Sample records for advanced residential buildings

  1. Advanced Residential Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01T23:59:59.000Z

    Factsheet describing the Advanced Residential Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

  2. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    SciTech Connect (OSTI)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31T23:59:59.000Z

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).

  3. Building America Residential Buildings Energy Efficiency Meeting...

    Energy Savers [EERE]

    Building America Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link...

  4. Presentation: Better Buildings Residential Program Solution Center...

    Office of Environmental Management (EM)

    Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential...

  5. Better Buildings Residential Program Solution Center Demonstration...

    Energy Savers [EERE]

    Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution...

  6. Membership Criteria: Better Buildings Residential Network | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Membership Criteria: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network...

  7. Fact Sheet: Better Buildings Residential Network

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.govbbrn What Is the Residential Network? The Better Buildings Residential Network connects...

  8. Building Technologies Residential Survey

    SciTech Connect (OSTI)

    Secrest, Thomas J.

    2005-11-07T23:59:59.000Z

    Introduction A telephone survey of 1,025 residential occupants was administered in late October for the Building Technologies Program (BT) to gather information on residential occupant attitudes, behaviors, knowledge, and perceptions. The next section, Survey Results, provides an overview of the responses, with major implications and caveats. Additional information is provided in three appendices as follows: - Appendix A -- Summary Response: Provides summary tabular data for the 13 questions that, with subparts, comprise a total of 25 questions. - Appendix B -- Benchmark Data: Provides a benchmark by six categories to the 2001 Residential Energy Consumption Survey administered by EIA. These were ownership, heating fuel, geographic location, race, household size and income. - Appendix C -- Background on Survey Method: Provides the reader with an understanding of the survey process and interpretation of the results.

  9. Better Buildings Residential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1, 20114,Residential 2014 Building

  10. Building America Residential Energy Efficiency Research Planning...

    Energy Savers [EERE]

    Building America Residential Energy Efficiency Research Planning Meeting: October 2011 Building America Residential Energy Efficiency Research Planning Meeting: October 2011 On...

  11. Better Buildings Residential Network Case Study: Partnerships...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships Better Buildings Residential Network Case Study: Partnerships, from the U.S....

  12. Better Buildings Residential Network Membership Form | Department...

    Energy Savers [EERE]

    Membership Form Better Buildings Residential Network Membership Form Membership form from the U.S. Department of Energy's Better Buildings Residential Network Recommended...

  13. Presentation: Better Buildings Residential Program Solution Center...

    Energy Savers [EERE]

    bbrpscdemopresentation061814.pdf More Documents & Publications Better Buildings Residential Program Solution Center Demonstration Webinar Presentation: Better Buildings...

  14. Building America Residential Energy Efficiency Technical Update...

    Energy Savers [EERE]

    Residential Energy Efficiency Technical Update Meeting: August 2011 Building America Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link...

  15. About the Better Buildings Residential Network | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Residential Network About the Better Buildings Residential Network The Better Buildings Residential Network connects energy efficiency programs and partners to share...

  16. Better Buildings Residential Network Reporting and Benefits Template

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Reporting and Benefits Template, from the U.S. Department of Energy Better Buildings Residential Network.

  17. Better Buildings Residential Network Reporting and Benefits FAQ

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Reporting and Benefits FAQ, from the U.S. Department of Energy Better Buildings Residential Network.

  18. Wave Impact Study on a Residential Building Wave Impact Study on a Residential Building

    E-Print Network [OSTI]

    Cox, Dan

    Wave Impact Study on a Residential Building Paper: Wave Impact Study on a Residential Building John residential light- frame wood buildings and wave and surge loading be- cause often little is left residential structures and wave loading. To do this, one-sixth scale residen- tial building models typical

  19. Residential Buildings Historical Publications reports, data and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

  20. Residential Buildings Historical Publications reports, data and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

  1. Residential Buildings Integration Program Overview - 2014 BTO...

    Broader source: Energy.gov (indexed) [DOE]

    provided an overview of the Building Technologies Office's Residential Buildings Integration Program. Through robust feedback, the BTO Program Peer Review enhances existing...

  2. Residential Buildings Integration Program Overview - 2015 BTO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Integration Program Overview - 2015 BTO Peer Review Residential Buildings Integration Program Overview - 2015 BTO Peer Review Presenter: David Lee, U.S. Department of...

  3. Better Buildings Residential Program Solution Center Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    The Better Buildings Residential Program Solution Center is a robust online collection of nearly 1,000 examples, strategies, and resources from Better Buildings Neighborhood...

  4. Advanced phase change materials and systems for solar passive heating and cooling of residential buildings

    SciTech Connect (OSTI)

    Salyer, I.O.; Sircar, A.K.; Dantiki, S.

    1988-01-01T23:59:59.000Z

    During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

  5. Better Buildings Summit Residential Sessions Engage Energy Pros...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Summit Residential Sessions Engage Energy Pros Better Buildings Summit Residential Sessions Engage Energy Pros This year's DOE Better Buildings Summit, taking...

  6. Energy Efficiency Trends in Residential and Commercial Buildings...

    Office of Environmental Management (EM)

    Efficiency Trends in Residential and Commercial Buildings - August 2010 Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Overview of building trends...

  7. Better Buildings Residential Network | Department of Energy

    Energy Savers [EERE]

    Call summaries See the partnerships case study Read the February issue of the Better Buildings Network View Upcoming Peer Exchange Calls* Residential Energy Efficiency...

  8. Building America Residential Energy Efficiency Stakeholders Meeting...

    Energy Savers [EERE]

    Energy Efficiency Stakeholders Meeting: March 2011 Building America Residential Energy Efficiency Stakeholders Meeting: March 2011 On this page, you may link to the summary report...

  9. Better Buildings Residential Network Program Sustainability Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ecolibrium3 (Duluth, MN) EnergyFit Nevada Gtech Strategies (Pittsburgh, PA) Midwest Energy Efficiency Alliance (MEEA) 3 Better Buildings Residential Network ...

  10. Better Buildings Residential Network Orientation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Summary More Documents & Publications How Can the Network Meet Your Needs? Better Buildings Residential Program - 2014 BTO Peer Review Outreach to Multifamily Landlords and Tenants...

  11. Better Buildings Residential Program Solution Center Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    Demonstration webinar slides for Better Buildings Residential Program Solution Center, November 19, 2014. Solution Center Demonstration Webinar Slides More Documents & Publications...

  12. Fact Sheet: Better Buildings Residential Network | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Fact Sheet: Better Buildings Residential Network, increasing the number of American Homes that are energy efficient. doebbrnfactsheet.pdf More Documents & Publications Fact Sheet...

  13. Better Buildings Residential Network Membership Form

    Energy Savers [EERE]

    Membership Form BETTER BUILDINGS RESIDENTIAL NETWORK Type of Organization (Check all that apply) ConsultantAdvisor Manufacturer ContractorTrade ally Nonprofit organization...

  14. DAYLIGHTING METRICS FOR RESIDENTIAL BUILDINGS

    E-Print Network [OSTI]

    unknown authors

    It is now widely accepted that the standard method for daylighting evaluation- the daylight factor- is due for replacement with metrics founded on absolute values for luminous quantities predicted over the course of a full year using sun and sky conditions derived from standardised climate files. The move to more realistic measures of daylighting introduces significant levels of additional complexity in both the simulation of the luminous quantities and the reduction of the simulation data to readily intelligible metrics. The simulation component, at least for buildings with standard glazing materials, is reasonably well understood. There is no consensus however on the composition of the metrics, and their formulation is an ongoing area of active research. Additionally, non-domestic and residential buildings present very different evaluation scenarios and it is not yet clear if a single metric would be applicable to both. This study uses a domestic dwelling as the setting to investigate and explore the applicability of daylighting metrics for residential buildings. In addition to daylighting provision for task and disclosing the potential for reducing electric lighting usage, we also investigate the formulation of metrics for non-visual effects such as entrainment of the circadian system.

  15. Clean Energy Finance Guide for Residential and Commercial Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finance Guide for Residential and Commercial Building Improvements - Chapter 6 Clean Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 6 Clean...

  16. Summary of Gaps and Barriers for Implementing Residential Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies...

  17. Clean Energy Finance Guide for Residential and Commercial Building...

    Broader source: Energy.gov (indexed) [DOE]

    Clean Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 8 Clean Energy Finance Guide for Residential and Commercial Building Improvements -...

  18. Clean Energy Finance Guide for Residential and Commercial Building...

    Broader source: Energy.gov (indexed) [DOE]

    Clean Energy Finance Guide for Residential and Commercial Building Improvements - Chapter 7 Clean Energy Finance Guide for Residential and Commercial Building Improvements -...

  19. An energy standard for residential buildings in south China

    E-Print Network [OSTI]

    Huang, Yu Joe; Lang, Siwei; Hogan, John; Lin, Haiyan

    2003-01-01T23:59:59.000Z

    Code for Residential Buildings”, Third International Conference on Indoor Air Quality, Ventilation and Energy Conservation

  20. Ozone Reductions using Residential Building Envelopes

    E-Print Network [OSTI]

    Ozone Reductions using Residential Building Envelopes I.S. Walker, M.H. Sherman and W.W. Nazaroff or adequacy of the information in this report. #12;Arnold Schwarzenegger Governor Ozone Reductions Using

  1. Guam- Solar-Ready Residential Building Requirement

    Broader source: Energy.gov [DOE]

    The Guam Energy Code, which became effective in October of 2000, requires that piping stub outs be provided for water heaters installed in low-rise residential buildings to enable the future inst...

  2. Advanced Controls and Sustainable Systems for Residential Ventilation

    E-Print Network [OSTI]

    1 Advanced Controls and Sustainable Systems for Residential Ventilation William J.N. Turner & Iain..................................................................................................................... 8 Residential Ventilation Standards..........................................................................................9 Passive and Hybrid Ventilation

  3. BetterBuildings for Michigan: Residential Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Michigan: Residential Program BetterBuildings for Michigan: Residential Program This is a document from BetterBuildings for Michigan posted on the website of the U.S....

  4. THE IMPACT OF BUILDING ORIENTATION ON RESIDENTIAL HEATING AND COOLING

    E-Print Network [OSTI]

    Andersson, Brandt

    2014-01-01T23:59:59.000Z

    PASSIVE SOLAR RESIDENTIAL BUILDING* Introduction In order to provide a basis for thermal analyses examining the effects of design

  5. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    The China Residential Energy Consumption Survey, Human andof Residential Building Energy Consumption in China Nan ZhouResidential Building Energy Consumption in China Nan Zhou*,

  6. Current Status and Future Scenarios of Residential Building

    E-Print Network [OSTI]

    a detailed, bottom-up analysis of residential building energy consumption in China using data from a wideLBNL-2416E Current Status and Future Scenarios of Residential Building Energy Consumption in China and Future Scenarios of Residential Building Energy Consumption in China Nan Zhou*, Masaru Nishida

  7. NREL: Buildings Research - Residential Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemical andWhat Is aResidential Capabilities

  8. Design and thermal modeling of a residential building

    E-Print Network [OSTI]

    Yeh, Alice Su-Chin

    2009-01-01T23:59:59.000Z

    Recent trends of green energy upgrade in commercial buildings show promise for application to residential houses as well, where there are potential energy-saving benefits of retrofitting the residential heating system from ...

  9. Energy conservation in commercial and residential buildings

    SciTech Connect (OSTI)

    Chiogioji, M.H.; Oura, E.N.

    1982-01-01T23:59:59.000Z

    Energy experts have indicated that we can, by exploiting currently available technology, cut energy consumption by 30 to 50% in new buildings and 10 to 30% in existing buildings, with no significant loss in standard of living, comfort, or convenience. This book surveys the many architectural/engineering techniques for combating energy waste in residential and commercial buildings. The experts in these 10 chapters acquaint us with what is being done and with what can be done in the design, construction, and maintenance of buildings in order to foster energy efficiency; they emphasize life-cycle costing as the only sound approach toward energy conservation. A separate abstract was prepared for each chapter; all abstracts will appear in Energy Abstracts for Policy Analysis (EAPA), with 5 appearing in Energy Research Abstracts (ERA).

  10. City of Cleveland- Residential Property Tax Abatement for Green Buildings

    Broader source: Energy.gov [DOE]

    The City of Cleveland, in cooperation with the Cuyahoga County Auditor's Office, provides a 100% tax abatement for residential properties built to the Cleveland Green Building Standard. Tax...

  11. Summary Review of Advanced Inverter Technologies for Residential PV Systems

    E-Print Network [OSTI]

    Summary Review of Advanced Inverter Technologies for Residential PV Systems This report summarizes current and emerging standards for residential PV systems and identifies the status of emerging inverter................................................................................................ 7 3. Grid-Connected PV inverters available in US

  12. Demand response-enabled autonomous control for interior space conditioning in residential buildings.

    E-Print Network [OSTI]

    Chen, Xue

    2008-01-01T23:59:59.000Z

    of demand response for residential buildings. ProfessorDemand Response-enabled Autonomous Control for Interior Space Conditioning in Residential BuildingsDemand Response-enabled Autonomous Control for Interior Space Conditioning in Residential Buildings

  13. Retrofit of Existing Residential Building: a Case Study

    E-Print Network [OSTI]

    Zhao, L.; Xu, W.; Li, L.; Gao, G.

    2006-01-01T23:59:59.000Z

    retrofit of the envelope of existing residential buildings should be placed on the wall in northern region. It is possible to reduce about 50 percent of energy consumption of buildings by insulating the wall. The external insulation is suitable...

  14. THE PENNSYLVANIA STATE UNIVERSITY HANKIN CHAIR IN RESIDENTIAL BUILDING CONSTRUCTION

    E-Print Network [OSTI]

    Guiltinan, Mark

    THE PENNSYLVANIA STATE UNIVERSITY HANKIN CHAIR IN RESIDENTIAL BUILDING CONSTRUCTION The College Construction. This Chair was established in 1988 with a $1m endowment from the Hankin family. It provides or construction management background; substantial knowledge and experience in the field of residential building

  15. Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In this project, researchers from the Consortium for Advanced Residential Buildings team worked with industry partners to develop hydronic system designs that would address performance issues and result in higher overall system efficiencies and improved response times.

  16. Ozone Reductions Using Residential Building Envelopes

    SciTech Connect (OSTI)

    Walker, Iain S.; Sherman, Max; Nazaroff, William W.

    2009-02-01T23:59:59.000Z

    Ozone is an air pollutant with that can have significant health effects and a significant source of ozone in some regions of California is outdoor air. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone could lead to improved health for many California residents. Ozone is removed from indoor air by surface reactions and can also be filtered by building envelopes. The magnitude of the envelope impact depends on the specific building materials that the air flows over and the geometry of the air flow paths through the envelope that can be changes by mechanical ventilation operation. The 2008 Residential Building Standards in California include minimum requirements for mechanical ventilation by referencing ASHRAE Standard 62.2. This study examines the changes in indoor ozone depending on the mechanical ventilation system selected to meet these requirements. This study used detailed simulations of ventilation in a house to examine the impacts of different ventilation systems on indoor ozone concentrations. The simulation results showed that staying indoors reduces exposure to ozone by 80percent to 90percent, that exhaust ventilation systems lead to lower indoor ozone concentrations, that opening of windows should be avoided at times of high outdoor ozone, and that changing the time at which mechanical ventilation occurs has the ability to halve exposure to ozone. Future work should focus on the products of ozone reactions in the building envelope and the fate of these products with respect to indoor exposures.

  17. Energy Audit Results for Residential Building Energy Efficiency

    E-Print Network [OSTI]

    Energy Audit Results for Residential Building Energy Efficiency Forrest City Phases I and II This report analyses complete energy audit results from 28 homes within the Forest City residential complex. Relationships between temperature, humidity, comfort, and energy consumption are detailed. Recommendations

  18. Energy Efficient Residential Building Code for Arab Countries

    E-Print Network [OSTI]

    Hanna, G. B.

    2010-01-01T23:59:59.000Z

    This paper presents an energy analysis to support the Egyptian efforts to develop a New Energy Code for New Residential Buildings in the Arab Countries. Also, the paper represents a brief summary of the code contents specially, the effectiveness...

  19. Energy Efficient Residential Building Code for Arab Countries 

    E-Print Network [OSTI]

    Hanna, G. B.

    2010-01-01T23:59:59.000Z

    This paper presents an energy analysis to support the Egyptian efforts to develop a New Energy Code for New Residential Buildings in the Arab Countries. Also, the paper represents a brief summary of the code contents ...

  20. TRANSCRIPT: Discover the New Better Buildings Residential Program...

    Energy Savers [EERE]

    data collection. Today we have with us Danielle Sass Byrnett, supervisor of the Better Buildings Residential Program at the U.S. Department of Energy. And she will be giving us...

  1. Better Buildings Residential Network Program Sustainability Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Network Program Sustainability Peer Exchange Call: Operating as a Prime Contractor Call Slides and Discussion Summary Agenda - Operating as a Prime Contractor * Call...

  2. Presentation: Better Buildings Residential Program Solution Center

    Energy Savers [EERE]

    Solution Center Overview Purpose: No More Starting from Scratch 5 Help residential energy efficiency programs minimize trial and error to achieve success. Help programs and...

  3. Residential and commercial buildings data book: Third edition

    SciTech Connect (OSTI)

    Amols, G.R.; Howard, K.B.; Nicholls, A.K.; Guerra, T.D.

    1988-02-01T23:59:59.000Z

    This Data Book updates and expands the previous Data Book originally published by the Department of Energy in September, 1986 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; and Additional Buildings and Community Systems Information. 12 refs., 59 figs., 118 tabs.

  4. Building America Webinar: National Residential Efficiency Measures...

    Energy Savers [EERE]

    Database Webinar Slides Building America Webinar: Saving Energy in Multifamily Buildings Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings Webinar...

  5. Southface Energy Institute: Advanced Commercial Buildings Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southface Energy Institute: Advanced Commercial Buildings Initiative - 2015 Peer Review Southface Energy Institute: Advanced Commercial Buildings Initiative - 2015 Peer Review...

  6. Combined Heat and Power for Saving Energy and Carbon in Residential Buildings

    E-Print Network [OSTI]

    2000-01-01T23:59:59.000Z

    the potential for CHP in residential homes at the case ofless than 10 kW) CHP for residential buildings. This isstates. Comparison of residential micro CHP technologies to

  7. Building energy calculator : a design tool for energy analysis of residential buildings in Developing countries

    E-Print Network [OSTI]

    Smith, Jonathan Y. (Jonathan York), 1979-

    2004-01-01T23:59:59.000Z

    Buildings are one of the world's largest consumers of energy, yet measures to reduce energy consumption are often ignored during the building design process. In developing countries, enormous numbers of new residential ...

  8. Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)

    SciTech Connect (OSTI)

    Starke, Michael R [ORNL; Onar, Omer C [ORNL; DeVault, Robert C [ORNL

    2011-09-01T23:59:59.000Z

    Electrical energy consumption of the residential sector is a crucial area of research that has in the past primarily focused on increasing the efficiency of household devices such as water heaters, dishwashers, air conditioners, and clothes washer and dryer units. However, the focus of this research is shifting as objectives such as developing the smart grid and ensuring that the power system remains reliable come to the fore, along with the increasing need to reduce energy use and costs. Load research has started to focus on mechanisms to support the power system through demand reduction and/or reliability services. The power system relies on matching generation and load, and day-ahead and real-time energy markets capture most of this need. However, a separate set of grid services exist to address the discrepancies in load and generation arising from contingencies and operational mismatches, and to ensure that the transmission system is available for delivery of power from generation to load. Currently, these grid services are mostly provided by generation resources. The addition of renewable resources with their inherent variability can complicate the issue of power system reliability and lead to the increased need for grid services. Using load as a resource, through demand response programs, can fill the additional need for flexible resources and even reduce costly energy peaks. Loads have been shown to have response that is equal to or better than generation in some cases. Furthermore, price-incentivized demand response programs have been shown to reduce the peak energy requirements, thereby affecting the wholesale market efficiency and overall energy prices. The residential sector is not only the largest consumer of electrical energy in the United States, but also has the highest potential to provide demand reduction and power system support, as technological advancements in load control, sensor technologies, and communication are made. The prevailing loads based on the largest electrical energy consumers in the residential sector are space heating and cooling, washer and dryer, water heating, lighting, computers and electronics, dishwasher and range, and refrigeration. As the largest loads, these loads provide the highest potential for delivering demand response and reliability services. Many residential loads have inherent flexibility that is related to the purpose of the load. Depending on the load type, electric power consumption levels can either be ramped, changed in a step-change fashion, or completely removed. Loads with only on-off capability (such as clothes washers and dryers) provide less flexibility than resources that can be ramped or step-changed. Add-on devices may be able to provide extra demand response capabilities. Still, operating residential loads effectively requires awareness of the delicate balance of occupants health and comfort and electrical energy consumption. This report is Phase I of a series of reports aimed at identifying gaps in automated home energy management systems for incorporation of building appliances, vehicles, and renewable adoption into a smart grid, specifically with the intent of examining demand response and load factor control for power system support. The objective is to capture existing gaps in load control, energy management systems, and sensor technology with consideration of PHEV and renewable technologies to establish areas of research for the Department of Energy. In this report, (1) data is collected and examined from state of the art homes to characterize the primary residential loads as well as PHEVs and photovoltaic for potential adoption into energy management control strategies; and (2) demand response rules and requirements across the various demand response programs are examined for potential participation of residential loads. This report will be followed by a Phase II report aimed at identifying the current state of technology of energy management systems, sensors, and communication technologies for demand response and load factor control applications

  9. Building America Webinar: Ventilation in Multifamily Buildings...

    Energy Savers [EERE]

    Ventilation in Multifamily Buildings Building America Webinar: Ventilation in Multifamily Buildings This webinar was presented by research team Consortium for Advanced Residential...

  10. Solar Energy and Residential Building Integration Technology and Application

    E-Print Network [OSTI]

    Ding Ma; Yi-bing Xue

    Building energy saving needs solar energy, but the promotion of solar energy has to be integrated with the constructions. Through analyzing the energy-saving significance of solar energy, and the status and features of it, this paper has discussed the solar energy and building integration technology and application in the residential building, and explored a new way and thinking for the close combination of the solar technology and residence.

  11. Discussion on Energy-Efficient Technology for the Reconstruction of Residential Buildings in Cold Areas 

    E-Print Network [OSTI]

    Zhao, J.; Wang, S.; Chen, H.; Shi, Y.; Li, D.

    2006-01-01T23:59:59.000Z

    : Based on the existing residential buildings in cold areas, this paper takes the existing residential buildings in a certain district in Beijing to provide an analysis of the thermal characteristics of envelope and energy consumption in winter...

  12. Solar energy and multi-storey residential buildings Larry Hughes and Tylor Wood

    E-Print Network [OSTI]

    Hughes, Larry

    ERG/200702 Solar energy and multi-storey residential buildings Larry Hughes and Tylor Wood Energy.hughes@dal.ca 26 March 2007 #12;Hughes and Wood: Solar energy and multi-storey residential buildings 1 Summary This report considers the limitations on solar energy in new, multi-storey residential buildings. In a time

  13. Window-Related Energy Consumption in the US Residential and Commercial Building Stock

    E-Print Network [OSTI]

    Apte, Joshua; Arasteh, Dariush

    2008-01-01T23:59:59.000Z

    2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Total Building Energy Consumption (Trillion BTU/yr) Area,

  14. Assessing and Improving the Accuracy of Energy Analysis for Residential Buildings

    SciTech Connect (OSTI)

    Polly, B.; Kruis, N.; Roberts, D.

    2011-07-01T23:59:59.000Z

    This report describes the National Renewable Energy Laboratory's (NREL) methodology to assess and improve the accuracy of whole-building energy analysis for residential buildings.

  15. Audit Procedures for Improving Residential Building Energy Efficiency

    E-Print Network [OSTI]

    Efficiency April 2013 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science & TechnologyAudit Procedures for Improving Residential Building Energy Efficiency This report analyses in thermal envelopes. The report was submitted by HNEI to the U.S. Department of Energy Office of Electricity

  16. Modeling of Residential Buildings and Heating Systems

    E-Print Network [OSTI]

    Masy, G.; Lebrun, J.

    2004-01-01T23:59:59.000Z

    -zone building model is used in each case. A model of the heating system is also used for the multi-storey building. Both co-heating and tracer gas measurements are used in order to adjust the parameters of each building model. A complete monitoring...

  17. Modeling of Residential Buildings and Heating Systems 

    E-Print Network [OSTI]

    Masy, G.; Lebrun, J.

    2004-01-01T23:59:59.000Z

    -zone building model is used in each case. A model of the heating system is also used for the multi-storey building. Both co-heating and tracer gas measurements are used in order to adjust the parameters of each building model. A complete monitoring...

  18. Residential Building Integration Program Overview - 2014 BTO...

    Energy Savers [EERE]

    Program Overview - 2014 BTO Peer Review Presenter: David Lee, U.S. Department of Energy This presentation at the 2014 Peer Review provided an overview of the Building...

  19. Residential Buildings Integration | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Promote the use of energy efficient technologies and methods by builders through the DOE Zero Energy Ready Home program. Building Codes and Equipment Standards Provide a wide...

  20. Design for Energy Efficiency in Residential Buildings

    E-Print Network [OSTI]

    Song, M.; Zhang, Y.; Yang, G.

    2006-01-01T23:59:59.000Z

    -saving efficiency was 50%. Tab. 1 Difference of over all heat transfer coefficient limitation of building Exterior wall Exterior window Roof 65% energy-saving residence buildings in Beijing (>5 stories) 0.6 2.8 0.6 South of Sweden 0.17 2.5 0...

  1. Enhancing Residential Building Operation through its Envelope

    E-Print Network [OSTI]

    Vazifeshenas, Y.; Sajjadi, H.

    2010-01-01T23:59:59.000Z

    In this study heat loss is evaluated with the modeling software of Iranian Construction Engineering Organization, for both with and without insulation in the building. Of course the evaluation is in accordance with the laws of this organization...

  2. Investigation and Analysis of Summer Energy Consumption of Energy Efficient Residential Buildings in Xi'an 

    E-Print Network [OSTI]

    Ma, B.; Yan, Z.; Gui, Z.; He, J.

    2006-01-01T23:59:59.000Z

    Tests and questionnaire surveys on the summer energy consumption structure of 100 energy efficient residential buildings have been performed in a certain residential district in Xi'an, China. The relationship between the formation of the energy...

  3. EnergyGauge USA: A Residential Building Energy Simulation Design Tool 

    E-Print Network [OSTI]

    Fairey, P.; Vieira, R. K.; Parker, D. S.; Hanson, B.; Broman, P. A.; Grant, J. B.; Fuehrlein, B.; Gu, L.

    2002-01-01T23:59:59.000Z

    The Florida Solar Energy Center (FSEC) has developed new software (EnergyGauge USA) which allows simple calculation and rating of energy use of residential buildings around the United States. In the past, most residential analysis and rating...

  4. Investigation and Analysis of Summer Energy Consumption of Energy Efficient Residential Buildings in Xi'an

    E-Print Network [OSTI]

    Ma, B.; Yan, Z.; Gui, Z.; He, J.

    2006-01-01T23:59:59.000Z

    Tests and questionnaire surveys on the summer energy consumption structure of 100 energy efficient residential buildings have been performed in a certain residential district in Xi'an, China. The relationship between the formation of the energy...

  5. Environmental assessment in support of proposed voluntary energy conservation standard for new residential buildings

    SciTech Connect (OSTI)

    Hadley, D.L.; Parker, G.B.; Callaway, J.W.; Marsh, S.J.; Roop, J.M.; Taylor, Z.T.

    1989-06-01T23:59:59.000Z

    The objective of this environmental assessment (EA) is to identify the potential environmental impacts that could result from the proposed voluntary residential standard (VOLRES) on private sector construction of new residential buildings. 49 refs., 15 tabs.

  6. Calculating Energy Savings in High Performance Residential Buildings Programs: Preprint

    SciTech Connect (OSTI)

    Hendron, B.; Rarrar-Nagy, S.; Anderson, R.; Judkoff, R.; Reeves, P.; Hancock, E.

    2003-08-01T23:59:59.000Z

    Accurate and meaningful energy savings calculations are essential for the evaluation of residential energy efficiency programs sponsored by the U.S. Department of Energy (DOE), such as the Building America Program (a public-private partnership designed to achieve significant energy savings in the residential building sector). The authors investigated the feasibility of applying existing performance analysis methodologies such as the Home Energy Rating System (HERS) and the International Energy Conservation Code (IECC) to the high performance houses constructed under Building America, which sometimes achieve whole-house energy savings in the 50-70% range. However, because Building America addresses all major end-use loads and because the technologies applied to Building America houses often exceed what is envisioned by energy codes and home-rating programs, the methodologies used in HERS and IECC have limited suitability, and a different approach was needed. The authors have researched these issues extensively over the past several years and developed a set of guidelines that draws upon work done by DOE's Energy Information Administration, the California Energy Commission, the International Code Council, RESNET, and other organizations that have developed similar methodologies to meet their needs. However, the final guidelines are tailored to provide accurate techniques for quantifying energy savings achieved by Building America to help policymakers assess the effectiveness of the program.

  7. System design and dynamic signature identification for intelligent energy management in residential buildings.

    E-Print Network [OSTI]

    Jang, Jaehwi

    2008-01-01T23:59:59.000Z

    Drewer and D. Gann, Smart buildings, Journal of Facilities ,smart energy management system specically for residential buildings.buildings is rooted in relative eectiveness per system by a smart

  8. Application and Design of Residential Building Energy Saving in Cold Climates 

    E-Print Network [OSTI]

    Li, Z.; Li, D.; Mei, S.; Zhang, G.; Liu, J.

    2006-01-01T23:59:59.000Z

    Climate is the one of main considerations for residential building design since the green and energy saving building has become the trend in the building industry. China is actively popularizing high energy-effective and environment harmonious...

  9. Air Barriers for Residential and Commercial Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Building Americaof EnergyAhorreDepartmentAir

  10. Energy Provisions of the California Green Building Standards Code Page 2 CHAPTER 4, RESIDENTIAL MANDATORY MEASURES

    E-Print Network [OSTI]

    Energy Provisions of the California Green Building Standards Code Page 2 CHAPTER 4, RESIDENTIAL of the California Green Building Standards Code Page 3 APPENDIX A4, RESIDENTIAL VOLUNTARY MEASURES APPENDIX A4 of the California Green Building Standards Code Page 4 1. Night lights which comply with Title 24, Part 6 Section

  11. Assessment of Impacts from Adopting the 2006 International Energy Conservation Code for Residential Buildings in Wyoming

    SciTech Connect (OSTI)

    Lucas, Robert G.

    2007-10-01T23:59:59.000Z

    The state of Wyoming currently does not have a statewide building energy efficiency code for residential buildings. The U.S. Department of Energy has requested Pacific Northwest National Laboratory (PNNL) to estimate the energy savings, economic impacts, and pollution reduction from adopting the 2006 International Energy Conservation Code (IECC). This report addresses the impacts for low-rise residential buildings only.

  12. Window-Related Energy Consumption in the US Residential and Commercial Building Stock

    E-Print Network [OSTI]

    Apte, Joshua; Arasteh, Dariush

    2008-01-01T23:59:59.000Z

    2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Scale window-related energy consumption to account for new

  13. Al Azhar International Conference, Cairo 2008 Environmental healthy requirements in residential buildings: Amman as a case study

    E-Print Network [OSTI]

    in residential buildings: Amman as a case study Environmental healthy requirements in residential buildings in the Jordanian residential buildings, in general, and in Amman particularly, considering the healthy problems requested for a healthy environment in the modern buildings, especially regarding the natural aeration

  14. Better Buildings Residential Program - 2014 BTO Peer Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergy CommitteeDepartmentResidential Buildings »

  15. An Analysis of Building Envelope Upgrades for Residential Energy Efficiency in Hot and Humid Climates

    E-Print Network [OSTI]

    Malhotra, M.; Haberl, J.

    This paper presents the results of the analyses of various envelope upgrades for residential energyefficiency in hot and humid climates. The building components considered for the upgrades include: building shape, construction type, roof...

  16. An Analysis of Building Envelope Upgrades for Residential Energy Efficiency in Hot and Humid Climates 

    E-Print Network [OSTI]

    Malhotra, M.; Haberl, J.

    2006-01-01T23:59:59.000Z

    This paper presents the results of the analyses of various envelope upgrades for residential energyefficiency in hot and humid climates. The building components considered for the upgrades include: building shape, construction ...

  17. Revised: March 6, 2013 2013 Residential Building Energy Efficiency Standards Measures Summary

    E-Print Network [OSTI]

    1 Revised: March 6, 2013 2013 Residential Building Energy Efficiency Standards Measures; allows Smart Vents and Night Breeze as alternatives in CZs 814. (Section 150.1(c)12) 4. Adding for all residential buildings including kitchens, bathrooms, dining rooms, utility rooms, garages, hall

  18. Energy and air quality implications of passive stack ventilation in residential buildings

    E-Print Network [OSTI]

    Energy and air quality implications of passive stack ventilation in residential buildings Laboratory is an equal opportunity employer. #12;Energy and air quality implications of passive stack in residential buildings and compliance is normally achieved with fully mechanical whole-house systems; however

  19. Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies

    SciTech Connect (OSTI)

    Not Available

    2010-08-01T23:59:59.000Z

    This report presents the key gaps and barriers to implementing residential energy efficiency strategies in the U.S. market, as identified in sessions at the U.S. Department of Energy's Building America 2010 Residential Energy Efficiency Meeting held in Denver, Colorado, on July 20-22, 2010.

  20. Detecting sources of heat loss in residential buildings from infrared imaging

    E-Print Network [OSTI]

    Shao, Emily Chen

    2011-01-01T23:59:59.000Z

    Infrared image analysis was conducted to determine the most common sources of heat loss during the winter in residential buildings. 135 houses in the greater Boston and Cambridge area were photographed, stitched, and tallied ...

  1. Building-Integrated Photovoltaics (BIPV) in the Residential Section: An Analysis of Installed Rooftop Prices (Presentation)

    SciTech Connect (OSTI)

    James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

    2012-06-01T23:59:59.000Z

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 17, 2012, in Denver, CO, discusses building-integrated photovoltaics (BIPV) in the residential section and includes an analysis of installed rooftop prices.

  2. Modelling Urban scale Retrofit, Pathways to 2050 Low Carbon Residential Building Stock 

    E-Print Network [OSTI]

    Lannon, Simon; Georgakaki, Aliki; Macdonald, Stuart

    A bottom up engineering modelling approach has been used to investigate the pathways to 2050 low carbon residential building stock. The impact of housing retrofit, renewable technologies, occupant behaviour, and grid decarbonisation is measured at a...

  3. Simplified Prescriptive Options in the Texas Residential Building Energy Code Make Compliance Easy

    E-Print Network [OSTI]

    Stone, G. A.; DeVito, E. M.; Nease, N. H.

    2002-01-01T23:59:59.000Z

    Simplified Prescriptive Options in the Texas Residential Building Energy Code Make Compliance Easy Garrett A. Stone Eric M. DeVito Nelson H. Nease Partner Associate Associate Brickfield, Burchette...

  4. Scaling Behavior of the Life Cycle Energy of Residential Buildings and Impacts on Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Hall, Sharon J.

    Scaling Behavior of the Life Cycle Energy of Residential Buildings and Impacts on Greenhouse Gas required for building the structure; and 2) the operational energy required for habitation energy used for space heating and cooling during the life of the building. Similar ratios are found

  5. Building America Webinar: Advanced Envelope Research for Factory...

    Energy Savers [EERE]

    Advanced Envelope Research for Factory-Built Housing Building America Webinar: Saving Energy in Multifamily Buildings Building America Webinar: Ventilation in Multifamily Buildings...

  6. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Call Slides and Discussion Summary January 22, 2015 Agenda Call Logistics and Introductions Opening Poll Residential Network and Peer Exchange Call...

  7. City of Portland- Streamlined Building Permits for Residential Solar Systems

    Broader source: Energy.gov [DOE]

    The City of Portland's Bureau of Development Services (BDS) developed an electronic permitting process for residential solar energy system installations. With this streamlined, expedited process,...

  8. Steam System Balancing and Tuning for Multifamily Residential...

    Energy Savers [EERE]

    for Advanced Residential Retrofit www.gastechnology.org Building Component: Steam heating distribution system and controls Application: Retrofit; Multifamily Year Tested:...

  9. Text-Alternative Version of Building America Webinar: Field Test Best Practices, BEopt, and the National Residential Efficiency Measures Database

    Broader source: Energy.gov [DOE]

    This is the transcript of the Building America webinar, Field Test Best Practices, BEopt, and the National Residential Efficiency Measures Database, held on March 18, 2015.

  10. Advanced Energy Retrofit Guide Retail Buildings

    SciTech Connect (OSTI)

    Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-19T23:59:59.000Z

    The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  11. Advanced Energy Retrofit Guide Office Buildings

    SciTech Connect (OSTI)

    Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-27T23:59:59.000Z

    The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  12. Dynamic Simulation and Analysis of Heating Energy Consumption in a Residential Building 

    E-Print Network [OSTI]

    Liu, J.; Yang, M.; Zhao, X.; Zhu, N.

    2006-01-01T23:59:59.000Z

    In winter, much of the building energy is used for heating in the north region of China. In this study, the heating energy consumption of a residential building in Tianjin during a heating period was simulated by using the EnergyPlus energy...

  13. Dynamic Simulation and Analysis of Heating Energy Consumption in a Residential Building

    E-Print Network [OSTI]

    Liu, J.; Yang, M.; Zhao, X.; Zhu, N.

    2006-01-01T23:59:59.000Z

    In winter, much of the building energy is used for heating in the north region of China. In this study, the heating energy consumption of a residential building in Tianjin during a heating period was simulated by using the EnergyPlus energy...

  14. Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices

    SciTech Connect (OSTI)

    James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

    2011-11-01T23:59:59.000Z

    For more than 30 years, there have been strong efforts to accelerate the deployment of solar-electric systems by developing photovoltaic (PV) products that are fully integrated with building materials. This report examines the status of building-integrated PV (BIPV), with a focus on the cost drivers of residential rooftop systems, and explores key opportunities and challenges in the marketplace.

  15. Are Building Codes Effective at Saving Energy? Evidence from Residential Billing Data in Florida

    E-Print Network [OSTI]

    Kotchen, Matthew J.

    codes by 2014 that are 30 percent more stringent than the 2006 International Energy Conservation CodeAre Building Codes Effective at Saving Energy? Evidence from Residential Billing Data in Florida and Statistics Abstract We evaluate the effect of a change in the energy code applied to buildings using

  16. INDOOR AIR QUALITY MEASUREMENTS IN ENERGY-EFFICIENT RESIDENTIAL BUILDINGS

    E-Print Network [OSTI]

    Berk, J.V.

    2011-01-01T23:59:59.000Z

    Modem RESIDENTIAL ENERGY CONSUMPTION DATA (1976) TOTAL 18.95HEATING COMMERCIAL ENERGY CONSUMPTION DATA (1976) TOTAL 10.3data on various active and pas- sive methods of reducing energy consumption

  17. Impact of Different Glazing Systems on Cooling Load of a Detached Residential Building at Bhubaneswar, India

    E-Print Network [OSTI]

    Sahoo, P. K.; Sahoo, R.

    2010-01-01T23:59:59.000Z

    ] and passive solar ventilation [Hamdy and Firky, 1998]. Impact of windows on thermal comfort and passive cooling is addressed by Chaiyapinunt et al. [2005] and Lyons et al. [1999]. Studies related to space cooling load characteristics in residential... load are investigated and analyzed using Design Builder simulation program [DesignBuilder, 2009]. The weather conditions and a detached residential building in the tropical Bhubaneswar are used in the simulation study. The premise of this study is...

  18. Advanced building skins : translucent thermal storage elements

    E-Print Network [OSTI]

    Kienzl, Nico, 1971-

    1999-01-01T23:59:59.000Z

    Advances in the material sciences continue to provide designers with a wealth of new materials that challenge preconceived notions of the building envelope and its performance. These new technologies can be used to create ...

  19. Collaborating With Utilities on Residential Energy Efficiency...

    Office of Environmental Management (EM)

    on Residential Energy Efficiency Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Collaborating With Utilities on Residential Energy...

  20. Discussion on Energy-Efficient Technology for the Reconstruction of Residential Buildings in Cold Areas

    E-Print Network [OSTI]

    Zhao, J.; Wang, S.; Chen, H.; Shi, Y.; Li, D.

    2006-01-01T23:59:59.000Z

    , and provides the technical and economic analysis, which may provide reference of the suitable plans for the energy efficient reconstruction of buildings in cold area. 2. ANALYSIS ON HEATING ENERGY CONSUMPTION 2.1 Building Situation Based... on the existing residential building in Beijing, the paper discusses the reconstruction plan of energy saving. The outside air temperature for heating in Beijing is -9 , and the outside mean temperature is -1.6 during the heating period of 125 days...

  1. Buildings-to-Grid Technical Opportunities: From the Buildings...

    Energy Savers [EERE]

    Opportunities: From the Buildings Perspective Technological advances in demand response and energy efficiency have increased the utility of residential and commercial...

  2. The Technical and Economical Analysis of a Centralized Air-Conditioning System with Cold Storage Refrigeration in High-Rise Residential Buildings

    E-Print Network [OSTI]

    Xiang, C.; Xie, G.

    2006-01-01T23:59:59.000Z

    In recent years, the application of a centralized air-conditioning system (CACS) with cold storage refrigeration in high-rise residential buildings has gradually increased. Due to the large difference between civil residential buildings...

  3. Determining Adaptability Performance of Artificial Neural Network-Based Thermal Control Logics for Envelope Conditions in Residential Buildings

    E-Print Network [OSTI]

    Moon, Jin Woo; Chang, Jae D.; Kim, Sooyoung

    2013-07-18T23:59:59.000Z

    This study examines the performance and adaptability of Artificial Neural Network (ANN)-based thermal control strategies for diverse thermal properties of building envelope conditions applied to residential buildings. The thermal performance using...

  4. Advanced Commercial Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01T23:59:59.000Z

    Factsheet describing the Advanced Commercial Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

  5. EA-2001: Energy Efficiency Design Standards: New Federal Commercial and Multi-Family High-Rise Residential Buildings and New Federal Low-Rise Residential Buildings

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is publishing this final rule to implement provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal commercial and multi-family high-rise residential buildings. This rule updates the baseline Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2013.

  6. BetterBuildings for Michigan Residential Case Study

    Broader source: Energy.gov [DOE]

    This is a document from BetterBuilding for Michigan posted on the website of the U.S. Department of Energy's BetterBuildings Neighborhood Program.

  7. Energy Department Announces $5 Million for Residential Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    opportunity, the Department will make 1 million available through its annual Buildings University Innovators and Leaders Development (BUILD) funding opportunity to support...

  8. System design and dynamic signature identification for intelligent energy management in residential buildings.

    E-Print Network [OSTI]

    Jang, Jaehwi

    2008-01-01T23:59:59.000Z

    for Intelligent Energy Management in Residential Buildingsfor Intelligent Energy Management in Residential Buildingsthat can provide autonomous energy management to residential

  9. EA-1463: 10 CFR 433: Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings and 10 CFR 435: Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings

    Broader source: Energy.gov [DOE]

    The EA examines the potential environmental impacts of the Final Rule on building habitability and the outdoor environment. To identify the potential environmental impacts that may result from implementing the Final Rule for new Federal commercial and residential buildings, DOE compared the Final Rule with the “no-action alternative” of using the current Federal standards – 10 CFR Part 434 and 10 CFR Part 435 Subpart C (referred to as the “no-action alternative”).

  10. Improving the Accuracy of Software-Based Energy Analysis for Residential Buildings (Presentation)

    SciTech Connect (OSTI)

    Polly, B.

    2011-09-01T23:59:59.000Z

    This presentation describes the basic components of software-based energy analysis for residential buildings, explores the concepts of 'error' and 'accuracy' when analysis predictions are compared to measured data, and explains how NREL is working to continuously improve the accuracy of energy analysis methods.

  11. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  12. Use-phase memory: a tool for the sustainable construction and renovation of residential buildings

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ). The statistics show that this sector consumes and pollutes more than industry (22% energy) or transport sectors1 Use-phase memory: a tool for the sustainable construction and renovation of residential buildings manuscript, published in "Automation in Construction 36 (2013) 53-70" DOI : 10.1016/j.autcon.2013.08.003 #12

  13. Recommendations for energy conservation standards for new residential buildings: Volume 1: Text of the standard

    SciTech Connect (OSTI)

    Not Available

    1989-05-01T23:59:59.000Z

    The purpose of this Standard is to provide for the development of requirements for new residential buildings that promote the efficient use of energy within economic constraints and without compromising the comfort and safety of the occupants. 1 fig., 8 tabs.

  14. Background to the development process, Automated Residential Energy Standard (ARES) in support of proposed interim energy conservation voluntary performance standards for new non-federal residential buildings: Volume 3

    SciTech Connect (OSTI)

    NONE

    1989-09-01T23:59:59.000Z

    This report documents the development and testing of a set of recommendations generated to serve as a primary basis for the Congressionally-mandated residential standard. This report treats only the residential building recommendations.

  15. In Proc. International Conference on Advances in Building Technology. Hong Kong, China. December 4-6, 2002.

    E-Print Network [OSTI]

    . It is widely used as sheathing, flooring, and I-joist materials in light- frame wood construction, replacingIn Proc. International Conference on Advances in Building Technology. Hong Kong, China. December 4 The Formosan Subterranean Termites (FSTs) pose a growing threat to all structural wood materials in residential

  16. Impacts of the 2009 IECC for Residential Buildings at State Level

    SciTech Connect (OSTI)

    Lucas, Robert G.; Cole, Pamala C.

    2009-10-01T23:59:59.000Z

    This report examines the requirements of the 2009 International Energy Conservation Code® (IECC) on residential buildings on a state-by-state basis with a separate, stand-alone chapter for each state. A summary of the requirements of the code is given for each state. The 2009 IECC is then compared to the current state code for most states or typical current construction practice for the states that do not have a residential energy efficiency code. This is the final version of a draft report by the same name that was previously cleared for release (ERICA # PNNL-18545).

  17. Economic analysis of proposed voluntary energy conservation standard for new residential buildings

    SciTech Connect (OSTI)

    Marsh, S.J.; Roop, J.M.; Callaway, J.W.; Taylor, Z.T.

    1989-06-01T23:59:59.000Z

    The objective of this document is to present an analysis of the impacts of the proposed voluntary energy conservation standard for the construction of new residential buildings. This analysis examines the impacts of having the proposed residential standard apply immediately and, alternatively, having the proposed standard phased in over a five-year period. It does not address the question of whether realistically the standard would be adopted by states, nor does it weight the improbable impact of states with higher energy efficiency standards modifying their standard to comply with this voluntary standard. 19 refs., 1 fig., 12 tabs.

  18. Better Buildings Residential Network Factsheet: Case Study: Partnerships

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1, 20114,Residential&DrivingBetter

  19. Residential Building Industry Consulting Services | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewableGeothermal Field | Open EnergyResidential

  20. Discover the New Better Buildings Residential Program Solution...

    Energy Savers [EERE]

    (text version) Sustainable Energy Resources for Consumers Webinar on Building Design & Passive Solar Transcript February 13, 2013 Webinar: Preliminary Process and Market Evaluation...

  1. Inspiring and Building the Next Generation of Residential Energy...

    Energy Savers [EERE]

    and Mark Grimsrud. Image: Dennis Schroeder, National Renewable Energy Laboratory Second Win 8 of 10 Second Win Building Technologies Office Chief Architect Sam Rashkin (second...

  2. Evaluation of advanced technologies for residential appliances and residential and commercial lighting

    SciTech Connect (OSTI)

    Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

    1995-01-01T23:59:59.000Z

    Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

  3. Building America Research Teams: Spotlight on Alliance for Residential...

    Energy Savers [EERE]

    Working from Davis Energy Group's 20 years of experience with energy measure optimization, ARBI applies advanced modeling and analysis techniques to identify optimal,...

  4. Recovery Act: Advanced Load Identification and Management for Buildings

    SciTech Connect (OSTI)

    Yang, Yi; Casey, Patrick; Du, Liang; He, Dawei

    2014-02-12T23:59:59.000Z

    In response to the U.S. Department of Energy (DoE)’s goal of achieving market ready, net-zero energy residential and commercial buildings by 2020 and 2025, Eaton partnered with the Department of Energy’s National Renewable Energy Laboratory (NREL) and Georgia Institute of Technology to develop an intelligent load identification and management technology enabled by a novel “smart power strip” to provide critical intelligence and information to improve the capability and functionality of building load analysis and building power management systems. Buildings account for 41% of the energy consumption in the United States, significantly more than either transportation or industrial. Within the building sector, plug loads account for a significant portion of energy consumption. Plug load consumes 15-20% of building energy on average. As building managers implement aggressive energy conservation measures, the proportion of plug load energy can increase to as much as 50% of building energy leaving plug loads as the largest remaining single source of energy consumption. This project focused on addressing plug-in load control and management to further improve building energy efficiency accomplished through effective load identification. The execution of the project falls into the following three major aspects. 1) An intelligent load modeling, identification and prediction technology was developed to automatically determine the type, energy consumption, power quality, operation status and performance status of plug-in loads, using electric waveforms at a power outlet level. This project demonstrated the effectiveness of the developed technology through a large set of plug-in loads measurements and testing. 2) A novel “Smart Power Strip (SPS) / Receptacle” prototype was developed to act as a vehicle to demonstrate the feasibility of load identification technology as a low-cost, embedded solution. 3) Market environment for plug-in load control and management solutions, in particular, advanced power strips (APSs) was studied. The project evaluated the market potential for Smart Power Strips (SPSs) with load identification and the likely impact of a load identification feature on APS adoption and effectiveness. The project also identified other success factors required for widespread APS adoption and market acceptance. Even though the developed technology is applicable for both residential and commercial buildings, this project is focused on effective plug-in load control and management for commercial buildings, accomplished through effective load identification. The project has completed Smart Receptacle (SR) prototype development with integration of Load ID, Control/Management, WiFi communication, and Web Service. Twenty SR units were built, tested, and demonstrated in the Eaton lab; eight SR units were tested in the National Renewable Energy Lab (NREL) for one-month of field testing. Load ID algorithm testing for extended load sets was conducted within the Eaton facility and at local university campuses. This report is to summarize the major achievements, activities, and outcomes under the execution of the project.

  5. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; Nishida, Masaru; Gao, Weijun

    2008-12-01T23:59:59.000Z

    China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

  6. July 11 Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances

    Broader source: Energy.gov [DOE]

    These documents contain the three slide decks presented at the public meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances, held on July 11, 2014 in Washington, DC.

  7. Thermal Comfort Study in a Naturally Ventilated Residential Building in a Tropical Hot-Humid Climate Region

    E-Print Network [OSTI]

    Soebarto, V. I.; Handjarinto, S.

    1998-01-01T23:59:59.000Z

    This paper presents a thermal comfort study in a naturally ventilated residential building located in a tropical hot-humid climate region. The specific objective of this study is to investigate whether thermal comfort in this house can be achieved...

  8. ASHRAE/IESNA 90.1-1989R, energy code for buildings except low-rise residential buildings, Revision update

    SciTech Connect (OSTI)

    Emerson, K. [Public Service Company of Colorado, Denver, CO (United States)

    1996-12-31T23:59:59.000Z

    The first public review draft of the next cyclical revision to ASHRAE/IESNA 90.1 - 1989, titled {open_quotes}Energy Efficient Design of New Buildings Except New Low-Rise Residential Buildings,{close_quotes} is currently available for public review. This paper provides commentary by the author on the background of the revision and a general comparison of this first public review draft to the 1989 version of the Standard. Those wishing further information on the draft should contact the American Society of Heating, Refrigerating and Air-Conditioning Engineers.

  9. Questions Asked during the Financing Residential Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Efficiency with Carbon Offsets Transcript Financing Residential Energy Efficiency with Carbon Offsets SERC Photovoltaics for Residential Buildings Webinar...

  10. Cost-Effective Energy Efficiency Measures for Above Code (2003 and 2009 IECC) Residential Buildings in the City of Arlington

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    -code approaches that have been made in the CoA during the 2008-2010. #1; Results of the current project: Recommendations of 17 energy efficiency measures (EEMs) to maximize energy savings for residential buildings in the CoA with #1; estimated cost... energy savings from heating, cooling, lighting, equipment and DHW for emissions reductions determination. * Building type: Residential 2. Savings depend on fuel mix used. * Gross area: 2,325 sq-ft * Energy Cost: Electricity = $0.11/k...

  11. Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    average residential electricity consumption by end-use inaverage residential electricity consumption by end-use inU.S. residential electricity consumption for 2010 for 32

  12. Analysis of improved fenestration for code-compliant residential buildings in hot and humid climates 

    E-Print Network [OSTI]

    Mukhopadhyay, Jaya

    2006-10-30T23:59:59.000Z

    -efficient fenestration products for residential buildings in both heating and cooling climates. Prominent among these options is the emergence of low-E coatings which are usually ultra-thin, heat-reflecting, metalized optical coatings applied to one or more surfaces... coated glazing immensely alters glazing properties. Low-E coatings applied to the outer surface of the inner pane of double pane fenestration help to retain heat trapped within the envelope, and hence is preferred for heating dominated climates (Johnson...

  13. Procedure for determining the optimum foundation insulation levels for new, low-rise residential buildings

    SciTech Connect (OSTI)

    Christian, J.E.; Strzepek, W.R.

    1986-01-01T23:59:59.000Z

    This paper documents a procedure which can be used to determine the optimum foundation insulation levels for new, low-rise residential buildings. This procedure has been used to develop the recommended foundation insulation levels for ASHRAE Standard 90.2P, entitled Energy Efficient Design of New, Low-Rise Residential Buildings. Basements, crawlspaces and slab-on-grade construction are addressed, as well as floors above unheated spaces. The assumptions on which this study is based, such as the economic parameters and the energy load calculation model are discussed, and optimum foundation insulation levels are included for all locations in the US. One of the major findings of this analysis is that at least some insulation is cost effective for all the foundation types in most climates. This is not consistent with predominate building construction practices. Foundation insulation recommendations included in previous ASHRAE standards for new residential construction were not based on the same criteria as the recommendations for the above grade envelope components. The systematic procedure described in this paper can be used to determine foundation insulation levels that are consistent with above grade conservation measures on an economic basis.

  14. Energy Gaining Windows for Residential Buildings Jesper Kragh, Assistant Professor,

    E-Print Network [OSTI]

    season. It is assumed that in northern cold climates all of the solar gain during the heating season can profiles, solar gain, net energy gain, low energy houses SUMMARY: This paper presents some of the research buildings. The net energy gain of windows is the solar gain minus the heat loss integrated over the heating

  15. 15% Above-Code Energy Efficiency Measures for Residential Buildings in Texas

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.

    Emissions Savings (lbs/year) Combined Estimated Cost ($) Simple Estimated Payback (yrs) 0.025 11.1 30.1- Combined Ozone Season Period NOx Emissions Savings (lbs/day) 28.5-16.3 6.7 - 34.9 ESL-TR-07-08-02 Energy Systems Laboratory - August 2007 7... individual measures above for specific savings * Energy Cost: Electricity cost = $0.15/kWh Natural gas cost = $1.00/therm 4. Savings depend on fuel mix used. See detailed writeup (Building Description) * Building type: Residential * Gross area: 2...

  16. Steam Balancing and Tuning for Multifamily Residential Buildings in Chicagoland

    SciTech Connect (OSTI)

    Choi, J.; Ludwig, P.; Brand, L.

    2012-08-01T23:59:59.000Z

    Older heating systems often suffer from mis-investment--multiple contractors upgrading parts of systems in inadequate or inappropriate ways that reduce system functionality and efficiency--or from a lack of proper maintenance. This technical report addresses these barriers to information, contractor resources, and cost-savings. Building off of previous research, CNT Energy conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam; system balancing.

  17. Air Barriers for Residential and Commercial Buildings | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Building Americaof

  18. EA-1871: Environmental Assessment for Final Rule, 10 CFR 433, “EE Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings” and 10 CFR 435, “EE Standards for New Federal Residential Low-Rise Residential Buildings"

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE‘s Final Rule, 10 CFR 433, ?Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings? and 10 CFR 435, ?Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings? Baseline Standards Update. The final rule updates the baseline standards in 10 CFR 433 and 10 CFR 435 to the latest private sector standards based on the cost-effectiveness of the latest private sector standards and DOE‘s determination that energy efficiency has been improved in these codes as required by 42 U.S.C 6831 et seq. DOE is issuing its final determinations on American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 (ASHRAE 2007) and the International Code Council‘s 2009 International Energy Conservation Code (IECC) in the same edition of the Federal Register as this final rule.

  19. Better Buildings Residential Network Membership Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1,23, 2013 BetterBetter Buildings

  20. Better Buildings Residential Network Orientation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1,23, 2013MultifamilyBetter Buildings

  1. Technical Support Document: The Development of the Advanced Energy Design Guide for Small Retail Buildings

    SciTech Connect (OSTI)

    Liu, Bing; Jarnagin, Ronald E.; Winiarski, David W.; Jiang, Wei; McBride, Merle F.; Crall, C.

    2006-09-30T23:59:59.000Z

    The Advanced Energy Design Guide for Small Retail Buildings (AEDG-SR) was developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the United States Green Buildings Council (USGBC), and the Department of Energy (DOE). The guide is intended to offer recommendations to achieve 30% energy savings and thus to encourage steady progress towards net-zero energy buildings. The baseline level energy use was set at buildings built at the turn of the millennium, which are assumed to be based on ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings (refer to as the ?Standard? in this report). ASHRAE and its partners are engaged in the development of a series of guides for small commercial buildings, with the AEDG-SR being the second in the series. Previously the partnership developed the Advanced Energy Design Guide for Small Office Buildings: Achieving 30% Energy Savings Over ANSI/ASHRAE/IESNA Standard 90.1-1999, which was published in late 2004. The technical support document prepared by PNNL details how the energy analysis performed in support of the Guide and documents development of recommendation criteria.

  2. Agenda for Public Meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    Download the agenda below for the July 11 Public Meeting on the Physical Characterization of Grid-Connected Commercial and  Residential Buildings End-Use Equipment and Appliances.

  3. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Existing Homes: Duct Sealing Using Injected Spray Sealant In this project, the Raleigh Housing Authority worked with Building America team, the Advanced Residential Integrated...

  4. EA-1926: Energy Efficiency Design Standards for New Federal Low-Rise Residential Buildings (RIN# 1904-AC61)

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of implementing the provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal buildings, including low-rise residential buildings.

  5. Air Flow Distribution in a Mechanically-Ventilated High-Rise Residential Building* Richard C. Diamond and Helmut E. Feustel

    E-Print Network [OSTI]

    Diamond, Richard

    energy efficiency in public housing as part of a utility's Demand Side Management (DSM) Program of the supply ventilation register for each corridor. The building is exposed on all sides to the windAir Flow Distribution in a Mechanically-Ventilated High-Rise Residential Building* Richard C

  6. Advanced Controls for Residential Whole-House Ventilation Systems

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain; Sherman, Max

    2014-08-01T23:59:59.000Z

    Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

  7. Steven Winter Associates (Consortium for Advanced Residential Buildings) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCityInformation GlassOpen EnergyStetsonOpen Energy

  8. Analyzing the Impact of Residential Building Attributes, Demographic and Behavioral Factors on Natural Gas Usage

    SciTech Connect (OSTI)

    Livingston, Olga V.; Cort, Katherine A.

    2011-03-03T23:59:59.000Z

    This analysis examines the relationship between energy demand and residential building attributes, demographic characteristics, and behavioral variables using the U.S. Department of Energy’s Residential Energy Consumption Survey 2005 microdata. This study investigates the applicability of the smooth backfitting estimator to statistical analysis of residential energy consumption via nonparametric regression. The methodology utilized in the study extends nonparametric additive regression via local linear smooth backfitting to categorical variables. The conventional methods used for analyzing residential energy consumption are econometric modeling and engineering simulations. This study suggests an econometric approach that can be utilized in combination with simulation results. A common weakness of previously used econometric models is a very high likelihood that any suggested parametric relationships will be misspecified. Nonparametric modeling does not have this drawback. Its flexibility allows for uncovering more complex relationships between energy use and the explanatory variables than can possibly be achieved by parametric models. Traditionally, building simulation models overestimated the effects of energy efficiency measures when compared to actual "as-built" observed savings. While focusing on technical efficiency, they do not account for behavioral or market effects. The magnitude of behavioral or market effects may have a substantial influence on the final energy savings resulting from implementation of various energy conservation measures and programs. Moreover, variability in behavioral aspects and user characteristics appears to have a significant impact on total energy consumption. Inaccurate estimates of energy consumption and potential savings also impact investment decisions. The existing modeling literature, whether it relies on parametric specifications or engineering simulation, does not accommodate inclusion of a behavioral component. This study attempts to bridge that gap by analyzing behavioral data and investigate the applicability of additive nonparametric regression to this task. This study evaluates the impact of 31 regressors on residential natural gas usage. The regressors include weather, economic variables, demographic and behavioral characteristics, and building attributes related to energy use. In general, most of the regression results were in line with previous engineering and economic studies in this area. There were, however, some counterintuitive results, particularly with regard to thermostat controls and behaviors. There are a number of possible reasons for these counterintuitive results including the inability to control for regional climate variability due to the data sanitization (to prevent identification of respondents), inaccurate data caused by to self-reporting, and the fact that not all relevant behavioral variables were included in the data set, so we were not able to control for them in the study. The results of this analysis could be used as an in-sample prediction for approximating energy demand of a residential building whose characteristics are described by the regressors in this analysis, but a certain combination of their particular values does not exist in the real world. In addition, this study has potential applications for benefit-cost analysis of residential upgrades and retrofits under a fixed budget, because the results of this study contain information on how natural gas consumption might change once a particular characteristic or attribute is altered. Finally, the results of this study can help establish a relationship between natural gas consumption and changes in behavior of occupants.

  9. Next Generation Advanced Framing - Building America Top Innovation...

    Broader source: Energy.gov (indexed) [DOE]

    about this Top Innovation. See an example of this Top Innovation in action. Find more case studies of Building America projects across the country that demonstrate advanced...

  10. Advanced Framing Systems and Packages - Building America Top...

    Energy Savers [EERE]

    Read about this Top Innovation. See an example of this Top Innovation in action. See case studies of Building America projects across the country that demonstrate advanced...

  11. Use of advanced composite materials for innovative building design solutions/

    E-Print Network [OSTI]

    Lau, Tak-bun, Denvid

    2009-01-01T23:59:59.000Z

    Advanced composite materials become popular in construction industry for the innovative building design solutions including strengthening and retrofitting of existing structures. The interface between different materials ...

  12. Technical Support Document: The Development of the Advanced Energy Design Guide for Highway Lodging Buildings

    SciTech Connect (OSTI)

    Jiang, Wei; Jarnagin, Ronald E.; Gowri, Krishnan; McBride, M.; Liu, Bing

    2008-09-30T23:59:59.000Z

    This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Highway Lodgings (AEDG-HL or the Guide), a design guidance document intended to provide recommendations for achieving 30% energy savings in highway lodging properties over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-HL is the fifth in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the United States Green Buildings Council (USGBC), and the U.S. Department of Energy (DOE).

  13. Validation Methodology to Allow Simulated Peak Reduction and Energy Performance Analysis of Residential Building Envelope with Phase Change Materials: Preprint

    SciTech Connect (OSTI)

    Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

    2012-08-01T23:59:59.000Z

    Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conduction Finite Difference (CondFD) algorithms.

  14. Residential Energy Efficiency Customer Service Best Practices...

    Energy Savers [EERE]

    Residential Energy Efficiency Customer Service Best Practices Residential Energy Efficiency Customer Service Best Practices Better Buildings Residential Network Peer Exchange Call...

  15. National Residential Efficiency Measures Database Webinar Slides...

    Energy Savers [EERE]

    National Residential Efficiency Measures Database Webinar Slides National Residential Efficiency Measures Database Webinar Slides Presentation slides for the Building Technologies...

  16. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    SciTech Connect (OSTI)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

    2006-08-01T23:59:59.000Z

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  17. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    SciTech Connect (OSTI)

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31T23:59:59.000Z

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  18. Recommendations for energy conservation standards for new residential buildings: Volume 2: Automated residential energy standard---user's guide--version 1. 1

    SciTech Connect (OSTI)

    Lortz, V.B.; Taylor, Z.T.

    1989-05-01T23:59:59.000Z

    This report documents the development and testing of a set of recommendations from the American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE) Special Projects Committee No. 53, designed to provide the technical foundation for the Congressionally-mandated energy standard for new residential buildings. The recommendations were developed over a 25-month period by a multidisciplinary project team under the management of the DOE and its prime contractor, Pacific Northwest Laboratory (PNL).

  19. Residential Buildings

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Yeara 436INCIDENCE OFResidential

  20. Potential Job Creation in Rhode Island as a Result of Adopting New Residential Building Energy Codes

    SciTech Connect (OSTI)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01T23:59:59.000Z

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  1. Potential Job Creation in Minnesota as a Result of Adopting New Residential Building Energy Codes

    SciTech Connect (OSTI)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01T23:59:59.000Z

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  2. Potential Job Creation in Tennessee as a Result of Adopting New Residential Building Energy Codes

    SciTech Connect (OSTI)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01T23:59:59.000Z

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  3. Potential Job Creation in Nevada as a Result of Adopting New Residential Building Energy Codes

    SciTech Connect (OSTI)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01T23:59:59.000Z

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  4. Technical Support Document: Development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings - 50% Energy Savings

    SciTech Connect (OSTI)

    Bonnema, E.; Leach, M.; Pless, S.

    2013-06-01T23:59:59.000Z

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-MBBR) ASHRAE et al. (2011b). The AEDG-MBBR is intended to provide recommendations for achieving 50% whole-building energy savings in retail stores over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-MBBR was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy.

  5. Assessment of Impacts from Adopting the 2009 International Energy Conservation Code for Residential Buildings in Michigan

    SciTech Connect (OSTI)

    Lucas, Robert G.

    2009-10-18T23:59:59.000Z

    Energy and economic analysis comparing the current Michigan residential energy efficiency code to the 2009 IECC.

  6. Evaluating Fenestration Products for Zero-Energy Buildings: Issues for Discussion

    E-Print Network [OSTI]

    Arasteh, Dariush; Curcija, Charlie; Huang, Joe; Huizenga, Charlie; Kohler, Christian

    2006-01-01T23:59:59.000Z

    Advanced Windows for Zero Energy Homes." ASHRAE TransactionsCriteria for Residential Zero Energy Windows", to beFENESTRATION PRODUCTS FOR ZERO-ENERGY BUILDINGS: ISSUES FOR

  7. New test procedure evaluates quality and accuracy of energy analysis tools for the residential building retrofit market.

    E-Print Network [OSTI]

    New test procedure evaluates quality and accuracy of energy analysis tools for the residential the Building Energy Simulation Test for Existing Homes (BESTEST-EX), a method for diagnosing and correcting physics and utility bill calibration test cases, which soft- ware developers can use to compare

  8. Technical Support Document: Development of the Advanced Energy Design Guide for Small Office Buildings

    SciTech Connect (OSTI)

    Jarnagin, Ronald E.; Liu, Bing; Winiarski, David W.; McBride, Merle F.; Suharli, L.; Walden, D.

    2006-11-30T23:59:59.000Z

    This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for Small Office Buildings (AEDG-SO), a design guidance document intended to provide recommendations for achieving 30% energy savings in small office buildings over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-SO is the first in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the New Buildings Institute (NBI), and the U.S. Department of Energy (DOE). Each of the guides in the AEDG series will provide recommendations and user-friendly design assistance to designers, developers and owners of small commercial buildings that will encourage steady progress towards net-zero energy buildings. The guides will provide prescriptive recommendation packages that are capable of reaching the energy savings target for each climate zone in order to ease the burden of the design and construction of energy-efficient small commercial buildings The AEDG-SO was developed by an ASHRAE Special Project committee (SP-102) made up of representatives of each of the partner organizations in eight months. This TSD describes the charge given to the committee in developing the office guide and outlines the schedule of the development effort. The project committee developed two prototype office buildings (5,000 ft2 frame building and 20,000 ft2 two-story mass building) to represent the class of small office buildings and performed an energy simulation scoping study to determine the preliminary levels of efficiency necessary to meet the energy savings target. The simulation approach used by the project committee is documented in this TSD along with the characteristics of the prototype buildings. The prototype buildings were simulated in the same climate zones used by the prevailing energy codes and standards to evaluate energy savings. Prescriptive packages of recommendations presented in the guide by climate zone include enhanced envelope technologies, lighting and day lighting technologies and HVAC and SWH technologies. The report also documents the modeling assumptions used in the simulations for both the baseline and advanced buildings. Final efficiency recommendations for each climate zone are included, along with the results of the energy simulations indicating an average energy savings over all buildings and climates of approximately 38%.

  9. Solar heating and cooling of residential buildings: design of systems, 1980 edition

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

  10. Recommendations for energy conservation standards for new residential buildings: Volume 4, Description of the testing process

    SciTech Connect (OSTI)

    Not Available

    1989-05-01T23:59:59.000Z

    This report documents the development and testing of recommendations, from the American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE) Special Projects Committee No. 53, designed to provide the technical foundation for the Congressionally-mandated energy standard for new residential buildings. The recommendations were developed over a 25-month period by a multidisciplinary project team, under the management of the US Department of Energy and its prime contractor, Pacific Northwest Laboratory. The report has been issued in four volumes, VOLUME IV - Description of the Testing Process details how the Standard was tested and provides case studies of the possible impact of the Standard in select locations throughout the country. It is supported by a description of the assumptions and input data, and an analysis of the results.

  11. Cost-Effecitive Energy Efficiency Measure for Above 2003 and 2009 IECC Code-Compliant Residential and Commercial Buildings in the City of Arlington

    E-Print Network [OSTI]

    Kim, H.; Do, S.; Baltazar, J.C.; Haberl, J.; Lewis, C.

    ESL-TR-11-07-01 COST-EFFECTIVE ENERGY EFFICIENCY MEASURES FOR ABOVE CODE (2003 AND 2009 IECC): RESIDENTIAL BUILDINGS IN THE CITY OF ARLINGTON A Research Project for the City of Arlington Hyojin Kim Sung Lok Do...-family residential buildings in the CoA. For more realistic recommendations, the CoA provided two years of residential building energy compliance reports from 2008 to 2010 which exceeded the energy efficiency requirements of the CoA (i.e., 2003 International...

  12. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    LPG is a major energy source, while coal and electricity arethe total residential energy and coal is the dominant fuel.1 Residential Energy consumption by End-use Coal Renewables

  13. Tomorrow;s energy today for cities and counties: Build up energy savings with residential standards

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    The paper reveals residential energy efficiency standards that will pay financial and environmental dividends to local communities.

  14. Integrating advanced facades into high performance buildings

    E-Print Network [OSTI]

    Selkowitz, Stephen E.

    2001-01-01T23:59:59.000Z

    that the emergence of smart glazings will ultimately fillswitchable coating. These “smart glazings” can change solarfor use in buildings. Smart glazings can be divided into two

  15. 2014-04-30 Public Meeting Agenda: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    This document is the agenda for the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting being held on April 30, 2014.

  16. 2014-04-30 Public Meeting Presentation Slides: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  17. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Electric Vehicle Charging Impact Review for MultiUser Residential Buildings in British Columbia

    E-Print Network [OSTI]

    596 Electric Vehicle Charging ­ Impact Review for Multi User Residential Buildings in British .......................................................................................................................................... 4 3 Electric Vehicles in British Columbia .................................................................................................................................... 27 6.1 City of Vancouver ­ Electric Vehicle Provision Regulations

  18. Phase-Change Frame Walls (PCFWs) for On-Peak Demand Reduction and Energy Conservation in Residential Buildings: Development, Construction and Evaluation

    E-Print Network [OSTI]

    Zhang, M.; Medina, M. A.; King, J. B.

    2004-01-01T23:59:59.000Z

    The main purpose of this work was to develop a thermally enhanced frame wall that would reduce peak load air conditioning demand, shift a portion of the thermal load, and conserve energy in residential buildings. A frame wall containing...

  19. Advanced Benchmarking: Benchmark Building Energy Use Quickly and Accurately Using EPA's ENERGY STAR Portfolio Manager

    Broader source: Energy.gov [DOE]

    Advanced Benchmarking: Benchmark Building Energy Use Quickly and Accurately Using EPA's ENERGY STAR Portfolio Manager Webinar.

  20. Better Buildings Residential Network Data & Evaluation Peer Exchange Call Series: Optional Residential Program Benchmarking Call Slides and Discussion Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1, 20114,Residential& Evaluation

  1. HUMAN DISEASE FROM RADON EXPOSURES: THE IMPACT OF ENERGY CONSERVATION IN RESIDENTIAL BUILDINGS

    E-Print Network [OSTI]

    Budnitz, R.J.

    2011-01-01T23:59:59.000Z

    A THE IMPACT OF ENERGY CONSERVATION IN RESIDENTIAL BUILDINGSEXPOSURES: THE IMPACT OF ENERGY CONSERVATION IN RESIDENTIALways to implement energy conservation measures without

  2. Demand response-enabled autonomous control for interior space conditioning in residential buildings.

    E-Print Network [OSTI]

    Chen, Xue

    2008-01-01T23:59:59.000Z

    Demand Response Autonomous Controlssystem under the context of demand response for residential10] E. Arens et al. , Demand response enabling technology

  3. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    SciTech Connect (OSTI)

    Robertson, J.; Polly, B.; Collis, J.

    2013-09-01T23:59:59.000Z

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define 'explicit' input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

  4. Recommendations for energy conservation standards for new residential buildings - volume 3: Introduction and Background to the Standard Development Effort

    SciTech Connect (OSTI)

    Not Available

    1989-05-01T23:59:59.000Z

    The Energy Conservation for New Buildings Act of 1976, as amended, 42 U.S.C Section 6831 et. seq. requires the US Department of Energy to issue energy conservation standards for the design of new residential and commercial buildings. The standards will be mandatory only for the design of new federal buildings, and will serve as voluntary guidelines for the design of new non-federal buildings. This report documents the development and testing of a set of recommendations, from the American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE) Special Projects Committee No. 53, designed to provide the technical foundation for the Congressionally-mandated energy standard for new residential buildings. The recommendations have been developed over the past 25 months by a multidisciplinary project team, under the management of the US Department of Energy and its prime contractor, Pacific Northwest Laboratory. Volume III -- Introduction and Background to the Standard Development Effort is a description of the Standard development process and contains the rationale for the general approach and specific criteria contained within the recommendations.

  5. Residential Research Leading to Net-Zero Energy Homes and Communities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01T23:59:59.000Z

    This fact sheet describes the Advanced Residential Buildings Research at the National Renewable Energy Laboratory and how the group is working to achieve net-zero energy homes and communities.

  6. Operational, aesthetic, and construction process performance for innovative passive and active solar building components for residential buildings

    E-Print Network [OSTI]

    Settlemyre, Kevin (Kevin Franklin), 1971-

    2000-01-01T23:59:59.000Z

    A system-based framework creates the ability to integrate operational, aesthetic, and construction process performance. The framework can be used to evaluate innovations within residential construction. By reducing the ...

  7. Global warming implications of facade parameters: A life cycle assessment of residential buildings in Bahrain

    SciTech Connect (OSTI)

    Radhi, Hassan, E-mail: h_alradhi@yahoo.com [Global Engineering Bureau, P.O Box 33130, Manama, Kingdom of Bahrain (Bahrain); Sharples, Stephen, E-mail: steve.sharples@liverpool.ac.uk [School of Architecture, University of Liverpool (United Kingdom)

    2013-01-15T23:59:59.000Z

    On a global scale, the Gulf Corporation Council Countries (GCCC), including Bahrain, are amongst the top countries in terms of carbon dioxide emissions per capita. Building authority in Bahrain has set a target of 40% reduction of electricity consumption and associated CO{sub 2} emissions to be achieved by using facade parameters. This work evaluates how the life cycle CO{sub 2} emissions of buildings are affected by facade parameters. The main focus is placed on direct and indirect CO{sub 2} emissions from three contributors, namely, chemical reactions during production processes (Pco{sub 2}), embodied energy (Eco{sub 2}) and operational energy (OPco{sub 2}). By means of the life cycle assessment (LCA) methodology, it has been possible to show that the greatest environmental impact occurs during the operational phase (80-90%). However, embodied CO{sub 2} emissions are an important factor that needs to be brought into the systems used for appraisal of projects, and hence into the design decisions made in developing projects. The assessment shows that masonry blocks are responsible for 70-90% of the total CO{sub 2} emissions of facade construction, mainly due to their physical characteristics. The highest Pco{sub 2} emissions factors are those of window elements, particularly aluminium frames. However, their contribution of CO{sub 2} emissions depends largely on the number and size of windows. Each square metre of glazing is able to increase the total CO{sub 2} emissions by almost 30% when compared with the same areas of opaque walls. The use of autoclaved aerated concrete (AAC) walls reduces the total life cycle CO{sub 2} emissions by almost 5.2% when compared with ordinary walls, while the use of thermal insulation with concrete wall reduces CO{sub 2} emissions by 1.2%. The outcome of this work offers to the building industry a reliable indicator of the environmental impact of residential facade parameters. - Highlights: Black-Right-Pointing-Pointer Life cycle carbon assessment of facade parameters. Black-Right-Pointing-Pointer Greatest environmental impact occurs during the operational phase. Black-Right-Pointing-Pointer Masonry blocks are responsible for 70-90% of the total CO2 emissions of facade construction. Black-Right-Pointing-Pointer Window contribution of CO2 emissions depends on the number and size of windows. Black-Right-Pointing-Pointer Without insulation, AAC walls offer more savings in CO2 emissions.

  8. Conservation and renewable energy technologies for buildings

    SciTech Connect (OSTI)

    Not Available

    1991-05-01T23:59:59.000Z

    The Office of building Technologies (OBT) pursues advanced energy efficiency and renewable technologies and accelerates the rate of adoption of these technologies in the residential and commercial sectors through research, development, and demonstration.

  9. StationaryEnvironment ResidentialTransportation Premium Power Advanced High Efficiency, Quick Start Fuel

    E-Print Network [OSTI]

    Premium Power Agenda STARTM (1999-2003) ­ Substrate based Transportation application Autothermal ReformerEnvironment Residential Stationary Premium Power STAR Fuel Processor · Autothermal reformer · Substrate-based catalysts

  10. Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings

    SciTech Connect (OSTI)

    Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

    2006-07-31T23:59:59.000Z

    This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

  11. A Temporal Motif Mining Approach to Unsupervised Energy Disaggregation: Applications to Residential and Commercial Buildings

    E-Print Network [OSTI]

    Ramakrishnan, Naren

    A Temporal Motif Mining Approach to Unsupervised Energy Disaggregation: Applications to Residential consumers with detailed feedback on their energy consumption pat- terns. By contrasting such `drill monitoring has emerged as an attractive approach to study energy consumption patterns without instrumenting

  12. Where and how much : density scenarios for the residential build-out of Gaoming, China

    E-Print Network [OSTI]

    Hu, Karen Jia Ying

    2005-01-01T23:59:59.000Z

    The author will use Gaoming District in the western part of China's Pearl River Delta (PRD) as an opportunity to examine the impact a range of residential densities along planned public transportation corridors can have ...

  13. Calculation of NOx Emissions Reductions From Energy Efficient Residential Building Construction in Texas

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Gilman, D.; Yazdani, B.; Fitzpatrick, T.; Muns, S.

    2006-05-23T23:59:59.000Z

    . These areas face severe sanctions if attainment is not reached by 2007. This paper provides an overview of the procedures that have been developed and used to calculate the electricity savings and NOx reductions from code-compliant residential construction...

  14. Sustainability and residential development : a guide to cost-efficient green building technologies

    E-Print Network [OSTI]

    Determan, Kelley Victoria

    2014-01-01T23:59:59.000Z

    Given the upward trend of global energy consumption in recent decades, it has become imperative that countries reduce the amount of energy used on an annual basis. In America, the residential sector is one of the primary ...

  15. Operation of Energy Efficient Residential Buildings Under Indoor Environmental Quality Requirements 

    E-Print Network [OSTI]

    Medhat, A. A.; Khalil, E. E.

    2010-01-01T23:59:59.000Z

    Effic iency in residential bui Idings I. INTRODUCTION Com prehensi \\Ie ex perience were gai ned over the past fifty years in Egy pt regarding how therm al comfort and sensations of Egyptians are related to indoor environmental. parameters...

  16. Achieving real transparency : optimizing building energy ratings and disclosure in the U.S. residential sector

    E-Print Network [OSTI]

    Nadkarni, Nikhil S. (Nikhil Sunil)

    2012-01-01T23:59:59.000Z

    Residential energy efficiency in the U.S. has the potential to generate significant energy, carbon, and financial savings. Nonetheless, the market of home energy upgrades remains fragmented, and the number of homes being ...

  17. Guide for Benchmarking Residential Energy Efficiency Program...

    Broader source: Energy.gov (indexed) [DOE]

    Guide for Benchmarking Residential Energy Efficiency Program Progress as part of the DOE Better Buildings Program. Guide for Benchmarking Residential Energy Efficiency Program...

  18. Dynamic Simulation and Analysis of Factors Impacting the Energy Consumption of Residential Buildings

    E-Print Network [OSTI]

    Lian, Y.; Hao, Y.

    2006-01-01T23:59:59.000Z

    Buildings have a close relationship with climate. There are a lot of important factors that influence building energy consumption such as building shape coefficient, insulation work of building envelope, covered area, and the area ratio of window...

  19. Dynamic Simulation and Analysis of Factors Impacting the Energy Consumption of Residential Buildings 

    E-Print Network [OSTI]

    Lian, Y.; Hao, Y.

    2006-01-01T23:59:59.000Z

    Buildings have a close relationship with climate. There are a lot of important factors that influence building energy consumption such as building shape coefficient, insulation work of building envelope, covered area, and the area ratio of window...

  20. Corrosiveness of wet residential building thermal insulation---Mechanisms and evaluation of electrochemical methods for assessing corrosion behavior

    SciTech Connect (OSTI)

    Stansbury, E.E. [Stansbury (E.E.), Knoxville, TN (United States)

    1991-10-01T23:59:59.000Z

    An evaluation has been made of the corrosiveness of selected wet residential building thermal insulation materials in contact with low carbon steel. Investigations were conducted both in wet insulations and in filtered leachates from insulations derived from thirteen cellulosic, three mineral fiber and four foam products. Potentiodynamic polarization measurements are reported from which the overall corrosion response was assessed and then the techniques of Tafel and polarization resistance analysis applied to estimate corrosion rates. Corrosion rates were also estimated electrochemically using a direct reading instrument which performs the rate calculation based on the polarization resistance principle. Direct determinations of corrosion rate were based on weight loss measurements.

  1. Better Buildings Residential Financing Peer Exchange Call Series: Opportunities through the PowerSaver Loan Program, January 23, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1, 20114,Residential 2014 BuildingData

  2. Achieving 50% Energy Savings in Office Buildings, Advanced Energy Design Guides: Office Buildings (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01T23:59:59.000Z

    This fact sheet summarizes recommendations for designing new office buildings that result in 50% less energy use than conventional designs meeting minimum code requirements. The recommendations are drawn from the Advanced Energy Design Guide for Small to Medium Office Buildings, an ASHRAE publication that provides comprehensive recommendations for designing low-energy-use office buildings with gross floor areas up to 100,000 ft2 (see sidebar). Designed as a stand-alone document, this fact sheet provides key principles and a set of prescriptive design recommendations appropriate for smaller office buildings with insufficient budgets to fully implement best practices for integrated design and optimized performance. The recommendations have undergone a thorough analysis and review process through ASHRAE, and have been deemed the best combination of measures to achieve 50% savings in the greatest number of office buildings.

  3. A new database of residential building measures and estimated costs helps the U.S. building industry determine the most

    E-Print Network [OSTI]

    provides a single, consistent source of current data for DOE and private-sector energy audit and simulation at the National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures to the database by uploading retrofit project and measure cost data. It is routinely updated to add new measures

  4. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Marine Climates; January 2006 - December 2006

    SciTech Connect (OSTI)

    Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-12-01T23:59:59.000Z

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Marine Climate Region on a cost neutral basis.

  5. End-use electrification in the residential sector : a general equilibrium analysis of technology advancements

    E-Print Network [OSTI]

    Madan, Tanvir Singh

    2012-01-01T23:59:59.000Z

    The residential sector in the U.S. is responsible for about 20% of the country's primary energy use (EIA, 2011). Studies estimate that efficiency improvements in this sector can reduce household energy consumption by over ...

  6. Residential building energy analysis : development and uncertainty assessment of a simplified model

    E-Print Network [OSTI]

    Spindler, Henry C. (Henry Carlton), 1970-

    1998-01-01T23:59:59.000Z

    Effective design of energy-efficient buildings requires attention to energy issues during the preliminary stages of design. To aid in the early consideration of a building's future energy usage, a simplified building energy ...

  7. System design and dynamic signature identification for intelligent energy management in residential buildings.

    E-Print Network [OSTI]

    Jang, Jaehwi

    2008-01-01T23:59:59.000Z

    climates, Journal of Thermal Envelope and Building Science ,the eectiveness of the envelope's thermal insulation on theBuilding 3.1.1 Thermal properties The envelope of a building

  8. Statistical Analysis of Baseline Load Models for Non-Residential Buildings

    E-Print Network [OSTI]

    Coughlin, Katie

    2012-01-01T23:59:59.000Z

    Building Control Strategies and Techniques for Demand Response,for commercial buildings participating in a demand responsebuildings participating in an event-driven demand response

  9. Price Responsiveness in the AEO2003 NEMS Residential and Commercial Buildings Sector Models

    Reports and Publications (EIA)

    2003-01-01T23:59:59.000Z

    This paper describes the demand responses to changes in energy prices in the Annual Energy Outlook 2003 versions of the Residential and Commercial Demand Modules of the National Energy Modeling System (NEMS). It updates a similar paper completed for the Annual Energy Outlook 1999 version of the NEMS.

  10. Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

  11. Project REED (Residential Energy Efficiency Design) is a Web-based building performance simulation tool

    E-Print Network [OSTI]

    -based whole building simulation program that displays graphi- cally the gas and electricity cost of building to deliver powerful build- ing performance simulation tools to precisely targeted audiences. Using interface design, the web has the potential to deliver powerful new building performance simulation tools

  12. Assessing the Potential of Developing a Tool for Residential Facility Management Using Building Information Modeling Software

    E-Print Network [OSTI]

    Madhani, Himanshu 1986-

    2012-11-29T23:59:59.000Z

    for scheduled, proactive and (when necessary) reactive maintenance work. Globally, use of smart phones and various applications for home and office security has amplified. With increase in use of smart phones and applications by owners, such a tool would... that the building is a smart building which is synced with the system. Smart Buildings LLC (a US-based engineering and design firm) offers this definition: ?A smart building is the integration of building, technology, and energy systems. These systems may include...

  13. DEMONSTRATION OF THE DOE INTERIM ENERGY CONSERVATION STANDARDS FOR NEW FEDERAL RESIDENTIAL BUILDINGS: EXECUTIVE SUMMARY

    SciTech Connect (OSTI)

    Lee, A. D.; Baechler, M / C.; Di Massa, F. V.; Lucas, R. G.; Shankle, D. L.

    1992-01-01T23:59:59.000Z

    In accordance with federal legislation, the U.S. Department of Energy (DOE) bas conducted a project to demonstrate use of its Interim Energy Conservation Standards for New Federal Residential Buildings. The demonstration is the second step in a three-step process: development of interim standards, demonstration of the interim standards, and development of final standards. Pacific Northwest Laboratory (PNL) collected information from the demonstration project and prepared this report under a contract with DOE. The purpose of the standards is to improve the energy efficiency of federal housing and increase the use of nondepletable energy sources. In accordance with the legislation, the standards were to be performance-based rather than prescribing specific energy conservation measures. The standards use a computer software program called COSTSAFR which individualizes the standards based on climate, housing type, and fuel costs. The standards generate minimum energy-efficiency requirements by applying the life-cycle cost methodology developed for federal projects, For the demonstration, the DOE chose live federal agency housing projects: four military housing projects and one project for the Department of Health and Human Services. DOE and PNL worked with agency housing procurement officials and designers/architects to hypothetically apply the interim standards to each housing project. PNL conducted extensive interviews with the federal agencies and design contractors to determine what impacts the standards would have on the existing agency procurement process as well as on designers. Overall, PNL found that the interim standards met the basic intent of the law. Specific actions were identified, however, that DOE could take to improve the standards and encourage the agencies to implement them. Agency personnel and designers expressed similar concerns about the standards: the minimum efficiency levels established by the standards were lower than expected and the standards did not provide an easy way to incorporate new energy-efficient and renewable resource tec.:hnolog:ies like solar heating systems. Agency personnel said the standards would fit into current procurement procedures with no big changes or cost increases, Many said the standards would decrease the time and effort they now spend to establish energy-efficiency requirements and to confirm that proposed designs comply with those requirements. Agency personnel praised the software and documentation for being easy to use and providing energy-efficiency requirements in energy dollars. Housing designers agreed that the DOE standards were easy to use to determine that their designs meet energy-efficiency goals. Many felt the information provided by the standards could be useful in the design process. Based on the demonstration, PNL recommends establishing task forces that will actively involve agency personnel and others in future revisions and development of the final standards. PNL also recommends that DOE and federal agencies investigate the use of market fuel and energy prices in the standards, rather than the prices paid by the agencies, to better reflect actual costs. A number of recommendations are made for improving communications between DOE and the users of the standards and for enhancing tools to implement the standards. Several recommendations are made for increasing the number of renewable resources that are included in the standards. Finally, PNL recommends ongoing monitoring activities to continue to identify ways in which the standards can be improved.

  14. DEMONSTRATION OF THE DOE INTERIM ENERGY CONSERVATION STANDARDS FOR NEW FEDERAL RESIDENTIAL BUILDINGS

    SciTech Connect (OSTI)

    Lee, A. D.; Baechler, H. C.; Di Massa, F. V.; Lucas, R. G.; Shankle, D. L.

    1992-01-01T23:59:59.000Z

    In accordance with federal legislation, the U.S. Department of Energy (DOE) has sponsored a study to demonstrate use of its Interim Energy Conservation Standards for New Federal Residential Buildings. The demonstration study was conducted by DOE and the Pacific Northwest Laboratory (PNL). The demonstration is the second step in a three-step process: I) development of interim standards, 2) demonstration of the interim standards, and 3) development of final standards. The standards are mandatory for federal agency housing procurements. Nevertheless, PNL found at the start of the demonstration that agency use of the interim standards had been minimal. The purpose of the standards is to improve the energy efficiency of federal housing and increase the use of nondepletable energy sources. In accordance with the legislation, the standards were to be performance-based rather than prescribing specific energy conservation measures. To fulfill this aspect of the legislation, the standards use a computer software program called COSTSAFR which generates a point system that individualizes the standards to specific projects based on climate, housing type, and fuel costs. The standards generate minimum energy-efficiency requirements by applying the life-cycle cost methodology developed for federal projects. For the demonstration, PNL and DOE chose five federal agency housing projects which had been built in diverse geographic and climate regions. Participating agencies were the Air Force, the Army (which provided two case studies), the Navy, and the Department of Health and Human Services. PNL worked with agency housing procurement officials and designers/architects to hypothetically apply the interim standards to the procurement and design of each housing project. The demonstration started at the point in the project where agencies would establish their energyefficiency requirements for the project and followed the procurement process through the designers' use of the point system to develop a design which would comply with the standards. PNL conducted extensive interviews with the federal agencies and design contractors to determine what impacts the standards would have on the existing agency procurement process as well as on designers. Overall, PNL found that the interim standards met the basic intent of the law. Specific actions were identified, however, that DOE could take to improve the standards and encourage the agencies to implement them. Agency personnel found the minimum efficiency levels established by the standards to be lower than expected, and lower than their existing requirements. Generally, this was because the standards factor in fuel costs, as well as energy savings due to various conservation measures such as insulation, when they determine the minimum efficiency levels required. The demonstration showed that federal agencies often pay low prices for heating fuel and electricity; these lower costs "tipped the scales," allowing designers to meet the efficiency target with designs that were relatively inefficient. It appeared, however, that the low prices paid by agencies directly to suppliers did not capture the agencies' full costs of providing energy, such as the costs of distribution and storage. Agency personnel expressed some concern about the standards' ability to incorporate new energy-efficient technologies and renewable resource technologies like solar heating systems. An alternative compliance procedure was developed to incorporate new technologies; however, demonstration participants said the procedure was not well documented and was difficult and time consuming to use. Despite these concerns, most agency personnel thought that the standards would fit into current procurement procedures with no big changes or cost increases. Many said use of the standards would decrease the time and effort they now spend to establish energy-efficiency requirements and to confirm that proposed designs comply. Personnel praised the software and documentation for being easy to use and providing energ

  15. Advanced Load Identification and Management for Buildings: Cooperative Research and Development Final Report, CRADA Number: CRD-11-422

    SciTech Connect (OSTI)

    Gentile-Polese, L.

    2014-05-01T23:59:59.000Z

    The goal of this CRADA work is to support Eaton Innovation Center (Eaton) efforts to develop advanced load identification, management technologies, and solutions to reduce building energy consumption by providing fine granular visibility of energy usage information and safety protection of miscellaneous electric loads (MELs) in commercial and residential buildings. MELs load identification and prediction technology will be employed in a novel 'Smart eOutlet*' to provide critical intelligence and information to improve the capability and functionality of building load analysis and design tools and building power management systems. The work scoped in this CRADA involves the following activities: development and validation of business value proposition for the proposed technologies through voice of customer investigation, market analysis, and third-party objective assessment; development and validation of energy saving impact as well as assessment of environmental and economic benefits; 'smart eOutlet' concept design, prototyping, and validation; field validation of the developed technologies in real building environments. (*Another name denoted as 'Smart Power Strip (SPS)' will be used as an alternative of the name 'Smart eOutlet' for a clearer definition of the product market position in future work.)

  16. A. Buonomano, M. Sherman, USA: Analysis of residential hybrid ventilation performance in U.S. climates 1 Intern. Symposium on Building and Ductwork Air tightness

    E-Print Network [OSTI]

    passive ventilation systems to meet ASHRAE 62.2 requirements as a step in the process for optimizing hybrid ventilation systems. A brief review of the literature with reference to the passive and hybrid ventilation systems in residential building is presented. The review focuses on key aspects of ventilation

  17. A Comparison of the 2003 and 2006 International Energy Conservation Codes to Determine the Potential Impact on Residential Building Energy Efficiency

    SciTech Connect (OSTI)

    Stovall, Therese K [ORNL; Baxter, Van D [ORNL

    2008-03-01T23:59:59.000Z

    The IECC was updated in 2006. As required in the Energy Conservation and Production Act of 1992, Title 3, DOE has a legislative requirement to "determine whether such revision would improve energy efficiency in residential buildings" within 12 months of the latest revision. This requirement is part of a three-year cycle of regular code updates. To meet this requirement, an independent review was completed using personnel experienced in building science but not involved in the code development process.

  18. Application and Design of Residential Building Energy Saving in Cold Climates

    E-Print Network [OSTI]

    Li, Z.; Li, D.; Mei, S.; Zhang, G.; Liu, J.

    2006-01-01T23:59:59.000Z

    combines indoor microclimates in order to decrease the building life cycle energy consumption. The air wall technology is studied for adoption of cold climate features. The research results through a National Demonstration Building Project (NDBP) show...

  19. Window-Related Energy Consumption in the US Residential and Commercial Building Stock

    E-Print Network [OSTI]

    Apte, Joshua; Arasteh, Dariush

    2008-01-01T23:59:59.000Z

    Building Heating Loads (Trillion BTU/yr) Total BuildingCooling Loads (Trillion BTU/yr) Non. Wind Infilt SHGC Wind.Energy Consumption (Trillion BTU/yr) Area, Window Window

  20. Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings

    SciTech Connect (OSTI)

    Garbesi, Karina; Vossos, Vagelis; Sanstad, Alan; Burch, Gabriel

    2011-10-13T23:59:59.000Z

    An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the ‘direct-DC house’ with respect to today’s typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative of the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate. While direct-DC for residential applications will most likely arise as a spin-off of developments in the commercial sector—because of lower barriers to market entry and larger energy benefits resulting from the higher coincidence between load and insolation—this paper demonstrates that there are substantial benefits in the residential sector as well. Among residential applications, space cooling derives the largest energy savings from being delivered by a direct-DC system. It is the largest load for the average residence on a national basis and is particularly so in high-load regions. It is also the load with highest solar coincidence.

  1. Calculation program for design of windows in residential buildings Ins Palma Santos and Svend Svendsen*

    E-Print Network [OSTI]

    Svendsen* Department of Civil Engineering, Brovej, Building 118, Technical University of Denmark, DK-2800 of the thermal losses through the buildings envelop while during the summer period they can lead to overheating sustainable buildings at the Department of Civil Engineering at the Technical University of Denmark

  2. Strategy Guideline: High Performance Residential Lighting

    SciTech Connect (OSTI)

    Holton, J.

    2012-02-01T23:59:59.000Z

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  3. Energy Efficiency Trends in Residential and Commercial Buildings Â… August 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogen andResiliencyDepartment ofTrends in Residential

  4. Better Buildings Residential Network (BBRN) Orientation Call Slides and Summary March 27, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1, 20114,Residential 2014(BBRN)

  5. The New European GreenBuilding Programme to Promote Energy Efficiency Investments in non-Residential Buildings

    E-Print Network [OSTI]

    Adnot, J.; Bertoldi, P.

    2004-01-01T23:59:59.000Z

    -generation;Building shell (insulation, windows);Passive cooling, heating and natural ventilation;Renewable Energies (solar, biomass, etc.); #0;5#0;5 Renewable Energies GreenBuilding Modules HVAC Lighting Co-generation Office equipment Commercial Appliances Distribution...;5#0;5 Renewable Energies Some Examples of GreenBuilding Projectswith Improved Cooling System #0;5#0;5 Renewable Energies CRF Canteen: Architecture and functional scheme ECO-MENSA: SCHEMA FUNZIONALE In all seasonsIn all seasonsthe electrical power produced...

  6. Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    to the battery, and the percentage of excess PV power thatbattery charging capacity to excess PV. ..37], local battery storage for building-sited PV, if handled

  7. Advanced Interactive Facades - Critical Elements for Future Green Buildings?

    E-Print Network [OSTI]

    Selkowitz, Stephen; Aschehoug, Oyvind; Lee, Eleanor S.

    2003-01-01T23:59:59.000Z

    Elements for Future Green Buildings? Stephen Selkowitzelement for a “green building” that provides daylighting andcurrent interest in green buildings there was no shortage of

  8. Advancing Solutions to Improve the Energy Efficiency of Commercial Buildings FOA Webinar (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar, Advancing Solutions to Improve the Energy Efficiency of Commercial Buildings FOA, presented by Kristen Taddonio of the Commercial Buildings program in...

  9. AB 758 COMPREHENSIVE ENERGY EFFICIENCY PROGRAM FOR EXISTING RESIDENTIAL AND NONRESIDENTIAL BUILDINGS

    E-Print Network [OSTI]

    for Energy Efficiency in Existing Buildings (AB 549 Report), the Energy Commission made a series in California homes and small commercial buildings (estimated at close to 420,000 units in 2010) is 30 to 50 the resources necessary to enforce health and safety codes and energy efficiency standards because the revenue

  10. Advancement of DOE's EnergyPlus Building Energy Simulation Payment

    SciTech Connect (OSTI)

    Lixing Gu; Don Shirey; Richard Raustad; Bereket Nigusse; Chandan Sharma; Linda Lawrie; Rich Strand; Curt Pedersen; Dan Fisher; Edwin Lee; Mike Witte; Jason Glazer; Chip Barnaby

    2011-03-31T23:59:59.000Z

    EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOEâ??s Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Floridaâ??s Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced significantly under this project, more enhancements are needed for further improvement to ensure that EnergyPlus is able to simulate the latest technologies and perform desired HAVC system operations for the development of next generation HVAC systems. Additional development will be performed under a new 5-year project managed by the National Renewable Energy Laboratory.

  11. Analysis of Solar Passive Techniques and Natural Ventilation Concepts in a Residential Building Including CFD Simulation

    E-Print Network [OSTI]

    Quince, N.; Ordonez, A.; Bruno, J. C.; Coronas, A.

    2010-01-01T23:59:59.000Z

    step to increase energy performance in buildings is to use passive strategies, such as orientation, natural ventilation or envelope optimisation. This paper presents an analysis of solar passive techniques and natural ventilation concepts in a case...

  12. Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    wind/fuel cell hybrid energy systems. Energy and Buildings,National Energy Modeling System PHEV plug-in hybrid electrica hybrid DC and AC power system that included energy storage

  13. Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland - Second Year of Data Collection

    SciTech Connect (OSTI)

    Choi, J.; Ludwig, P.; Brand, L.

    2013-08-01T23:59:59.000Z

    Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources. Building on previous research, CNT Energy identified 10 test buildings in Chicago and conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam system balancing. A package of common steam balancing measures was assembled and data were collected on the buildings before and after these retrofits were installed to investigate the process, challenges, and the cost effectiveness of improving steam systems through improved venting and control systems. The test buildings that received venting upgrades and new control systems showed 10.2% savings on their natural gas heating load, with a simple payback of 5.1 years. The methodologies for and findings from this study are presented in detail in this report. This report has been updated from a version published in August 2012 to include natural gas usage information from the 2012 heating season and updated natural gas savings calculations.

  14. April 30 Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014. The first document includes the first presentation from the meeting: DOE Vision and Objectives. The second document includes all other presentations from the meeting: Terminology and Definitions; End-User and Grid Services; Physical Characterization Framework; Value, Benefits & Metrics.

  15. Construction cost impact analysis of the U.S. Department of Energy mandatory performance standards for new federal commercial and multi-family, high-rise residential buildings

    SciTech Connect (OSTI)

    Di Massa, F.V.; Hadley, D.L.; Halverson, M.A.

    1993-12-01T23:59:59.000Z

    In accordance with federal legislation, the U.S. Department of Energy (DOE) has conducted a project to demonstrate use of its Energy Conservation Voluntary Performance Standards for Commercial and Multi-Family High-Rise Residential Buildings; Mandatory for New Federal Buildings; Interim Rule (referred to in this report as DOE-1993). A key requisite of the legislation requires DOE to develop commercial building energy standards that are cost effective. During the demonstration project, DOE specifically addressed this issue by assessing the impacts of the standards on (1) construction costs, (2) builders (and especially small builders) of multi-family, high-rise buildings, and (3) the ability of low-to moderate-income persons to purchase or rent units in such buildings. This document reports on this project.

  16. A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings

    E-Print Network [OSTI]

    Williams, Alison

    2012-01-01T23:59:59.000Z

    lighting in existing non-residential buildings: a comparisonComparison of control options in private offices in an advanced lightingLighting Energy Only Actual Installation Only Fig. 7. Comparison

  17. TES for Residential Settings

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Bouza, Antonio

    2013-07-31T23:59:59.000Z

    The article discusses thermal energy storage approaches for residential buildings. This article addresses both brick bank storage and phase change material technologies. The energy savings and market potential of these thermal energy storage methods are reviewed as well.

  18. advanced building efficiency: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for existing real estate, which has been in existence since 2005, into an integrated green building initiative. This initiative comprises... Kohns, R. 3 2005 BUILDING ENERGY...

  19. 2008 Residential Building Efficiency Standards 1 Efficiency Ratings and Performance Modeling Inputs

    E-Print Network [OSTI]

    Inputs for the Daiken AC (Americas), Inc. Altherma Air-to-Water Source Heat Pump System The Building-to-Water Source Heat Pump can provide space heating, space cooling and domestic water heating functions Required Compliance Software Inputs-- The Altherma Air-to-Water Source Heat Pump system is an electric heat

  20. Building a market for small wind: The break-even turnkey cost of residential wind systems in the United States

    E-Print Network [OSTI]

    Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

    2004-01-01T23:59:59.000Z

    Break-Even Turnkey Cost of Residential Wind Systems in theaggregate installed cost of a small wind system that couldand wind resource class, (2) significant cost reductions

  1. Comparison of the National Green Building Standard (ICC 700-2008) and LEED for Homes to the Residential Provisions of the 2009 IECC for the Delaware Green for Green Program

    SciTech Connect (OSTI)

    Britt, Michelle L.; Makela, Eric J.

    2011-01-30T23:59:59.000Z

    Adhering to Delaware’s Green for Green program specifications results in homes being built to more energy-efficient levels than the 2009 IECC levels. Specifically: • Certifying at the Silver Performance Level for the ICC 700 standard using either the Prescriptive or Performance Paths will result in a residential building that is more efficient than if the building only complied with the 2009 IECC. • Certifying at the Silver level under LEED for Homes standard, including mandatory compliance with ENERGY STAR 2006 and earning two additional energy points will result in a residential building that is more efficient than if the building only complied with the 2009 IECC.

  2. Apply: Funding Opportunity- Advancing Solutions to Improve Energy Efficiency of Commercial Buildings

    Broader source: Energy.gov [DOE]

    Closed Application Deadline: January 20, 2015 The Building Technologies Office (BTO) Commercial Buildings Integration Program has announced the availability of nearly $9 million for Funding Opportunity Announcement (FOA) DE-FOA-0001168, “Advancing Solutions to Improve the Energy Efficiency of U.S. Commercial Buildings.”

  3. EA-1918: Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and MultiFamily High-Rise Residential Buildings" RIN 1904-AC60

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of implementing provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal buildings, including commercial and multi-family high-rise residential buildings. This EA addresses Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2010. The Final Rule was published in the Federal Register on July 9, 2013, 78 FR 40945.

  4. Measure Guideline: Steam System Balancing and Tuning for Multifamily Residential Buildings

    SciTech Connect (OSTI)

    Choi, J.; Ludwig, P.; Brand, L.

    2013-04-01T23:59:59.000Z

    This report was written as a resource for professionals involved in multifamily audits, retrofit delivery, and program design, as well as for building owners and contractors. It is intended to serve as a guide for those looking to evaluate and improve the efficiency and operation of one-pipe steam heating systems. In centrally heated multifamily buildings with steam or hydronic systems, the cost of heat for tenants is typically absorbed into the owner's operating costs. Highly variable and rising energy costs have placed a heavy burden on landlords. In the absence of well-designed and relevant efficiency efforts, increased operating costs would be passed on to tenants who often cannot afford those increases. Misinvestment is a common problem with older heating systems -- multiple contractors may inadequately or inappropriately upgrade parts of systems and reduce system functionality and efficiency, or the system has not been properly maintained.

  5. Modelling Residential-Scale Combustion-Based Cogeneration in Building Simulation

    SciTech Connect (OSTI)

    Ferguson, A.; Kelly, N.; Weber, A.; Griffith, B.

    2009-03-01T23:59:59.000Z

    This article describes the development, calibration and validation of a combustion-cogeneration model for whole-building simulation. As part of IEA Annex 42, we proposed a parametric model for studying residentialscale cogeneration systems based on both Stirling and internal combustion engines. The model can predict the fuel use, thermal output and electrical generation of a cogeneration device in response to changing loads, coolant temperatures and flow rates, and control strategies. The model is now implemented in the publicly-available EnergyPlus, ESP-r and TRNSYS building simulation programs. We vetted all three implementations using a comprehensive comparative testing suite, and validated the model's theoretical basis through comparison to measured data. The results demonstrate acceptable-to-excellent agreement, and suggest the model can be used with confidence when studying the energy performance of cogeneration equipment in non-condensing operation.

  6. Office for Residential Life & Housing Services University of Rochester

    E-Print Network [OSTI]

    Cantlon, Jessica F.

    Office for Residential Life & Housing Services University of Rochester RESIDENT ADVISOR POSITION DESCRIPTION Resident Advisors help build healthy and inclusive residential communities that complement and extend classroom learning. RAs are expected to create intellectually active residential environments

  7. EnergyGauge USA: A Residential Building Energy Simulation Design Tool

    E-Print Network [OSTI]

    Fairey, P.; Vieira, R. K.; Parker, D. S.; Hanson, B.; Broman, P. A.; Grant, J. B.; Fuehrlein, B.; Gu, L.

    2002-01-01T23:59:59.000Z

    of EnergyGauge USA with significant impact on measures that effect sensible loads. The development of the new correlations is described in Henderson (1998a) and is based on empirical assessment of current generation heating and cooling equipment... moisture capacitance model for the simulation to damp out unrealistic variations in air enthalpy that were observed with the current model. The model, described in Henderson (1998b) assumes that the building has a moisture capacitance that is twenty...

  8. Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces

    SciTech Connect (OSTI)

    Brand, L.

    2012-03-01T23:59:59.000Z

    This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

  9. Florida Solar Energy Center (Building America Partnership for...

    Open Energy Info (EERE)

    for Improved Residential Construction Jump to: navigation, search Name: Florida Solar Energy Center (Building America Partnership for Improved Residential Construction...

  10. Statistical Analysis of Baseline Load Models for Non-Residential Buildings

    SciTech Connect (OSTI)

    Coughlin, Katie; Piette, Mary Ann; Goldman, Charles; Kiliccote, Sila

    2008-11-10T23:59:59.000Z

    Policymakers are encouraging the development of standardized and consistent methods to quantify the electric load impacts of demand response programs. For load impacts, an essential part of the analysis is the estimation of the baseline load profile. In this paper, we present a statistical evaluation of the performance of several different models used to calculate baselines for commercial buildings participating in a demand response program in California. In our approach, we use the model to estimate baseline loads for a large set of proxy event days for which the actual load data are also available. Measures of the accuracy and bias of different models, the importance of weather effects, and the effect of applying morning adjustment factors (which use data from the day of the event to adjust the estimated baseline) are presented. Our results suggest that (1) the accuracy of baseline load models can be improved substantially by applying a morning adjustment, (2) the characterization of building loads by variability and weather sensitivity is a useful indicator of which types of baseline models will perform well, and (3) models that incorporate temperature either improve the accuracy of the model fit or do not change it.

  11. Residential Services Area Missing Students living in University Managed Accommodation

    E-Print Network [OSTI]

    Sussex, University of

    Residential Services Area Missing Students living in University Managed Accommodation 1.0 Where then report to the Building Manager or to the Residential Student Support Team or the Residential Services issues Residential Student Support Manager or the Residential Services Manager should be contacted

  12. NREL: Continuum Magazine - Building Better: Advanced Energy Design...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    case study for the AEDG for K-12 School Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building. More than 200,000 energy model runs are needed to develop a...

  13. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    SciTech Connect (OSTI)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01T23:59:59.000Z

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy`s Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE`s Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  14. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    SciTech Connect (OSTI)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01T23:59:59.000Z

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy's Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE's Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  15. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    E-Print Network [OSTI]

    Rapp, VH

    2014-01-01T23:59:59.000Z

    Emissions from Residential Water Heaters Table of Contents46 Table 10. Storage water heaters evaluated experimentally50 Table 11. Published information for water heater

  16. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    SciTech Connect (OSTI)

    Dr. Zhen Song, Prof. Vivian Loftness, Dr. Kun Ji, Dr. Sam Zheng, Mr. Bertrand Lasternas, Ms. Flore Marion, Mr. Yuebin Yu

    2012-10-15T23:59:59.000Z

    we developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource Uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplaceâ??s northern section (IWn). The advanced control program was then installed in the IWn control system; the performance were measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building occupants and the building operator. Lifecycle cost analyses of the advanced building control were performed, and a Building Control System Guide was prepared and published to inform owners, architects, and engineers dealing with new construction or renovation of buildings.

  17. Low-rise Residential New Construction Program

    Broader source: Energy.gov [DOE]

     NYSERDA’s Low-rise Residential New Construction Programs are designed to encourage more industry involvement in the building of single-family homes and low-rise residential units that are more...

  18. Better Buildings Residential Network Peer Exchange Call Series: Residential Energy Efficiency Customer Service Best Practices, Call Slides and Discussion Summary, January 22, 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1,23, 2013MultifamilyBetterResidential

  19. Shaping the Next - Buildings and Energy: Advanced Lighting

    SciTech Connect (OSTI)

    Richman, Eric E.

    2014-01-01T23:59:59.000Z

    short bit on advanced lighting for the future relating specifically to controls and new tech such as LEDs

  20. Improved Design of Motors for Increased Efficiency in Residential Commercial Buildings

    SciTech Connect (OSTI)

    Pragasen Pillay

    2008-12-31T23:59:59.000Z

    Research progress on understanding magnetic steel core losses is presented in this report. Three major aspects have been thoroughly investigated: 1, experimental characterization of core losses, 2, fundamental physical understanding of core losses and development of core loss formulas, and 3, design of more efficient machine based on the new formulations. Considerable progress has been achieved during the four years of research and the main achievements are summarized in the following: For the experimental characterization, a specially designed advanced commercial test bench was commissioned in addition to the development of a laboratory system with advanced capabilities. The measured properties are core losses at low and higher frequencies, with sinusoidal and non-sinusoidal excitations, at different temperatures, with different measurement apparatus (Toroids, Epstein etc). An engineering-based core loss formula has been developed which considers skin effect. The formula can predict core losses for both sinusoidal and non-sinusoidal flux densities and frequencies up to 4000 Hz. The formula is further tested in electric machines. The formula error range is 1.1% - 7.6% while the standard formulas can have % errors between -8.5% {-+} 44.7%. Two general core loss formulas, valid for different frequencies and thickness, have been developed by analytically and numerically solving Maxwell's equations based on a physical investigation of the dynamic hysteresis effects of magnetic materials. To our knowledge, they are the first models that can offer accurate core loss prediction over a wide range of operating frequencies and lamination thicknesses without a massive experimental database of core losses. The engineering core loss formula has been used with commercial software. The formula performs better than the modified Steinmetz and Bertotti's model used in Cedrat/Magsoft Flux 2D/3D. The new formula shows good correlation with measured results under both sinusoidal and non-sinusoidal excitations. A permanent magnet synchronous motor has been designed with the use of the engineering formula with Flux2D. There was acceptable agreement between predictions and measurements. This was further tested on an induction motor with toroid results.

  1. Evaluation on Cooling Energy Load with Varied Envelope Design for High-Rise Residential Buildings in Malaysia

    E-Print Network [OSTI]

    Al-Tamimi, N.; Fadzil, S.

    2010-01-01T23:59:59.000Z

    , hence are greatly influenced by the outside climatic conditions. Due to the hot humid climate of Malaysia, air conditioning system accounts for more than 45% of the total electricity used in the residential sector which is required to remove substantial...

  2. Estimating Demand Response Load Impacts: Evaluation of Baseline Load Models for Non-Residential Buildings in California

    E-Print Network [OSTI]

    Coughlin, Katie; Piette, Mary Ann; Goldman, Charles; Kiliccote, Sila

    2008-01-01T23:59:59.000Z

    commercial buildings participating in a demand?response (buildings participating in an Automated Demand Response buildings  participating  in  an  event?driven  demand?response  (

  3. Advanced Technologies and Practices - Building America Top Innovations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in specific technologies and construction practices that improve the building envelope; heating, ventilation, and air conditioning (HVAC); water heating components; and indoor...

  4. Residential Properties 5100 South Dorchester Avenue

    E-Print Network [OSTI]

    He, Chuan

    Residential Properties 5100 South Dorchester Avenue Chicago, Illinois 60615 T 773.753-2200 F 733 for specific answers to: residential@uchicago.edu. Thank you, in advance, for your patience during this process

  5. Agriculture Residential College

    E-Print Network [OSTI]

    Architecture Students Design Build Solar Pavilion in Old South Baton Rouge Louisiana Sustainable BuildingAgriculture Residential College LSU Sustainability Denise Newell LSU Planning, Design-year institutions Denise S. Newell, PE LEED AP Sustainability Manager scribner@lsu.edu Contact Info "If you had

  6. Comparison of DOE-2.1E with Energyplus and TRNSYS for Ground Coupled Residential Buildings in Hot anf Humid Climates Stage 4

    E-Print Network [OSTI]

    Andolsun, S.; Culp, C.

    2012-01-01T23:59:59.000Z

    -on- grade heat transfer for International Energy Conservation Code (IECC) compliant low-rise 20m x 20m x 3m residential buildings with unconditioned attics in four U.S. climates (hot-humid, hot-dry, cold, and temperate). For the modeling of the slab... the requirements of IECC 2009. As a result, four energy code compliant fully loaded houses located in hot-humid (Austin), hot-dry (Phoenix), temperate (Chicago) and cold (Columbia Falls) climates were obtained. First, these houses were modeled with an adiabatic...

  7. Comparison of DOE-2.1E with Energyplus and TRNSYS for Ground Coupled Residential Buildings in Hot anf Humid Climates Stage 4 

    E-Print Network [OSTI]

    Andolsun, S.; Culp, C.

    2012-01-01T23:59:59.000Z

    -on- grade heat transfer for International Energy Conservation Code (IECC) compliant low-rise 20m x 20m x 3m residential buildings with unconditioned attics in four U.S. climates (hot-humid, hot-dry, cold, and temperate). For the modeling of the slab... the requirements of IECC 2009. As a result, four energy code compliant fully loaded houses located in hot-humid (Austin), hot-dry (Phoenix), temperate (Chicago) and cold (Columbia Falls) climates were obtained. First, these houses were modeled with an adiabatic...

  8. Better Buildings Residential Data & Evaluation Peer Exchange Call Series: Cost-Effectiveness Tests & Measuring Like a Utility, April 10, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1, 20114,Residential 2014 BuildingData

  9. Better Buildings Residential Financing and Revenue Peer Exchange Call Series: Socially Responsible Investing Call Slides and Discussion Summary, December 19, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1, 20114,Residential 2014 BuildingData

  10. Funding Opportunity Webinar- Advancing Solutions To Improve the Energy Efficiency of US Commercial Buildings

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of the DOE Funding Opportunity Announcement DE-FOA-0001168, "Advancing Solutions to Improve the Energy Efficiency of U.S. Commercial Buildings," which seeks to fund the scale-up of promising solutions to the market barriers that hinder the growth of energy efficiency in the commercial building sector.

  11. Building America Expert Meeting: Advanced Envelope Research for...

    Broader source: Energy.gov (indexed) [DOE]

    information about the expert meeting on advanced envelope research for factory built housing, hosted by the ARIES Collaborative on October 11, 2011, in Phoenix, Arizona. The...

  12. The Cost of Enforcing Building Energy Codes: Phase 1

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01T23:59:59.000Z

    2006). Re: 2008 Building Energy Efficiency Standards -2010). 2008 Building Energy Efficiency Standards2010). 2008 Building Energy Efficiency Standards Residential

  13. Building America Technology Solutions for New and Existing Homes: Field Performance of Heat Pump Water Heaters in the Northeast (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In this project, the Consortium for Advanced Residential Buildings evaluated three newly released heat pump water heater products in order to provide publicly available field data on these products.

  14. sttesuhcassa RESIDENTIAL

    E-Print Network [OSTI]

    Schweik, Charles M.

    University Apartments To Amherst Center RON TNASAELPHT TS CENTRAL RESIDENTIAL AREA To Tillson Farm RESIDENTIAL AREA Lorden Field ATHLETIC FIELDS To Telecom, UMass Outreach & UMass Extension at 101 University Drive NORTHEAST RESIDENTIAL AREA ORCHARD HILL RESIDENTIAL AREA Chabad House HAIGIS MALL Newman Center

  15. sttesuhcassa RESIDENTIAL

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Gordon To Amherst Center RON TNASAELPHT TS CENTRAL RESIDENTIAL AREA To Tillson Farm & Intermediate ORCHARD HILL DR. Track & Field ACO SDT KKG SK ADP IGU ZBT BUTTERFIELDTERRACE DZ SOUTHWEST RESIDENTIAL AREA NORTHEAST RESIDENTIAL AREA ORCHARD HILL RESIDENTIAL AREA Chabad House HAIGIS MALL Newman Center Textbook

  16. Building America: The Advanced Whole-Home Efficiency Program (Presentation)

    SciTech Connect (OSTI)

    Engebrecht, C.

    2012-02-01T23:59:59.000Z

    This presentation discusses the Building America Program. This presentation discusses the background and goals of the program. A few hot topic technologies are discussed. Outreach activities are discussed as well.

  17. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    SciTech Connect (OSTI)

    Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-12-01T23:59:59.000Z

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

  18. Residential Buildings Integration (RBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof Enhanced Geothermal Systems || Energy Efficiency

  19. Residential Buildings Integration Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof Enhanced Geothermal Systems || Energy

  20. Building America's Top Innovations Advance High Performance Homes |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartment of Energy Building

  1. Building a More Competitive American Manufacturing Industry with Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding Removal Ongoing at DOE's Paducah SiteEnergy 5Building

  2. Sawnee EMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Sawnee EMC provides a variety of rebates for residential customers building new energy efficient homes or making energy efficiency improvements to existing homes....

  3. Enabling Advanced Environmental Conditioning with a Building Application Stack

    E-Print Network [OSTI]

    Culler, David E.

    consumption by over 80%, while the DCF application can reduce recirculating fan power consumption by half% of our electricity in the U.S. [2], are a prime opportunity for information technology to improve that govern building operation are vertically-integrated, barely programmable, and not extensible

  4. Advanced Benchmarking for Complex Building Types: Laboratories as an Exemplar

    SciTech Connect (OSTI)

    Mathew, Paul A.; Clear, Robert; Kircher, Kevin; Webster, Tom; Lee, Kwang Ho; Hoyt, Tyler

    2010-08-01T23:59:59.000Z

    Complex buildings such as laboratories, data centers and cleanrooms present particular challenges for energy benchmarking because it is difficult to normalize special requirements such as health and safety in laboratories and reliability (i.e., system redundancy to maintain uptime) in data centers which significantly impact energy use. For example, air change requirements vary widely based on the type of work being performed in each laboratory space. We present methods and tools for energy benchmarking in laboratories, as an exemplar of a complex building type. First, we address whole building energy metrics and normalization parameters. We present empirical methods based on simple data filtering as well as multivariate regression analysis on the Labs21 database. The regression analysis showed lab type, lab-area ratio and occupancy hours to be significant variables. Yet the dataset did not allow analysis of factors such as plug loads and air change rates, both of which are critical to lab energy use. The simulation-based method uses an EnergyPlus model to generate a benchmark energy intensity normalized for a wider range of parameters. We suggest that both these methods have complementary strengths and limitations. Second, we present"action-oriented" benchmarking, which extends whole-building benchmarking by utilizing system-level features and metrics such as airflow W/cfm to quickly identify a list of potential efficiency actions which can then be used as the basis for a more detailed audit. While action-oriented benchmarking is not an"audit in a box" and is not intended to provide the same degree of accuracy afforded by an energy audit, we demonstrate how it can be used to focus and prioritize audit activity and track performance at the system level. We conclude with key principles that are more broadly applicable to other complex building types.

  5. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andfor Residential Energy Consumption in China Nan Zhou,

  6. Commercial and Residential Hourly Load Profiles for all TMY3...

    Open Energy Info (EERE)

    Building America House Simulation Protocols). This dataset also uses the Residential Energy Consumption Survey (RECS) for statistical references of building types by location...

  7. Building America Webinar: High-Performance Enclosure Strategies, Part I: Unvented Roof Systems and Innovative Advanced Framing Strategies

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the February 12, 2015, Building America webinar, High-Performance Enclosure Strategies, Part I: Unvented Roof Systems and Innovative Advanced Framing Strategies.

  8. The Value of Advanced Technologies in the U.S. Buildings Sector in Climate Change Mitigation

    SciTech Connect (OSTI)

    Kyle, G. Page; Clarke, Leon E.; Smith, Steven J.

    2008-05-01T23:59:59.000Z

    There is a wide body of research focused on the potential of advanced technologies to reduce energy consumption in buildings. How such improvements relate to global climate change, however, is less clear, due to the complexity of the climate change issue, and the implications for the energy system as a whole that need to be considered. This study uses MiniCAM, an integrated assessment model, to examine the contributions of several suites of advanced buildings technologies in meeting national carbon emissions reduction targets, as part of a global policy to mitigate climate change by stabilizing atmospheric CO2 concentrations at 450 ppmv. Focal technology areas include building shells, heat pumps for HVAC and water heating applications, solid-state lighting, and miscellaneous electric equipment. We find that advanced heat pumps and energy-efficient miscellaneous electric equipment show the greatest potential to reduce aggregate building sector future energy consumption and policy costs, but that all focal areas are important for reducing energy consumption. Because of assumed availability of low-cost, emissions-reduced electricity generation technologies in these scenarios, heat pumps are especially important for facilitating fuel-switching towards electricity. Buildings sector energy consumption is reduced by 28% and policy costs are reduced by 17% in a scenario with advanced technologies in all focal areas.

  9. Portland's Residential Solar Permitting Guide

    Broader source: Energy.gov [DOE]

    This program guide outlines the application and review procedures for obtaining the necessary permit(s) to install a solar energy system for a new or existing residential building. The guide also...

  10. Performance Criteria for Residential Zero Energy Windows

    E-Print Network [OSTI]

    Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

    2006-01-01T23:59:59.000Z

    and Marc LaFrance. 2006. “Zero Energy Windows. ” ProceedingsFuture Advanced Windows for Zero-Energy Homes. ” ASHRAEfor Residential Zero Energy Windows Dariush Arasteh, Howdy

  11. Building a market for small wind: The break-even turnkey cost of residential wind systems in the United States

    SciTech Connect (OSTI)

    Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

    2004-03-01T23:59:59.000Z

    Although small wind turbine technology and economics have improved in recent years, the small wind market in the United States continues to be driven in large part by state incentives, such as cash rebates, favorable loan programs, and tax credits. This paper examines the state-by-state economic attractiveness of small residential wind systems. Economic attractiveness is evaluated primarily using the break-even turnkey cost (BTC) of a residential wind system as the figure of merit. The BTC is defined here as the aggregate installed cost of a small wind system that could be supported such that the system owner would break even (and receive a specified return on investment) over the life of the turbine, taking into account current available incentives, the wind resource, and the retail electricity rate offset by on-site generation. Based on the analysis presented in this paper, we conclude that: (1) the economics of residential, grid-connected small wind systems is highly variable by state and wind resource class, (2) significant cost reductions will be necessary to stimulate widespread market acceptance absent significant changes in the level of policy support, and (3) a number of policies could help stimulate the market, but state cash incentives currently have the most significant impact, and will be a critical element of continued growth in this market.

  12. National Residential Efficiency Measures Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Software developers who require residential retrofit performance and cost data for applications that evaluate residential efficiency measures are the primary audience for this database. In addition, home performance contractors and manufacturers of residential materials and equipment may find this information useful. The database offers the following types of retrofit measures: 1) Appliances, 2) Domestic Hot Water, 3) Enclosure, 4) Heating, Ventilating, and Air Conditioning (HVAC), 5) Lighting, 6) Miscellaneous.

  13. Study of residential dehumidifiers results in practical performance curves for use in whole-building simulation tools.

    E-Print Network [OSTI]

    -building simulation tools. Dehumidifiers remove moisture from a home's indoor environment, thereby increasing occupant dehumidifier to be simulated in whole-building analysis tools. NREL researchers also defined a new, generalized determine moisture removal capacities and efficiencies.Whole-building simulation tool performance curves

  14. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    SciTech Connect (OSTI)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01T23:59:59.000Z

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  15. The impact of different climates on window and skylight design for daylighting and passive cooling and heating in residential buildings: A comparative study

    SciTech Connect (OSTI)

    Al-Sallal, K.A.

    1999-07-01T23:59:59.000Z

    The study aims to explore the effect of different climates on window and skylight design in residential buildings. The study house is evaluated against climates that have design opportunities for passive systems, with emphasis on passive cooling. The study applies a variety of methods to evaluate the design. It has found that earth sheltering and night ventilation have the potential to provide 12--29% and 25--77% of the cooling requirements respectively for the study house in the selected climates. The reduction of the glazing area from 174 ft{sup 2} to 115 ft{sup 2} has different impacts on the cooling energy cost in the different climates. In climates such Fresno and Tucson, one should put the cooling energy savings as a priority for window design, particularly when determining the window size. In other climates such as Albuquerque, the priority of window design should be first given to heating savings requirements.

  16. Planning for an energy-efficient future: The experience with implementing energy conservation programs for new residential and commercial buildings: Volume 1

    SciTech Connect (OSTI)

    Vine, E.; Harris, J.

    1988-09-01T23:59:59.000Z

    This report is one of a series of program experience reports that seek to synthesize current information from both published and unpublished sources to help utilities, state regulatory commissions, and others to identify, design, and manage demand-side programs. This report evaluates the experience with implementing programs promoting energy efficiency in new residential and commercial construction. This investigation was guided by our perspective on how programs address the barriers to widespread adoption of energy-efficient design and better end-use technologies in new buildings. We considered four types of barriers: lack of information, high initial costs, degree of technological development, and perceived risk. We developed a typology that reflects different approaches to overcome these barriers to energy-efficient construction. 234 refs., 5 tabs.

  17. Photovoltaics for residential applications

    SciTech Connect (OSTI)

    Not Available

    1984-02-01T23:59:59.000Z

    Information is given about the parts of a residential photovoltaic system and considerations relevant to photovoltaic power use in homes that are also tied to utility lines. In addition, factors are discussed that influence implementation, including legal and environmental factors such as solar access and building codes, insurance, utility buyback, and system longevity. (LEW)

  18. Residential Mechanical Precooling

    SciTech Connect (OSTI)

    German, A.; Hoeschele, M.

    2014-12-01T23:59:59.000Z

    This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

  19. Advanced System Design of In-Building Wireless Communication Networks Using

    E-Print Network [OSTI]

    Stancil, Daniel D.

    Advanced System Design of In-Building Wireless Communication Networks Using Ventilation Ducts design an IEEE 802.11g wireless system that uses ventilation ducts to distribute the signals throughout modifications and antenna excitations we have tried, chronicling how to best install wireless local area network

  20. Advancing Net-Zero Energy Commercial Buildings; Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01T23:59:59.000Z

    This fact sheet provides an overview of the research the National Renewable Energy Laboratory is conducting to achieve net-zero energy buildings (NZEBs). It also includes key definitions of NZEBs and inforamtion about an NZEB database that captures information about projects around the world.

  1. International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    E-Print Network [OSTI]

    Evans, Meredydd

    2008-01-01T23:59:59.000Z

    Energy Renovation of Residential Buildings  Concept definition and Energy Renovation of Residential Buildings  50a Concept definition and Energy Renovation of Residential Buildings  50a Concept definition and 

  2. Building America Whole-House Solutions for New Homes: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York

    Broader source: Energy.gov [DOE]

    In this project, the Consortium for Advanced Residential Buildings team sought to create a well-documented design and implementation strategy for air sealing in low-rise multifamily buildings that would assist in compliance with new building infiltration requirements of the 2012 IECC.

  3. Technical support documentation for the Automated Residential Energy Standard (ARES) data base in support of proposed interim energy conservation voluntary performance standards for new non-federal residential buildings: Volume 4

    SciTech Connect (OSTI)

    NONE

    1989-09-01T23:59:59.000Z

    This report focuses on those areas where substantial improvements have been made in simulation techniques or analysis of results concerning the Automated Residential Energy Standard (ARES).

  4. advanced modular pv: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary Review of Advanced Inverter Technologies for Residential PV Systems Renewable Energy Websites Summary: Summary Review of Advanced Inverter Technologies for Residential PV...

  5. Residential ventilation standards scoping study

    SciTech Connect (OSTI)

    McKone, Thomas E.; Sherman, Max H.

    2003-10-01T23:59:59.000Z

    The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  6. Development of a New ASHRAE Protocol for Measuring and Reporting the On-Site Performance of Buildings Except Low-Rise Residential Buildings 

    E-Print Network [OSTI]

    Haberl, Jeff; Case, Mark; Kettler, Herald; Hunn, Bruce; Owens, Brendan

    2006-01-01T23:59:59.000Z

    State Office Building (2002). This report describes how the performance of the new REJ building was evaluated with measured hourly data and a calibrated simulation. • NREL Report on energy performance analysis of six high-performance buildings (2005... standards. Such a protocol would be used to evaluate not only the as-built energy performance and water performance, but also the IEQ and comfort level being achieved in a building (e.g., Standard 90.1-2004, Standard 62.1-2004, Standard 55-2004, LEED, U...

  7. Indoor climate control accounts for over 40% of the energy used in US residential buildings1, much of which

    E-Print Network [OSTI]

    Kamat, Vineet R.

    with an envelope of significant thermal capacitance and resistance, such as PCM-ECC. The temperature difference denoted (TC) is largely caused by the thermal capacitance of the envelope material, and that denoted (TR of which is ultimately lost via the building envelope. To provide passive heat storage in building

  8. INDOOR AIR QUALITY IN ENERGY-EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Hollowell, Craig D.

    2011-01-01T23:59:59.000Z

    new buildings incorporating energy- efficient designs, Theenergy-efficient residential, studied as possible models design.

  9. The Trade-off between Solar Reflectance and Above-Sheathing Ventilation for Metal Roofs on Residential and Commercial Buildings

    SciTech Connect (OSTI)

    Desjarlais, Andre Omer [ORNL] [ORNL; Kriner, Scott [Metal Construction Association, Glenview, IL] [Metal Construction Association, Glenview, IL; Miller, William A [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    An alternative to white and cool-color roofs that meets prescriptive requirements for steep-slope (residential and non-residential) and low-slope (non-residential) roofing has been documented. Roofs fitted with an inclined air space above the sheathing (herein termed above-sheathing ventilation, or ASV), performed as well as if not better than high-reflectance, high-emittance roofs fastened directly to the deck. Field measurements demonstrated the benefit of roofs designed with ASV. A computer tool was benchmarked against the field data. Testing and benchmarks were conducted at roofs inclined at 18.34 ; the roof span from soffit to ridge was 18.7 ft (5.7 m). The tool was then exercised to compute the solar reflectance needed by a roof equipped with ASV to exhibit the same annual cooling load as that for a direct-to-deck cool-color roof. A painted metal roof with an air space height of 0.75 in. (0.019 m) and spanning 18.7 ft (5.7 m) up the roof incline of 18.34 needed only a 0.10 solar reflectance to exhibit the same annual cooling load as a direct-to-deck cool-color metal roof (solar reflectance of 0.25). This held for all eight ASHRAE climate zones complying with ASHRAE 90.1 (2007a). A dark heat-absorbing roof fitted with 1.5 in. (0.038 m) air space spanning 18.7 ft (5.7 m) and inclined at 18.34 was shown to have a seasonal cooling load equivalent to that of a conventional direct-to-deck cool-color metal roof. Computations for retrofit application based on ASHRAE 90.1 (1980) showed that ASV air spaces of either 0.75 or 1.5 in. (0.019 and 0.038 m) would permit black roofs to have annual cooling loads equivalent to the direct-to-deck cool roof. Results are encouraging, and a parametric study of roof slope and ASV aspect ratio is needed for developing guidelines applicable to all steep- and low-slope roof applications.

  10. Residential Mail Procedures Residential Mail Services

    E-Print Network [OSTI]

    Buehrer, R. Michael

    Residential Mail Procedures Residential Mail Services 23 Owens Hall Blacksburg, VA 24061 Phone.mailservices.vt.edu #12;Residential Mail Procedures Table of Contents General information.................................................................................8 #12;Residential Mail Procedures The following procedures have been establishes by the University

  11. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in the Hot-Dry and Mixed-Dry Climates

    SciTech Connect (OSTI)

    Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); Florida Solar Energy Center (FSEC); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

    2006-01-01T23:59:59.000Z

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost neutral basis.

  12. NREL: Buildings Research - Webinar Rescheduled: Material Handling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    attend this webinar. Printable Version Buildings Research Home Commercial Buildings Residential Buildings Facilities Working with Us Publications News Did you find what you...

  13. Advanced Metering Plan for Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings

    SciTech Connect (OSTI)

    Pope, Jason E.; Olson, Norman J.; Berman, Marc J.; Schielke, Dale R.

    2011-08-17T23:59:59.000Z

    This updated Advanced Metering Plan for monitoring whole building energy use in Pacific Northwest National Laboratory (PNNL) EMS4 buildings on the PNNL campus has been prepared in accordance with the requirements of the Energy Policy Act of 2005 (EPAct 2005), Section 103, U.S. Department of Energy (DOE) Order 430.2B, and Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, Federal Energy Management Program, October 2007 (Sullivan et al. 2007). The initial PNNL plan was developed in July 2007 (Olson 2007), updated in September 2008 (Olson et al. 2008), updated in September 2009 (Olson et al. 2009), and updated again in August 2010 (Olson et al. 2010).

  14. Business Case for Energy Efficient Building Retrofit and Renovation...

    Energy Savers [EERE]

    More Documents & Publications Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Marketing and Market Transformation Building America...

  15. Cooling energy savings potential of light-colored roofs for residential and commercial buildings in 11 US metropolitan areas

    SciTech Connect (OSTI)

    Konopacki, S.; Akbari, H.; Pomerantz, M.; Gabersek, S.; Gartland, L.

    1997-05-01T23:59:59.000Z

    Light-colored roofs reflect more sunlight than dark roofs, thus they keep buildings cooler and reduce air-conditioning demand. Typical roofs in the United States are dark, which creates a potential for savings energy and money by changing to reflective roofs. In this report, the authors make quantitative estimates of the impact of roof color by simulating prototypical buildings with light- and dark-colored roofs and calculating savings by taking the differences in annual cooling and heating energy use, and peak electricity demand. Monetary savings are calculated using local utility rates. Savings are estimated for 11 U.S. Metropolitan Statistical Areas (MSAs) in a variety of climates.

  16. Model Code for the Control of Residential HVAC Distribution System Leakage and HVAC-Induced Building Leakage

    E-Print Network [OSTI]

    Wemhoff, P.

    1990-01-01T23:59:59.000Z

    consumption for air conditioning, as well as a 50 percent increase in peak cooling load and an 80 percent increase in peak heating load. In addition, building air leakage may be expected to be several times greater when duct leakage is present or when avenues...

  17. The Technical and Economical Analysis of the Air-conditioning System Usage in Residential Buildings in Beijing

    E-Print Network [OSTI]

    Sheng, G.; Xie, G.

    2006-01-01T23:59:59.000Z

    -conditioning has many merits such as clean, safety, high COP, longevity of service, low price and maintenance easily. But it also has weak aspects, for example, its power consumption is higher, which has became the main hidden trouble of electric network..., stability of running, service life, maintenance, price, and so on. There are 3 kinds of common water chilling units, which are the centrifugal compressor chiller? the ICEBO2006, Shenzhen, China Building Commissioning for Energy Efficiency...

  18. Lighting Overview Page 6-1 2008 Residential Compliance Manual August 2009

    E-Print Network [OSTI]

    Lighting ­ Overview Page 6-1 2008 Residential Compliance Manual August 2009 6 Lighting 6.1 Overview, or lighting designer can get the information they need about residential lighting in low-rise buildings and in the dwelling units of high-rise buildings. For residential buildings, all of the lighting requirements

  19. Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways

    SciTech Connect (OSTI)

    Brambley, Michael R.; Haves, Philip; McDonald, Sean C.; Torcellini, Paul; Hansen, David G.; Holmberg, David; Roth, Kurt

    2005-04-13T23:59:59.000Z

    Significant energy savings can be achieved in commercial building operation, along with increased comfort and control for occupants, through the implementation of advanced technologies. This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies. This paper is actually a synthesis of five other white papers: the first describes the market assessment including estimates of market potential and energy savings for sensors and control strategies currently on the market as well as a discussion of market barriers to these technologies. The other four cover technology pathways: (1) current applications and strategies for new applications, (2) sensors and controls, (3) networking, security, and protocols and standards, and (4) automated diagnostics, performance monitoring, commissioning, optimal control and tools. Each technology pathway chapter gives an overview of the technology or application. This is followed by a discussion of needs and the current status of the technology. Finally, a series of research topics is proposed.

  20. Steam System Balancing and Tuning for Multifamily Residential Buildings: Chicago, Illinois. Building America Case Study: Technology Solutions for New and Existing Homes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01T23:59:59.000Z

    Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources.

  1. Central Georgia EMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Central Georgia Electric Member Corporation (CGEMC) offers rebates for residential customers to increase the energy efficiency of existing homes or to build new energy efficient homes.  This year,...

  2. Residential Network Members Impact More Than 42,000 Households...

    Energy Savers [EERE]

    Members Impact More Than 42,000 Households Photo of a row of townhomes. Eligible Better Buildings Residential Network members reported completing 27,563 home energy upgrades...

  3. Vectren Energy Delivery of Ohio (Gas)- Residential Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Vectren Energy Delivery offers residential natural gas customers in Ohio rebates for the installation of certain high efficiency natural gas appliances and building insulation. Rebates are...

  4. Energy Savings Potential and RD&D Opportunities for Residential...

    Broader source: Energy.gov (indexed) [DOE]

    assesses 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology...

  5. Non-Residential Solar Water Heating Site Assessment at Milwaukee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non-Residential Solar Water Heating Site Assessment at Milwaukee Apartment Buildings The Midwest Renewable Energy Association's certified site assessors conducted 25 site...

  6. Tool for Generating Realistic Residential Hot Water Event Schedules...

    Office of Environmental Management (EM)

    Residential Hot Water Event Schedules: Preprint Presented at SimBuild 2010; New York, New York; August 1519, 2010 47685.pdf More Documents & Publications Model Simulating...

  7. SoCalGas- Multi-Family Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Southern California Gas Company provides incentives to encourage the owners and managers of multi-family residential buildings to increase their energy efficiency. The program offers rebates for...

  8. Cost-Effectiveness Analysis of the Residential Provisions of...

    Office of Scientific and Technical Information (OSTI)

    These codes set the minimum requirements for energy-efficient building design and construction and ensure energy savings on a national level. The basis of the residential...

  9. Page 1 of 20 Contract for Residential Services

    E-Print Network [OSTI]

    Xie,Jiang (Linda)

    Page 1 of 20 2014-2015 Contract for Residential Services Housing and Residence Life Contract for Residential Services: 2014-2015 Part I. General Information and Application Procedures Part II. Terms, the Department of Housing and Residence Life may house assistance animals in its residential building (or halls

  10. Electric Storage in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01T23:59:59.000Z

    CHP system at the commercial building could be used to offset EV charging at home at the residential

  11. Community Development Department Building & Safety Division

    E-Print Network [OSTI]

    BUILDING, RESIDENTIAL AND GREEN BUILDING CODES, AMENDING FREMONT MUNICIPAL CODE TITLE vn (BUILDING TO ENERGY REGULATIONS THE 2010 CALIFORNIA,GREEN BUILDING CODE The City of Fremont proposed to adopt local................ Community Development Department Building & Safety Division 39550 Liberty Street

  12. Housing & Residential Life Political Solicitation Policy Political solicitation may take place in residential facilities under specific guidelines. Any

    E-Print Network [OSTI]

    Thomas, David D.

    Housing & Residential Life Political Solicitation Policy Political solicitation may take place in residential facilities under specific guidelines. Any individual or group not following these guidelines their residential buildings are located, candidates for elected office seeking to represent the precincts often seek

  13. Guidelines for residential commissioning

    E-Print Network [OSTI]

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-01T23:59:59.000Z

    Potential Benefits of Commissioning California Homes”.Delp. 2000. “Residential Commissioning: A Review of Relatedfor Evaluating Residential Commissioning Metrics” Lawrence

  14. Technical Support Document: 50% Energy Savings Design Technology Packages for Medium Office Buildings

    SciTech Connect (OSTI)

    Thornton, Brian A.; Wang, Weimin; Lane, Michael D.; Rosenberg, Michael I.; Liu, Bing

    2009-09-01T23:59:59.000Z

    This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Medium Offices (AEDG-MO or the Guide), a design guidance document which intends to provide recommendations for achieving 50% energy savings in medium office buildings that just meet the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.

  15. Residential Air-Source Heat Pump Program

    Broader source: Energy.gov [DOE]

    Massachusetts offers rebates of up to $3,750 for the installation of high-efficiency, cold-climate air-source heat pumps (ASHPs) in residential buildings of one to four units. Heat pumps must be ...

  16. LBNL -47412 Residential Commissioning to Assess

    E-Print Network [OSTI]

    LBNL - 47412 Residential Commissioning to Assess Envelope and HVAC System Performance1 Craig P Scientist and Group Leader at LBNL in its Energy Performance of Buildings Group. #12;i TABLE OF CONTENTS

  17. Worldwide Status of Energy Standards for Buildings - Appendices

    E-Print Network [OSTI]

    Janda, K.B.

    2008-01-01T23:59:59.000Z

    Consumption in Buildings and Energy Efficiency Projectsnon-residential buildings: Energy Efficiency of ElectricalBetter" National Building Agency "Energy Efficiency in New

  18. Better Buildings Network View | April 2014 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    April 2014 More Documents & Publications Better Buildings Network View | December 2014 Better Buildings Residential Network Orientation Better Buildings Network View | November...

  19. Better Buildings Network View | February 2014 | Department of...

    Energy Savers [EERE]

    February 2014 Better Buildings Network View | February 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential...

  20. Better Buildings Network View | January 2015 | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    5 More Documents & Publications Better Buildings Network View | December 2014 Better Buildings Network View | November 2014 Better Buildings Residential Network Orientation...

  1. Better Buildings Network View | June 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 2014 Better Buildings Network View | June 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network....

  2. Better Buildings Network View | March 2014 | Department of Energy

    Energy Savers [EERE]

    March 2014 Better Buildings Network View | March 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential...

  3. Better Buildings Network View | December 2014 | Department of...

    Energy Savers [EERE]

    December 2014 Better Buildings Network View | December 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential...

  4. Better Buildings Network View | January 2014 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Better Buildings Network View | January 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network....

  5. Better Buildings Network View | October 2014 | Department of...

    Energy Savers [EERE]

    October 2014 Better Buildings Network View | October 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential...

  6. Worldwide Status of Energy Standards for Buildings - Appendices

    E-Print Network [OSTI]

    Janda, K.B.

    2008-01-01T23:59:59.000Z

    for NON-RESIDENTIAL BUILDINGS. This survey has been designedtypes of energy standards for buildings. Please respond asI: GENERAL OVERVIEW OF BUILDING ENERGY STANDARDS Does your

  7. Better Buildings Network View | February 2015 | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    5 More Documents & Publications Better Buildings Network View | November 2014 Better Buildings Network View | September 2014 Better Buildings Residential Network Case Study:...

  8. Domestic surface : a framework for advancement

    E-Print Network [OSTI]

    Hart, Jason Wilbur, 1977-

    2004-01-01T23:59:59.000Z

    The residential building sector currently makes up one-half of the total U.S. building industry; yet less than five percent of residential construction involves architectural services. This irrelevancy has only further ...

  9. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Sonderegger, R. C.

    2011-01-01T23:59:59.000Z

    passive solar system analysis capabilities to the building designpassive solar design concepts to the non-residential building

  10. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    SciTech Connect (OSTI)

    Rapp, VH; Singer, BC

    2014-03-01T23:59:59.000Z

    The research summarized in this report is part of a larger effort to evaluate the potential air quality impacts of using liquefied natural gas in California. A difference of potential importance between many liquefied natural gas blends and the natural gas blends that have been distributed in California in recent years is the higher Wobbe number of liquefied natural gas. Wobbe number is a measure of the energy delivery rate for appliances that use orifice- or pressure-based fuel metering. The effect of Wobbe number on pollutant emissions from residential water heaters was evaluated in controlled experiments. Experiments were conducted on eight storage water heaters, including five with “ultra low-NO{sub X}” burners, and four on-demand (tankless) water heaters, all of which featured ultra low-NO{sub X} burners. Pollutant emissions were quantified as air-free concentrations in the appliance flue and fuel-based emission factors in units of nanogram of pollutant emitter per joule of fuel energy consumed. Emissions were measured for carbon monoxide (CO), nitrogen oxides (NO{sub X}), nitrogen oxide (NO), formaldehyde and acetaldehyde as the water heaters were operated through defined operating cycles using fuels with varying Wobbe number. The reference fuel was Northern California line gas with Wobbe number ranging from 1344 to 1365. Test fuels had Wobbe numbers of 1360, 1390 and 1420. The most prominent finding was an increase in NO{sub X} emissions with increasing Wobbe number: all five of the ultra low-NO{sub X} storage water heaters and two of the four ultra low-NO{sub X} on-demand water heaters had statistically discernible (p<0.10) increases in NO{sub X} with fuel Wobbe number. The largest percentage increases occurred for the ultra low-NO{sub X} water heaters. There was a discernible change in CO emissions with Wobbe number for all four of the on-demand devices tested. The on-demand water heater with the highest CO emissions also had the largest CO increase with increasing fuel Wobbe number.

  11. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    electric loads in buildings: energy efficiency (for steadyof Building Controls and Energy Efficiency Options Usingof Building Controls and Energy Efficiency Options Using

  12. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    PA. 3. DEMAND RESPONSE IN COMMERCIAL BUILDINGS ElectricityDemand Response and Energy Efficiency in Commercial BuildingsDemand Response and Energy Efficiency in Commercial Buildings

  13. City of San Francisco- Green Building Code

    Broader source: Energy.gov [DOE]

    San Francisco adopted a mandatory green building code for new construction projects in September 2008, establishing strict guidelines for residential and commercial buildings according to the...

  14. Guidelines for residential commissioning

    SciTech Connect (OSTI)

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-31T23:59:59.000Z

    Currently, houses do not perform optimally or even as many codes and forecasts predict, largely because they are field assembled and there is no consistent process to identify problems or to correct them. Residential commissioning is a solution to this problem. This guide is the culmination of a 30-month project that began in September 1999. The ultimate objective of the project is to increase the number of houses that undergo commissioning, which will improve the quality, comfort, and safety of homes for California citizens. The project goal is to lay the groundwork for a residential commissioning industry in California focused on end-use energy and non-energy issues. As such, we intend this guide to be a beginning and not an end. Our intent is that the guide will lead to the programmatic integration of commissioning with other building industry processes, which in turn will provide more value to a single site visit for people such as home energy auditors and raters, home inspectors, and building performance contractors. Project work to support the development of this guide includes: a literature review and annotated bibliography, which facilitates access to 469 documents related to residential commissioning published over the past 20 years (Wray et al. 2000), an analysis of the potential benefits one can realistically expect from commissioning new and existing California houses (Matson et al. 2002), and an assessment of 107 diagnostic tools for evaluating residential commissioning metrics (Wray et al. 2002). In this guide, we describe the issues that non-experts should consider in developing a commissioning program to achieve the benefits we have identified. We do this by providing specific recommendations about: how to structure the commissioning process, which diagnostics to use, and how to use them to commission new and existing houses. Using examples, we also demonstrate the potential benefits of applying the recommended whole-house commissioning approach to such houses.

  15. Using EnergyPlus to Simulate the Dynamic Response of a Residential Building to Advanced Cooling Strategies: Preprint

    SciTech Connect (OSTI)

    Booten, C.; Tabares-Velasco, P. C.

    2012-08-01T23:59:59.000Z

    This study demonstrates the ability of EnergyPlus to accurately model complex cooling strategies in a real home with a goal of shifting energy use off peak and realizing energy savings. The house was retrofitted through the Sacramento Municipal Utility District's (SMUD) deep energy retrofit demonstration program; field tests were operated by the National Renewable Energy Laboratory (NREL). The experimental data were collected as part of a larger study and are used here to validate simulation predictions.

  16. Better Buildings

    E-Print Network [OSTI]

    Neukomm, M.

    2012-01-01T23:59:59.000Z

    efficiency as top priority energy resource Revolutionary change in market Robust energy efficiency industry Prime the market for new technology Better Buildings Challenge Goals Make commercial & industrial buildings 20% more efficient by 2020... opportunities for energy efficiency 2 Great opportunities in the residential, commercial and industrial sectors 20% + savings is average Other benefits: Jobs, Environment, Competitiveness But persistent barriers exist?? ?Energy efficiency...

  17. Residential Services Headlease residents

    E-Print Network [OSTI]

    Sussex, University of

    Residential Services Headlease residents handbook 2013-2014 #12;Map of Brighton inside front cover packs Rent 5 Residential Advisor (RA) network 6 Senior residential advisors Residential Student Support Contents Contents Brighton 1 #12;Welcome Congratulations on securing your place at Sussex. Residential

  18. ASHRAE's Residential Ventilation Standard: Exegesis of Proposed Standard 62.2

    E-Print Network [OSTI]

    Sherman, M.

    2000-01-01T23:59:59.000Z

    In February 2000, ASHRAE's Standard Project Committee on "Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings", SPC 62.2P7 recommended ASHRAE's first complete standard on residential ventilation for public review...

  19. ASHRAE's Residential Ventilation Standard: Exegesis of Proposed Standard 62.2 

    E-Print Network [OSTI]

    Sherman, M.

    2000-01-01T23:59:59.000Z

    In February 2000, ASHRAE's Standard Project Committee on "Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings", SPC 62.2P7 recommended ASHRAE's first complete standard on residential ventilation ...

  20. Hawaii demand-side management resource assessment. Final report, Reference Volume 2: Final residential and commercial building prototypes and DOE-2.1E developed UECs and EUIs; Part 2

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    This section contains the detailed measured impact results and market segment data for each DSM case examined for this building type. A complete index of all base and measure cases defined for this building type is shown first. This index represents an expansion of the base and measure matrix presented in Table 1 (residential) or Table 2 (commercial) for the applicable sector. Following this index, a summary report sheet is provided for each DSM measure case in the order shown in the index. The summary report sheet contains a host of information and selected graphs which define and depict the measure impacts and outline the market segment data assumptions utilized for each case in the DBEDT DSM Forecasting models. The variables and figures included in the summary report sheet are described. Numerous tables and figures are included.

  1. EnergyPlus Analysis Capabilities for Use in California Building Energy Efficiency Standards Development and Compliance Calculations

    E-Print Network [OSTI]

    Hong, Tianzhen

    2009-01-01T23:59:59.000Z

    achieve goals of zero energy buildings in 2020 fornet zero energy goals for new residential buildings in 2020

  2. An experimental setup to evaluate the daylighting performance of an advanced optical light pipe for deep-plan office buildings

    E-Print Network [OSTI]

    Martins Mogo de Nadal, Betina Gisela

    2005-11-01T23:59:59.000Z

    This research focuses on an advanced optical light pipe daylighting system as a means to deliver natural light at the back of deep-plan office buildings (15ft to 30ft), using optimized geometry and high reflective materials. The light pipe...

  3. Utility residential new construction programs: Going beyond the code. A report from the Database on Energy Efficiency Programs (DEEP) Project

    SciTech Connect (OSTI)

    Vine, E.

    1995-08-01T23:59:59.000Z

    Based on an evaluation of 10 residential new construction programs, primarily sponsored by investor-owned utilities in the United States, we find that many of these programs are in dire straits and are in danger of being discontinued because current inclusion of only direct program effects leads to the conclusion that they are not cost-effective. We believe that the cost-effectiveness of residential new construction programs can be improved by: (1) promoting technologies and advanced building design practices that significantly exceed state and federal standards; (2) reducing program marketing costs and developing more effective marketing strategies; (3) recognizing the role of these programs in increasing compliance with existing state building codes; and (4) allowing utilities to obtain an ``energy-savings credit`` from utility regulators for program spillover (market transformation) impacts. Utilities can also leverage their resources in seizing these opportunities by forming strong and trusting partnerships with the building community and with local and state government.

  4. Photovoltaics for Residential Buildings Webinar

    Broader source: Energy.gov [DOE]

    A webinar by National Renewable Energy Laboratory (NREL) Senior Engineer Otto VanGeet on using solar photovoltaic (PV) systems to provide electricity for homes.

  5. Fact Sheet - Better Buildings Residential

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers New Training on Energy ManagementAugustin TargetEnergy FactPrice of-Sheet

  6. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to...

  7. ASHRAE and residential ventilation

    SciTech Connect (OSTI)

    Sherman, Max H.

    2003-10-01T23:59:59.000Z

    In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.

  8. Building America Whole-House Solutions for New Homes: Northwest...

    Broader source: Energy.gov (indexed) [DOE]

    Manufactured Home. In this project, the Northwest Energy Efficient Manufactured Housing Program worked with Building America Partnership for Improved Residential...

  9. Improving the thermal performance of the US residential window stock

    SciTech Connect (OSTI)

    Brown, R.E.; Arasteh, D.K.; Eto, J.H.

    1992-05-01T23:59:59.000Z

    Windows have typically been the least efficient thermal component in the residential envelope, but technology advances over the past decade have helped to dramatically improve the energy efficiency of window products. While the thermal performance of these advanced technology windows can be easily characterized for a particular building application, few precise estimates exist of their aggregate impact on national or regional energy use. Policy-makers, utilities, researchers and the fenestration industry must better understand these products` ultimate conservation potential in order to determine the value of developing new products and initiating programs to accelerate their market acceptance. This paper presents a method to estimate the conservation potential of advanced window technologies, combining elements of two well-known modeling paradigms: supply curves of conserved energy and residential end-use forecasting. The unique features include: detailed descriptions of the housing stock by region and vintage, state-of-the-art thermal descriptions of window technologies, and incorporation of market effects to calculate achievable conservation potential and timing. We demonstrate the methodology by comparing, for all new houses built between 1990 and 2010, the conservation potential of very efficient, high R-value ``superwindows`` in the North Central federal region and spectrally-selective low-emissivity (moderate Revalue and solar transmittance) windows in California.

  10. Measured Performance of Residential Dehumidifiers Under Cyclic Operation

    SciTech Connect (OSTI)

    Winkler, J.; Christensen, D.; Tomerlin, J.

    2014-01-01T23:59:59.000Z

    Residential construction practices are progressing toward higher levels of energy efficiency. A proven strategy to save energy is to simultaneously increase building insulation levels and reduce outdoor air infiltration. Tight homes require intentional mechanical ventilation to ensure healthy indoor air. Overall, this strategy results in a shift in the mix of latent and sensible space conditioning loads, requiring proportionally more moisture to be removed compared to standard homes. There is currently not sufficient information available at a wide enough range of operating points to design dehumidification systems for high performance homes in hot-humid climates. The only industry information available on dehumidifier moisture removal and energy consumption are performance ratings conducted at a single test condition, which does not provide a full representation of dehumidifier operation under real-world conditions. Winkler et al. (2011) developed steady state performance maps to predict dehumidifier performance at a variety of indoor conditions. However, installed heating, ventilating, and air-conditioning (HVAC) equipment rarely operates at steady state. Part load performance testing of residential dehumidifiers is not mandated by current test standards. Therefore, we tested the part load performance of four residential dehumidifiers in the National Renewable Energy Laboratory's (NREL) Advanced HVAC Systems Laboratory . The part load efficiency of each dehumidifier was measured under 13 cycling scenarios, and combined with NREL field data to develop part load fraction (PLF) performance curves under realistic cycling scenarios.

  11. Residential Learning University Housing

    E-Print Network [OSTI]

    Rusu, Adrian

    Residential Learning & University Housing Handbook 2008 - 2009 A Guide for Residential Living on the Campus of Rowan University #12;Welcome to Residential Learning & University Housing! The primary purpose of the Office of Residential Life & University Housing is to assist and support students in the pursuit

  12. RESIDENTIAL COLLEGES NORTHWESTERN

    E-Print Network [OSTI]

    Apkarian, A. Vania

    c RESIDENTIAL COLLEGES NORTHWESTERN #12;#12;Dear Northwestern Student: I hope you will review residential colleges. A residential college is a place where you can grow emotionally and intellectually, get and residential college fellows. More than a third of the first-year students living on campus choose to live

  13. Residential Colleges NORTHWESTERN

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Residential Colleges NORTHWESTERN #12;#12;Dear Northwestern Student: I hope you will review residential colleges. A residential college is a place where you can grow emotionally and intellectually, get and residential college fellows. More than a third of the first-year students living on campus choose to live

  14. Advancing Residential Retrofits in Atlanta

    SciTech Connect (OSTI)

    Jackson, Roderick K [ORNL; Kim, Eyu-Jin [Southface Energy Institute; Roberts, Sydney [Southface Energy Institute; Stephenson, Robert [Southface Energy Institute

    2012-07-01T23:59:59.000Z

    This report will summarize the home energy improvements performed in the Atlanta, GA area. In total, nine homes were retrofitted with eight of the homes having predicted source energy savings of approximately 30% or greater based on simulated energy consumption.

  15. Evaluation of the Heating & Cooling Energy Demand of a Case Residential Building by Comparing The National Calculation Methodology of Turkey and EnergyPlus through Thermal Capacity Calculations

    E-Print Network [OSTI]

    Atamaca, Merve; Kalaycioglu, Ece; Yilmaz, Zerrin

    2011-10-01T23:59:59.000Z

    usage and energy performance in buildings was published by European Union. In this scope, Turkey has developed a National Building Energy Performance Calculation Methodology, BepTr, which is based on simple hourly method in ISO EN 13790 Umbrella Document...

  16. reEnergize: Building Energy Smart Communities | Department of...

    Energy Savers [EERE]

    reEnergize: Building Energy Smart Communities reEnergize: Building Energy Smart Communities Slides presented in the "What's Working in Residential Energy Efficiency Upgrade...

  17. City of Cincinnati- Property Tax Abatement for Green Buildings

    Broader source: Energy.gov [DOE]

    The City of Cincinnati offers property tax abatements for residential and commercial buildings constructed or renovated to meet LEED certification standards. The original green building tax...

  18. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    A demand-side management framework from building operationsdemand-side management (DSM) framework presented in Table 2 provides three major areas for changing electric loads in buildings:buildings in California. This paper summarizes the integration of DR in demand-side management

  19. WaterSense Program: Methodology for National Water Savings Analysis Model Indoor Residential Water Use

    E-Print Network [OSTI]

    McNeil, Michael

    2008-01-01T23:59:59.000Z

    Energy Information Administration (EIA). Residential EnergyInformation Administration (EIA). Annual Energy Outlook.Machine Ownership by Income Category and Building Type (EIA,

  20. Golden Valley Electric Association- Residential Energy Efficiency Rebate Program for Builders

    Broader source: Energy.gov [DOE]

    Golden Valley Electric Association’s (GVEA) Builder $ense program targets home builders who install electrical energy efficiency measures during construction of residential buildings. Newly...

  1. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andcan be measured using energy consumption per capita values.

  2. Comparison of DOE-2.1E with Energyplus and TRNSYS for Ground Coupled Residential Buildings in Hot anf Humid Climates Stage 2

    E-Print Network [OSTI]

    Andolsun, S.; Culp, C.

    2011-01-01T23:59:59.000Z

    -2, BLAST and SERIRES for certification as a residential code compliance calculator [15]. McDowell et al. [13] compared DOE-2’s slab-on-grade model, Winkelmann’s model, with three other slab-on-grade GCHT calculation methods. These methods were 1... been compared with DOE-2 by: 1) Henninger and Witte [8] and 2) Huang et al. [9]. Henninger and Witte compared EnergyPlus with DOE-2 based on thermal loads [8], HVAC systems [8] and fuel-fired furnaces [8] using the test cases of ANSI/ASHRAE Standard...

  3. Better Buildings Residential Multifamily/Low-Income Peer Exchange Call Series: Outreach to Multifamily Landlords and Tenants Call Slides and Discussion Summary, May 8, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1, 20114,Residential 2014

  4. Better Buildings Residential Network All-Member Peer Exchange Call: Member Reporting and Benefits, Call Slides and Discussion Summary, May 22, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1, 20114,Residential 2014(BBRN)All-

  5. Better Buildings Residential Network Data & Evaluation Peer Exchange Call Series: Cost-Effective, Customer-Focused and Contractor-Focused Data Tracking Systems July 24, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1, 20114,Residential

  6. Better Buildings Residential Network Data & Evaluation Peer Exchange Call Series: Program Automation Call Slides and Discussion Summary, November 21, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1, 20114,Residential& Evaluation

  7. Better Buildings Residential Network Data & Evaluations Peer Exchange Call Series: Making Evaluations Work For Your Program: Tips For Success, Call Slides and Discussion Summary, October 9, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1, 20114,Residential&

  8. Better Buildings Residential Network Driving Demand Peer Exchange Call Series: Leveraging Holidays and Other Events Call Slides and Discussion Summary, November 7, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1, 20114,Residential&Driving

  9. Thesis: Modeling and Evaluation of the NIST Net Zero Energy Residential Test Facility

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Thesis: Modeling and Evaluation of the NIST Net Zero Energy Residential Test Facility Liz Balke M;Motivation · The residential sector consumes over 20% of the total energy use in the U.S. · Net zero energy in building net zero energy houses grows, there is an increased interest in research into optimal residential

  10. Assessing residential exposure to urban noise using environmental models: does the size of the local living

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Assessing residential exposure to urban noise using environmental models: does the size on the quantification of the exposure level in a surface defined as the subject's exposure area. For residential residential buildings. Twelve noise exposure indicators have been used to assess inhabitants' exposure

  11. Measuring Residential Ventilation System Airflows: Part 1 Laboratory

    E-Print Network [OSTI]

    1 Measuring Residential Ventilation System Airflows: Part 1 ­ Laboratory Evaluation of Airflow: residential, mechanical ventilation, measurement, ASHRAE 62.2, flow hood ABSTRACT Building codes increasingly require tighter homes and mechanical ventilation per ASHRAE Standard 62.2. These ventilation flows must

  12. Improving the thermal integrity of new single-family detached residential buildings: Documentation for a regional database of capital costs and space conditioning load savings

    SciTech Connect (OSTI)

    Koomey, J.G.; McMahon, J.E.; Wodley, C.

    1991-07-01T23:59:59.000Z

    This report summarizes the costs and space-conditioning load savings from improving new single-family building shells. It relies on survey data from the National Association of Home-builders (NAHB) to assess current insulation practices for these new buildings, and NAHB cost data (aggregated to the Federal region level) to estimate the costs of improving new single-family buildings beyond current practice. Space-conditioning load savings are estimated using a database of loads for prototype buildings developed at Lawrence Berkeley Laboratory, adjusted to reflect population-weighted average weather in each of the ten federal regions and for the nation as a whole.

  13. Advanced Design and Commissioning Tools for Energy-Efficient Building Technologies

    E-Print Network [OSTI]

    Bauman, Fred; Webster, Tom; Zhang, Hui; Arens, Ed

    2012-01-01T23:59:59.000Z

    pp. 728–733. Chapter 2: Commissioning guidelines for UFAD2.0 To accomplish commissioning of UFAD system, specificprocedure for use by commissioning agents and other building

  14. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    buildings. A demand-side management framework from buildingthe integration of DR in demand-side management activitiesdevelopments. The demand-side management (DSM) framework

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    All new residential, commercial, and community-owned buildings constructed on or after January 1, 1992 that recieve financing from the Alaska Housing Finance Corporation (AHFC) must comply with...

  16. Commercial Building Indoor Environmental Quality Evaluation: Methods and Tools

    E-Print Network [OSTI]

    Heinzerling, David

    2012-01-01T23:59:59.000Z

    quality (IEQ) acceptance in residential buildings.Energy and Buildings, 41(9), 930–936. doi:10.1016/j.more tolerant of “green” buildings? Building Research &

  17. To Be Presented at the Advanced Simulation Technology Symposium (ASTC), Washington DC, April 2004. Building Simulation Modeling Environments Using Systems Theory and Software

    E-Print Network [OSTI]

    . Building Simulation Modeling Environments Using Systems Theory and Software Architecture Principles Hessam the relationships between the realm of (i) model building and simulation execution in conjunction with (ii) softwareTo Be Presented at the Advanced Simulation Technology Symposium (ASTC), Washington DC, April 2004

  18. Cool Roofs Will Revolutionize the Building Industry Adoption of infrared-reflective paints is one of the major advances in roofing in our

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    . Cool Roofs Will Revolutionize the Building Industry Adoption of infrared-reflective paints is one of the major advances in roofing in our century. ORNL's Building Envelopes Program has conducted research for many roofing consortiums and their affiliates to help them develop cool roof products. Based

  19. Efficient Engine-Driven Heat Pump for the Residential Sector

    Broader source: Energy.gov [DOE]

    Building on previous work on an 11-ton packaged natural gas heat pump, this project will develop hardware and software for engine and system controls for a residential gas heat pump system that...

  20. Progress Energy Carolinas- Residential New Construction Rebate Program (South Carolina)

    Broader source: Energy.gov [DOE]

    Progress Energy's residential new construction program provides cash incentives of up to $4,000 to builders and developers who build new energy-efficient homes and multi-family residences that meet...

  1. Progress Energy Carolinas- Residential New Construction Rebate Program (North Carolina)

    Broader source: Energy.gov [DOE]

    Progress Energy's residential new construction program provides cash incentives of up to $4,000 to builders and developers who build new energy-efficient homes and multi-family residences that meet...

  2. SDG&E (Electric)- Multi-Family Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    Multi-Family Residential building owners and property managers in San Diego Gas and Electric (SDG&E) territory are eligible for rebates on energy-efficient, clothes washers, insulation, room...

  3. Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science,Energy,Bubbles HelpManagementPagesBudget

  4. Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science,Energy,Bubbles HelpManagementPagesBudgeton

  5. Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science,Energy,Bubbles HelpManagementPagesBudgeton

  6. Residential Solar Investment Program

    Broader source: Energy.gov [DOE]

    In March 2012, the CT Green Bank* unveiled its solar photovoltaic residential investment program with the ultimate goal to support 30 megawatts of residential solar photovoltaics (PV). HB 6838...

  7. Residential Energy Audits

    E-Print Network [OSTI]

    Brown, W.

    1985-01-01T23:59:59.000Z

    A series of events coupled with the last five years experience performing Residential Conservation Service (RCS) audits have resulted in renewed efforts by utilities to evaluate the role of residential energy audits. There are utilities where...

  8. Leasing Residential PV Systems

    SciTech Connect (OSTI)

    Rutberg, Michael; Bouza, Antonio

    2013-11-01T23:59:59.000Z

    The article discusses the adoption, consequences and current market status of the leasing of residential photovoltaic systems. It addresses attributed energy savings and market potential of residential system leasing.

  9. Better Buildings Neighborhood Program Business Models Guide

    Broader source: Energy.gov [DOE]

    Uses lessons learned from Better Buildings grantees, existing data, and private sector insights to highlight business models that can help develop a sustainable residential energy efficiency market.

  10. Achieving Energy Savings Through Residential Energy Use Behavior

    E-Print Network [OSTI]

    Office PIER Buildings End-use Energy Efficiency Research Program www.energy.ca.gov/research/buildings May and purchasing decisions, are important factors in achieving energy savings in buildings. However, little efficiency programs for the residential sector? Technologies such as smart meters and home area networks

  11. Energy Impact of Residential Ventilation Norms in the United States

    E-Print Network [OSTI]

    in furniture, appliances, and building materials in houses have changed resulting in more indoor pollutants and sustainable technologies. Recent residential construction has created tighter, energy-saving building by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program, of the U

  12. RESIDENTIAL MANDATORY MEASURES DIVISION 4.2 ENERGY EFFFICIENCY

    E-Print Network [OSTI]

    .203.1 Energy Efficiency. Newly constructed low-rise residential buildings shall comply with Sections A4 included in the performance compliance approach for the Standard Design Building (Energy Budget certified by the Energy Commission. SECTION A4.203 PERFORMANCE APPROACH FOR NEWLY CONSTRUCTED BUILDINGS A4

  13. Housing and Residential Life

    E-Print Network [OSTI]

    Fernandez, Eduardo

    1 Housing and Residential Life Guidebook 2014-2015 LivingCampus #12;2 fau.edu/housing Welcome! The Housing & Residential Life staff is excited that you've moved home! Florida Atlantic University residence halls and apartments are your home for the 2014-2015 school year. The Housing & Residential Life staff

  14. AREA COORDINATOR RESIDENTIAL EDUCATION

    E-Print Network [OSTI]

    Bordenstein, Seth

    AREA COORDINATOR RESIDENTIAL EDUCATION VANDERBILT UNIVERSITY, NASHVILLE, TENNESSEE The Office of Housing and Residential Education at Vanderbilt University is seeking applicants for an Area Coordinator. The Area Coordinator is responsible for assisting in the management and operation of a residential area

  15. PROPOSED RESIDENTIAL ALTERNATIVE CALCULATION

    E-Print Network [OSTI]

    PROPOSED RESIDENTIAL ALTERNATIVE CALCULATION MANUAL (ACM) APPROVAL METHOD for the 2013 2012 CEC400201200715DAY #12;201308 Residential ACM Approval Manual 2-2 1. Overview Minimum Modeling Capabilities 1. Overview This Manual explains the requirements for approval of residential Alternative

  16. Analysis of the Impact of Using Improved Multi-Layer Window Models for Code-Compliant Residential Building Energy Simulation in Texas

    E-Print Network [OSTI]

    Choi, Jong-Hyo

    2014-12-23T23:59:59.000Z

    analyzed both window modeling methods with the International Energy Conservation Code (IECC) 2009 and the IECC 2012 conditions for climate zones in Texas. The results show that there are significant differences in annual building energy end-use, heating...

  17. Estimation the Performance of Solar Fiber Optic Lighting System after Repairing the Glass Fiber Cables in a South Korean Residential Building

    E-Print Network [OSTI]

    Cha, K. S.; Kim, T. K.; Park, M. S.

    The solar fiber optic lighting system consists of the solar ray concentrating apparatus, the tracking control, lighting transmission and emission parts. This system was installed on a 20-storey apartment building in South Korea. Many residents had...

  18. Analysis of the Impact of Using Improved Multi-Layer Window Models for Code-Compliant Residential Building Energy Simulation in Texas 

    E-Print Network [OSTI]

    Choi, Jong-Hyo

    2014-12-23T23:59:59.000Z

    analyzed both window modeling methods with the International Energy Conservation Code (IECC) 2009 and the IECC 2012 conditions for climate zones in Texas. The results show that there are significant differences in annual building energy end-use, heating...

  19. A Comparison of EnergyPlus to DOE-2.1E: Multiple Cases Ranging from a Sealed Box to a Residential Building 

    E-Print Network [OSTI]

    Andolsun, S.; Culp, C.

    2008-01-01T23:59:59.000Z

    EnergyPlus (EPlus) is becoming widely used for building simulation. Previous studies have compared the performance of EPlus with other simulation programs including DOE-2 for a variety of cases. These studies identified the different results...

  20. A Comparison of EnergyPlus to DOE-2.1E: Multiple Cases Ranging from a Sealed Box to a Residential Building

    E-Print Network [OSTI]

    Andolsun, S.; Culp, C.

    EnergyPlus (EPlus) is becoming widely used for building simulation. Previous studies have compared the performance of EPlus with other simulation programs including DOE-2 for a variety of cases. These studies identified the different results...

  1. Reassessing Residential Design in Hawaii: Design Construction Building Analysis and Publishing Design Guidelines for a Passive-Design Model Home on Hawaiian Homeland

    E-Print Network [OSTI]

    Meder, S.

    2006-01-01T23:59:59.000Z

    the considerations of building orientation, the building envelope’s solar heat gain mitigation potential, natural ventilation and daylighting opportunities, often increases the demand for higher energy consumption by elevating the need for air conditioning... partnerships. They also applied for, and received, a US Department of Energy grant to partially fund the project. The concept was to conduct research and to provide educational outreach material and design guidelines to the design professions and general...

  2. Residential Wood Residential wood combustion (RWC) is

    E-Print Network [OSTI]

    Residential Wood Combustion Residential wood combustion (RWC) is increasing in Europe because PM2.5. Furthermore, other combustion- related sources of OA in Europe may need to be reassessed. Will it affect global OA emission estimates? Combustion of biofuels is globally one of the major OA sources

  3. Better Buildings Alliance, Advanced Rooftop Unit Campaign: Rooftop Unit Measurement and Verification (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01T23:59:59.000Z

    This document provides facility managers and building owners an introduction to measurement and verification (M&V) methods to estimate energy and cost savings of rooftop units replacement or retrofit projects to estimate paybacks or to justify future projects.

  4. Laboratory Performance Testing of Residential Dehumidifiers (Presentation)

    SciTech Connect (OSTI)

    Winkler, J.

    2012-03-01T23:59:59.000Z

    Six residential vapor compression cycle dehumidifiers spanning the available range of capacities and efficiencies were tested in the National Renewable Energy Laboratory's Heating, Ventilating, and Air-Conditioning Systems Laboratory. Each was tested under a wide range of indoor air conditions to facilitate the development of performance curves for use in whole-building simulation tools.

  5. An Interpretive, Multilevel Theory of Scenario Planning: Advancing Human Resource Development Theory Building

    E-Print Network [OSTI]

    Matlock, James 1958-

    2012-12-01T23:59:59.000Z

    focused on the theoretical perspectives underpinning SP previously addressed in HRD literature and advanced claims that can be made with respect to ontological and epistemological philosophies found in the interpretive (philosophical hermeneutics) paradigm...

  6. SAN LUIS OBISPO COU NTY DEPARTMENT OF PLANNING AND BUILDING

    E-Print Network [OSTI]

    95814-5514 Re: Application for Approval of the San Luis Obispo County Green Building Ordinance the Green Building Ordinance and the Energy Cost Effective Study. The Board of Supervisors received the Green Building Ordinance which will ensure that residential and non-residential buildings in the County

  7. SAN LUIS OBISPO COUNTY DEPARTMENT OF PLANNING AND BUILDING

    E-Print Network [OSTI]

    DEPARTMENT Re: Application for Approval of the San Luis Obispo County Green Building Ordinance the Green Building Ordinance and the Energy Cost Effective Study. The Board of Supervisors received the Green Building Ordinance which will ensure that residential and non-residential buildings in the County

  8. An analysis of maximum residential energy-efficiency in hot and humid climates

    E-Print Network [OSTI]

    Malhotra, Mini

    2006-04-12T23:59:59.000Z

    Energy-efficient building design involves minimizing the energy use and optimizing the performance of individual systems and components of the building. The benefits of energyefficient design, in the residential sector, are direct and tangible...

  9. An analysis of maximum residential energy-efficiency in hot and humid climates 

    E-Print Network [OSTI]

    Malhotra, Mini

    2006-04-12T23:59:59.000Z

    Energy-efficient building design involves minimizing the energy use and optimizing the performance of individual systems and components of the building. The benefits of energyefficient design, in the residential sector, ...

  10. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect (OSTI)

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

    2013-01-01T23:59:59.000Z

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  11. DEPARTMENT OF RESIDENTIAL LIFE Residential Life Staff Manual.

    E-Print Network [OSTI]

    Missouri-Rolla, University of

    1 Appendix A DEPARTMENT OF RESIDENTIAL LIFE Residential Life Staff Manual. Residential Life Program Listing #12;2 MISSOURI S&T RESIDENTIAL LIFE DEPARTMENT Staff Resource Manual 2010--2012 Department of Residential Life Mission: To create educational environments emphasizing learning and development. Service

  12. A First-Generation Prototype Dynamic Residential Window Christian Kohler, Howdy Goudey, and Dariush Arasteh

    E-Print Network [OSTI]

    October 26, 2004 Abstract We present the concept for a "smart" highly efficient dynamic window in residential buildings. We describe a prototype dynamic window that relies on an internal shade, which deploys technology have significantly reduced window-related energy use and peak demand in residential buildings

  13. 2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - August 9-11, 2011

    SciTech Connect (OSTI)

    Not Available

    2011-11-01T23:59:59.000Z

    This report provides an overview of the U.S. Department of Energy Building America program's Summer 2011 Residential Energy Efficiency Technical Update Meeting. This meeting was held on August 9-11, 2011, in Denver, Colorado, and brought together more than 290 professionals representing organizations with a vested interest in energy efficiency improvements in residential buildings.

  14. National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01T23:59:59.000Z

    This technical highlight describes NREL research to develop a publicly available database of energy retrofit measures containing performance characteristics and cost estimates for nearly 3,000 measures. Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost-effective retrofit measures to improve the energy efficiency of residential buildings. The database provides a single, consistent source of current data for DOE and private-sector energy audit and simulation software tools and the retrofit industry. The database will reduce risk for residential retrofit industry stakeholders by providing a central, publicly vetted source of up-to-date information.

  15. Evaluation of Two CEDA Weatherization Pilot Implementations of an Exterior Insulation and Over-Clad Retrofit Strategy for Residential Masonry Buildings in Chicago

    SciTech Connect (OSTI)

    Neuhauser, K.

    2013-08-01T23:59:59.000Z

    This project examines the implementation of an exterior insulation and over-clad strategy for brick masonry buildings in Chicago. The strategy was implemented at a free-standing two story two-family dwelling and a larger free-standing multifamily building. The test homes selected for this research represent predominant housing types for the Chicago area. High heating energy use typical in these buildings threaten housing affordability. Uninsulated mass masonry wall assemblies also have a strongly detrimental impact on comfort. Significant changes to the performance of masonry wall assemblies is generally beyond the reach of typical weatherization (Wx) program resources. The Community and Economic Development Association of Cook County, Inc. (CEDA) has secured a Sustainable Energy Resources for Consumers (SERC) innovation grant sponsored by the United States Department of Energy (DOE). This grant provides CEDA the opportunity to pursue a pilot implementation of innovative approaches to retrofit in masonry wall enclosures. The exterior insulation and over-clad strategy implemented through this project was designed to allow implementation by contractors active in CEDA weatherization programs and using materials and methods familiar to these contractors. The retrofit measures are evaluated in terms of feasibility, cost and performance. Through observations of the strategies implemented, the research described in this report identifies measures critical to performance as well as conditions for wider adoption. The research also identifies common factors that must be considered in determining whether the exterior insulation and over-clad strategy is appropriate for the building.

  16. Residential GSHPs: Efficiency With Short Payback Periods

    SciTech Connect (OSTI)

    Cooperman, Alissa; Dieckmann, John; Brodrick, James

    2012-04-30T23:59:59.000Z

    This article discusses ground source heat pumps (GSHPs) for residential application as an alternative to conventional HVAC systems. A listing of current space heating energy sources are presented which are then followed by a technology overview as advances have made GSHPs more efficient. The article concludes with potential energy savings offered by GSHPs and a brief market overview.

  17. Clean Energy Program Policy Brief. The Value of Energy Performance and Green Attributes in Buildings: Review of Existing Literature and Recommendations for Future Research.

    E-Print Network [OSTI]

    Stuart, Elizabeth

    2013-01-01T23:59:59.000Z

    nationwide.   the Green Building  (range of green  New http://www.southface.org/green? building?services/programs/regarding residential green building and provide further

  18. EA-1991: 10 CFR 433 and 10 CFR 435: Green Building Certification...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards for the Design and Construction of New Federal Low-Rise Residential Buildings" (Green Building Certification Program) October 14, 2014 EA-1991: Final Environmental...

  19. An Experimental Study of the Performance of PCM-Enhanced Cellulose Insulation Used in Residential Building Walls Exposed to Full Weather Conditions 

    E-Print Network [OSTI]

    Fang, Y.; Medina, M.; Evers, A.

    2008-01-01T23:59:59.000Z

    and could potentially cause installation problems. Hydrated Salt Hydrated salts are formed by anhydrous salts and a few fixed number of water molecules, which are usually called ?water of crystallization? (Telkes, 1980). Hydrated salts have...-Enhanced Building Envelopes in Current ORNL Research Projects. Oak Ridge National Laboratory website. Telkes M. 1980. Thermal Storage in Salt-hydrates. Solar Materials Science, Academic Press: 337-404 Zhu D., 2005, A comparative heat transfer examination...

  20. An Experimental Study of the Performance of PCM-Enhanced Cellulose Insulation Used in Residential Building Walls Exposed to Full Weather Conditions

    E-Print Network [OSTI]

    Fang, Y.; Medina, M.; Evers, A.

    and could potentially cause installation problems. Hydrated Salt Hydrated salts are formed by anhydrous salts and a few fixed number of water molecules, which are usually called ?water of crystallization? (Telkes, 1980). Hydrated salts have...-Enhanced Building Envelopes in Current ORNL Research Projects. Oak Ridge National Laboratory website. Telkes M. 1980. Thermal Storage in Salt-hydrates. Solar Materials Science, Academic Press: 337-404 Zhu D., 2005, A comparative heat transfer examination...

  1. A long-term, integrated impact assessment of alternative building energy code scenarios in China

    SciTech Connect (OSTI)

    Yu, Sha; Eom, Jiyong; Evans, Meredydd; Clarke, Leon E.

    2014-04-01T23:59:59.000Z

    China is the second largest building energy user in the world, ranking first and third in residential and commercial energy consumption. Beginning in the early 1980s, the Chinese government has developed a variety of building energy codes to improve building energy efficiency and reduce total energy demand. This paper studies the impact of building energy codes on energy use and CO2 emissions by using a detailed building energy model that represents four distinct climate zones each with three building types, nested in a long-term integrated assessment framework GCAM. An advanced building stock module, coupled with the building energy model, is developed to reflect the characteristics of future building stock and its interaction with the development of building energy codes in China. This paper also evaluates the impacts of building codes on building energy demand in the presence of economy-wide carbon policy. We find that building energy codes would reduce Chinese building energy use by 13% - 22% depending on building code scenarios, with a similar effect preserved even under the carbon policy. The impact of building energy codes shows regional and sectoral variation due to regionally differentiated responses of heating and cooling services to shell efficiency improvement.

  2. Building an All-of-the-Above Portfolio with Loan Guarantees for Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America Update -Composites | Department of

  3. Advanced Building Efficiency Testbed Initiative/Intelligent Workplace Energy Supply System; ABETI/IWESS

    SciTech Connect (OSTI)

    David Archer; Frederik Betz; Yun Gu; Rong Li; Flore Marion; Sophie Masson; Ming Qu; Viraj Srivastava; Hongxi Yin; Chaoqin Zhai; Rui Zhang; Elisabeth Aslanian; Berangere Lartigue

    2008-05-31T23:59:59.000Z

    ABETI/IWESS is a project carried out by Carnegie Mellon's Center for Building Performance and Diagnostics, the CBPD, supported by the U.S. Department of Energy/EERE, to design, procure, install, operate, and evaluate an energy supply system, an ESS, that will provide power, cooling, heating and ventilation for CBPD's Intelligent Workplace, the IW. The energy sources for this system, the IWESS, are solar radiation and bioDiesel fuel. The components of this overall system are: (1) a solar driven cooling and heating system for the IW comprising solar receivers, an absorption chiller, heat recovery exchanger, and circulation pump; (2) a bioDiesel fueled engine generator with heat recovery exchangers, one on the exhaust to provide steam and the other on the engine coolant to provide heated water; (3) a ventilation system including an enthalpy recovery wheel, an air based heat pump, an active desiccant wheel, and an air circulation fan; and (4) various convective and radiant cooling/heating units and ventilation air diffusers distributed throughout the IW. The goal of the ABETI/IWESS project is to demonstrate an energy supply system for a building space that will provide a healthy, comfortable environment for the occupants and that will reduce the quantity of energy consumed in the operation of a building space by a factor of 2 less than that of a conventional energy supply for power, cooling, heating, and ventilation based on utility power and natural gas fuel for heating.

  4. RESIDENTIAL SERVICES STUDENT CHARTER Introduction

    E-Print Network [OSTI]

    Oakley, Jeremy

    RESIDENTIAL SERVICES STUDENT CHARTER Introduction This Charter sets out the standards of provision. Residential Services are committed to encouraging diversity and inclusiveness within University residences via the Residential Services Annual Report and the internet. Consultation This Charter was developed

  5. City of Chicago- Building Energy Code

    Broader source: Energy.gov [DOE]

    The Chicago Energy Conservation Code (CECC) requires residential buildings applying for building permits to comply with energy efficient measures which go beyond those required by the [http://www...

  6. Essays on residential desegregation

    E-Print Network [OSTI]

    Wong, Maisy

    2008-01-01T23:59:59.000Z

    Many ethnically diverse countries have policies that encourage integration across ethnic groups. This dissertation investigates the impact and welfare implications of a residential desegregation policy in Singapore, the ...

  7. Residential Solar Rights

    Broader source: Energy.gov [DOE]

    In 2007, New Jersey enacted legislation preventing homeowners associations from prohibiting the installation of solar collectors on certain types of residential properties. The term "solar...

  8. Better Buildings Residential Network Financing and Revenue Peer Exchange Call: Loan Performance Data and Communication Call Slides and Discussion Summary, May 23, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1,23, 2013 Better Buildings

  9. Better Buildings Residential Network Financing and Revenue Peer Exchange Call: Revenues from Employee Benefit Programs Call Slides and Summary, July 25, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1,23, 2013 Better BuildingsJuly 25,

  10. Better Buildings Residential Network Marketing & Outreach Peer Exchange Call Series: Using Social Media for Long-term Branding Call Slides and Discussion Summary February 27, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1,23, 2013 Better BuildingsJuly

  11. Better Buildings Residential Network Marketing & Outreach Peer Exchange Call Series: Working with Schools Call Slides and Summary, April 24, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1,23, 2013 Better BuildingsJulyCall

  12. Citizens Gas- Residential Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Citizens Gas of Indiana offers rebates to its residential customers for the installation of several types of efficient natural gas appliances. Rebates are generally available for residential homes...

  13. Sandia National Laboratories: advanced energy generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid integration of renewable-energy resources, real-time residential and industrial energy management and control, lifetime degradation and science and various forms of advanced...

  14. Sandia National Laboratories: Advanced Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    integration of renewable-energy resources, real-time residential and industrial energy management and control, lifetime degradation and science and various forms of advanced...

  15. Advances in Understanding Durability of the Building Envelope | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14Scripting for Advanced Workflows Jack(SC) 4

  16. CARBON FOOTPRINT STUDY OF A ZERO ENERGY COSUMPTION RESIDENTIAL CONSTRUCTION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    frequently the term of zero energy building (ZEB) is called when designing a new building. A net zero-energyCARBON FOOTPRINT STUDY OF A ZERO ENERGY COSUMPTION RESIDENTIAL CONSTRUCTION Tiberiu Catalina 1 and coal), which provides currently more than 80% of the primary energies marketed in the world

  17. Sustainable Building Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    Note: In April 2015, S.B. 279 was enacted, creating a new Sustainable Building Tax Credit for the years 2017-2026. As of January, 2015, no funds are available for the residential tax credit in 2015...

  18. Buildings Events | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Peer Exchange Call 4:30PM to 6:00PM EDT The Federal Guiding Principles Checklist in ENERGY STAR Portfolio 6:00PM to 7:30PM EDT Better Buildings Residential Network Orientation...

  19. Sustainable Building Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    SB 463, enacted in April 2007, established a personal tax credit and a corporate tax credit for sustainable buildings in New Mexico. The tax credits apply to both commercial and residential...

  20. Building Simulation Modelers Are we big data ready?

    E-Print Network [OSTI]

    Tennessee, University of

    · Plugs · Lights · Range · Washer · Radiated heat · Dryer · Refrigerator · Dishwasher · Heat pump air flow buildings during the development process. Fleet of Residential `Test Buildings' Two Light Commercial `Test Buildings' #12;7 Real demonstration facilities Residential homes 2800 ft2 residence 269 sensors @ 15-minutes

  1. NREL's Advanced Thermal Conversion Laboratory at the Center for Buildings and Thermal Systems: On the Cutting-Edge of HVAC and CHP Technology (Revised)

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    This brochure describes how the unique testing capabilities of NREL's Advanced Thermal Conversion Laboratory at the Center For Buildings and Thermal Systems can help industry meet the challenge of developing the next generation of heating, ventilating, and air-conditioning (HVAC) and combined heat and power (CHP) equipment and concepts.

  2. Buildings Events | Department of Energy

    Energy Savers [EERE]

    Webinar: Building America Technology-to-Market Roadmaps 3:00PM to 4:30PM EDT Zero Energy Buildings: What are they and how do we build them? 3:00PM to 4:00PM EDT Residential Energy...

  3. Balancing Hydronic Systems in Multifamily Buildings

    SciTech Connect (OSTI)

    Ruch, R.; Ludwig, P.; Maurer, T.

    2014-07-01T23:59:59.000Z

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. This paper explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The research was conducted by The Partnership for Advanced Residential Retrofit (PARR) in conjunction with Elevate Energy. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61 degrees F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1 degrees F to 15.5 degrees F.

  4. Nationwide Buildings Energy Research enabled through an integrated Data Intensive Scientific Workflow and Advanced Analysis Environment

    SciTech Connect (OSTI)

    Kleese van Dam, Kerstin; Lansing, Carina S.; Elsethagen, Todd O.; Hathaway, John E.; Guillen, Zoe C.; Dirks, James A.; Skorski, Daniel C.; Stephan, Eric G.; Gorrissen, Willy J.; Gorton, Ian; Liu, Yan

    2014-01-31T23:59:59.000Z

    Modern workflow systems enable scientists to run ensemble simulations at unprecedented scales and levels of complexity, allowing them to study system sizes previously impossible to achieve, due to the inherent resource requirements needed for the modeling work. However as a result of these new capabilities the science teams suddenly also face unprecedented data volumes that they are unable to analyze with their existing tools and methodologies in a timely fashion. In this paper we will describe the ongoing development work to create an integrated data intensive scientific workflow and analysis environment that offers researchers the ability to easily create and execute complex simulation studies and provides them with different scalable methods to analyze the resulting data volumes. The integration of simulation and analysis environments is hereby not only a question of ease of use, but supports fundamental functions in the correlated analysis of simulation input, execution details and derived results for multi-variant, complex studies. To this end the team extended and integrated the existing capabilities of the Velo data management and analysis infrastructure, the MeDICi data intensive workflow system and RHIPE the R for Hadoop version of the well-known statistics package, as well as developing a new visual analytics interface for the result exploitation by multi-domain users. The capabilities of the new environment are demonstrated on a use case that focusses on the Pacific Northwest National Laboratory (PNNL) building energy team, showing how they were able to take their previously local scale simulations to a nationwide level by utilizing data intensive computing techniques not only for their modeling work, but also for the subsequent analysis of their modeling results. As part of the PNNL research initiative PRIMA (Platform for Regional Integrated Modeling and Analysis) the team performed an initial 3 year study of building energy demands for the US Eastern Interconnect domain, which they are now planning to extend to predict the demand for the complete century. The initial study raised their data demands from a few GBs to 400GB for the 3year study and expected tens of TBs for the full century.

  5. New Jersey SmartStart Buildings- Pay for Performance Program

    Broader source: Energy.gov [DOE]

    The New Jersey Clean Energy Program (NJCEP) offers the Pay for Performance incentive program for energy efficiency improvements in industrial, commercial, and multi-family residential buildings....

  6. The Cost of Enforcing Building Energy Codes: Phase 1

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01T23:59:59.000Z

    B. (2005). Residential Energy Code Evaluatinons: Review andProvidence, RI: Building Codes Assistance Project. ZING2007 Commercial Energy Code Compliance Study. Calgary, AB:

  7. Better Buildings Neighborhood Program Business Models Guide: Executive Summary

    Broader source: Energy.gov [DOE]

    Uses lessons learned from Better Buildings grantees, existing data, and private sector insights to highlight business models that can help develop a sustainable residential energy efficiency market.

  8. Better Buildings Neighborhood Program Business Models Guide: Introduction

    Broader source: Energy.gov [DOE]

    Uses lessons learned from Better Buildings grantees, existing data, and private sector insights to highlight business models that can help develop a sustainable residential energy efficiency market.

  9. Clark County- Solar and Wind Building Permit Guides

    Broader source: Energy.gov [DOE]

    Clark County, Nevada has established guides for obtaining building permits for wind and solar photovoltaic (PV) systems for both residential and commercial purposes. The guides outline applicable...

  10. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Applications, Ithaca, New York (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications,...

  11. Anaheim Public Utilities- Green Building and New Construction Rebate Program

    Broader source: Energy.gov [DOE]

    Anaheim Public Utilities (APU) offers commercial, industrial, residential, and institutional customers the Green Building Incentives Program to offset construction, installation and upgrade costs...

  12. Building America Whole-House Solutions for Existing Homes: Applying...

    Broader source: Energy.gov (indexed) [DOE]

    In this project, researchers from Building America Partnership for Improved Residential Construction worked with the City of Melbourne, Florida, to develop and implement best...

  13. Energy Department Invests $6 Million to Increase Building Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    training, and outreach programs can produce a significant change in residential building code compliance rates. If these activities do produce significant change, non-government...

  14. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Applications (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications (Fact Sheet) In this...

  15. Buildings Performance Database - Datasets - OpenEI Datasets

    Open Energy Info (EERE)

    data. The platform enables users to perform statistical analysis on an anonymous dataset of tens of thousands of commercial and residential buildings from across the country....

  16. Building America Expert Meeting: Energy Savings You Can Bank...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the meeting. exptmtgenergysavingstobankon.pdf More Documents & Publications Salt Lake County Residential Solar Financing Study Better Buildings Network View | March 2015...

  17. Building America Case Study: Advanced Boiler Load Monitoring Controllers, Chicago, Illinois (Fact Sheet)

    SciTech Connect (OSTI)

    PARR

    2014-09-01T23:59:59.000Z

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  18. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01T23:59:59.000Z

    makes CHP system generally not attractive in residentialresidential flat tariffs are generally not attractive for CHP and5 Residential Building DER Technologies Selection City CHP (

  19. Landholders, Residential Land Conversion, and Market Signals

    E-Print Network [OSTI]

    Margulis, Harry L.

    2006-01-01T23:59:59.000Z

    465– Margulis: Landholders, Residential Land Conversion, and1983. An Analysis of Residential Developer Location FactorsHow Regulation Affects New Residential Development. New

  20. RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES

    E-Print Network [OSTI]

    Meier, Alan K.

    2008-01-01T23:59:59.000Z

    Report on Applicability of Residential Ventilation StandardsCharacterization of Residential New Construction PracticesJ - Load Calculation for Residential Winter and Summer Air