Powered by Deep Web Technologies
Note: This page contains sample records for the topic "advanced simulation technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EM Leads with Advanced Simulation Capability Technology | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with Advanced Simulation Capability Technology with Advanced Simulation Capability Technology EM Leads with Advanced Simulation Capability Technology April 4, 2013 - 12:00pm Addthis Figure 1: Advanced Simulation Capability for Environmental Management Thrust Areas. Figure 1: Advanced Simulation Capability for Environmental Management Thrust Areas. Figure 2: Spatial distribution of technetium-99 after the releases from the BC cribs using VisIt software on the Hanford Central Plateau. Figure 2: Spatial distribution of technetium-99 after the releases from the BC cribs using VisIt software on the Hanford Central Plateau. Figure 3: Conceptual model of uranium attenuation processes in the Savannah River F Area Seepage Basins plume, including adsorption/desorption (1); dissolution/precipitation (2); mixing/dilution (3); aqueous reactions (4); microbial interactions (5); and abiotic organic interactions (6).

2

Numerical Simulation Of Utility Boilers With Advanced Combustion Technologies  

E-Print Network (OSTI)

This paper presents calculations of a pulverized coal flame and a coal-fired utility boiler with advanced combustion technologies. A combustion model based on an extended Eddy Dissipation Concept (EDC) combined with finite rate chemistry is described and some applications are shown. This model can be regarded as an extension of the previously used Eddy Breakup model (EBU) where infinite fast chemistry is assumed. It is part of a 3D-prediction code for quasi-stationary turbulent reacting flows which is based on a conservative finite-volume solution procedure. Equations are solved for the conservation of mass, momentum and scalar quantities. A domain decomposition method is used to introduce locally refined grids. Validation and comparison of both combustion models are made by comparison with measurement data of a swirled flame with air staging in a semi-industrial pulverized coal combustion facility. The application to three-dimensional combustion systems is demonstrated by the simulati...

H. C. Magel; R. Schneider; B. Risio; U. Schnell; K. R. G. Hein

1995-01-01T23:59:59.000Z

3

The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report  

SciTech Connect

In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

2009-10-12T23:59:59.000Z

4

University Program in Advanced Technology | National Nuclear...  

National Nuclear Security Administration (NNSA)

& Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > Institutional Research & Development > University Program in Advanced...

5

Advanced geothermal technologies  

DOE Green Energy (OSTI)

Research and development in advanced technologies for geothermal energy production continue to increase the energy production options for the Nation. The high-risk investment over the past few years by the US Department of Energy in geopressured, hot dry rock, and magma energy resources is producing new means to lower production costs and to take advantage of these resources. The Nation has far larger and more regionally extensive geothermal resources than heretofore realized. At the end of a short 30-day closed-loop flow test, the manmade hot dry rock reservoir at Fenton Hill, New Mexico, was producing 10 MW thermal - and still climbing - proving the technical feasibility of this new technology. The scientific feasibility of magma energy extraction has been demonstrated, and new field tests to evaluate this technology are planned. Analysis and field tests confirm the viability of geopressured-geothermal energy and the prospect that many dry-hole or depleted petroleum wells can be turned into producing geopressured-geothermal wells. Technological advances achieved through hot dry rock, magma, geopressured, and other geothermal research are making these resources and conventional hydrothermal resources more competitive. Noteworthy among these technological advances are techniques in computer simulation of geothermal reservoirs, new means for well stimulation, new high-temperature logging tools and packers, new hard-rock penetration techniques, and new methods for mapping fracture flow paths across large underground areas in reservoirs. In addition, many of these same technological advances can be applied by the petroleum industry to help lower production costs in domestic oil and gas fields. 5 refs., 4 figs.

Whetten, J.T.; Murphy, H.D.; Hanold, R.J.; Myers, C.W.; Dunn, J.C.

1988-01-01T23:59:59.000Z

6

Advanced Modeling & Simulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation ADVANCING THE STATE OF THE ART Innovation advances science. Historically, innovation resulted almost exclusively from fundamental theories combined with observation and experimentation over time. With advancements in engineering, computing power and visualization tools, scientists from all disciplines are gaining insights into physical systems in ways not possible with traditional approaches alone. Modeling and simulation has a long history with researchers and scientists exploring nuclear energy technologies. In fact, the existing fleet of currently operating reactors was licensed with computational tools that were produced or initiated in the 1970s. Researchers and scientists in

7

NIST's Advanced Technology Program  

NLE Websites -- All DOE Office Websites (Extended Search)

NIST's Advanced NIST's Advanced Technology Program NIST's Advanced Technology Program DOE Workshop on Hydrogen Separation and Purification Technologies Arlington, VA, Sept. 8-9, 2004 Jason Huang 301-975-4197 National Institute of Standards and Technology 100 Bureau Drive Stop 4730 Gaithersburg, MD 20899-4730 http://www.atp.nist.gov National Institute of Standards and Technology * Technology Administration * U.S. Department of Commerce ATP is part of NIST Helping America Measure Up NIST Mission ATP is part of NIST NIST Mission: Strengthen the U.S. economy and improve the quality of life by working with industry to develop and apply technology, measurements, and standards. * * * * * * 3,000 employees $771 million annual budget 2,000 field agents 1,800 guest researchers $2.2 billion co-funding of

8

Applying advanced user models and input technologies to augment military simulation-based training  

Science Conference Proceedings (OSTI)

The paper presents the current state of requirement specification for an initiative based tactics virtual training environment. The methodology for collecting requirements followed three concurrent processes of task analysis, simulated firearms specification, ... Keywords: agent-based combat modeling, exercises, military operations, requirements, simulation and modeling for acquisition, simulation/exercise integration, simulations in training, training, training (SMART), virtual training environment

Bruno Emond; Hélène Fournier; Jean-François Lapointe

2010-04-01T23:59:59.000Z

9

Advanced Simulation and Computing  

National Nuclear Security Administration (NNSA)

NA-ASC-117R-09-Vol.1-Rev.0 NA-ASC-117R-09-Vol.1-Rev.0 Advanced Simulation and Computing PROGRAM PLAN FY09 October 2008 ASC Focal Point Robert Meisner, Director DOE/NNSA NA-121.2 202-586-0908 Program Plan Focal Point for NA-121.2 Njema Frazier DOE/NNSA NA-121.2 202-586-5789 A Publication of the Office of Advanced Simulation & Computing, NNSA Defense Programs i Contents Executive Summary ----------------------------------------------------------------------------------------------- 1 I. Introduction -------------------------------------------------------------------------------------------------------- 2 Realizing the Vision ------------------------------------------------------------------------------------------------- 2 The Future of the Nuclear Weapons Complex ---------------------------------------------------------------- 2

10

Advanced Lighting Technologies  

Science Conference Proceedings (OSTI)

This report continues the technical assessment of advanced lighting technologies in the following product areasdimmable light-emitting diode (LED) screw-in replacement lamp, hybrid compact fluorescent lamp/halogen screw-in replacement lamp, replacement recessed can LED downlight, organic LED (OLED) disc, replacement mini high-intensity discharge (HID) lamp and ballast system, and solid-state plasma lighting (miniature HID technology) high-bay fixture. The research in this project helps to demonstrate how...

2011-12-21T23:59:59.000Z

11

Advanced Simulation Capability for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Simulation Capability for Simulation Capability for Environmental Management (ASCEM) ASCEM is being developed to provide a tool and approach to facilitate robust and standardized development of perfor- mance and risk assessments for cleanup and closure activi- ties throughout the EM complex. The ASCEM team is composed of scientists from eight National Laboratories. This team is leveraging Department of Energy (DOE) investments in basic science and applied research including high performance computing codes developed through the Advanced Scientific Computing Research and Advanced Simulation & Computing pro- grams as well as collaborating with the Offices of Science, Fossil Energy, and Nuclear Energy. Challenge Current groundwater and soil remediation challenges that will continue to be addressed in the next decade include

12

Immersive VR decision training: telling interactive stories featuring advanced virtual human simulation technologies  

Science Conference Proceedings (OSTI)

Based on the premise of a synergy between the interactive storytelling and VR training simulation this paper treats the main issues involved in practical realization of an immersive VR decision training system supporting possibly broad spectrum of scenarios ... Keywords: decision training, immersive VR, interactive storytelling, virtual human simulation

Michal Ponder; Bruno Herbelin; Tom Molet; Sebastien Schertenlieb; Branislav Ulicny; George Papagiannakis; Nadia Magnenat-Thalmann; Daniel Thalmann

2003-05-01T23:59:59.000Z

13

Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies  

SciTech Connect

The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

2011-11-14T23:59:59.000Z

14

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

15

Advanced Technology Vehicles Manufacturing Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles...

16

Advanced Metering Infrastructure Technology  

Science Conference Proceedings (OSTI)

Revenue security is a major concern for utilities. Theft of electric service in the United States is widespread. In 2006, the revenue estimate for non-technical losses was 6.5 billion. Non-technical losses are associated with unidentified and uncollected revenue from pilferage, tampering with meters, defective meters, and errors in meter reading. In this report, revenue security describes the use of advanced metering infrastructure (AMI) technology to minimize non-technical losses.

2008-12-08T23:59:59.000Z

17

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

18

Advanced Vehicle Technologies Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Vehicle Technologies Awards Advanced Vehicle Technologies Awards Microsoft Word - VTP 175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 AdvancedVehiclesTechn...

19

State Technologies Advancement Collaborative  

DOE Green Energy (OSTI)

The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

David S. Terry

2012-01-30T23:59:59.000Z

20

Advanced Process Engineering Co-simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 AdvAnced Process engineering co-simulAtion Description The National Energy Technology Laboratory (NETL) and its R&D collaboration partners are developing the Advanced Process Engineering Co-Simulator (APECS) as an innovative software tool that combines process simulation with high-fidelity equipment models based on computational fluid dynamics (CFD). Winner of a 2004 R&D 100 Award and a 2007 Federal Laboratory Consortium (FLC) Excellence in Technology Transfer Award, this powerful co-simulation technology, for the first time, provides the necessary level of detail and accuracy essential for engineers to analyze and optimize the coupled fluid flow, heat and mass transfer, and chemical reactions that drive overall plant performance. Combined with advanced visualization and high-performance computing,

Note: This page contains sample records for the topic "advanced simulation technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced Materials Technologies - Energy Innovation Portal  

Advanced Materials Technology Marketing Summaries Here you’ll find marketing summaries of advanced materials technologies available for licensing from ...

22

Information Technology | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Photon Source Information Technology Support Search APS ... Search Button About User Information News & Events Science & Education Beamlines Divisions Argonne Home >...

23

Advanced Green Technologies | Open Energy Information  

Open Energy Info (EERE)

Advanced Green Technologies Place Fort Lauderdale, Florida Zip 33311 Product Advanced Green Technologies is a US-based distributor of PV systems. It is owned by Advanced Roofing...

24

Advancing Clean Energy Technology (Fact Sheet)  

SciTech Connect

DOE/EERE Solar Energy Technologies Program Fact Sheet - Advancing Clean Energy Technology, May 2010.

2010-07-01T23:59:59.000Z

25

Community petascale project for accelerator science and simulation: Advancing computational science for future accelerators and accelerator technologies  

E-Print Network (OSTI)

and Office of Advanced Scientific Computing Research. Theand Office of Advanced Scientific Computing Research. The

Spentzouris, Panagiotis

2008-01-01T23:59:59.000Z

26

Vehicle Technologies Office: Advanced Combustion Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Combustion Advanced Combustion Engines to someone by E-mail Share Vehicle Technologies Office: Advanced Combustion Engines on Facebook Tweet about Vehicle Technologies Office: Advanced Combustion Engines on Twitter Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Google Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Delicious Rank Vehicle Technologies Office: Advanced Combustion Engines on Digg Find More places to share Vehicle Technologies Office: Advanced Combustion Engines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Combustion Engines Emission Control Waste Heat Recovery Fuels & Lubricants Materials Technologies Advanced Combustion Engines

27

Virtually simulating the next generation of clean energy technologies: NETL's AVESTAR Center is dedicated to the safe, reliable and efficient operation of advanced energy plants with carbon capture  

SciTech Connect

Imagine using a real-time virtual simulator to learn to fly a space shuttle or rebuild your car's transmission without touching a piece of equipment or getting your hands dirty. Now, apply this concept to learning how to operate and control a state-of-the-art, electricity-producing power plant capable of carbon dioxide (CO{sub 2}) capture. That's what the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTAR) Center (www.netl.doe.gov/avestar) is designed to do. Established as part of the Department of Energy's (DOE) initiative to advance new clean energy technology for power generation, the AVESTAR Center focuses primarily on providing simulation-based training for process engineers and energy plant operators, starting with the deployment of a first-of-a-kind operator training simulator for an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Based on Invensys Operations Management's SimSci-Esscor DYNSIM software, the high-fidelity dynamic simulator provides realistic training on IGCC plant operations, including normal and faulted operations, as well as plant start-up, shutdown and power demand load changes. The highly flexible simulator also allows for testing of different types of fuel sources, such as petcoke and biomass, as well as co-firing fuel mixtures. The IGCC dynamic simulator is available at AVESTAR's two locations, NETL (Figure 1) and West Virginia University's National Research Center for Coal and Energy (www.nrcce.wvu.edu), both in Morgantown, W.Va. By offering a comprehensive IGCC training program, AVESTAR aims to develop a workforce well prepared to operate, control and manage commercial-scale gasification-based power plants with CO{sub 2} capture. The facility and simulator at West Virginia University promotes NETL's outreach mission by offering hands-on simulator training and education to researchers and university students.

Zitney, S.

2012-01-01T23:59:59.000Z

28

Advanced Reactor Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Reactor Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research, development and deployment (RD&D) activities through its Next Generation Nuclear Plant (NGNP), Advanced Reactor Concepts (ARC), and Advanced Small Modular Reactor (aSMR) programs to promote safety, technical, economical, and environmental advancements of innovative Generation IV nuclear energy technologies. The Office of Nuclear Energy (NE) will pursue these advancements through RD&D activities at the Department of Energy (DOE) national laboratories and U.S. universities, as well as through collaboration with industry and international partners. These activities will focus on advancing scientific

29

Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations  

Science Conference Proceedings (OSTI)

This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptual drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer drilling tests, as well as single impact tests, have been designed and executed. Both Berea sandstone and Mancos shale samples are used. In single impact tests, three impacts are sequentially loaded at the same rock location to investigate rock response to repetitive loadings. The crater depth and width are measured as well as the displacement and force in the rod and the force in the rock. Various pressure differences across the rock-indentor interface (i.e. bore pressure minus pore pressure) are used to investigate the pressure effect on rock penetration. For hammer drilling tests, an industrial fluid hammer is used to drill under both underbalanced and overbalanced conditions. Besides calibrating the modeling tool, the data and cuttings collected from the tests indicate several other important applications. For example, different rock penetrations during single impact tests may reveal why a fluid hammer behaves differently with diverse rock types and under various pressure conditions at the hole bottom. On the other hand, the shape of the cuttings from fluid hammer tests, comparing to those from traditional rotary drilling methods, may help to identify the dominant failure mechanism that percussion drilling relies on. If so, encouraging such a failure mechanism may improve hammer performance. The project is summarized in this report. Instead of compiling the information contained in the previous quarterly or other technical reports, this report focuses on the descriptions of tasks, findings, and conclusions, as well as the efforts on promoting percussion drilling technologies to industries including site visits, presentations, and publications. As a part of the final deliveries, the 3D numerical model for rock mechanics is also attached.

Michael S. Bruno

2005-12-31T23:59:59.000Z

30

Advanced Technology Vehicles Manufacturing Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

31

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Advanced Manufacturing Trades Training Program Business Program Lead Yvonne Baros Advanced Manufacturing Trades Training Program Tom Souther Advanced Technology Academy...

32

Sandia National Laboratories: Advanced Simulation and Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Facebook Facebook Twitter YouTube Flickr RSS Advanced Simulation and Computing Advanced Simulation and Computing Taking on the World's Complex Challenges Advancing Science Frontiers Our research is producing new scientific insights about the world in which we live and assists in certifying the safety and reliability of the nation's nuclear weapons stockpile. Technology Provides the Tools Growth in data and the software and hardware demands needed for physics-based answers and predictive capabilities are driving technology improvements. We could not achieve the breakthroughs we're making without these important tools. Partnerships Accelerate Innovation Partnerships leverage talent and multiply the effectiveness of our research efforts. Impacting Global Issues ASC software and hardware tools solve global issues ranging from nuclear

33

Commnity Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies  

SciTech Connect

The design and performance optimization of particle accelerators is essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC1 Accelerator Science and Technology project, the SciDAC2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modeling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multi-physics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

2008-07-01T23:59:59.000Z

34

Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies  

SciTech Connect

The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

2011-10-21T23:59:59.000Z

35

Ceramic Technology for Advanced Heat Engines Project  

DOE Green Energy (OSTI)

The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

Not Available

1990-08-01T23:59:59.000Z

36

Advanced solar thermal technology  

SciTech Connect

The application of dish solar collectors to industrial process heat (IPH) has been reviewed. IPH represents a market for displacement of fossil fuels (10 quads/y). A 10% market penetration would indicate a substantial market for solar thermal systems. Apparently, parabolic dish systems can produce IPH at a lower cost than that of troughs or compound parabolic concentrators, even though dish fabrication costs per unit area are more expensive. Successful tests of point-focusing collectors indicate that these systems can meet the energy requirements for process heat applications. Continued efforts in concentrator and transport technology development are needed. 7 figures.

Leibowitz, L.P.; Hanseth, E.; Liu, T.M.

1982-06-01T23:59:59.000Z

37

Building Technologies Office: Advanced Energy Retrofit Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Retrofit Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Retrofit Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Retrofit Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Google Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Delicious Rank Building Technologies Office: Advanced Energy Retrofit Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Retrofit Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

38

Vehicle Technologies Office: Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

that feature one or more advanced technologies, including: Plug-in hybrid electric vehicle technologies Extended range electric vehicle technologies Hybrid electric, pure...

39

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

40

NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEAMS: The Nuclear Energy Advanced NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program The Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program is developing a simulation tool kit using leading-edge computational methods that will accelerate the development and deployment of nuclear power technologies that employ enhanced safety and security features, produce power more cost-effectively, and utilize natural resources more efficiently. The NEAMS ToolKit

Note: This page contains sample records for the topic "advanced simulation technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Advanced Vehicle Technology Analysis & Evaluation Team  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Technology Analysis and Evaluation Team Lee Slezak Manager, AVTAET Office of FreedomCAR and Vehicle Technologies DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. 2 Charter * AVTAET's mission is to develop and apply the tools and skills necessary to: - Identify technology development needs and requirements to support OFCVT goals and - Collect, analyze, and disseminate unbiased information on advanced transportation technology components, systems, and vehicles that potentially support OFCVT goals. * Goal of analytical groups at ANL, NREL and ORNL - Develop and apply modeling and simulation tools to help DOE, manufacturers and suppliers design and develop clean, energy efficient components and systems for

42

Ceramic Technology For Advanced Heat Engines Project  

DOE Green Energy (OSTI)

Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.

Not Available

1990-12-01T23:59:59.000Z

43

DOE Simulator Training to Brazil's Petrobas Advances Goal of Deploying  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Simulator Training to Brazil's Petrobas Advances Goal of DOE Simulator Training to Brazil's Petrobas Advances Goal of Deploying Clean Coal Technology at Home and Abroad DOE Simulator Training to Brazil's Petrobas Advances Goal of Deploying Clean Coal Technology at Home and Abroad September 25, 2012 - 1:00pm Addthis Washington, DC - A recently-completed comprehensive Department of Energy (DOE) training initiative using an innovative high-fidelity combined-cycle dynamic simulator has provided employees of a Brazilian multi-national company the opportunity to learn to operate and control the near-zero-emission power plants critical to a cleaner energy future. The 8-day course for power plant operators from Petrobras used a simulator from the National Energy Technology Laboratory (NETL)-sponsored AVESTAR™ (Advanced Virtual Energy Simulation Training and Research) Center.

44

Advanced Materials Technologies Available for Licensing - Energy ...  

Advanced Materials Technologies Available for Licensing U.S. Department of Energy (DOE) laboratories and participating research institutions have advanced materials ...

45

University Program in Advanced Technology | National Nuclear Security  

National Nuclear Security Administration (NNSA)

University Program in Advanced Technology | National Nuclear Security University Program in Advanced Technology | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog University Program in Advanced Technology Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

46

ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report of Report of ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE 24 October 2003 BURTON RICHTER, CHAIR DARLEANE C. HOFFMAN SEKAZI K. MTINGWA RONALD P. OMBERG SILVIE PILLON JOY L. REMPE I. INTRODUCTION AND SUMMARY The committee met in Washington on September 16 and 17 to review progress in the program with respect to a changed set of mission priorities. Our last meeting took place in December 2002 after the reorganization that had placed the Advanced Fuel Cycle Initiative (AFCI) and the GEN IV program together in the Advanced Nuclear Research Office (AN-20). Since mission priorities have been evolving, the committee felt that it should wait until they have settled down before we met again. We have kept in touch

47

Advanced Simulation Capability for Environmental Management (ASCEM) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Simulation Capability for Environmental Management (ASCEM) Advanced Simulation Capability for Environmental Management (ASCEM) Advanced Simulation Capability for Environmental Management (ASCEM) Advanced Simulation Capability for Environmental Management (ASCEM) ASCEM is being developed to provide a tool and approach to facilitate robust and standardized development of performance and risk assessments for cleanup and closure activities throughout the EM complex. The ASCEM team is composed of scientists from eight National Laboratories. This team is leveraging Department of Energy (DOE) investments in basic science and applied research including high performance computing codes developed through the Advanced Scientific Computing Research and Advanced Simulation & Computing programs as well as collaborating with the Offices of Science,

48

Advanced Materials Technologies Available for Licensing ...  

Advanced Materials Technologies Available for Licensing U.S. Department of Energy (DOE) laboratories and participating research institutions have ...

49

Fact Sheet: Energy Storage Technology Advancement Partnership...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) More Documents & Publications Webinar Presentation: Energy Storage Solutions for Microgrids (November...

50

Clean Cities: Advanced Vehicle Technology Competitions  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas...

51

Advanced Energy Technologies: Solar Energy and Storage  

Science Conference Proceedings (OSTI)

Advanced Energy Technologies: Solar Energy and Storage (+18 FTE, +$7,500,000). image: Shutterstock, copyright Chayne Gregg. Challenge. ...

2011-10-11T23:59:59.000Z

52

NETL: Gasification Systems - Advanced Virtual Energy Simulation Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Virtual Energy Simulation Training And Research (AVESTAR(tm)) Facility Advanced Virtual Energy Simulation Training And Research (AVESTAR(tm)) Facility Project No: Adv Gas-FY131415 Task 6 Developed as a part of NETL's initiative to advance new clean coal technology, the Advanced Virtual Energy Simulation Training And Research (AVESTARTM) Center is focused on training engineers and energy plant operators in the efficient, productive, and safe operation of highly efficient power generation systems that also protect the environment. Comprehensive dynamic simulator-based instruction better prepares operators and engineers to manage advanced energy plants according to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. Advanced Virtual Energy Simulation Training and Research Center - AVESTAR

53

Building Technologies Office: Advanced Energy Design Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Design Energy Design Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Design Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Design Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Design Guides on Google Bookmark Building Technologies Office: Advanced Energy Design Guides on Delicious Rank Building Technologies Office: Advanced Energy Design Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Design Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software

54

Advanced Modular Inverter Technology Development  

DOE Green Energy (OSTI)

Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

Adam Szczepanek

2006-02-04T23:59:59.000Z

55

Advanced Modular Inverter Technology Development  

SciTech Connect

Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

Adam Szczepanek

2006-02-04T23:59:59.000Z

56

Ceramic technology for Advanced Heat Engines Project  

DOE Green Energy (OSTI)

Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

Johnson, D.R.

1991-07-01T23:59:59.000Z

57

Advanced Process Engineering Co-Simulator (APECS) | Open Energy Information  

Open Energy Info (EERE)

Advanced Process Engineering Co-Simulator (APECS) Advanced Process Engineering Co-Simulator (APECS) (Redirected from APECS) Jump to: navigation, search Tool Summary Name: APECS Agency/Company /Organization: National Energy Technology Laboratory Partner: ANSYS Sector: Energy Focus Area: Industry Topics: Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.netl.doe.gov/technologies/coalpower/advresearch/apecs.html APECS Screenshot References: APECS Homepage[1] Logo: APECS Advanced Process Engineering Co-Simulator (APECS) is an innovative software tool that provides process/equipment co-simulation capabilities for model-based decision support in steady-state process design and optimization. Developed by NETL, ANSYS, and other research partners, the Advanced Process

58

Advanced Process Engineering Co-Simulator (APECS) | Open Energy Information  

Open Energy Info (EERE)

Advanced Process Engineering Co-Simulator (APECS) Advanced Process Engineering Co-Simulator (APECS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: APECS Agency/Company /Organization: National Energy Technology Laboratory Partner: ANSYS Sector: Energy Focus Area: Industry Topics: Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.netl.doe.gov/technologies/coalpower/advresearch/apecs.html APECS Screenshot References: APECS Homepage[1] Logo: APECS Advanced Process Engineering Co-Simulator (APECS) is an innovative software tool that provides process/equipment co-simulation capabilities for model-based decision support in steady-state process design and optimization. Developed by NETL, ANSYS, and other research partners, the Advanced Process

59

Vehicle Technologies Office: Modeling and Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

and low emissions in advanced internal combustion engine, advanced diesel engine, hybrid electric, and fuel cell vehicles. Advanced technology vehicles can incorporate any of a...

60

Advanced Reactor Technology Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Reactor Technologies » Advanced Reactor Nuclear Reactor Technologies » Advanced Reactor Technologies » Advanced Reactor Technology Documents Advanced Reactor Technology Documents January 30, 2013 Advanced Reactor Concepts Technical Review Panel Report This report documents the establishment of a technical review process and the findings of the Advanced Reactor Concepts (ARC) Technical Review Panel (TRP).1 The intent of the process is to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. A goal of the process is to facilitate greater engagement between DOE and industry. The process involved establishing evaluation criteria, conducting a pilot review, soliciting concept inputs from industry entities, reviewing the concepts by TRP members and compiling the

Note: This page contains sample records for the topic "advanced simulation technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)  

SciTech Connect

The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity. Retrofit technologies that address the challenges of slow-speed integral compression are: (1) optimum turndown using a combination of speed and clearance with single-acting operation as a last resort; (2) if single-acting is required, implement infinite length nozzles to address nozzle pulsation and tunable side branch absorbers for 1x lateral pulsations; and (3) advanced valves, either the semi-active plate valve or the passive rotary valve, to extend valve life to three years with half the pressure drop. This next generation of slow-speed compression should attain 95% efficiency, a three-year valve life, and expanded turndown. New equipment technologies that address the challenges of large-horsepower, high-speed compression are: (1) optimum turndown with unit speed; (2) tapered nozzles to effectively reduce nozzle pulsation with half the pressure drop and minimization of mechanical cylinder stretch induced vibrations; (3) tunable side branch absorber or higher-order filter bottle to address lateral piping pulsations over the entire extended speed range with minimal pressure drop; and (4) semi-active plate valves or passive rotary valves to extend valve life with half the pressure drop. This next generation of large-horsepower, high-speed compression should attain 90% efficiency, a two-year valve life, 50% turndown, and less than 0.75 IPS vibration. This program has generated proof-of-concept technologies with the potential to meet these ambitious goals. Full development of these identified technologies is underway. The GMRC has committed to pursue the most promising enabling technologies for their industry.

Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

2005-12-01T23:59:59.000Z

62

NIST Advanced Technology Program Launches 54 New ...  

Science Conference Proceedings (OSTI)

... a real contribution to the technological advances that fuel our economy.". ... the potential to spark important, broad-based economic benefits for the ...

2012-12-13T23:59:59.000Z

63

Advanced Solar Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Jump to: navigation, search Name Advanced Solar Technologies Inc Place San Diego, California Sector Solar Product California-based domestic and commercial designer and...

64

New Advances - Jefferson Lab Technology Transfer  

New Advances Commercial Spin-offs Abound For New Free Electron Laser. The world of laser technology took a giant leap forward recently as researchers ...

65

Advanced Controls Technologies and Strategies Linking Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Controls Technologies and Strategies Linking Energy Efficiency and Demand Response Speaker(s): Sila Kiliccote Date: October 6, 2005 - 12:00pm Location: Bldg. 90 Reliable...

66

ADVANCES IN COATINGS TECHNOLOGIES II: I - TMS  

Science Conference Proceedings (OSTI)

The DARPA program in advanced thin film coatings is developing innovative technologies to eliminate volatile organic compounds, heavy metals and other ...

67

Nick Wright Named Advanced Technologies Group Lead  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2013 Nick Nick Wright has been named head of the National Energy Research Scientific Computing Center's (NERSC) Advanced Technologies Group (ATG), which focuses on...

68

University Program in Advanced Technology | National Nuclear...  

National Nuclear Security Administration (NNSA)

University Program in Advanced Technology | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

69

Building Technologies Office: Advanced, Integrated Control for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings News Building Technologies Office Announces 3 Million to Advance Building Automation Software Solutions in Small to Medium-Sized Commercial Buildings March 29,...

70

Energy technologies advancement program underway  

SciTech Connect

The State of California is reducing the risk of developing new, innovative energy technologies under its Energy Technologies Advancement Program (ETAP), which is administered by the California Energy Commission (CEC). In the first funding round, 38 applications were received, and the Energy Commission's Research, Development, and Demonstration Committee has recommended six projects from private companies for initial funding. They are: ARCO Solar Inc. - research for $925,000 to develop thin film photovoltaic modules that capture the sun's rays and convert them into electricity; Alternative Energy Institute - research for $135,000 to collect and concentrate sunlight via a series of tracking parabolic dishes (heliostats), and transfer collected light into the interior of a commercial building; Solar Turbines Inc. - research for $52,500 to test a liquid fuel injection system that results in a reduction of oxides of nitrogen in cogeneration gas turbines; Pacific Gas and Electric Company - research for $500,000 to establish a program for field testing and evaluating emerging new photovoltaic technologies; San Diego Gas and Electric Company - research contract to test and evaluate the largest geothermal power plant in the world using an organic rankine cycle steam turbine, which uses a fluid with a lower-than-normal boiling point, thereby potentially generating electricity with lower temperature heat; and Fayette Manufacturing Corporation - loan contract for $1,250,000 to demonstrate the technical and economic feasibility of a new heat cycle process called the Kalina Cycle. The CEC will soon be releasing a Request for Proposals (RFP) for both private and public organizations for the second-round ETAP solicitation.

1986-01-01T23:59:59.000Z

71

FY 2006 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

AdvAnced vehicle Technology AdvAnced vehicle Technology AnAlysis And evAluATion AcTiviTies U.S. Department of Energy FreedomCAR and Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2006 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager Advanced Vehicle Technology Analysis and Evaluation Activities FY 2006 Annual Report CONTENTS I. INTRODUCTION............................................................................................................................ 1 II. MODELING AND SIMULATION ................................................................................................ 9

72

advanced vehicle technologies awards table | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

advanced vehicle technologies awards table advanced vehicle technologies awards table Microsoft Word - VTP 175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 More...

73

Vehicle Technologies Office: Advanced Combustion Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Engines Combustion Engines Improving the efficiency of internal combustion engines is one of the most promising and cost-effective near- to mid-term approaches to increasing highway vehicles' fuel economy. The Vehicle Technologies Office's research and development activities address critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles. This technology has great potential to reduce U.S. petroleum consumption, resulting in greater economic, environmental, and energy security. Already offering outstanding drivability and reliability to over 230 million passenger vehicles, internal combustion engines have the potential to become substantially more efficient. Initial results from laboratory engine tests indicate that passenger vehicle fuel economy can be improved by more than up to 50 percent, and some vehicle simulation models estimate potential improvements of up to 75 percent. Advanced combustion engines can utilize renewable fuels, and when combined with hybrid electric powertrains could have even further reductions in fuel consumption. As the EIA reference case forecasts that by 2035, more than 99 percent of light- and heavy-duty vehicles sold will still have internal combustion engines, the potential fuel savings is tremendous.

74

Alternative Fuels Data Center: Technology Advancement Funding - South Coast  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Technology Advancement Technology Advancement Funding - South Coast to someone by E-mail Share Alternative Fuels Data Center: Technology Advancement Funding - South Coast on Facebook Tweet about Alternative Fuels Data Center: Technology Advancement Funding - South Coast on Twitter Bookmark Alternative Fuels Data Center: Technology Advancement Funding - South Coast on Google Bookmark Alternative Fuels Data Center: Technology Advancement Funding - South Coast on Delicious Rank Alternative Fuels Data Center: Technology Advancement Funding - South Coast on Digg Find More places to share Alternative Fuels Data Center: Technology Advancement Funding - South Coast on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Technology Advancement Funding - South Coast

75

Vehicle Technologies Office: FY 2005 Progress Report for Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Progress Report 5 Progress Report for Advanced Combustion Engine Technologies to someone by E-mail Share Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Facebook Tweet about Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Twitter Bookmark Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Google Bookmark Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Delicious Rank Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Digg Find More places to share Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on

76

Vehicle Technologies Office: FY 2006 Progress Report for Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Progress Report 6 Progress Report for Advanced Combustion Engine Technologies to someone by E-mail Share Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Facebook Tweet about Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Twitter Bookmark Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Google Bookmark Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Delicious Rank Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Digg Find More places to share Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on

77

Categorical Exclusion Determinations: Advanced Technology Vehicles  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Vehicles Technology Vehicles Manufacturing Loan Program Categorical Exclusion Determinations: Advanced Technology Vehicles Manufacturing Loan Program Categorical Exclusion Determinations issued by Advanced Technology Vehicles Manufacturing Loan Program. DOCUMENTS AVAILABLE FOR DOWNLOAD May 29, 2012 CX-008810: Categorical Exclusion Determination One Nevada Optimization of Microwave Telecommunication System CX(s) Applied: B1.19, B4.6 Date: 05/29/2012 Location(s): Nevada, Nevada Offices(s): Advanced Technology Vehicles Manufacturing Loan Program January 24, 2012 CX-007677: Categorical Exclusion Determination Project Eagle Phase 1 Direct Wafer/Cell Solar Facility CX(s) Applied: B1.31 Date: 01/24/2012 Location(s): Massachusetts Offices(s): Advanced Technology Vehicles Manufacturing Loan Program

78

Assessment of Wireless Technologies for Advanced Automation  

Science Conference Proceedings (OSTI)

The power industry is seeing a resurgence of interest in advanced automation and customer communications. A variety of wireless technologies are becoming available that could be used in advanced automation applications for utilities. However, decisions on physical media infrastructure should be made cautiously since use of these technologies may directly impact system performance, reliability, and long-term costs. This report is a preliminary analysis of some of the leading wireless technologies that are...

2007-12-20T23:59:59.000Z

79

Advanced Technology for Groundwater Protection  

Science Conference Proceedings (OSTI)

This report documents the evaluation of automatic and in situ groundwater monitoring technologies for application at nuclear power plant (NPP) sites. The project studies the state of technology of automatic and in situ groundwater monitoring technologies and assesses whether they can be used to enhance the current groundwater monitoring capabilities at NPPs. Technologies for automatically detecting tritium and technologies that monitor non-radiological groundwater characteristics were explored. The abili...

2012-04-25T23:59:59.000Z

80

Advancing Solar Through Photovoltaic Technology Innovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy

Note: This page contains sample records for the topic "advanced simulation technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Advancing Solar Through Photovoltaic Technology Innovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy

82

Advanced Integrated Systems Technology Development  

E-Print Network (OSTI)

allows the use of alternative cooling sources, for example,system, and alternative radiant cooling technology, i.e.

2013-01-01T23:59:59.000Z

83

Advanced Manufacturing Technology Consortia (AMTech) ...  

Science Conference Proceedings (OSTI)

... approach, such as industry, technology, or the ... Are DOE national laboratories (federally funded ... centers, FFRDCs) or energy lab contractors eligible ...

2013-08-05T23:59:59.000Z

84

Advanced Network Technologies Division Homepage  

Science Conference Proceedings (OSTI)

... network technologies, and develops, demonstrates, and ... project to develop measurement methodologies ... assist industry in developing standards for ...

2013-01-17T23:59:59.000Z

85

ADVANCE TECHNOLOGIES FOR THE INFRASTRUCTURE ...  

Science Conference Proceedings (OSTI)

... 3 Office of Technology Policy on Energy (FY) 2008 Budget, February 2007 4 Exxon Corp. “ July 2008 Presentation at the U. of Pennsylvania”. ...

2011-08-02T23:59:59.000Z

86

Information Technology | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Technology Support Search Button About Welcome Overview Visiting the APS Mission & Goals Find People Organization Charts Committees Job Openings User Information...

87

Advanced Combustion Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Clean Coal » Advanced Combustion Science & Innovation » Clean Coal » Advanced Combustion Technologies Advanced Combustion Technologies Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses laser-based Rayleigh light scattering to measure flame density and speed over a flat flame burner. Oxyfuel combustion, using oxygen in place of air with diluents such as steam or carbon dioxide, can reduce pollutant emissions in advanced power cycles using gas turbines. Photo courtesy of NETL Multimedia. Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses laser-based Rayleigh light scattering to measure flame density and speed over a flat flame burner. Oxyfuel combustion, using oxygen in place of air with diluents such as steam or carbon dioxide, can reduce pollutant

88

TRC Advanced Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

TRC Advanced Technologies Inc TRC Advanced Technologies Inc Jump to: navigation, search Logo: TRC Advanced Technologies Inc Name TRC Advanced Technologies Inc Address 8700 Commerce Park Place Houston, Texas Zip 77036 Sector Solar Product Remote power PV systems Website http://www.trcat.com/ Coordinates 29.685775°, -95.535791° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.685775,"lon":-95.535791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

89

Advanced Vehicle Technology Analysis and Evaluation Team  

E-Print Network (OSTI)

Set ­ Models · Conventional, hybrid and electric vehicles · Fuel consumption and performanceAdvanced Vehicle Technology Analysis and Evaluation Team Lee Slezak Manager, AVTAET Office · Supports HIL/RCP · Fuel cell models ­ Net power vs. fuel consumption ­ Engineering · ADvanced Vehicle

90

Building Technologies Office: House Simulation Protocols Report  

NLE Websites -- All DOE Office Websites (Extended Search)

House Simulation House Simulation Protocols Report to someone by E-mail Share Building Technologies Office: House Simulation Protocols Report on Facebook Tweet about Building Technologies Office: House Simulation Protocols Report on Twitter Bookmark Building Technologies Office: House Simulation Protocols Report on Google Bookmark Building Technologies Office: House Simulation Protocols Report on Delicious Rank Building Technologies Office: House Simulation Protocols Report on Digg Find More places to share Building Technologies Office: House Simulation Protocols Report on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center

91

Nick Wright Named Advanced Technologies Group Lead  

NLE Websites -- All DOE Office Websites (Extended Search)

Nick Wright Named Nick Wright Named Advanced Technologies Group Lead Nick Wright Named Advanced Technologies Group Lead February 4, 2013 Nick Nick Wright has been named head of the National Energy Research Scientific Computing Center's (NERSC) Advanced Technologies Group (ATG), which focuses on understanding the requirements of current and emerging applications to make choices in hardware design and programming models that best serve the science needs of NERSC users. ATG specializes in benchmarking, system performance, debugging and analysis, workload monitoring, use of application modeling tools, and future algorithm scaling and technology assessment. The team also engages with vendors and the general research community to advocate technological features that will enhance the effectiveness of systems for NERSC scientists.

92

BEST: Biochemical Engineering Simulation Technology  

DOE Green Energy (OSTI)

The idea of developing a process simulator that can describe biochemical engineering (a relatively new technology area) was formulated at the National Renewable Energy Laboratory (NREL) during the late 1980s. The initial plan was to build a consortium of industrial and U.S. Department of Energy (DOE) partners to enhance a commercial simulator with biochemical unit operations. DOE supported this effort; however, before the consortium was established, the process simulator industry changed considerably. Work on the first phase of implementing various fermentation reactors into the chemical process simulator, ASPEN/SP-BEST, is complete. This report will focus on those developments. Simulation Sciences, Inc. (SimSci) no longer supports ASPEN/SP, and Aspen Technology, Inc. (AspenTech) has developed an add-on to its ASPEN PLUS (also called BioProcess Simulator [BPS]). This report will also explain the similarities and differences between BEST and BPS. ASPEN, developed by the Massachusetts Institute of Technology for DOE in the late 1970s, is still the state-of-the-art chemical process simulator. It was selected as the only simulator with the potential to be easily expanded into the biochemical area. ASPEN/SP, commercially sold by SimSci, was selected for the BEST work. SimSci completed work on batch, fed-batch, and continuous fermentation reactors in 1993, just as it announced it would no longer commercially support the complete ASPEN/SP product. BEST was left without a basic support program. Luckily, during this same time frame, AspenTech was developing a biochemical simulator with its version of ASPEN (ASPEN PLUS), which incorporates most BEST concepts. The future of BEST will involve developing physical property data and models appropriate to biochemical systems that are necessary for good biochemical process design.

Not Available

1996-01-01T23:59:59.000Z

93

An advanced fuel cell simulator  

E-Print Network (OSTI)

Fuel cell power generation systems provide a clean alternative to the conventional fossil fuel based systems. Fuel cell systems have a high e?ciency and use easily available hydrocarbons like methane. Moreover, since the by-product is water, they have a very low environmental impact. The fuel cell system consists of several subsystems requiring a lot of e?ort from engineers in diverse areas. Fuel cell simulators can provide a convenient and economic alternative for testing the electrical subsystems such as converters and inverters. This thesis proposes a low-cost and an easy-to-use fuel cell simulator using a programmable DC supply along with a control module written in LabVIEW. This simulator reproduces the electrical characteristics of a 5kW solid oxide fuel cell (SOFC) stack under various operating conditions. The experimental results indicate that the proposed simulator closely matches the voltage-current characteristic of the SOFC system under varying load conditions. E?ects of non-electrical parameters like hydrogen ?ow rate are also modeled and these parameters are taken as dynamic inputs from the user. The simulator is customizable through a graphical user interface and allows the user to model other types of fuel cells with the respective voltage-current data. The simulator provides an inexpensive and accurate representation of a solid oxide fuel cell under steady state and transient conditions and can replace an actual fuel cell during testing of power conditioning equipment.

Acharya, Prabha Ramchandra

2004-08-01T23:59:59.000Z

94

Alternative Fuels Data Center: Advanced Technology Vehicle (ATV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Technology Advanced Technology Vehicle (ATV) Manufacturing Incentives to someone by E-mail Share Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on Facebook Tweet about Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on Twitter Bookmark Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on Google Bookmark Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on Delicious Rank Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on Digg Find More places to share Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on AddThis.com... More in this section...

95

DOE Projects to Advance Environmental Science and Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Projects to Advance Environmental Science and Technology DOE Projects to Advance Environmental Science and Technology August 19, 2009 - 1:00pm Addthis Washington, DC - The...

96

Department of Energy Advance Methane Hydrates Science and Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Methane Hydrates Science and Technology Projects Department of Energy Advance Methane Hydrates Science and Technology Projects Descriptions for Energy Department Methane...

97

"Recovery Act: Advanced Energy Efficient BuildingTechnologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Recovery Act: Advanced Energy Efficient BuildingTechnologies" "Recovery Act: Advanced Energy Efficient BuildingTechnologies" Description of a FOA funding oppourtunity with funds...

98

Characterization and Development of Advanced Heat Transfer Technologies (Presentation)  

DOE Green Energy (OSTI)

Advancing heat transfer technologies is a critical factor in power electronics equipment. NREL aims to characterize and develop advanced heat transfer technologies.

Abraham, T.

2007-11-08T23:59:59.000Z

99

TECHNOLOGIES TO OPTIMIZE ADVANCED TOKAMAK  

SciTech Connect

OAK-B135 Commercial fusion power systems must operate near the limits of the engineering systems and plasma parameters. Achieving these objectives will require real time feedback control of the plasma. This paper describes plasma control systems being used in the national DIII-D advanced tokamak research program.

SIMONEN, TC

2004-01-01T23:59:59.000Z

100

Advanced Technology and Knowledge Transfer  

Science Conference Proceedings (OSTI)

This paper reports on a specific food and agribusiness industry project, employing new technological capabilities to better transfer expert knowledge. Knowledge transfer and technical support are key components of this project. VisIT, which stands for ...

Geetanjali Tandon; Steven T. Sonka

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced simulation technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Technology Development Advances EM Cleanup  

Energy.gov (U.S. Department of Energy (DOE))

The unique nature of many of EM's remaining facilities will require a strong and responsive engineering and technology program to improve work and public safety, and reduce costs and environmental impacts while completing the cleanup program.

102

Materials research to advance fossil energy technologies at the NETL  

Science Conference Proceedings (OSTI)

A brief overview of materials research being carried out by the National Energy Technology Laboratory to advance fossil energy technologies.

Powell, C.A.

2006-10-18T23:59:59.000Z

103

Advanced Lost Foam Casting Technology  

Science Conference Proceedings (OSTI)

This report describes the research done under the six tasks to improve the process and make it more functional in an industrial environment. Task 1: Pattern Pyrolysis Products and Pattern Properties Task 2: Coating Quality Control Task 3: Fill and Solidification Code Task 4: Alternate Pattern Materials Task 5: Casting Distortion Task 6: Technology Transfer

Charles E. Bates; Harry E. Littleton; Don Askeland; Taras Molibog; Jason Hopper; Ben Vatankhah

2000-11-30T23:59:59.000Z

104

Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions  

Open Energy Info (EERE)

Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Transportation Phase: Determine Baseline, Evaluate Options Topics: Co-benefits assessment, GHG inventory Resource Type: Online calculator, Software/modeling tools User Interface: Spreadsheet Complexity/Ease of Use: Moderate Website: www.transportation.anl.gov/modeling_simulation/AirCred/index.html

105

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

Christopher E. Hull

2006-05-15T23:59:59.000Z

106

Crosscutting Technology Development at the Center for Advanced Separation Technologies  

SciTech Connect

This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

Christopher E. Hull

2006-09-30T23:59:59.000Z

107

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

SciTech Connect

This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

Christopher E. Hull

2005-11-04T23:59:59.000Z

108

Modern Imaging Technology: Recent Advances  

SciTech Connect

This 2-day conference is designed to bring scientist working in nuclear medicine, as well as nuclear medicine practitioners together to discuss the advances in four selected areas of imaging: Biochemical Parameters using Small Animal Imaging, Developments in Small Animal PET Imaging, Cell Labeling, and Imaging Angiogenesis Using Multiple Modality. The presentations will be on molecular imaging applications at the forefront of research, up to date on the status of molecular imaging in nuclear medicine as well as in related imaging areas. Experts will discuss the basic science of imaging techniques, and scheduled participants will engage in an exciting program that emphasizes the current status of molecular imaging as well as the role of DOE funded research in this area.

Welch, Michael J.; Eckelman, William C.

2004-06-18T23:59:59.000Z

109

Advanced AMR Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Advanced AMR Technologies Inc Advanced AMR Technologies Inc Jump to: navigation, search Name Advanced AMR Technologies Inc Address 285 Newbury Street Place Peabody, Massachusetts Zip 01960 Sector Efficiency Product Energy management solutions Website http://www.advancedamr.com/ Coordinates 42.5547616°, -70.9800841° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5547616,"lon":-70.9800841,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

110

Materials challenges in advanced coal conversion technologies  

SciTech Connect

Coal is a critical component in the international energy portfolio, used extensively for electricity generation. Coal is also readily converted to liquid fuels and/or hydrogen for the transportation industry. However, energy extracted from coal comes at a large environmental price: coal combustion can produce large quantities of ash and CO{sub 2}, as well as other pollutants. Advanced technologies can increase the efficiencies and decrease the emissions associated with burning coal and provide an opportunity for CO{sub 2} capture and sequestration. However, these advanced technologies increase the severity of plant operating conditions and thus require improved materials that can stand up to the harsh operating environments. The materials challenges offered by advanced coal conversion technologies must be solved in order to make burning coal an economically and environmentally sound choice for producing energy.

Powem, C.A.; Morreale, B.D. [National Energy Technology Laboratory, Albany, OR (United States)

2008-04-15T23:59:59.000Z

111

Engineering design and analysis of advanced physical fine coal cleaning technologies  

SciTech Connect

This project is sponsored by the United States Department of Energy (DOE) for the Engineering Design and Analysis of Advanced Physical Fine Coal Cleaning Technologies. The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This DOE project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cylconing, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level.

1992-01-20T23:59:59.000Z

112

Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events Printable Version Share this resource Send a link to Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop to someone by E-mail Share Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on Facebook Tweet about Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on Twitter Bookmark Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on Google Bookmark Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on Delicious Rank Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on Digg Find More places to share Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on AddThis.com...

113

Alternative Fuels Data Center: Alternative Fuel and Advanced Technology  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Advanced Technology Vehicle Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on AddThis.com... More in this section... Federal

114

Research on advanced photovoltaic manufacturing technology  

DOE Green Energy (OSTI)

This report outlines opportunities for significantly advancing the scale and economy of high-volume manufacturing of high-efficiency photovoltaic (PV) modules. We propose to pursue a concurrent effort to advance existing crystalline silicon module manufacturing technology and to implement thin film CuInSe{sub 2} (CIS) module manufacturing. This combination of commercial-scale manufacturing of high-efficiency crystalline silicon modules and of pilot-scale manufacturing of low-cost thin film CIS technology will support continued, rapid growth of the US PV industry.

Jester, T.; Eberspacher, C. (Siemens Solar Industries, Camarillo, CA (United States))

1991-11-01T23:59:59.000Z

115

Engineered Sequestration and Advanced Power Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia University. Predictions of innovative energy technologies for the next century usually include everything from fusion to photovoltaics with the one notable exception of fossil fuels. Because of fears of diminishing supplies, pollution and climate change, the public is reluctant to consider these hydrocarbon fuels for the energy needs of the twenty- first century. An energy strategy for the new century, however, cannot ignore fossil fuels. Contrary to popular belief, they are plentiful and inexpensive. While it is true that fossil fuels are limited by their environmental impact, new technologies to eliminate environmental concerns are currently being developed. Managing the emission of

116

Electrochromic Windows: Advanced Processing Technology  

SciTech Connect

This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

SAGE Electrochromics, Inc

2006-12-13T23:59:59.000Z

117

Federal Energy Management Program: Advanced Technology Planning for Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Advanced Technology Planning for Energy Savings Performance Contracts to someone by E-mail Share Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Facebook Tweet about Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Twitter Bookmark Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Google Bookmark Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Delicious Rank Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Digg Find More places to share Federal Energy Management Program:

118

Building Technologies Office: Building America's Top Innovations Advance  

NLE Websites -- All DOE Office Websites (Extended Search)

America's Top America's Top Innovations Advance High Performance Homes to someone by E-mail Share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Facebook Tweet about Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Twitter Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Google Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Delicious Rank Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Digg Find More places to share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on AddThis.com...

119

Advanced technologies for perimeter intrusion detection sensors  

SciTech Connect

The development of integrated circuit fabrication techniques and the resulting devices have contributed more to the advancement of exterior intrusion detectors and alarm assessment devices than any other technology. The availability of this technology has led to the improvements in and further development of smaller more powerful computers, microprocessors, solid state memories, solid state cameras, thermal imagers, low-power lasers, and shorter pulse width and higher frequency electronic circuitry. This paper presents information on planning a perimeter intrusion detection system, identifies the site characteristics that affect its performance, and describes improvements to perimeter intrusion detection sensors and assessment devices that have been achieved by using integrated circuit technology.

Williams, J.D.

1995-03-01T23:59:59.000Z

120

Promises of advanced technology realized at Martin  

SciTech Connect

The 2,488-MW Martin station is a gas/oil-fired facility that embodies today`s demand for flexible operations, technological advances, and reduced production costs. Martin station first rose up from the Everglades in the early 1980s, with the construction of two 814-MW oil-fired steam plants, Units 1 and 2. Natural-gas-firing capability was added to the balanced-draft, natural-circulation boilers in 1986, increasing the station`s fuel flexibility. Martin then leaped into the headlines in the early 1990s when it added combined-cycle (CC) Units 3 and 4. With this 860-MW expansion, FP and L boldly became the fleet leader for the advanced, 2350F-class 7FA gas turbines. Further pushing he technology envelope, the CC includes a three-pressure reheat steam system that raises net plant efficiency for Units 3 and 4 to 54%, on a lower-heating-value (LHV) basis. Incorporating the reheat cycle required significant redesign of the gas-turbine/heat-recovery steam generator (HRSG) train, in order to maintain a rapid startup capability without exceeding metallurgical limits. Perhaps even more important than the technological achievements, Martin stands out from the crowd for its people power, which ensured that the promises of advanced technology actually came to fruition. This station`s aggressive, empowered O and M team shows that you can pioneer technology, reduce operating costs, and deliver high availability--all at the same time.

Swanekamp, R.

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced simulation technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Gasification CFD Modeling for Advanced Power Plant Simulations  

Science Conference Proceedings (OSTI)

In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

Zitney, S.E.; Guenther, C.P.

2005-09-01T23:59:59.000Z

122

NETL: Mercury Emissions Control Technologies - Advanced Utility  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Utility Mercury-Sorbent Field Testing Program Advanced Utility Mercury-Sorbent Field Testing Program Sorbent Technologies Corporation, will test an advanced halgenated activated carbon to determine the mercury removal performance and relative costs of sorbent injection for advanced sorbent materials in large-scale field trials of a variety of combinations of coal-type and utility plant-configuration. These include one site (Detroit Edison's St. Clair Station) with a cold-side ESP using subbituminous coal, or blend of subbituminous and bituminous coal, and one site (Duke Energy's Buck Plant) with a hot-side ESP which burns a bituminous coal. Related Papers and Publications: Semi-Annual Technical Progress Report for the period April 1 - October 31, 2004 [PDF-2275KB] Semi-Annual Technical Progress Report for the period of October 2003 - March 2004 [PDF-1108KB]

123

Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Approaches Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping Background The United States Department of Energy (DOE) National Energy Technology Laboratory (NETL) develops affordable and clean energy from coal and other fossil fuels to secure a sustainable energy economy. To further this mission, NETL funds research and development of advanced control technologies, including chemical looping (CL)

124

NEAMS ToolKit: advanced computational tools for modeling & simulation...  

NLE Websites -- All DOE Office Websites (Extended Search)

NEAMS ToolKit: advanced computational tools for modeling & simulation of advanced reactor systems Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures &...

125

Department of Energy Advance Methane Hydrates Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Methane Hydrates Science and Technology Projects Dollars awarded will go to research the advance understanding of the nature and occurrence of Deepwater and Arctic gas...

126

Mixed-Technology System-Level Simulation  

Science Conference Proceedings (OSTI)

This paper describes a computationally efficient method to simulate mixed-domain systems under the requirements of a system-level framework. The approach is the combined use of Modified Nodal Analysis (MNA) for the representation of a mixed-technology ... Keywords: MEM simulation, microsystem modeling and simulation, modified nodal analysis (MNA), optical MEM CAD tool, optoelectronic simulation, piecewise linear simulation (PWL)

J. A. Martinez; T. P. Kurzweg; S. P. Levitan; P. J. Marchand; D. M. Chiarulli

2001-10-01T23:59:59.000Z

127

Ceramic technology for advanced heat engines project  

DOE Green Energy (OSTI)

The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

Not Available

1990-09-01T23:59:59.000Z

128

Advanced Technology Development Center ATDC | Open Energy Information  

Open Energy Info (EERE)

Technology Development Center ATDC Technology Development Center ATDC Jump to: navigation, search Name Advanced Technology Development Center (ATDC) Place United States Sector Services Product General Financial & Legal Services ( State-owned commercial entity ) References Advanced Technology Development Center (ATDC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Advanced Technology Development Center (ATDC) is a company located in United States . References ↑ "Advanced Technology Development Center (ATDC)" Retrieved from "http://en.openei.org/w/index.php?title=Advanced_Technology_Development_Center_ATDC&oldid=341805" Categories: Clean Energy Organizations Companies

129

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and...

130

Advanced Lighting Technology Program for Federal Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E's Innovative Federal Collaboration E's Innovative Federal Collaboration Advanced Lighting Technology Program for Federal Buildings Federal Utility Partnership Working Group November 1, 2006 "A 3 MW Success Story: Delivering on the Promise" Today's Presentation * Setting the Scene - U.S & Global Perspective * Program Overview: - Advanced Lighting Technology Program for Federal Buildings * Benefits - Energy and environmental * Conclusion: - The Lamborghini Analogy Setting the Scene U.S. Policy: The National Direction "The answer to high energy prices is the kind of comprehensive approach embraced by the President-that includes...increasing our reliance on energy efficiency and conservation. "Let me be clear: Encouraging greater energy efficiency is part and parcel of changing the way we power our homes and

131

Advances in welding science and technology  

SciTech Connect

Over the years, welding has been more of an art than a science, but in the last few decades major advances have taken place in welding science and technology. With the development of new methodologies at the crossroads of basic and applied sciences, enormous opportunities and potential exist to develop a science-based design of composition, structure, and properties of welds with intelligent control and automation of the welding processes. In the last several decades, welding has evolved as an interdisciplinary activity requiring synthesis of knowledge from various disciplines and incorporating the most advanced tools of various basic applied sciences. A series of international conferences and other publications have covered the issues, current trends and directions in welding science and technology. In the last few decades, major progress has been made in (i) understanding physical processes in welding, (ii) characterization of microstructure and properties, and (iii) intelligent control and automation of welding. This paper describes some of these developments.

David, S.A.; Babu, S.S.; Vitek, J.M.

1995-12-31T23:59:59.000Z

132

Advanced manufacturing: Technology and international competitiveness  

SciTech Connect

Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

Tesar, A.

1995-02-01T23:59:59.000Z

133

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancing Building Energy Codes Advancing Building Energy Codes The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. 75% of U.S. Buildings will be New or Renovated by 2035, Building Codes will Ensure They Use Energy Wisely. Learn More 75% of U.S. Buildings will be New or Renovated by 2035; Building Codes will Ensure They Use Energy Wisely Learn More Energy Codes Ensure Efficiency in Buildings We offer guidance and technical resources to policy makers, compliance verification professionals, architects, engineers, contractors, and other stakeholders who depend on building energy codes.

134

A pragmatic approach to integrated process/device/circuit simulation for IC technology development  

Science Conference Proceedings (OSTI)

A novel approach to integrated process/device/circuit simulation is proposed which allows pragmatic, computationally efficient IC technology CAD at the mixed-mode device/circuit level. The approach is demonstrated with a simulation system for advanced ...

K. R. Green; J. G. Fossum

2006-11-01T23:59:59.000Z

135

Advanced Modeling and Simulation Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Modeling & Simulation » Advanced Modeling Advanced Modeling & Simulation » Advanced Modeling and Simulation Documents Advanced Modeling and Simulation Documents October 30, 2013 NEAMS Quarterly Report April-June 2013 The Nuclear Energy Advanced Modeling and Simulation (NEAMS) quarterly report includes highlights, fuel and reactor product line accomplishments, recent and upcoming milestones, news on BISON fuel benchmarks, the latest MeshKit release features, and information on numerical simulations of pebble-bed reactor cores performed by the thermal hydraulics team. September 9, 2013 Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements The purpose of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan is to define what the NEAMS

136

Center for Simulation of Advanced Rockets (CSAR): Gallery of Images from Advanced Rockets Simulations  

DOE Data Explorer (OSTI)

The Center for Simulation of Advanced Rockets (CSAR) is one of five university-based Centers of Excellence founded in 1997 and funded by the U.S. Department of Energy's Advanced Simulation and Computing program, whose objective is to enable accurate prediction of the performance, reliability, and safety of complex physical systems through computational simulation. CSAR's mission is to achieve this goal in the specific context of solid propellant rockets, which are of vital importance to the space launch industry. A particular focus for CSAR is on the reusable solid rocket motor (RSRM) that powers the U.S. Space Shuttle.

137

NETL: Control Technology: Advanced Hybrid Particulate Collector  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Hybrid Particulate Collector Advanced Hybrid Particulate Collector Under DOE-NETL sponsorship, the University of North Dakota, Energy and Environmental Research Center (UND-EERC) has developed a new concept in particulate control, called an advanced hybrid particulate collector (AHPC). In addition to DOE and the EERC, the project team includes W.L. Gore & Associates, Inc., Allied Environmental Technologies, Inc., and the Otter Tail Power Company. The AHPC utilizes both electrostatic collection and filtration in a unique geometric configuration that achieves ultrahigh particle collection with much less collection area than conventional particulate control devices. The primary technologies for state-of-the-art particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). A major limitation of ESPs is that the fractional penetration of 0.1- to 1.0-µm particles is typically at least an order of magnitude greater than for 10-µm particles, so a situation exists where the particles that are of greatest health concern are collected with the lowest efficiency. Fabric filters are currently considered to be the best available control technology for fine particles, but emissions are dependent on ash properties and typically increase if the air-to-cloth (A/C) ratio is increased. In addition, many fabrics cannot withstand the rigors of high-SO2 flue gases, which are typical for bituminous fuels. Fabric filters may also have problems with bag cleanability and high pressure drop, which has resulted in conservatively designed, large, costly baghouses.

138

Ceramic technology for advanced heat engines  

DOE Green Energy (OSTI)

The Ceramic Technology Project was initiated in 1983 for the purpose of developing highly reliable structural ceramics for applications in advanced heat engines, such as automotive gas turbines and advanced heavy duty diesel engines. The reliability problem was determined to be a result of uncontrolled populations of processing flaws in the brittle, flaw-sensitive materials, along with microstructural features, such as grain boundary phases, that contribute to time dependent strength reduction in service at high temperatures. The approaches taken to develop high reliability ceramics included the development of tougher materials with greater tolerance to microstructural flaws, the development of advanced processing technology to minimize the size and number of flaws, and the development of mechanical testing methodology and the characterization of time dependent mechanical behavior, leading to a life prediction methodology for structural ceramics. The reliability goals of the program were largely met by 1993, but commercial implementation of ceramic engine components has been delayed by the high cost of the components. A new effort in Cost Effective Ceramics for Heat Engines was initiated in 1993 and is expected to develop the manufacturing technology leading to an order of magnitude cost reduction. The program has been planned for a five year period.

Johnson, D.R. [Oak Ridge National Lab., TN (United States); Schulz, R.B. [Dept. of Energy, Washington, DC (United States)

1994-10-01T23:59:59.000Z

139

NREL: Advanced Power Electronics - Modeling of Cooling Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling of Cooling Technologies Improves Performance Modeling of Cooling Technologies Improves Performance Thermal modeling image of spray cooling of inverter chip surface shows the liquid breaking up into fine droplets that impinge on the liquid wall, which enhances the spacial uniformity of heat removal. Modeling Cooling Technologies-Spray Cooling The NREL advanced power electronics team is modeling cooling technologies that would enhance performance of the inverters and motors in hybrid-electric and fuel cell vehicles. The team is modeling two-phase spray cooling, jet impingement, and mini- and micro-channel cooling, and has successfully used Fluent software to show a good comparison between numerical models and published experimental data. Currently, the team is conducting modeling to simulate real life conditions such as those that

140

Computational Modeling and Simulation of Advanced Materials for ...  

Science Conference Proceedings (OSTI)

Symposium, Computational Modeling and Simulation of Advanced Materials for Energy Applications. Sponsorship, TMS/ASM: Computational Materials Science ...

Note: This page contains sample records for the topic "advanced simulation technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Advanced Lighting Technologies Application Guidelines: 1990  

SciTech Connect

The Advanced Lighting Technologies Application Guidelines document consists of eight guidelines that provide an overview of specific lighting technologies and design application techniques utilizing energy-efficient lighting products. Lighting Design Practice assesses energy-efficient lighting strategies and explains how to obtain quality lighting design and consulting services. Luminaries and Lighting Systems surveys advanced lighting fixture products designed to take advantage of current energy-efficient lamp technologies and includes luminaire tables to allow users to collect photometric performance characteristics for common commercial luminaires. Each of the remaining six guidelines -- Computer-Aided Lighting Design, Energy-efficient and Electronic Ballasts, Full-Size Fluorescent Lamps, Compact Fluorescent Lamps, Conventional Shape Tungsten-Halogen Lamps, and Compact Metal Halide and White High Pressure Sodium Lamps -- includes a technology overview section, a description of current products available on the market, and an applications section. The document is intended for use by electric utility personnel involved in lighting programs, lighting designers, electrical engineers, architects, lighting manufacturers' representatives, and other lighting professionals.

Eley, C. (Eley (Charles) Associates, San Francisco, CA (United States))

1992-09-01T23:59:59.000Z

142

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

SciTech Connect

This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

Hugh W. Rimmer

2004-05-12T23:59:59.000Z

143

Advanced Capacitor Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Capacitor Technologies Inc Capacitor Technologies Inc Jump to: navigation, search Name Advanced Capacitor Technologies Inc Place Tokyo, Japan Zip 196-8558 Sector Carbon Product Japanese manufacturer of ultracapacitors from nano-carbon materials. Coordinates 35.670479°, 139.740921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.670479,"lon":139.740921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

Advanced Vehicle Technologies Awards Table | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Awards Table Vehicle Technologies Awards Table Advanced Vehicle Technologies Awards Table The table contains a listing of the applicants, their locations, the amounts of the awards, and description of each project. The sub-categories of the table include: Advanced fuels and lubricants Light-weighting materials Demonstration Project for a Multi-Material Light-Weight Prototype Vehicle Advanced cells and design technology for electric drive batteries Advanced power electronics and electric motor technology Solid State Thermoelectric Energy Conversion Devices Fleet Efficiency Advanced Vehicle Testing and Evaluation Microsoft Word - VTP $175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 More Documents & Publications Advanced Vehicle Technologies Awards advanced vehicle technologies awards table

145

Building Technologies Office: Advanced, Variable Speed Air-Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced, Variable Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project to someone by E-mail Share Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Facebook Tweet about Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Twitter Bookmark Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Google Bookmark Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Delicious Rank Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Digg Find More places to share Building Technologies Office: Advanced,

146

Systematic Discrimination of Advanced Hydrogen Production Technologies  

SciTech Connect

The U.S. Department of Energy, in concert with industry, is developing a high-temperature gas-cooled reactor at the Idaho National Laboratory (INL) to demonstrate high temperature heat applications to produce hydrogen and electricity or to support other industrial applications. A key part of this program is the production of hydrogen from water that would significantly reduce carbon emissions compared to current production using natural gas. In 2009 the INL led the methodical evaluation of promising advanced hydrogen production technologies in order to focus future resources on the most viable processes. This paper describes how the evaluation process was systematically planned and executed. As a result, High-Temperature Steam Electrolysis was selected as the most viable near-term technology to deploy as a part of the Next Generation Nuclear Plant Project.

Charles V. Park; Michael W. Patterson

2010-07-01T23:59:59.000Z

147

ATU Advanced Technology Upgrading Ltd | Open Energy Information  

Open Energy Info (EERE)

ATU Advanced Technology Upgrading Ltd ATU Advanced Technology Upgrading Ltd Jump to: navigation, search Name ATU (Advanced Technology Upgrading) Ltd Place Israel Product Focused on development of rechargeable magnesium battery. References ATU (Advanced Technology Upgrading) Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. ATU (Advanced Technology Upgrading) Ltd is a company located in Israel . References ↑ "ATU (Advanced Technology Upgrading) Ltd" Retrieved from "http://en.openei.org/w/index.php?title=ATU_Advanced_Technology_Upgrading_Ltd&oldid=342420" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

148

EGR Distribution in Engine Cylinders Using Advanced Virtual Simulation  

DOE Green Energy (OSTI)

Exhaust Gas Recirculation (EGR) is a well-known technology for reduction of NOx in diesel engines. With the demand for extremely low engine out NOx emissions, it is important to have a consistently balanced EGR flow to individual engine cylinders. Otherwise, the variation in the cylinders' NOx contribution to the overall engine emissions will produce unacceptable variability. This presentation will demonstrate the effective use of advanced virtual simulation in the development of a balanced EGR distribution in engine cylinders. An initial design is analyzed reflecting the variance in the EGR distribution, quantitatively and visually. Iterative virtual lab tests result in an optimized system.

Fan, Xuetong

2000-08-20T23:59:59.000Z

149

Advanced modeling and simulation to design and manufacture high performance and reliable advanced microelectronics and microsystems.  

SciTech Connect

An interdisciplinary team of scientists and engineers having broad expertise in materials processing and properties, materials characterization, and computational mechanics was assembled to develop science-based modeling/simulation technology to design and reproducibly manufacture high performance and reliable, complex microelectronics and microsystems. The team's efforts focused on defining and developing a science-based infrastructure to enable predictive compaction, sintering, stress, and thermomechanical modeling in ''real systems'', including: (1) developing techniques to and determining materials properties and constitutive behavior required for modeling; (2) developing new, improved/updated models and modeling capabilities, (3) ensuring that models are representative of the physical phenomena being simulated; and (4) assessing existing modeling capabilities to identify advances necessary to facilitate the practical application of Sandia's predictive modeling technology.

Nettleship, Ian (University of Pittsburgh, Pittsburgh, PA); Hinklin, Thomas; Holcomb, David Joseph; Tandon, Rajan; Arguello, Jose Guadalupe, Jr. (,; .); Dempsey, James Franklin; Ewsuk, Kevin Gregory; Neilsen, Michael K.; Lanagan, Michael (Pennsylvania State University, University Park, PA)

2007-07-01T23:59:59.000Z

150

Advanced Electric Traction System Technology Development  

SciTech Connect

As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

Anderson, Iver

2011-01-14T23:59:59.000Z

151

Software Framework for Advanced Power Plant Simulations  

SciTech Connect

This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. These include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.

John Widmann; Sorin Munteanu; Aseem Jain; Pankaj Gupta; Mark Moales; Erik Ferguson; Lewis Collins; David Sloan; Woodrow Fiveland; Yi-dong Lang; Larry Biegler; Michael Locke; Simon Lingard; Jay Yun

2010-08-01T23:59:59.000Z

152

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/Biological Extraction; (4) Modeling and Control; and (5) Environmental Control.

Christopher E. Hull

2005-01-20T23:59:59.000Z

153

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

precision machining technology, automated machining and manufacturing technology, welding, photonics technology, microelectromechanical systems (MEMS), and testing and...

154

Crosscutting Technology Development at the Center for Advanced Separation Technologies  

SciTech Connect

The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

Christopher Hull

2009-10-31T23:59:59.000Z

155

The Center for Advanced Ceramics Technology CACT | Open Energy Information  

Open Energy Info (EERE)

Center for Advanced Ceramics Technology CACT Center for Advanced Ceramics Technology CACT Jump to: navigation, search Name The Center for Advanced Ceramics Technology (CACT) Place Alfred, New York Zip 14802 Product CACT is a NYSTAR-funded organization within the College of Ceramics at Alfred University that is dedicated to creating a diverse, stable, technological basis for the growth of the ceramics and glass industry statewide. References The Center for Advanced Ceramics Technology (CACT)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. The Center for Advanced Ceramics Technology (CACT) is a company located in Alfred, New York . References ↑ "The Center for Advanced Ceramics Technology (CACT)"

156

Results of advanced batter technology evaluations for electric vehicle applications  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies (Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R D programs, a comparison of battery technologies, and basic data for modeling.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1992-01-01T23:59:59.000Z

157

Results of advanced battery technology evaluations for electric vehicle applications  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight Into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, In a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991--1992 on both single cells and multi-cell modules that encompass eight battery technologies [Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1992-09-01T23:59:59.000Z

158

Building Technologies Office: Advanced Insulation for High Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Insulation for Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project to someone by E-mail Share Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Facebook Tweet about Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Twitter Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Google Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Delicious Rank Building Technologies Office: Advanced Insulation for High

159

Under Secretary of Energy Highlights Advanced Energy Technologies to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Highlights Advanced Energy Technologies Highlights Advanced Energy Technologies to Sustain America's Economic Growth Under Secretary of Energy Highlights Advanced Energy Technologies to Sustain America's Economic Growth June 2, 2006 - 2:12pm Addthis HONEOYE FALLS, NY - U.S. Under Secretary of Energy David Garman today visited the General Motors (GM) Advanced Technologies Facility in Honeoye Falls, New York, with Rep. Randy Kuhl (NY-29th), to tour the facility and view new advanced energy technologies such as hydrogen fuel cells. Under Secretary Garman discussed the importance of the development of hydrogen and other renewable energy sources as a key to diversifying our nation's energy mix. The advancement of hydrogen is a key element of President Bush's Advanced Energy Initiative (AEI), which seeks to invest in the

160

Vehicle Technologies Office: The eGallon Tool Advances Deployment...  

NLE Websites -- All DOE Office Websites (Extended Search)

The eGallon Tool Advances Deployment of Electric Vehicles to someone by E-mail Share Vehicle Technologies Office: The eGallon Tool Advances Deployment of Electric Vehicles on...

Note: This page contains sample records for the topic "advanced simulation technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Vehicle Technologies Office: FY 2004 Progress Report for Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Progress Report 4 Progress Report for Advanced Combustion Engine Research and Development to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Digg Find More places to share Vehicle Technologies Office: FY 2004

162

DOE Hydrogen Analysis Repository: Advanced Vehicle Simulator (ADVISOR)  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicle Simulator (ADVISOR) Advanced Vehicle Simulator (ADVISOR) Project Summary Full Title: Advanced Vehicle Simulator (ADVISOR) Project ID: 108 Principal Investigator: Matthew Thornton Brief Description: ADVISOR is used to simulate and analyze conventional, advanced, light, and heavy vehicles, including hybrid electric and fuel cell vehicles. Keywords: Hybrid electric vehicles (HEV); vehicle characteristics; vehicle performance; fuel consumption Purpose ADVISOR was designed as an analysis tool to assist the DOE in developing and understanding hybrid electric vehicles through the Hybrid Vehice Propulsion Systems contracts with Ford, GM, and DaimlerChrysler. Performer Principal Investigator: Matthew Thornton Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd.

163

Chombo-Crunch: Advanced Simulation of Subsurface Flow and Reactive...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chombo-Crunch: Advanced Simulation of Subsurface Flow and Reactive Transport Processes Associated with Carbon Sequestration PI Name: David Trebotich Institution: Lawrence Berkeley...

164

Advanced simulations of building energy and control systems with...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Development Contact Us Department Contacts Media Contacts Advanced simulations of building energy and control systems with an example of chilled water plant modeling Title...

165

Advanced Virtual Energy Simulation Training And Research (AVESTAR...  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifier Optimization and Plant Supporting Systems Advanced Virtual Energy Simulation Training And Research (AVESTAR(tm)) Facility NETL Office of Research and Development Project...

166

Advanced Reactor Development and Technology - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Nuclear Data Program Advanced Reactor Development Overview Advanced Fast Reactor...

167

Advancement of High Temperature Black Liquor Gasification Technology  

DOE Green Energy (OSTI)

Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the design, specification and procurement of facility upgrades. Chemrec AB is also operating a pressurized, O2-blown gasifier pilot facility in Piteaa, Sweden. There was an exchange of knowledge with the pressurized projects including utilization of the experimental results from facilities in Piteaa, Sweden. Resources at the Georgia Tech Research Corporation (GTRC, a.k.a., the Institute of Paper Science and Technology) were employed primarily to conduct the fundamental investigations on scaling and plugging mechanisms and characterization of green liquor dregs. The project also tapped GTRC expertise in the development of the critical underlying black liquor gasification rate subroutines employed in the CFD code. The actual CFD code development and application was undertaken by Process Simulation, Ltd (PSL) and Simulent, Ltd. PSL focused on the overall integrated gasifier CFD code, while Simulent focused on modeling the black liquor nozzle and description of the black liquor spray. For nozzle development and testing Chemrec collaborated with ETC (Energy Technology Centre) in Piteae utilizing their test facility for nozzle spray investigation. GTI (Gas Technology Institute), Des Plains, IL supported the team with advanced gas analysis equipment during the gasifier test period in June 2005.

Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

2008-03-31T23:59:59.000Z

168

Energy Department Announces $2.5 Million to Advance Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

agencies, is a founding partner of the Global Alliance for Clean Cookstoves, a public-private partnership to advance cookstove technologies that improve indoor air quality,...

169

Vehicle Technologies Office: FY 2006 Advanced Power Electronics...  

NLE Websites -- All DOE Office Websites (Extended Search)

to overcome the challenges that remain to delivering advanced power electronics and electric machines for vehicle applications. These technologies contribute to the development...

170

Alternative Fuels and Advanced Vehicle Technologies: Information Resources (Brochure)  

DOE Green Energy (OSTI)

A Clean Cities brochure listing and describing Web sites and telephone numbers of resources for people interested in alternative fuels and advanced vehicle technologies.

Not Available

2004-02-01T23:59:59.000Z

171

Characterization and Development of Advanced Heat Transfer Technologies (Presentation)  

DOE Green Energy (OSTI)

This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

Kelly, K.

2009-05-01T23:59:59.000Z

172

Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012)  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Storage Technology Advancement Partnership (ESTAP) is a cooperative funding and information-sharing partnership between DOE and interested states that aims to accelerate the...

173

Climate Change Mitigation: An Analysis of Advanced Technology Scenarios  

SciTech Connect

This report documents a scenario analysis that explores three advanced technology pathways toward climate stabilization using the MiniCAM model.

Clarke, Leon E.; Wise, Marshall A.; Placet, Marylynn; Izaurralde, R Cesar; Lurz, Joshua P.; Kim, Son H.; Smith, Steven J.; Thomson, Allison M.

2006-09-18T23:59:59.000Z

174

Alternative Fuel and Advanced Technology Vehicles Pilot Program...  

Open Energy Info (EERE)

Pilot Program Emissions Benefit Tool Jump to: navigation, search Tool Summary Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool...

175

Energy Department Announces $2.5 Million to Advance Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2.5 million available this year for applied research to advance clean biomass cookstove technologies for use in developing countries. The funding will support the development of...

176

Hot New Advances in Water Heating Technology | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY.GOV - Hot New Advances in Water Heating Technology April 18, 2013 Here at the Energy Department, we are working with our National Laboratories, private companies and...

177

Energy Department Announces $2.5 Million to Advance Technologies ...  

Energy Department Announces $2.5 Million to Advance Technologies for Clean-Burning, Efficient Biomass Cookstoves. April 13, 2012. The Energy Department today ...

178

Lawrence Livermore teams with industry to advance energy technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

release: 03192012 | NR-12-03-01 Lawrence Livermore teams with industry to advance energy technologies using high performance computing Donald B Johnston , LLNL, (925)...

179

Advanced Simulation Capability for Environmental Management  

Multi-Process High Performance Computing Simulator Modular simulation capability for barrier and waste form degradation, multiphase flow and reactive ...

180

Novel Simulated moving bed technologies  

DOE Green Energy (OSTI)

Cellulose and hemicellulose from plants and other biomass can be hydrolyzed to produce sugars (i.e. glucose and xylose). Once these sugars are separated from other impurities, they can serve as feedstock in fermentation to produce ethanol (as fuels), lactic acid, or other valuable chemicals. The need for producing fuels and chemicals from renewable biomass has become abundantly clear over the last decade. However, the cost of producing fermentable sugars from biomass hydrolyzate using existing technology is relatively high and has been a major obstacle. The objective of this project is to develop an efficient and economical simulated moving bed (SMB) process to recover fermentable sugars from biomass hydrolyzate. Sulfuric acid can hydrolyze the cellulose and hemicellulose in biomass to sugars, but this process can generate byproducts such as acetic acid, and can lead to further degradation of the xylose to furfural and glucose to hydroxymethyl furfural (HMF). Also, lignin and other compounds in the biomass will degrade to various phenolic compounds. If the concentrations of these compounds exceed certain threshold levels, they will be toxic to the downstream fermentation, and will severely limit the usefulness of the derived sugars. Standard post-hydrolysis processing involves neutralization of sulfuric acid, usually with lime (calcium hydroxide). A study by Wooley et al.showed that the limed hydrolyzate gave a low ethanol yield in fermentation test (20% of theoretical yield compared to 77% of theoretical yield from fermentation of pure sugars). They showed that instead of adding lime, an ion exclusion chromatography process could be used to remove acids, as well as to isolate the sugars from the biomass hydrolyzate. In this project, we investigated the feasibility of developing an economical SMB process based on (1) a polymeric adsorbent, Dowex99, which was used by Wooley et al., (2) a second polymeric adsorbent, poly-4-vinyl pyridine (or PVP in short, Reilly Industries Inc., Indianapolis, IN), which has been used for organic acid separations, and (3) an activated carbon adsorbent. The adsorption isotherms and mass transfer parameters of the two polymeric adsorbents were estimated using single-component pulse tests and frontal tests. The parameters were then validated using batch elution chromatography test of a corn-stover hydrolyzate, which was provided gratis by NREL. The sugars recovered in batch chromatography were then fermented using yeast developed at Dr. Ho's LORRE laboratory. A standard mixture of pure sugars and an overlimed corn-stover hydrolyzate were fermented using the same procedure simultaneously. The fermentability of the overlimed hydrolyzate was the worst, and that of the sugars recovered using the PVP column was similar to that of the pure sugar mixture. The sugars recovered using the Dowex99 column had an intermediate fermentability. Since the sugars were the ''center cut'' in the Dowex99 column, a tandem SMB (two SMB's in series) design was needed to obtain sugars of high purity. By contrast, sugars were the fast-moving components in the PVP column, and only a single SMB was needed to recover sugars from the hydrolyzate. The impurities, such as sulfuric acid, acetic acid, HMF, and furfural, had higher affinities for PVP. Caustic regeneration was needed to efficiently remove these impurities from PVP. Therefore, a five-zone SMB, which includes a regeneration zone and a reequilibration zone, was developed. The isotherms and mass transfer parameters estimated from batch chromatography experiments were used in the design of SMB processes. A Standing Wave Design method was developed for the five-zone SMB and the tandem SMB. Cost analysis was carried out based on the resulting operating conditions. The analysis showed that the PVP five-zone SMB process was more economical than the Dowex99 tandem SMB process. The cost analysis also showed that elution and equipment costs are dominant for the Dowex99 SMB and the regeneration cost is dominant (60%) for the PVPSMB. Both the cost analysis and the fermentatio

Purdue University

2003-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "advanced simulation technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Advanced Wall Framing; BTS Technology Fact Sheet  

SciTech Connect

Advanced framing techniques for home construction have been researched extensively and proven effective. Both builders and home owners can benefit from advanced framing. Advanced framing techniques create a structurally sound home that has lower material and labor costs than a conventionally framed house. This fact sheet describes advanced framing techniques, design considerations, and framing.

Southface Energy Institute; Tromly, K.

2000-11-07T23:59:59.000Z

182

DOE Signs Advanced Enrichment Technology License and Facility Lease |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Enrichment Technology License and Facility Lease Advanced Enrichment Technology License and Facility Lease DOE Signs Advanced Enrichment Technology License and Facility Lease December 8, 2006 - 9:34am Addthis Announces Agreements with USEC Enabling Deployment of Advanced Domestic Technology for Uranium Enrichment WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today announced the signing of a lease agreement with the United States Enrichment Corporation, Inc. (USEC) for their use of the Department's gas centrifuge enrichment plant (GCEP) facilities in Piketon, OH for their American Centrifuge Plant. The Department of Energy (DOE) also granted a non-exclusive patent license to USEC for use of DOE's centrifuge technology for uranium enrichment at the plant, which will initiate the first successful deployment of advanced domestic enrichment technology in the

183

Seven Universities Selected To Conduct Advanced Turbine Technology Studies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seven Universities Selected To Conduct Advanced Turbine Technology Seven Universities Selected To Conduct Advanced Turbine Technology Studies Seven Universities Selected To Conduct Advanced Turbine Technology Studies August 4, 2010 - 1:00pm Addthis Washington, DC - Seven universities have been selected by the U.S. Department of Energy (DOE) to conduct advanced turbine technology studies under the Office of Fossil Energy's (FE) University Turbine Systems Research (UTSR) Program. The universities - located in Georgia, Texas, North Dakota, Louisiana, California, and New York - will investigate the technology needed for the clean and efficient operation of turbines using coal-derived systhesis gas (syngas) and high hydrogen content (HHC) fuels. This technology is crucial to developing advanced coal-based power generation processes, such as

184

Seven Universities Selected To Conduct Advanced Turbine Technology Studies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seven Universities Selected To Conduct Advanced Turbine Technology Seven Universities Selected To Conduct Advanced Turbine Technology Studies Seven Universities Selected To Conduct Advanced Turbine Technology Studies August 4, 2010 - 1:00pm Addthis Washington, DC - Seven universities have been selected by the U.S. Department of Energy (DOE) to conduct advanced turbine technology studies under the Office of Fossil Energy's (FE) University Turbine Systems Research (UTSR) Program. The universities - located in Georgia, Texas, North Dakota, Louisiana, California, and New York - will investigate the technology needed for the clean and efficient operation of turbines using coal-derived systhesis gas (syngas) and high hydrogen content (HHC) fuels. This technology is crucial to developing advanced coal-based power generation processes, such as

185

Advanced Biomass Gasification Technologies Inc ABGT | Open Energy  

Open Energy Info (EERE)

Gasification Technologies Inc ABGT Gasification Technologies Inc ABGT Jump to: navigation, search Name Advanced Biomass Gasification Technologies Inc. (ABGT) Place New York, New York Zip 10036 Product Company set up by UTEK specifically for its sale to Xethanol, holding the exclusive license for microgasification technology developed at the Energy and Environmental Research Center (EERC) at the University of North Dakota. References Advanced Biomass Gasification Technologies Inc. (ABGT)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Advanced Biomass Gasification Technologies Inc. (ABGT) is a company located in New York, New York . References ↑ "Advanced Biomass Gasification Technologies Inc. (ABGT)"

186

Simulator platform for fast reactor operation and safety technology demonstration  

SciTech Connect

A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

Vilim, R. B.; Park, Y. S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J. (Nuclear Engineering Division)

2012-07-30T23:59:59.000Z

187

Advanced ignition and propulsion technology program  

DOE Green Energy (OSTI)

This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Reliable engine re-ignition plays a crucial role in enabling commercial and military aircraft to fly safely at high altitudes. This project addressed research elements critical to the optimization of laser-based igniter. The effort initially involved a collaborative research and development agreement with B.F. Goodrich Aerospace and Laser Fare, Inc. The work involved integrated experiments with theoretical modeling to provide a basic understanding of the chemistry and physics controlling the laser-induced ignition of fuel aerosols produced by turbojet engine injectors. In addition, the authors defined advanced laser igniter configurations that minimize laser packaging size, weight, complexity and power consumption. These innovative ignition concepts were shown to reliably ignite jet fuel aerosols over a broad range of fuel/air mixture and a t fuel temperatures as low as -40 deg F. The demonstrated fuel ignition performance was highly superior to that obtained by the state-of-the-art, laser-spark ignition method utilizing comparable laser energy. The authors also developed a laser-based method that effectively removes optically opaque deposits of fuel hydrocarbon combustion residues from laser window surfaces. Seven patents have been either issued or are pending that resulted from the technology developments within this project.

Oldenborg, R.; Early, J.; Lester, C.

1998-11-01T23:59:59.000Z

188

Advanced Biomass: Technology Characteristics, Status and Lessons Learned  

Science Conference Proceedings (OSTI)

Biomass, primarily wood, is a significant source of heat and power in the U.S. Advances in fuel supplies and in conversion technology are needed to make renewable biomass a major source of grid-connected power. This report presents both the characteristics expected of advanced technology and some lessons learned from current wood-fired power generation.

1998-11-30T23:59:59.000Z

189

The Advanced Manufacturing Technology Consortia (AMTech ...  

Science Conference Proceedings (OSTI)

... Advanced Manufacturing National Program Office National Institute of Standards ... Management (SAM) are required ... Clarifications to budget items ...

2013-08-21T23:59:59.000Z

190

Grand Challenges for Advanced Photovoltaic Technologies ...  

Science Conference Proceedings (OSTI)

Page 1. Measurement Science Needs for Advancing Infrastructure Delivery Workshop Agenda May 19-20, 2010 Building ...

2012-09-07T23:59:59.000Z

191

Green Technologies Enhanced by Recent Advances in ...  

Science Conference Proceedings (OSTI)

An advance in the fundamental physics of energy, thermodynamics, quantum relationships, and electromagnetic waves has occurred recently, however.

192

DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ten Projects to Conduct Advanced Turbine Technology Ten Projects to Conduct Advanced Turbine Technology Research DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research August 14, 2013 - 1:44pm Addthis WASHINGTON, D.C. - Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program have been selected by the U.S. Department of Energy (DOE) for additional development. Developing gas turbines that run with greater cleanness and efficiency than current models is of great benefit both to the environment and the power industry, but development of such advanced turbine systems requires significant advances in high-temperature materials science, an understanding of combustion phenomena, and development of innovative

193

Office of Advanced Simulation and Computing and Institutional R&D Programs  

National Nuclear Security Administration (NNSA)

Advanced Simulation and Computing and Institutional R&D Programs Advanced Simulation and Computing and Institutional R&D Programs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog ASC Office of Advanced Simulation and Computing and Institutional R&D Programs Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and ...

194

Building Technologies Office: EnergyPlus Energy Simulation Software  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Account Sign In EnergyPlus Energy Simulation Software Search Search Help EnergyPlus Energy Simulation Software EERE Building Technologies Office EnergyPlus Energy Simulation...

195

Applied, Advanced X-ray Tracing Simulations  

Science Conference Proceedings (OSTI)

Symposium, O. Advanced Neutron and Synchrotron Studies of Materials .... Status of China Spallation Neutron Source and Perspectives of Neutron Research in ...

196

Advanced Characterization, Testing, and Simulation Committee  

Science Conference Proceedings (OSTI)

Our Mission: The science and engineering of advanced methods for ... and modeling of mechanical properties, and development of computational tools for ...

197

Advanced Metallic Materials: Technological Exploitation of ...  

Science Conference Proceedings (OSTI)

Deformation Mechanism for Macroscopic Ductility of Advanced Materials · Effect of Lead and Bismuth Additions on the Machinability of Yellow Brass Alloys.

198

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Skills Standards The Academic and Employability Skills Standards align Sandia's training efforts in advanced manufacturing with the recommendations of the Manufacturing Skill...

199

Building Technologies Office: Advanced Energy Design Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

K-12 School Buildings Medium to Big Box Retail Buildings Large Hospitals The Advanced Energy Design Guides (AEDGs) accelerate the construction of energy efficient buildings by...

200

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

MEST & SIT Skills Standard Technical Institute Partners Training Areas Program Recognition Partners Contacts News Articles Advanced Manufacturing Trades Training Program (AMTTP)...

Note: This page contains sample records for the topic "advanced simulation technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

ZAP Advanced Battery Technologies JV | Open Energy Information  

Open Energy Info (EERE)

ZAP Advanced Battery Technologies JV ZAP Advanced Battery Technologies JV Jump to: navigation, search Name ZAP & Advanced Battery Technologies JV Place Beijing, China Product JV between ZAP & Chinese battery manufacturer Advanced Battery Technologies focusing on manufacturing and marketing of advanced batteries for electric cars using the latest in nanotechnology. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

202

A Virtual Engineering Framework for Simulating Advanced Power System  

SciTech Connect

In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering. Furthermore, with little effort the modeling capabilities described in this report can be extended to support other DOE programs, such as ultra super critical boiler development, oxy-combustion boiler development or modifications to existing plants to include CO2 capture and sequestration.

Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

2008-06-18T23:59:59.000Z

203

2004 Physics and Advanced Technologies In the News  

Science Conference Proceedings (OSTI)

Several outstanding research activities in the Physics and Advanced Technology Directorate in 2004 were featured in ''Science & Technology Review'', the monthly publication of the Lawrence Livermore National Laboratory. Reprints of those articles accompany this report. Here we summarize other science and technology highlights, as well as the awards and recognition received by members of the Directorate in 2004.

Hazi, A

2005-11-01T23:59:59.000Z

204

TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING  

SciTech Connect

This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

SAMS TL

2010-07-07T23:59:59.000Z

205

TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING  

SciTech Connect

This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

SAMS TL; MENDOZA RE

2010-08-11T23:59:59.000Z

206

Advanced reservoir simulation using soft computing  

Science Conference Proceedings (OSTI)

Reservoir simulation is a challenging problem for the oil and gas industry. A correctly calibrated reservoir simulator provides an effective tool for reservoir evaluation that can be used to obtain essential reservoir information. A long-standing problem ... Keywords: fuzzy control, history matching, parallel processing, reservoir simulation

G. Janoski; F.-S. Li; M. Pietrzyk; A. H. Sung; S.-H. Chang; R. B. Grigg

2000-06-01T23:59:59.000Z

207

16 Projects To Advance Hydropower Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects To Advance Hydropower Technology Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology September 6, 2011 - 11:24am Addthis U.S. Department Energy Secretary Steven Chu and U.S. Department of the Interior Secretary Ken Salazar announced nearly $17 million in funding over the next three years for research and development projects to advance hydropower technology. The list of 16 projects in 11 different states can be found here. Applicant Location Award Amount; Funding is from DOE unless otherwise noted Description Sustainable Small Hydro (Topic Areas 1.1. and 1.2) Earth by Design Bend, OR $1,500,000 This project will develop and test a new low-head modular hydropower technology in a canal in Oregon's North Unit Irrigation District to produce cost-competitive electricity.

208

16 Projects To Advance Hydropower Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16 Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology September 6, 2011 - 11:24am Addthis U.S. Department Energy Secretary Steven Chu and U.S. Department of the Interior Secretary Ken Salazar announced nearly $17 million in funding over the next three years for research and development projects to advance hydropower technology. The list of 16 projects in 11 different states can be found here. Applicant Location Award Amount; Funding is from DOE unless otherwise noted Description Sustainable Small Hydro (Topic Areas 1.1. and 1.2) Earth by Design Bend, OR $1,500,000 This project will develop and test a new low-head modular hydropower technology in a canal in Oregon's North Unit Irrigation District to produce cost-competitive electricity.

209

Advanced Technology Planning for Energy Savings Performance Contracts |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Technology Planning for Energy Savings Performance Advanced Technology Planning for Energy Savings Performance Contracts Advanced Technology Planning for Energy Savings Performance Contracts October 7, 2013 - 1:40pm Addthis Call for Projects FEMP recently issued a notice of intent to release a Funding Opportunity Announcement that will provide grants to develop capital combined heat and power projects. Read the call for projects. Legislation emphasizes the implementation of energy-efficiency and renewable energy technologies in Federal agencies. The Federal Energy Management Program (FEMP) assists agencies in identifying and planning opportunities to deploy advanced technologies using energy savings performance contracts (ESPC). A Federal financing specialist (FFS) will work with a project facilitator and a U.S. Department of Energy (DOE) national laboratory team to identify

210

Commerce's NIST Announces 44 New Advanced Technology ...  

Science Conference Proceedings (OSTI)

... intelligent tutoring system that models expert tutor behavior as well as what ... (Mountain View, Calif.) Develop preemptive stimulation technology for ...

2010-10-05T23:59:59.000Z

211

Innovative Technologies for Disruptive Products Advanced ...  

• Low-cost carbon fiber from renewable sources for vehicle weight reduction • Safer, higher power density battery technologies

212

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (a) Solid-solid separation (b) Solid-liquid separation (c) Chemical/Biological Extraction (d) Modeling and Control, and (e) Environmental Control. Distribution of funds is being handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. The first of these solicitations, referred to as the CAST II-Round 1 RFP, was issued on October 28, 2002. Thirty-eight proposals were received by the December 10, 2002 deadline for this RFP-eleven (11) Solid-Solid Separation, seven (7) Solid-Liquid Separation, ten (10) Chemical/Biological Extraction, six (6) Modeling & Control and four (4) Environmental Control. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. This process took some 7 months to complete but 17 projects (one joint) were in place at the constituent universities (three at Virginia Tech, two at West Virginia University, three at University of Kentucky, three at University of Utah, three at Montana Tech, three at New Mexico Tech, and one at the University of Nevada, Reno) by May 17, 2003. These projects are listed by category, along with brief abstracts of their aims and objectives.

Hugh W. Rimmer

2003-11-15T23:59:59.000Z

213

Integrating advanced materials simulation techniques into an ...  

Science Conference Proceedings (OSTI)

An extension to this work, allowing the co-refinement of x-ray scattering data from the Advanced Photon Source (APS) with data from the SNS, will also be briefly ...

214

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Modeling and Simulation (NEAMS) Software Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements The purpose of the NEAMS Software V&V Plan is to define what the NEAMS program expects in terms of V&V for the computational models that are developed under NEAMS. NEAMS Software Verification and Validation Plan Requirements Version 0.pdf More Documents & Publications NEAMS Quarterly Report for January-March 2013 Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program Plan CRAD, Assessment Criteria and Guidelines for Determining the Adequacy of Software Used in the Safety Analysis and Design of Defense Nuclear Facilities

215

Sandia National Laboratories: Advanced Simulation and Computing...  

NLE Websites -- All DOE Office Websites (Extended Search)

tools for innovative product engineering. Engineering Physics Integrated Codes Sierra Mechanics Sierra is Sandia's engineering mechanics simulation code suite. This suite includes...

216

January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The ANTT Subcommittee met in Washington on Dec 4-5, 2002 to review progress in the transmutation program, and to learn about major organizational changes that affect the management of the program. The NE's new Advanced Nuclear Research Office (NE-20) now oversees both the transmutation program (ANTT) and the Generation-IV program (GEN-IV). antt14Jan_03.pdf More Documents & Publications October 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

217

Advanced Manufacturing Technologies - Programmaster.org  

Science Conference Proceedings (OSTI)

... manufacturing technologies have been researched to develop new, efficient, green and near-zero waste approaches convert novel ... Just click on the button.

218

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

students: As crucial technologies for the military and industry, optics and photonics offer a bright career future. And optics professional are helping kids see the...

219

Advanced Manufacturing Office: Industries and Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Combustion Compressed Air Distributed EnergyCombined Heat and Power (CHP) Fuel and Feedstock Flexibility Information & Communications Technology Data Centers...

220

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Recognition Awards The AMTTP won Sandia's Silver President's Quality Award and the Manufacturing Science and Technology Center's Gold Recognition and Team Award. Letters of...

Note: This page contains sample records for the topic "advanced simulation technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

STATEMENT OF CONSIDERATIONS REQUEST BY ADVANCED TECHNOLOGY MATERIALS INC FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ADVANCED TECHNOLOGY MATERIALS INC FOR AN ADVANCE ADVANCED TECHNOLOGY MATERIALS INC FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-NT0005578, W(A)-2012-031; CH-1666 The Petitioner, Advanced Technology Materials, Inc. (ATMI) was awarded a subcontract under the subject cooperative agreement between the Department of Energy and SRI International (SRI) for the performance of work entitled , "Development of Novel Carbon Sorbents for C02 Capture". The objective of the program is to develop an innovative, low cost, and low energy consuming carbon dioxide (C02) capture technology based on adsorption on a high-capacity and low-cost carbon sorbent. The specific objectives are to validate the performance of this concept on a bench-scale system

222

Advance Energy Technologies: Proposed Penalty (2013-CE-5302) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Penalty (2013-CE-5302) Proposed Penalty (2013-CE-5302) Advance Energy Technologies: Proposed Penalty (2013-CE-5302) January 31, 2013 DOE alleged in a Notice of Proposed Civil Penalty that Advance Energy Technologies, Inc. failed to certify walk-in cooler or freezer (WICFs) components as compliant with the energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Advance Energy Technologies: Proposed Penalty (2013-CE-5302) More Documents & Publications Advance Energy Technologies: Order (2013-CE-5302)

223

Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program November 6, 2008 - 4:47pm Addthis On November 5, 2008, the Department of Energy issued the Interim Final Rule and accomplished writing the rule for Section 136 of EISA 2007 in approximately half of the 60-day expedited timeframe mandated by Congress. Historically, rulemaking at DOE takes 18 months. The Advanced Technology Vehicles Manufacturing Loan Program (ATVMLP) was authorized under Section 136 of the Energy Independence and Security Act of 2007 (P.L. 110-140). Section 136 is under the sole management and responsibility of the Department of Energy. The FY09 Continuing Resolution authorized up to $25 billion in direct loans to eligible applicants for the costs of reequipping,

224

Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Technology Vehicles Manufacturing Loan Program Advanced Technology Vehicles Manufacturing Loan Program Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program November 6, 2008 - 4:47pm Addthis On November 5, 2008, the Department of Energy issued the Interim Final Rule and accomplished writing the rule for Section 136 of EISA 2007 in approximately half of the 60-day expedited timeframe mandated by Congress. Historically, rulemaking at DOE takes 18 months. The Advanced Technology Vehicles Manufacturing Loan Program (ATVMLP) was authorized under Section 136 of the Energy Independence and Security Act of 2007 (P.L. 110-140). Section 136 is under the sole management and responsibility of the Department of Energy. The FY09 Continuing Resolution authorized up to $25 billion in direct loans to eligible applicants for the costs of reequipping,

225

Portfolio evaluation of advanced coal technology : research, development, and demonstration  

E-Print Network (OSTI)

This paper evaluates the advanced coal technology research, development and demonstration programs at the U.S. Department of Energy since the 1970s. The evaluation is conducted from a portfolio point of view and derives ...

Naga-Jones, Ayaka

2005-01-01T23:59:59.000Z

226

Process Technology and Advanced Concepts: Organic Solar Cells (Fact Sheet)  

DOE Green Energy (OSTI)

Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts: Organic Solar Cell that includes scope, core competencies and capabilities, and contact/web information.

Not Available

2011-06-01T23:59:59.000Z

227

Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation  

SciTech Connect

The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

Liby, Alan L [ORNL] [ORNL; Rogers, Hiram [ORNL] [ORNL

2013-10-01T23:59:59.000Z

228

Benefits of Integrating PWR and RTI Advanced Gasification Technologies for  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas Processing Systems Syngas Processing Systems Benefits of Integrating PWR and RTI Advanced Gasification Technologies for Hydrogen-Rich Syngas Production Research Triangle Institute (RTI) Project Number: FE0012066 Project Description The project will assess the potential for integrated advanced technologies to substantially reduce capital and production costs for hydrogen-rich syngas with near-zero emissions from coal gasification for power production with carbon capture and for coal-to-liquids (specifically methanol) with carbon capture. These integrated technologies include those already tested successfully at pilot-scale with a new and innovative water-gas-shift technology, to show how multiple advanced technologies will leverage each other for significant cost and efficiency gains.

229

SEMATECH: A Model for Advancing Solar Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SEMATECH: A Model for Advancing Solar Technology SEMATECH: A Model for Advancing Solar Technology SEMATECH: A Model for Advancing Solar Technology May 24, 2011 - 11:22am Addthis SEMATECH brings 14 companies together to help them share and collaborate in their most expensive and difficult manufacturing development projects. Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs One of the hardest parts for start-up companies producing an emerging technology is the cost to test and develop more efficient manufacturing processes -- and to win the clean energy race, energy technologies not only need to be invented in America, but made in America too. That's why consortiums like SEMATECH in Albany, New York, are so important. Back in the '80s and '90s, SEMATECH breathed new life into the

230

DOE-Supported Project Advances Clean Coal, Carbon Capture Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Supported Project Advances Clean Coal, Carbon Capture DOE-Supported Project Advances Clean Coal, Carbon Capture Technology DOE-Supported Project Advances Clean Coal, Carbon Capture Technology January 29, 2013 - 12:00pm Addthis Washington, DC - Researchers at The Ohio State University (OSU) have successfully completed more than 200 hours of continuous operation of their patented Coal-Direct Chemical Looping (CDCL) technology - a one-step process to produce both electric power and high-purity carbon dioxide (CO2). The test, led by OSU Professor Liang-Shih Fan, represents the longest integrated operation of chemical looping technology anywhere in the world to date. The test was conducted at OSU's 25 kilowatt thermal (kWt) CDCL combustion sub-pilot unit under the auspices of DOE's Carbon Capture Program, which is developing innovative environmental control technologies to foster the

231

DOE-Supported Project Advances Clean Coal, Carbon Capture Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Supported Project Advances Clean Coal, Carbon Capture DOE-Supported Project Advances Clean Coal, Carbon Capture Technology DOE-Supported Project Advances Clean Coal, Carbon Capture Technology January 29, 2013 - 12:00pm Addthis Washington, DC - Researchers at The Ohio State University (OSU) have successfully completed more than 200 hours of continuous operation of their patented Coal-Direct Chemical Looping (CDCL) technology - a one-step process to produce both electric power and high-purity carbon dioxide (CO2). The test, led by OSU Professor Liang-Shih Fan, represents the longest integrated operation of chemical looping technology anywhere in the world to date. The test was conducted at OSU's 25 kilowatt thermal (kWt) CDCL combustion sub-pilot unit under the auspices of DOE's Carbon Capture Program, which is developing innovative environmental control technologies to foster the

232

DOE Projects to Advance Environmental Science and Technology | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Projects to Advance Environmental Science and Technology DOE Projects to Advance Environmental Science and Technology DOE Projects to Advance Environmental Science and Technology August 19, 2009 - 1:00pm Addthis Washington, DC - The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has selected nine new projects targeting environmental tools and technology for shale gas and coalbed methane (CBM) production. NETL's goals for these projects are to improve management of water resources, water usage, and water disposal, and to support science that will aid the regulatory and permitting processes required for shale gas development. A primary goal of Fossil Energy's Oil and Natural Gas Program is to enhance the responsible development of domestic natural gas and oil resources that supply the country's energy. A specific objective is to accelerate the

233

Ramping-up Investments in Advanced Vehicle Technologies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies August 10, 2011 - 5:06pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Accelerates the development and deployment of next-generation vehicle technologies. Helps improve vehicle fuel efficiency and create quality jobs. Today, Secretary Chu announced the selection of 40 projects across 15 states to receive more than $175 million to accelerate the development and deployment of next-generation vehicle technologies. From state-of-the-art electric drive batteries to light-weight vehicles, these projects will help improve vehicle fuel efficiency and create quality jobs. The selected projects focus on eight key approaches to improving vehicle

234

Ramping-up Investments in Advanced Vehicle Technologies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies Ramping-up Investments in Advanced Vehicle Technologies August 10, 2011 - 5:06pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Accelerates the development and deployment of next-generation vehicle technologies. Helps improve vehicle fuel efficiency and create quality jobs. Today, Secretary Chu announced the selection of 40 projects across 15 states to receive more than $175 million to accelerate the development and deployment of next-generation vehicle technologies. From state-of-the-art electric drive batteries to light-weight vehicles, these projects will help improve vehicle fuel efficiency and create quality jobs. The selected projects focus on eight key approaches to improving vehicle

235

Department of Energy Announces up to $70 Million to Advance Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Energy Announces up to 70 Million to Advance Technology and Reduce Cost of Geothermal Energy Department of Energy Announces up to 70 Million to Advance Technology and...

236

Advanced Vadose Zone Simulations Using TOUGH  

E-Print Network (OSTI)

Technology. Within the ice phase (to T = 50 K and P ? 200the phase transition from liquid or gas to ice and viceand ice-liquid equilibrium lines of the water phase diagram)

2008-01-01T23:59:59.000Z

237

Overview of Advanced Technology Transportation, 2004 Update  

DOE Green Energy (OSTI)

Document offers a ''snapshot'' of current vehicle technologies and trends. DOE program managers use this document to plan test and evaluation activities that focus resources where they have the greatest impact.

Eudy, L.; Zuboy, J.

2004-08-01T23:59:59.000Z

238

Cost estimate guidelines for advanced nuclear power technologies  

SciTech Connect

To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

Delene, J.G.; Hudson, C.R. II.

1990-03-01T23:59:59.000Z

239

Department of Energy Announces Advanced Vehicle Technology Competition,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Vehicle Technology Advanced Vehicle Technology Competition, EcoCar2: Plugging into the Future Department of Energy Announces Advanced Vehicle Technology Competition, EcoCar2: Plugging into the Future April 13, 2011 - 12:00am Addthis Washington, DC - Today, at the SAE 2011 World Congress in Detroit, Mich., U.S. Department of Energy's Assistant Secretary for Policy and International Affairs, David Sandalow, announced the official launch of the EcoCar2: Plugging into the Future competition and the sixteen university teams that were selected to participate. EcoCar2 is a unique educational partnership between General Motors and the Department of Energy to help prepare future engineers for opportunities in clean energy and advanced vehicle industries. EcoCar2 is one piece of the Department's broad

240

October 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, Report of the ADVANCED NUCLEAR TRANSFORMATION 3, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE October 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The committee met in Washington in Sept 16-17 to review progress in the program with respect to a changed set of mission priorities. Our last meeting took place in Dec 2002 after the reorganization that had place the Advanced Fuel Cycle Initiative (AFCI) and GEN IV program together in the Advanced Nuclear Reserach Office (AN-20). Since mission priorities have been evolving, the committee felt that it should wait unti they have settled down before we met again. We have kept in touch during the process,

Note: This page contains sample records for the topic "advanced simulation technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Building Technologies Office: Advanced Energy Retrofit Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrofit Guides Retrofit Guides Photo of the cover of the Advanced Energy Retrofit Guide for Healthcare Facilities. The Advanced Energy Retrofit Guides (AERGs) help building owners and managers as well as design and construction professionals plan, design, and implement energy efficiency upgrades in commercial buildings. The Advanced Energy Retrofit Guides (AERGs) were created to help decision makers plan, design, and implement energy improvement projects in their facilities. With energy managers in mind, they present practical guidance for kick-starting the process and maintaining momentum throughout the project life cycle. These guides are primarily reference documents, allowing energy managers to consult the particular sections that address the most pertinent topics.. Useful resources are also cited throughout the guides for further information. Each AERG is tailored specifically to the needs of a specific building type, with an emphasis on the most effective retro-commissioning and retrofit measures identified by experts familiar with those unique opportunities and challenges. The guides present a broad range of proven practices that can help energy managers take specific actions at any stage of the retrofit process, resulting in energy savings for many years to come.

242

FY2000 Progress Report for the Advanced Technology Development Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Advanced Automotive Technologies 1000 Independence Avenue S.W. Washington, D.C. 20585-0121 FY 2000 Progress Report for the Advanced Technology Development Program Energy Efficiency and Renewable Energy Office of Transportation Technologies Office of Advanced Automotive Technologies Energy Management Team Raymond A. Sutula Energy Management Team Leader December 2000 This document highlights work sponsored by agencies of the U.S. Government. Neither the U.S. Government nor any agency, thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

243

Advanced clean combustion technology in Shanxi province  

Science Conference Proceedings (OSTI)

Biomass energy resources in China are first described, along with biomass gasification R & D now underway. In Shanxi province biomass and other regenerative energy is relatively little used but coal resources are large. Hence Shanxi is mainly developing clean coal technology to meet its economic and environmental protection requirements. Clean combustion research at Taiyuan University of Technology includes cofiring of coal and RDF in FBC, gas purification and adsorption, fundamentals of plasma-aided coal pyrolysis and gasification and coal derived liquid fuels from synthesis gas. 5 refs.

Xie, K.-C. [Taiyuan University of Technology, Taiyuan (China)

2004-07-01T23:59:59.000Z

244

Advances in NLTE Modeling for Integrated Simulations  

Science Conference Proceedings (OSTI)

The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different elements for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra. We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with surprising accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, {Delta}n = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums. Accurate and efficient atomic models are just one requirement for integrated NLTE simulations. Coupling the atomic kinetics to hydrodynamics and radiation transport constrains both discretizations and algorithms to retain energy conservation, accuracy and stability. In particular, the strong coupling between radiation and populations can require either very short timesteps or significantly modified radiation transport algorithms to account for NLTE material response. Considerations such as these continue to provide challenges for NLTE simulations.

Scott, H A; Hansen, S B

2009-07-08T23:59:59.000Z

245

GEOTEMP2. Advanced Wellbore Thermal Simulator  

Science Conference Proceedings (OSTI)

GEOTEMP2, which is based on the earlier GEOTEMP program, is a wellbore thermal simulator designed for geothermal well drilling and production applications. The code treats natural and forced convection and conduction within the wellbore and heat conduction within the surrounding rock matrix. A variety of well operations can be modeled including injection, production, forward and reverse circulation with gas or liquid, gas or liquid drilling, and two-phase steam injection and production. Well completion with several different casing sizes and cement intervals can be modeled. The code allows variables, such as flow rate, to change with time enabling a realistic treatment of well operations. Provision is made in the flow equations to allow the flow areas of the tubing to vary with depth in the wellbore. Multiple liquids can exist in GEOTEMP2 simulations. Liquid interfaces are tracked through the tubing and annulus as one liquid displaces another. GEOTEMP2, however, does not attempt to simulate displacement of liquids with a gas or two-phase steam or vice versa. This means that it is not possible to simulate an operation where the type of drilling fluid changes, e.g. mud going to air. GEOTEMP2 was designed primarily for use in predicting the behavior of geothermal wells, but it is flexible enough to handle many typical drilling, production, and injection problems in the oil industry as well. However, GEOTEMP2 does not allow the modeling of gas-filled annuli in production or injection problems. In gas or mist drilling, no radiation losses are included in the energy balance. No attempt is made to model flow in the formation. Average execution time is 50 CP seconds on a CDC CYBER170. This edition of GEOTEMP2 is designated as Version 2.0 by the contributors.

Mitchell, R.F. [Enertech Engineering and Research Co., Houston, TX (United States); Monday, L.A.; Duda, L.E. [Sandia National Labs., Albuquerque, NM (United States)

1984-11-01T23:59:59.000Z

246

NREL: Advanced Power Electronics - Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Basics Technology Basics Graphic of a small hydrogen-fueled fuel cell vehicle. Check out the interactive graphic of the power electronic components of a hydrogen-fueled fuel cell vehicle. If you drive a car, use a computer, cook with a microwave oven, talk on any type of telephone, listen to a stereo, or use a cordless drill, you use power electronics. Thanks to power electronics, the electricity that runs the things we use every day is processed, filtered, and delivered with maximum efficiency and minimum size and weight. Inside a vehicle's electronic power steering system, power electronics control motors and help move the steering rack. This translates into improved steering response and lower energy consumption. In broad terms, power electronics control the flow of electric power via

247

CESAR: Center for Exascale Simulation of Advanced Reactors | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

CESAR: Center for Exascale Simulation of Advanced Reactors CESAR: Center for Exascale Simulation of Advanced Reactors CESAR: Center for Exascale Simulation of Advanced Reactors CESAR is an interdisciplinary center for developing an innovative, next-generation nuclear reactor analysis tool that both utilizes and guides the development of exascale computing platforms. Existing reactor analysis codes are highly tuned and calibrated for commercial light-water reactors, but they lack the physics fidelity to seamlessly carry over to new classes of reactors with significantly different design characteristics-as, for example, innovative concepts such as TerraPower's Traveling Wave reactor and Small Modular Reactor concepts. Without vastly improved modeling capabilities, the economic and safety characteristics of these and other novel systems will require tremendous

248

An Agent-Based Simulation of Smart Metering Technology Adoption  

Science Conference Proceedings (OSTI)

Based on the classic behavioural theory the "Theory of Planned Behaviour," the authors have developed an agent-based model to simulate the diffusion of smart metering technology in the electricity market. The authors simulate the emergent adoption of ... Keywords: Agent-Based Simulation, Behavioural Theory, Smart Metering Technology, Technology Diffusion, Theory of Planned Behaviour

Tao Zhang; William J. Nuttall

2012-01-01T23:59:59.000Z

249

UPDATED: Energy Department Announces New Advance in Biofuel Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UPDATED: Energy Department Announces New Advance in Biofuel UPDATED: Energy Department Announces New Advance in Biofuel Technology UPDATED: Energy Department Announces New Advance in Biofuel Technology March 7, 2011 - 12:00am Addthis U.S. Energy Secretary Steven Chu today congratulated a team of researchers at the Department's BioEnergy Science Center who have achieved yet another advance in the drive toward next generation biofuels: using bacteria to convert plant matter directly into isobutanol, which can be burned in regular car engines with a heat value higher than ethanol and similar to gasoline. This research is part of a broad portfolio of work the Department is doing to reduce America's dependence on foreign oil and create new economic opportunities for rural America. "Today's announcement is yet another sign of the rapid progress we are

250

October 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, Report of the ADVANCED NUCLEAR TRANSFORMATION 6, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE October 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The Global Nuclear Energy Partnership (GNEP) program is still evolving. Since our report of March 22, 2006 the DOE has sought to gauge industry interest in participation in the program from its very beginning. At the time the ANTT committee met, August 30- 31, 2006, responses had not yet been received from industry to the DOE's request for Expressions of Interest. This report is based on the assumption that the program outlined recently, which does not include an Advanced Burner Test Reactor, is what

251

March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The Global Nuclear Energy Partnership (GNEP) marks a major change in the direction of the DOE's nuclear energy R&D program. It is a coherent plan to test technologies that promise to markedly reduce the problem of nuclear waste treatment and to reduce the proliferation risk in a world with a greatly expanded nuclear power program. It brings the U.S. program into much closer alignment with that of the other major nuclear energy states. GNEP proposes to take spent fuel from existing light water reactors (LWRs),

252

Contributions to Key Energy Conversion Technologies and Advanced Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

Contributions to Key Energy Conversion Technologies and Advanced Methods Contributions to Key Energy Conversion Technologies and Advanced Methods for Optimum Energy Systems Design and Planning Speaker(s): Daniel Favrat Date: February 27, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare This presentation reviews some of EPFL-LENI's recent contributions to advanced cogeneration and heat pump technologies as well as to new system design approaches based on multimodal evolutionar algorithms. In the field of cogeneration, theoretical and experimental results show that gas engines with unscavenged ignition prechambers can, without the need of a catalyst, achieve high efficiencies with reasonable emissions with both natural gas and biogas. Combination with Organic Rankine Cycle (ORC) heat recovery

253

Advanced Controls Technologies and Strategies Linking Energy Efficiency and  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Controls Technologies and Strategies Linking Energy Efficiency and Advanced Controls Technologies and Strategies Linking Energy Efficiency and Demand Response Speaker(s): Sila Kiliccote Date: October 6, 2005 - 12:00pm Location: Bldg. 90 Reliable supply of affordable electricity has been in the spotlight since the blackouts in California, the grid shutdown events in New England and the terrorist threats nationwide. While the array of generation technologies and transmission safety issues have been widely discussed, capacity requirements and demand side management issues have also been revisited. This presentation will concentrate on a preliminary framework to describe how advanced controls can support multiple modes of operations including both energy efficiency and demand response (DR). A general description of DR, its benefits, and nationwide status will be outlined.

254

Hot New Advances in Water Heating Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology April 18, 2013 - 1:15pm Addthis Learn how a cooperative R&D agreement with the Energy Department's Oak Ridge National Laboratory helped contributed to the success of GE's GeoSpring Hybrid Water Heater -- one of the most efficient electric heat pump water heaters on the market today. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Got Energy Efficiency Questions? Our energy efficiency and renewable energy experts will answer your questions about ways to save money and incorporate renewable energy into your home during our Earth Day Google+ Hangout on April 22 at 3 pm ET. Submit your questions on Twitter, G+ and YouTube using #askEnergy,

255

Hot New Advances in Water Heating Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology April 18, 2013 - 1:15pm Addthis Learn how a cooperative R&D agreement with the Energy Department's Oak Ridge National Laboratory helped contributed to the success of GE's GeoSpring Hybrid Water Heater -- one of the most efficient electric heat pump water heaters on the market today. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Got Energy Efficiency Questions? Our energy efficiency and renewable energy experts will answer your questions about ways to save money and incorporate renewable energy into your home during our Earth Day Google+ Hangout on April 22 at 3 pm ET. Submit your questions on Twitter, G+ and YouTube using #askEnergy,

256

Time parallelization of advanced operation scenario simulations of ITER plasma  

Science Conference Proceedings (OSTI)

This work demonstrates that simulations of advanced burning plasma operation scenarios can be successfully parallelized in time using the parareal algorithm. CORSICA - an advanced operation scenario code for tokamak plasmas is used as a test case. This is a unique application since the parareal algorithm has so far been applied to relatively much simpler systems except for the case of turbulence. In the present application, a computational gain of an order of magnitude has been achieved which is extremely promising. A successful implementation of the Parareal algorithm to codes like CORSICA ushers in the possibility of time efficient simulations of ITER plasmas.

Samaddar, D. [ITER Organization, Saint Paul Lez Durance, France; Casper, T. A. [Lawrence Livermore National Laboratory (LLNL); Kim, S. H. [ITER Organization, Saint Paul Lez Durance, France; Berry, Lee A [ORNL; Elwasif, Wael R [ORNL; Batchelor, Donald B [ORNL; Houlberg, Wayne A [ORNL

2013-01-01T23:59:59.000Z

257

Advanced evaporator technology progress report FY 1992  

SciTech Connect

This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

Chamberlain, D.; Hutter, J.C.; Leonard, R.A. [and others

1995-01-01T23:59:59.000Z

258

Advancement of DOE's EnergyPlus Building Energy Simulation Payment  

SciTech Connect

EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOEâ??s Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Floridaâ??s Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced significantly under this project, more enhancements are needed for further improvement to ensure that EnergyPlus is able to simulate the latest technologies and perform desired HAVC system operations for the development of next generation HVAC systems. Additional development will be performed under a new 5-year project managed by the National Renewable Energy Laboratory.

Lixing Gu; Don Shirey; Richard Raustad; Bereket Nigusse; Chandan Sharma; Linda Lawrie; Rich Strand; Curt Pedersen; Dan Fisher; Edwin Lee; Mike Witte; Jason Glazer; Chip Barnaby

2011-03-31T23:59:59.000Z

259

Partnerships Help Advance Small Modular Reactor Technology | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnerships Help Advance Small Modular Reactor Technology Partnerships Help Advance Small Modular Reactor Technology Partnerships Help Advance Small Modular Reactor Technology March 5, 2012 - 12:00pm Addthis WASHINGTON, D.C. - DOE recently announced three public-private partnerships to develop deployment plans for small modular nuclear reactor (SMR) technologies at Savannah River Site (SRS) facilities near Aiken, S.C. Read the full story on the Memorandums of Agreement to help leverage SRS land assets, energy facilities and nuclear expertise to support potential private sector development, testing and licensing of prototype SMR technologies. Addthis Related Articles Energy Department Announces Small Modular Reactor Technology Partnerships at Savannah River Site The development of clean, affordable nuclear power options is a key element of the Energy Department's Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. | Photo by the Energy Department.

260

Advanced NOx Emissions Control: Control Technology - Second Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Second Generation Advanced Reburning Second Generation Advanced Reburning General Electric - Energy and Environmental Research Corporation (GE-EER) is carrying out a two Phase research program to develop novel Advanced Reburning (AR) concepts for high efficiency and low cost NOx control from coal-fired utility boilers. AR technologies are based on combination of basic reburning and N-agent/promoter injections. Phase I of the project was successfully completed and EER was selected to continue to develop AR technology during Phase II. Phase I demonstrated that AR technologies are able to provide effective NOx control for coal-fired combustors. Three technologies were originally envisioned for development: AR-Lean, AR-Rich, and Multiple Injection AR (MIAR). Along with these, three additional technologies were identified during the project: reburning plus promoted SNCR; AR-Lean plus promoted SNCR; and AR-Rich plus promoted SNCR. The promoters are sodium salts, in particular sodium carbonate. These AR technologies have different optimum reburn heat input levels and furnace temperature requirements. For full scale application, an optimum technology can be selected on a boiler-specific basis depending on furnace temperature profile and regions of injector access.

Note: This page contains sample records for the topic "advanced simulation technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Repowering: Reap the benefits of advanced technologies  

Science Conference Proceedings (OSTI)

Discussed for many years, repowering is now coming of age as utilities and NUGs maximize the use of existing sites and major pieces of equipment/support systems. Several advanced repowering options--including IGCC and PFBC/CC--are discussed. Within the next few years, more than 3500 utility powerplants will have reached their 30th birthdays. A significant number of these facilities--more than 20 GW of capacity by some estimates--are candidates for repowering, an option that can cut emissions and boost plant efficiency, reliability, output, and service life. The term repowering describes several plant-revitalization schemes. This report concentrates on the most common repowering options demonstrated or now being considered by US utilities--those where the original steam generator is replaced by either: (1) a gas turbine/generator and heat-recovery steam generator (HRSG), (2) an atmospheric fluidized-bed boiler (AFB), (3) a coal-gasification combined-cycle (CGCC) process, or (4) a pressurized fluidized-bed combined-cycle (PFBC-CC) system. Other options, such as a gas turbine exhausting into the boiler, are also briefly reviewed. Another repowering strategy, the addition of a steam bottoming cycle to a gas turbine, is not discussed here.

Not Available

1993-07-01T23:59:59.000Z

262

Advanced information science and object-oriented technology for information management applications  

Science Conference Proceedings (OSTI)

The role of the military has been undergoing rapid change since the fall of the Berlin Wall. The kinds of missions the US military has been asked to participate in have often fallen into the category of {open_quotes}Military Operations Other Than War{close_quotes} and those involving military responses have been more of a surgical nature directed against different kinds of threats, like rogue states or in response to terrorist actions. As a result, the requirements on the military planner and analyst have also had to change dramatically. For example, preparing response options now requires rapid turnaround and a highly flexible simulation capability. This in turn requires that the planner or analyst have access to sophisticated information science and simulation technologies. In this paper, we shall discuss how advanced information science and object-oriented technologies can be used in advanced information management applications. We shall also discuss how these technologies and tools can be applied to DoD applications by presenting examples with a system developed at Argonne, the Dynamic Information Architecture System (DIAS). DIAS has been developed to exploit advanced information science and simulation technologies to provide tools for future planners and analysts.

Hummel, J.R.; Swietlik, C.E.

1996-10-01T23:59:59.000Z

263

Recent advances in lithium ion technology  

Science Conference Proceedings (OSTI)

Lithium ion technology is based on the use of lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells (1) and in 1983 for ambient temperature systems (2) it was not until Sony Energytech announced a new lithium ion rechargeable cell containing a lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these cells have the high energy density, high voltage and fight weight of metallic lithium systems plus a very long cycle life, but without the disadvantages of dendrite formation on charge and the safety considerations associated with metallic lithium.

Levy, S.C.

1995-01-01T23:59:59.000Z

264

FY 2008 Progress Report for Advanced Combustion Engine Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

COMBUSTION COMBUSTION ENGINE TECHNOLOGIES annual progress report 2008 V e h i c l e T e c h n o l o g i e s P r o g r a m U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2008 Progress rePort For AdvAnced combustion engine technologies Energy Efficiency

265

Assessment of Efficiency and Application of Advanced Motor Technologies  

Science Conference Proceedings (OSTI)

This technical update explores four major emerging motor technologies. The four advanced motor types are Permanent magnet Brushless DC Motors (BLDC), Permanent Magnet Synchronous Motors (PMSM), Switched Reluctance Motors and Field Oriented Vector Control Motors. These motor technologies are not necessarily new, but are becoming popular and attractive solutions because of material cost reductions, controller innovations or the promise of higher efficiency and improved component reliability. Overall, the a...

2009-12-23T23:59:59.000Z

266

Recent technological advances in thin film solar cells  

DOE Green Energy (OSTI)

High-efficiency, low-cost thin film solar cells are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. This paper reviews the substantial advances made by several thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, cadmium telluride, and polycrystalline silicon. Recent examples of utility demonstration projects of these emerging materials are also discussed. 8 refs., 4 figs.

Ullal, H.S.; Zwelbel, K.; Surek, T.

1990-03-01T23:59:59.000Z

267

Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993  

DOE Green Energy (OSTI)

The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

Not Available

1990-07-01T23:59:59.000Z

268

Applying advanced simulation in early stage unconventional ship design  

Science Conference Proceedings (OSTI)

A detailed description of the first, or global, optimization stage of two-stage hydrodynamic optimization framework for high-speed vessels is presented. A key feature of the framework is the application of advanced simulation in the early phases of design ... Keywords: early-stage design, high-speed vessel, optimization, ship design, surrogate model

Matthew Collette; Woei-Min Lin; Jun Li

2010-07-01T23:59:59.000Z

269

Program on Technology Innovation: Advanced Nuclear Technology--Component Margins and Monitoring Database  

Science Conference Proceedings (OSTI)

The Advanced Nuclear Technology Margins and Monitoring Database, available to EPRI members, documents a consensus of experts on issues relating to equipment design margins and monitoring recommendations for large capital, balance-of-plant (BOP) components important to power production.

2008-04-21T23:59:59.000Z

270

Advanced Power Supplies: Scoping Study and Technology Assessment  

Science Conference Proceedings (OSTI)

This report provides a scoping study and a technology assessment for advanced power supplies in three target markets: residential, commercial, and industrial. The study focuses on two general categories of applications that create additional value for utility end users: applications where electrotechnologies create opportunity for increased use of electricity, or where new processes based on power electronics and electricity can replace traditional methods.

1998-04-27T23:59:59.000Z

271

Department of Energy Advance Methane Hydrates Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Methane Hydrates Science and Technology Advance Methane Hydrates Science and Technology Projects Dollars awarded will go to research the advance understanding of the nature and occurrence of Deepwater and Arctic gas hydrates, and their implications for future resources, geohazards, and the environment Characterizing the Affect of Environmental Change on Gas-Hydrate-Bearing Deposits The University of California at San Diego (San Diego, Calif.) - Researchers at the University of California at San Diego will design, build, and test an electromagnetic (EM) system designed for very shallow water use and will apply the system to determine the extent of offshore permafrost on the U.S. Beaufort inner shelf. Energy Department Investment: $507,000 Duration: 36 months The University of Mississippi (Oxford, Miss.) - Using electronic measurements, the researchers will

272

Advanced Thermionic Technology Program: summary report. Volume 2. Final report  

DOE Green Energy (OSTI)

This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This Program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. The technology has previously been developed for astronautical applications. Volume 2 (Part C) concentrates on the progress made in developing and fabricating the ''current generation'' of chemical vapor deposited hot shell thermionic converters and is addressed to those primarily concerned with today's capabilities in terrestrial thermionic technology. 30 refs., 83 figs.

Not Available

1984-10-01T23:59:59.000Z

273

Advanced Technologies For Stripper Gas Well Enhancement  

SciTech Connect

Stripper gas and oil well operators frequently face a dilemma regarding maximizing production from low-productivity wells. With thousands of stripper wells in the United States covering extensive acreage, it is difficult to identify easily and efficiently marginal or underperforming wells. In addition, the magnitude of reviewing vast amounts of data places a strain on an operator's work force and financial resources. Schlumberger DCS, in cooperation with the National Energy Technology Laboratory (NETL) and the U.S. Department of Energy (DOE), has created software and developed in-house analysis methods to identify remediation potential in stripper wells relatively easily. This software is referred to as Stripper Well Analysis Remediation Methodology (SWARM). SWARM was beta-tested with data pertaining to two gas fields located in northwestern Pennsylvania and had notable results. Great Lakes Energy Partners, LLC (Great Lakes) and Belden & Blake Corporation (B&B) both operate wells in the first field studied. They provided data for 729 wells, and we estimated that 41 wells were candidates for remediation. However, for reasons unbeknownst to Schlumberger these wells were not budgeted for rework by the operators. The second field (Cooperstown) is located in Crawford, Venango, and Warren counties, Pa and has more than 2,200 wells operated by Great Lakes. This paper discusses in depth the successful results of a candidate recognition study of this area. We compared each well's historical production with that of its offsets and identified 339 underperformers before considering remediation costs, and 168 economically viable candidates based on restimulation costs of $50,000 per well. From this data, we prioritized a list based on the expected incremental recoverable gas and 10% discounted net present value (NPV). For this study, we calculated the incremental gas by subtracting the volumes forecasted after remediation from the production projected at its current configuration. Assuming that remediation efforts increased production from the 168 marginal wells to the average of their respective offsets, approximately 6.4 Bscf of gross incremental gas with a NPV approximating $4.9 million after investment, would be made available to the domestic market. Seventeen wells have successfully been restimulated to date and have already obtained significant production increases. At the time of this report, eight of these wells had enough post-rework production data available to forecast the incremental gas and verify the project's success. This incremental gas is estimated at 615 MMscf. The outcome of the other ten wells will be determined after more post-refrac production data becomes available. Plans are currently underway for future restimulations. The success of this project has shown the value of this methodology to recognize underperforming wells quickly and efficiently in fields containing hundreds or thousands of wells. This contributes considerably to corporate net income and domestic natural gas and/or oil reserves.

Ronald J. MacDonald; Charles M. Boyer; Joseph H. Frantz Jr; Paul A. Zyglowicz

2005-04-01T23:59:59.000Z

274

Advanced Simulation Capability for Environmental Management (ASCEM) Phase II Demonstration  

SciTech Connect

In 2009, the National Academies of Science (NAS) reviewed and validated the U.S. Department of Energy Office of Environmental Management (EM) Technology Program in its publication, Advice on the Department of Energy’s Cleanup Technology Roadmap: Gaps and Bridges. The NAS report outlined prioritization needs for the Groundwater and Soil Remediation Roadmap, concluded that contaminant behavior in the subsurface is poorly understood, and recommended further research in this area as a high priority. To address this NAS concern, the EM Office of Site Restoration began supporting the development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific approach that uses an integration of toolsets for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM modeling toolset is modular and open source. It is divided into three thrust areas: Multi-Process High Performance Computing (HPC), Platform and Integrated Toolsets, and Site Applications. The ASCEM toolsets will facilitate integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. During fiscal year 2012, the ASCEM project continued to make significant progress in capabilities development. Capability development occurred in both the Platform and Integrated Toolsets and Multi-Process HPC Simulator areas. The new Platform and Integrated Toolsets capabilities provide the user an interface and the tools necessary for end-to-end model development that includes conceptual model definition, data management for model input, model calibration and uncertainty analysis, and model output processing including visualization. The new HPC Simulator capabilities target increased functionality of process model representations, toolsets for interaction with the Platform, and model confidence testing and verification for quality assurance. The Platform and HPC capabilities are being tested and evaluated for EM applications through a suite of demonstrations being conducted by the Site Applications Thrust. In 2010, the Phase I Demonstration focused on testing initial ASCEM capabilities. The Phase II Demonstration, completed in September 2012, focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site Deep Vadose Zone (BC Cribs) served as an application site for an end-to-end demonstration of ASCEM capabilities on a site with relatively sparse data, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations included in this Phase II report included addressing attenuation-based remedies at the Savannah River Site F-Area, to exercise linked ASCEM components under data-dense and complex geochemical conditions, and conducting detailed simulations of a representative waste tank. This report includes descriptive examples developed by the Hanford Site Deep Vadose Zone, the SRS F-Area Attenuation-Based Remedies for the Subsurface, and the Waste Tank Performance Assessment working groups. The integrated Phase II Demonstration provides test cases to accompany distribution of the initial user release (Version 1.0) of the ASCEM software tools to a limited set of users in 2013. These test cases will be expanded with each new release, leading up to the release of a version that is qualified for regulatory applications in the 2015 time frame.?

Freshley, M.; Hubbard, S.; Flach, G.; Freedman, V.; Agarwal, D.; Andre, B.; Bott, Y.; Chen, X.; Davis, J.; Faybishenko, B.; Gorton, I.; Murray, C.; Moulton, D.; Meyer, J.; Rockhold, M.; Shoshani, A.; Steefel, C.; Wainwright, H.; Waichler, S.

2012-09-28T23:59:59.000Z

275

Gas Technology Institute (Partnership for Advanced Residential Retrofit) |  

Open Energy Info (EERE)

Technology Institute (Partnership for Advanced Residential Retrofit) Technology Institute (Partnership for Advanced Residential Retrofit) Jump to: navigation, search Name Gas Technology Institute Place Des Plaines, IL Website http://www.gastechnology.org/ Coordinates 42.0333623°, -87.8833991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.0333623,"lon":-87.8833991,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

NETL: News Release - Clean Coal Technology Report Showcases Advanced Iron  

NLE Websites -- All DOE Office Websites (Extended Search)

April 6, 2000 April 6, 2000 Clean Coal Technology Report Showcases Advanced Iron Making Process, Benefits for the Environment Topical Report Profiles Blast Furnace Granular Coal Injection System; Now Available on DOE's Fossil Energy Web Site An advanced iron making technology demonstrated in the U.S. Department of Energy's Clean Coal Technology Program stands out for its potential to provide major environmental and financial benefits to the United States steel industry. Bethlehem Steel Topical Report The Energy Department has profiled the project in a topical report entitled Blast Furnace Granular Coal Injection System Demonstration Project. The report describes the federal government's partnership demonstration project with Bethlehem Steel Corporation, which tested a new method for reducing

277

STATEMENT OF CONSIDERATIONS REQUEST BY ALLEGHENY TECHNOLOGIES WAH CHANG DIVISION FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ALLEGHENY TECHNOLOGIES WAH CHANG DIVISION FOR AN ADVANCE ALLEGHENY TECHNOLOGIES WAH CHANG DIVISION FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-05NT42513; W(A)-05-053, CH-1340 The Petitioner, Allegheny Technologies, Wah Chang Division (ATI) was awarded a cooperative agreement for the performance of work entitled, "Evaluation of a Functional Interconnect for Solid Oxide Fuel Cells." The purpose of the project is the creation of a materials system for a solid oxide fuel cell interconnect. Work will focus on metallic materials such as ferritic stainless steels and nickel-base alloys in various combinations and configura-tions. Testing will focus on the elevated temperature degradation of surfaces in simulated fuel cell environments.\This award is a

278

Lessons Learned From Dynamic Simulations of Advanced Fuel Cycles  

SciTech Connect

Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe “lessons learned” from dynamic simulations but attempt to answer the “so what” question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof.

Steven J. Piet; Brent W. Dixon; Jacob J. Jacobson; Gretchen E. Matthern; David E. Shropshire

2009-04-01T23:59:59.000Z

279

GE power generation technology challenges for advanced gas turbines  

SciTech Connect

The GE Utility ATS is a large gas turbine, derived from proven GEPG designs and integrated GEAE technology, that utilizes a new turbine cooling system and incorporates advanced materials. This system has the potential to achieve ATS objectives for a utility sized machine. Combined with use of advanced Thermal Barrier Coatings (TBC`s), the new cooling system will allow higher firing temperatures and improved cycle efficiency that represents a significant improvement over currently available machines. Developing advances in gas turbine efficiency and emissions is an ongoing process at GEPG. The third generation, ``F`` class, of utility gas turbines offers net combined cycle efficiencies in the 55% range, with NO{sub x} programs in place to reduce emissions to less than 10 ppM. The gas turbines have firing temperatures of 2350{degree}F, and pressure ratios of 15 to 1. The turbine components are cooled by air extracted from the cycle at various stages of the compressor. The heat recovery cycle is a three pressure steam system, with reheat. Throttle conditions are nominally 1400 psi and 1000{degree}F reheat. As part of GEPG`s ongoing advanced power generation system development program, it is expected that a gas fired advanced turbine system providing 300 MW power output greater than 58% net efficiency and < 10 ppM NO{sub x} will be defined. The new turbine cooling system developed with technology support from the ATS program will achieve system net efficiency levels in excess of 60%.

Cook, C.S.; Nourse, J.G.

1993-11-01T23:59:59.000Z

280

Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To  

Open Energy Info (EERE)

Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To Efficiently Exploit Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To Efficiently Exploit Enhanced Geothermal Systems Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Drilling Systems Project Description This project proposes to develop a cost-effective microhole drilling and completion technology with the Flash Abrasive Slurry Jet (ASJ) system and optimize it to maximize the efficiency of fluid circulation and heat removal for Enhanced Geothermal Systems (EGS). The proposed approach is expected to address the key obstacles that currently prevent EGS from becoming a technically feasible, commercially viable major contributor for electricity generation, namely: (1) reduce costs for drilling and well completion and (2) increase the volume of hot rock from which heat can be extracted.

Note: This page contains sample records for the topic "advanced simulation technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Li-Ion and Other Advanced Battery Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

scientist viewing computer screen scientist viewing computer screen Li-Ion and Other Advanced Battery Technologies The research aims to overcome the fundamental chemical and mechanical instabilities that have impeded the development of batteries for vehicles with acceptable range, acceleration, costs, lifetime, and safety. Its aim is to identify and better understand cell performance and lifetime limitations. These batteries have many other applications, in mobile electronic devices, for example. The work addresses synthesis of components into battery cells with determination of failure modes, materials synthesis and evaluation, advanced diagnostics, and improved electrochemical model development. This research involves: Battery development and analysis; Mathematical modeling; Sophisticated diagnostics;

282

Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.  

SciTech Connect

This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

2006-12-11T23:59:59.000Z

283

Hybrid and electric advanced vehicle systems (heavy) simulation. Final report  

Science Conference Proceedings (OSTI)

A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.

Hammond, R.A.; McGehee, R.K.

1981-11-01T23:59:59.000Z

284

Establishment of the Center for Advanced Separation Technologies  

Science Conference Proceedings (OSTI)

This Final Technical Report covers the eight sub-projects awarded in the first year and the five projects awarded in the second year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

Christopher E. Hull

2006-09-30T23:59:59.000Z

285

The Consortium for Advanced Simulation of Light Water Reactors  

SciTech Connect

The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

Ronaldo Szilard; Hongbin Zhang; Doug Kothe; Paul Turinsky

2011-10-01T23:59:59.000Z

286

Demonstration of Advanced Filtration Technologies: Developing Energy-rebate  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of Advanced Filtration Technologies: Developing Energy-rebate Demonstration of Advanced Filtration Technologies: Developing Energy-rebate Criteria through Performing Standard Laboratory Tests and Statistical Analyses Title Demonstration of Advanced Filtration Technologies: Developing Energy-rebate Criteria through Performing Standard Laboratory Tests and Statistical Analyses Publication Type Report LBNL Report Number LBNL-61684 Year of Publication 2007 Authors Xu, Tengfang T., and Duo Wang Call Number LBNL-61684 Abstract Fan-filter unit systems are used for re-circulating clean air in cleanrooms are gaining popularity in California as well as in the rest of the world. Under normal operation, fan-filter units require high power demand, typically ranging from 100 to 300 W per square meter of cleanroom floor area (or approximately 10-30 W/ft2). Operating 7 by 24, they normally consume significant electric energy, while providing required contamination control for cleanrooms in various industries. Previous studies focused on development of a standard test procedure for fan-filter units. This project is to improve the methods, and develop new information to demonstrate the methods can be used to assist the industries to apply more energy-efficient fan-filter units in cleanrooms.

287

Advanced simulation capability for environmental management (ASCEM): An overview of initial results  

E-Print Network (OSTI)

Security Adminis- tration (NNSA), Advanced Simulation andASCEM that were developed by NNSA-, EM-, and Basic Energy

Williamson, M.

2012-01-01T23:59:59.000Z

288

DOE Announces Up to $7.5 Million in Advanced Technology Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

development projects in support of water power technology. DOE plans to award industry-led partnerships to research, develop andor field test advanced water power technologies...

289

Department of Energy Awards up to $38 Million to Advance Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

up to 38 Million to Advance Technology and Reduce Cost of Geothermal Energy Department of Energy Awards up to 38 Million to Advance Technology and Reduce Cost of Geothermal...

290

Sandia National Laboratories: Advanced Simulation Computing: Verification &  

NLE Websites -- All DOE Office Websites (Extended Search)

Verification & Validation Verification & Validation high-fidelity simulations The Verification and Validation (V&V) program conducts two major activities at Sandia. The first is to perform assessments and studies that quantify confidence in Advanced Simulation and Computing (ASC) calculation results. The second activity develops and improves V&V and uncertainty quantification methods, metrics, and standards. Assessments This project area conducts studies and assessments for Sandia's engineering simulation focus areas (outlined below). These assessments quantify the prediction uncertainty of the engineering codes as they apply to applications in the four focus areas. Safety and Security This area focuses on engineering codes as they apply to nuclear weapon. External load prediction capability includes mechanical (impact, pressure,)

291

Advanced Thermionic Technology Program: summary report. Volume 1. Final report  

DOE Green Energy (OSTI)

This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. The technology has previously been developed for astronautical applications. The report is organized in four volumes, each focused as much as possible on the needs of a particular audience. Volume 1 contains Part A, the Executive Summary. This Executive Summary describes the accomplishments of the Program in brief, but assumes the reader's familiarity with the thermionic process and the technical issues associated with the Program. For this reason, Volume 1 also contains Part B, a minimally technical overview of the Advanced Thermionic Technology Program. Volume 2 (Part C) concentrates on the progress made in developing and fabricating the ''current generation'' of chemical vapor deposited hot shell thermionic converters and is addressed to those primarily concerned with today's capabilities in terrestrial thermionic technology. Volume 3 (Part D) contains the results of systems studies of primary interest to those involved in identifying and evaluating applications for thermionics. Volume 4 (Part E) is a highly technical discussion of the attempts made by the program to push the state-of-the-art beyond the current generation of converters and is directed toward potential researchers engaged in this same task. These technical discussions are complemented with Appendices where appropriate.

Not Available

1984-10-01T23:59:59.000Z

292

ADVANCED DIESEL ENGINE AND AFTERTREATMENT TECHNOLOGY DEVELOPMENT FOR TIER 2 EMISSIONS  

DOE Green Energy (OSTI)

Advanced diesel engine and aftertreatment technologies have been developed for multiple engine and vehicle platforms. Tier 2 (2007 and beyond) emissions levels have been demonstrated for a light truck vehicle over a FTP-75 test cycle on a vehicle chassis dynamometer. These low emissions levels are obtained while retaining the fuel economy advantage characteristic of diesel engines. The performance and emissions results were achieved by integrating advanced combustion strategies (CLEAN Combustion{copyright}) with prototype aftertreatment systems. CLEAN Combustion{copyright} allows partial control of exhaust species for aftertreatment integration in addition to simultaneous NOx and PM reduction. Analytical tools enabled the engine and aftertreatment sub-systems development and system integration. The experimental technology development methodology utilized a range of facilities to streamline development of the eventual solution including utilization of steady state and transient dynamometer test-beds to simulate chassis dynamometer test cycles.

Aneja, R.; Bolton, B; Oladipo, A; Pavlova-MacKinnon, Z; Radwan, A

2003-08-24T23:59:59.000Z

293

Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants  

SciTech Connect

OAK-B135 Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants

O' Connell, J. Michael

2002-01-01T23:59:59.000Z

294

Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy States Alliance Clean Energy States Alliance Batteries, flywheels, above-ground compressed air, micro pumped hydro, and other forms of energy storage may be able to provide significant support to the integration of renewable energy in the United States. Public funding and support are critical to accelerate progress, achieve cost reductions, and encourage widespread deployment of these technologies. Overview The Energy Storage Technology Advancement Partnership (ESTAP) is a new, cooperative funding and information-sharing partnership between the U.S. Department of Energy (DOE) and interested states that aims to accelerate the commercialization and deployment of energy storage technologies in the United States via joint funding and coordination. Facilitated by the Clean Energy States Alliance, ESTAP is funded by Sandia National

295

Advanced Battery Technologies Inc ABAT | Open Energy Information  

Open Energy Info (EERE)

Battery Technologies Inc ABAT Battery Technologies Inc ABAT Jump to: navigation, search Name Advanced Battery Technologies Inc (ABAT) Place Shuangcheng, Heilongjiang Province, China Zip 150100 Product China-based developer, manufacturer and distributer of rechargeable polymer lithium-ion (PLI) batteries. Coordinates 45.363708°, 126.314621° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.363708,"lon":126.314621,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect

The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is optimized for the highest level of performance. The unique feature of an H-technology combined-cycle system is the integrated heat transfer system, which combines both the steam plant reheat process and gas turbine bucket and nozzle cooling. This feature allows the power generator to operate at a higher firing temperature than current technology units, thereby resulting in dramatic improvements in fuel-efficiency. The end result is the generation of electricity at the lowest, most competitive price possible. Also, despite the higher firing temperature of the H System{trademark}, the combustion temperature is kept at levels that minimize emission production. GE has more than 3.6 million fired hours of experience in operating advanced technology gas turbines, more than three times the fired hours of competitors' units combined. The H System{trademark} design incorporates lessons learned from this experience with knowledge gleaned from operating GE aircraft engines. In addition, the 9H gas turbine is the first ever designed using ''Design for Six Sigma'' methodology, which maximizes reliability and availability throughout the entire design process. Both the 7H and 9H gas turbines will achieve the reliability levels of our F-class technology machines. GE has tested its H System{trademark} gas turbine more thoroughly than any previously introduced into commercial service. The H System{trademark} gas turbine has undergone extensive design validation and component testing. Full-speed, no-load testing of the 9H was achieved in May 1998 and pre-shipment testing was completed in November 1999. The 9H will also undergo approximately a half-year of extensive demonstration and characterization testing at the launch site. Testing of the 7H began in December 1999, and full speed, no-load testing was completed in February 2000. The 7H gas turbine will also be subjected to extensive demonstration and characterization testing at the launch site.

Kenneth A. Yackly

2001-06-01T23:59:59.000Z

297

Program on Technology Innovation: Advanced Information Technology Requirements for the Electric Power Industry  

Science Conference Proceedings (OSTI)

The EPRI Advanced Information Technology Requirements for the Electric Power Industry workshop was held September 16–17, 2008, in Knoxville, Tennessee. It was attended by 15 senior information technology (IT) professionals representing various investor-owned utilities, municipal utilities, rural cooperatives, and regional transmission organizations (RTOs), as well as the Edison Electric Institute and the U.S. Department of Energy. The workshop provided a forum to identify needs and opportunities for indu...

2009-08-24T23:59:59.000Z

298

STATEivlENT OF CONSIDERATIONS ADVANC;E CLASS WAIVER OF PATENT RIGHTS FOR TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STATEivlENT OF CONSIDERATIONS STATEivlENT OF CONSIDERATIONS ADVANC;E CLASS WAIVER OF PATENT RIGHTS FOR TECHNOLOGY DEVELOPED UNDER THE FUNDING ()PPORfVNITY ANNOUNCEMENT, "RECOVERY AC'r: GEOTHERMAL TECHNOL{)(JIES PROGRAtvL" I)E~FOA-OOOOl09; W(C)~2009'-0l6 This advance class waivc.:-t willexpeditc'i111plemcntatioilof tlle American Recovery and Reinvestment Act of 2009 ("Recovery Act") ami is intended to apply toinvclltions of all current and future recipients awarded under the first and second topic areas of the Funding Opp011unity Announcemenl (FOA), "Recovery ilct:Gemlumnal Techn%gies Program," regardless of tier, except recipientsdigible Loobhlin title pursuant to·P.I" 96- 517, as amended. and National.Laboratorics.

299

STATEMENT OF CONSIDERATIONS REQUEST BY ADVANCED TECHNOLOGY MATERIALS, INC. FOR AN ADVANCED  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOR AN ADVANCED FOR AN ADVANCED WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER COOPERATIVE AGREEMENT NO. DE-FC36-99GO10451; W(A)-99-016; CH-1014 The Petitioner, Advanced Technology Materials Inc. (hereinafter "ATMI"), has requested a waiver of domestic and foreign patent rights for all subject inventions arising from its participation under the above referenced cooperative agreement entitled "Integrated Micro- machines Hydrogen Gas Sensors". This cooperative agreement pertains to the development of micro-machines for the sensing of hydrogen gas under a wide variety of concentrations and moisture conditions. The objectives of this cooperative agreement are to develop, evaluate and test a hydrogen sensor based on micro-machined structures. Specifically, this cooperative

300

Advanced Data Processing and Computing Technologies at Control Centers  

Science Conference Proceedings (OSTI)

Control center operation is becoming more complex as new and often-conflicting reliability, economics, and public policy issues emerge. To manage the complexity, control center operators need prompt, comprehensive information about their own systems and neighboring systems. Computer simulations analyze system data and what-if-scenarios to derive succinct information for operators to make more informed decisions. This report reviews the applicability of new technologies and some solution methods for addre...

2011-12-05T23:59:59.000Z

Note: This page contains sample records for the topic "advanced simulation technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Utility advanced turbine systems (ATS) technology readiness testing  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

NONE

2000-09-15T23:59:59.000Z

302

Utility advanced turbine systems (ATS) technology readiness testing  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

2000-09-15T23:59:59.000Z

303

ESTABLISHMENT OF THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established by Virginia Tech and West Virginia University to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be carried out at CAST will be longer-term, high-risk, basic research, and will be carried out in four broad areas: (a) Solid-solid separation; (b) Solid-liquid separation; (c) Chemical/Biological extraction; and (d) Sensor and control development. This Technical Progress Report describes progress made on the eight sub-projects awarded in the first year and the five projects awarded in the second year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual subproject Technical Progress Reports are attached as Appendices.

Christopher E. Hull

2005-01-30T23:59:59.000Z

304

IEP - Water-Energy Interface: Advanced Cooling Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling Technology Cooling Technology This component of the program is focused on research to develop technologies that improve performance and reduce costs associated with wet cooling, dry cooling, and hybrid cooling technologies. In addition, the research area covers innovative methods to control bio-fouling of cooling water intake structures as well as advances in intake structure systems. Read More! It is technically possible to cool power plants with minimal water use. However, at this time such cooling methods are not as economically feasible as traditional cooling systems. Additional research and development is necessary to develop cooling systems that use as little water as possible, but at a reasonable cost. Water intake structures are also an area of concern, especially considering the Clean Water Act 316(b) regulation which requires that the location, design, construction, and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impact. With plant intake structures, the particular concern is impingement and entrainment of aquatic organisms.

305

CAPE-OPEN Integration for Advanced Process Engineering Co-Simulation  

SciTech Connect

This paper highlights the use of the CAPE-OPEN (CO) standard interfaces in the Advanced Process Engineering Co-Simulator (APECS) developed at the National Energy Technology Laboratory (NETL). The APECS system uses the CO unit operation, thermodynamic, and reaction interfaces to provide its plug-and-play co-simulation capabilities, including the integration of process simulation with computational fluid dynamics (CFD) simulation. APECS also relies heavily on the use of a CO COM/CORBA bridge for running process/CFD co-simulations on multiple operating systems. For process optimization in the face of multiple and some time conflicting objectives, APECS offers stochastic modeling and multi-objective optimization capabilities developed to comply with the CO software standard. At NETL, system analysts are applying APECS to a wide variety of advanced power generation systems, ranging from small fuel cell systems to commercial-scale power plants including the coal-fired, gasification-based FutureGen power and hydrogen production plant.

Zitney, S.E.

2006-11-01T23:59:59.000Z

306

Comparison of advanced battery technologies for electric vehicles  

DOE Green Energy (OSTI)

Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies: Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge--discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

Dickinson, B.E.; Lalk, T.R. [Texas A and M Univ., College Station, TX (United States). Mechanical Engineering Dept.; Swan, D.H. [Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

1993-12-31T23:59:59.000Z

307

ESTABLISHMENT OF THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

SciTech Connect

This Technical Progress Report describes progress made on the eight sub-projects awarded in the first year and the five projects awarded in the second year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual subproject Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process (approx. six months), the second year project TPR's cover the initial 6-month period of activity only.

Hugh W. Rimmer

2004-04-30T23:59:59.000Z

308

Recent advances in solid polymer electrolyte fuel cell technology  

DOE Green Energy (OSTI)

With methods used to advance solid polymer electrolyte fuel cell technology, we are close to obtaining the goal of 1 A/cm/sup 2/ at 0.7. Higher power densities have been reported (2 A/cm/sup 2/ at 0.5 V) but only with high catalyst loading electrodes (2 mg/cm/sup 2/ and 4 mg/cm/sup 2/ at anode and cathode, respectively) and using a Dow membrane with a better conductivity and water retention characteristics. Work is in progress to ascertain performances of cells with Dow membrane impregnated electrodes and Dow membrane electrolytes. 5 refs., 6 figs.

Ticianelli, E.A.; Srinivasan, S.; Gonzalez, E.R.

1988-01-01T23:59:59.000Z

309

Advanced Thermionic Technology Program: summary report. Volume 4. Final report  

DOE Green Energy (OSTI)

This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This Program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. Volume 4 (Part E) is a highly technical discussion of the attempts made by the Program to push the state-of-the-art beyond the current generation of converters and is directed toward potential researchers engaged in this same task. These technical discussions are complemented with Appendices where appropriate.

Not Available

1984-10-01T23:59:59.000Z

310

Nicholas J. Wright! Advanced Technologies Group Lead NERSC Initiative:  

NLE Websites -- All DOE Office Websites (Extended Search)

J. Wright! J. Wright! Advanced Technologies Group Lead NERSC Initiative: Preparing Applications for Exascale --- 1 --- NERSC U ser G roup M ee0ng February 1 2. 2 013 * Technology disruption is underway at the processor and memory level. Computing challenges include: - Energy efficiency - Concurrency - Data movement - Programmability - Resilience * We can only meet these challenges through both hardware and software innovation - Rewrite application codes - Try to influence computer industry 2 Computer Industry Roadmaps These will impact all scales of computing 10 100 1,000 10,000 100,000 1,000,000 1985 1990 1995 2000 2005 2010 2015 2020 Year of Introduction The Expectation Gap Performance "Expectation Gap" Challenges to Exascale Performance Growth 1. S ystem p ower i s t he

311

REQUEST BY UNITED TECHNOLOGIES RESEARCH CENTER, FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A SUBTIER CONTRACT UNDER SUBCONTRACT A SUBTIER CONTRACT UNDER SUBCONTRACT NO. 4000009920 UNDER DOE PRIME CONTRACT NO. DE-AC05-000R22725; DOE WAIVER DOCKET W(A)-04-010 [ORO-787] Petitioner, United Technologies Research Center(UTRC), has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under a subtier contract under Subcontract No 4000009920 with Capstone Turbine Corporation under DOE Prime Contract No. DE-AC05-00OR22725. The scope of this work is to build upon prior work related to the development of an integrated cooling, heating, and power (CHP) system. Under this subtier contract with Capstone Turbine Corporation, UTRC will be responsible for performing detailed technology characterization and benefits quantification for three promising

312

NETL: Gasification Systems - Advanced Acid Gas Separation Technology for  

NLE Websites -- All DOE Office Websites (Extended Search)

Feed Systems Feed Systems Advanced Acid Gas Separation Technology for the Utilization of Low-Rank Coals Project Number: DE-FE0007759 Refinery offgas PSA at Air Products' facility in Baytown, TX Refinery offgas PSA at Air Products' facility in Baytown, TX. Air Products, in collaboration with the University of North Dakota Energy and Environmental Research Center (EERC), is testing its Sour Pressure Swing Adsorption (Sour PSA) process that separates syngas into an hydrogen-rich stream and second stream comprising of sulfur compounds(primarily hydrogen sulfide)carbon dioxide (CO2), and other impurities. The adsorbent technology testing that has been performed to date utilized syngas streams derived from higher rank coals and petcoke. Using data from experiments based on petcoke-derived syngas, replacing the

313

Users Perspective on Advanced Fuel Cell Bus Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Users Perspective on Advanced Fuel Cell Bus Technology Lesl lie Eud dy - NREL Nico Bouwkamp - CaFCP DOE/FTA FCB Workshop DOE/FTA FCB Workshop June 7, 2010 - Transit Agencies FCB Demonstrations Transit Agencies FCB Demonstrations Reasons for participation Reasons for participation - Government regulations to reduce emissions - Public pressure Public pressure - Agency desire to be 'green' - Funding opportunity Funding opportunity - Learn about the newest technology 2 - Challenges: Performance Challenges: Performance Bus should match conventional bus performance Bus should match conventional bus performance - Operate 7 days/week, up to 20 hr/day - Complete day of service with one tank of fuel Complete day of service with one tank of fuel - Keep up with duty-cycle

314

REQUEST BY UNITED TECHNOLOGIES RESEARCH CENTER, FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUBCONTRACT NO. 4000009518 UNDER DOE SUBCONTRACT NO. 4000009518 UNDER DOE PRIME CONTRACT NO. DE-AC05-00OR22725; DOE WAIVER DOCKET W(A)-01- 026 [ORO-766] Petitioner, United Technologies Research Center, has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Subcontract No 4000009518 under DOE Prime Contract No. DE-AC05-00OR22725. The scope of this work is to develop a building combined heat and power (BCHP) system. In a BCHP, microturbines, high temperature fuel cells, and combinations of each produce electric power at the site while exhaust gas from the power plants is utilized to produce cooling, refrigeration, space heating, hot water and dehumidification for the building. This work is sponsored by the Office of Distributed Energy Resources, Office of Power Technologies.

315

Comparison of advanced cooling technologies efficiency depending on outside temperature  

Science Conference Proceedings (OSTI)

In some areas, water availability is a serious problem during the summer and could disrupt the normal operation of thermal power plants which needs large amount of water to operate. Moreover, when water quantities are sufficient, there can still be problem created by the waste heat rejected into the water which is regulated in order to limit the impact of thermal pollution on the environment. All these factors can lead to a decrease of electricity production during the summer and during peak hours, when electricity is the most needed. In order to deal with these problems, advanced cooling technologies have been developed and implemented to reduce water consumption and withdrawals but with an effect in the plant efficiency. This report aims at analyzing the efficiency of several cooling technologies with a fixed power plant design and so to produce a reference to be able to compare them.

Blaise Hamanaka; Haihua Zhao; Phil Sharpe

2009-09-01T23:59:59.000Z

316

Advanced Gas Storage Concepts: Technologies for the Future  

Science Conference Proceedings (OSTI)

This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

Freeway, Katy (PB-KBB Inc.) [PB-KBB Inc.; Rogers, R.E. (Mississippi State University) [Mississippi State University; DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D. (RESPEC) [RESPEC

2000-02-01T23:59:59.000Z

317

Conference on Advances in Materials Science - Presentations ...  

National Nuclear Security Administration (NNSA)

- Presentations Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research...

318

SunShot Initiative: Diversity in Science and Technology Advances National  

NLE Websites -- All DOE Office Websites (Extended Search)

Diversity in Science and Diversity in Science and Technology Advances National Clean Energy in Solar to someone by E-mail Share SunShot Initiative: Diversity in Science and Technology Advances National Clean Energy in Solar on Facebook Tweet about SunShot Initiative: Diversity in Science and Technology Advances National Clean Energy in Solar on Twitter Bookmark SunShot Initiative: Diversity in Science and Technology Advances National Clean Energy in Solar on Google Bookmark SunShot Initiative: Diversity in Science and Technology Advances National Clean Energy in Solar on Delicious Rank SunShot Initiative: Diversity in Science and Technology Advances National Clean Energy in Solar on Digg Find More places to share SunShot Initiative: Diversity in Science and Technology Advances National Clean Energy in Solar on AddThis.com...

319

NETL: Advanced NOx Emissions Control: Control Technology - ALTA for Cyclone  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Scale Demonstration of ALTA NOx Control for Cyclone-Fired Boilers Full-Scale Demonstration of ALTA NOx Control for Cyclone-Fired Boilers The primary goal of this project was to evaluate a technology called advanced layered technology application (ALTA) as a means to achieve NOx emissions below 0.15 lb/MMBtu in a cyclone boiler. Reaction Engineering International (REI) conducted field testing and combustion modeling to refine the process design, define the optimum technology parameters, and assess system performance. The ALTA NOx control technology combines deep staging from overfire air, rich reagent injection (RRI), and selective non-catalytic reduction (SNCR). Field testing was conducted during May-June 2005 at AmerenUE's Sioux Station Unit 1, a 500 MW cyclone boiler unit that typically burns an 80/20 blend of Powder River Basin subbituminous coal and Illinois No. 6 bituminous coal. Parametric testing was also conducted with 60/40 and 0/100 blends. The testing also evaluated process impacts on balance-of-plant issues such as the amount of unburned carbon in the ash, slag tapping, waterwall corrosion, ammonia slip, and heat distribution.

320

Co-Simulation for Advanced Process Design and Optimization  

Science Conference Proceedings (OSTI)

Meeting the increasing demand for clean, affordable, and secure energy is arguably the most important challenge facing the world today. Fossil fuels can play a central role in a portfolio of carbon-neutral energy options provided CO{sub 2} emissions can be dramatically reduced by capturing CO{sub 2} and storing it safely and effectively. Fossil energy industry faces the challenge of meeting aggressive design goals for next-generation power plants with CCS. Process designs will involve large, highly-integrated, and multipurpose systems with advanced equipment items with complex geometries and multiphysics. APECS is enabling software to facilitate effective integration, solution, and analysis of high-fidelity process/equipment (CFD) co-simulations. APECS helps to optimize fluid flow and related phenomena that impact overall power plant performance. APECS offers many advanced capabilities including ROMs, design optimization, parallel execution, stochastic analysis, and virtual plant co-simulations. NETL and its collaborative R&D partners are using APECS to reduce the time, cost, and technical risk of developing high-efficiency, zero-emission power plants with CCS.

Stephen E. Zitney

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced simulation technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced virtual energy simulation training and research: IGCC with CO2 capture power plant  

SciTech Connect

In this presentation, we highlight the deployment of a real-time dynamic simulator of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture at the Department of Energy's (DOE) National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTARTM) Center. The Center was established as part of the DOE's accelerating initiative to advance new clean coal technology for power generation. IGCC systems are an attractive technology option, generating low-cost electricity by converting coal and/or other fuels into a clean synthesis gas mixture in a process that is efficient and environmentally superior to conventional power plants. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Fueled with coal, petroleum coke, and/or biomass, the gasification island of the simulated IGCC plant consists of two oxygen-blown, downward-fired, entrained-flow, slagging gasifiers with radiant syngas coolers and two-stage sour shift reactors, followed by a dual-stage acid gas removal process for CO{sub 2} capture. The combined cycle island consists of two F-class gas turbines, steam turbine, and a heat recovery steam generator with three-pressure levels. The dynamic simulator can be used for normal base-load operation, as well as plant start-up and shut down. The real-time dynamic simulator also responds satisfactorily to process disturbances, feedstock blending and switchovers, fluctuations in ambient conditions, and power demand load shedding. In addition, the full-scope simulator handles a wide range of abnormal situations, including equipment malfunctions and failures, together with changes initiated through actions from plant field operators. By providing a comprehensive IGCC operator training system, the AVESTAR Center is poised to develop a workforce well-prepared to operate and control commercial-scale gasification-based power plants capable of 90% pre-combustion CO{sub 2} capture and compression, as well as low sulfur, mercury, and NOx emissions. With additional support from the NETL-Regional University Alliance (NETL-RUA), the Center will educate and train engineering students and researchers by providing hands-on 'learning by operating' experience The AVESTAR Center also offers unique collaborative R&D opportunities in high-fidelity dynamic modeling, advanced process control, real-time optimization, and virtual plant simulation. Objectives and goals are aimed at safe and effective management of power generation systems for optimal efficiency, while protecting the environment. To add another dimension of realism to the AVESTAR experience, NETL will introduce an immersive training system with innovative three-dimensional virtual reality technology. Wearing a stereoscopic headset or eyewear, trainees will enter an interactive virtual environment that will allow them to move freely throughout the simulated 3-D facility to study and learn various aspects of IGCC plant operation, control, and safety. Such combined operator and immersive training systems go beyond traditional simulation and include more realistic scenarios, improved communication, and collaboration among co-workers.

Zitney, S.; Liese, E.; Mahapatra, P.; Bhattacharyya, D.; Provost, G.

2011-01-01T23:59:59.000Z

322

Advanced Thermionic Technology Program: summary report. Volume 3. Final report  

DOE Green Energy (OSTI)

This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This Program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. Volume 3 (Part D) contains the results of systems studies of primary interest to those involved in identifying and evaluating applications for thermionics. As a general rule of thumb, cogeneration technologies are most attractive to industries when those technologies naturally produce a ration of electrical to thermal output which closely matches the demand within the industrial facilities themselves. Several of the industries which consume the largest amounts of energy have an electrical-to-thermal ratio of about ten percent, as can be seen in Exhibit D-1.1. This closely matches the electrical efficiency of thermionic converters. Thermionic cogeneration has several other unique advantages relative to alternative technologies for cogeneration which should lead to a much broader application of cogeneration in industry. These advantages accrue from the much higher temperatures at which thermionic energy conversion takes place, its suitability for very small as well as large process heaters, and, of course, its production of direct heat rather than process steam. In fact, thermionics can even be coupled to more conventional cogeneration technologies (e.g., steam turbines) to extend their applicability to processes requiring a greater electrical-to-thermal ratio than either cogeneration technology alone can provide. Several examples of thermionic cogeneration are presented in greater detail: copper refining by the Noranda process; thermionic topping cycles for gas turbine; and combined cycle and fossil-fuel steam power plants. 13 refs., 71 figs.

Not Available

1984-10-01T23:59:59.000Z

323

Building Technologies Office: House Simulation Protocols Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Protocols Report This image shows a cover of a report titled "Building America House Simulation Protocols." The Building America logo is shown in the lower left corner of...

324

Utility Advanced Turbine Systems (ATS) technology readiness testing  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

1999-05-01T23:59:59.000Z

325

Model Year 2006: Alternative Fuel and Advanced Technology Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

06: Alternative Fuel and Advanced Technology Vehicles 06: Alternative Fuel and Advanced Technology Vehicles Fuel Type EPAct Compliant? Model Vehicle Type Emission Class Powertrain Fuel Capacity Range American Honda Motor Corporation 888-CCHONDA www.honda.com CNG Dedicated EPAct Yes Civic GX Compact Sedan SULEV Tier 2 Bin II 1.7L, 4-cylinder 8 GGE 200 mi HEV (NiMH) EPAct No Accord Hybrid Sedan ULEV 3.0L V6 144 volt NiMH + 17.1 Gal Gasoline TBD HEV (NiMH) EPAct No Civic Hybrid Sedan CA ULEV 1.3L, 4-cylinder 144 volt NiMH + 13.2 Gal Gasoline TBD HEV (NiMH) EPAct No Insight Two-seater SULEV (CVT model) ULEV (MT model) 1.0L, 3-cylinder 144 volt NiMH + 10.6 Gal Gasoline 636 mi DaimlerChrysler 800-999-FLEET www.fleet.chrysler.com E85 FFV EPAct Yes Dodge Ram Pickup 1500 Series 1 Pickup Tier 2 Bin 10A 4.7L V8 26 Gal 416 mi E85 FFV

326

Model Year 2013: Alternative Fuel Vehicles and Advanced Technology Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

13: Alternative Fuel and Advanced Technology Vehicles 13: Alternative Fuel and Advanced Technology Vehicles 1 (Updated 3/6/13) 1 Source: http:/afdc.energy.gov/vehicles/search/light/ Fuel/Powertrain Type Make Model Vehicle Type Engine Size/Cylinders Transmission Emissions Class 2 Fuel Economy Gasoline 3,4 City/Hwy Fuel Economy Alt Fuel 3,4 City/Hwy HEV Acura ILX Sedan 1.5L I4 ECVT Tier 2 Bin 3 LEVII PZEV 39 / 38 N/A FFV E85 Audi A4 Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi A5 Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi A5 Cabriolet Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi Allroad Quatro Wagon 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 27 14 / 18 FFV E85 Audi Q5 SUV 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 28 14 / 19 HEV Audi Q5 Hybrid SUV 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 24 / 30 N/A FFV E85 Bentley

327

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between Ge and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially be GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished from 4Q97 through 3Q98.

Unknown

1998-10-01T23:59:59.000Z

328

Utility Advanced Turbine Systems (ATS) Technology Readiness Testing  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. This report summarizes work accomplished in 2Q98. The most significant accomplishments are listed in the report.

NONE

1998-10-29T23:59:59.000Z

329

Utility Advanced Turbine Systems (ATS) technology readiness testing  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

NONE

1999-05-01T23:59:59.000Z

330

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between Ge and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially be GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished from 4Q97 through 3Q98.

Unknown

1998-10-01T23:59:59.000Z

331

Utility Advanced Turbine Systems (ATS) Technology Readiness Testing  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. This report summarizes work accomplished in 2Q98. The most significant accomplishments are listed in the report.

1998-10-29T23:59:59.000Z

332

Markets for small-scale, advanced coal-combustion technologies  

SciTech Connect

This report examines the potential of using US-developed advanced coal technologies (ACTs) for small combustors in foreign markets; in particular, the market potentials of the member countries of the Organization of Economic Co-operation and Development (OECD) were determined. First, the United States and those OECD countries with very low energy demands were eliminated. The remaining 15 countries were characterized on the basis of eight factors that would influence their decision to use US ACTs: energy plan and situation, dependence on oil and gas imports, experience with coal, residential/commercial energy demand, industrial energy demand, trade relationship with the United States, level of domestic competition with US ACT manufacturers, and environmental pressure to use advanced technology. Each country was rated high, medium-high, low-medium, or low on each factor, based on statistical and other data. The ratings were then used to group the countries in terms of their relative market potential (good, good but with impediments, or limited). The best potential markets appear to be Spain, Italy, turkey, Greece, and Canada. 25 refs., 1 fig., 37 tabs.

Placet, M.; Kenkeremath, L.D.; Streets, D.G.; Dials, G.E.; Kern, D.M.; Nehring, J.L.; Szpunar, C.B.

1988-12-01T23:59:59.000Z

333

Advanced Automotive Technologies annual report to Congress, fiscal year 1996  

DOE Green Energy (OSTI)

This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy`s Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation.

NONE

1998-03-01T23:59:59.000Z

334

Remote power systems with advanced storage technologies for Alaskan villages  

DOE Green Energy (OSTI)

Remote Alaskan communities pay economic and environmental penalties for electricity, because they must import diesel as their primary fuel for electric power production, paying heavy transportation costs and potentially causing environmental damage with empty drums, leakage, and spills. For these reasons, remote villages offer a viable niche market where sustainable energy systems based on renewable resources and advanced energy storage technologies can compete favorably on purely economic grounds, while providing environmental benefits. These villages can also serve as a robust proving ground for systematic analysis, study, improvement, and optimization of sustainable energy systems with advanced technologies. This paper presents an analytical optimization of a remote power system for a hypothetical Alaskan village. The analysis considers the potential of generating renewable energy (e.g., wind and solar), along with the possibility of using energy storage to take full advantage of the intermittent renewable sources available to these villages. Storage in the form of either compressed hydrogen or zinc pellets can then provide electricity from hydrogen or zinc-air fuel cells when renewable sources are unavailable.The analytical results show a great potential to reduce fossil fuel consumption and costs basing renewable energy combined with advanced energy storage devices. The best solution for our hypothetical village appears to be a hybrid energy system, which can reduce consumption of diesel fuel by over 50% with annualized cost savings by over 30% by adding wind turbines to the existing diesel generators. When energy storage devices are added, diesel fuel consumption and costs can be reduced substantially more. With optimized energy storage, use of the diesel generatorss can be reduced to almost zero, with the existing equipment only maintained for added reliability. However about one quarter of the original diesel consumption is still used for heating purposes. (We use the term diesel to encompass the fuel, often called heating or fuel oil, of similar or identical properties.)

Isherwood, W.; Smith, R.; Aceves, S.; Berry, G.; Clark, W.; Johnson, R.; Das, D.; Goering, D.; Seifert, R.

1997-12-01T23:59:59.000Z

335

Advanced Vehicles Group: Center for Transportation Technologies and Systems  

DOE Green Energy (OSTI)

Describes R&D in advanced vehicle systems and components (e.g., batteries) by NREL's Advanced Vehicles Group.

Not Available

2008-08-01T23:59:59.000Z

336

Advanced Power Electronics for LED Drivers: Advanced Technologies for integrated Power Electronics  

SciTech Connect

ADEPT Project: MIT is teaming with Georgia Institute of Technology, Dartmouth College, and the University of Pennsylvania (UPenn) to create more efficient power circuits for energy-efficient light-emitting diodes (LEDs) through advances in 3 related areas. First, the team is using semiconductors made of high-performing gallium nitride grown on a low-cost silicon base (GaN-on-Si). These GaN-on-Si semiconductors conduct electricity more efficiently than traditional silicon semiconductors. Second, the team is developing new magnetic materials and structures to reduce the size and increase the efficiency of an important LED power component, the inductor. This advancement is important because magnetics are the largest and most expensive part of a circuit. Finally, the team is creating an entirely new circuit design to optimize the performance of the new semiconductors and magnetic devices it is using.

2010-09-01T23:59:59.000Z

337

AVESTAR® - Advanced Virtual Energy Simulation Training And Research Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Avestar Video Avestar Video AVESTAR Center for Operational Excellence of Clean Energy Systems The AVESTAR Center is dedicated to accelerating progress toward achieving operational excellence for the nation's energy systems, from smart power plants to smart grid. Attaining operational excellence requires maximizing the efficiency and profitability from operations through excellent automation and control, all while reducing negative environmental impact and improving safety. Driving people excellence via the development, training, and empowerment of a highly-skilled engineering and operations workforce is another critical component of operational excellence. The AVESTAR Center is addressing all of these challenges by bringing together dynamic simulation, control, and 3D virtual reality technologies, state-of-the-art training simulators and facilities, and leading industry experts to focus on the optimal operation of clean energy systems in the smart grid era.

338

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

Unknown

1999-10-01T23:59:59.000Z

339

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

Unknown

1999-10-01T23:59:59.000Z

340

Circulating Fluid-Bed Technology for Advanced Power Systems  

Science Conference Proceedings (OSTI)

Circulating fluid bed technology offers the advantages of a plug flow, yet well-mixed, and high throughput reactor for power plant applications. The ability to effectively scale these systems in size, geometry, and operating conditions is limited because of the extensive deviation from ideal dilute gas-solids flow behavior (Monazam et al., 2001; Li, 1994). Two fluid computations show promise of accurately simulating the hydrodynamics in the riser circulating fluid bed; however, validation tests for large vessels with materials of interest to the power industry are lacking (Guenther et al., 2002). There is little available data in reactors large enough so that geometry (i.e. entrance, exit, and wall) effects do not dominate the hydrodynamics, yet with sufficiently large particle sizes to allow sufficiently large grid sizes to allow accurate and timely hydrodynamic simulations. To meet this need experimental tests were undertaken with relatively large particles of narrow size distribution in a large enough unit to reduce the contributions of wall effects and light enough to avoid geometry effects. While computational fluid dynamic calculations are capable of generating detailed velocity and density profiles, it is believed that the validation and model development begins with the ability to simulate the global flow regime transitions. The purpose of this research is to generate well-defined test data for model validation and to identify and measure critical parameters needed for these simulations.

Shadle, Lawrence J.; Ludlow, J. Christopher; Mei, Joseph S. (U.S. DOE National Energy Technology Laboratory); Guenther, Christopher (Fluent, Inc.)

2001-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "advanced simulation technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

PRATHAM: Parallel Thermal Hydraulics Simulations using Advanced Mesoscopic Methods  

SciTech Connect

At the Oak Ridge National Laboratory, efforts are under way to develop a 3D, parallel LBM code called PRATHAM (PaRAllel Thermal Hydraulic simulations using Advanced Mesoscopic Methods) to demonstrate the accuracy and scalability of LBM for turbulent flow simulations in nuclear applications. The code has been developed using FORTRAN-90, and parallelized using the message passing interface MPI library. Silo library is used to compact and write the data files, and VisIt visualization software is used to post-process the simulation data in parallel. Both the single relaxation time (SRT) and multi relaxation time (MRT) LBM schemes have been implemented in PRATHAM. To capture turbulence without prohibitively increasing the grid resolution requirements, an LES approach [5] is adopted allowing large scale eddies to be numerically resolved while modeling the smaller (subgrid) eddies. In this work, a Smagorinsky model has been used, which modifies the fluid viscosity by an additional eddy viscosity depending on the magnitude of the rate-of-strain tensor. In LBM, this is achieved by locally varying the relaxation time of the fluid.

Joshi, Abhijit S [ORNL; Jain, Prashant K [ORNL; Mudrich, Jaime A [ORNL; Popov, Emilian L [ORNL

2012-01-01T23:59:59.000Z

342

Advanced process engineering co-simulation using CFD-based reduced order models  

Science Conference Proceedings (OSTI)

The process and energy industries face the challenge of designing the next generation of plants to operate with unprecedented efficiency and near-zero emissions, while performing profitably amid fluctuations in costs for raw materials, finished products, and energy. To achieve these targets, the designers of future plants are increasingly relying upon modeling and simulation to create virtual plants that allow them to evaluate design concepts without the expense of pilot-scale and demonstration facilities. Two of the more commonly used simulation tools include process simulators for describing the entire plant as a network of simplified equipment models and computational fluid dynamic (CFD) packages for modeling an isolated equipment item in great detail by accounting for complex thermal and fluid flow phenomena. The Advanced Process Engineering Co-Simulator (APECS) sponsored by the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has been developed to combine process simulation software with CFD-based equipment simulation software so that design engineers can analyze and optimize the coupled fluid flow, heat and mass transfer, and chemical reactions that drive overall plant performance (Zitney et al., 2006). The process/CFD software integration was accomplished using the process-industry standard CAPE-OPEN interfaces.

Lang, Y.-D.; Biegler, L.T.; Munteanu, S.; Madsen, J.I.; Zitney, S.E.

2007-11-04T23:59:59.000Z

343

UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect

The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is optimized for the highest level of performance. The unique feature of an H-technology combined-cycle system is the integrated heat transfer system, which combines both the steam plant reheat process and gas turbine bucket and nozzle cooling. This feature allows the power generator to operate at a higher firing temperature than current technology units, thereby resulting in dramatic improvements in fuel-efficiency. The end result is the generation of electricity at the lowest, most competitive price possible. Also, despite the higher firing temperature of the H System{trademark}, the combustion temperature is kept at levels that minimize emission production. GE has more than 3.6 million fired hours of experience in operating advanced technology gas turbines, more than three times the fired hours of competitors' units combined. The H System{trademark} design incorporates lessons learned from this experience with knowledge gleaned from operating GE aircraft engines. In addition, the 9H gas turbine is the first ever designed using ''Design for Six Sigma'' methodology, which maximizes reliability and availability throughout the entire design process. Both the 7H and 9H gas turbines will achieve the reliability levels of our F-class technology machines. GE has tested its H System{trademark} gas turbine more thoroughly than any previously introduced into commercial service. The H System{trademark} gas turbine has undergone extensive design validation and component testing. Full-speed, no-load testing of the 9H was achieved in May 1998 and pre-shipment testing was completed in November 1999. The 9H will also undergo approximately a half-year of extensive demonstration and characterization testing at the launch site. Testing of the 7H began in December 1999, and full speed, no-load testing was completed in February 2000. The 7H gas turbine will also be subjected to extensive demonstration and characterization testing at the launch site.

Kenneth A. Yackly

2001-06-01T23:59:59.000Z

344

Center for Technology for Advanced Scientific Component Software (TASCS) Consolidated Progress Report July 2006 - March 2009  

SciTech Connect

A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

Bernholdt, D E; McInnes, L C; Govindaraju, M; Bramley, R; Epperly, T; Kohl, J A; Nieplocha, J; Armstrong, R; Shasharina, S; Sussman, A L; Sottile, M; Damevski, K

2009-04-14T23:59:59.000Z

345

FY2003 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Advanced Vehicle Technology Analysis and Evaluation Activities Bringing you a prosperous future where energy is clean, abundant, reliable and affordable 2003 Annual Progress Report freedomCAR & vehicle technologies program Less dependence on foreign oil, and eventual transition to an emissions-free, petroleum-free vehicle U.S. Department of Energy FreedomCAR & Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2003 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager Advanced Vehicle Technology Analysis and Evaluation Activities

346

Simulation Model of the F/A-18 High Angle-of-Attack Research Vehicle Utilized for the Design of Advanced Control Laws  

Science Conference Proceedings (OSTI)

The f18harv six degree-of-freedom nonlinear batch simulation used to support research in advanced control laws and flight dynamics issues as part of NASA''s High Alpha Technology Program is described in this report. This simulation models an F/A-18 airplane ...

Messina M. D.; Strickland M. E.; Hoffler K. D.; Carzoo S. W.; Bundick W. T.; Yeager J. C.; Jr F. L. Beissner

1996-05-01T23:59:59.000Z

347

STATEMENT OF CONSIDERATIONS REQUEST BY ADVANCED TECHNOLOGY MATERIALS, INC.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(ATMI) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS TO INVENTIONS MADE UNDER COOPERATIVE AGREEMENT NUMBER DE-FC04-02AL67616, DOE WAIVER NO. W(A) 02-054. The Petitioner, ATMI, has requested a waiver of all domestic and foreign patent rights to inventions that may be conceived or first actually reduced to practice in the course of ATMI's subcontract work for United Technologies Corporation Fuel Cells (UTCFC) under Cooperative Agreement Number DE-FC04-02AL67616 entitled "The Development of Sensors for Automotive Fuel Cell Systems" with the U.S. Department of Energy (DOE). The work to be done under the cooperative agreement will be the development of gas sensors for use in automotive fuel cell systems. The work to be done under the subcontract will be the design and development of a novel micro-machined hydrogen

348

DOE Solar Decathlon: Team Canada: Advancing Solar Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Northern Lights on the Concordia University campus. Enlarge image Northern Lights on the Concordia University campus. Enlarge image Team Canada's house features solar panels used as a roofing material and triple-glazed, south-facing windows to take advantage of the winter sun that shines on Concordia University's campus. (Courtesy of Concordia University) Who: Team Canada What: Northern Lights Where: Concordia University Loyola Campus 7141 Sherbrooke St. West Montréal, Quebec, Canada H4B 1R6 Map This House Public tours: Not available Solar Decathlon 2005 Team Canada: Advancing Solar Technologies The lone Canadian entry in the U.S. Department of Energy Solar Decathlon 2005 returned to the Loyola campus of Concordia University in Montreal, Quebec, following the competition. The solar-powered house, called Northern Lights, remains in good working order. It is used primarily for research.

349

Inexpensive Delivery of Compressed Hydrogen with Advanced Vessel Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

delivery of compressed hydrogen delivery of compressed hydrogen with advanced vessel technology Gene Berry Andrew Weisberg Salvador M. Aceves Lawrence Livermore National Laboratory (925) 422-0864 saceves@LLNL.GOV DOE and FreedomCar & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop Washington, DC January 25, 2006 LLNL is developing innovative concepts for efficient containment of hydrogen in light duty vehicles concepts may offer advantages for hydrogen delivery Conformable containers efficiently use available space in the vehicle. We are pursuing multiple approaches to conformability High Strength insulated pressure vessels extend LH 2 dormancy 10x, eliminate boiloff, and enable efficiencies of flexible refueling (compressed/cryogenic H 2 /(L)H 2 ) The PVT properties of H

350

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

Unknown

1999-04-01T23:59:59.000Z

351

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

Unknown

1999-04-01T23:59:59.000Z

352

Simulator demonstration of the interphase power controller technology  

SciTech Connect

The paper reports on a simulator demonstration of the Interphase Power Controller (IPC) technology. The simulator models developed and the testing methodology are described. The main results confirm the basic attributes of the IPC (robust power flow control characteristic, fault current limitation and decoupling of the interconnected networks) and that the IPC can be built from conventional equipment. Random testing performed on the simulator proved to be useful in assessing the maximum stresses on the equipment.

Sybille, G.; Haj-Maharsi, Y. [Inst. de Recherche d`Hydro-Quebec, Varennes, Quebec (Canada)] [Inst. de Recherche d`Hydro-Quebec, Varennes, Quebec (Canada); Morin, G.; Beauregard, F.; Brochu, J.; Lemay, J.; Pelletier, P. [Centre d`Innovation sur le Transport d`Energie du Quebec, Varennes, Quebec (Canada)] [Centre d`Innovation sur le Transport d`Energie du Quebec, Varennes, Quebec (Canada)

1996-10-01T23:59:59.000Z

353

Environmental benefits of advanced oil and gas exploration and production technology  

SciTech Connect

THROUGHOUT THE OIL AND GAS LIFE CYCLE, THE INDUSTRY HAS APPLIED AN ARRAY OF ADVANCED TECHNOLOGIES TO IMPROVE EFFICIENCY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE. THIS REPORT FOCUSES SPECIFICALLY ON ADVANCES IN EXPLORATION AND PRODUCTION (E&P) OPERATIONS.

1999-10-01T23:59:59.000Z

354

The advanced computational testing and simulation toolkit (ACTS)  

DOE Green Energy (OSTI)

During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts, and tool maturity. This paper presents a brief introduction to the functionality available in ACTS.

Drummond, L.A.; Marques, O.

2002-05-21T23:59:59.000Z

355

Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors  

Science Conference Proceedings (OSTI)

The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high-fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation, a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet tranformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

Heinz Pitsch

2010-05-31T23:59:59.000Z

356

Hydrogen energy for tomorrow: Advanced hydrogen production technologies  

SciTech Connect

The future vision for hydrogen is that it will be cost-effectively produced from renewable energy sources and made available for widespread use as an energy carrier and a fuel. Hydrogen can be produced from water and when burned as a fuel, or converted to electricity, joins with oxygen to again form water. It is a clean, sustainable resource with many potential applications, including generating electricity, heating homes and offices, and fueling surface and air transportation. To achieve this vision, researchers must develop advanced technologies to produce hydrogen at costs competitive with fossil fuels, using sustainable sources. Hydrogen is now produced primarily by steam reforming of natural gas. For applications requiring extremely pure hydrogen, production is done by electrolysis. This is a relatively expensive process that uses electric current to dissociate, or split, water into its hydrogen and oxygen components. Technologies with the best potential for producing hydrogen to meet future demand fall into three general process categories: photobiological, photoelectrochemical, and thermochemical. Photobiological and photoelectrochemical processes generally use sunlight to split water into hydrogen and oxygen. Thermochemical processes, including gasification and pyrolysis systems, use heat to produce hydrogen from sources such as biomass and solid waste.

1995-08-01T23:59:59.000Z

357

Golden Technologies Company, Inc. Request for An Advance Waiver of Domestic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Golden Technologies Company, Inc. Request for An Advance Waiver of Golden Technologies Company, Inc. Request for An Advance Waiver of Domestic and Foreign Rights. January 10, 1995 Golden Technologies Company, Inc. Request for An Advance Waiver of Domestic and Foreign Rights. January 10, 1995 Golden Technologies Company contracted with Eaton to develop advanced manufacturing technology for the cost-effective production of ceramic heat engine components. Because GTC was cost sharing 50%, had experience in product commercialization, and because the technology of ceramic engine parts could have a significant positive effect on the economy, the waiver of domestic and foreign rights was granted. Golden Technologies Company, Inc. Request for An Advance Waiver of Domestic and Foreign Rights. January 10, 1995 More Documents & Publications

358

Simulating the Next Generation of Energy Technologies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Simulating the Next Generation of Energy Technologies Simulating the Next Generation of Energy Technologies Simulating the Next Generation of Energy Technologies September 22, 2010 - 6:40pm Addthis Former Under Secretary Koonin Former Under Secretary Koonin Director - NYU's Center for Urban Science & Progress and Former Under Secretary for Science When aerospace engineers design a new aircraft, they don't start with a prototype, they start with a computer. Computer simulations have revolutionized that industry, allowing engineers to make complex calculations and fine tune designs well before the first physical model is ever produced. All of this amounts to a production process that costs less and produces a commercial product much faster. It's an approach that has changed the way the aerospace industry operates, and it's one that we

359

Simulating the Next Generation of Energy Technologies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Simulating the Next Generation of Energy Technologies Simulating the Next Generation of Energy Technologies Simulating the Next Generation of Energy Technologies September 22, 2010 - 6:40pm Addthis Former Under Secretary Koonin Former Under Secretary Koonin Director - NYU's Center for Urban Science & Progress and Former Under Secretary for Science When aerospace engineers design a new aircraft, they don't start with a prototype, they start with a computer. Computer simulations have revolutionized that industry, allowing engineers to make complex calculations and fine tune designs well before the first physical model is ever produced. All of this amounts to a production process that costs less and produces a commercial product much faster. It's an approach that has changed the way the aerospace industry operates, and it's one that we

360

Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, April--June 1992  

Science Conference Proceedings (OSTI)

Effective September 26, 1991, Bechtel, with Amoco as the main subcontractor, initiated a study to develop a computer model and baseline design for advanced Fischer-Tropsch (F-T) technology for the US Department of Energy`s Pittsburgh Energy Technology Center (PETC). The objectives of the study are to: Develop a baseline design for indirect liquefaction using advanced F-T technology; prepare the capital and operating costs for the baseline design; and develop a process flow sheet simulation (PI-S) model. The baseline design, the economic analysis, and the computer model win be the major research planning tools that PETC will use to plan, guide, and evaluate its ongoing and future research and commercialization programs relating to indirect coal liquefaction. for the manufacture of synthetic liquid fuels from coal. This report is Bechtel`s third quarterly technical progress report covering the period from March 16, 1992 through June 21, 1992. This report consists of seven sections: Section 1 - introduction; Section 2 - summary; Section 3 - carbon dioxide removal tradeoff study; Section 4 - preliminary plant designs for coal preparation; Section 5 - preliminary design for syngas production; Section 6 - Task 3 - engineering design criteria; and Section 7 - project management.

Not Available

1992-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced simulation technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Development of a GOES-R Advanced Baseline Imager Solar Channel Radiance Simulator for Ice Clouds  

Science Conference Proceedings (OSTI)

This paper describes the development of an ice cloud radiance simulator for the anticipated Geostationary Operational Environmental Satellite R (GOES-R) Advanced Baseline Imager (ABI) solar channels. The simulator is based on the discrete ...

Shouguo Ding; Ping Yang; Bryan A. Baum; Andrew Heidinger; Thomas Greenwald

2013-04-01T23:59:59.000Z

362

Program on Technology Innovation: Review of Advanced Cooling Tower Technologies with Reduced Cooled Water Temperature and Evaporatio  

Science Conference Proceedings (OSTI)

This report reviews current technologies and solutions for advanced cooling towers with reduced cooled water temperature and evaporation losses. This is the first report for the dew-point cooling tower fill development project, funded by the Electric Power Research Institute (EPRI) Program on Technology Innovation, Water Conservation program. It is prepared by the Gas Technology Institute (GTI).This review is based on a literature and patent survey; it summarizes advancements in cooling ...

2013-03-29T23:59:59.000Z

363

Advanced technologies for decomtamination and conversion of scrap metal  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) faces the task of decommissioning much of the vast US weapons complex. One challenge of this effort includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for cleanup of contaminated sites and facilities. Recycling helps to offset the cost of decommissioning and saves valuable space in the waste disposal facilities. It also reduces the amount of environmental effects associated with mining new metals. Work on this project is geared toward finding decontamination and/or recycling alternatives for the RSM contained in the decommissioned gaseous diffusion plants including approximately 40,000 tons of nickel. The nickel is contaminated with Technetium-99, and is difficult to remove using traditional decontamination technologies. The project, titled ``Advanced Technologies for Decontamination and Conversion of Scrap Metal'' was proposed as a four phase project. Phase 1 and 2 are complete and Phase 3 will complete May 31, 1999. Stainless steel made from contaminated nickel barrier was successfully produced in Phase 1. An economic evaluation was performed and a market study of potential products from the recycled metal was completed. Inducto-slag refining, after extensive testing, was eliminated as an alternative to remove technetium contamination from nickel. Phase 2 included successful lab scale and pilot scale demonstrations of electrorefining to separate technetium from nickel. This effort included a survey of available technologies to detect technetium in volumetrically contaminated metals. A new process to make sanitary drums from RSM was developed and implemented. Phase 3 included a full scale demonstration of electrorefining, an evaluation of electro-refining alternatives including direct dissolution, melting of nickel into anodes, a laser cutting demonstration, an investigation of commercial markets for RSM, and refinement of methods to quantify isotopic elements.

Valerie MacNair; Steve Sarten; Thomas Muth; Brajendra Mishra

1999-05-27T23:59:59.000Z

364

Advanced Wind Technology: New Challenges for a New Century  

Science Conference Proceedings (OSTI)

This paper describes the growth, advances, and challenges faced by the wind energy industry in 2006.

Thresher, R.; Laxson, A.

2006-06-01T23:59:59.000Z

365

NETL: DOE/NETL Advanced CO2 Capture R&D Program: Technology Update  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Capture R&D Program: Technology Update May 2013 Edition This comprehensive handbook provides an update on DOENETL R&D efforts on advanced CO2 capture technologies for...

366

ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS  

Science Conference Proceedings (OSTI)

Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow in the wellbore); and (3) accurate approaches to account for the effects of reservoir heterogeneity and for the optimization of nonconventional well deployment. An overview of our progress in each of these main areas is as follows. A general purpose object-oriented research simulator (GPRS) was developed under this project. The GPRS code is managed using modern software management techniques and has been deployed to many companies and research institutions. The simulator includes general black-oil and compositional modeling modules. The formulation is general in that it allows for the selection of a wide variety of primary and secondary variables and accommodates varying degrees of solution implicitness. Specifically, we developed and implemented an IMPSAT procedure (implicit in pressure and saturation, explicit in all other variables) for compositional modeling as well as an adaptive implicit procedure. Both of these capabilities allow for efficiency gains through selective implicitness. The code treats cell connections through a general connection list, which allows it to accommodate both structured and unstructured grids. The GPRS code was written to be easily extendable so new modeling techniques can be readily incorporated. Along these lines, we developed a new dual porosity module compatible with the GPRS framework, as well as a new discrete fracture model applicable for fractured or faulted reservoirs. Both of these methods display substantial advantages over previous implementations. Further, we assessed the performance of different preconditioners in an attempt to improve the efficiency of the linear solver. As a result of this investigation, substantial improvements in solver performance were achieved.

Louis J. Durlofsky; Khalid Aziz

2004-08-20T23:59:59.000Z

367

Systems integration and analysis of advanced life support technologies  

E-Print Network (OSTI)

Extended missions to space have long been a goal of the National Aeronautics and Space Administration (NASA). Accomplishment of NASA's goal requires the development of systems and tools for sustaining human life for periods of several months to several years. This is the primary objective of NASA's Advanced Life Support (ALS) program. This work contributes directly to NASA efforts for ALS, particularly food production. The objective of this work is to develop a systematic methodology for analyzing and improving or modifying ALS technologies to increase their acceptability for implementation in long-duration space missions. By focusing primarily on the food production systems, it is an aim of this work to refine the procedure for developing and analyzing the ALS technologies. As a result of these efforts, researchers will have at their disposal, a powerful tool for establishing protocols for each technology as well as for modifying each technology to meet the standards for practical applications. To automate the developed methodology and associated calculations, a computer-aided tool has been developed. The following systematic procedures are interrelated and automatically integrated into the computer-aided tool: • Process configuration, with particular emphasis given to food production (e.g., syrup and flour from sweet potato, starch from sweet potato, breakfast cereal from sweet potato); • Modeling and analysis for mass and energy tracking and budgeting; • Mass and energy integration • Metrics evaluation (e.g., Equivalent System Mass (ESM)). Modeling and analysis is achieved by developing material- and energy-budgeting models. Various forms of mass and energy are tracked through fundamental as well as semiempirical models. Various system alternatives are synthesized and screened using ESM and other metrics. The results of mass, energy and ESM analyses collectively revealed the major consumers of time, equivalent mass, and energy, namely evaporation, condensation, dehydration, drying and extrusion. The targeted processes were subsequently targeted for modifications. In conclusion, this work provides a systematic methodology for transforming non-conventional problems into traditional engineering design problems, a significant contribution to ALS studies.

Nworie, Grace A.

2006-08-01T23:59:59.000Z

368

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SANANDRES RESERVOIR  

Science Conference Proceedings (OSTI)

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; (7) Mobility control agents.

Unknown

2003-01-15T23:59:59.000Z

369

Advanced membrane separation technology for biosolvents. Final CRADA report.  

Science Conference Proceedings (OSTI)

Argonne and Vertec Biosolvents investigated the stability and perfonnance for a number of membrane systems to drive the 'direct process' for pervaporation-assisted esterification to produce lactate esters. As outlined in Figure 1, the target is to produce ammonium lactate by fennentation. After purification and concentration, ammonium lactate is reacted with ethanol to produce the ester. Esterification is a reversible reaction so to drive the reaction forward, the produced ammonia and water must be rapidly separated from the product. The project focused on selecting pervaporation membranes with (1) acid functionality to facilitate ammonia separation and (2) temperature stability to be able to perform that reaction at as high a temperature as possible (Figure 2). Several classes of commercial membrane materials and functionalized membrane materials were surveyed. The most promising materials were evaluated for scale-up to a pre-commercial application. Over 4 million metric tons per year of solvents are consumed in the U.S. for a wide variety of applications. Worldwide the usage exceeds 10 million metric tons per year. Many of these, such as the chlorinated solvents, are environmentally unfriendly; others, such as the ethylene glycol ethers and N Methyl Pyrrolidone (NMP), are toxic or teratogenic, and many other petroleum-derived solvents are coming under increasing regulatory restrictions. High performance, environmentally friendly solvents derived from renewable biological resources have the potential to replace many of the chlorinated and petrochemical derived solvents. Some of these solvents, such as ethyl lactate; d-limonene, soy methyl esters, and blends ofthese, can give excellent price/perfonnance in addition to the environmental and regulatory compliance benefits. Advancement of membrane technologies, particularly those based on pervaporation and electrodialysis, will lead to very efficient, non-waste producing, and economical manufacturing technologies for production of ethyl lactate and other esters.

Snyder, S. W.; Energy Systems

2010-02-08T23:59:59.000Z

370

Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants  

E-Print Network (OSTI)

Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants ANL-AFCI-168 of Nuclear Reactor and Chemical Separation Plants ANL-AFCI-168 by G. Palmiotti, J. Cahalan, P. Pfeiffer, T;2 ANL-AFCI-168 Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants G

Anitescu, Mihai

371

Advanced Acid Gas Separation Technology for Clean Power and Syngas  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas Processing Systems Syngas Processing Systems Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications Air Products and Chemicals, Inc. Project Number: FE0013363 Project Description In this project, Air Products will operate a two-bed mobile system at the National Carbon Capture Center (NCCC) facility. A slipstream of authentic, high-hydrogen syngas based on low-rank coal will be evaluated as the feedstock. Testing will be conducted for approximately eight weeks, thereby providing far longer adsorbent exposure data than demonstrated to date. By utilizing real-world, high- hydrogen syngas, information necessary to understand the utility of the system for methanol production will be made available. In addition, Air Products will also operate a multi-bed PSA process development unit (PDU), located at its Trexlertown, PA headquarters, to evaluate the impact of incorporating pressure equalization steps in the process cycle. This testing will be conducted utilizing a sulfur-free, synthetic syngas, and will improve the reliability of the prediction of the system's operating performance at commercial scale.

372

Advanced technology options for industrial heating equipment research  

Science Conference Proceedings (OSTI)

This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

Jain, R.C.

1992-10-01T23:59:59.000Z

373

ADVISOR (ADvanced VehIcle SimulatOR) | Open Energy Information  

Open Energy Info (EERE)

ADVISOR (ADvanced VehIcle SimulatOR) ADVISOR (ADvanced VehIcle SimulatOR) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: ADVISOR (ADvanced VehIcle SimulatOR) Focus Area: Fuel Economy Topics: System & Application Design Website: sourceforge.net/projects/adv-vehicle-sim/ Equivalent URI: cleanenergysolutions.org/content/advisor-advanced-vehicle-simulator Language: English Policies: Regulations Regulations: Fuel Efficiency Standards This tool, originally developed by the National Renewable Energy Laboratory (NREL), allows users to simulate and analyze conventional, advanced, light, and heavy vehicles, including hybrid electric and fuel cell vehicles. The tool allows users to assess the effect of changes in vehicle components (such as motors, batteries, catalytic converters, climate control systems,

374

Advanced concepts in large-scale network simulation  

Science Conference Proceedings (OSTI)

This tutorial paper reviews existing concepts and future directions in selected areas related to simulation of large-scale networks. It covers specifically topics in traffic modeling, simulation of routing, network emulation, and real-time simulation.

David M. Nicol; Michael Liljenstam; Jason Liu

2005-12-01T23:59:59.000Z

375

Advanced wellbore thermal simulator GEOTEMP2 research report  

DOE Green Energy (OSTI)

The development of the GEOTEMP2 wellbore thermal simulator is described. The major technical features include a general purpose air and mist drilling simulator and a two-phase steam flow simulator that can model either injection or production.

Mitchell, R.F.

1982-02-01T23:59:59.000Z

376

Vehicle Technologies Office: Advanced Petroleum-Based Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

oil, possibly blended with performance-enhancing non-petroleum fossil resources such as natural gas or coal. Advanced Petroleum-Based Fuels The Advanced Petroleum-Based Fuels...

377

Measuring the success possibility of implementing advanced manufacturing technology by utilizing the consistent fuzzy preference relations  

Science Conference Proceedings (OSTI)

Yusuff et al. [Yusuff, R. M., Yee, K. P., & Hashmi, M. S. J. (2001). A preliminary study on the potential use of the analytical hierarchical process (AHP) to predict advanced manufacturing technology (AMT) implementation. Robotics and Computer Integrated ... Keywords: Advanced manufacturing technology (AMT), Analytic hierarchy process (AHP), Consistent fuzzy preference relations (CFPR), Pairwise comparison

Tsung-Han Chang; Tien-Chin Wang

2009-04-01T23:59:59.000Z

378

Editorial message: special track on computer-aided law and advanced technologies  

Science Conference Proceedings (OSTI)

Computer-aided Law and Advanced Technology is focussed on law and advanced technologies for representing a broad and diverse forum for the discussion of research in computer-aided law, one that can provide synergies when aligned with other areas within ...

Giovanni Sartor; Alessandra Villecco

2006-04-01T23:59:59.000Z

379

Simulation: Moving from Technology Challenge to Human Factors Success  

Science Conference Proceedings (OSTI)

Recognition of the many limitations of traditional apprenticeship training is driving new approaches to learning medical procedural skills. Among simulation technologies and methods available today, computer-based systems are topical and bring the benefits of automated, repeatable, and reliable performance assessments. Human factors research is central to simulator model development that is relevant to real-world imaging-guided interventional tasks and to the credentialing programs in which it would be used.

Gould, Derek A., E-mail: dgould@liv.ac.uk [Royal Liverpool University NHS Trust, Radiology Department (United Kingdom); Chalmers, Nicholas [Manchester Royal Infirmary, Department of Radiology (United Kingdom); Johnson, Sheena J. [University of Manchester, Manchester Business School (United Kingdom); Kilkenny, Caroline [University of Hull, Psychology Department (United Kingdom); White, Mark D. [University of Liverpool, School of Engineering (United Kingdom); Bech, Bo [University Hospital of Skane, Vascular Center Malmoe (Sweden); Lonn, Lars [National University Hospital of Denmark, Department of Radiology and Vascular Surgery (Denmark); Bello, Fernando [Imperial College London, Clinical Skills Centre, Department of Surgery and Cancer (United Kingdom)

2012-06-15T23:59:59.000Z

380

DOE Announces Up to $7.5 Million in Advanced Technology Research to Harness  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

.5 Million in Advanced Technology Research to .5 Million in Advanced Technology Research to Harness Energy Potential of Oceans, Tides and Rivers DOE Announces Up to $7.5 Million in Advanced Technology Research to Harness Energy Potential of Oceans, Tides and Rivers May 5, 2008 - 11:30am Addthis WASHINGTON, DC - As part of the Bush Administration's ongoing commitment to invest in clean energy technologies to meet growing energy demand while reducing greenhouse gas emissions, the U.S. Department of Energy (DOE) has announced up to $7.5 million in federal funding for research and development to help advance the viability and cost-competitiveness of advanced water power systems. Through this Funding Opportunity Announcement (FOA), DOE seeks partnerships with U.S. industry and universities to develop innovative and effective technologies capable of

Note: This page contains sample records for the topic "advanced simulation technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

IEP - Advanced NOx Emissions Control: NOx Reduction Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

NOx Reduction Technologies NOx reduction technologies can be grouped into two broad categories: combustion modifications and post-combustion processes. Some of the more important...

382

Technologies  

Technologies Energy. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor; Modular Electromechanical ...

383

Technologies  

Technologies Energy, Utilities, & Power Systems. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor

384

Virtual cityscapes: recent advances in crowd modeling and traffic simulation  

Science Conference Proceedings (OSTI)

We survey our recent work on interactive modeling, generation, and control of large-scale crowds and traffic for simulating digital cities. These include multi-agent navigation, simulating large crowds with emerging behaviors as well as interactive simulation ... Keywords: continuum traffic, crowd modeling, digital cities, multi-agent simulation

Ming C. Lin; Dinesh Manocha

2010-09-01T23:59:59.000Z

385

Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University  

DOE Green Energy (OSTI)

This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

Nigle N. Clark

2006-12-31T23:59:59.000Z

386

Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, April--June 1994  

SciTech Connect

The objectives of this study are to: Develop a baseline design and two alternative designs for indirect liquefaction using advanced F-T technology. The baseline design uses Illinois No. 6 Eastern Coal and conventional refining. There is an alternative refining case using ZSM-5 treatment of the vapor steam from the flurry F-T reactor and an alternative coal case using Western coal from the Powder River Basin. Prepare the capital and operating costs for the baseline design and the alternatives. Individual plant costs for the alternative cases will be prorated on capacity, wherever possible, from the baseline case, develop a process flowsheet simulation (PFS) model. The baseline design, the economic analysis and computer model will be major research planning tools that Pittsburgh Energy Technology Center will use to plan, guide and evaluate its ongoing and future research and commercialization programs relating to indirect coal liquefaction for the manufacture of synthetic liquid fuels from coal. During the reporting period, work progressed on Tasks 1, 4, 5, 6 and 7. This report covers work done during the period and consists of six sections: introduction and summary; Task 1, baseline design and alternatives; Task 4, process flowsheet simulation (PFS) model; Task 5, perform sensitivity studies using the PFS model; Task 6, document the PFS model and develop a DOE training session on its use, and project management and staffing report.

NONE

1994-01-01T23:59:59.000Z

387

Department of Energy Advance Methane Hydrates Science and Technology Projects  

Energy.gov (U.S. Department of Energy (DOE))

Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

388

DOE Selects Ten Projects to Conduct Advanced Turbine Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

and barriers that must be overcome to enable the development of advanced gas turbines and gas turbine-based systems that will operate reliably, cleanly, efficiently, and cost...

389

A Pathway of Advanced Technologies for IGCC Carbon Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

reference) 1.2 415 -12 Coal feed pump Increases cold gas efficiency 0.5 - - Materialsinstrumentation advanced controls demonstration Increases planned & unplanned...

390

Under Secretary Nominee Sees INL Advanced Vehicle Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

INL engineers explain the laboratory's role in DOE's Advanced Vehicle Testing Activity, hybrid-electric battery vehicle research, and biofuels research and development. He also...

391

Advances in Metal Casting Technologies: Modeling/Simulation and ...  

Science Conference Proceedings (OSTI)

Oct 31, 2013... a rheology-viscosity sub-model to address the interference between ... In this work, the effect of electromagnetic turbulent inhibitors on the ...

392

Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer  

Open Energy Info (EERE)

Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model Jump to: navigation, search Tool Summary Name: Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model Agency/Company /Organization: Oak Ridge National Laboratory OpenEI Keyword(s): EERE tool, Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model, MA3T Project U.S. consumer demand for plug-in hybrid electric vehicles (PHEV) in competition among various light-duty vehicle technologies for hundreds of market segments based and multiple regions. For more information, contact the ORNL Energy and Transportation Science Division at http://www.ornl.gov/sci/ees/etsd/contactus.shtml References Retrieved from

393

Health Effects from Advanced Combustion and Fuel Technologies  

SciTech Connect

This document requires a separate file for the figures. It is for DOE's Office of Vehicle Technologies Annual Report

Barone, Teresa L [ORNL; Parks, II, James E [ORNL; Lewis Sr, Samuel Arthur [ORNL; Connatser, Raynella M [ORNL

2010-01-01T23:59:59.000Z

394

Advanced Lithium Ion Battery Technologies - Energy Innovation Portal  

The Berkeley Lab technology contributes to improved battery safety by circumventing lithium metal dendrite formation. Benefits. ... hybrid electric vehicles;

395

Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report  

DOE Green Energy (OSTI)

This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

NONE

1998-12-01T23:59:59.000Z

396

The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology  

Science Conference Proceedings (OSTI)

To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team projects and faculty/staff exchanges. In June of 2008, the first week-long ATR NSUF Summer Session was attended by 68 students, university faculty and industry representatives. The Summer Session featured presentations by 19 technical experts from across the country and covered topics including irradiation damage mechanisms, degradation of reactor materials, LWR and gas reactor fuels, and non-destructive evaluation. High impact research results from leveraging the entire research infrastructure, including universities, industry, small business, and the national laboratories. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. Current partner facilities include the MIT Reactor, the University of Michigan Irradiated Materials Testing Laboratory, the University of Wisconsin Characterization Laboratory, and the University of Nevada, Las Vegas transmission Electron Microscope User Facility. Needs for irradiation of material specimens at tightly controlled temperatures are being met by dedication of a large in-pile pressurized water loop facility for use by ATR NSUF users. Several environmental mechanical testing systems are under construction to determine crack growth rates and fracture toughness on irradiated test systems.

T. R. Allen; J. B. Benson; J. A. Foster; F. M. Marshall; M. K. Meyer; M. C. Thelen

2009-05-01T23:59:59.000Z

397

DOE Awards $3.3 million for Advanced Remediation Technology Contracts |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards $3.3 million for Advanced Remediation Technology Awards $3.3 million for Advanced Remediation Technology Contracts DOE Awards $3.3 million for Advanced Remediation Technology Contracts August 3, 2006 - 8:38am Addthis WASHINGTON, DC - The Department of Energy's (DOE) Office of Environmental Management (EM) today awarded 12 contracts totaling $3.3 million to support the development of technologies that have the potential to reduce cleanup costs and increase the safety and efficiency of treating and disposing of radioactive waste. These contracts provide funding to small and large businesses and a university to develop technologies over a six month period. "These awards allow for further development and evaluation of technologies that can lead to breakthroughs in how the Department implements its cleanup

398

DOE Awards $3.3 million for Advanced Remediation Technology Contracts |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

.3 million for Advanced Remediation Technology .3 million for Advanced Remediation Technology Contracts DOE Awards $3.3 million for Advanced Remediation Technology Contracts August 3, 2006 - 8:38am Addthis WASHINGTON, DC - The Department of Energy's (DOE) Office of Environmental Management (EM) today awarded 12 contracts totaling $3.3 million to support the development of technologies that have the potential to reduce cleanup costs and increase the safety and efficiency of treating and disposing of radioactive waste. These contracts provide funding to small and large businesses and a university to develop technologies over a six month period. "These awards allow for further development and evaluation of technologies that can lead to breakthroughs in how the Department implements its cleanup mission across the complex," said Assistant Secretary of Environmental

399

Advancing Simulation Science: The Legacy of the ASC Academic Strategic Alliance Program  

National Nuclear Security Administration (NNSA)

a a min [Type the abstract of the document here. The abstract is typically a short summary of the contents of the document.] Advancing Simulation Science: The Legacy of the ASC Academic Strategic Alliance Program ii ON THE COVER: Hot gas flow field and propellant stress in propellant of Titan IV rocket motor. Fully coupled "fluid-structure interaction" simulation performed using CSAR Rocstar Simulation Suite." University of Illinois at Urbana-Champaign: Center for Simulation of Advanced Rockets (CSAR) NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United

400

Advanced Energy and Water Recovery Technology from Low Grade Waste Heat  

SciTech Connect

The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer performance was also done, which shows this heat transfer enhancement approach works well in a wide parameters range for typical flue gas conditions. Better understanding of condensing heat transfer mechanism for porous membrane heat transfer surfaces, shows higher condensation and heat transfer rates than non-permeable tubes, due to existence of the porous membrane walls. Laboratory testing has documented increased TMC performance with increased exhaust gas moisture content levels, which has exponentially increased potential markets for the product. The TMC technology can uniquely enhance waste heat recovery in tandem with water vapor recovery for many other industrial processes such as drying, wet and dry scrubber exhaust gases, dewatering, and water chilling. A new metallic substrate membrane tube development and molded TMC part fabrication method, provides an economical way to expand this technology for scaled up applications with less than 3 year payback expectation. A detailed market study shows a broad application area for this advanced waste heat and water recovery technology. A commercialization partner has been lined up to expand this technology to this big market. This research work led to new findings on the TMC working mechanism to improve its performance, better scale up design approaches, and economical part fabrication methods. Field evaluation work needs to be done to verify the TMC real world performance, and get acceptance from the industry, and pave the way for our commercial partner to put it into a much larger waste heat and waste water recovery market. This project is addressing the priority areas specified for DOE Industrial Technologies Program's (ITP's): Energy Intensive Processes (EIP) Portfolio - Waste Heat Minimization and Recovery platform.

Dexin Wang

2011-12-19T23:59:59.000Z

Note: This page contains sample records for the topic "advanced simulation technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Vehicle Technologies Office: FY 2007 Progress Report for Advanced...  

NLE Websites -- All DOE Office Websites (Extended Search)

meet future Federal emissions regulations. The primary goal of the Advanced Combustion Engine R&D Sub-Program is to improve the brake thermal efficiency of internal combustion...

402

Vehicle Technologies Office: The eGallon Tool Advances Deployment...  

NLE Websites -- All DOE Office Websites (Extended Search)

eGallon Tool Advances Deployment of Electric Vehicles The Department of Energy recently launched the eGallon to help consumers compare the cost of fueling electric vehicles (EVs)...

403

REQUEST BY UNITED TECHNOLOGIES, PRATT & WHITNEY, FOR AN ADVANCE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the contract. Pratt & Whitney is a leader in the design, development and use of advance gas turbine air foils with more than ten years of TBC experience in flight engine air...

404

B61: Advanced Simulation and Computing Program, ASC: LANL Inside  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL ASC Science Underpins Stockpile Modernization Before the end of underground nuclear weapons testing, our nation relied on theory, experiment (testing), and simulation to...

405

Microsoft PowerPoint - 10-04 Sundar Technology Needs for WTP Simulants - PSSundar.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Needs for WTP Simulants Needs for WTP Simulants P. S. Sundar Process Technology - Plant Operations Div Waste Treatment Plant Project November 17, 2010 Bechtel National, Inc. Print Close Technology Needs for WTP Simulants 2 Agenda * Major simulant requirements of WTP Project and the associated challenges Bechtel National, Inc. Close Print Technology Needs for WTP Simulants 3 Simplified Process Flowsheet IHLW ILAW LAW Feed HLW Feed HLW Recycles LAW Recycles Bechtel National, Inc. Close Print Technology Needs for WTP Simulants 4 Simulant Needs * Commissioning Simulants - As received and pretreated LAW supernatants - As received HLW sludge - Pretreated HLW sludge - Vitrification recycle streams

406

Vice President Biden Announces Plan to Put One Million Advanced Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plan to Put One Million Advanced Plan to Put One Million Advanced Technology Vehicles on the Road by 2015 Vice President Biden Announces Plan to Put One Million Advanced Technology Vehicles on the Road by 2015 January 26, 2011 - 12:00am Addthis Washington, D.C. - Today, Vice President Biden, Chair of the Middle Class Task Force, took the "White House to Main Street Tour" to Greenfield, Indiana, where he visited leading manufacturer Ener1, Inc., which produces advanced lithium-ion battery systems for electric vehicles, grid energy storage and industrial electronics. In his State of the Union address last night, President Obama highlighted his goal of making the United States the first country in the world to put one million advanced technology vehicles on the road by 2015. Following a

407

Argonne Transportation Technology R&D Center - Advanced Powertrain Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Powertrain Research Facility Advanced Powertrain Research Facility Argonne's Advanced Powertrain Research Facility (APRF) is the principal U.S. Department of Energy (DOE) facility for assessing advanced and hybrid electric vehicle (HEV) technologies for the Vehicle Technologies Program. The APRF is an integrated multi-dynamometer vehicle and component test facility capable of testing conventional and hybrid vehicle propulsion systems and vehicles (two- or four-wheel drive) in a precise laboratory environment using a variety of fuels (including hydrogen). The facility is used to assess powertrain technology for light- and medium-duty propulsion systems with state-of-the-art performance and emissions measurement equipment and techniques. Argonne's Advanced Powertrain Research Facility

408

Vice President Biden Announces Plan to Put One Million Advanced Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vice President Biden Announces Plan to Put One Million Advanced Vice President Biden Announces Plan to Put One Million Advanced Technology Vehicles on the Road by 2015 Vice President Biden Announces Plan to Put One Million Advanced Technology Vehicles on the Road by 2015 January 26, 2011 - 12:00am Addthis Washington, D.C. - Today, Vice President Biden, Chair of the Middle Class Task Force, took the "White House to Main Street Tour" to Greenfield, Indiana, where he visited leading manufacturer Ener1, Inc., which produces advanced lithium-ion battery systems for electric vehicles, grid energy storage and industrial electronics. In his State of the Union address last night, President Obama highlighted his goal of making the United States the first country in the world to put one million advanced technology vehicles on the road by 2015. Following a

409

Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan  

SciTech Connect

Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

Bruce Hallbert

2012-09-01T23:59:59.000Z

410

Fracturing fluid characterization: State-of-the-art facility and advanced technology  

Science Conference Proceedings (OSTI)

The petroleum industry has used hydraulic fracturing technique to stimulate low and high permeability oil and gas reservoirs to enhance their potential recoveries. Nevertheless, the design and implementation of a scientifically and economically sound fracturing job, due to the lack of knowledge of theological behavior of hydraulic fracturing fluids under field conditions, remains a challenge. Furthermore, as often the case, the current level of technical knowledge with research institutes, service companies, and operators does not translate to field applications. One of the principal reasons for this technology gap, is the lack of understanding of the theological behavior of hydraulic fracturing fluids under field conditions, which primarily relates to the limitations in scaling down the field conditions to the laboratory. The Fracturing Fluid Characterization Facility (FFCF) project was therefore, proposed with the intent of providing the industry with a better understanding of the behavior of these fracturing fluids and their proppant transport characteristics under downhole fracture condition. At the FFCF, a fully operational High Pressure Simulator (HPS), as seen in Figure 1, constitutes a vertical, variable width, parallel plate flow apparatus and is capable of operating at elevated temperatures (up to 2500F) and pressures (up to 1200 psi). The HPS simulates, to the maximum degree practical, all conditions experienced by a fracturing fluid from its formulation on the surface, its flow down the wellbore, through perforations, its injection into the fracture, and its leakage into the rock formation (Figure 1). Together with the onsite auxiliary equipment (Figure 2), such as Mixing and Pumping System, Pre-conditioning System, Data Acquisition System, and Rheology Measuring System (Figure 2), the HPS is the most advanced fracture simulator available to conduct research, mimicking field conditions, in the following areas: Rheology Characterization of Fracturing Fluids, Proppant Transport Simulations, Proppant Transport Measurements, Perforation Pressure Loss, Coiled Tubing Friction Loss, Dynamic Fluid Loss, and Heat Transfer Characterizations of Polymer Solutions.

Shah, S., Asadi, M.,

1997-10-01T23:59:59.000Z

411

Joint Fuel Cell Technologies and Advanced Manufacturing Webinar  

NLE Websites -- All DOE Office Websites (Extended Search)

development and demonstration, and diverse efforts to overcome institutional and market challenges. Key Goals : Develop hydrogen and fuel cell technologies for: 1. Early...

412

advancing alloy 718 vacuum arc remelting technology through ...  

Science Conference Proceedings (OSTI)

the SMPC technical program has focused on developing technology to improve control over the final ingot remelting and solidification processes to alleviate ...

413

Under Secretary of Energy Highlights Advanced Energy Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and energy industry partners and the federal government to assess hydrogen fuel cell vehicle and infrastructure technology. The goal of the project is to allow for a...

414

The Advanced Technology Program: Reform with a Purpose  

Science Conference Proceedings (OSTI)

... In fact, Dr. Steven Price, Director of University-Industry Relations at the ... For example, Department of Energy's Clean Coal Technology Program has ...

2011-10-19T23:59:59.000Z

415

Advancements of Dubal High Amperage Reduction Cell Technologies  

Science Conference Proceedings (OSTI)

Development of Low-Voltage Energy-Saving Aluminum Reduction Technology ... Energy Savings in Aluminum Electrolysis Cells: Effect of the Cathode Design.

416

Energy Department Announces $2.5 Million to Advance Technologies for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2.5 Million to Advance Technologies 2.5 Million to Advance Technologies for Clean-Burning, Efficient Biomass Cookstoves Energy Department Announces $2.5 Million to Advance Technologies for Clean-Burning, Efficient Biomass Cookstoves April 13, 2012 - 10:39am Addthis WASHINGTON, DC - The Energy Department today announced up to $2.5 million available this year for applied research to advance clean biomass cookstove technologies for use in developing countries. The funding will support the development of innovative cookstove designs that allow users to burn wood or crop residues more efficiently and with less smoke than open fires and traditional stoves, helping to save lives and improve livelihoods. The Department of Energy, along with other federal agencies, is a founding partner of the Global Alliance for Clean Cookstoves, a public-private

417

Corn Yield Behavior: Effects of Technological Advance and Weather-Conditions  

Science Conference Proceedings (OSTI)

This study explores the relationships between U.S. corn yields (level and stability), advances in technology, and weather. Evaluations at the farm, sub-state, and national levels reveal no evidence of yield plateaus, and absolute, but not ...

Philip Garcia; Susan E. Offutt; Musa Pinar; Stanley A. Changnon

1987-09-01T23:59:59.000Z

418

Program on Technology Innovation: Cladding and Structural Materials for Advanced Nuclear Energy Systems  

Science Conference Proceedings (OSTI)

This EPRI technical update gives an overview of the initial work being done under a 3-year research program on cladding and structural materials for advanced nuclear energy systems. This research is part of EPRI's Program on Technology Innovation.

2008-12-23T23:59:59.000Z

419

National Technology Transfer and Advancement Act of 1995 [Public Law (PL)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Technology Transfer and Advancement Act of 1995 [Public National Technology Transfer and Advancement Act of 1995 [Public Law (PL) 104-113] National Technology Transfer and Advancement Act of 1995 [Public Law (PL) 104-113] On March 7, 1996, President Clinton signed into law "The National Technology Transfer and Advancement Act of 1995." The new law, referred to as PL 104-113, serves to continue the policy changes initiated in the 1980s under Office of Management and Budget (OMB) Circular A-119 (OMB A-119), Federal Participation in the Development and Use of Voluntary Standards, that are transitioning the Executive branch of the Federal Government from a developer of internal standards to a customer of external standards. Section 12, "Standards Conformity," of the act states that "...all Federal

420

DOE-Funded Primer Underscores Technology Advances, Challenges of Shale Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Funded Primer Underscores Technology Advances, Challenges of DOE-Funded Primer Underscores Technology Advances, Challenges of Shale Gas Development DOE-Funded Primer Underscores Technology Advances, Challenges of Shale Gas Development April 14, 2009 - 1:00pm Addthis Washington, D.C. - The U.S. Department of Energy (DOE) announces the release of "Modern Shale Gas Development in the United States: A Primer." The Primer provides regulators, policy makers, and the public with an objective source of information on the technology advances and challenges that accompany deep shale gas development. Natural gas production from hydrocarbon rich deep shale formations, known as "shale gas," is one of the most quickly expanding trends in onshore domestic oil and gas exploration. The lower 48 states have a wide

Note: This page contains sample records for the topic "advanced simulation technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Department of Energy Announces up to $70 Million to Advance Technology and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

up to $70 Million to Advance up to $70 Million to Advance Technology and Reduce Cost of Geothermal Energy Department of Energy Announces up to $70 Million to Advance Technology and Reduce Cost of Geothermal Energy June 8, 2011 - 12:00am Addthis WASHINGTON, D.C. - In support of President Obama's goal of generating 80% of the country's electricity from clean energy sources by 2035, U.S. Department of Energy Secretary Steven Chu today announced the availability of up to $70 million in new funding over three years for technology advancements in geothermal energy to accelerate development of this promising clean energy resource. Innovations in exploration technologies to locate geothermal energy resources and improvements in resource characterization, drilling, and reservoir engineering techniques will

422

Hydrothermal spallation drilling and advanced energy conversion technologies for Engineered Geothermal Systems  

E-Print Network (OSTI)

The purpose of this research was to study the various factors affecting the economic and technical feasibility of Engineered Geothermal Systems, with a special emphasis on advanced drilling technologies. The first part of ...

Augustine, Chad R

2009-01-01T23:59:59.000Z

423

Technology enabled re-engineering : a business strategy for advancing Bangladesh  

E-Print Network (OSTI)

A strategy is presented to rapidly advance a developing nation utilizing the power of Information and Communication Technologies (ICT). A banking institution is chosen to be the anchor tenant to spread ICT. A radical ...

Hasan, Abdullah

2003-01-01T23:59:59.000Z

424

Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion  

DOE Green Energy (OSTI)

This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

Per F. Peterson

2010-03-01T23:59:59.000Z

425

Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)  

DOE Green Energy (OSTI)

Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

Not Available

2011-06-01T23:59:59.000Z

426

The Synergy Between Total Scattering and Advanced Simulation Techniques: Quantifying Geopolymer Gel Evolution  

SciTech Connect

With the ever increasing demands for technologically advanced structural materials, together with emerging environmental consciousness due to climate change, geopolymer cement is fast becoming a viable alternative to traditional cements due to proven mechanical engineering characteristics and the reduction in CO2 emitted (approximately 80% less CO2 emitted compared to ordinary Portland cement). Nevertheless, much remains unknown regarding the kinetics of the molecular changes responsible for nanostructural evolution during the geopolymerization process. Here, in-situ total scattering measurements in the form of X-ray pair distribution function (PDF) analysis are used to quantify the extent of reaction of metakaolin/slag alkali-activated geopolymer binders, including the effects of various activators (alkali hydroxide/silicate) on the kinetics of the geopolymerization reaction. Restricting quantification of the kinetics to the initial ten hours of reaction does not enable elucidation of the true extent of the reaction, but using X-ray PDF data obtained after 128 days of reaction enables more accurate determination of the initial extent of reaction. The synergies between the in-situ X-ray PDF data and simulations conducted by multiscale density functional theory-based coarse-grained Monte Carlo analysis are outlined, particularly with regard to the potential for the X-ray data to provide a time scale for kinetic analysis of the extent of reaction obtained from the multiscale simulation methodology.

White, Claire [Los Alamos National Laboratory; Bloomer, Breaunnah E. [Los Alamos National Laboratory; Provis, John L. [The University of Melbourne; Henson, Neil J. [Los Alamos National Laboratory; Page, Katharine L. [Los Alamos National Laboratory

2012-05-16T23:59:59.000Z

427

NETL: Mercury Emissions Control Technologies - Advanced Mercury Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Mercury Sorbents with Low Impact on Power Plant Operations Advanced Mercury Sorbents with Low Impact on Power Plant Operations Apogee Scientific, Inc. (Apogee) will lead a Team comprised of Southern Company Services, TXU, Tennessee Valley Authority, EPRI, URS Group, University of Illinois-Illinois State Geological Survey (ISGS), Southern Research Institute (SRI), Calgon Carbon, and TDA Research, Inc., to evaluate a number of advanced sorbents for removing vapor-phase mercury from coal-fired flue gas that have minimal impact on by-product utilization and/or on existing particulate collection devices (PCD). The main objective of this program is to evaluate several advanced sorbents for removing mercury from coal-fired flue gas while posing minimal impact on plant operations through three advanced sorbent concepts: 1) Sorbents which minimize impact on concrete production through selective chemical passivation of activated carbon and use of non-carbon material, 2) sorbents that minimize baghouse pressure drop and ESP emissions, and 3) sorbents that can be recovered and reused.

428

Advisor 2.0: A Second-Generation Advanced Vehicle Simulator for Systems Analysis  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory has recently publicly released its second-generation advanced vehicle simulator called ADVISOR 2.0. This software program was initially developed four years ago, and after several years of in-house usage and evolution, the tool is now available to the public through a new vehicle systems analysis World Wide Web page. ADVISOR has been applied to many different systems analysis problems, such as helping to develop the SAE J1711 test procedure for hybrid vehicles and helping to evaluate new technologies as part of the Partnership for a New Generation of Vehicles (PNGV) technology selection process. The model has been and will continue to be benchmarked and validated with other models and with real vehicle test data. After two months of being available on the Web, more than 100 users have downloaded ADVISOR. ADVISOR 2.0 has many new features, including an easy-to-use graphical user interface, a detailed exhaust aftertreatment thermal model, and complete browser-based documentation. Future work will include adding to the library of components available in ADVISOR, including optimization functionality, and linking with a more detailed fuel cell model.

Wipke, K.; Cuddy, M.; Bharathan, D.; Burch, S.; Johnson, V.; Markel, A.; Sprik, S.

1999-03-23T23:59:59.000Z

429

Application of Advanced Data Processing, Mathematical Techniques and Computing Technologies in Control Centers: Enhancing Speed and Robustness of Power Flow Computation  

Science Conference Proceedings (OSTI)

To combat added complexity, a system operator’s job can be facilitated by deploying advanced computing technologies, with new software and hardware, that can potentially accelerate and improve data analysis and computer simulation tasks. The overall goal of this project is apply new technologies and techniques, within a few years, to address the current limitations of tools that we identified in the 2011 project. The goal of the 2012 research effort focuses on improving two aspects of the ...

2012-12-31T23:59:59.000Z

430

Program on Technology Innovation: Research Plan for Applying Visualization, Simulation, and Interactive Human System Interface Technologies to Sensor Information for Electric Power Industry Activities  

Science Conference Proceedings (OSTI)

This report presents a plan for a multi-year research program to identify, evaluate, and demonstrate visualization, simulation, and interactive human system interface (HSI) technologies to support electric power industry needs. The research program will include demonstrations and produce guidelines. These guidelines will aid not only in identifying and selecting electric power industry applications that are the most likely to provide benefits to the electric power industry from applying advances in visua...

2010-04-12T23:59:59.000Z

431

Simulation of the Lattice QCD and Technological Trends in Computation  

E-Print Network (OSTI)

Simulation of Lattice QCD is a challenging computational problem. Currently, technological trends in computation show multiple divergent models of computation. We are witnessing homogeneous multi-core architectures, the use of accelerator on-chip or off-chip, in addition to the traditional architectural models. On the verge of this technological abundance, assessing the performance trade-offs of computing nodes based on these technologies is of crucial importance to many scientific computing applications. In this study, we focus on assessing the efficiency and the performance expected for the Lattice QCD problem on representative architectures and we project the expected improvement on these architectures and their impact on performance for Lattice QCD. We additionally try to pinpoint the limiting factors for performance on these architectures.

K. Ibrahim; J. Jaeger; Z. Liu; L. N. Pouchet; P. Lesnicki; L. Djoudi; D. Barthou; F. Bodin; C. Eisenbeis; G. Grosdidier; O. Pene; P. Roudeau

2008-08-04T23:59:59.000Z

432

REQUEST BY UNITED TECHNOLOGIES, PRATT & WHITNEY, FOR AN ADVANCE WAIVER OF DOMESTIC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNITED TECHNOLOGIES, PRATT & UNITED TECHNOLOGIES, PRATT & WHITNEY, FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER DEPARTMENT OF ENERGY CONTRACT NO. DE-AC05-950R22426; DOE WAIVER DOCKET W(A)-95-037 [ORO-608] United Technologies, Pratt & Whitney (Pratt & Whitney) has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Contract No. DE-AC05- 950R22426. This work is being done under the Department of Energy's (DOE) Advanced Turbine System (ATS) program and the work calls for the development of thermal barrier coatings (TBC) technology for use in land based gas turbines. The work is sponsored by the Office of Industrial Technologies.

433

REQUEST BY GOLDEN TECHNOLOGIES COMPANY, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TECHNOLOGIES COMPANY, INC. TECHNOLOGIES COMPANY, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER MARTIN MARIETTA ENERGY SYSTEMS SUBCONTRACT NO. 86X-SP233C UNDER CONTRACT NO. DE-AC05-840R21400; DOE WAIVER DOCKET W(A)-94-008 [0RO-575] Golden Technologies Company, Inc. (GTC) has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Task 1 of Energy Systems Subcontract No. 86X-SP233C. The scope of the work calls for the development of advanced manufacturing technology for the cost-effective production of ceramic heat engine components composed of silicon nitride and transformation toughened zirconia. The work is sponsored by the Office of Transportation Technologies.

434

Development and application of a probabilistic evaluation method for advanced process technologies  

SciTech Connect

The objective of this work is to develop and apply a method for research planning for advanced process technologies. To satisfy requirements for research planning, it is necessary to: (1) identify robust solutions to process design questions in the face of uncertainty to eliminate inferior design options; (2) identify key problem areas in a technology that should be the focus of further research to reduce the risk of technology failure; (3) compare competing technologies on a consistent basis to determine the risks associated with adopting a new technology; and (4) evaluate the effects that additional research might have on comparisons with conventional technology. An important class of process technologies are electric power plants. In particular, advanced clean coal technologies are expected to play a key role in the energy and environmental future of the US, as well as in other countries. Research planning for advanced clean coal technology development is an important part of energy and environmental policy. Thus, the research planning method developed here is applied to case studies focusing on a specific clean coal technology. The purpose of the case studies is both to demonstrate the research planning method and to obtain technology-specific conclusions regarding research strategies.

Frey, H.C.; Rubin, E.S.

1991-04-01T23:59:59.000Z

435

Advanced beam-dynamics simulation tools for RIA.  

Science Conference Proceedings (OSTI)

We are developing multi-particle beam-dynamics simulation codes for RIA driver-linac simulations extending from the low-energy beam transport (LEBT) line to the end of the linac. These codes run on the NERSC parallel supercomputing platforms at LBNL, which allow us to run simulations with large numbers of macroparticles. The codes have the physics capabilities needed for RIA, including transport and acceleration of multiple-charge-state beams, beam-line elements such as high-voltage platforms within the linac, interdigital accelerating structures, charge-stripper foils, and capabilities for handling the effects of machine errors and other off-normal conditions. This year will mark the end of our project. In this paper we present the status of the work, describe some recent additions to the codes, and show some preliminary simulation results.

Garnett, R. W.; Wangler, T. P.; Billen, J. H.; Qiang, J.; Ryne, R.; Crandall, K. R.; Ostroumov, P.; York, R.; Zhao, Q.; Physics; LANL; LBNL; Tech Source; Michigan State Univ.

2005-01-01T23:59:59.000Z

436

Advanced Thermal Simulator Testing: Thermal Analysis and Test Results  

SciTech Connect

Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the potential development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a liquid metal cooled reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe [NASA Marshall Space Flight Center, Nuclear Systems Branch/ER24, MSFC, AL 35812 (United States)

2008-01-21T23:59:59.000Z

437

SunLab: Advancing Concentrating Solar Power Technology  

DOE Green Energy (OSTI)

Concentrating solar power (CSP) technologies, including parabolic troughs, power towers, and dish/engines, have the potential to provide the world with tens of thousands of megawatts of clean, renewable, cost-competitive power.

NONE

1998-11-24T23:59:59.000Z

438

Advancing clinical gait analysis through technology and policy  

E-Print Network (OSTI)

Quantitatively analyzing human gait biomechanics will improve our ability to diagnose and treat disability and to measure the effectiveness of assistive devices. Gait analysis is one technology used to analyze walking, but ...

Tan, Junjay

2009-01-01T23:59:59.000Z

439

James Fergason, a Pioneer in Advancing of Liquid Crystal Technology  

E-Print Network (OSTI)

James Lee Fergason (1934 - 2008) focused his research on the liquid crystals. His studies correspond to a relevant part of the history of soft matter science and technology of liquid crystals. Here a discussion of some of his researches.

Amelia Carolina Sparavigna

2013-10-28T23:59:59.000Z

440

NETL: Advanced NOx Emissions Control: Control Technology - Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

product. The FFR concept solves this problem. The technology increases the efficiency of NOx reduction in coal reburning and decreases carbon-in ash. FFR can achieve the same...