National Library of Energy BETA

Sample records for advanced simulation technology

  1. Interoperable Technologies for Advanced Petascale Simulations (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Technical Report: Interoperable Technologies for Advanced Petascale Simulations Citation Details In-Document Search Title: Interoperable Technologies for Advanced Petascale Simulations Our final report on the accomplishments of ITAPS at Stony Brook during period covered by the research award includes component service, interface service and applications. On the component service, we have designed and implemented a robust functionality for the Lagrangian tracking of

  2. COLLOQUIUM: Advanced Simulation for Technology Innovation and Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery | Princeton Plasma Physics Lab 27, 2015, 2:00pm to 3:30pm Colloquia MBG Auditorium COLLOQUIUM: Advanced Simulation for Technology Innovation and Science Discovery Mr. Scott Stanton ANSYS, Inc. I will give an overview of the simulation technologies being developed by ANSYS, the largest provider of simulation software. This overview will include computational fluid dynamics, structural mechanics and computational electromagnetic field analysis. I will then discuss how these solvers

  3. Interoperable Technologies for Advanced Petascale Simulations...

    Office of Scientific and Technical Information (OSTI)

    power plant fuel rods. We have implemented the fluid-structure interaction for 3D windmill and parachute simulations. We have continued our collaboration with PNNL, BNL, LANL,...

  4. Interoperable Technologies for Advanced Petascale Simulations...

    Office of Scientific and Technical Information (OSTI)

    We have simulated a step in the reprocessing and separation of spent fuels from nuclear power plant fuel rods.more We have implemented the fluid-structure interaction for 3D ...

  5. The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report

    SciTech Connect (OSTI)

    Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

    2009-10-12

    In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

  6. Advanced uranium enrichment technologies

    SciTech Connect (OSTI)

    Merriman, R.

    1983-03-10

    The Advanced Gas Centrifuge and Atomic Vapor Laser Isotope Separation methods are described. The status and potential of the technologies are summarized, the programs outlined, and the economic incentives are noted. How the advanced technologies, once demonstrated, might be deployed so that SWV costs in the 1990s can be significantly reduced is described.

  7. Advanced Simulation and Computing

    National Nuclear Security Administration (NNSA)

    NA-ASC-117R-09-Vol.1-Rev.0 Advanced Simulation and Computing PROGRAM PLAN FY09 October 2008 ASC Focal Point Robert Meisner, Director DOE/NNSA NA-121.2 202-586-0908 Program Plan Focal Point for NA-121.2 Njema Frazier DOE/NNSA NA-121.2 202-586-5789 A Publication of the Office of Advanced Simulation & Computing, NNSA Defense Programs i Contents Executive Summary ----------------------------------------------------------------------------------------------- 1 I. Introduction

  8. Assessment of Vehicle Sizing, Energy Consumption and Cost Through Large Scale Simulation of Advanced Vehicle Technologies

    SciTech Connect (OSTI)

    Moawad, Ayman; Kim, Namdoo; Shidore, Neeraj; Rousseau, Aymeric

    2016-01-01

    The U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) has been developing more energy-efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leapfrog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment. This report reviews the results of the DOE VTO. It gives an assessment of the fuel and light-duty vehicle technologies that are most likely to be established, developed, and eventually commercialized during the next 30 years (up to 2045). Because of the rapid evolution of component technologies, this study is performed every two years to continuously update the results based on the latest state-of-the-art technologies.

  9. Vehicle Technologies Office Merit Review 2015: Improved Solvers for Advanced Engine Combustion Simulation

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence LIvermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  10. Vehicle Technologies Office Merit Review 2014: Improved Solvers for Advanced Engine Combustion Simulation

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  11. Vehicle Technologies Office Merit Review 2014: Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about large eddy...

  12. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect (OSTI)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

  13. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle ...

  14. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  15. Advanced Simulation Capability

    Office of Environmental Management (EM)

    4 Status Report The Advanced Simulation Capability for Environmental Management Initiative is funded by the U.S. Department of Energy Office of Environmental Management Responding to the Challenge 4 Capability Development 4 References 14 Appendix: FY14 Publications 15 and Presentations Contents Cover photo courtesy of Daniel Scott, Savannah River Ecology Laboratory. L-Lake is a 1,000-acre, man-made lake, created to disperse and cool water in L-Reactor when it was operating. Message from the

  16. Vehicle Technologies Office Merit Review 2015: Large Eddy Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research Vehicle Technologies Office Merit Review 2015: Large Eddy Simulation (LES) Applied to Advanced Engine ...

  17. Advanced Modeling and Simulation Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Modeling & Simulation » Advanced Modeling and Simulation Documents Advanced Modeling and Simulation Documents August 6, 2015 Advanced Sensors and Instrumentation Project Review Webinar 2014 The Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program, in coordination with the Office of Nuclear Reactor Technologies and the Office of Fuel Cycle Technologies, conducted an Instrumentations and Controls (I&C) project review webinar on September

  18. Sandia National Laboratories: Advanced Simulation and Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facebook Twitter YouTube Flickr RSS Advanced Simulation and Computing Advanced Simulation and Computing Taking on the World's Complex Challenges Advancing Science Frontiers Our research is producing new scientific insights about the world in which we live and assists in certifying the safety and reliability of the nation's nuclear weapons stockpile. Technology Provides the Tools Growth in data and the software and hardware demands needed for physics-based answers and predictive capabilities are

  19. Advanced Reactor Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Reactor Technologies » Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research, development and deployment (RD&D) activities through its Next Generation Nuclear Plant (NGNP), Advanced Reactor Concepts (ARC), and Advanced Small Modular Reactor (aSMR) programs to promote safety, technical, economical, and environmental advancements of innovative

  20. State Technologies Advancement Collaborative

    SciTech Connect (OSTI)

    David S. Terry

    2012-01-30

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

  1. Guiding SSL Technology Advances | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guiding SSL Technology Advances Guiding SSL Technology Advances PDF icon Guiding Solid-State Lighting Technology Advances More Documents & Publications Doing Business with DOE's ...

  2. 2011 Grants for Advanced Hydropower Technologies | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grants for Advanced Hydropower Technologies 2011 Grants for Advanced Hydropower Technologies 2011 Grants for Advanced Hydropower Technologies Click on an Awardee or Project Site...

  3. Advanced Nuclear Technology: Advanced Light Water Reactors Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary Advanced Nuclear Technology: Advanced Light Water Reactors ...

  4. Revolutionizing Clean Energy Technology with Advanced Composites |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Revolutionizing Clean Energy Technology with Advanced Composites Revolutionizing Clean Energy Technology with Advanced Composites Addthis

  5. Terascale Simulation Tolls and Technologies

    Energy Science and Technology Software Center (OSTI)

    2006-11-01

    The Terascale Simulation Tools and Technologies (TSTT) center is a collaboration between several universities and DOE laboratories, and is funded by the DOE Scientific Discovery for Advanced Computing (SciDAC) program. The primary objective of the (TSTT) center is to develop technologies taht enable application scientists to easily use multiple mesh and discretization strageties within a single simulation on terascale computeres. This is accomplished through the development of common functional interfaces to geometry, mesh, and othermore » simulation data. This package is Sandia's implementation of these interfaces.« less

  6. Advanced Nuclear Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Nuclear Reactors Advanced Nuclear Reactors Turbulent Flow of Coolant in an Advanced Nuclear Reactor Visualizing Coolant Flow in Sodium Reactor Subassemblies Sodium-cooled Fast Reactor (SFR) Coolant Flow At the heart of a nuclear power plant is the reactor. The fuel assembly is placed inside a reactor vessel where all the nuclear reactions occur to produce the heat and steam used for power generation. Nonetheless, an entire power plant consists of many other support components and key

  7. Advancing Clean Energy Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    DOE/EERE Solar Energy Technologies Program Fact Sheet - Advancing Clean Energy Technology, May 2010.

  8. Advanced Optical Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diffractive Membrane Optic The first diffractive membrane optic, designed for a Defense Advanced Research Projects Agency (DARPA) project, was completed on July 25, 2011. The ...

  9. Advanced Green Technologies | Open Energy Information

    Open Energy Info (EERE)

    Green Technologies Jump to: navigation, search Name: Advanced Green Technologies Place: Fort Lauderdale, Florida Zip: 33311 Product: Advanced Green Technologies is a US-based...

  10. Advanced Simulation Capability

    Office of Environmental Management (EM)

    Energy Reactor Concepts Technical Review Panel Report Advanced Reactor Concepts Technical Review Panel Report This report documents the establishment of a technical review process and the findings of the Advanced Reactor Concepts (ARC) Technical Review Panel (TRP).1 The intent of the process is to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. A goal of the process is to facilitate greater engagement between DOE and

  11. Idaho National Laboratory Testing of Advanced Technology Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing Advanced Vehicle ...

  12. Advanced Process Engineering Co-Simulator (APECS) | Open Energy...

    Open Energy Info (EERE)

    Advanced Process Engineering Co-Simulator (APECS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: APECS AgencyCompany Organization: National Energy Technology...

  13. Vehicle Technologies Office Merit Review 2015: Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Vehicle Lab Benchmarking (L1&L2) Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking (L1&L2) Presentation given by Argonne ...

  14. Vehicle Technologies Office Merit Review 2014: Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Vehicle Lab Benchmarking - Level 1 Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking - Level 1 Presentation given by ...

  15. Consortium for Advanced Simulation ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... | October 2015 2 of the lower core plate tends to promote manometer effects nu- merically. ... itera- tion and for this simulation the values are considered pseudo- global extremes. ...

  16. Advanced Technology Center Overview 2015

    Energy Savers [EERE]

    Advanced Supply System Validation Workshop Advanced Supply System Validation Workshop The Bioenergy Technologies Office (BETO) hosted the Advanced Supply System Validation Workshop on February 3-4, 2015, in Golden, Colorado. The purpose of the workshop was to bring together a diverse group of stakeholders to examine, discuss, and validate analysis assumptions used to move beyond current feedstock supply systems designed to support the agriculture and forestry industries. Participants discussed

  17. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

  18. Advanced Simulation Capability for

    Office of Environmental Management (EM)

    for Environmental Management (ASCEM) ASCEM is being developed to provide a tool and approach to facilitate robust and standardized development of perfor- mance and risk assessments for cleanup and closure activi- ties throughout the EM complex. The ASCEM team is composed of scientists from eight National Laboratories. This team is leveraging Department of Energy (DOE) investments in basic science and applied research including high performance computing codes developed through the Advanced

  19. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon ctabwebinarcarbohydratesupgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Advanced Conversion Roadmap ...

  20. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon ctabwebinarcarbohydratesproduction.pdf More Documents & Publications Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - ...

  1. Guiding SSL Technology Advances

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's solid-state lighting (SSL) program builds collaborative industry and research community to guise SSL technology innovation. Provides an overview of DOE's SSL program and its comprehensive approach based on long-term relationships with the SSL industry and community. (April 2015)

  2. Advanced Modeling & Simulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation ADVANCING THE STATE OF THE ART Innovation advances science. Historically, innovation resulted almost exclusively from fundamental theories combined with observation and experimentation over time. With advancements in engineering, computing power and visualization tools, scientists from all disciplines are gaining insights into physical systems in ways not possible with traditional approaches

  3. Technology Advancements for Next Generation Falling Particle...

    Office of Scientific and Technical Information (OSTI)

    Technology Advancements for Next Generation Falling Particle Receivers. Citation Details In-Document Search Title: Technology Advancements for Next Generation Falling Particle ...

  4. TRC Advanced Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Logo: TRC Advanced Technologies Inc Name: TRC Advanced Technologies Inc Address: 8700 Commerce Park Place: Houston, Texas Zip: 77036 Region: Texas Area Sector: Solar Product:...

  5. Advancing Solar Through Photovoltaic Technology Innovations ...

    Energy Savers [EERE]

    Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity ...

  6. Voluntary Protection Program Onsite Review, Advanced Technologies...

    Office of Environmental Management (EM)

    Advanced Technologies and Laboratories, Inc., Hanford - Feb 2014 Voluntary Protection Program Onsite Review, Advanced Technologies and Laboratories, Inc., Hanford - Feb 2014...

  7. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research...

  8. Advanced Wellbore Thermal Simulator

    Energy Science and Technology Software Center (OSTI)

    1992-03-04

    GEOTEMP2, which is based on the earlier GEOTEMP program, is a wellbore thermal simulator designed for geothermal well drilling and production applications. The code treats natural and forced convection and conduction within the wellbore and heat conduction within the surrounding rock matrix. A variety of well operations can be modeled including injection, production, forward and reverse circulation with gas or liquid, gas or liquid drilling, and two-phase steam injection and production. Well completion with severalmore » different casing sizes and cement intervals can be modeled. The code allows variables, such as flow rate, to change with time enabling a realistic treatment of well operations. Provision is made in the flow equations to allow the flow areas of the tubing to vary with depth in the wellbore. Multiple liquids can exist in GEOTEMP2 simulations. Liquid interfaces are tracked through the tubing and annulus as one liquid displaces another. GEOTEMP2, however, does not attempt to simulate displacement of liquids with a gas or two-phase steam or vice versa. This means that it is not possible to simulate an operation where the type of drilling fluid changes, e.g. mud going to air. GEOTEMP2 was designed primarily for use in predicting the behavior of geothermal wells, but it is flexible enough to handle many typical drilling, production, and injection problems in the oil industry as well. However, GEOTEMP2 does not allow the modeling of gas-filled annuli in production or injection problems. In gas or mist drilling, no radiation losses are included in the energy balance. No attempt is made to model flow in the formation. Average execution time is 50 CP seconds on a CDC CYBER170. This edition of GEOTEMP2 is designated as Version 2.0 by the contributors.« less

  9. Advanced Technology Vehicles Manufacturing Incentive Program | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles manufacturing incentive program. PDF icon Advanced Technology Vehicles Manufacturing Incentive Program More Documents & Publications Advanced Technology Vehicles Manufacturing Incentive Program MEMA: Comments MEMA: Letter

  10. Advanced Particulate Filter Technologies for Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications Specific ...

  11. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel ...

  12. Gas Technology Institute (Partnership for Advanced Residential...

    Open Energy Info (EERE)

    Technology Institute (Partnership for Advanced Residential Retrofit) Jump to: navigation, search Name: Gas Technology Institute Place: Des Plaines, IL Website:...

  13. Ceramic Technology for Advanced Heat Engines Project

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  14. Advanced Reactor Technology Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Reactor Technologies » Advanced Reactor Technologies » Advanced Reactor Technology Documents Advanced Reactor Technology Documents January 30, 2013 Advanced Reactor Concepts Technical Review Panel Report This report documents the establishment of a technical review process and the findings of the Advanced Reactor Concepts (ARC) Technical Review Panel (TRP).1 The intent of the process is to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D

  15. Advanced Simulation Capability for Environmental Management (ASCEM): Early

    Office of Scientific and Technical Information (OSTI)

    Site Demonstration (Conference) | SciTech Connect Advanced Simulation Capability for Environmental Management (ASCEM): Early Site Demonstration Citation Details In-Document Search Title: Advanced Simulation Capability for Environmental Management (ASCEM): Early Site Demonstration The U.S. Department of Energy Office of Environmental Management, Technology Innovation and Development (EM-32), is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM).

  16. Conversion Technologies for Advanced Biofuels - Carbohydrates Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production. PDF icon ctab_webinar_carbohydrates_production.pdf More Documents & Publications Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading

  17. Subsea completion technology needs advances

    SciTech Connect (OSTI)

    Ledbetter, R.

    1995-09-18

    Subsea technology needs further advances to reduce operational costs before operators will expand the use of subsea well completions in the Gulf of Mexico. They will continue to choose surface completion-oriented systems as long as these are more economical operationally than subsea system. Designs of subsea equipment such as trees, connectors, control pods, umbilicals, and flow lines, must bring about reductions in the cost of both installation and workover compatibility. Remote operated vehicle (ROV) manipulation is one avenue that should be exploited. The bottom line is that significant cooperation between equipment manufacturers and ROV companies is needed to develop advanced ROV technology, and operators should be involved to help guide operational strategies.

  18. Vehicle Technologies Office: 2015 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2015 ... low emissions advanced internal combustion engines for passenger and commercial vehicles. ...

  19. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 ... low emissions advanced internal combustion engines for passenger and commercial vehicles. ...

  20. Advanced Simulation and Computing Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Simulation and Computing (ASC) Program Unstable intermixing of heavy (sulfur hexafluoride) and light fluid (air). Show Caption Turbulence generated by unstable fluid flow. Show Caption Examining the effects of a one-megaton nuclear energy source detonated on the surface of an asteroid. Show Caption Los Alamos National Laboratory is home to two of the world's most powerful supercomputers, each capable of performing more than 1,000 trillion operations per second. The newer one, Cielo, was

  1. Consortium for Advanced Battery Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Simulation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  2. Vehicle Technologies Office Merit Review 2015: Large Eddy Simulation (LES)

    Energy Savers [EERE]

    Applied to Advanced Engine Combustion Research | Department of Energy Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research Vehicle Technologies Office Merit Review 2015: Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Large Eddy Simulation applied to advanced engine

  3. DOE Simulator Training to Brazil's Petrobas Advances Goal of Deploying Clean Coal Technology at Home and Abroad

    Broader source: Energy.gov [DOE]

    A recently-completed comprehensive Department of Energy training initiative using an innovative high-fidelity combined-cycle dynamic simulator has provided employees of a Brazilian multi-national company the opportunity to learn to operate and control the near-zero-emission power plants critical to a cleaner energy future.

  4. Advancing Solar Through Photovoltaic Technology Innovations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar ...

  5. Center for Advanced Separation Technology (Technical Report)...

    Office of Scientific and Technical Information (OSTI)

    DE-FE0000699, Center for Advanced Separation Technology. Much of the research to be ... in two broad areas: Advanced Pre-Combustion Clean Coal Technologies and Gas-Gas Separations. ...

  6. Revolutionizing Clean Energy Technology with Advanced Composites

    SciTech Connect (OSTI)

    Hockfield, Susan; Holliday Jr, Charles O.; Markell, Brad

    2015-01-13

    Energy conservation and manufacturing leaders discuss manufacturing products with advance composites to revolutionize the future with clean energy technology.

  7. Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. PDF icon ctab_webinar_carbohydrates_upgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Advanced Conversion Roadmap Workshop Innovative Topics for Advanced Biofuels

  8. Advanced Modular Inverter Technology Development

    SciTech Connect (OSTI)

    Adam Szczepanek

    2006-02-04

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

  9. Advanced Technology Development and Mitigation | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Advanced Technology Development and Mitigation The Advanced Technology Development and Mitigation (ATDM) subprogram includes laboratory code and computer engineering and science projects that pursue long-term simulation and computing goals relevant to the broad national security missions of the NNSA. It addresses the need to adapt current integrated design codes and build new codes that are attuned to emerging computing technologies. Performing this work within the scope of

  10. Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab Benchmarking - Level 1 | Department of Energy Advanced Technology Vehicle Lab Benchmarking - Level 1 Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking - Level 1 Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about level 1 advanced technology vehicle lab benchmarking. PDF icon vss030_stutenberg_2014_o.pdf More Documents

  11. Advanced Manufacturing Office (Formerly Industrial Technologies Program) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon DOE's Advanced Manufacturing Office More Documents & Publications Innovative Manufacturing Initiative Recognition Day Manufacturing Demonstration Facilities Workshop Agenda, March 2012 Advanced Manufacturing

  12. Ceramic technology for Advanced Heat Engines Project

    SciTech Connect (OSTI)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  13. Advanced Technology System Scheduling Governance Model

    SciTech Connect (OSTI)

    Ang, Jim; Carnes, Brian; Hoang, Thuc; Vigil, Manuel

    2015-06-11

    In the fall of 2005, the Advanced Simulation and Computing (ASC) Program appointed a team to formulate a governance model for allocating resources and scheduling the stockpile stewardship workload on ASC capability systems. This update to the original document takes into account the new technical challenges and roles for advanced technology (AT) systems and the new ASC Program workload categories that must be supported. The goal of this updated model is to effectively allocate and schedule AT computing resources among all three National Nuclear Security Administration (NNSA) laboratories for weapons deliverables that merit priority on this class of resource. The process outlined below describes how proposed work can be evaluated and approved for resource allocations while preserving high effective utilization of the systems. This approach will provide the broadest possible benefit to the Stockpile Stewardship Program (SSP).

  14. Advances in Transportation Technologies | Department of Energy

    Office of Environmental Management (EM)

    Transportation Technologies Advances in Transportation Technologies PDF icon Advances in Transportation Technologies More Documents & Publications TEC Working Group Topic Groups Rail Archived Documents Analyzing Fuel Saving Opportunities through Driver Feedback Mechanisms Analysis of maximizing the Synergy between PHEVs/EVs and PV

  15. Categorical Exclusion Determinations: Advanced Technology Vehicles

    Energy Savers [EERE]

    Manufacturing Loan Program | Department of Energy Technology Vehicles Manufacturing Loan Program Categorical Exclusion Determinations: Advanced Technology Vehicles Manufacturing Loan Program Categorical Exclusion Determinations issued by Advanced Technology Vehicles Manufacturing Loan Program. DOCUMENTS AVAILABLE FOR DOWNLOAD September 6, 2011 CX-006488: Categorical Exclusion Determination Chrysler Group LLC, Revised Specific Project Application 2, Retooling, Reequipping and Engineering

  16. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)

    SciTech Connect (OSTI)

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-12-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity. Retrofit technologies that address the challenges of slow-speed integral compression are: (1) optimum turndown using a combination of speed and clearance with single-acting operation as a last resort; (2) if single-acting is required, implement infinite length nozzles to address nozzle pulsation and tunable side branch absorbers for 1x lateral pulsations; and (3) advanced valves, either the semi-active plate valve or the passive rotary valve, to extend valve life to three years with half the pressure drop. This next generation of slow-speed compression should attain 95% efficiency, a three-year valve life, and expanded turndown. New equipment technologies that address the challenges of large-horsepower, high-speed compression are: (1) optimum turndown with unit speed; (2) tapered nozzles to effectively reduce nozzle pulsation with half the pressure drop and minimization of mechanical cylinder stretch induced vibrations; (3) tunable side branch absorber or higher-order filter bottle to address lateral piping pulsations over the entire extended speed range with minimal pressure drop; and (4) semi-active plate valves or passive rotary valves to extend valve life with half the pressure drop. This next generation of large-horsepower, high-speed compression should attain 90% efficiency, a two-year valve life, 50% turndown, and less than 0.75 IPS vibration. This program has generated proof-of-concept technologies with the potential to meet these ambitious goals. Full development of these identified technologies is underway. The GMRC has committed to pursue the most promising enabling technologies for their industry.

  17. Advanced Simulation Capability for Environmental Management (ASCEM) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Simulation Capability for Environmental Management (ASCEM) Advanced Simulation Capability for Environmental Management (ASCEM) Advanced Simulation Capability for Environmental Management (ASCEM) ASCEM is being developed to provide a tool and approach to facilitate robust and standardized development of performance and risk assessments for cleanup and closure activities throughout the EM complex. The ASCEM team is composed of scientists from eight National

  18. Energy Storage - Advanced Technology Development Merit Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Technology Development Merit Review Energy Storage - Advanced Technology Development Merit Review This document is a summary of the evaluation and comments provided by the review panel for the FY 2005 Department of Energy (DOE) Advanced Technology Development (ATD) program annual review. The review was held at the Argonne National Laboratory on August 9-10, 2005. A panel of knowledgeable, independent reviewers assessed the accomplishments of the ATD program and

  19. Advanced Combustion Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Technologies Advanced Combustion Technologies Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses laser-based Rayleigh light scattering to measure flame density and speed over a flat flame burner. Oxyfuel combustion, using oxygen in place of air with diluents such as steam or carbon dioxide, can reduce pollutant emissions in advanced power cycles using gas turbines. Photo courtesy of NETL Multimedia. Joe Yip, a researcher at FE's National Energy

  20. Nick Wright Named Advanced Technologies Group Lead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nick Wright Named Advanced Technologies Group Lead Nick Wright Named Advanced Technologies Group Lead February 4, 2013 Nick Nick Wright has been named head of the National Energy Research Scientific Computing Center's (NERSC) Advanced Technologies Group (ATG), which focuses on understanding the requirements of current and emerging applications to make choices in hardware design and programming models that best serve the science needs of NERSC users. ATG specializes in benchmarking, system

  1. Vehicle Technologies Office: 2011 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and ...

  2. Advanced simulation capability for environmental management ...

    Office of Scientific and Technical Information (OSTI)

    environmental management (ASCEM): An overview of initial results Citation Details In-Document Search Title: Advanced simulation capability for environmental management (ASCEM): An ...

  3. Advancing Internal Combustion Engine Simulations using Sensitivity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advancing Internal Combustion Engine Simulations using Sensitivity Analysis PI Name: Sibendu Som PI Email: ssom@anl.gov Institution: Argonne National Laboratory Allocation Program:...

  4. Advanced Capacitor Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Advanced Capacitor Technologies Inc Place: Tokyo, Japan Zip: 196-8558 Sector: Carbon Product: Japanese manufacturer of ultracapacitors from...

  5. Advanced Vehicle Technology Analysis & Evaluation Team

    Broader source: Energy.gov [DOE]

    Presentation on Advanced Vehicle Technology Analysis & Evaluation Team to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  6. Advanced Diesel Engine and Aftertreatment Technology Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003 DEER Conference Presentation: Detroit Diesel Corporation PDF icon 2003deerbolton1.pdf ...

  7. Advanced vehicle technology analysis and evaluation activities

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    FY 2007 annual progress report evaluating the technologies and performance characteristics of advanced automotive powertrain components and subsystems in an integrated vehicle systems context.

  8. Advanced AMR Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Advanced AMR Technologies Inc Address: 285 Newbury Street Place: Peabody, Massachusetts Zip: 01960 Region: Greater Boston Area Sector: Efficiency Product:...

  9. Numerical Investigation of Advanced Compressor Technologies

    Broader source: Energy.gov [DOE]

    The purpose of the work was to explore advanced boost technologies to support clean diesel combustion, such as HCCI/LTC applications.

  10. Advanced Solar Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    California Sector: Solar Product: California-based domestic and commercial designer and installer of solar energy equipment. References: Advanced Solar Technologies Inc1 This...

  11. Vehicle Technologies Office: 2008 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 2008apeemreport.pdf More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies An integrated approach towards efficient, ...

  12. Vehicle Technologies Office: 2012 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Advanced Power Electronics and Electric Motors ... for many cutting-edge automotive technologies now under ... at achieving a greater understanding of and improvements in ...

  13. Vehicle Technologies Office: 2013 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Advanced Power Electronics and Electric Motors ... for many cutting-edge automotive technologies now under ... at achieving a greater understanding of and improvements in ...

  14. BASELINE DESIGN/ECONOMICS FOR ADVANCED FISCHER-TROPSCH TECHNOLOGY

    SciTech Connect (OSTI)

    1998-04-01

    Bechtel, along with Amoco as the main subcontractor, developed a Baseline design, two alternative designs, and computer process simulation models for indirect coal liquefaction based on advanced Fischer-Tropsch (F-T) technology for the U. S. Department of Energy's (DOE's) Federal Energy Technology Center (FETC).

  15. Advanced Technology Vehicles Manufacturing Loan Program | Department of

    Energy Savers [EERE]

    of Energy Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles manufacturing incentive program. PDF icon Advanced Technology Vehicles Manufacturing Incentive Program More Documents & Publications Advanced Technology Vehicles Manufacturing Incentive Program MEMA: Comments MEMA: Letter Energy

    Technology Vehicles Manufacturing Loan Program Advanced Technology Vehicles

  16. Sandia National Laboratories: Advanced Simulation and Computing:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Systems & Software Environment Computational Systems & Software Environment Advanced Simulation and Computing Computational Systems & Software Environment Integrated Codes Physics & Engineering Models Verification & Validation Facilities Operation & User Support Research & Collaboration Contact ASC Advanced Simulation and Computing Computational Systems & Software Environment Crack Modeling The Computational Systems & Software Environment

  17. Advance Energy Technologies: Order (2013-CE-5302)

    Broader source: Energy.gov [DOE]

    DOE ordered Advance Energy Technologies, Inc., to pay a $8,000 civil penalty after finding Advance Energy Technologies had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standard.

  18. Cross-cutting Technologies for Advanced Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cross-cutting Technologies for Advanced Biofuels Cross-cutting Technologies for Advanced Biofuels NREL report-out presentation at the CTAB webinar on crosscutting technologies for advanced biofuels. PDF icon ctab_webinar_crosscutting.pdf More Documents & Publications Innovative Topics for Advanced Biofuels Conversion Technologies for Advanced Biofuels - Carbohydrates Production Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading

  19. Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report | Department of Energy Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report PDF icon 2008_avtae_hvso.pdf More Documents & Publications Vehicle Technologies

  20. Vehicle Technologies Office Merit Review 2015: Daikin Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Daikin Advanced Lithium Ion Battery Technology High Voltage Electrolyte Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium IonBattery Technology High ...

  1. Distributed Energy Technology Simulator: Microturbine Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulator: Microturbine Demonstration, October 2001 Distributed Energy Technology Simulator: Microturbine Demonstration, October 2001 This 2001 paper discusses the National Rural ...

  2. TECHNOLOGIES TO OPTIMIZE ADVANCED TOKAMAK

    SciTech Connect (OSTI)

    SIMONEN, TC

    2004-01-01

    OAK-B135 Commercial fusion power systems must operate near the limits of the engineering systems and plasma parameters. Achieving these objectives will require real time feedback control of the plasma. This paper describes plasma control systems being used in the national DIII-D advanced tokamak research program.

  3. Improved Solvers for Advanced Engine Combustion Simulation

    Broader source: Energy.gov [DOE]

    Document:  ace076_mcnenly_2013_o.pdfTechnology Area: Advanced Combustion; Combustion and Emissions ControlPresenter: Matthew McNenlyPresenting Organization: Lawrence Livermore National Laboratory ...

  4. Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency, and Plug-in Hybrid Electric Vehicles | Department of Energy Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010. PDF icon alt_trans_study.pdf More Documents & Publications An Energy

  5. Advanced Materials Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Marketing Summaries (345) Success Stories (3) Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Browse

  6. Advanced Vehicle Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Technologies Advanced Vehicle Technologies Reducing consumption of petroleum-based fuels and cutting emissions requires a multi-pronged research effort that encompasses analysis, modeling, experimentation and laboratory testing. Backed by unparalleled research facilities, Argonne's talented multidisciplinary team of scientists and engineers are working to solve the large and small challenges associated with developing improved vehicle drivetrain designs, new materials, better fuels and

  7. Idaho National Laboratory Testing of Advanced Technology Vehicles |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss021_francfort_2011_o.pdf More Documents & Publications Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and Demonstration Activities

  8. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Technology Archive Energy Department Announces Five Year Renewal of Funding for First Energy Innovation Hub Consortium for Advanced Simulation of Light Water Reactors to Receive up to $121.5 Million Over Five Years. Posted: January 29, 2015 VERA-CS Coupled Multi-physics Capability demonstrated in a Full Core Simulation In December, CASL reported on the latest results from its Watts Bar reactor progression problem modeling. Posted: August 14, 2014 Westinghouse Completes its AP1000®

  9. Advanced Propulsion Technology Strategy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy 3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape00a_rogers_2013_o.pdf More Documents & Publications Advanced Power Electronics and Electric Motors (APEEM) R&D Program Overview Electric Drive Status and Challenges

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary PDF icon

  10. Green Racing: Accelerating the Use of Advanced Technologies ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Use of Advanced Technologies & Renewable Fuels, Developing Market Acceptance Green Racing: Accelerating the Use of Advanced Technologies & Renewable Fuels, Developing...

  11. Green Racing Initiative: Accelerating the Use of Advanced Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Racing Initiative: Accelerating the Use of Advanced Technologies & Renewable Fuels Green Racing Initiative: Accelerating the Use of Advanced Technologies & Renewable Fuels 2011 DOE...

  12. Users Perspective on Advanced Fuel Cell Bus Technology | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Users Perspective on Advanced Fuel Cell Bus Technology Users Perspective on Advanced Fuel Cell Bus Technology Presentation at DOE & DOT Joint Fuel Cell Bus Workshop, Washington,...

  13. Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY...

  14. DOE Vehicle Technologies Program 2009 Merit Review Report - Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion DOE Vehicle Technologies Program 2009 Merit Review Report - Advanced Combustion Merit review of DOE Vehicle Technologies Program research efforts...

  15. Energy Department Announces $2.5 Million to Advance Technologies...

    Office of Environmental Management (EM)

    5 Million to Advance Technologies for Clean-Burning, Efficient Biomass Cookstoves Energy Department Announces 2.5 Million to Advance Technologies for Clean-Burning, Efficient ...

  16. Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) Data Collection for Improved Cold Temperature Thermal Modeling Advanced Technology ...

  17. Final Technical Report - Center for Technology for Advanced Scientific...

    Office of Scientific and Technical Information (OSTI)

    - Center for Technology for Advanced Scientific Component Software (TASCS) Citation Details In-Document Search Title: Final Technical Report - Center for Technology for Advanced ...

  18. Technology Advances Needed for Photovoltaics to Achieve Widespread...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advances Needed for Photovoltaics to Achieve Widespread Grid Price Parity Technology Advances Needed for Photovoltaics to Achieve Widespread Grid Price Parity Abstract: ...

  19. U.S. Offshore Wind Advanced Technology Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting ...

  20. ITP Metal Casting: Advanced Melting Technologies: Energy Saving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and ...

  1. Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels - Bio-Oil ...

  2. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D ...

  3. 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced Combustion Advanced combustion research and development merit review results PDF icon...

  4. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  5. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect (OSTI)

    Christopher E. Hull

    2006-09-30

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  6. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2005-11-04

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  7. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    Broader source: Energy.gov [DOE]

    Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary November 2014

  8. Electrochromic Windows: Advanced Processing Technology

    SciTech Connect (OSTI)

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGEs production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.0261015BTU/yr) by the year 2017.

  9. Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report | Department of Energy Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report PDF icon 2009_avtae_hvso.pdf More Documents & Publications Well-to-Wheels Analysis of

  10. Materials challenges in advanced coal conversion technologies

    SciTech Connect (OSTI)

    Powem, C.A.; Morreale, B.D.

    2008-04-15

    Coal is a critical component in the international energy portfolio, used extensively for electricity generation. Coal is also readily converted to liquid fuels and/or hydrogen for the transportation industry. However, energy extracted from coal comes at a large environmental price: coal combustion can produce large quantities of ash and CO{sub 2}, as well as other pollutants. Advanced technologies can increase the efficiencies and decrease the emissions associated with burning coal and provide an opportunity for CO{sub 2} capture and sequestration. However, these advanced technologies increase the severity of plant operating conditions and thus require improved materials that can stand up to the harsh operating environments. The materials challenges offered by advanced coal conversion technologies must be solved in order to make burning coal an economically and environmentally sound choice for producing energy.

  11. Cross-cutting Technologies for Advanced Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cross-cutting Technologies for Advanced Biofuels Report-Out Webinar February 9, 2012 Adam Bratis, Ph.D. NREL Energy Efficiency & Renewable Energy eere.energy.gov 2 Cross-cutting Technology Areas: Feedstock Supply and Logistics  growth, harvesting, delivery Analysis  economic, life-cycle, resource assessment Catalysis  design, characterization, testing Separations  contaminant removal, product recovery Dr. Adam Bratis Biomass Program Manager National Renewable Energy Laboratory

  12. Office of Technology Advancement & Outreach

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advancement & Outreach State Energy Advisory Board Meeting Wednesday March 15, 2007 Roger D. Meyer Team Lead Director Media Relations Electronic Communications Outreach Coordination Team Lead Functions -Rapid media response -Strategic media outreach -Speech writing -Media inquires, interviews, visits -News releases, fact sheets, background papers -Media training Functions -Events planning and management -Marketing -Public relations campaign -Strategic stakeholder outreach

  13. Center for Advanced Modeling and Simulation Intern

    ScienceCinema (OSTI)

    Gertman, Vanessa

    2013-05-28

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  14. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Back Industry Council Chairperson: Scott Thomas, Duke Energy Executive Director: Erik Mader, EPRI Mission and Objectives The mission of the Industry Council (IC) is to ensure that CASL solutions are "used and useful", and that CASL provides effective leadership advancing the Modeling and Simulation state-of-the art in the nuclear industry. Specific objectives of the Industry Council are: Early, continuous, and frequent interface and engagement of end-users and technology providers

  15. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Carbohydrates Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates DOE report-out presentation at the CTAB webinar on carbohydrates. PDF icon ctab_webinar_carbohydrates_intro.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels Cross-cutting Technologies for Advanced Biofuels

  16. Gasification CFD Modeling for Advanced Power Plant Simulations

    SciTech Connect (OSTI)

    Zitney, S.E.; Guenther, C.P.

    2005-09-01

    In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

  17. Advances in window technology: 1973-1993

    SciTech Connect (OSTI)

    Arasteh, D.

    1994-12-31

    Until the 1970s, the thermal performance of windows and other fenestration technologies was rarely of interest to manufacturers, designers, and scientists. Since then, however, a significant research and industry effort has focused on better understanding window thermal and optical behavior, how windows influence building energy patterns, and on the development of advanced products. This chapter explains how fenestration technologies can make a positive impact on building energy flows, what physical phenomena govern window heat and light transfer, what new products have been developed, and what new products are currently the subject of international research efforts. 44 refs., 30 figs., 3 tabs.

  18. Materials performance in advanced fossil technologies

    SciTech Connect (OSTI)

    Natesan, K. )

    1991-11-01

    A number of advanced technologies are being developed to convert coal into clean fuels for use as a feedstock in chemical plants and for power generation. From the standpoint of component materials, the environments created by coal conversion and combustion in these technologies and their interactions with materials are of interest. This article identifies several modes of materials degradation and possible mechanisms for metal wastage. Available data on the performance of materials in several of the environments are highlighted, and examples of promising research activities to improve the corrosion resistance of materials are presented.

  19. Advanced manufacturing: Technology and international competitiveness

    SciTech Connect (OSTI)

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  20. Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual Progress Report The Advanced Combustion Engine R&D subprogram supports the VTP Program by removing the technical ...

  1. Energy Department Announces Advanced Fuel-Efficient Vehicle Technologi...

    Energy Savers [EERE]

    Announces Advanced Fuel-Efficient Vehicle Technologies Funding Opportunity, Includes Alternative Fuels Workplace Safety Programs Energy Department Announces Advanced Fuel-Efficient ...

  2. ZAP Advanced Battery Technologies JV | Open Energy Information

    Open Energy Info (EERE)

    battery manufacturer Advanced Battery Technologies focusing on manufacturing and marketing of advanced batteries for electric cars using the latest in nanotechnology....

  3. Technology Development Advances EM Cleanup | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development Advances EM Cleanup Technology Development Advances EM Cleanup The unique nature of many of EM's remaining facilities will require a strong and responsive engineering ...

  4. Vehicle Technologies Office Merit Review 2014: Advanced Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Heavy-Duty Engine Systems and Emissions Control Modeling and Analysis Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions ...

  5. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mini-Van PHEV DOE Funded Project Advancing Transportation Through Vehicle Electrification - PHEV Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity...

  6. Overview of the Batteries for Advanced Transportation Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of the Batteries for Advanced Transportation Technologies (BATT) Program BATT Program- Summary and Future Plans Overview and Progress of the Batteries for Advanced ...

  7. Trinity - ASC's First Advanced Technology System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trinity Trinity - ASC's First Advanced Technology System Next-generation computing! LANL is decreasing its use of city/well water for cooling towers and using water from LANL's Sanitary Effluent Reclamation Facility (SERF). NNSA's ASC Program has given permission to the Los Alamos and Sandia Alliance for Computing at Extreme Scale (ACES) Project to release the request for proposal (RFP) for the Trinity system. The procurement of Trinity is a joint procurement with the DOE Office of Science to

  8. Driving Economic Growth: Advanced Technology Vehicles Manufacturing

    Broader source: Energy.gov [DOE]

    With $8 billion in loans and commitments to projects that have supported the production of more than 4 million fuel-efficient cars and more than 35,000 direct jobs across eight states, the Loan Programs Office Advanced Technology Vehicles Manufacturing (ATVM) loan program has played a key role in helping the American auto industry propel the resurgence of manufacturing in the United States.

  9. advanced simulation and computing | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration advanced simulation and computing NNSA's missions get a boost from brain-inspired, radically different computer design The first computers to contribute to the nation's nuclear security work used thousands of vacuum tubes-which resembled fat light bulbs that gave off lots of heat-and consumed 125 kW of power to perform around 1,900 operations per second. This month NNSA's Lawrence Livermore National Laboratory (... NNSA Announces Procurement of Penguin Computing Clusters to

  10. Baseline design/economics for advanced Fischer-Tropsch technology

    SciTech Connect (OSTI)

    Not Available

    1992-04-27

    The objectives of the study are to: Develop a baseline design for indirect liquefaction using advanced Fischer-Tropsch (F-T) technology. Prepare the capital and operating costs for the baseline design. Develop a process flowsheet simulation (PFS) model. The baseline design, the economic analysis, and the computer model will be the major research planning tools that Pittsburgh Energy Technology Center will use to plan, guide, and evaluate its ongoing and future research and commercialization programs relating to indirect coal liquefaction for the manufacture of synthetic liquid fuels from coal.

  11. Advanced ST Plasma Scenario Simulations for NSTX

    SciTech Connect (OSTI)

    C.E. Kessel; E.J. Synakowski; D.A. Gates; R.W. Harvey; S.M. Kaye; T.K. Mau; J. Menard; C.K. Phillips; G. Taylor; R. Wilson; the NSTX Research Team

    2004-10-28

    Integrated scenario simulations are done for NSTX [National Spherical Torus Experiment] that address four primary milestones for developing advanced ST configurations: high {beta} and high {beta}{sub N} inductive discharges to study all aspects of ST physics in the high-beta regime; non-inductively sustained discharges for flattop times greater than the skin time to study the various current-drive techniques; non-inductively sustained discharges at high {beta} for flattop times much greater than a skin time which provides the integrated advanced ST target for NSTX; and non-solenoidal start-up and plasma current ramp-up. The simulations done here use the Tokamak Simulation Code (TSC) and are based on a discharge 109070. TRANSP analysis of the discharge provided the thermal diffusivities for electrons and ions, the neutral-beam (NB) deposition profile, and other characteristics. CURRAY is used to calculate the High Harmonic Fast Wave (HHFW) heating depositions and current drive. GENRAY/CQL3D is used to establish the heating and CD [current drive] deposition profiles for electron Bernstein waves (EBW). Analysis of the ideal-MHD stability is done with JSOLVER, BALMSC, and PEST2. The simulations indicate that the integrated advanced ST plasma is reachable, obtaining stable plasmas with {beta} {approx} 40% at {beta}{sub N}'s of 7.7-9, I{sub P} = 1.0 MA, and B{sub T} = 0.35 T. The plasma is 100% non-inductive and has a flattop of 4 skin times. The resulting global energy confinement corresponds to a multiplier of H{sub 98(y,2)} = 1.5. The simulations have demonstrated the importance of HHFW heating and CD, EBW off-axis CD, strong plasma shaping, density control, and early heating/H-mode transition for producing and optimizing these plasma configurations.

  12. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    SciTech Connect (OSTI)

    Moe, Wayne Leland

    2015-05-01

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory importance of key DOE reactor research initiatives should be assessed early in the technology development process. Quality assurance requirements supportive of later licensing activities must also be attached to important research activities to ensure resulting data is usable in that context. Early regulatory analysis and licensing approach planning thus provides a significant benefit to the formulation of research plans and also enables the planning and development of a compatible AdvSMR licensing framework, should significant modification be required.

  13. Vehicle Technologies Office Merit Review 2014: Development of 3rd Generation Advanced High Strength Steels (AHSS) with an Integrated Experimental and Simulation Approach

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  14. Large Eddy Simulation (LES) Applied to Advanced Engine Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research Large Eddy Simulation (LES) Applied to Low-Temperature and Diesel Engine Combustion Research Vehicle ...

  15. ORNL). Consortium for Advanced Simulation of Light Water Reactors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation of Light Water Reactors (CASL) was established by the US Department of Energy in 2010 to advance modeling and simulation capabilities for nuclear reactors. CASL's...

  16. Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual Progress Report PDF icon 2010advcombustionengine.pdf More Documents & Publications Vehicle Technologies Office: ...

  17. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufactur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 ...

  18. Advanced Biomass Gasification Technologies Inc ABGT | Open Energy...

    Open Energy Info (EERE)

    Biomass Gasification Technologies Inc ABGT Jump to: navigation, search Name: Advanced Biomass Gasification Technologies Inc. (ABGT) Place: New York, New York Zip: 10036 Product:...

  19. Chapter 4: Advancing Clean Electric Power Technologies | Fast...

    Energy Savers [EERE]

    Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal ... the design stage include the Advanced Sodium Technological Reactor for Industrial ...

  20. Advances in Diesel Engine Technologies for European Passenger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Technologies for European Passenger Vehicles Advances in Diesel Engine Technologies for European Passenger Vehicles 2002 DEER Conference Presentation: Volkswagen AG ...

  1. Advanced Ceramic Materials and Packaging Technologies for Realizing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors ...

  2. Idaho National Laboratory Testing of Advanced Technology Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Idaho National Laboratory Testing of Advanced Technology Vehicles Vehicle Technologies Office Merit Review 2014: Idaho National Laboratory Testing of ...

  3. Air Cooling Technology for Advanced Power Electronics and Electric...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Air Cooling Technology for Power Electronic Thermal Control Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D ...

  4. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar...

    Broader source: Energy.gov (indexed) [DOE]

    the presentation slides from the "Joint Fuel Cell Technologies Office and Advanced Manufacturing Office Webinar" held November 20, 2012. PDF icon Joint Fuel Cell Technologies ...

  5. Samsung Advanced Institute of Technology SAIT | Open Energy Informatio...

    Open Energy Info (EERE)

    Advanced Institute of Technology SAIT Jump to: navigation, search Name: Samsung Advanced Institute of Technology (SAIT) Place: Yongin-Si, Gyeonggi-do, Korea (Republic) Zip: 449-712...

  6. Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual Progress Report Annual report on the work of the the Advanced...

  7. Conversion Technologies for Advanced Biofuels - Bio-Oil Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels - Bio-Oil Production. PDF icon ctab_webinar_bio_oils_production.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading 2013 Peer Review Presentations-Bio-oil Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils

  8. Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Results | Department of Energy Vehicle Testing Activity (AVTA) Data and Results Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data and Results The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies through the Advanced Vehicle Testing Activity (AVTA). This effort collects performance data from a wide range of light-duty alternative fuel and advanced technology

  9. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar

    Broader source: Energy.gov [DOE]

    Presentation slides from the joint Fuel Cell Technologies Office and Advanced Manufacturing Office webinar held November 20, 2012.

  10. IPIRG programs - advances in pipe fracture technology

    SciTech Connect (OSTI)

    Wilkowski, G.; Olson, R.; Scott, P.

    1997-04-01

    This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

  11. Technological advancements in NGV station design

    SciTech Connect (OSTI)

    Ledbetter, G.S.; Grimmer, J.E.; Ketcham, E.T.

    1995-12-31

    Hurricane Compressors` SPRINT System (patent pending) is designed to increase the rate of flow from compressed natural gas (CNG) fuel stations and provide greater utilization of stored CNG than is available from traditional compressor stations. Using a novel method of adapting compressor operation to changes in CNG storage system pressures, this advanced technology provides an alternative mechanism for fuel delivery when demand for fuel is high. Transfer of CNG may be made at higher rates of flow than would be possible either from a pressure depleted storage system or directly from the compressor.

  12. BUSINESS PLAN ADVANCED SIMULATION AND COMPUTING

    National Nuclear Security Administration (NNSA)

    i BUSINESS PLAN ADVANCED SIMULATION AND COMPUTING 2015 NA-ASC-104R-15-Vol.1-Rev.0 ii Prepared by LLNL under Contract DE-AC52-07NA27344. This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any

  13. Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss031_rask_2012_o.pdf More Documents & Publications Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth)

  14. CENTER FOR ADVANCED SEPARATION TECHNOLOGY (CAST) PROGRAM

    SciTech Connect (OSTI)

    Yoon, Roe-Hoan; Hull, Christopher

    2014-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations.

  15. Systematic Discrimination of Advanced Hydrogen Production Technologies

    SciTech Connect (OSTI)

    Charles V. Park; Michael W. Patterson

    2010-07-01

    The U.S. Department of Energy, in concert with industry, is developing a high-temperature gas-cooled reactor at the Idaho National Laboratory (INL) to demonstrate high temperature heat applications to produce hydrogen and electricity or to support other industrial applications. A key part of this program is the production of hydrogen from water that would significantly reduce carbon emissions compared to current production using natural gas. In 2009 the INL led the methodical evaluation of promising advanced hydrogen production technologies in order to focus future resources on the most viable processes. This paper describes how the evaluation process was systematically planned and executed. As a result, High-Temperature Steam Electrolysis was selected as the most viable near-term technology to deploy as a part of the Next Generation Nuclear Plant Project.

  16. Advanced Electric Traction System Technology Development

    SciTech Connect (OSTI)

    Anderson, Iver

    2011-01-14

    As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

  17. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Technology Assessment

    Energy Savers [EERE]

    Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Advanced Sensors, Controls, Platforms and Modeling for Manufacturing is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between

  18. Advanced Technology R&D | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration Advanced Technology Development and Mitigation The Advanced Technology Development and Mitigation (ATDM) subprogram includes laboratory code and computer engineering and science projects that pursue long-term simulation and computing goals relevant to the broad national security missions of the NNSA. It addresses the need to adapt current integrated design codes and build new codes that are attuned to emerging computing technologies. Performing this work within the scope of

  19. Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Data | Department of Energy Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data The Vehicle Technologies Office (VTO) supports testing and data collection on a wide range of advanced and alternative fuel vehicles and technologies through the Advanced Vehicle Testing Activity (AVTA) . The following table has downloadable performance, reliability, and driver behavior data for selected

  20. Alternative Fuels Data Center: Alternative Fuel and Advanced Technology

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Aid in Emergency Recovery Efforts Alternative Fuel and Advanced Technology Vehicles Aid in Emergency Recovery Efforts to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicles Aid in Emergency Recovery Efforts on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicles Aid in Emergency Recovery Efforts on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced

  1. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect (OSTI)

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  2. Software Framework for Advanced Power Plant Simulations

    SciTech Connect (OSTI)

    John Widmann; Sorin Munteanu; Aseem Jain; Pankaj Gupta; Mark Moales; Erik Ferguson; Lewis Collins; David Sloan; Woodrow Fiveland; Yi-dong Lang; Larry Biegler; Michael Locke; Simon Lingard; Jay Yun

    2010-08-01

    This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. These include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.

  3. Fact Sheet: Energy Storage Technology Advancement Partnership (October

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012) | Department of Energy Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership (ESTAP) is a cooperative funding and information-sharing partnership between DOE and interested states that aims to accelerate the commercialization and deployment of energy storage technology in the U.S. via joint funding and coordination. For more information about how OE performs

  4. Advanced Technologies and Practices - Building America Top Innovations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Technologies and Practices - Building America Top Innovations Advanced Technologies and Practices - Building America Top Innovations July 16, 2014 - 4:04pm Addthis Advanced Technologies and Practices - Building America Top Innovations Top Innovations in this category encompass research in specific technologies and construction practices that improve the building envelope; heating, ventilation, and air conditioning (HVAC); water heating components; and indoor air

  5. Offshore Wind Advanced Technology Demonstration Projects | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Advanced Technology Demonstration Projects Offshore Wind Advanced Technology Demonstration Projects With roughly 80% of the U.S. electricity demand originating from coastal states, offshore wind is a crucial renewable resource to be incorporated in the country's clean energy mix. Designed to reduce the cost of offshore wind energy through the development and deployment of innovative technologies, the Department of Energy has selected three Offshore Wind Advanced Technology

  6. EGR Distribution in Engine Cylinders Using Advanced Virtual Simulation

    SciTech Connect (OSTI)

    Fan, Xuetong

    2000-08-20

    Exhaust Gas Recirculation (EGR) is a well-known technology for reduction of NOx in diesel engines. With the demand for extremely low engine out NOx emissions, it is important to have a consistently balanced EGR flow to individual engine cylinders. Otherwise, the variation in the cylinders' NOx contribution to the overall engine emissions will produce unacceptable variability. This presentation will demonstrate the effective use of advanced virtual simulation in the development of a balanced EGR distribution in engine cylinders. An initial design is analyzed reflecting the variance in the EGR distribution, quantitatively and visually. Iterative virtual lab tests result in an optimized system.

  7. Snorre subsea completions advance TFL technology

    SciTech Connect (OSTI)

    Gunnarsson, B.; Tonnessen, S.H. )

    1992-12-01

    Well-service operations on subsea completions at Saga Petroleum's Snorre field performed by TFL (through-flowline) methods. These operations will be carried out by an innovative system that advances the state-of-the-art for TFL technology. The initial field development phase for Snorre includes 10 subsea wells mounted no a large template known as the Subsea Production System, or SPS. The 2 [times] 10 well slot arrangement on the SPS allows additional wells to be drilled as needed to replace the original ten. The template is located 6,500 m (21,320 ft) from the Snorre TLP and is connected to it by two 8-in. production lines, one 8-in. water injection line and two 3-in.-ID TFL service lines. The wells will be completed with dual 3 1/2-in. Tubing strings for TFL service operations. This article will overview the Snorre TFL system and discuss completion design.

  8. Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect (OSTI)

    Damevski, Kostadin

    2009-03-30

    A resounding success of the Scientific Discover through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedened computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative hig-performance scientific computing.

  9. Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss031_rask_2011_o.pdf More Documents & Publications Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) Data Collection for Improved Cold Temperature Thermal Modeling Advanced Technology Vehicle Benchmark and Assessment

  10. Characterization and Development of Advanced Heat Transfer Technologies |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ape_11_kelly.pdf More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies Advanced Power Electronics and Electric Machines Air Cooling Technology for Power Electronic Thermal Control

  11. Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual Progress Report Annual report on the work of the the Advanced Combustion ...

  12. Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual Progress Report Annual report on the work of the the Advanced Combustion...

  13. Vehicle Technologies Office: 2013 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2013 Advanced Combustion R&D Annual Progress Report This report describes the progress made on the ...

  14. Advanced Technology and Alternative Fuel Vehicle Basics | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Advanced Technology and Alternative Fuel Vehicle Basics Advanced Technology and Alternative Fuel Vehicle Basics August 20, 2013 - 9:00am Addthis Photo of a large blue truck with 'PG&E Cleanair' written on the side. There are a variety of alternative fuel and advanced technology vehicles that run on fuels other than traditional petroleum. Learn about the following types of vehicles: Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid and Plug-In Electric Vehicles Natural Gas

  15. Chapter 4 - Advancing Clean Electric Power Technologies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4 - Advancing Clean Electric Power Technologies Chapter 4 - Advancing Clean Electric Power Technologies Chapter 4 - Advancing Clean Electric Power Technologies Clean electric power is paramount to today's mission to meet our interdependent security, economic, and environmental goals. While supporting aggressive emission reductions, the traditional market drivers such as reliability, safety, and affordability must be maintained and enhanced. The current portfolio of electric production

  16. Chapter 6 - Innovating Clean Energy Technologies in Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing | Department of Energy 6 - Innovating Clean Energy Technologies in Advanced Manufacturing Chapter 6 - Innovating Clean Energy Technologies in Advanced Manufacturing Chapter 6 - Innovating Clean Energy Technologies in Advanced Manufacturing Clean energy manufacturing involves the minimization of the energy and environmental impacts of the production, use, and disposal of manufactured goods, which range from fundamental commodities such as metals and chemicals to sophisticated

  17. Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Fuels play a critical role throughout our economy. In 2013, fuels directly supplied about 99% of the energy needed by our national transportation system, 66% of that needed to generate our electricity, 68% of that needed by our industry, and 27% of that needed by our

  18. Final Technical Report - Center for Technology for Advanced Scientific

    Office of Scientific and Technical Information (OSTI)

    Component Software (TASCS) (Technical Report) | SciTech Connect Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS) Citation Details In-Document Search Title: Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS) This is a final technical report for the University of Maryland work in the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS). The Maryland work focused on

  19. Three Offshore Wind Advanced Technology Demonstration Projects Receive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase 2 Funding | Department of Energy Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding September 11, 2014 - 3:16pm Addthis The U.S. Department of Energy (DOE) awarded additional funding to three of the seven projects from the Offshore Wind Advanced Technology Demonstration Funding Opportunity. Dominion Virginia Power, Fishermen's Energy of New Jersey, and Principle Power

  20. Under Secretary of Energy Highlights Advanced Energy Technologies to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustain America's Economic Growth | Department of Energy Highlights Advanced Energy Technologies to Sustain America's Economic Growth Under Secretary of Energy Highlights Advanced Energy Technologies to Sustain America's Economic Growth June 2, 2006 - 2:12pm Addthis HONEOYE FALLS, NY - U.S. Under Secretary of Energy David Garman today visited the General Motors (GM) Advanced Technologies Facility in Honeoye Falls, New York, with Rep. Randy Kuhl (NY-29th), to tour the facility and view new

  1. Vehicle Technologies Office Merit Review 2015: Impacts of Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Engines | Department of Energy Impacts of Advanced Combustion Engines Vehicle Technologies Office Merit Review 2015: Impacts of Advanced Combustion Engines Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about impacts of advanced combustion engines. PDF icon vss140_curran_2015_p.pdf More Documents & Publications Vehicle Technologies Office Merit

  2. Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Report | Department of Energy Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low

  3. Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Technology Vehicles Manufacturing Loan Program Fact Sheet: Advanced Technology Vehicles Manufacturing Loan Program November 6, 2008 - 4:47pm Addthis On November 5, 2008, the Department of Energy issued the Interim Final Rule and accomplished writing the rule for Section 136 of EISA 2007 in approximately half of the 60-day expedited timeframe mandated by Congress. Historically, rulemaking at DOE takes 18 months. The Advanced Technology Vehicles Manufacturing Loan

  4. DOE Signs Advanced Enrichment Technology License and Facility Lease |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Enrichment Technology License and Facility Lease DOE Signs Advanced Enrichment Technology License and Facility Lease December 8, 2006 - 9:34am Addthis Announces Agreements with USEC Enabling Deployment of Advanced Domestic Technology for Uranium Enrichment WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today announced the signing of a lease agreement with the United States Enrichment Corporation, Inc. (USEC) for their use of the Department's gas

  5. Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bio-Oils Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils Introduction presentation report-out at the CTAB webinar on bio-oils. PDF icon ctab_webinar_bio_oils_intro.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading 2013 Peer Review Presnentations-Plenaries

  6. 16 Projects To Advance Hydropower Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology September 6, 2011 - 11:24am Addthis U.S. Department Energy Secretary Steven Chu and U.S. Department of the Interior Secretary Ken Salazar announced nearly $17 million in funding over the next three years for research and development projects to advance hydropower technology. The list of 16 projects in 11 different states can be found here. Applicant Location Award Amount; Funding is from DOE unless otherwise

  7. Advanced Technology Planning for Federal Energy Savings Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contracts | Department of Energy Energy Savings Performance Contracts » Advanced Technology Planning for Federal Energy Savings Performance Contracts Advanced Technology Planning for Federal Energy Savings Performance Contracts The Federal Energy Management Program helps agencies to identify and plan opportunities to deploy advanced technologies through federal energy savings performance contracts (ESPCs). A federal project executive (FPE) will work with a project facilitator and a U.S.

  8. EA-1678: Nissan North America, Inc., Advanced Technology Electric Vehicle

    Energy Savers [EERE]

    Manufacturing Plant in Smyrna, TN | Department of Energy ATVM » ATVM Environmental Compliance » EA-1678: Nissan North America, Inc., Advanced Technology Electric Vehicle Manufacturing Plant in Smyrna, TN EA-1678: Nissan North America, Inc., Advanced Technology Electric Vehicle Manufacturing Plant in Smyrna, TN November 2, 2009 EA-1678: Final Environmental Assessment Loan To Nissan North America, Inc., for Advanced Technology Electric Vehicle Manufacturing Project in Smyrna, Tennessee

  9. EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing

    Energy Savers [EERE]

    Project in Dearborn, MI | Department of Energy ATVM » ATVM Environmental Compliance » EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn, MI EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn, MI February 1, 2011 EA-1834: Final Environmental Assessment Loan to Severstal Dearborn, Inc., for Advanced Technology Vehicles Manufacturing Project in Dearborn, Michigan February 18, 2011 EA-1834: Finding of No Significant

  10. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements ...

  11. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J.C., CASL: Consortium for the Advanced Simulation of Light Water Reactors - A DOE Energy Innovation Hub, ANS MC2015 Joint Internation Conference on Mathematics and Computation...

  12. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virtual Environment for Scientific Collaboration Posted: April 30, 2013 The Consortium for Advanced Simulation of Light Water Reactors, the Department of Energy's first...

  13. Advanced Process Engineering Co-Simulator (APECS) | Open Energy...

    Open Energy Info (EERE)

    Advanced Process Engineering Co-Simulator (APECS) (Redirected from APECS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: APECS AgencyCompany Organization: National...

  14. Climate Change Mitigation: An Analysis of Advanced Technology Scenarios

    SciTech Connect (OSTI)

    Clarke, Leon E.; Wise, Marshall A.; Placet, Marylynn; Izaurralde, R Cesar; Lurz, Joshua P.; Kim, Son H.; Smith, Steven J.; Thomson, Allison M.

    2006-09-18

    This report documents a scenario analysis that explores three advanced technology pathways toward climate stabilization using the MiniCAM model.

  15. Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual Progress Report PDF icon 2008advcombustionengine.pdf More Documents & Publications Ignition Control for HCCI ...

  16. Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

  17. EA-1678: Nissan North America, Inc., Advanced Technology Electric...

    Office of Environmental Management (EM)

    ATVM ATVM Environmental Compliance EA-1678: Nissan North America, Inc., Advanced Technology Electric Vehicle Manufacturing Plant in Smyrna, TN EA-1678: Nissan North America,...

  18. NTT Advanced Technology Corporation NTT AT | Open Energy Information

    Open Energy Info (EERE)

    search Name: NTT Advanced Technology Corporation (NTT-AT) Place: Tokyo, Tokyo, Japan Zip: 163-0431 Product: Telecommunications service provider. Coordinates: 35.670479,...

  19. Vehicle Technologies Office Merit Review 2014: Impacts of Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines Vehicle Technologies Office Merit Review 2014: Impacts of Advanced Combustion Engines Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel ...

  20. Vehicle Technologies Office Merit Review 2015: Impacts of Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines Vehicle Technologies Office Merit Review 2015: Impacts of Advanced Combustion Engines Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel ...

  1. Vehicle Technologies Office: 2015 Advanced Combustion Engine Annual Progress Report

    Broader source: Energy.gov [DOE]

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive...

  2. Overview of the Batteries for Advanced Transportation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    es00bduong2010o.pdf More Documents & Publications Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of...

  3. EA-1985: Virginia Offshore Wind Technology Advancement Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles ... (OCS EISEA BOEM 2014-1000 and DOEEA-1985). http:www.boem.govVOWTAP PUBLIC ...

  4. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbohydrates Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates DOE report-out presentation at the CTAB webinar on carbohydrates. PDF icon ...

  5. DOE-Funded Primer Underscores Technology Advances, Challenges...

    Broader source: Energy.gov (indexed) [DOE]

    announces the release of "Modern Shale Gas Development in the United States: A Primer." ... on the technology advances and challenges that accompany deep shale gas development. ...

  6. Vehicle Technologies Office Merit Review 2014: Advanced Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts - enabling systems and solutions for high efficiency light duty...

  7. Characterization and Development of Advanced Heat Transfer Technologies (Presentation)

    SciTech Connect (OSTI)

    Kelly, K.

    2009-05-01

    This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

  8. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle testing and...

  9. Vehicle Technologies Office Merit Review 2014: Advanced Combustion and Fuels

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion and fuels.

  10. ATU Advanced Technology Upgrading Ltd | Open Energy Information

    Open Energy Info (EERE)

    Upgrading) Ltd Place: Israel Product: Focused on development of rechargeable magnesium battery. References: ATU (Advanced Technology Upgrading) Ltd1 This article is a stub. You...

  11. Advanced Technology Development Center ATDC | Open Energy Information

    Open Energy Info (EERE)

    Development Center ATDC Jump to: navigation, search Name: Advanced Technology Development Center (ATDC) Place: United States Sector: Services Product: General Financial & Legal...

  12. Vehicle Technologies Office Merit Review 2015: Advanced Combustion and Fuels

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about advanced...

  13. Sec. Chu Announces the First Auto Loans for Advanced Technologies

    Broader source: Energy.gov [DOE]

    In Dearborn, Michigan Energy Secretary Steven Chu announced $8 billion in conditional loan commitments for the development of innovative, advanced vehicle technologies that will create thousands of...

  14. The Center for Advanced Ceramics Technology CACT | Open Energy...

    Open Energy Info (EERE)

    itleTheCenterforAdvancedCeramicsTechnologyCACT&oldid780750" Feedback Contact needs updating Image needs updating Reference needed Missing content Broken link Other...

  15. Ramping-up Investments in Advanced Vehicle Technologies | Department...

    Energy Savers [EERE]

    From state-of-the-art electric drive batteries to light-weight vehicles, these projects ... Advanced cells and design technology for electric drive batteries: Twelve projects to ...

  16. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization

    Broader source: Energy.gov [DOE]

    Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization presentation at the April 2013 peer review meeting held in Denver, Colorado.

  17. Advancement of High Temperature Black Liquor Gasification Technology

    SciTech Connect (OSTI)

    Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

    2008-03-31

    Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the design, specification and procurement of facility upgrades. Chemrec AB is also operating a pressurized, O2-blown gasifier pilot facility in Piteaa, Sweden. There was an exchange of knowledge with the pressurized projects including utilization of the experimental results from facilities in Piteaa, Sweden. Resources at the Georgia Tech Research Corporation (GTRC, a.k.a., the Institute of Paper Science and Technology) were employed primarily to conduct the fundamental investigations on scaling and plugging mechanisms and characterization of green liquor dregs. The project also tapped GTRC expertise in the development of the critical underlying black liquor gasification rate subroutines employed in the CFD code. The actual CFD code development and application was undertaken by Process Simulation, Ltd (PSL) and Simulent, Ltd. PSL focused on the overall integrated gasifier CFD code, while Simulent focused on modeling the black liquor nozzle and description of the black liquor spray. For nozzle development and testing Chemrec collaborated with ETC (Energy Technology Centre) in Piteae utilizing their test facility for nozzle spray investigation. GTI (Gas Technology Institute), Des Plains, IL supported the team with advanced gas analysis equipment during the gasifier test period in June 2005.

  18. Vehicle Technologies Office Merit Review 2014: Advanced Battery Recycling

    Broader source: Energy.gov [DOE]

    Presentation given by OnTo Technology LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced battery recycling.

  19. Advances in Chip Technology, Packaging Enable White LED Breakthroughs

    Broader source: Energy.gov [DOE]

    Significant advances in chip technology have enabled Cree, Inc.'s Santa Barbara Technology Center to demonstrate white LEDs with record efficacies as high as 74 lumens per watt - on par with...

  20. Advanced ignition and propulsion technology program

    SciTech Connect (OSTI)

    Oldenborg, R.; Early, J.; Lester, C.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Reliable engine re-ignition plays a crucial role in enabling commercial and military aircraft to fly safely at high altitudes. This project addressed research elements critical to the optimization of laser-based igniter. The effort initially involved a collaborative research and development agreement with B.F. Goodrich Aerospace and Laser Fare, Inc. The work involved integrated experiments with theoretical modeling to provide a basic understanding of the chemistry and physics controlling the laser-induced ignition of fuel aerosols produced by turbojet engine injectors. In addition, the authors defined advanced laser igniter configurations that minimize laser packaging size, weight, complexity and power consumption. These innovative ignition concepts were shown to reliably ignite jet fuel aerosols over a broad range of fuel/air mixture and a t fuel temperatures as low as -40 deg F. The demonstrated fuel ignition performance was highly superior to that obtained by the state-of-the-art, laser-spark ignition method utilizing comparable laser energy. The authors also developed a laser-based method that effectively removes optically opaque deposits of fuel hydrocarbon combustion residues from laser window surfaces. Seven patents have been either issued or are pending that resulted from the technology developments within this project.

  1. Advanced Lost Foam Casting Technology - Phase V

    SciTech Connect (OSTI)

    Wanliang Sun; Harry E. Littleton; Charles E. Bates

    2004-04-29

    Previous research, conducted under DOE Contracts DE-FC07-89ID12869, DE-FC07-93ID12230 and DE-FC07-95ID113358 made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional developments were needed to improve the process and make it more functional in industrial environments. The current project focused on eight tasks listed as follows: Task 1--Computational Model for the Process and Data Base to Support the Model; Task 2--Casting Dimensional Accuracy; Task 3--Pattern Production; Task 4--Improved Pattern Materials; Task 5--Coating Control; Task 6--In-Plant Case Studies; Task 7--Energy and the Environmental Data; and Task 8--Technology Transfer. This report summarizes the work done on all tasks in the period of October 1, 1999 through September 30, 2004. The results obtained in each task and subtask are summarized in this Executive Summary and details are provided in subsequent sections of the report.

  2. COLLOQUIUM: Advanced Simulation for Technology Innovation and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at PPPL, adult visitors must show a government-issued photo I.D. - for example, a passport or a driver's license. Non-U.S. citizens must show a government-issued photo I.D.,...

  3. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Innovating Clean Energy Technologies in Advanced Manufacturing September 2015 Quadrennial Technology Review 6 Innovating Clean Energy Technologies in Advanced Manufacturing Issues and RDD&D Opportunities  Manufacturing affects the way products are designed, fabricated, used, and disposed; hence, manufacturing technologies have energy impacts extending beyond the industrial sector.  Life-cycle analysis is essential to assess the total energy impact of a manufactured product. 

  4. Chapter 4: Advancing Clean Electric Power Technologies | Advanced...

    Energy Savers [EERE]

    CO 2 separation costs, such as oxy-combustion and chemical looping, are being explored. ... - Develop oxy-combustion and chemical looping technologies to combust coal in ...

  5. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading PNNL report-out at the CTAB webinar on Bio-Oil Upgrading. PDF icon ctab_webinar_bio_oils_upgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Thermochemical Conversion Proceeses to Aviation Fuels 2013 Peer Review Presentations-Bio-oil

  6. Sec. Chu Announces the First Auto Loans for Advanced Technologies

    ScienceCinema (OSTI)

    Secretary Chu

    2010-09-01

    Energy Secretary Steven Chu announced $8 billion in conditional loan commitments for the development of innovative, advanced vehicle technologies that will create thousands of green jobs while helping reduce the nation?s dangerous dependence on foreign oil. The first three auto loans for advanced technologies were awarded to Ford Motor Company, Nissan Motors and Tesla Motors.

  7. Sec. Chu Announces the First Auto Loans for Advanced Technologies

    SciTech Connect (OSTI)

    Secretary Chu

    2009-07-16

    Energy Secretary Steven Chu announced $8 billion in conditional loan commitments for the development of innovative, advanced vehicle technologies that will create thousands of green jobs while helping reduce the nations dangerous dependence on foreign oil. The first three auto loans for advanced technologies were awarded to Ford Motor Company, Nissan Motors and Tesla Motors.

  8. Water-Efficient Technology Opportunity: Advanced Cooling Tower Controls |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Cooling Tower Controls Water-Efficient Technology Opportunity: Advanced Cooling Tower Controls The Federal Energy Management Program (FEMP) identified advanced cooling tower controls as a water-saving technology that is relevant to the federal sector, is commercially available, and offers significant water-savings potential. This overview provides agencies with key information to deploy innovative products and systems that may otherwise be overlooked. It also

  9. Vehicle Technologies Office: Advanced Battery Development, System Analysis,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Testing | Department of Energy Battery Development, System Analysis, and Testing Vehicle Technologies Office: Advanced Battery Development, System Analysis, and Testing To develop better lithium-ion (Li-ion) batteries for plug-in electric vehicles, researchers must integrate the advances made in exploratory battery materials and applied battery research into full battery systems. The Vehicle Technologies Office's (VTO) Advanced Battery Development, System Analysis, and Testing activity

  10. Chapter 4: Advancing Clean Electric Power Technologies

    Broader source: Energy.gov (indexed) [DOE]

    dioxide power cycles, hybrid systems matching renewables with nuclear or fossil, and energy storage. Advanced capabilities in materials, computing, and manufacturing can...

  11. Simulator platform for fast reactor operation and safety technology demonstration

    SciTech Connect (OSTI)

    Vilim, R. B.; Park, Y. S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J.

    2012-07-30

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  12. Chapter 7: Advancing Systems and Technologies to Produce Cleaner Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Advancing Systems and Technologies to Produce Cleaner Fuels September 2015 Quadrennial Technology Review 7 Advancing Systems and Technologies to Produce Cleaner Fuels Issues and RDD&D Opportunities  Fossil fuels account for 82% of total U.S. primary energy use.  Each fuel has strengths and weaknesses in relation to energy security, economic competitiveness, and environmental responsibility identified in Chapter 1.  Low-cost fuels can contribute to economic prosperity. Oil and gas

  13. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Advancing Clean Transportation and Vehicle Systems and Technologies September 2015 Quadrennial Technology Review 8 Advancing Clean Transportation and Vehicle Systems and Technologies Issues and RDD&D Opportunities  Transportation accounts for 10% of U.S. gross domestic product and provides essential services throughout the economy and for quality of life. It also represents 70% of all U.S. petroleum use and 27% of U.S. greenhouse gas (GHG) emissions.  Research opportunities to

  14. Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motors R&D Annual Progress Report | Department of Energy Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing

  15. EERE Success Story-New Advanced Refrigeration Technology Provides Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy, Low Utility Bills for Supermarkets | Department of Energy Advanced Refrigeration Technology Provides Clean Energy, Low Utility Bills for Supermarkets EERE Success Story-New Advanced Refrigeration Technology Provides Clean Energy, Low Utility Bills for Supermarkets July 16, 2015 - 2:23pm Addthis Oak Ridge National Laboratory's (ORNL's) Brian Fricke tests Hillphoenix's Advansor Refrigeration System in ORNL's state-of-the-art Building Technologies Research & Integration Center

  16. NREL: Energy Systems Integration - Advanced Grid Control Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshop Series Advanced Grid Control Technologies Workshop Series NREL's Energy Systems Integration team hosted workshops on advanced distribution management systems (ADMS) and microgrid controls on July 7-9, 2015. The workshops were held at the Energy Systems Integration Facility (ESIF) on the NREL campus, and included a technology showcase featuring projects conducted at the ESIF and tours of the ESIF and the National Wind Technology Center. These were the first in a series of workshops

  17. Trinity Advanced Technology System Overview (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Trinity Advanced Technology System Overview Citation Details In-Document Search Title: Trinity Advanced Technology System Overview × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale

  18. Advanced Technology Vehicle Lab Benchmarking- Level 1

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Neutron Imaging of Advanced Engine Technologies

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Neutron Imaging of Advanced Engine Technologies

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  1. Improved Solvers for Advanced Engine Combustion Simulation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Advanced Technology Development and Mitigation | National Nuclear...

    National Nuclear Security Administration (NNSA)

    As part of this subprogram's work scope, the ASC Program has engaged with the DOE Office of Advanced Scientific Computing Research to address the barriers to exascale and evolving ...

  3. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    SciTech Connect (OSTI)

    SAMS TL; MENDOZA RE

    2010-08-11

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  4. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    SciTech Connect (OSTI)

    SAMS TL

    2010-07-07

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  5. Advanced Technology Vehicle Lab Benchmarking - Level 1 | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss030_lohsebusch_2012_o.pdf More Documents & Publications HEV, PHEV, EV Test Standard Development and Validation Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking (L1&L2)

  6. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabling Modeling and Simulation Technology for Nuclear Power Nuclear energy is a tremendous ... It informs consequential nuclear power operational and safety decisions. The slow ...

  7. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LWRs; Develop and effectively apply modern virtual reactor technology; Engage the nuclear energy community through modeling and simulation; and Deploy new partnership and...

  8. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modeling and simulation technology that is deployed and applied broadly throughout the nuclear energy industry to enhance safety, reliability, and economics. CASL will address,...

  9. A Virtual Engineering Framework for Simulating Advanced Power System

    SciTech Connect (OSTI)

    Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

    2008-06-18

    In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering. Furthermore, with little effort the modeling capabilities described in this report can be extended to support other DOE programs, such as ultra super critical boiler development, oxy-combustion boiler development or modifications to existing plants to include CO2 capture and sequestration.

  10. Vehicle Technologies Office: 2009 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Performance and Reliability of Bonded Interfaces Vehicle Technologies Office Merit Review 2014: Performance and Reliability of Bonded Interfaces for High-Temperature ...

  11. Advanced Diesel Engine Technology Development for HECC

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  12. Advanced Technology Vehicle Benchmark and Assessment

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  13. Advanced Membrane Technology for Hydrocarbon Separations

    SciTech Connect (OSTI)

    2004-07-01

    This factsheet describes a research project whose goal is to develop and demonstrate a membrane technology for superior, robust, low-cost natural gas dehydration.

  14. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Energy Savers [EERE]

    Clean Energy States Alliance Batteries, flywheels, above-ground compressed air, micro ... Projects must include energy storage technologies such as batteries, flywheels, ...

  15. Vehicle Technologies Office: 2010 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor ...

  16. ADVANCED SIMULATION CAPABILITY FOR ENVIRONMENTAL MANAGEMENT

    Office of Scientific and Technical Information (OSTI)

    Key words: Environmental management; Simulation; Model; ... (GS-3, GS-4). 5. Develop predictive capabilities to ... to queue systems that control access Usability ...

  17. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect (OSTI)

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  18. Market Acceptance of Advanced Automotive Technologies (MA3T) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acceptance of Advanced Automotive Technologies (MA3T) Model (Oak Ridge National Laboratory) Objectives Forecasts sales of competing vehicle technologies among consumer segments. Analyzes how technology, infrastructure, consumer behavior, and policy affect sales of new technologies and determines the resulting societal, environmental and economic impacts. Key Attributes & Strengths MA3T can be used to investigate the societal benefits, costs, and employment impacts of market transitions

  19. Advanced Technology & Discovery at Niskayuna | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology & Discovery at Niskayuna Technology & Discovery at Niskayuna Capture the momentum behind leading-edge technologies from advanced manufacturing to supercomputing at GE's research headquarters. Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Featured Technologies Controls Controls at GE are used in

  20. Vehicle Technologies Office Merit Review 2015: Advanced Packaging Technologies and Designs

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  1. Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking (L1&L2)

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  2. Sec. Moniz Discusses Advanced Technology Vehicle Manufacturing Loans

    Broader source: Energy.gov [DOE]

    U.S. Secretary of Energy Ernest Moniz today highlighted key improvements to the Department’s Advanced Technology Vehicles Manufacturing (ATVM) Loan Program at the Motor & Equipment Manufacturers Association (MEMA) Legislative Summit.

  3. Center for Advanced Separation Technology Honaker, Rick 01 COAL...

    Office of Scientific and Technical Information (OSTI)

    Advanced Separation Technology Honaker, Rick 01 COAL, LIGNITE, AND PEAT; 54 ENVIRONMENTAL SCIENCES The U.S. is the largest producer of mining products in the world. In 2011, U.S....

  4. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting vss063bazzi2012o.pdf More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project...

  5. Advance Energy Technologies: Proposed Penalty (2013-CE-5302)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Advance Energy Technologies, Inc. failed to certify walk-in cooler or freezer (WICFs) components as compliant with the energy conservation standards.

  6. U.S. Advanced Manufacturing and Clean Energy Technology Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Advanced Manufacturing and Clean Energy Technology Challenges May 6, 2014 AMO Peer ... here, now made elsewhere 4 11% of U.S. GDP, 12 million U.S. jobs, 60% of U.S. ...

  7. Workshop on Conversion Technologies for Advanced Biofuels - Bio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Oils Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils Introduction presentation report-out at the CTAB webinar on bio-oils. PDF icon ctabwebinarbiooilsi...

  8. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading PNNL report-out at the CTAB webinar on Bio-Oil Upgrading. PDF icon ctabwebinarbiooilsupgrading.p...

  9. Advanced Aerodynamic Technologies for Improving Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Such non-engine losses can account for about a 45% decrease in efficiency. The need for technologies to reduce these parasitic losses has gained significant attention as fuel costs ...

  10. Hot New Advances in Water Heating Technology

    Broader source: Energy.gov [DOE]

    Need to replace your water heater? Learn how to choose the right model for you and what the Energy Department is doing to develop the next generation of energy-efficient and affordable water heating technologies.

  11. Advanced Membrane Separation Technologies for Energy Recovery

    SciTech Connect (OSTI)

    2009-05-01

    This factsheet describes a research project whose goal is to develop novel materials for use in membrane separation technologies for the recovery of waste energy and water from industrial process streams.

  12. Advanced Simulation Capability of Environmental Management | Department of

    Energy Savers [EERE]

    Energy Advanced Simulation Capability of Environmental Management Advanced Simulation Capability of Environmental Management The mission of ASCEM is to develop a modular and extensible open-source, high performance computing (HPC) modeling system for multiphase, multicomponent, multiscale subsurface flow and contaminant transport, and source-term degradation, enabling robust and standardized future performance and risk assessments for EM cleanup and closure activities. For more

  13. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program Plan |

    Energy Savers [EERE]

    Department of Energy Program Plan Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program Plan The NEAMS program plan includes information on the program vision, objective, scope, schedule and cost, management, development team and collaborations. PDF icon NEAMS Executive Program Plan.pdf More Documents & Publications NEAMS Quarterly Report April-June 2013 Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements

  14. Vehicle Technologies Office: Advanced Combustion Engines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy You are here Home » Fuel Efficiency & Emissions » Vehicle Technologies Office: Advanced Combustion Engines Vehicle Technologies Office: Advanced Combustion Engines Researchers take laser-based velocity measurements at the Sandia National Laboratory's Combustion Research Facility. Researchers take laser-based velocity measurements at the Sandia National Laboratory's Combustion Research Facility. Improving the efficiency of internal combustion engines is one of the most promising

  15. ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Opportunities for the Metal Casting Industry | Department of Energy Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry PDF icon advancedmeltingtechnologies.pdf More Documents & Publications ITP Metal Casting: Theoretical/Best Practice Energy Use in Metalcasting Operations ITP Metal Casting: Energy and

  16. Fact Sheet: Advanced Implementation of Energy Storage Technologies -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Energy Storage for Grid Support (August 2013) | Department of Energy Advanced Implementation of Energy Storage Technologies - Community Energy Storage for Grid Support (August 2013) Fact Sheet: Advanced Implementation of Energy Storage Technologies - Community Energy Storage for Grid Support (August 2013) Detroit Edison (DTE) will design, build, and demonstrate Community Energy Storage (CES) systems in their service territory. The CES is designed to improve electricity service to

  17. ORNL Crowdsourcing Site Advances Building Technologies Ideas to the Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Crowdsourcing Site Advances Building Technologies Ideas to the Market ORNL Crowdsourcing Site Advances Building Technologies Ideas to the Market September 24, 2015 - 4:09pm Addthis James White, Rod Stucker and James Rowland, winners of DOE's inaugural Buildings Crowdsourcing Community Campaign, joined GE Appliance’s Venkat Venkatakrishnan and DOE Assistant Secretary David Danielson for a panel discussion at EERE Industry Day at ORNL. Image: ORNL. James White, Rod

  18. DOE Seeking Proposals to Advance Distributed Wind Turbine Technology and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing | Department of Energy Seeking Proposals to Advance Distributed Wind Turbine Technology and Manufacturing DOE Seeking Proposals to Advance Distributed Wind Turbine Technology and Manufacturing December 30, 2014 - 11:04am Addthis On December 29, the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) released a third round of Requests for Proposals (RFPs) under DOE's Distributed Wind Competitiveness Improvement Project (CIP). The CIP aims to help U.S.

  19. Vehicle Technologies Office: Fuel Effects on Advanced Combustion |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Efficiency & Emissions » Vehicle Technologies Office: Fuel Effects on Advanced Combustion Vehicle Technologies Office: Fuel Effects on Advanced Combustion More than 90 percent of transportation relies on petroleum-based fuels: gasoline and diesel. While alternative fuels and plug-in electric vehicles offer great promise to reduce America's petroleum consumption, petroleum-based fuels are likely to play a substantial role for years to come. However, the sources

  20. Energy Department Invests $67 Million to Advanced Nuclear Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 7 Million to Advanced Nuclear Technology Energy Department Invests $67 Million to Advanced Nuclear Technology August 20, 2014 - 12:00pm Addthis News Media Contact 202-586-4940 WASHINGTON - Building on President Obama's Climate Action Plan and the Administration's efforts to expand clean energy innovation, the Energy Department announced today nearly $67 million in nuclear energy research and infrastructure enhancement awards. 83 projects were selected from across the

  1. Advanced Analysis Software Key to New, Energy-Efficient Technologies -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Wind Energy Wind Energy Hydropower, Wave and Tidal Hydropower, Wave and Tidal Energy Analysis Energy Analysis Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Advanced Analysis Software Key to New, Energy-Efficient Technologies Leveraging Scientific and Engineering Know-How to Advance Sources of Renewable Energy Argonne National Laboratory Contact ANL About This Technology <p> 1. Using the analytical software, experts

  2. Trinity Advanced Technology System Overview (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Trinity Advanced Technology System Overview Citation Details In-Document Search Title: Trinity Advanced Technology System Overview Authors: Vigil, Benny Manuel [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2014-10-20 OSTI Identifier: 1160100 Report Number(s): LA-UR-14-28143 DOE Contract Number: AC52-06NA25396 Resource Type: Technical Report Research Org: Los Alamos National Laboratory (LANL) Sponsoring Org: DOE/LANL Country of Publication: United

  3. U.S. Advanced Manufacturing and Clean Energy Technology Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Advanced Manufacturing and Clean Energy Technology Challenges May 6, 2014 AMO Peer Review Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov This presentation does not contain any proprietary, confidential, or otherwise restricted information. 2 Outline * Big Picture on Manufacturing in US * Focus on Advanced Manufacturing * AMO Organization * Technical Assistance * R&D Facilities * R&D Projects * Goals for Meeting 3 Products invented here, now made

  4. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    SciTech Connect (OSTI)

    Liby, Alan L; Rogers, Hiram

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  5. Advancing Concentrating Solar Power Technology, Performance, and

    Office of Environmental Management (EM)

    Civil Nuclear Cooperation with Japan Advancing Civil Nuclear Cooperation with Japan July 3, 2014 - 4:10pm Addthis Deputy Energy Secretary Daniel Poneman, right, and U.S. Ambassador to Japan Caroline Kennedy participate in last month's U.S.-Japan Bilateral Commission on Civil Nuclear Cooperation. | Photo courtesy of the State Department. Deputy Energy Secretary Daniel Poneman, right, and U.S. Ambassador to Japan Caroline Kennedy participate in last month's U.S.-Japan Bilateral Commission on Civil

  6. Frontiers in Advanced Storage Technologies (FAST) project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy From the Lab to the Showroom: How the Electric Car Came to Life From the Lab to the Showroom: How the Electric Car Came to Life October 17, 2011 - 11:02am Addthis An illustration of the 2011 Chevy Volt, whose lithium-ion battery is based on technology developed at Argonne National Laboratory. | Image courtesy of General Motors. An illustration of the 2011 Chevy Volt, whose lithium-ion battery is based on technology developed at Argonne National Laboratory. | Image

  7. Advanced clean combustion technology in Shanxi province

    SciTech Connect (OSTI)

    Xie, K.-C.

    2004-07-01

    Biomass energy resources in China are first described, along with biomass gasification R & D now underway. In Shanxi province biomass and other regenerative energy is relatively little used but coal resources are large. Hence Shanxi is mainly developing clean coal technology to meet its economic and environmental protection requirements. Clean combustion research at Taiyuan University of Technology includes cofiring of coal and RDF in FBC, gas purification and adsorption, fundamentals of plasma-aided coal pyrolysis and gasification and coal derived liquid fuels from synthesis gas. 5 refs.

  8. Advanced NDE Technologies for Powder Metal Components

    SciTech Connect (OSTI)

    Martin, P; Haskins, J; Thomas, G; Dolan, K

    2003-05-01

    Nondestructive evaluation encompasses numerous technologies that assess materials and determine important properties. This paper demonstrates the applicability of several of these technologies to the field of powder metallurgy. The usual application of nondestructive evaluation is to detect and quantify defects in fully sintered product. But probably its most appealing role is to sense problems earlier in the manufacturing process to avoid making defects at all. Also nondestructive evaluation can be incorporated into the manufacturing processes to monitor important parameters and control the processes to produce defect free product. Nondestructive evaluation can characterize powders, evaluate components in the green state, monitor the sintering process, and inspect the final component.

  9. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect (OSTI)

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

  10. Advanced Technology Vehicle Lab Benchmarking - Level 1 | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss030_lohsebusch_2011_o.pdf More Documents & Publications Advanced Technology Vehicle Benchmark and Assessment AVTA: 2010 Honda CR-Z Hybrid Downloadable Dynamometer Database Reports

  11. Advanced Simulation and Computing Business Plan

    SciTech Connect (OSTI)

    Rummel, E.

    2015-07-09

    To maintain a credible nuclear weapons program, the National Nuclear Security Administration’s (NNSA’s) Office of Defense Programs (DP) needs to make certain that the capabilities, tools, and expert staff are in place and are able to deliver validated assessments. This requires a complete and robust simulation environment backed by an experimental program to test ASC Program models. This ASC Business Plan document encapsulates a complex set of elements, each of which is essential to the success of the simulation component of the Nuclear Security Enterprise. The ASC Business Plan addresses the hiring, mentoring, and retaining of programmatic technical staff responsible for building the simulation tools of the nuclear security complex. The ASC Business Plan describes how the ASC Program engages with industry partners—partners upon whom the ASC Program relies on for today’s and tomorrow’s high performance architectures. Each piece in this chain is essential to assure policymakers, who must make decisions based on the results of simulations, that they are receiving all the actionable information they need.

  12. COLLOQUIUM: CASL: Consortium for Advanced Simulation of Light Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactors, a DOE Energy Innovation Hub | Princeton Plasma Physics Lab May 29, 2013, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: CASL: Consortium for Advanced Simulation of Light Water Reactors, a DOE Energy Innovation Hub Dr. Douglas Kothe Oak Ridge National Laboratory The Consortium for Advanced Simulation of Light Water Reactors (CASL) is the first U.S. Department of Energy (DOE) Energy Innovation Hub, established in July 2010 for the modeling and simulation (M&S) of nuclear

  13. Bore II - Advanced Wellbore Technology Characterizes Groundwater Flow and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contamination - Energy Innovation Portal Geothermal Geothermal Energy Analysis Energy Analysis Find More Like This Return to Search Bore II - Advanced Wellbore Technology Characterizes Groundwater Flow and Contamination Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryBore II, co-developed by Berkeley Lab researchers Frank Hale, Chin-Fu Tsang, and Christine Doughty, provides vital information for solving water quality and supply problems and

  14. Advanced Lithium Ion Battery Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Find More Like This Return to Search Advanced Lithium Ion Battery Technologies Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryScientists at Berkeley Lab have invented highly conductive polymer binder materials that significantly improve the viability of using silicon as an electrode material in lithium ion batteries. They have also combined lithium metal with the Berkeley Lab

  15. Advanced lost foam from casting technology

    SciTech Connect (OSTI)

    Bates, C. E.; Littleton, H. E.; Askeland, D.; Griffin, J.; Miller, B. A.; Sheldon, D. S.

    1996-05-01

    Previous research made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional research was needed to improve the process and make it more functional in an industrial environment. The current project focused on five areas listed as follows: Task 1: Precision Pattern Production Task 2: Pattern Coating Consistency Task 3: Sand Fill and Compaction Effects Task 4: Pattern Gating Task 5: Mechanical Properties of Castings. This report summarizes the work done under the current contract in all five areas in the period of October 1, 1994 through December 31, 1995. Twenty-eight (28) companies jointly participate in the project. These companies represent a variety of disciplines, including pattern designers, pattern producers, coating manufacturers, plant design companies, compaction equipment manufacturers, casting producers, and casting buyers.

  16. Brazil advances subsea technology in Marlim pilot

    SciTech Connect (OSTI)

    Not Available

    1993-03-29

    Petroleum Brasileiro SA has extended several water depth records for subsea technology during a pilot project in giant Marlim oil field in the Campos basin off Brazil. Petrobras finished the 10 well Marlim pilot last December. The field's pilot phase was intended to begin early production and enable Petrobras to gather more reservoir data. Ten satellite wells, including two prepilot wells, were completed during the Marlim pilot phase with guidelineless (GLL) wet christmas trees designed and fabricated by FMC Corp., Houston, and CBV Industrial Mechanic SA, Rio de Janeiro. The subsea wells are producing 52,000 b/d of oil and 21.19 MMCfd of gas in water depths of 1,847-2,562 ft. Marlim pilot well flow is routed to a permanent semisubmersible floating production system (FPS). Oil moves from the FPS to a monobuoy that offloads to a shuttle tanker. In addition to marking the first successful uses of purpose-built GLL wet trees, FMC said the Marlim pilot project allowed GLL subsea technology to evolve from conceptual status into a proven deepwater completion method. The paper describes the project.

  17. Technology advances keeping LNG cost-competitive

    SciTech Connect (OSTI)

    Bellow, E.J. Jr.; Ghazal, F.P.; Silverman, A.J.; Myers, S.D.

    1997-06-02

    LNG plants, often very expensive in the past, will in the future need to cost less to build and operate and yet maintain high safety and reliability standards, both during construction and operation. Technical advancements, both in the process and in equipment scaling, manufacturing, and metallurgy, will provide much of the impetus for the improved economics. Although world energy demand is predicted to grow on average of about 2% annually over the next decade, LNG is expected to contribute an increasing portion of this growth with annual growth rates averaging about 7%. This steep growth increase will be propelled mainly by the environmentally friendlier burning characteristics of natural gas and the strong industrial growth in Asian and pacific Rim countries. While LNG is emerging as the fuel of choice for developing economies, its delivered cost to consumers will need to stay competitive with alternate energy supplies if it is to remain in front. The paper discusses LNG process development, treating process, equipment developments (man heat exchanger, compressors, drivers, and pressure vessels), and economy of scale.

  18. Advances in amorphous silicon photovoltaic technology

    SciTech Connect (OSTI)

    Carlson, D.E.; Rajan, K.; Arya, R.R.; Willing, F.; Yang, L.

    1998-10-01

    With the advent of new multijunction thin film solar cells, amorphous silicon photovoltaic technology is undergoing a commercial revival with about 30 megawatts of annual capacity coming on-line in the next year. These new {ital a}{endash}Si multijunction modules should exhibit stabilized conversion efficiencies on the order of 8{percent}, and efficiencies over 10{percent} may be obtained in the next several years. The improved performance results from the development of amorphous and microcrystalline silicon alloy films with improved optoelectronic properties and from the development of more efficient device structures. Moreover, the manufacturing costs for these multijunction modules using the new large-scale plants should be on the order of {dollar_sign}1 per peak watt. These new modules may find widespread use in solar farms, photovoltaic roofing, as well as in traditional remote applications. {copyright} {ital 1998 Materials Research Society.}

  19. Recent advances in lithium ion technology

    SciTech Connect (OSTI)

    Levy, S.C.

    1995-01-01

    Lithium ion technology is based on the use of lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells (1) and in 1983 for ambient temperature systems (2) it was not until Sony Energytech announced a new lithium ion rechargeable cell containing a lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these cells have the high energy density, high voltage and fight weight of metallic lithium systems plus a very long cycle life, but without the disadvantages of dendrite formation on charge and the safety considerations associated with metallic lithium.

  20. Working on Advanced Battery Technologies With National Labs | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Working on Advanced Battery Technologies With National Labs Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Working on Advanced Battery Technologies With National Labs Yan Gao 2011.07.27 Yan Gao is a Senior Scientist in the Chemical and Structure Analysis Laboratory at GE-GRC in Niskayuna NY. Yan

  1. Advancing Research & Technology in the Sciences (ARTS) Forum | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Advancing Research & Technology in the Sciences (ARTS) Forum Advancing Research & Technology in the Sciences (ARTS) Forum January 28, 2016 - 4:11pm Addthis VE-Suite, a virtual engineering tool developed at Ames Laboratory, displayed on a six-sided virtual reality room which helps engineers build greener, next-generation power plants faster and less expensively than ever before. VE-Suite, a virtual engineering tool developed at Ames Laboratory, displayed on a six-sided

  2. Department of Energy Announces Advanced Vehicle Technology Competition,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EcoCar2: Plugging into the Future | Department of Energy Advanced Vehicle Technology Competition, EcoCar2: Plugging into the Future Department of Energy Announces Advanced Vehicle Technology Competition, EcoCar2: Plugging into the Future April 13, 2011 - 12:00am Addthis Washington, DC - Today, at the SAE 2011 World Congress in Detroit, Mich., U.S. Department of Energy's Assistant Secretary for Policy and International Affairs, David Sandalow, announced the official launch of the EcoCar2:

  3. Center for Advanced Separation Technology (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Technical Report: Center for Advanced Separation Technology Citation Details In-Document Search Title: Center for Advanced Separation Technology The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation's GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry

  4. Center for Advanced Separation Technology (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Center for Advanced Separation Technology Citation Details In-Document Search Title: Center for Advanced Separation Technology The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation's GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well

  5. DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research

    Broader source: Energy.gov [DOE]

    Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy’s University Turbine Systems Research Program have been selected by the U.S. Department of Energy for additional development. Developing gas turbines that run with greater cleanness and efficiency than current models is of great benefit both to the environment and the power industry, but development of such advanced turbine systems requires significant advances in high-temperature materials science, an understanding of combustion phenomena, and development of innovative cooling techniques to maintain integrity of turbine components.

  6. Advancement of DOE's EnergyPlus Building Energy Simulation Payment

    SciTech Connect (OSTI)

    Gu, Lixing; Shirey, Don; Raustad, Richard; Nigusse, Bereket; Sharma, Chandan; Lawrie, Linda; Strand, Rick; Pedersen, Curt; Fisher, Dan; Lee, Edwin; Witte, Mike; Glazer, Jason; Barnaby, Chip

    2011-09-30

    EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced significantly under this project, more enhancements are needed for further improvement to ensure that EnergyPlus is able to simulate the latest technologies and perform desired HAVC system operations for the development of next generation HVAC systems. Additional development will be performed under a new 5-year project managed by the National Renewable Energy Laboratory.

  7. Sandia National Laboratories: Advanced Simulation Computing: Verification &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation Verification & Validation high-fidelity simulations The Verification and Validation (V&V) program conducts two major activities at Sandia. The first is to perform assessments and studies that quantify confidence in Advanced Simulation and Computing (ASC) calculation results. The second activity develops and improves V&V and uncertainty quantification methods, metrics, and standards. Assessments This project area conducts studies and assessments for Sandia's engineering

  8. Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Melissa Klembara Office of the Biomass Program U.S. Department of Energy Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils Report-Out Webinar February 9, 2012 2 Energy Efficiency & Renewable Energy eere.energy.gov Focus of 2007 Roadmap 2007 Roadmap "Thrust" Areas * Selective thermal processing * Syngas conversion * Utilization of conventional refinery technologies * Liquid-phase catalytic processing * Process engineering & design * Crosscutting issues 3

  9. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bryna Berendzen Office of the Biomass Program U.S. Department of Energy Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates Report-Out Webinar February 9, 2012 Energy Efficiency & Renewable Energy eere.energy.gov 2 Breaking the Barriers to Cellulosic EtOH OBP and SC publish technology roadmap in 2006  Report concludes biomass recalcitrance is the core barrier to processing lignocellulosic material to ethanol  The roadmap centers on two critical goals: 

  10. Nicholas J. Wright! Advanced Technologies Group Lead NERSC Initiative:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nicholas J. Wright! Advanced Technologies Group Lead NERSC Initiative: Preparing Applications for Exascale --- 1 --- NERSC U ser G roup M ee0ng February 1 2. 2 013 * Technology disruption is underway at the processor and memory level. Computing challenges include: - Energy efficiency - Concurrency - Data movement - Programmability - Resilience * We can only meet these challenges through both hardware and software innovation - Rewrite application codes - Try to influence computer industry 2

  11. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  12. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-09-01

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  13. Projects that Employ Innovative Technologies in Support of the Advanced Energy Initiative (2006)

    Broader source: Energy.gov [DOE]

    Federal Loan Guarantees For Projects That Employ Innovative Technologies In Support Of The Advanced Energy Initiative

  14. Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion Battery Technology - High Voltage Electrolyte

    Broader source: Energy.gov [DOE]

    Presentation given by Daikin America at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

  15. Vehicle Technologies Office Merit Review 2014: Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing of advanced...

  16. Vehicle Technologies Office Merit Review 2014: Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte

    Broader source: Energy.gov [DOE]

    Presentation given by Daikin America at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

  17. Consumer Views on Transportation and Advanced Vehicle Technologies

    SciTech Connect (OSTI)

    Singer, Mark

    2015-09-01

    Vehicle manufacturers, U.S. Department of Energy laboratories, universities, private researchers, and organizations from countries around the globe are pursuing advanced vehicle technologies that aim to reduce gasoline and diesel consumption. This report details study findings of broad American public sentiments toward issues surrounding advanced vehicle technologies and is supported by the U.S. Department of Energy Vehicle Technology Office (VTO) in alignment with its mission to develop and deploy these technologies to improve energy security, increase mobility flexibility, reduce transportation costs, and increase environmental sustainability. Understanding and tracking consumer sentiments can influence the prioritization of development efforts by identifying barriers to and opportunities for broad acceptance of new technologies. Predicting consumer behavior toward developing technologies and products is inherently inexact. A person's stated preference given in an interview about a hypothetical setting may not match the preference that is demonstrated in an actual situation. This difference makes tracking actual consumer actions ultimately more valuable in understanding potential behavior. However, when developing technologies are not yet available and actual behaviors cannot be tracked, stated preferences provide some insight into how consumers may react in new circumstances. In this context this report provides an additional source to validate data and a new resource when no data are available. This report covers study data captured from December 2005 through June 2015 relevant to VTO research efforts at the time of the studies. Broadly the report covers respondent sentiments about vehicle fuel economy, future vehicle technology alternatives, ethanol as a vehicle fuel, plug-in electric vehicles, and willingness to pay for vehicle efficiency. This report represents a renewed effort to publicize study findings and make consumer sentiment data available to researchers, policy makers, and the public. Planned reports will follow detailing data from new studies targeting the primary challenges to and opportunities for advanced vehicle technology deployment. The effort continually refines study content to maintain and improve the relevance and validity of results.

  18. Advanced Thermionic Technology Program: summary report. Volume 2. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-10-01

    This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This Program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. The technology has previously been developed for astronautical applications. Volume 2 (Part C) concentrates on the progress made in developing and fabricating the ''current generation'' of chemical vapor deposited hot shell thermionic converters and is addressed to those primarily concerned with today's capabilities in terrestrial thermionic technology. 30 refs., 83 figs.

  19. Advanced Simulation Capability for Environmental Management (ASCEM) Phase II Demonstration

    SciTech Connect (OSTI)

    Freshley, M.; Hubbard, S.; Flach, G.; Freedman, V.; Agarwal, D.; Andre, B.; Bott, Y.; Chen, X.; Davis, J.; Faybishenko, B.; Gorton, I.; Murray, C.; Moulton, D.; Meyer, J.; Rockhold, M.; Shoshani, A.; Steefel, C.; Wainwright, H.; Waichler, S.

    2012-09-28

    In 2009, the National Academies of Science (NAS) reviewed and validated the U.S. Department of Energy Office of Environmental Management (EM) Technology Program in its publication, Advice on the Department of Energys Cleanup Technology Roadmap: Gaps and Bridges. The NAS report outlined prioritization needs for the Groundwater and Soil Remediation Roadmap, concluded that contaminant behavior in the subsurface is poorly understood, and recommended further research in this area as a high priority. To address this NAS concern, the EM Office of Site Restoration began supporting the development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific approach that uses an integration of toolsets for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM modeling toolset is modular and open source. It is divided into three thrust areas: Multi-Process High Performance Computing (HPC), Platform and Integrated Toolsets, and Site Applications. The ASCEM toolsets will facilitate integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. During fiscal year 2012, the ASCEM project continued to make significant progress in capabilities development. Capability development occurred in both the Platform and Integrated Toolsets and Multi-Process HPC Simulator areas. The new Platform and Integrated Toolsets capabilities provide the user an interface and the tools necessary for end-to-end model development that includes conceptual model definition, data management for model input, model calibration and uncertainty analysis, and model output processing including visualization. The new HPC Simulator capabilities target increased functionality of process model representations, toolsets for interaction with the Platform, and model confidence testing and verification for quality assurance. The Platform and HPC capabilities are being tested and evaluated for EM applications through a suite of demonstrations being conducted by the Site Applications Thrust. In 2010, the Phase I Demonstration focused on testing initial ASCEM capabilities. The Phase II Demonstration, completed in September 2012, focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site Deep Vadose Zone (BC Cribs) served as an application site for an end-to-end demonstration of ASCEM capabilities on a site with relatively sparse data, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations included in this Phase II report included addressing attenuation-based remedies at the Savannah River Site F-Area, to exercise linked ASCEM components under data-dense and complex geochemical conditions, and conducting detailed simulations of a representative waste tank. This report includes descriptive examples developed by the Hanford Site Deep Vadose Zone, the SRS F-Area Attenuation-Based Remedies for the Subsurface, and the Waste Tank Performance Assessment working groups. The integrated Phase II Demonstration provides test cases to accompany distribution of the initial user release (Version 1.0) of the ASCEM software tools to a limited set of users in 2013. These test cases will be expanded with each new release, leading up to the release of a version that is qualified for regulatory applications in the 2015 time frame.

  20. Advanced Lost Foam Casting technology: 1997 summary report

    SciTech Connect (OSTI)

    1997-12-31

    Previous research made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional research was needed to improve the process and make it more functional in an industrial environment. The current project focused on eight tasks listed as follows: Task 1--pyrolysis defects and sand distortion; Task 2--bronze casting technology; Task 3--steel casting technology; Task 4--sand filling and compaction; Task 5--coating technology; Task 6--precision pattern production; Task 7--computational modeling; and Task 8--project management and technology transfer. This report summarizes the work done under the current contract in all eight tasks in the period of October 1, 1995 through December 31, 1997.

  1. Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 10 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual Progress Report PDF icon 2010_adv_combustion_engine.pdf More Documents & Publications Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Combustion

  2. Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.

    SciTech Connect (OSTI)

    Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

    2006-12-11

    This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

  3. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media Kit CASL Acknowledgement This research was supported by the Consortium for Advanced Simulation of Light Water Reactors (http://www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR22725. CASL Logo Files CASL Extended - CASL_word.jpg and CASL_word.png CASL without words - CASL.jpg and CASL.png CASL with words - CASL_word.jpg and CASL_word.png CASL Partners - partners.jpg

  4. Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station Technologies

    Broader source: Energy.gov [DOE]

    As part of the U.S. Energy Department's commitment to give American businesses more options to cut energy costs and reduce reliance on imported oil, the Department today announced a $1.4 million investment to Wallingford- based Proton Energy Systems to collect and analyze performance data for hydrogen fueling stations and advanced refueling components. The projects will also help to track the performance and technical progress of innovative refueling systems to find ways to lower costs and improve operation. These investments are part of the Department's broader strategy to advance U.S. leadership in hydrogen and fuel cell technological innovation and help the industry bring these technologies into the marketplace at lower cost.

  5. Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Annual report on the work of the the Advanced Combustion Engine R&D subprogram that focuses on developing advanced ICE technologies for all highway transportation vehicles.

  6. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  7. Building America Technology Solutions for New and Existing Homes: Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controls Improve Performance of Combination Space- and Water-Heating Systems | Department of Energy Controls Improve Performance of Combination Space- and Water-Heating Systems Building America Technology Solutions for New and Existing Homes: Advanced Controls Improve Performance of Combination Space- and Water-Heating Systems In this project, NorthernSTAR Building America Partnership team demonstrated improved controls have the potential to reduce complexity of combination systems and boost

  8. Vehicle Technologies Office: Advanced Combustion Strategies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Combustion Strategies Vehicle Technologies Office: Advanced Combustion Strategies On the left is real-time video of conventional diesel combustion. The fuel injector sprays 8 jets of liquid fuel into the combustion chamber. Compression-heating ignites the fuel, creating a flame. Soot forms in jets, which glow red, orange, and yellow. High temperature combustion has high efficiency, but also produces high emissions of nitrogen oxides. On the right is a real-time video of a Homogeneous

  9. Establishment of the Center for Advanced Separation Technologies

    SciTech Connect (OSTI)

    Christopher E. Hull

    2006-09-30

    This Final Technical Report covers the eight sub-projects awarded in the first year and the five projects awarded in the second year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  10. NREL to Advance Technologies for Microgrid Projects - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Advance Technologies for Microgrid Projects Industry partnerships leverage capabilities of Energy Systems Integration Facility December 10, 2014 The Energy Department's National Renewable Energy Laboratory (NREL) is providing critical support to two new microgrid projects coordinated by the Electric Power Research Institute (EPRI) and General Electric Company (GE). The Energy Department recently announced its award of more than $8 million for seven microgrid projects-including $1.2 million

  11. Alternative Fuel and Advanced Technology Commercial Lawn Equipment

    SciTech Connect (OSTI)

    2014-10-10

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  12. Collaboration in Research and Engineering for Advanced Technology.

    SciTech Connect (OSTI)

    Vrieling, P. Douglas

    2016-01-01

    SNL/CA proposes the Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) facility to support customer-driven national security mission requirements while demonstrating a fiscally responsible approach to cost-control. SNL/CA realizes that due to the current backlog of capital projects in NNSA that following the normal Line Item process to procure capital funding is unlikely and therefore SNL/CA will be looking at all options including Alternative Financing.

  13. Detroit Edison Advanced Implementation of Energy Storage Technologies

    Energy Savers [EERE]

    Detroit Edison Advanced Implementation of Energy Storage Technologies Project Description Detroit Edison will complete installation and begin an aggregated 1 MW Community Energy Storage (CES) System in their service territory at the Trinity Circuit in Michigan to demonstrate the potential of CES systems to strengthen grid reliability. The performance data of the CES devices and control systems under in-service operating conditions will be analyzed and used to identify gaps and facilitate how the

  14. NNSA Researchers Advance Technology for Remote Reactor Monitoring |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Researchers Advance Technology for Remote Reactor Monitoring Thursday, May 5, 2016 - 12:06pm New detector neutralizes neutron interference for nuclear detection. NNSA's Defense Nuclear Nonproliferation Research and Development Program drives the innovation of technical capabilities to detect, identify, and characterize foreign nuclear weapons development activities. To achieve this, NNSA leverages the unique capabilities of the national laboratories

  15. Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors

    Broader source: Energy.gov (indexed) [DOE]

    for Concentrating Solar Power Systems | Department of Energy is a presentation by Yiping Liu from Sporian Microsystems at the 2013 SunShot Concentrating Solar Power Program Review. PDF icon sporian_microsystems_usrey_public.pdf More Documents & Publications Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems Data Report on Corrosion Testing of Stainless Steel SNF Storage Canisters Corrosion in Very High-Temperature Molten Salt

  16. Advanced Thermoelectric Materials and Generator Technology for Automotive

    Broader source: Energy.gov (indexed) [DOE]

    Waste Heat at GM | Department of Energy Overview of design, fabrication, integration, and test of working prototype TEG for engine waste heat recovery on Suburban test vehicle, and continuing investigation of skutterudite materials systems PDF icon meisner.pdf More Documents & Publications Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Electrical and Thermal

  17. Advances in Diesel Engine Technologies for European Passenger Vehicles |

    Broader source: Energy.gov (indexed) [DOE]

    Presentation by Reuben Sarkar at the Fuel Cell Seminar and Energy Exposition plenary session on November 10, 2014. PDF icon Advancements and Opportunities for Fuel Cells More Documents & Publications Vehicle Technologies Office Merit Review 2015: Hydrogen and Fuel Cells Program Overview Hydrogen and Fuel Cells Program Overview: 2015 Annual Merit Review and Peer Evaluation Meeting U.S. Department of Energy Hydrogen and Fuel Cell Overview: FC EXPO 2016 Department of Energy

    02 DEER

  18. Advanced modeling to accelerate the scale up of carbon capture technologies

    SciTech Connect (OSTI)

    Miller, David C.; Sun, XIN; Storlie, Curtis B.; Bhattacharyya, Debangsu

    2015-06-01

    In order to help meet the goals of the DOE carbon capture program, the Carbon Capture Simulation Initiative (CCSI) was launched in early 2011 to develop, demonstrate, and deploy advanced computational tools and validated multi-scale models to reduce the time required to develop and scale-up new carbon capture technologies. This article focuses on essential elements related to the development and validation of multi-scale models in order to help minimize risk and maximize learning as new technologies progress from pilot to demonstration scale.

  19. Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, October--December 1991

    SciTech Connect (OSTI)

    Not Available

    1992-04-27

    The objectives of the study are to: Develop a baseline design for indirect liquefaction using advanced Fischer-Tropsch (F-T) technology. Prepare the capital and operating costs for the baseline design. Develop a process flowsheet simulation (PFS) model. The baseline design, the economic analysis, and the computer model will be the major research planning tools that Pittsburgh Energy Technology Center will use to plan, guide, and evaluate its ongoing and future research and commercialization programs relating to indirect coal liquefaction for the manufacture of synthetic liquid fuels from coal.

  20. The Consortium for Advanced Simulation of Light Water Reactors

    SciTech Connect (OSTI)

    Ronaldo Szilard; Hongbin Zhang; Doug Kothe; Paul Turinsky

    2011-10-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

  1. Vehicle Technologies Office: 2014 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing Annual Progress Report Vehicle Technologies Office: 2014 Vehicle and Systems Simulation and Testing Annual Progress Report The Vehicle and Systems Simulation and Testing research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical

  2. Terascale Simulation Tools and Technologies (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Technical Report: Terascale Simulation Tools and Technologies Citation Details In-Document Search Title: Terascale Simulation Tools and Technologies We report the development of front tracking method as a simulation tool and technology for the computation on several important SciDAC and SciDAC associated applications. The progress includes the extraction of an independent software library from the front tracking code, conservative front tracking, applications of front tracking to the

  3. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2012 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY ...

  4. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2011 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY ...

  5. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY ...

  6. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report 2010 ...

  7. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Kenneth A. Yackly

    2001-06-01

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is optimized for the highest level of performance. The unique feature of an H-technology combined-cycle system is the integrated heat transfer system, which combines both the steam plant reheat process and gas turbine bucket and nozzle cooling. This feature allows the power generator to operate at a higher firing temperature than current technology units, thereby resulting in dramatic improvements in fuel-efficiency. The end result is the generation of electricity at the lowest, most competitive price possible. Also, despite the higher firing temperature of the H System{trademark}, the combustion temperature is kept at levels that minimize emission production. GE has more than 3.6 million fired hours of experience in operating advanced technology gas turbines, more than three times the fired hours of competitors' units combined. The H System{trademark} design incorporates lessons learned from this experience with knowledge gleaned from operating GE aircraft engines. In addition, the 9H gas turbine is the first ever designed using ''Design for Six Sigma'' methodology, which maximizes reliability and availability throughout the entire design process. Both the 7H and 9H gas turbines will achieve the reliability levels of our F-class technology machines. GE has tested its H System{trademark} gas turbine more thoroughly than any previously introduced into commercial service. The H System{trademark} gas turbine has undergone extensive design validation and component testing. Full-speed, no-load testing of the 9H was achieved in May 1998 and pre-shipment testing was completed in November 1999. The 9H will also undergo approximately a half-year of extensive demonstration and characterization testing at the launch site. Testing of the 7H began in December 1999, and full speed, no-load testing was completed in February 2000. The 7H gas turbine will also be subjected to extensive demonstration and characterization testing at the launch site.

  8. Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle Research, Development and Deployment

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office recently recognized 10 leaders in research, development and deployment for their contributions to the DOE's efforts to improve advanced technology and alternative fuel vehicles.

  9. Vehicle Technologies Office Merit Review 2015: Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Lambda Technologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced drying process...

  10. Linkages from DOE's Vehicle Technologies R&D in Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies R&D in Advanced Combustion to More Efficient, Cleaner-Burning Engines Linkages from DOE's Vehicle Technologies R&D in Advanced Combustion to More Efficient, ...

  11. Diversity in Science and Technology Advances National Clean Energy in Solar

    Broader source: Energy.gov [DOE]

    The SunShot Diversity in Science and Technology Advances National Clean Energy in Solar (DISTANCE-Solar) program pairs science and technology research advances with the development of a diverse and...

  12. Subtask 5.10 - Testing of an Advanced Dry Cooling Technology...

    Office of Scientific and Technical Information (OSTI)

    an Advanced Dry Cooling Technology for Power Plants Citation Details In-Document Search Title: Subtask 5.10 - Testing of an Advanced Dry Cooling Technology for Power Plants The ...

  13. Department of Energy Announces up to $70 Million to Advance Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces up to 70 Million to Advance Technology and Reduce Cost of Geothermal Energy Department of Energy Announces up to 70 Million to Advance Technology and Reduce Cost of ...

  14. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

    Broader source: Energy.gov [DOE]

    Purpose, Context, Meeting Process, and Agenda for MW and RF as Enabling Technologies for Advanced Manufacturing on July 25, 2012

  15. US Energy Secretary Chu Announces $24 Million Loan for Tenneco Inc. for Advanced Vehicle Technology

    Broader source: Energy.gov [DOE]

    Tenneco is Fifth Company to Receive Conditional Loan Commitment from DOE's Advanced Technology Vehicles Manufacturing Loan Program

  16. Utility advanced turbine systems (ATS) technology readiness testing

    SciTech Connect (OSTI)

    2000-09-15

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  17. Energy Department Launches National Fuel Cell Technology Evaluation Center to Advance Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    Following Energy Secretary Ernest Moniz's visit to the National Renewable Energy Laboratory (NREL), the Energy Department today announced the unveiling of a one-of-its-kind national secure data center dedicated to the independent analysis of advanced hydrogen and fuel cell technologies at the Energy Department's Energy Systems Integration Facility (ESIF) located at NREL in Golden, Colorado.

  18. Comparison of advanced battery technologies for electric vehicles

    SciTech Connect (OSTI)

    Dickinson, B.E.; Lalk, T.R.; Swan, D.H.

    1993-12-31

    Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies: Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge--discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

  19. Model Year 2006: Alternative Fuel and Advanced Technology Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Model Year 2006: Alternative Fuel and Advanced Technology Vehicles Fuel Type EPAct Compliant? Model Vehicle Type Emission Class Powertrain Fuel Capacity Range American Honda Motor Corporation 888-CCHONDA www.honda.com CNG Dedicated EPAct Yes Civic GX Compact Sedan SULEV Tier 2 Bin II 1.7L, 4-cylinder 8 GGE 200 mi HEV (NiMH) EPAct No Accord Hybrid Sedan ULEV 3.0L V6 144 volt NiMH + 17.1 Gal Gasoline TBD HEV (NiMH) EPAct No Civic Hybrid Sedan CA ULEV 1.3L, 4-cylinder 144 volt NiMH + 13.2 Gal

  20. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software

    Energy Savers [EERE]

    Verification and Validation (V&V) Plan Requirements | Department of Energy Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements The purpose of the NEAMS Software V&V Plan is to define what the NEAMS program expects in terms of V&V for the computational models that are developed under NEAMS. PDF icon NEAMS Software Verification and Validation Plan

  1. Advanced Gas Storage Concepts: Technologies for the Future

    SciTech Connect (OSTI)

    Freeway, Katy; Rogers, R.E.; DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D.

    2000-02-01

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  2. Comparison of advanced cooling technologies efficiency depending on outside temperature

    SciTech Connect (OSTI)

    Blaise Hamanaka; Haihua Zhao; Phil Sharpe

    2009-09-01

    In some areas, water availability is a serious problem during the summer and could disrupt the normal operation of thermal power plants which needs large amount of water to operate. Moreover, when water quantities are sufficient, there can still be problem created by the waste heat rejected into the water which is regulated in order to limit the impact of thermal pollution on the environment. All these factors can lead to a decrease of electricity production during the summer and during peak hours, when electricity is the most needed. In order to deal with these problems, advanced cooling technologies have been developed and implemented to reduce water consumption and withdrawals but with an effect in the plant efficiency. This report aims at analyzing the efficiency of several cooling technologies with a fixed power plant design and so to produce a reference to be able to compare them.

  3. Science and Technology to Advance Regional Security in Central Asia

    SciTech Connect (OSTI)

    Rosenberg, N

    2002-07-05

    This morning I will describe a program that we refer to as STARS, for Science and Technology to Advance Regional Security, in Central Asia. It is a program that is based on cooperative, bilateral and multilateral, science and technology projects. It is our premise that such cooperative projects provide an opportunity for engagement while addressing real problems that could otherwise lead to destabilizing tensions in the region. The STARS program directly supports USCENTCOM's activities and objectives in environmental security. In fact, we think that STARS is a great vehicle for implementing and amplifying USCENTCOM's environmental security objectives and activities. We are very grateful and very pleased to have General DeLong's support in this matter. I am going to briefly describe the program. I want to stress again that it is a cooperative program. We would like to get input, suggestions, and feedback from the Central Asians here today so we can move forward together.

  4. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Testing | Department of Energy Vehicle & Systems Simulation & Testing Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation & Testing Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting providing an overview of the Vehicle & Systems Simulation & Testing Program. PDF icon vsst_overview_amr_2014_061114.pdf More Documents

  5. NREL: Transportation Research - Vehicle Technology Simulation and Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tools Vehicle Technology Simulation and Analysis Tools NREL's systems analysis and integration team uses the following NREL-developed modeling, simulation, and analysis tools to investigate novel vehicle technologies with the potential to achieve significant fuel savings and greenhouse gas reductions. NREL conducts technical analyses of promising technologies and explores trade-offs between component sizes and design goals (e.g., fuel economy versus performance) to find cost-competitive

  6. Utility Advanced Turbine Systems (ATS) technology readiness testing

    SciTech Connect (OSTI)

    1999-05-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  7. Utility Advanced Turbine Systems (ATS) Technology Readiness Testing

    SciTech Connect (OSTI)

    1998-10-29

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. This report summarizes work accomplished in 2Q98. The most significant accomplishments are listed in the report.

  8. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Unknown

    1998-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between Ge and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially be GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished from 4Q97 through 3Q98.

  9. Advanced Automotive Technologies annual report to Congress, fiscal year 1996

    SciTech Connect (OSTI)

    1998-03-01

    This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy`s Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation.

  10. Advanced Vehicles Group: Center for Transportation Technologies and Systems

    SciTech Connect (OSTI)

    Not Available

    2008-08-01

    Describes R&D in advanced vehicle systems and components (e.g., batteries) by NREL's Advanced Vehicles Group.

  11. Remote power systems with advanced storage technologies for Alaskan villages

    SciTech Connect (OSTI)

    Isherwood, W.; Smith, R.; Aceves, S.; Berry, G.; Clark, W.; Johnson, R.; Das, D.; Goering, D.; Seifert, R.

    1997-12-01

    Remote Alaskan communities pay economic and environmental penalties for electricity, because they must import diesel as their primary fuel for electric power production, paying heavy transportation costs and potentially causing environmental damage with empty drums, leakage, and spills. For these reasons, remote villages offer a viable niche market where sustainable energy systems based on renewable resources and advanced energy storage technologies can compete favorably on purely economic grounds, while providing environmental benefits. These villages can also serve as a robust proving ground for systematic analysis, study, improvement, and optimization of sustainable energy systems with advanced technologies. This paper presents an analytical optimization of a remote power system for a hypothetical Alaskan village. The analysis considers the potential of generating renewable energy (e.g., wind and solar), along with the possibility of using energy storage to take full advantage of the intermittent renewable sources available to these villages. Storage in the form of either compressed hydrogen or zinc pellets can then provide electricity from hydrogen or zinc-air fuel cells when renewable sources are unavailable.The analytical results show a great potential to reduce fossil fuel consumption and costs basing renewable energy combined with advanced energy storage devices. The best solution for our hypothetical village appears to be a hybrid energy system, which can reduce consumption of diesel fuel by over 50% with annualized cost savings by over 30% by adding wind turbines to the existing diesel generators. When energy storage devices are added, diesel fuel consumption and costs can be reduced substantially more. With optimized energy storage, use of the diesel generatorss can be reduced to almost zero, with the existing equipment only maintained for added reliability. However about one quarter of the original diesel consumption is still used for heating purposes. (We use the term diesel to encompass the fuel, often called heating or fuel oil, of similar or identical properties.)

  12. CAPE-OPEN Integration for Advanced Process Engineering Co-Simulation

    SciTech Connect (OSTI)

    Zitney, S.E.

    2006-11-01

    This paper highlights the use of the CAPE-OPEN (CO) standard interfaces in the Advanced Process Engineering Co-Simulator (APECS) developed at the National Energy Technology Laboratory (NETL). The APECS system uses the CO unit operation, thermodynamic, and reaction interfaces to provide its plug-and-play co-simulation capabilities, including the integration of process simulation with computational fluid dynamics (CFD) simulation. APECS also relies heavily on the use of a CO COM/CORBA bridge for running process/CFD co-simulations on multiple operating systems. For process optimization in the face of multiple and some time conflicting objectives, APECS offers stochastic modeling and multi-objective optimization capabilities developed to comply with the CO software standard. At NETL, system analysts are applying APECS to a wide variety of advanced power generation systems, ranging from small fuel cell systems to commercial-scale power plants including the coal-fired, gasification-based FutureGen power and hydrogen production plant.

  13. Bridging the gap: adapting advanced display technologies for use in hybrid control rooms

    SciTech Connect (OSTI)

    Jokstad, Hkon; Boring, Ronald

    2015-02-01

    The Institute for Energy Technology (IFE), runs the OECD Halden Reactor Project (HRP), featuring a state-of-the-art research simulator facility in Halden, Norway, called HAMMLAB. HAMMLAB serves two main purposes: the study of human behaviour in interaction with complex process systems; and the development, test and evaluation of prototype control centres and their individual systems. By studying operator performance in HAMMLAB and integrating the knowledge gained into new designs, the HRP contributes to improving operational safety, reliability, efficiency and productivity. The U.S. Department of Energys (DOE) Light Water Reactor Sustainability (LWRS) Program has contracted IFE to assist DOE national laboratory staff at Idaho National Laboratory (INL) in adapting HAMMLAB design concepts for the purpose of control room modernization at nuclear power plants in the U.S. In support of this effort, the DOE has built a simulator research facility at INL called the Human Systems Simulation Laboratory (HSSL). The HSSL is centered on control room modernization, in which industry provided plant instrumentation and controls are modified for upgrade opportunities. The HSSL houses the LWRS simulator, which is a reconfigurable full-scale and full-scope control room simulator. Consisting of 45 large touchscreens on 15 panels, the LWRS simulator is currently using this glass top technology to digitally represent and replicate the functionality of the analog I&C systems in existing control rooms. The LWRS simulator is reconfigurable in that different plant training simulator models obtained from the utilities can be run on the panels, and the panels can be physically moved and arranged to mimic the layout of those control rooms. The glass top technology and reconfigurability capabilities allow the LWRS simulator to be the research platform that is necessary to design, prototype, and validate human-system interface (HSI) technologies that can replace existing analog I&C. IFE has recently assisted INL in establishing the technical infrastructure for implementation of HSI prototypes from HAMMLAB into the HSSL to demonstrate relevant control room replacement systems in support of the LWRS program. In March, 2014, IFE delivered the first HSI prototype utilizing this infrastructure a large screen overview display for INL's simulator. The co-operation now continues by developing Procedure Support Displays targeted for operators in hybrid control room settings. These prototypes are being validated with U.S. reactor operators in the HSSL and optimized to enhance their performance. This research serves as a crucial stepping stone toward incorporation of advanced display technologies into conventional main control rooms.

  14. Advanced Power Electronics for LED Drivers: Advanced Technologies for integrated Power Electronics

    SciTech Connect (OSTI)

    2010-09-01

    ADEPT Project: MIT is teaming with Georgia Institute of Technology, Dartmouth College, and the University of Pennsylvania (UPenn) to create more efficient power circuits for energy-efficient light-emitting diodes (LEDs) through advances in 3 related areas. First, the team is using semiconductors made of high-performing gallium nitride grown on a low-cost silicon base (GaN-on-Si). These GaN-on-Si semiconductors conduct electricity more efficiently than traditional silicon semiconductors. Second, the team is developing new magnetic materials and structures to reduce the size and increase the efficiency of an important LED power component, the inductor. This advancement is important because magnetics are the largest and most expensive part of a circuit. Finally, the team is creating an entirely new circuit design to optimize the performance of the new semiconductors and magnetic devices it is using.

  15. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Unknown

    1999-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

  16. "Recovery Act: Advanced Energy Efficient BuildingTechnologies" |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy "Recovery Act: Advanced Energy Efficient BuildingTechnologies" "Recovery Act: Advanced Energy Efficient BuildingTechnologies" Description of a FOA funding oppourtunity with funds appropriated by the American Recovery and Reinvestment Act of 2009. PDF icon "Recovery Act: Advanced Energy Efficient BuildingTechnologies" More Documents & Publications Microsoft Word - FOA cover sheet.doc Building Technologies Program Planning Summary

  17. Simulating the Next Generation of Energy Technologies

    Broader source: Energy.gov [DOE]

    Computer simulations offer a huge potential for the auto industry to allow us to make modifications to engines faster and cheaper -- and come up with the most energy efficient solution.

  18. Scientific and technological advancements in inertial fusion energy

    SciTech Connect (OSTI)

    Hinkel, D. E.

    2013-09-26

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well as to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.

  19. Processing heavy crudes: advances in fluid and flexicoking technology

    SciTech Connect (OSTI)

    Allan, D.E.; Metrailer, W.J.; King, R.C.; Wiechert, S.

    1981-12-01

    The authors are concerned with Exxon's Fluid and Flexicoking processes which allow the refiner to convert the bottom of the crude barrel to clean products. This article primarily discusses enhancement of liquid yields from both processes and reduction of low-Btu gas from Flexicoking. Also discussed are recent advances in coking technology, which could make these processes more attractive. Flexicoking is an integrated coking/gasification process for upgrading heavy feedstocks. The process converts these feeds to a 99% yield of fuel gas, naphtha, middle distillates, heavy gas oil, and a low-sulfur coke gas. The remaining 1% is petroleum coke containing metals and other ash components present in the feed. 6 refs.

  20. Scientific and technological advancements in inertial fusion energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hinkel, D. E.

    2013-09-26

    Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well asmore » to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.« less

  1. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Unknown

    1999-04-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

  2. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Wide Bandgap Semiconductors for Power Electronics Technology Assessment

    Energy Savers [EERE]

    Wide Bandgap Semiconductors for Power Electronics Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Wide Bandgap Semiconductors for Power Electronics is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR

  3. Environmental benefits of advanced oil and gas exploration and production technology

    SciTech Connect (OSTI)

    1999-10-01

    THROUGHOUT THE OIL AND GAS LIFE CYCLE, THE INDUSTRY HAS APPLIED AN ARRAY OF ADVANCED TECHNOLOGIES TO IMPROVE EFFICIENCY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE. THIS REPORT FOCUSES SPECIFICALLY ON ADVANCES IN EXPLORATION AND PRODUCTION (E&P) OPERATIONS.

  4. Chapter 4: Advancing Clean Electric Power Technologies | Carbon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors ...

  5. Chapter 4: Advancing Clean Electric Power Technologies | Wind...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Carbon Dioxide Storage Technologies Carbon Dioxide Capture for Natural Gas and Industrial Applications Crosscutting Technologies in Carbon Dioxide Capture and...

  6. Advanced Wind Technology: New Challenges for a New Century

    SciTech Connect (OSTI)

    Thresher, R.; Laxson, A.

    2006-06-01

    This paper describes the growth, advances, and challenges faced by the wind energy industry in 2006.

  7. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing R&D Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report 2010 annual report focusing on five main areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. PDF icon 2010_vsst_report.pdf

  8. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing R&D Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY 2013 annual report focuses on the following areas: vehicle modeling and simulation, component and systems evaluations, laboratory and field evaluations, codes and standards, industry projects, and vehicle systems optimization. PDF icon

  9. Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy Combustion R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual Progress Report PDF icon 2008_adv_combustion_engine.pdf More Documents & Publications Ignition Control for HCCI Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual Progress Report

  10. Energy Department Announces $2.5 Million to Advance Technologies for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean-Burning, Efficient Biomass Cookstoves | Department of Energy 5 Million to Advance Technologies for Clean-Burning, Efficient Biomass Cookstoves Energy Department Announces $2.5 Million to Advance Technologies for Clean-Burning, Efficient Biomass Cookstoves April 13, 2012 - 10:39am Addthis WASHINGTON, DC - The Energy Department today announced up to $2.5 million available this year for applied research to advance clean biomass cookstove technologies for use in developing countries. The

  11. Voluntary Protection Program Onsite Review, Advanced Technologies and Laboratories International, Inc.- January 2008

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Advanced Technologies and Laboratories International, Inc. is performing at a level deserving DOE-VPP Star recognition.

  12. Voluntary Protection Program Onsite Review, Advanced Technologies and Laboratories, Inc., Hanford – Feb 2014

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Advanced Technologies and Laboratories, Inc., Hanford is performing at a level deserving DOE-VPP Star recognition.

  13. Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    Broader source: Energy.gov [DOE]

    This report describes the progress made on the research and development projects funded by the Advanced Power Electronics and Electric Motors subprogram in the Vehicle Technologies Office.

  14. Vehicle Technologies Office Merit Review 2015: Advanced In-Situ Diagnostic Techniques for Battery Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Brookhaven National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced in...

  15. Vehicle Technologies Office Merit Review 2014: Advanced in situ Diagnostic Techniques for Battery Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Brookhaven National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced in...

  16. Vehicle Technologies Office Merit Review 2014: Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  17. Vehicle Technologies Office Merit Review 2015: Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  18. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Test Procedure Development: Hybrid System Power Rating

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle...

  19. Advanced Heat/Mass Exchanger Technology for Geothermal and solar Renewable Energy Systems

    Broader source: Energy.gov [DOE]

    Advanced Heat/Mass Exchanger Technology for Geothermal and solar Renewable Energy Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  20. Vehicle Technologies Office Merit Review 2014: Advancing Transportation through Vehicle Electrification – Ram 1500 PHEV

    Broader source: Energy.gov [DOE]

    Presentation given by Chrysler LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancing transportation through...

  1. Energy Department Invests $20 Million to Advance Hydrogen Production and Delivery Technologies

    Broader source: Energy.gov [DOE]

    The Energy Department today announced $20 million for ten new research and development projects that will advance hydrogen production and delivery technologies.

  2. Vehicle Technologies Office Merit Review 2014: Advancing Alternative Fuel Markets in Florida

    Broader source: Energy.gov [DOE]

    Presentation given by University of Central Florida at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancing...

  3. Energy Department Awards $6.5 Million to Advance Low Environmental Impact Hydropower Technologies

    Broader source: Energy.gov [DOE]

    Today, the Energy Department announced seven organizations selected to receive $6.5 million to advance the manufacturing and installation of low environmental impact hydropower technologies. The...

  4. Vehicle Technologies Office Merit Review 2014: Advanced Wireless Power Transfer and Infrastructure Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  5. Vehicle Technologies Office Merit Review 2014: Advanced Lean-Burn DI Spark Ignition Fuels Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced lean...

  6. Vehicle Technologies Office Merit Review 2015: Advanced Transmission Selection to Provide Accurate VTO Benefits

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  7. Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Companyh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline...

  8. Vehicle Technologies Office Merit Review 2015: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development

    Broader source: Energy.gov [DOE]

    Presentation given by Cummins at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline turbocharged direct...

  9. Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, April--June 1992

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    Effective September 26, 1991, Bechtel, with Amoco as the main subcontractor, initiated a study to develop a computer model and baseline design for advanced Fischer-Tropsch (F-T) technology for the US Department of Energy`s Pittsburgh Energy Technology Center (PETC). The objectives of the study are to: Develop a baseline design for indirect liquefaction using advanced F-T technology; prepare the capital and operating costs for the baseline design; and develop a process flow sheet simulation (PI-S) model. The baseline design, the economic analysis, and the computer model win be the major research planning tools that PETC will use to plan, guide, and evaluate its ongoing and future research and commercialization programs relating to indirect coal liquefaction. for the manufacture of synthetic liquid fuels from coal. This report is Bechtel`s third quarterly technical progress report covering the period from March 16, 1992 through June 21, 1992. This report consists of seven sections: Section 1 - introduction; Section 2 - summary; Section 3 - carbon dioxide removal tradeoff study; Section 4 - preliminary plant designs for coal preparation; Section 5 - preliminary design for syngas production; Section 6 - Task 3 - engineering design criteria; and Section 7 - project management.

  10. Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, October--December 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    Bechtel, with Amoco as the main subcontractor, initiated a study on September 26, 1991, for the US Department of Energy`s (DOE`s) Pittsburgh Energy Technology Center (PETC) to develop a computer model and baseline design for advanced Fischer-Tropsch (F-T) technology. This 24-month study, with an approved budget of $2.3 million, is being performed under DOE Contract Number AC22-91PC90027. (1) Develop a baseline design and two alternative designs for indirect liquefaction using advanced F-T technology. The baseline design uses Illinois No. 6 Eastern Coal and conventional refining. There is an alternative refining case using ZSM-5 treatment of the vapor stream from the slurry F-T reactor and an alternative coal case using Western coal from the Powder River Basin. (2) Prepare the capital and operating costs for the baseline design and the alternatives. Individual plant costs for the alternative cases will be prorated on capacity, wherever possible, from the baseline case. (3) Develop a process flowsheet simulation (PFS) model. The baseline design, the economic analysis and computer model will be major research planning tools that PETC will use to plan, guide and evaluate its ongoing and future research and commercialization programs relating to indirect coal liquefaction for the manufacture of synthetic liquid fuels from coal.

  11. Sensitivity technologies for large scale simulation.

    SciTech Connect (OSTI)

    Collis, Samuel Scott; Bartlett, Roscoe Ainsworth; Smith, Thomas Michael; Heinkenschloss, Matthias; Wilcox, Lucas C.; Hill, Judith C.; Ghattas, Omar; Berggren, Martin Olof; Akcelik, Volkan; Ober, Curtis Curry; van Bloemen Waanders, Bart Gustaaf; Keiter, Eric Richard

    2005-01-01

    Sensitivity analysis is critically important to numerous analysis algorithms, including large scale optimization, uncertainty quantification,reduced order modeling, and error estimation. Our research focused on developing tools, algorithms and standard interfaces to facilitate the implementation of sensitivity type analysis into existing code and equally important, the work was focused on ways to increase the visibility of sensitivity analysis. We attempt to accomplish the first objective through the development of hybrid automatic differentiation tools, standard linear algebra interfaces for numerical algorithms, time domain decomposition algorithms and two level Newton methods. We attempt to accomplish the second goal by presenting the results of several case studies in which direct sensitivities and adjoint methods have been effectively applied, in addition to an investigation of h-p adaptivity using adjoint based a posteriori error estimation. A mathematical overview is provided of direct sensitivities and adjoint methods for both steady state and transient simulations. Two case studies are presented to demonstrate the utility of these methods. A direct sensitivity method is implemented to solve a source inversion problem for steady state internal flows subject to convection diffusion. Real time performance is achieved using novel decomposition into offline and online calculations. Adjoint methods are used to reconstruct initial conditions of a contamination event in an external flow. We demonstrate an adjoint based transient solution. In addition, we investigated time domain decomposition algorithms in an attempt to improve the efficiency of transient simulations. Because derivative calculations are at the root of sensitivity calculations, we have developed hybrid automatic differentiation methods and implemented this approach for shape optimization for gas dynamics using the Euler equations. The hybrid automatic differentiation method was applied to a first order approximation of the Euler equations and used as a preconditioner. In comparison to other methods, the AD preconditioner showed better convergence behavior. Our ultimate target is to perform shape optimization and hp adaptivity using adjoint formulations in the Premo compressible fluid flow simulator. A mathematical formulation for mixed-level simulation algorithms has been developed where different physics interact at potentially different spatial resolutions in a single domain. To minimize the implementation effort, explicit solution methods can be considered, however, implicit methods are preferred if computational efficiency is of high priority. We present the use of a partial elimination nonlinear solver technique to solve these mixed level problems and show how these formulation are closely coupled to intrusive optimization approaches and sensitivity analyses. Production codes are typically not designed for sensitivity analysis or large scale optimization. The implementation of our optimization libraries into multiple production simulation codes in which each code has their own linear algebra interface becomes an intractable problem. In an attempt to streamline this task, we have developed a standard interface between the numerical algorithm (such as optimization) and the underlying linear algebra. These interfaces (TSFCore and TSFCoreNonlin) have been adopted by the Trilinos framework and the goal is to promote the use of these interfaces especially with new developments. Finally, an adjoint based a posteriori error estimator has been developed for discontinuous Galerkin discretization of Poisson's equation. The goal is to investigate other ways to leverage the adjoint calculations and we show how the convergence of the forward problem can be improved by adapting the grid using adjoint-based error estimates. Error estimation is usually conducted with continuous adjoints but if discrete adjoints are available it may be possible to reuse the discrete version for error estimation. We investigate the advantages and disadvantages of continuous and discre

  12. Advanced membrane separation technology for biosolvents. Final CRADA report.

    SciTech Connect (OSTI)

    Snyder, S. W.; Energy Systems

    2010-02-08

    Argonne and Vertec Biosolvents investigated the stability and perfonnance for a number of membrane systems to drive the 'direct process' for pervaporation-assisted esterification to produce lactate esters. As outlined in Figure 1, the target is to produce ammonium lactate by fennentation. After purification and concentration, ammonium lactate is reacted with ethanol to produce the ester. Esterification is a reversible reaction so to drive the reaction forward, the produced ammonia and water must be rapidly separated from the product. The project focused on selecting pervaporation membranes with (1) acid functionality to facilitate ammonia separation and (2) temperature stability to be able to perform that reaction at as high a temperature as possible (Figure 2). Several classes of commercial membrane materials and functionalized membrane materials were surveyed. The most promising materials were evaluated for scale-up to a pre-commercial application. Over 4 million metric tons per year of solvents are consumed in the U.S. for a wide variety of applications. Worldwide the usage exceeds 10 million metric tons per year. Many of these, such as the chlorinated solvents, are environmentally unfriendly; others, such as the ethylene glycol ethers and N Methyl Pyrrolidone (NMP), are toxic or teratogenic, and many other petroleum-derived solvents are coming under increasing regulatory restrictions. High performance, environmentally friendly solvents derived from renewable biological resources have the potential to replace many of the chlorinated and petrochemical derived solvents. Some of these solvents, such as ethyl lactate; d-limonene, soy methyl esters, and blends ofthese, can give excellent price/perfonnance in addition to the environmental and regulatory compliance benefits. Advancement of membrane technologies, particularly those based on pervaporation and electrodialysis, will lead to very efficient, non-waste producing, and economical manufacturing technologies for production of ethyl lactate and other esters.

  13. Using Advanced Modeling to Accelerate the Scale-Up of Carbon Capture Technologies

    SciTech Connect (OSTI)

    Miller, David; Sun, Xin; Storlie, Curtis; Bhattacharyya, Debangsu

    2015-06-18

    Carbon capture and storage (CCS) is one of many approaches that are critical for significantly reducing domestic and global CO2 emissions. The U.S. Department of Energy’s Clean Coal Technology Program Plan envisions 2nd generation CO2 capture technologies ready for demonstration-scale testing around 2020 with the goal of enabling commercial deployment by 2025 [1]. Third generation technologies have a similarly aggressive timeline. A major challenge is that the development and scale-up of new technologies in the energy sector historically takes up to 15 years to move from the laboratory to pre-deployment and another 20 to 30 years for widespread industrial scale deployment. In order to help meet the goals of the DOE carbon capture program, the Carbon Capture Simulation Initiative (CCSI) was launched in early 2011 to develop, demonstrate, and deploy advanced computational tools and validated multi-scale models to reduce the time required to develop and scale up new carbon capture technologies. The CCSI Toolset (1) enables promising concepts to be more quickly identified through rapid computational screening of processes and devices, (2) reduces the time to design and troubleshoot new devices and processes by using optimization techniques to focus development on the best overall process conditions and by using detailed device-scale models to better understand and improve the internal behavior of complex equipment, and (3) provides quantitative predictions of device and process performance during scale up based on rigorously validated smaller scale simulations that take into account model and parameter uncertainty[2]. This article focuses on essential elements related to the development and validation of multi-scale models in order to help minimize risk and maximize learning as new technologies progress from pilot to demonstration scale.

  14. Funding Opportunity Announcement Webinar: Technology Advancement for Rapid Development of Geothermal Resources (DE-FOA-0000522)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Program (the Program) presented a webinar on Thursday, June 23, about its newly released funding opportunity announcement (FOA), Geothermal Technology Advancement for Rapid Development of Resources in the United States.

  15. EERE Success Story-Advancing Fuel Cell Technology at Los Alamos...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technology at Los Alamos EERE Success Story-Advancing Fuel Cell Technology at Los Alamos July 26, 2013 - 12:00am Addthis From fuel cell electric vehicles to portable ...

  16. Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry

    SciTech Connect (OSTI)

    none,

    2005-11-01

    The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

  17. Advanced Combustion Engine R&D and Fuels Technology Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D and Fuels Technology Merit Review Advanced Combustion Engine R&D and Fuels Technology Merit Review Merit review of DOE FCVT combustion, emission control, health impacts, ...

  18. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  19. Advanced Simulation and Computing and Institutional R&D Programs | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Programs Advanced Simulation and Computing and Institutional R&D Programs The Advanced Simulation and Computing (ASC) Program supports the Department of Energy's National Nuclear Security Administration (DOE/NNSA) Defense Programs' use of simulation-based evaluation of the nation's nuclear weapons stockpile. The ASC Program is responsible for providing the simulation tools and computing environments required to qualify and certify the nation's nuclear

  20. Baseline design/economics for advanced Fischer-Tropsch technology. Auarterly report, July--September 1992

    SciTech Connect (OSTI)

    1992-12-31

    The objectives of this study are to: Develop a baseline design for indirect liquefaction using advanced F-T technology; prepare the capital and operating costs for the baseline design; and develop a process flowsheet simulation model. The baseline design, the economic analysis and computer model will be major research planning tools that Pittsburgh Energy Technology Center will use to plan, guide and evaluate its ongoing and future research and commercialisation programs relating to indirect coal liquefaction for the manufacture of synthetic liquid fuels from coal. The study has been divided into seven major tasks: Task 1, establish the baseline design and alternatives; Task 2, evaluate baseline economics; Task 3: Develop engineering design criteria; Task 4, develop a process flowsheet simulation (PFS) model; Task 5, perform sensitivity studies using the PFS model; Task 6, document the PFS model and develop a DOE training session on its use; Task 7, perform project management, technical coordination and other miscellaneous support functions. During the reporting period work progressed on Tasks 1, 4 and 7. This report covers work done during the period and consists of five sections: Introduction and summary; preliminary design for syngas production; Task 1, preliminary F-T reaction loop design; Task 1, development of a process simulation model; Task 4, key personnel staffing report, Task 7.

  1. Subtask 5.10 - Testing of an Advanced Dry Cooling Technology for Power

    Office of Scientific and Technical Information (OSTI)

    Plants (Technical Report) | SciTech Connect Technical Report: Subtask 5.10 - Testing of an Advanced Dry Cooling Technology for Power Plants Citation Details In-Document Search Title: Subtask 5.10 - Testing of an Advanced Dry Cooling Technology for Power Plants The University of North Dakota's Energy & Environmental Research Center (EERC) is developing a market-focused dry cooling technology that is intended to address the key shortcomings of conventional dry cooling technologies: high

  2. Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D Annual Progress Report

    Broader source: Energy.gov [DOE]

    The Advanced Power Electronics and Electric Machinery subprogram within the DOE Vehicle Technologies Office provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric machinery technologies that will leapfrog current on-the-road technologies.

  3. DOE-Supported Project Advances Clean Coal, Carbon Capture Technology...

    Energy Savers [EERE]

    operation of their patented Coal-Direct Chemical Looping (CDCL) technology - a one-step ... longest integrated operation of chemical looping technology anywhere in the world to date. ...

  4. BPA seeks research partners to advance technology solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transmission technologies, data intelligence, next-generation energy efficiency and demand response technologies, generation asset management. A copy of each roadmap is...

  5. EERE Success Story-Advancing Technology Readiness: Wave Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will improve cost of electricity calculations for wave conversion technologies. ... performance, and reliability data for a variety of wave, tidal, and current energy technologies. ...

  6. Near Real-Time Nondestructive Active Inspection Technologies Utilizing Delayed γ-Rays and Neutrons for Advanced Safeguards

    SciTech Connect (OSTI)

    Hunt, Alan; Reedy, E. T.E.; Mozin, V.; Tobin, S. J.

    2015-02-12

    In this two year project, the research team investigated how delayed γ-rays from short-lived fission fragments detected in the short interval between irradiating pulses can be exploited for advanced safeguards technologies. This program contained experimental and modeling efforts. The experimental effort measured the emitted spectra, time histories and correlations of the delayed γ-rays from aqueous solutions and solid targets containing fissionable isotopes. The modeling effort first developed and benchmarked a hybrid Monte Carlo simulation technique based on these experiments. The benchmarked simulations were then extended to other safeguards scenarios, allowing comparisons to other advanced safeguards technologies and to investigate combined techniques. Ultimately, the experiments demonstrated the possible utility of actively induced delayed γ-ray spectroscopy for fissionable material assay.

  7. Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Annual report on the work of the the Advanced Combustion Engine R&D subprogram. The Advanced Combustion Engine R&D subprogram supports the Vehicle Technologies Office mission by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  8. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    SciTech Connect (OSTI)

    Nigle N. Clark

    2006-12-31

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

  9. Department of Energy Advance Methane Hydrates Science and Technology Projects

    Broader source: Energy.gov [DOE]

    Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

  10. Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 9 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual Progress Report The Advanced Combustion Engine R&D subprogram supports the VTP Program by removing the technical barriers to commercialization of ICEs for paaenger and commercial vehicles that meet future Federal emissions regulations. PDF icon 2009_adv_combustion_engine.pdf More Documents & Publications Vehicle Technologies Office:

  11. Advanced Combustion Engine R&D and Fuels Technology Merit Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Combustion Engine R&D and Fuels Technology Merit Review Advanced Combustion Engine R&D and Fuels Technology Merit Review Merit review of DOE FCVT combustion, emission control, health impacts, and fuels research. PDF icon Annual Progress Report More Documents & Publications Heavy Vehicle Systems Optimization Peer Review 2008 Annual Merit Review Results Summary - 7. Combustion Research 2012 Annual Merit Review Results Report - Advanced Combustion

  12. Vehicle Technologies Office: 2013 Advanced Combustion R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 3 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2013 Advanced Combustion R&D Annual Progress Report This report describes the progress made on the research and development projects funded by the Advanced Combustion subprogram in the Vehicle Technologies Office. Past year's reports are listed on the Annual Progress Reports page. PDF icon fy13advancedcombustionprogressreport.pdf More Documents & Publications Vehicle

  13. Advanced Combustion Technology to Enable High Efficiency Clean Combustion

    Broader source: Energy.gov [DOE]

    Summary of advanced combustion research at Cummins to explore strategies for fuel economy improvements (PCCI and HECC) and redced engine-out NOx emissions.

  14. Chapter 7: Advancing Systems and Technologies to Produce Cleaner...

    Energy Savers [EERE]

    ... &D for advanced fossil power generation and carbon capture utilization and storage. ... leaky wells penetrating a deep saline aquifer in a mature sedimentary basin, ...

  15. Advanced Natural Gas Engine Technology for Heavy Duty Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    of HD vehicle applications. PDF icon deer09kamel.pdf More Documents & Publications Light-Duty Diesel Market Potential in ... Meet Future Exhaust Emission Limits Advances in ...

  16. EERE Demonstration for Advanced Retro-commissioning Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Image: Actual and model-predicted energy data, overlaid with outside air temperature Advanced machine learning model using Temperature and Time of the week as input parameters ...

  17. Lighter and Stronger: Improving Clean Energy Technologies Through Advanced Composites

    Broader source: Energy.gov [DOE]

    New institute aims to drive down the manufacturing costs and support the widespread use of advanced fiber-reinforced polymer composites.

  18. Chapter 7: Advancing Systems and Technologies to Produce Cleaner...

    Energy Savers [EERE]

    ... 80% when compared with advanced plug-in hybrid electric vehicles. 8 Reduced Air Pollution: Hydrogen fuel cells emit negligible criteria air pollutants i.e., carbon ...

  19. Advanced Combustion Technology to Enable High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of advanced combustion research at Cummins to explore strategies for fuel economy improvements (PCCI and HECC) and redced engine-out NOx emissions. PDF icon ...

  20. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... or other methods for insulation *Automatic leakperformance test Current BOP *Lean manufacturing cells and flow *Unique components Advancements *Standardized designs *Robotic ...

  1. EM Leads with Advanced Simulation Capability Technology | Department of

    Office of Environmental Management (EM)

    Leaders Work to Further Strengthen Oversight EM Leaders Work to Further Strengthen Oversight March 16, 2016 - 12:50pm Addthis EM headquarters and field office leaders gathered for a one-day workshop to examine the various contractor oversight programs in place across the EM complex. EM headquarters and field office leaders gathered for a one-day workshop to examine the various contractor oversight programs in place across the EM complex. RICHLAND, Wash. - EM's senior leaders recently met at the

  2. Recent Advances and Future Challenges in the Modeling and Simulations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvement of Urea SCR Performance Using Wiremesh Thermolysis Mixer Challenge in Urea Mixing Design SCR Performance Optimization Through Advancements in Aftertreatment Packaging

  3. Validation and Uncertainty Quantification in the Consortium for Advanced Simulation of Light Water Reactors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Uncertainty Quantification in CASL Michael Pernice Center for Advanced Modeling and Simulation Idaho National Laboratory SAMSI Uncertainty Quantification Transition Workshop May 21-23 2012 CASL-U-2012-0108-000 What Is CASL? * Consortium for Advanced Simulation of LWRs - An Energy Innovation Hub * Objective: predictive simulation of light water reactors - Reduce capital and operating costs * Power uprates * Lifetime extension - Reduce nuclear waste * Higher fuel burnup - Enhance operational

  4. DOE Awards $3.3 million for Advanced Remediation Technology Contracts |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy .3 million for Advanced Remediation Technology Contracts DOE Awards $3.3 million for Advanced Remediation Technology Contracts August 3, 2006 - 8:38am Addthis WASHINGTON, DC - The Department of Energy's (DOE) Office of Environmental Management (EM) today awarded 12 contracts totaling $3.3 million to support the development of technologies that have the potential to reduce cleanup costs and increase the safety and efficiency of treating and disposing of radioactive waste.

  5. EERE Success Story-Advancing Fuel Cell Technology at Los Alamos |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Cell Technology at Los Alamos EERE Success Story-Advancing Fuel Cell Technology at Los Alamos July 26, 2013 - 12:00am Addthis From fuel cell electric vehicles to portable power, Los Alamos National Laboratory has been a pioneer in advancing offer alternatives that will reduce the nation's energy and petroleum requirements, as well as decrease U.S. greenhouse gas emissions. Los Alamos' technology has enabled the manufacture of polymer electrolyte membrane fuel cells

  6. EERE Success Story-PNNL Advances Hydrogen-Fueled Vehicle Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy PNNL Advances Hydrogen-Fueled Vehicle Technologies EERE Success Story-PNNL Advances Hydrogen-Fueled Vehicle Technologies July 26, 2013 - 12:00am Addthis Through multiple projects, Pacific Northwest National Laboratory (PNNL) is improving the performance and decreasing the cost of hydrogen fuel production and fuel cell technologies. PNNL's research is developing new materials-like a durable, high-performance cathode support-and improving the manufacturing processes by

  7. Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review May 31-June 2, 2005 Berkeley, CA August 2005 U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies August 8, 2005 Dear Colleague: This document presents a summary of the evaluation and comments provided by the review panel for the FY 2005 Department of Energy (DOE) Batteries for Advanced Transportation Technologies (BATT) program annual review. The review was held at the

  8. Department of Energy Awards up to $38 Million to Advance Technology and

    Energy Savers [EERE]

    Reduce Cost of Geothermal Energy | Department of Energy up to $38 Million to Advance Technology and Reduce Cost of Geothermal Energy Department of Energy Awards up to $38 Million to Advance Technology and Reduce Cost of Geothermal Energy September 8, 2011 - 1:49pm Addthis U.S. Energy Secretary Steven Chu today announced $38 million over three years for projects to accelerate the development of promising geothermal energy technologies and help diversify America's sources of clean, renewable

  9. DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Project | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt060_ti_francis_2011_p.pdf More Documents & Publications DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project Clean Cities 2009 Petroleum Displacement Awards

  10. Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, April--June 1994

    SciTech Connect (OSTI)

    1994-01-01

    The objectives of this study are to: Develop a baseline design and two alternative designs for indirect liquefaction using advanced F-T technology. The baseline design uses Illinois No. 6 Eastern Coal and conventional refining. There is an alternative refining case using ZSM-5 treatment of the vapor steam from the flurry F-T reactor and an alternative coal case using Western coal from the Powder River Basin. Prepare the capital and operating costs for the baseline design and the alternatives. Individual plant costs for the alternative cases will be prorated on capacity, wherever possible, from the baseline case, develop a process flowsheet simulation (PFS) model. The baseline design, the economic analysis and computer model will be major research planning tools that Pittsburgh Energy Technology Center will use to plan, guide and evaluate its ongoing and future research and commercialization programs relating to indirect coal liquefaction for the manufacture of synthetic liquid fuels from coal. During the reporting period, work progressed on Tasks 1, 4, 5, 6 and 7. This report covers work done during the period and consists of six sections: introduction and summary; Task 1, baseline design and alternatives; Task 4, process flowsheet simulation (PFS) model; Task 5, perform sensitivity studies using the PFS model; Task 6, document the PFS model and develop a DOE training session on its use, and project management and staffing report.

  11. Health Effects from Advanced Combustion and Fuel Technologies

    SciTech Connect (OSTI)

    Barone, Teresa L; Parks, II, James E; Lewis Sr, Samuel Arthur; Connatser, Raynella M

    2010-01-01

    This document requires a separate file for the figures. It is for DOE's Office of Vehicle Technologies Annual Report

  12. Overview and Progress of the Batteries for Advanced Transportation Technologies

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Advanced Technology Vehicle Lab Benchmarking- Level 2 (in-depth)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Measurement and Characterization of Unregulated Emissions from Advanced Technologies

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  15. Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Advanced Technology & Discovery at Bangalore | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology & Discovery at Bangalore Technology & Discovery at Bangalore Be part of energy, transportation and healthcare research, leading the evolution of technology in South Asia and beyond. Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Featured Technologies Lullaby Phototherapy System This unique device

  17. Advanced Technology & Discovery at Munich | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology & Discovery at Munich Technology & Discovery at Munich Interact with groundbreaking scientific and technological solutions across nearly all industries at GE's hub in Central Europe. Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Featured Technologies Composite Manufacturing This discipline focuses

  18. Advanced Technology & Discovery at Shanghai | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology & Discovery at Shanghai Technology & Discovery at Shanghai Connect with sustainable infrastructure and healthcare technologies introduced to the world through GE's "In China for China" strategy. Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Featured Technologies Non-Thermal Brine

  19. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    SciTech Connect (OSTI)

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements around 530 C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and reactions going to completion without side reactions, and lower demands on materials of construction. Three university research groups from PSU, USC, and TU as well as a group from ANL have been collaborating on the development of enabling technologies for the Cu-Cl cycle, including experimental work on the Cu-Cl cycle reactions, modeling and simulation, and particularly electrochemical reaction for hydrogen production using a CuCl electrolyzer. The Consortium research was distributed over the participants and organized in the following tasks: (1) Development of CuCl electrolyzer (PSU), (2) Thermodynamic modeling of anolyte solution (PSU), (3) Proton conductive membranes for CuCl electrolysis (PSU), (4) Development of an analytical method for online analysis of copper compounds in highly concentrated aqueous solutions (USC), (5) Electrodialysis as a means for separation and purification of the streams exiting the electrolyzer in the Cu-Cl cycle (USC), (6) Development of nanostructured electrocatalysts for the Cu-Cl electrolysis (USC), (7) Cu-Cl electrolyzer modeling (USC), (8) Aspen Plus modeling of the Cu-Cl thermochemical cycle (TU), (9) International coordination of research on the development of the Cu-Cl thermochemical cycle (ANL). The results obtained in the project clearly demonstrate that the Cu-Cl alternative thermochemical cycle is a promising and viable technology to produce hydrogen efficiently.

  20. Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, July--September 1993

    SciTech Connect (OSTI)

    1993-12-31

    The objectives of this study are to: Develop a baseline design and two alternative designs for indirect liquefaction using advanced F-T technology. The baseline design uses Illinois No. 6 Eastern Coal and conventional refining. There is an alternative refining case using ZSM-5 treatment of the vapor stream from the slurry F-T reactor and an alternative coal case using Western coal from the Powder River Basin. Prepare the capital and operating costs for the baseline design and the alternatives. Individual plant costs for the alternative cases will be prorated on capacity, wherever possible, from the baseline case. Develop a process flowsheet simulation (PFS) model. During the period of this report, a Topical Report summarizing the Baseline Case design was drafted and issued to DOE/PETC for review and release approval. Major effort was spent on the Alternate Upgrading and Refining Case. Its design specifications were finalized, and material and utility balances completed. Initial capital cost estimates were developed. A Topical Report, summarizing the Alternative (ZSM-5) Upgrading and Refining Case design, is being drafted. Under Task 4, some of the individual plant models were expanded and enhanced. An overall ASPEN/SP process simulation model was developed for the Baseline Design Case by combining the individual models of Areas 100, 200 and 300. In addition, a separate model for the simplified product refining area, Area 300, of the Alternate Upgrading and Refining case was developed. Under Task 7, cost and schedule control was the primary activity. A technical paper entitled ``Baseline Design/Economics for Advanced Fischer-Tropsch Technology`` was presented in the DOE/PETC`s Annual Contractors Review Conference, held at Pittsburgh, Pennsylvania, on September 27-29, 1993. A contract amendment was submitted to include the Kerr McGee ROSE unit in the Baseline design case and to convert the PFS models from the ASPEN/SP to ASPEN/Plus software code.

  2. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Nuclear Energy (NE) for their advancement of nuclear power; U.S. Nuclear Regulatory Commission (NRC) for safety reviews and licensing; R&D community for identification,...

  3. FY 2008 Progress Report for Advanced Combustion Engine Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Modeling, Boston, MA: "Thermoelectric Materials by ... using high resolution transmission electron microscopy" ... as the dashed line -20 CAD simulated ambient conditions. ...

  4. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan

    SciTech Connect (OSTI)

    Bruce Hallbert

    2012-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  5. Apply: Solid-State Lighting Advanced Technology R&D - 2015 Funding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity | Department of Energy Solid-State Lighting Advanced Technology R&D - 2015 Funding Opportunity Apply: Solid-State Lighting Advanced Technology R&D - 2015 Funding Opportunity October 14, 2014 - 3:57pm Addthis This funding opportunity is closed. The U.S. Department of Energy (DOE) announced a solid-state lighting (SSL) R&D funding opportunity on October 14, 2014. Under this funding opportunity (DE-FOA-0001171, "Solid-State Lighting Advanced Technology R&D -

  6. Department of Energy Announces Advanced Vehicle Technology Competition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    environment gives participating students a head start toward future job success. ... Vehicle Technology Competitions, the schools that have been chosen to participate are: ...

  7. EERE Success Story-New Advanced Refrigeration Technology Provides...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Provides Clean Energy, Low Utility Bills for ... System in ORNL's state-of-the-art Building Technologies ... The Office of Energy Efficiency and Renewable Energy ...

  8. Y-12, UT, and Stanley Healthcare work to advance technology ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    during the Tennessee Valley Corridor's National Technology Summit at Y-12's New Hope Center in Oak Ridge. (From left) Taylor Eighmy, UT's vice chancellor for research and...

  9. Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency and Reduced Emissions in Engines Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies ...

  10. Chapter 7: Advancing Systems and Technologies to Produce Cleaner...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... that perform well in harsh environments; sensor applications that make use of nanotechnology; Quadrennial Technology Review 2015 5 TA 7.E: Natural Gas Delivery Infrastructure ...

  11. Measurement and Characterization of Unregulated Emissions from Advanced Technologies

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  12. Advancing Technology Readiness: Wave Energy Testing and Demonstration

    Broader source: Energy.gov [DOE]

    EEREs support enabled Northwest Energy Innovations to verify the functionality of its Wave Energy TechnologyNew Zealand (WET-NZ) device.

  13. Quadrennial Technology Review 2015 Chapter 4: Advancing Clean...

    Broader source: Energy.gov (indexed) [DOE]

    electrolyte membrane fuel cell (PEMFC) technology can already exceed 60% electrical efficiency on hydrogen fuel, and research and development (R&D) are under way to reach 70%...

  14. Small Businesses Receive $2 Million to Advance HVAC Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    which contributes to climate change and is used by the vapor-compression systems in current water heaters, Xergy's technology can operate with zero global warming potential. ...

  15. North Central Texas Alternative Fuel and Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. tiarravt057reese2010...

  16. Measurement and Characterization of Unregulated Emissions from Advanced Technologies

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  17. Chapter 4: Advancing Clean Electric Power Technologies | Solar...

    Energy Savers [EERE]

    Chapter 4: Technology Assessments Introduction Solar energy offers a number of strategic ... calculated by using hourly insolation data and models. 15 The solar resource ...

  18. Characterization and Development of Advanced Heat Transfer Technologies

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  19. Chapter 4: Advancing Clean Electric Power Technologies | Light...

    Energy Savers [EERE]

    Light Water Reactors Chapter 4: Technology Assessments Past, Present, and Future of the ... peacetime uses came online in 1957. Light water reactors (LWRs) are now a mature ...

  20. North Central Texas Alternative Fuel and Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt057tireese2011p