGradsSites Pending Transfer toSocialGlossary Solar

  9. Amorphous silicon cell array powered solar tracking apparatus

    DOE Patents [OSTI]

    Hanak, Joseph J. (Lawrenceville, NJ)

    1985-01-01T23:59:59.000Z

    An array of an even number of amorphous silicon solar cells are serially connected between first and second terminals of opposite polarity. The terminals are connected to one input terminal of a DC motor whose other input terminal is connected to the mid-cell of the serial array. Vane elements are adjacent the end cells to selectively shadow one or the other of the end cells when the array is oriented from a desired attitude relative to the sun. The shadowing of one cell of a group of cells on one side of the mid-cell reduces the power of that group substantially so that full power from the group of cells on the other side of the mid-cell drives the motor to reorient the array to the desired attitude. The cell groups each have a full power output at the power rating of the motor. When the array is at the desired attitude the power output of the two groups of cells balances due to their opposite polarity so that the motor remains unpowered.

  10. Simulating solar power plant variability : a review of current methods.

    SciTech Connect (OSTI)

    Lave, Matthew; Ellis, Abraham [Sandia National Laboratories, Albuquerque, NM; Stein, Joshua S. [Sandia National Laboratories, Albuquerque, NM

    2013-06-01T23:59:59.000Z

    It is important to be able to accurately simulate the variability of solar PV power plants for grid integration studies. We aim to inform integration studies of the ease of implementation and application-specific accuracy of current PV power plant output simulation methods. This report reviews methods for producing simulated high-resolution (sub-hour or even sub-minute) PV power plant output profiles for variability studies and describes their implementation. Two steps are involved in the simulations: estimation of average irradiance over the footprint of a PV plant and conversion of average irradiance to plant power output. Six models are described for simulating plant-average irradiance based on inputs of ground-measured irradiance, satellite-derived irradiance, or proxy plant measurements. The steps for converting plant-average irradiance to plant power output are detailed to understand the contributions to plant variability. A forthcoming report will quantify the accuracy of each method using application-specific validation metrics.

  11. Power efficiency for very high temperature solar thermal cavity receivers

    DOE Patents [OSTI]

    McDougal, Allan R. (LaCanada-Flintridge, CA); Hale, Robert R. (Upland, CA)

    1984-01-01T23:59:59.000Z

    This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.

  12. Sustainable solar thermal power generation (STPG) technologies in Indian context

    SciTech Connect (OSTI)

    Sharma, R.S. [Ministry of Non-Conventional Energy Sources, New Delhi (India). Solar Energy Centre

    1996-12-31T23:59:59.000Z

    India is a fast developing country. Some of the factors like population growth, industrialization, liberalization in economic policies, green revolution and awareness toward the environment, are increasing the electricity demand rapidly. As per the 14th Power Survey Report, an energy deficit of (+) 9% and peak demand deficit of (+) 18% have been estimated. Keeping in view the liberalization in economic policies, this deficit may be higher by the year 2000 AD. An estimation indicates that India is blessed with solar energy to the tune of 5 x 10{sup 15} kWh/yr. Being clean and inexhaustible source of energy, it can be used for large-scale power generation in the country. Keeping in view the present state-of-art technologies for STPG in MW range, best possible efforts are required to be made by all the concerned, to develop sustainable STPG technology of the future, specially for tropical regions. Standardization of vital equipment is an important aspect. There are a few required criteria like simple and robust technology, its transfer and adaptation in tropical climate conditions; high plant load factor without fossil-fired backup; availability of plant during evening peak and night hours; least use of fragile components, and capacity optimization for MW plants as per solar irradiance and environmental factors. In this paper, efforts have been made to compare the different STPG technologies. On the basis, of literature surveyed and studies carried out by the author, it may be stated that Central Receiver System technologies using molten salt and volumetric air receiver, along with molten salt and ceramic thermal storage respectively seems to be suitable and comparable in Indian context. Performance of SOLAR-TWO and PHOEBUS plants may be decisive.

  13. High-Temperatuer Solar Selective Coating Development for Power Tower Receivers

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  14. Planar Optical Waveguide Coupler Transformers for High-Power Solar Enegy Collection and Transmission

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  15. A Global Optimization Approach to the Design of Solar Power Plants

    E-Print Network [OSTI]

    2014-05-08T23:59:59.000Z

    May 8, 2014 ... Keywords: solar thermal power, heliostat field layout, thermo- ... at a high temperature is then transferred to the heat transfer fluid to produce.

  16. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  17. Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  18. A Global Optimization Approach to the Design of Solar Power Plants

    E-Print Network [OSTI]

    E. Carrizosa

    2014-04-01T23:59:59.000Z

    Apr 1, 2014 ... A Global Optimization Approach to the Design of Solar Power Plants. E. Carrizosa (ecarrizosa ***at*** us.es) C. DomĂnguez-Bravo ...

  19. High Temperature Thermal Array for Next Generation Solar Thermal Power Production

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  20. Small-Particle Solar Receiver for High-Temperature Brayton Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Receiver for High-Temperature Brayton Power Cycles This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating...

  1. Economic, Energy, and Environmental Benefits of Concentrating Solar Power in California

    SciTech Connect (OSTI)

    Stoddard, L.; Abiecunas, J.; O'Connell, R.

    2006-04-01T23:59:59.000Z

    This study provides a summary assessment of concentrating solar power and its potential economic return, energy supply impact, and environmental benefits for the State of California.

  2. POWER ANISOTROPY IN THE MAGNETIC FIELD POWER SPECTRAL TENSOR OF SOLAR WIND TURBULENCE

    SciTech Connect (OSTI)

    Wicks, R. T.; Horbury, T. S. [Physics Department, Imperial College London, London SW7 2AZ (United Kingdom); Forman, M. A. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11790-3800 (United States); Oughton, S., E-mail: r.wicks@imperial.ac.uk [Department of Mathematics, University of Waikato, Hamilton (New Zealand)

    2012-02-10T23:59:59.000Z

    We observe the anisotropy of the power spectral tensor of magnetic field fluctuations in the fast solar wind for the first time. In heliocentric RTN coordinates, the power in each element of the tensor has a unique dependence on the angle between the magnetic field and velocity of the solar wind ({theta}{sub B}) and the angle of the vector in the plane perpendicular to the velocity ({phi}{sub B}). We derive the geometrical effect of the high speed flow of the solar wind past the spacecraft on the power spectrum in the frame of the plasma P(k) to arrive at the observed power spectrum P(f, {theta}{sub B}, {phi}{sub B}) based on a scalar field description of turbulence theory. This allows us to predict the variation in the {phi}{sub B} direction and compare it to the data. We then transform the observations from RTN coordinates to magnetic-field-aligned coordinates. The observed reduced power spectral tensor matches the theoretical predictions we derive in both RTN and field-aligned coordinates, which means that the local magnetic field we calculate with wavelet envelope functions is an accurate representation of the physical axis of symmetry for the turbulence and implies that on average the turbulence is axisymmetric. We also show that we can separate the dominant toroidal component of the turbulence from the smaller but significant poloidal component and that these have different power anisotropy. We also conclude that the magnetic helicity is anisotropic and mostly two dimensional, arising from wavevectors largely confined to the plane perpendicular to B .

  3. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    Medium Temperature Non-Tracking Solar Thermal Concentrators.of a new type of non-tracking solar collector, the externalTemperature Non-Tracking Solar Thermal Concentrators” [23].

  4. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    Medium Temperature Non-Tracking Solar Thermal Concentrators.an outdoor LiBr/H2O solar thermal absorption cooling systemperformance of a solar-thermal-assisted HVAC system, Energy

  5. Advancing Solar Through Photovoltaic Technology Innovations | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03Energy Advanced Technology andClean Energy

  6. China Solar Power CSP aka General Solar Power Yantai Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower International New Energy Holding Ltd Place:

  7. The ARIES Advanced and Conservative Tokamak Power Plant Study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    C.E. Kessel, et. al; Humrickhous, P.

    2014-01-01T23:59:59.000Z

    Tokamak power plants are studied with advanced and conservative design philosophies to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared with older studies. The advanced configuration assumes a self-cooled lead lithium blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q95 of 4.5, a btotal N of 5.75, an H98 of 1.65,more »an n/nGr of 1.0, and a peak divertor heat flux of 13.7 MW/m2 . The conservative configuration assumes a dual-coolant lead lithium blanket concept with reducedactivation ferritic martensitic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma has a major radius of 9.75 m, a toroidal field of 8.75 T, a q95 of 8.0, a btotal N of 2.5, an H98 of 1.25, an n/nGr of 1.3, and a peak divertor heat flux of 10 MW/m2 . The divertor heat flux treatment with a narrow power scrapeoff width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range 10 to 15 MW/m2 . Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Other papers in this issue provide more detailed discussion of the work summarized here.« less

  8. The ARIES Advanced and Conservative Tokamak Power Plant Study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    C.E. Kessel, et. al; Humrickhous, P.

    2014-01-01T23:59:59.000Z

    Tokamak power plants are studied with advanced and conservative design philosophies to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared with older studies. The advanced configuration assumes a self-cooled lead lithium blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q95 of 4.5, a btotal N of 5.75, an H98 of 1.65, an n/nGr of 1.0, and a peak divertor heat flux of 13.7 MW/m2 . The conservative configuration assumes a dual-coolant lead lithium blanket concept with reducedactivation ferritic martensitic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma has a major radius of 9.75 m, a toroidal field of 8.75 T, a q95 of 8.0, a btotal N of 2.5, an H98 of 1.25, an n/nGr of 1.3, and a peak divertor heat flux of 10 MW/m2 . The divertor heat flux treatment with a narrow power scrapeoff width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range 10 to 15 MW/m2 . Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Other papers in this issue provide more detailed discussion of the work summarized here.

  9. The ARIES Advanced And Conservative Tokamak (ACT) Power Plant Study

    SciTech Connect (OSTI)

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N. [Princeton Plasma Physics Lab., Princeton, NJ (United States)] [Princeton Plasma Physics Lab., Princeton, NJ (United States); Tillack, M. S.; Najmabadi, F.; Wang, X. R.; Navaei, D.; Toudeshki, H. H. [Univ. of California, San Diego, CA (United States)] [Univ. of California, San Diego, CA (United States); Koehly, C. [Karlsruhe Inst. of Technology, Karlsruhe (Germany)] [Karlsruhe Inst. of Technology, Karlsruhe (Germany); El-Guebaly, L.; Blanchard, J. P.; Martin, C. J.; Mynsburge, L. [Univ. of Wisconsin, Madison, WI (United States)] [Univ. of Wisconsin, Madison, WI (United States); Humrickhouse, P. [Idaho National Lab., Idaho Falls, ID (United States)] [Idaho National Lab., Idaho Falls, ID (United States); Rensink, M. E.; Rognlien, T. D. [Lawrence Livermore National Lab., Livermore, CA (United States)] [Lawrence Livermore National Lab., Livermore, CA (United States); Yoda, M.; Abdel-Khalik, S. I.; Hageman, M. D.; Mills, B. H.; Radar, J. D.; Sadowski, D. L. [Georgia Inst. of Technology, Atlanta, GA (United States)] [Georgia Inst. of Technology, Atlanta, GA (United States); Snyder, P. B.; St. John, H.; Turnbull, A. D. [General Atomics, La Jolla, CA (United States)] [General Atomics, La Jolla, CA (United States); Waganer, L. M.; Malang, S.; Rowcliffe, A. F.

    2014-03-05T23:59:59.000Z

    Tokamak power plants are studied with advanced and conservative design philosophies in order to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding, and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared to older studies. The advanced configuration assumes a self-cooled lead lithium (SCLL) blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q95 of 4.5, a {beta}N{sup total} of 5.75, H{sub 98} of 1.65, n/nGr of 1.0, and peak divertor heat flux of 13.7 MW/m{sup 2}. The conservative configuration assumes a dual coolant lead lithium (DCLL) blanket concept with ferritic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma major radius is 9.75 m, a toroidal field of 8.75 T, a q95 of 8.0, a {beta}N{sup total} of 2.5, H{sub 98} of 1.25, n/n{sub Gr} of 1.3, and peak divertor heat flux of 10 MW/m{sup 2}. The divertor heat flux treatment with a narrow power scrape-off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range of 10-15 MW/m{sup 2}. Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Papers in this issue provide more detailed discussion of the work summarized here.

  10. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    economic and environmental performance of a solar-thermal-Solar Cooling Current energy systems based on fossil fuels are largely responsible for the present humanitarian, environmental,

  11. Powering Your Community With Solar: Overcoming Market and Implementati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of solar manufacturing processes; and 4. Installation, design, and permitting for solar energy systems. photovoltaics (PV) purchasing. With the success of this wildly...

  12. Strategy for advancement of IRP in public power, Volume 1: IRP advancement strategy

    SciTech Connect (OSTI)

    Garrick, C.J. [Garrick & Associates, Morrison, CO (United States)

    1995-10-01T23:59:59.000Z

    The nation`s 3,000 publicly and cooperatively owned utilities have a documented need for assistance in integrated resource planning (IRP) and related strategic business planning practices. The availability of appropriate and sufficient assistance will be an important factor influencing the ability of these utilities to face the challenges and opportunities of today`s competitive electric utility environment. The U.S. Department of Energy (DOE) actively supports IRP advancement in the investor-owned utility (IOU) sector. This is accomplished through multiple vehicles, including grant funding to the state energy offices, to the National Conference of State Legislatures (NCSL), and to the National Association of Regulatory Utility Commissioners (NARUC). However, public utilities typically are not impacted by these DOE efforts. As consumer-controlled organizations, many publicly and cooperatively owned utilities are not regulated by state public utility commissions (PUCs). To advance IRP as an essential approach for publicly and cooperatively owned utility operation in a drastically changing industry, DOE must develop additional vehicles of assistance, including the federal power agencies and key industry organizations such as the American Public Power Association (APPA) and the National Rural Electric Cooperatives Association (NRECA).

  13. Toward a Low-CarMunicipal Financing for Energy Efficiency and Solar Power

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Toward a Low-CarMunicipal Financing for Energy Efficiency and Solar Power By Merrian C. Fuller, such as improving energy efficiency and add- ing solar photovoltaics (PV) and solar thermal systems to buildings, and the aver- age cost of natural gas has risen more than 10 percent a year for residential customers

  14. Cloud Formation in the Plumes of Solar Chimney Power Generation Facilities: A Modeling Study

    E-Print Network [OSTI]

    Nenes, Athanasios

    for a proposed solar chimney facility in southwestern Australia. A range of temperatures and updraft velocities technology for converting solar energy into electricity that has shown promise in recent years is the so1 Cloud Formation in the Plumes of Solar Chimney Power Generation Facilities: A Modeling Study

  15. innovati nComponents Makeover Gives Concentrating Solar Power a Boost

    E-Print Network [OSTI]

    , was deployed at Acciona's 64-megawatt Nevada Solar One plant near Las Vegas, Nevada, which began commercial with Aerial photo of Acciona's Nevada Solar One plant, with its rows of parabolic troughs. Courtesy of Accionainnovati nComponents Makeover Gives Concentrating Solar Power a Boost Parabolic trough technology

  16. Several studies have shown that the availability of solar power plants often is

    E-Print Network [OSTI]

    Perez, Richard R.

    Several studies have shown that the availability of solar power plants often is high during times conditioning. These peaks are intensi- fied during heat waves, which are fueled by solar gain. Thus the utility, solar and research industries. Effective Capacity Metrics Simple metrics can be estimated

  17. The ultra-thin solar cells that could generate power through windows

    E-Print Network [OSTI]

    Rogers, John A.

    international companies are making thin-film solar cells, but they are typically less efficient at convertingThe ultra-thin solar cells that could generate power through windows By Claire Bates Last updated at 11:11 AM on 06th October 2008 Solar cells that are transparent enough to be used to tint windows

  18. Solar Two: A Molten Salt Power Tower Demonstration* Craig E.Tyner

    E-Print Network [OSTI]

    Laughlin, Robert B.

    .S. Department of Energy (DOE),Sandia National Laboratories, and industry to convert the 10-MwSolar One Power receiver, a new thermal storage system, and a new steam generator; it utilizes Solar One's heliostat field and turbine generator. Successful operation of the convertedplant, called SolarTwo, will reduce

  19. Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis

    SciTech Connect (OSTI)

    Sullivan, P.; Eurek, K.; Margolis, R.

    2014-07-01T23:59:59.000Z

    Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

  20. Submodule Integrated Distributed Maximum Power Point Tracking for Solar Photovoltaic Applications

    E-Print Network [OSTI]

    Pilawa-Podgurski, Robert C. N.

    This paper explores the benefits of distributed power electronics in solar photovoltaic applications through the use of submodule integrated maximum power point trackers (MPPT). We propose a system architecture that provides ...