Powered by Deep Web Technologies
Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Steven Winter Associates (Consortium for Advanced Residential Buildings) |  

Open Energy Info (EERE)

Winter Associates (Consortium for Advanced Residential Buildings) Winter Associates (Consortium for Advanced Residential Buildings) Jump to: navigation, search Name Steven Winter Associates (Consortium for Advanced Residential Buildings) Place Norwalk, CT Information About Partnership with NREL Partnership with NREL Yes Partnership Type Incubator Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Steven Winter Associates (Consortium for Advanced Residential Buildings) is a company located in Norwalk, CT. References Retrieved from "http://en.openei.org/w/index.php?title=Steven_Winter_Associates_(Consortium_for_Advanced_Residential_Buildings)&oldid=379243" Categories: Clean Energy Organizations

2

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

3

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

4

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

5

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

6

Residential Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE))

Residential Buildings Integration Program Presentation for the 2013 Building Technologies Office's Program Peer Review

7

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

8

Building Technologies Office: About Residential Building Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

9

Better Buildings Residential  

Office of Energy Efficiency and Renewable Energy (EERE)

The U.S. Department of Energy's (DOE's) Better Buildings Residential programs  work with residential energy efficiency programs and their partners to improve homeowners' lives, the economy, and the...

10

Fact Sheet- Better Buildings Residential  

Office of Energy Efficiency and Renewable Energy (EERE)

Fact Sheet - Better Buildings Residential, from U.S. Department of Energy, Better Buildings Neighborhood Program.

11

Building America Residential Buildings Energy Efficiency Meeting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary...

12

Better Buildings Neighborhood Program: Better Buildings Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Residential Network-Current Members to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on AddThis.com...

13

Residential Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

14

Residential Buildings Integration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

15

Residential Building Code Compliance  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Residential Building Code Compliance: Recent Findings and Implications Energy use in residential buildings in the U.S. is significant-about 20% of primary energy use. While several approaches reduce energy use such as appliance standards and utility programs, enforcing state building energy codes is one of the most promising. However, one of the challenges is to understand the rate of compliance within the building community. Utility companies typically use these codes as the baseline for providing incentives to builders participating in utility-sponsored residential new construction (RNC) programs. However, because builders may construct homes that fail to meet energy codes, energy use in the actual baseline is higher than would be expected if all buildings complied with the code. Also,

16

NREL: Buildings Research - Residential Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Capabilities Photo showing a row of homes in the distance. The NREL Residential Buildings group is an innovative, multidisciplinary team focused on accelerating the...

17

Fact Sheet: Better Buildings Residential Network | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network Fact Sheet: Better Buildings Residential Network, increasing the number of...

18

Building Technologies Residential Survey  

SciTech Connect

Introduction A telephone survey of 1,025 residential occupants was administered in late October for the Building Technologies Program (BT) to gather information on residential occupant attitudes, behaviors, knowledge, and perceptions. The next section, Survey Results, provides an overview of the responses, with major implications and caveats. Additional information is provided in three appendices as follows: - Appendix A -- Summary Response: Provides summary tabular data for the 13 questions that, with subparts, comprise a total of 25 questions. - Appendix B -- Benchmark Data: Provides a benchmark by six categories to the 2001 Residential Energy Consumption Survey administered by EIA. These were ownership, heating fuel, geographic location, race, household size and income. - Appendix C -- Background on Survey Method: Provides the reader with an understanding of the survey process and interpretation of the results.

Secrest, Thomas J.

2005-11-07T23:59:59.000Z

19

Building Technologies Office: Partner With DOE and Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Partner With DOE and Partner With DOE and Residential Buildings to someone by E-mail Share Building Technologies Office: Partner With DOE and Residential Buildings on Facebook Tweet about Building Technologies Office: Partner With DOE and Residential Buildings on Twitter Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Google Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Delicious Rank Building Technologies Office: Partner With DOE and Residential Buildings on Digg Find More places to share Building Technologies Office: Partner With DOE and Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links

20

Better Buildings Residential Network Orientation Peer Exchange...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Residential Network Orientation Peer Exchange Webinar Better Buildings Residential Network Orientation Peer Exchange Webinar September 11, 2014 7:00PM to 8:3...

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Better Buildings Residential Network Membership Form | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Network Membership Form Better Buildings Residential Network Membership Form Membership form from the U.S. Department of Energy's Better Buildings Residential Network Recommended...

22

NREL: Buildings Research - Residential Buildings Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Research Staff Residential Buildings Research Staff Members of the Residential Buildings research staff have backgrounds in architectural, civil, electrical, environmental, and mechanical engineering, as well as environmental design and physics. Ren Anderson Dennis Barley Chuck Booten Jay Burch Sean Casey Craig Christensen Dane Christensen Lieko Earle Cheryn Engebrecht Mike Gestwick Mike Heaney Scott Horowitz Kate Hudon Xin Jin Noel Merket Tim Merrigan David Roberts Joseph Robertson Stacey Rothgeb Bethany Sparn Paulo Cesar Tabares-Velasco Jeff Tomerlin Jon Winkler Jason Woods Support Staff Marcia Fratello Kristy Usnick Photo of Ren Anderson Ren Anderson, Ph.D., Manager, Residential Research Group ren.anderson@nrel.gov Research Focus: Evaluating the whole building benefits of emerging building energy

23

Presentation: Better Buildings Residential Program Solution Center  

Energy.gov (U.S. Department of Energy (DOE))

Presentation: Better Buildings Residential Program Solution Center, from the U.S. Department of Energy, Better Buildings Neighborhood Program.

24

Fact Sheet: Better Buildings Residential Network  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

bbrn What Is the Residential Network? The Better Buildings Residential Network connects energy efficiency programs and partners to share best practices and learn from one another...

25

Building America Residential Energy Efficiency Technical Update...  

Energy Savers (EERE)

Residential Energy Efficiency Technical Update Meeting: August 2011 Building America Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link...

26

Better Buildings Residential Network | Department of Energy  

Energy Savers (EERE)

more. Residential Network Members Welcome Our Newest Members Cascadia Consulting Group Johnson Environmental The Building Performance Center, Inc. *Residential Network members that...

27

Comparing advanced exergetic assessments of two geothermal district heating systems for residential buildings  

Science Journals Connector (OSTI)

Abstract Advanced exergy analysis method has been increasingly utilized in analyzing and assessing the performance of energy-related systems in recent years due to more deeply investigating the exergy destructions. In this study, two various geothermal district heating systems (GDHSs), the Afyon and Bigadiç GDHSs, which have been operated in Turkey, were considered to perform their advanced exergy analyses and assessments. The \\{GDHSs\\} studied were also compared with each other for the first time in terms of advanced exergetic aspects. In the analyses and calculations of the GDHS, the actual operational data obtained from the measurements and technical staff were utilized. The overall conventional and advanced exergetic efficiency values for the Afyon GDHS are determined to be 27.53% and 34.72% while those for the Bigadiç GDHS are obtained to be 21.03% and 32.52%, respectively. Considering both the interactions among components and the potential for improving components, more effective and efficient improvement priorities were proposed.

Ali Keçeba?; Can Coskun; Zuhal Oktay; Arif Hepbasli

2014-01-01T23:59:59.000Z

28

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Activities Building Activities The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building sector by at least 50%. The U.S. DOE Solar Decathlon is a biennial contest which challenges college teams to design and build energy efficient houses powered by the sun. Each team competes in 10 contests designed to gauge the performance, livability and affordability of their house. The Building America program develops market-ready energy solutions that improve the efficiency of new and existing homes while increasing comfort, safety, and durability. Guidelines for Home Energy Professionals foster the growth of a high quality residential energy upgrade industry and a skilled and credentialed workforce.

29

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancing Building Energy Codes Advancing Building Energy Codes The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. 75% of U.S. Buildings will be New or Renovated by 2035, Building Codes will Ensure They Use Energy Wisely. Learn More 75% of U.S. Buildings will be New or Renovated by 2035; Building Codes will Ensure They Use Energy Wisely Learn More Energy Codes Ensure Efficiency in Buildings We offer guidance and technical resources to policy makers, compliance verification professionals, architects, engineers, contractors, and other stakeholders who depend on building energy codes.

30

Building Technologies Office: Residential Dishwashers, Dehumidifiers, and  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Residential Dishwashers, Dehumidifiers, and Cooking Products, and Commercial Clothes Washers ANOPR Public Meeting to someone by E-mail Share Building Technologies Office: Residential Dishwashers, Dehumidifiers, and Cooking Products, and Commercial Clothes Washers ANOPR Public Meeting on Facebook Tweet about Building Technologies Office: Residential Dishwashers, Dehumidifiers, and Cooking Products, and Commercial Clothes Washers ANOPR Public Meeting on Twitter Bookmark Building Technologies Office: Residential Dishwashers, Dehumidifiers, and Cooking Products, and Commercial Clothes Washers ANOPR Public Meeting on Google Bookmark Building Technologies Office: Residential Dishwashers, Dehumidifiers, and Cooking Products, and Commercial Clothes Washers ANOPR

31

Better Buildings Neighborhood Program: Residential Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Residential Energy Efficiency Solutions: From Innovation to Market Transformation Conference, July 2012 to someone by E-mail Share Better Buildings Neighborhood Program: Residential Energy Efficiency Solutions: From Innovation to Market Transformation Conference, July 2012 on Facebook Tweet about Better Buildings Neighborhood Program: Residential Energy Efficiency Solutions: From Innovation to Market Transformation Conference, July 2012 on Twitter Bookmark Better Buildings Neighborhood Program: Residential Energy Efficiency Solutions: From Innovation to Market Transformation Conference, July 2012 on Google Bookmark Better Buildings Neighborhood Program: Residential Energy Efficiency Solutions: From Innovation to Market Transformation Conference, July 2012 on Delicious

32

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

1 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

33

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

4 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

34

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

0 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households...

35

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

36

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

7 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

37

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

1 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

38

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

90 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

39

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

2 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

40

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

1 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

7 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

42

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

2 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

43

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

7 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households...

44

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

0 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

45

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

2 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households...

46

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

4 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

47

Presentation: Better Buildings Residential Program Solution Center  

Energy.gov (U.S. Department of Energy (DOE))

Presentation: Better Buildings Residential Program Solution Center, from the U.S. Department of Energy's Better Buildings Neighborhood Program, April 2014.

48

Residential Building Integration Program Overview - 2014 BTO...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Integration Program Overview - 2014 BTO Peer Review Residential Building Integration Program Overview - 2014 BTO Peer Review Presenter: David Lee, U.S. Department of...

49

NREL Residential Buildings Group Partners - Datasets - OpenEI...  

Open Energy Info (EERE)

Residential Buildings ... Dataset Activity Stream NREL Residential Buildings Group Partners This spreadsheet contains a list of all the companies with which NREL's Residential...

50

THE PENNSYLVANIA STATE UNIVERSITY HANKIN CHAIR IN RESIDENTIAL BUILDING CONSTRUCTION  

E-Print Network (OSTI)

research in the areas of residential building design and construction, sustainable buildings, energy issues in residential buildings, lifecycle analysis of buildings and related infrastructure, and sustainable landTHE PENNSYLVANIA STATE UNIVERSITY HANKIN CHAIR IN RESIDENTIAL BUILDING CONSTRUCTION The College

Guiltinan, Mark

51

Energy Efficiency Trends in Residential and Commercial Buildings...  

Energy Savers (EERE)

Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Energy Efficiency Trends in Residential and Commercial Buildings - August 2010 Overview of building...

52

Better Buildings Residential Network Case Study: Partnerships  

Energy.gov (U.S. Department of Energy (DOE))

Better Buildings Residential Network Case Study: Partnerships, from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

53

Residential Buildings Integration | Department of Energy  

Office of Environmental Management (EM)

demonstrating, and deploying cost-effective solutions, BTO strives to reduce energy consumption across the residential building sector by at least 50%. Research and Development...

54

Air Barriers for Residential and Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Barriers for Residential and Air Barriers for Residential and Commercial Buildings Diana Hun, PhD Oak Ridge National Laboratory dehun@ornl.gov 865-574-5139 April 4, 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov Problem Statement & Project Focus - Air leakage is a significant contributor to HVAC loads - ~50% in residential buildings (Sherman and Matson 1997) - ~33% of heating loads in office buildings (Emmerich et al. 2005) - Airtightness of buildings listed in BTO prioritization tool

55

Air Barriers for Residential and Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Barriers for Residential and Air Barriers for Residential and Commercial Buildings Diana Hun, PhD Oak Ridge National Laboratory dehun@ornl.gov 865-574-5139 April 4, 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov Problem Statement & Project Focus - Air leakage is a significant contributor to HVAC loads - ~50% in residential buildings (Sherman and Matson 1997) - ~33% of heating loads in office buildings (Emmerich et al. 2005) - Airtightness of buildings listed in BTO prioritization tool

56

Energy Department Announces $5 Million for Residential Building...  

Office of Environmental Management (EM)

Announces 5 Million for Residential Building Energy Efficiency Research and University-Industry Partnerships Energy Department Announces 5 Million for Residential Building Energy...

57

Better Buildings Residential Program - 2014 BTO Peer Review ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Program - 2014 BTO Peer Review Better Buildings Residential Program - 2014 BTO Peer Review Presenter: Danielle Byrnett, U.S. Department of Energy The Better Buildings...

58

Better Buildings Residential Network: Lessons Learned: Peer Exchange...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Network: Lessons Learned: Peer Exchange Calls Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls Better Buildings Residential Network: Lessons Learned: Peer...

59

Residential Building Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Building Renovations Residential Building Renovations Residential Building Renovations October 16, 2013 - 4:57pm Addthis Renewable Energy Options Residential Building Renovations Photovoltaics Daylighting Solar Water Heating Geothermal Heat Pumps (GHP) Biomass Heating In some circumstances, Federal agencies may face construction or renovation of residential units, whether single-family, multi-family, barracks, or prisons. Based on typical domestic energy needs, solar water heating and photovoltaic systems are both options, depending on the cost of offset utilities. These systems can be centralized for multi-family housing to improve system economics. Daylighting can reduce energy costs and increase livability of units. Geothermal heat pumps (GHP) are a particularly cost-effective option in

60

Building Technologies Office: Residential Furnaces and Boilers Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Furnaces Residential Furnaces and Boilers Framework Meeting to someone by E-mail Share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Facebook Tweet about Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Twitter Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Google Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Delicious Rank Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Digg Find More places to share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fact Sheet: Better Buildings Residential Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Sheet Sheet BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.gov/bbrn What Is the Residential Network? The Better Buildings Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to dramatically increase the number of American homes that are energy efficient. Since 2010, the U.S. Department of Energy (DOE), local Better Buildings Neighborhood Program partners, and Home Performance with ENERGY STAR ® Sponsors have leveraged over $1 billion in federal funding and local resources to build more energy-efficient communities. DOE is now expanding this network of residential energy efficiency programs and partners to new members. Who Should Join? Network membership is open to all organizations that are committed to accelerating the pace of energy

62

Better Buildings Residential Program Solution Center Demonstration Webinar  

Energy.gov (U.S. Department of Energy (DOE))

Demonstration webinar slides for Better Buildings Residential Program Solution Center, November 19, 2014.

63

Discover the New Better Buildings Residential Program Solution Center  

Energy.gov (U.S. Department of Energy (DOE))

A transcript of "Discover the New Better Buildings Residential Program Solution Center," Better Buildings Neighborhood Program Webcast, June 19, 2014.

64

Membership Criteria: Better Buildings Residential network  

NLE Websites -- All DOE Office Websites (Extended Search)

Criteria Criteria BETTER BUILDINGS RESIDENTIAL NETWORK Learn more at betterbuildings.energy.gov/bbrn Better Buildings Residential Network (BBRN) members must be supportive of residential energy efficiency and the mission of the BBRN. Members are expected to be legally incorporated organizations or institutions, rather than individuals, actively engaged in the field of existing residential building energy efficiency with an ability to impact the market. Members should have the ability and capacity to carry out the requirements for membership (i.e., reporting the annual number of upgrades in their sphere of influence, and associated benefits), and actively engage as a member. Members must actively engage in significant work supporting, studying, researching, reporting, and/or

65

Building Technologies Office: Residential Energy Efficiency Stakeholder  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Stakeholder Meeting - Spring 2012 Energy Efficiency Stakeholder Meeting - Spring 2012 The U.S. Department of Energy (DOE) Building America program held the second annual Residential Energy Efficiency Stakeholder Meeting on February 29-March 2, 2012, in Austin, Texas. At this meeting, hundreds of building industry professionals came together to share their perspective on the most current innovation projects in the residential buildings sector. This meeting provided an opportunity for researchers and industry stakeholders to showcase and discuss the latest in cutting-edge, energy-efficient residential building technologies and practices. The meeting also included working sessions from each Standing Technical Committee (STC), which outlined work that will best assist in overcoming technical challenges and delivering Building America research results to the market. Learn more about the STCs and the research planning process.

66

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

67

Improving the Energy Efficiency of Residential Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings Residential Buildings Improving the Energy Efficiency of Residential Buildings Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology. Learn More Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology. Learn More The Building Technologies Office (BTO) collaborates with the residential building industry to improve the energy efficiency of both new and existing homes. By developing, demonstrating, and deploying cost-effective solutions, BTO strives to reduce energy consumption across the residential building sector by at least 50%. Research and Development Conduct research that focuses on engineering solutions to design, test, and

68

Better Buildings Residential Program Solution Center Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Danielle Sass Byrnett Better Buildings Residential Building Technologies Office Program Solution Center Demonstration Outline * Goals, History, Content Sources * Tour: Organization - Program Components - Handbooks * Tour: Navigation Options * Tour: Examples * Next Steps * Questions & Feedback 2 eere.energy.gov Overview 3 eere.energy.gov Purpose: Support Residential Energy Efficiency Upgrade Programs & Partners * Provide an easily accessed repository for key lessons, resources, and knowledge collected from the experience of past programs. * Help programs and their partners plan, implement, manage, and evaluate better * Help stakeholders leapfrog past missteps en route to a larger and more successful industry. 4 eere.energy.gov Intended Audiences

69

Evaluating Residential Buildings for Statewide Compliance | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings for Statewide Compliance Residential Buildings for Statewide Compliance The materials for this course may be used for in-person training courses, and are intended to provide the tools and specific training necessary to evaluate residential compliance with the 2009 International Energy Conservation Code (IECC). The course also provides useful training in general residential field inspection for energy code compliance. The recommended background for taking this course is significant experience and/or certification on the IECC in a plan review or inspection capacity. Presenters: Course materials originally published by the DOE Building Energy Codes Program, July 16, 2010. Course Type: Training Materials Video In-person Downloads: Presentation Slides Presentation Slides Presentation Slides and Windows Media Videos

70

Building America Research Teams: Spotlight on Alliance for Residential Building Innovation (ARBI) and Building America Research Alliance (BARA)  

Energy.gov (U.S. Department of Energy (DOE))

This article profiles the Building America teams, Alliance for Residential Building Innovation (ARBI) and Building America Research Alliance (BARA).

71

Better Buildings Neighborhood Program: What's Working in Residential Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

What's Working What's Working in Residential Energy Efficiency Upgrade Programs Workshop, May 2011 to someone by E-mail Share Better Buildings Neighborhood Program: What's Working in Residential Energy Efficiency Upgrade Programs Workshop, May 2011 on Facebook Tweet about Better Buildings Neighborhood Program: What's Working in Residential Energy Efficiency Upgrade Programs Workshop, May 2011 on Twitter Bookmark Better Buildings Neighborhood Program: What's Working in Residential Energy Efficiency Upgrade Programs Workshop, May 2011 on Google Bookmark Better Buildings Neighborhood Program: What's Working in Residential Energy Efficiency Upgrade Programs Workshop, May 2011 on Delicious Rank Better Buildings Neighborhood Program: What's Working in Residential Energy Efficiency Upgrade Programs Workshop, May 2011 on Digg

72

Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls  

Energy.gov (U.S. Department of Energy (DOE))

Better Buildings Residential Network: Lessons Learned: Peer Exchange Calls, from the U.S. Department of Energy.

73

Advancing Building Energy Codes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Advancing Building Energy Codes Advancing Building Energy Codes 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. Energy Codes Ensure Efficiency in Buildings

74

Residential Building Industry Consulting Services | Open Energy Information  

Open Energy Info (EERE)

Residential Building Industry Consulting Services Residential Building Industry Consulting Services Jump to: navigation, search Name Residential Building Industry Consulting Services Place New York, NY Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Residential Building Industry Consulting Services is a company located in New York, NY. References Retrieved from "http://en.openei.org/w/index.php?title=Residential_Building_Industry_Consulting_Services&oldid=381757" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages

75

Advanced Controls and Sustainable Systems for Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Controls and Sustainable Systems for Residential Ventilation Advanced Controls and Sustainable Systems for Residential Ventilation Title Advanced Controls and Sustainable Systems for Residential Ventilation Publication Type Report LBNL Report Number LBNL-5968E Year of Publication 2012 Authors Turner, William J. N., and Iain S. Walker Date Published 12/2012 Keywords ashrae standard 62,2, california title 24, passive ventilation, residential ventilation, ventilation controller Abstract Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health, and compliance with standards, such as ASHRAE 62.2. At the same time we wish to reduce the energy use in homes and therefore minimize the energy used to provide ventilation. This study examined several approaches to reducing the energy requirements of providing acceptable IAQ in residential buildings. Two approaches were taken. The first used RIVEC - the Residential Integrated VEntilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. The second used passive and hybrid ventilation systems, rather than mechanical systems, to provide whole-house ventilation.

76

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network (OSTI)

The China Residential Energy Consumption Survey, Human andof Residential Building Energy Consumption in China Nan ZhouResidential Building Energy Consumption in China Nan Zhou*,

Zhou, Nan

2010-01-01T23:59:59.000Z

77

Measuring Airflows at Registers in Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Airflows at Registers in Residential Buildings Measuring Airflows at Registers in Residential Buildings Speaker(s): Cyril Guillot Date: August 29, 2002 - 12:00pm Location: Bldg. 90 Measuring airflows at registers is a central issue in all HVAC (Heating Ventilation and Air Conditioning) studies. It is a basic measurement that is required in many Cooling/Heating systems tests and in air conditioner performance diagnostics. These measurements can, for instance, be used to determine if individual rooms receive adequate airflow in terms of comfort, to estimate total air handler flow and supply/return imbalances, and to assess duct air leakage. First, I calibrated the Minneapolis Duct Blasters, useful in the most accurate flow hood we have, then I worked on an existing project: measuring airflows with laundry baskets. Finally, I

78

Partner With DOE and Residential Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » Partner With DOE and Residential Buildings Residential Buildings » Partner With DOE and Residential Buildings Partner With DOE and Residential Buildings The U.S. Department of Energy (DOE) partners with a variety of organizations to improve the energy efficiency of residential buildings. Home builders, governments, researchers, and universities have several opportunities to work with the Building Technologies Office and other DOE projects. Home Builders Home builders who want to be recognized for building high performance homes can find out what it takes to participate in DOE's Challenge Home and sign up today. DOE Challenge Homes are verified by a qualified third-party and are at least 40%-50% more energy efficient than a typical new home. State or Local Governments, Utilities, and Other Organizations

79

About the Better Buildings Residential Network | Department of...  

Office of Environmental Management (EM)

partners to share best practices and learn from one another to increase the number of homes that are energy efficient. Better Buildings Residential programs and partners have...

80

City of Frisco - Residential and Commercial Green Building Codes |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Frisco - Residential and Commercial Green Building Codes City of Frisco - Residential and Commercial Green Building Codes City of Frisco - Residential and Commercial Green Building Codes < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Sealing Your Home Ventilation Insulation Program Info State Texas Program Type Building Energy Code Provider Frisco Department of Planning and Development '''''Note: In the spring on 2012, the city of Frisco was working to update the residential requirements. No official city council action had been taken at the time this summary was updated. Check program web site for current status of updates.''''' The city of Frisco administers a green building program with separate rules

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Ozone Reductions Using Residential Building Envelopes  

SciTech Connect

Ozone is an air pollutant with that can have significant health effects and a significant source of ozone in some regions of California is outdoor air. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone could lead to improved health for many California residents. Ozone is removed from indoor air by surface reactions and can also be filtered by building envelopes. The magnitude of the envelope impact depends on the specific building materials that the air flows over and the geometry of the air flow paths through the envelope that can be changes by mechanical ventilation operation. The 2008 Residential Building Standards in California include minimum requirements for mechanical ventilation by referencing ASHRAE Standard 62.2. This study examines the changes in indoor ozone depending on the mechanical ventilation system selected to meet these requirements. This study used detailed simulations of ventilation in a house to examine the impacts of different ventilation systems on indoor ozone concentrations. The simulation results showed that staying indoors reduces exposure to ozone by 80percent to 90percent, that exhaust ventilation systems lead to lower indoor ozone concentrations, that opening of windows should be avoided at times of high outdoor ozone, and that changing the time at which mechanical ventilation occurs has the ability to halve exposure to ozone. Future work should focus on the products of ozone reactions in the building envelope and the fate of these products with respect to indoor exposures.

Walker, Iain S.; Sherman, Max; Nazaroff, William W.

2009-02-01T23:59:59.000Z

82

City of Austin - Commercial and Residential Green Building Requirements |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » City of Austin - Commercial and Residential Green Building Requirements City of Austin - Commercial and Residential Green Building Requirements < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Buying & Making Electricity Water Heating Water Heating Wind Program Info State Texas Program Type Building Energy Code Provider Austin Energy '''''Note: The requirements listed below are current only up to the date of last review (see the top of this page). The City of Austin may also make additional requirements depending on the circumstances of a given project.

83

Sustainability Assessment of Residential Building Energy System in Belgrade  

E-Print Network (OSTI)

of harmful substances. Multi-criteria method is a basic tool for the sustainability assessment in metropolitan cities. The design of potential options is the first step in the evaluation of buildings. The selection of a number of residential buildings...

Vucicevic, B.; Bakic, V.; Jovanovic, M.; Turanjanin, V.

2010-01-01T23:59:59.000Z

84

Steam System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam System Balancing Steam System Balancing and Tuning for Multifamily Residential Buildings Chicago, Illinois PROJECT INFORMATION Project Name: Steam System Balancing and Tuning for Multifamily Residential Buildings Location: Chicago, IL Partners: Partnership for Advanced Residential Retrofit www.gastechnology.org Building Component: Steam heating distribution system and controls Application: Retrofit; Multifamily Year Tested: 2011-2012 Applicable Climate Zone(s): Cold humid continental PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $9,000 on average Projected Energy Savings: 10.2% heating savings Chicago's older multifamily housing stock is primarily heated by centrally metered steam or hydronic systems. Often, significant temperature differentials

85

City of Cleveland - Residential Property Tax Abatement for Green Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Cleveland - Residential Property Tax Abatement for Green City of Cleveland - Residential Property Tax Abatement for Green Buildings City of Cleveland - Residential Property Tax Abatement for Green Buildings < Back Eligibility Construction Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Program Info Start Date 01/01/2010 State Ohio Program Type Property Tax Incentive Rebate Amount 100% for 10-15 years Provider City of Cleveland Department of Community Development The City of Cleveland, in cooperation with the Cuyahoga County Auditor's Office, provides a 100% tax abatement for residential properties built to

86

Building America Expert Meeting: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces  

Energy.gov (U.S. Department of Energy (DOE))

This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

87

Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

In this project, researchers from the Consortium for Advanced Residential Buildings team worked with industry partners to develop hydronic system designs that would address performance issues and result in higher overall system efficiencies and improved response times.

88

Connecticut State Certification of Commercial and Residential Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Connecticut State Certification of Commercial and Residential Building Connecticut State Certification of Commercial and Residential Building Energy Codes The purpose of this letter is to document that the State of Connecticut has met its stautory requirement with regard to adoption of energy codes that meet or exceed the 2009 International Energy Conservation Code for residential buildings and ASHRAE Standard 90.1-2007 for commercial buildings. Publication Date: Tuesday, July 16, 2013 CT Certification of Building Energy Codes.pdf Document Details Last Name: Cassidy Initials: JV Affiliation: Connecticut Department of Administrative Services, Division of Construction Services Prepared by: prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program Focus: Adoption Building Type:

89

Audit Procedures for Improving Residential Building Energy Efficiency  

E-Print Network (OSTI)

Audit Procedures for Improving Residential Building Energy Efficiency This report analyses Sustainability Program Subtask 3.5.1: Residential Energy Efficiency Deliverable 1 Prepared by The University Delivery and Energy Reliability As part of Cooperative Agreement No. DE-EE0003507 Under Task 3.5: Energy

90

Energy Audit Results for Residential Building Energy Efficiency  

E-Print Network (OSTI)

Energy Audit Results for Residential Building Energy Efficiency Forrest City Phases I and II This report analyses complete energy audit results from 28 homes within the Forest City residential complex. Relationships between temperature, humidity, comfort, and energy consumption are detailed. Recommendations

91

Building Technologies Program: Tax Incentives for Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program Tax Incentives for Residential Buildings On this page you'll find information about the tax deductions available for purchasing and installing energy-efficient products and constructing new energy-efficient homes. The American Recovery and Reinvestment Act of 2009 offers tax credits for residential energy efficiency measures and renewable energy systems. Many of these credits were originally introduced in the Energy Policy Act of 2005 (EPACT) and amended in the Emergency Economic Stabilization Act of 2008 (P.L. 110-343). Energy Efficiency Tax Credits for Existing Homes Homeowners are eligible for a tax credit of 30% of the cost for improvements to windows, roofing, insulation, and heating and cooling equipment. These improvements must be placed in service from January 1, 2009 through December 31, 2010 and there is a limit of $1,500 for all products. Improvements made in 2008 are not eligible for a tax credit. See the ENERGY STAR® Web site for a detailed listing of eligible improvements.

92

Residential and commercial buildings data book: Third edition  

SciTech Connect

This Data Book updates and expands the previous Data Book originally published by the Department of Energy in September, 1986 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; and Additional Buildings and Community Systems Information. 12 refs., 59 figs., 118 tabs.

Amols, G.R.; Howard, K.B.; Nicholls, A.K.; Guerra, T.D.

1988-02-01T23:59:59.000Z

93

Better Buildings Residential Network Membership Form  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Are You Already a DOE Partner or Sponsor? (Check if applicable) Better Buildings Alliance Member Building America Team Member Better Buildings Challenge Partner or Ally Home...

94

Tax Incentives for Residential Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings Residential Buildings Tax Incentives for Residential Buildings On this page you'll find information about the tax deductions available for purchasing and installing energy-efficient products and constructing new energy-efficient homes. The American Recovery and Reinvestment Act of 2009 offers tax credits for residential energy efficiency measures and renewable energy systems. Many of these credits were originally introduced in the Energy Policy Act of 2005 (EPACT) and amended in the Emergency Economic Stabilization Act of 2008 (P.L. 110-343). Energy Efficiency Tax Credits for Existing Homes Homeowners are eligible for a tax credit of 30% of the cost for improvements to windows, roofing, insulation, and heating and cooling equipment. These improvements must be placed in service from January 1,

95

DOE Buildings Performance Database, sample Residential data | OpenEI  

Open Energy Info (EERE)

Buildings Performance Database, sample Residential data Buildings Performance Database, sample Residential data Dataset Summary Description This is a non-proprietary subset of DOE's Buildings Performance Database. Buildings from the cities of Dayton, OH and Gainesville, FL areas are provided as an example of the data in full database. Sample data here is formatted as CSV The Buildings Performance Database will have an API that allows access to the statistics about the data without exposing private information about individual buildings. The data available in this sample is limited due to the nature of the original datasets; the Buildings Performance database combines data from multiple sources to improve overall robustness. Data fields stored in the database can be seen in the BPD taxonomy: http://www1.eere.energy.gov/buildings/buildingsperformance/taxonomy.html

96

Building America Technology Solutions for New and Existing Homes: Optimizing Hydronic System Performance in Residential Applications, Ithaca, New York (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

In this project, researchers from Building America team Consortium for Advanced Residential Buildings worked with industry partners to develop hydronic system designs that would address barriers and result in higher overall system efficiencies and improved response times.

97

Residential  

Science Journals Connector (OSTI)

The residential sector can be divided into apartment blocks and low-rise housing. Apartment blocks have many similarities to the non-domestic sector, such as office buildings, which are covered by the range of...

2009-01-01T23:59:59.000Z

98

Building energy calculator : a design tool for energy analysis of residential buildings in Developing countries  

E-Print Network (OSTI)

Buildings are one of the world's largest consumers of energy, yet measures to reduce energy consumption are often ignored during the building design process. In developing countries, enormous numbers of new residential ...

Smith, Jonathan Y. (Jonathan York), 1979-

2004-01-01T23:59:59.000Z

99

Building America Technology Solutions for New and Existing Homes: Advanced Boiler Load Monitoring Controllers, Chicago, Illinois  

Energy.gov (U.S. Department of Energy (DOE))

In this project, the Building America team Partnership for Advanced Residential Retrofit (PARR) installed and monitored an ALM aftermarket controller, the M2G from Greffen Systems, at two Chicago area multifamily buildings with existing OTR control.

100

Residential Building Integration Program Overview- 2014 BTO Peer Review  

Energy.gov (U.S. Department of Energy (DOE))

Presenter: David Lee, U.S. Department of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Residential Building Integration Program. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs.

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Better Buildings Residential Program Solution Center Demonstration Webinar Transcript  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Residential Program Solution Center is a robust online collection of nearly 1,000 examples, strategies, and resources from Better Buildings Neighborhood Program partners, Home Performance with ENERGY STAR® Sponsors, and others. This webinar presented on November 19, 2014 gives more information on the Solution Center.

102

BetterBuildings for Michigan: Residential Program  

Energy.gov (U.S. Department of Energy (DOE))

This is a document from BetterBuildings for Michigan posted on the website of the U.S. Department of Energy's Better Buildings Neighborhood Program

103

City of Portland - Streamlined Building Permits for Residential Solar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Oregon Program Type Green Building Incentive Provider City of Portland The City of Portland's Bureau of Development Services (BDS) developed an electronic permitting process for residential solar energy system installations. With this streamlined, expedited process, solar contractors can submit the project plans and permit application online for residential installations. In order to file the online application, the contractor must first be trained. The City of Portland has staff at the permitting desk trained as solar experts to assist solar contractors who need help filing their permits in person. This process has a turnaround time of approximately 2-3 business days for building permits.

104

Building Technologies Office: Building America's Top Innovations Advance  

NLE Websites -- All DOE Office Websites (Extended Search)

America's Top America's Top Innovations Advance High Performance Homes to someone by E-mail Share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Facebook Tweet about Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Twitter Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Google Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Delicious Rank Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Digg Find More places to share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on AddThis.com...

105

Summary Review of Advanced Inverter Technologies for Residential PV Systems  

E-Print Network (OSTI)

Summary Review of Advanced Inverter Technologies for Residential PV Systems This report summarizes current and emerging standards for residential PV systems and identifies the status of emerging inverter of Hawai`i at Manoa #12;Summary of Inverter Technologies Prepared for the U.S. Department of Energy Office

106

NREL Partnerships with External Organizations (Residential Buildings Group)  

Open Energy Info (EERE)

Partnerships with External Organizations (Residential Buildings Group) Partnerships with External Organizations (Residential Buildings Group) Dataset Summary Description This spreadsheet contains a list of all the companies with which NREL's Residential Buildings Group has formed a partnership. The two types of partnership included in this spreadsheet are: Incubator and Test & Evaluation. This list was generated in April 2011. Source NREL Date Released April 07th, 2011 (3 years ago) Date Updated Unknown Keywords incubator NREL partnerships Test & Evaluation Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon members_and_partners_-_nrel_resbldgs_04072011.xlsx (xlsx, 29.8 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below

107

Modeling of Residential Buildings and Heating Systems  

E-Print Network (OSTI)

-zone building model is used in each case. A model of the heating system is also used for the multi-storey building. Both co-heating and tracer gas measurements are used in order to adjust the parameters of each building model. A complete monitoring...

Masy, G.; Lebrun, J.

2004-01-01T23:59:59.000Z

108

Residential and commercial buildings data book. Second edition  

SciTech Connect

This Data Book updates and expands the previous Data Book originally published by the Department of Energy in October, 1984 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; Additional Buildings and Community Systems Information. This Data Book complements another Department of Energy document entitled ''Overview of Building Energy Use and Report of Analysis-1985'' October, 1985 (DOE/CE-0140). The Data Book provides supporting data and documentation to the report.

Crumb, L.W.; Bohn, A.A.

1986-09-01T23:59:59.000Z

109

Residential Buildings Integration | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Use a whole building approach for home upgrades through ENERGY STAR. Support energy efficiency upgrade markets by providing grants to states, local governments, and...

110

Lighting in Residential and Commercial Buildings (1993 and 1995 Data) --  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Home > Special Topics and Data Reports > Types of Lights Commercial Buildings Home > Special Topics and Data Reports > Types of Lights Picture of a light bulb At Home and At Work: What Types of Lights Are We Using? Two national EIA surveys report that . . . Of residential households, 98 percent use incandescent, 42 percent use fluorescent. Of commercial buildings, 59 percent use incandescent, 92 percent use fluorescent. At a glance, we might conclude that substantial energy savings could occur in both the residential and commercial sectors if they replaced their incandescent lights with fluorescent lights, given that fluorescent lights consume approximately 75-85 percent less electricity than incandescent lights. In the residential sector, this is true. However, in the commercial sector, where approximately 92 percent of the buildings already use fluorescent lights, increasing energy savings will require upgrading existing lights and lighting systems. To maximize energy savings, analysis must also consider the hours the lights are used and the amount of floorspace lit by that lighting type. Figures 1 and 2 show the types of lights used by the percent of households and by the percent of floorspace lit for the residential and the commercial sectors, respectively.

111

National Residential Efficiency Measures Database- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes the DOE-sponsored National Residential Efficiency Measures Database, which contains performance characteristics and cost estimates for nearly 3,000 energy retrofit measures. To date, it is used in four prominent DOE software packages to help optimize energy-efficiency recommendations.

112

Assessing and Improving the Accuracy of Energy Analysis for Residential Buildings  

SciTech Connect

This report describes the National Renewable Energy Laboratory's (NREL) methodology to assess and improve the accuracy of whole-building energy analysis for residential buildings.

Polly, B.; Kruis, N.; Roberts, D.

2011-07-01T23:59:59.000Z

113

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

Residential Building Component Loads as of 1998 (1) 1) "Load" represents the thermal energy lossesgains that when combined will be offset by a building's heatingcooling system...

114

Building Technologies Office: Advanced Energy Retrofit Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Retrofit Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Retrofit Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Retrofit Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Google Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Delicious Rank Building Technologies Office: Advanced Energy Retrofit Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Retrofit Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

115

Impacts of the 2009 IECC for Residential Buildings at State Level - Minnesota  

NLE Websites -- All DOE Office Websites (Extended Search)

Minnesota Minnesota September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN MINNESOTA BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN MINNESOTA Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Minnesota Summary The energy efficiency requirements in the Minnesota building code are based on the 2006 International Residential Code (IRC) with relatively extensive modifications. The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the 2006 IRC. The most notable

116

National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost- effective retrofit measures to improve the energy efficiency of residential buildings. This database: * Provides information in a standardized format. * Improves the technical consistency and accuracy of the results of software programs. * Enables experts and stakeholders to view the retrofit information and provide comments to improve data

117

Building America Residential Buildings Energy Efficiency Meeting: July 2010  

Energy.gov (U.S. Department of Energy (DOE))

On this page, you may link to the summary report and presentations for the Building America Energy Efficiency meeting in July 2011, held in Denver, Colorado.

118

Impacts of the 2009 IECC for Residential Buildings at State Level - Delaware  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware Delaware September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN DELAWARE BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN DELAWARE Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Delaware Summary Delaware recently adopted the 2009 International Energy Conservation Code (IECC). The code becomes effective July 1, 2010. Overview of the 2009 IECC The IECC scope includes residential single-family housing and multifamily housing three stories or less above-

119

Impacts of the 2009 IECC for Residential Buildings at State Level - New Hampshire  

NLE Websites -- All DOE Office Websites (Extended Search)

Hampshire Hampshire September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEW HAMPSHIRE BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEW HAMPSHIRE Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in New Hampshire Summary New Hampshire has adopted the 2009 International Energy Conservation Code (IECC). The code becomes effective October 1, 2009. Overview of the 2009 IECC The IECC scope includes residential single-family housing and multifamily housing three stories or less above-

120

Buildings Energy Data Book: 2.6 Residential Home Improvement  

Buildings Energy Data Book (EERE)

1 1 Value of Residential Building Improvements and Repairs, by Sector ($2010 Billion) (1) Total 1980 72.2 35.2 107.4 1985 82.3 65.3 147.6 1990 91.4 85.5 176.9 1995 105.8 63.8 169.6 2000 138.2 52.7 191.0 2003 156.2 51.9 208.0 2004 169.2 57.9 227.1 2005 179.0 59.7 238.6 2006 187.4 57.2 244.6 2007 (2) 178.7 57.0 235.7 Note(s): Source(s): Improvements Maintenance and Repairs 1) Improvements includes additions, alterations, reconstruction, and major replacements. Repairs include maintenance. 2) The US Census Bureau discontinued the Survey of Residential Alterations and Repairs (SORAR) after 2007. DOC, Historic Expenditures for Residential Properties by Property Type: Quarterly 1962-2003 (Old structural purposes) for 1980-2000; DOC, Historic Expenditures for Residential Proerties by Property Type: Quarterly 2003-2007 (New structural purposes) for 1995-2007; and EIA, Annual Energy Review

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Impacts of the 2009 IECC for Residential Buildings at State Level - Wisconsin  

NLE Websites -- All DOE Office Websites (Extended Search)

Wisconsin Wisconsin September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN WISCONSIN BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN WISCONSIN Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Wisconsin Summary The energy efficiency requirements in the Wisconsin building code are the 2006 International Energy Conservation Code (IECC) with amendments that increase stringency. The 2009 IECC contains several major improvements in energy efficiency over the 2006 IECC and the Wisconsin code for the total building energy

122

Energy Efficiency Standards for New Federal Low-Rise Residential Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards for New Federal Low-Rise Residential Standards for New Federal Low-Rise Residential Buildings Energy Efficiency Standards for New Federal Low-Rise Residential Buildings October 8, 2013 - 1:57pm Addthis DOE recently updated the requirements for energy efficiency in newly constructed federal buildings. The new rule, 10 CFR 435, Subpart A: Energy Efficiency Standards for New Federal Low-Rise Residential Buildings, applies to residential buildings (one- and two-family dwellings as well as multifamily buildings three stories or less in height) for which design for construction began on or after August 10, 2012. The rule updates the baseline standard in 10 CFR 435, Subpart A to the 2009 IECC. New federal residential buildings are required (effective August 10, 2012) to achieve the 2009 IECC level of energy efficiency or 30% greater

123

Residential Requirements of the 2009 IECC | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

09 IECC 09 IECC This training includes an overview of the residential requirements of the 2009 International Energy Conservation Code. Estimated Length: 1 hour, 9 minutes Presenters: Todd Taylor, Pacific Northwest National Laboratory Original Webcast Date: Tuesday, June 16, 2009 - 13:00 CEUs Offered: 1.0 AIA/CES LU (HSW); .10 CEUs towards ICC renewal certification. Course Type: Video Downloads: Video Transcript Presentation Slides Video Watch on YouTube Visit the BECP Online Training Center for instructions on how to obtain a certificate of completion. Building Type: Residential Focus: Compliance Code Version: 2009 IECC Target Audience: Architect/Designer Builder Code Official Contractor Engineer Federal Official State Official Contacts Web Site Policies U.S. Department of Energy

124

Building America Technology Solutions for New and Existing Homes: Steam System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

The Partnership for Advanced Residential Retrofit (PARR), a U.S. Department of Energy Building America team, conducted a study to identify best practices, costs, and savings associated with balancing steam distribution systems through increased main line air venting, radiator vent replacement, and boiler control system upgrades.

125

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 57.3 42.5 99.4 114 49 84.3 33 615 0.26 456 176 Census Region and Division Northeast 11.7 7.4 21.2 139 49 88.5 34 898 0.31 571 221 New England 1.7 1.0 3.0 155 49 86.8 33 1,044 0.33 586 223 Middle Atlantic 10.0 6.5 18.2 137 49 88.8 35 877 0.31 568 221

126

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

3 3 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 58.7 46.0 111.9 115 47 89.9 34 696 0.29 546 206 Census Region and Division Northeast 12.2 7.7 23.3 145 48 90.9 35 1,122 0.37 703 272 New England 2.2 1.2 4.2 154 45 85.7 34 1,298 0.38 722 290 Middle Atlantic 10.0 6.4 19.1 143 48 92.0 35 1,089 0.37 699 269

127

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 86.3 67.4 144.3 37 17 28.8 11 808 0.38 632 234 Census Region and Division Northeast 18.3 13.0 35.0 31 12 22.3 8 938 0.35 665 245 New England 4.3 3.1 9.0 31 11 22.6 8 869 0.30 635 227 Middle Atlantic 14.0 9.9 26.0 32 12 22.2 8 959 0.36 674 251

128

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

Fuel Oil/Kerosene, 2001 Fuel Oil/Kerosene, 2001 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 11.2 9.4 26.0 80 29 67.1 26 723 0.26 607 236 Census Region and Division Northeast 7.1 5.4 16.8 111 36 84.7 33 992 0.32 757 297 New England 2.9 2.5 8.0 110 35 96.3 39 1,001 0.32 875 350 Middle Atlantic 4.2 2.8 8.8 112 36 76.6 30 984 0.32 675 260

129

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 57.7 44.8 106.3 109 46 84.2 32 609 0.26 472 181 Census Region and Division Northeast 11.9 7.7 23.6 134 44 86.8 33 952 0.31 615 232 New England 2.0 1.1 3.5 146 45 76.0 29 1,135 0.35 592 227 Middle Atlantic 9.9 6.6 20.1 133 44 89.1 34 923 0.30 620 234

130

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 55.4 41.3 93.2 121 53 89.9 33 722 0.32 537 198 Census Region and Division Northeast 11.7 7.5 21.1 125 44 79.2 30 925 0.33 588 221 New England 2.0 1.3 4.2 122 39 80.3 29 955 0.30 626 224 Middle Atlantic 9.7 6.1 16.9 125 45 78.9 30 919 0.33 580 220

131

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

1 1 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 7.3 7.2 12.2 44 26 42.8 15 389 0.23 382 133 Census Region and Division Northeast 1.2 1.1 2.7 29 11 26.2 9 318 0.13 288 94 New England 0.5 0.4 1.0 25 11 22.5 8 282 0.12 250 91 Middle Atlantic 0.7 0.7 1.7 31 12 28.6 9 341 0.13 312 96

132

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 17.4 14.0 33.3 87 37 70.3 27 513 0.22 414 156 Census Region and Division Northeast 9.1 6.3 17.8 140 49 96.0 37 808 0.28 556 212 New England 2.6 2.0 5.8 130 46 102.1 39 770 0.27 604 233 Middle Atlantic 6.5 4.2 12.1 144 51 93.6 36 826 0.29 537 204

133

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 90.5 70.4 156.8 39 18 30.5 12 875 0.39 680 262 Census Region and Division Northeast 19.0 13.2 36.8 34 12 23.3 9 934 0.34 648 251 New England 4.3 3.0 8.4 33 12 22.9 9 864 0.30 600 234 Middle Atlantic 14.8 10.2 28.4 34 12 23.4 9 954 0.34 661 256

134

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 107.0 85.2 211.2 46 18 36.0 14 1,178 0.48 938 366 Census Region and Division Northeast 20.3 14.1 43.7 37 12 26.0 11 1,268 0.41 883 362 New England 5.4 4.1 13.2 32 10 24.0 10 1,121 0.35 852 358 Middle Atlantic 14.8 10.0 30.5 40 13 27.0 11 1,328 0.44 894 364

135

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 7.8 7.7 12.0 41 26 40.1 15 406 0.26 398 146 Census Region and Division Northeast 1.4 1.2 2.7 23 10 20.1 7 295 0.13 264 91 New England 0.5 0.4 1.0 31 14 27.6 9 370 0.17 330 114 Middle Atlantic 0.9 0.8 1.8 18 8 15.9 6 253 0.11 226 79

136

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

90 90 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 16.3 13.5 33.2 77 31 63.9 23 609 0.25 506 181 Census Region and Division Northeast 8.9 6.4 19.3 121 40 87.7 32 950 0.32 690 253 New England 2.5 2.1 5.9 121 43 99.0 39 956 0.34 784 307 Middle Atlantic 6.3 4.4 13.4 121 39 83.2 30 947 0.31 652 234

137

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

97 97 Average Electricity Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 101.4 83.2 168.8 42 21 35.0 13 1,061 0.52 871 337 Census Region and Division Northeast 19.7 15.1 34.6 32 14 25.0 10 1,130 0.49 863 345 New England 5.3 4.2 9.3 31 14 24.0 9 1,081 0.49 854 336 Middle Atlantic 14.4 10.9 25.3 33 14 25.0 10 1,149 0.49 867 349

138

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

1 1 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 14.6 11.0 28.9 116 44 87.9 32 1,032 0.39 781 283 Census Region and Division Northeast 8.9 5.9 18.0 158 51 103.5 36 1,405 0.46 923 323 New England 2.4 1.7 5.1 148 50 105.3 36 1,332 0.45 946 327 Middle Atlantic 6.5 4.1 12.8 161 52 102.9 36 1,435 0.46 915 322

139

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 15.4 11.6 29.7 131 51 99.0 36 1,053 0.41 795 287 Census Region and Division Northeast 9.2 6.0 18.2 176 59 116.2 42 1,419 0.47 934 335 New England 2.7 2.0 6.0 161 53 118.3 42 1,297 0.43 954 336 Middle Atlantic 6.5 4.1 12.2 184 61 115.3 42 1,478 0.49 926 335

140

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

1 1 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 83.1 66.1 144.2 37 17 29.1 10 678 0.31 539 192 Census Region and Division Northeast 17.9 12.1 35.1 33 11 22.1 8 830 0.29 561 195 New England 4.3 2.9 8.3 31 11 21.3 8 776 0.27 531 189 Middle Atlantic 13.7 9.2 26.7 33 11 22.4 8 847 0.29 571 197

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, 1997 Natural Gas, 1997 Average Natural Gas Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 61.9 51.3 106.1 103 50 85.3 32 698 0.34 579 218 Census Region and Division Northeast 11.8 8.3 19.9 123 52 86.9 35 1,097 0.46 772 310 New England 1.9 1.4 3.3 123 50 87.0 32 1,158 0.48 819 301 Middle Atlantic 9.9 6.9 16.6 124 52 86.9 36 1,085 0.45 763 312

142

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

3 3 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 96.6 76.4 181.2 43 18 34.0 13 1,061 0.45 840 321 Census Region and Division Northeast 19.5 13.8 40.1 34 12 24.1 9 1,144 0.39 809 309 New England 5.1 3.7 10.6 33 11 24.1 9 1,089 0.38 797 311 Middle Atlantic 14.4 10.1 29.4 35 12 24.2 9 1,165 0.40 814 309

143

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 13.2 11.0 23.2 97 46 81.1 31 694 0.33 578 224 Census Region and Division Northeast 8.2 6.2 14.5 136 57 101.3 40 950 0.40 710 282 New England 3.1 2.7 5.8 126 60 111.5 45 902 0.43 797 321 Middle Atlantic 5.2 3.4 8.8 143 56 95.1 38 988 0.39 657 260

144

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

3 3 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 13.8 11.6 29.8 92 36 77.5 28 604 0.23 506 186 Census Region and Division Northeast 7.9 5.9 17.2 133 45 98.7 36 854 0.29 636 234 New England 2.8 2.4 6.6 125 45 105.6 40 819 0.30 691 262 Middle Atlantic 5.0 3.5 10.6 138 45 94.8 34 878 0.29 605 219

145

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 81.6 65.3 142.5 38 17 30.3 11 625 0.29 500 178 Census Region and Division Northeast 17.7 12.2 34.8 33 12 23.0 8 742 0.26 514 181 New England 4.3 2.9 8.9 34 11 23.1 8 747 0.25 508 177 Middle Atlantic 13.4 9.3 26.0 33 12 22.9 8 740 0.27 516 183

146

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 66.9 53.8 137.2 90 35 72.4 27 873 0.34 702 265 Census Region and Division Northeast 12.5 7.8 25.4 126 39 78.3 33 1,434 0.44 889 372 New England 2.3 1.5 5.5 128 34 82.5 35 1,567 0.42 1,014 428 Middle Atlantic 10.3 6.3 19.9 126 40 77.4 32 1,403 0.45 861 360

147

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 17.5 13.8 32.0 91 39 71.9 27 697 0.30 550 203 Census Region and Division Northeast 9.5 6.6 18.2 141 51 97.3 35 1,066 0.38 734 266 New England 2.5 1.9 5.6 140 49 108.8 39 1,105 0.38 856 306 Middle Atlantic 7.0 4.6 12.6 142 52 93.2 34 1,050 0.38 690 252

148

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, 1980 Natural Gas, 1980 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 51.6 39.7 88.5 125 56 96.2 34 497 0.22 383 137 Census Region and Division Northeast 10.9 6.5 18.8 144 50 86.6 31 771 0.27 463 168 New England 1.9 0.9 3.1 162 47 78.9 28 971 0.28 472 169 Middle Atlantic 9.0 5.6 15.7 141 51 88.1 32 739 0.27 461 168

149

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 9.4 9.2 19.6 41 19 40.2 16 607 0.29 598 231 Census Region and Division Northeast 1.7 1.7 4.5 31 11 29.8 11 538 0.20 519 186 New England 0.7 0.7 2.2 34 11 33.1 12 580 0.19 569 209 Middle Atlantic 1.0 0.9 2.4 29 11 27.4 10 506 0.20 482 169

150

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2 2 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 54.2 41.0 91.8 116 52 87.6 32 658 0.29 498 183 Census Region and Division Northeast 11.6 7.3 21.1 132 46 82.6 31 951 0.33 598 221 New England 2.0 1.3 4.5 126 35 77.9 28 1,062 0.30 658 235 Middle Atlantic 9.6 6.0 16.5 133 49 83.6 31 928 0.34 585 217

151

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2 2 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 15.5 12.2 30.0 98 40 77.1 27 829 0.34 650 231 Census Region and Division Northeast 8.8 6.0 17.4 138 48 94.5 34 1,163 0.40 796 283 New England 2.5 1.9 5.9 131 43 101.9 36 1,106 0.36 863 309 Middle Atlantic 6.3 4.1 11.5 142 50 91.5 32 1,191 0.42 769 272

152

Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Heaters Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales...

153

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Scale window-related energy consumption to account for new

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

154

Impacts of the 2009 IECC for Residential Buildings at State Level - Rhode Island  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island Rhode Island September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN RHODE ISLAND BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN RHODE ISLAND Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Rhode Island Summary Rhode Island has adopted the 2009 International Energy Conservation Code (IECC). Overview of the 2009 IECC The IECC scope includes residential single-family housing and multifamily housing three stories or less above- grade intended for permanent living (hotel/motel is not "residential"). The code applies to new buildings and

155

Impacts of the 2009 IECC for Residential Buildings at State Level - Illinois  

NLE Websites -- All DOE Office Websites (Extended Search)

Illinois Illinois September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN ILLINOIS BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN ILLINOIS Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Illinois Summary Illinois recently adopted the 2009 International Energy Conservation Code (IECC). Overview of the 2009 IECC The IECC scope includes residential single-family housing and multifamily housing three stories or less above- grade intended for permanent living (hotel/motel is not "residential"). The code applies to new buildings and

156

Impacts of the 2009 IECC for Residential Buildings at State Level - Michigan  

NLE Websites -- All DOE Office Websites (Extended Search)

Michigan Michigan September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN MICHIGAN BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN MICHIGAN Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Michigan Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2003 IRC with considerable amendments. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in

157

Impacts of the 2009 IECC for Residential Buildings at State Level - Missouri  

NLE Websites -- All DOE Office Websites (Extended Search)

Missouri Missouri September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN MISSOURI BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN MISSOURI Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Missouri Summary Missouri currently does not have a mandatory energy efficiency code. The 2009 International Energy Conservation Code (IECC) would substantially improve energy efficiency in Missouri homes. A limited analysis of the impact of the 2009 IECC resulted in estimated savings of $353 to $565 a year for an average

158

Impacts of the 2009 IECC for Residential Buildings at State Level - Texas  

NLE Websites -- All DOE Office Websites (Extended Search)

Texas Texas September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN TEXAS BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN TEXAS Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Texas Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2001 IECC Supplement. The most notable changes are improved duct sealing and efficient lighting requirements. An energy analysis comparing the 2009 IECC to the state code

159

Impacts of the 2009 IECC for Residential Buildings at State Level - Nebraska  

NLE Websites -- All DOE Office Websites (Extended Search)

Nebraska Nebraska September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEBRASKA BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEBRASKA Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Nebraska Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2003 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $236 a year

160

Impacts of the 2009 IECC for Residential Buildings at State Level - Utah  

NLE Websites -- All DOE Office Websites (Extended Search)

Utah Utah September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN UTAH BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN UTAH Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Utah Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2006 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $219 to

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Impacts of the 2009 IECC for Residential Buildings at State Level - Oklahoma  

NLE Websites -- All DOE Office Websites (Extended Search)

Oklahoma Oklahoma September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN OKLAHOMA BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN OKLAHOMA Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Oklahoma Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2003 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $266 to

162

Impacts of the 2009 IECC for Residential Buildings at State Level - Tennessee  

NLE Websites -- All DOE Office Websites (Extended Search)

Tennessee Tennessee September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN TENNESSEE BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN TENNESSEE Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Tennessee Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2003 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $231 to

163

Impacts of the 2009 IECC for Residential Buildings at State Level - Mississippi  

NLE Websites -- All DOE Office Websites (Extended Search)

Mississippi Mississippi September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN MISSISSIPPI BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN MISSISSIPPI Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Mississippi Summary Mississippi currently does not have a mandatory energy efficiency code. The 2009 International Energy Conservation Code (IECC) would substantially improve energy efficiency in Mississippi homes. A limited analysis of the impact of the 2009 IECC resulted in estimated savings of $173 to $250 a year for an average

164

Impacts of the 2009 IECC for Residential Buildings at State Level - Nevada  

NLE Websites -- All DOE Office Websites (Extended Search)

Nevada Nevada September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEVADA BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEVADA Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Nevada Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2006 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $205 to

165

Impacts of the 2009 IECC for Residential Buildings at State Level - Virginia  

NLE Websites -- All DOE Office Websites (Extended Search)

Virginia Virginia September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN VIRGINIA BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN VIRGINIA Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Virginia Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2006 IRC and IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of

166

Impacts of the 2009 IECC for Residential Buildings at State Level - New York  

NLE Websites -- All DOE Office Websites (Extended Search)

York York September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEW YORK BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEW YORK Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in New York Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2004 IECC Supplement with amendments. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in

167

Impacts of the 2009 IECC for Residential Buildings at State Level - New Jersey  

NLE Websites -- All DOE Office Websites (Extended Search)

Jersey Jersey September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEW JERSEY BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEW JERSEY Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in New Jersey Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2006 IECC with extensive amendments. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in

168

Impacts of the 2009 IECC for Residential Buildings at State Level - Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

Alaska Alaska September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN ALASKA BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN ALASKA Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Alaska Summary The 2009 International Energy Conservation Code (IECC) contains several improvements in energy efficiency over the current state code, the 2006 IECC with amendments. The most notable changes are improved duct sealing and efficient lighting requirements. A comparison of the overall impacts on energy use for these two

169

Impacts of the 2009 IECC for Residential Buildings at State Level - Iowa  

NLE Websites -- All DOE Office Websites (Extended Search)

Iowa Iowa September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN IOWA BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN IOWA Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Iowa Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2006 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $245 to

170

Energy Provisions of the California Green Building Standards Code Page 2 CHAPTER 4, RESIDENTIAL MANDATORY MEASURES  

E-Print Network (OSTI)

MANDATORY MEASURES CHAPTER 4 RESIDENTIAL MANDATORY MEASURES DIVISION 4.2 ­ ENERGY EFFFICIENCY SECTION 4 RESIDENTIAL VOLUNTARY MEASURES DIVISION A4.2 ­ ENERGY EFFFICIENCY SECTION A4.201 GENERAL A4.201.1 ScopeEnergy Provisions of the California Green Building Standards Code Page 2 CHAPTER 4, RESIDENTIAL

171

Gas Technology Institute (Partnership for Advanced Residential Retrofit) |  

Open Energy Info (EERE)

Technology Institute (Partnership for Advanced Residential Retrofit) Technology Institute (Partnership for Advanced Residential Retrofit) Jump to: navigation, search Name Gas Technology Institute Place Des Plaines, IL Website http://www.gastechnology.org/ Coordinates 42.0333623°, -87.8833991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.0333623,"lon":-87.8833991,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

172

Building Technologies Office: Advanced Energy Design Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Design Energy Design Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Design Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Design Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Design Guides on Google Bookmark Building Technologies Office: Advanced Energy Design Guides on Delicious Rank Building Technologies Office: Advanced Energy Design Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Design Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software

173

Energy Use and Indoor Thermal Environment of Residential Buildings in China  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Use and Indoor Thermal Environment of Residential Buildings in China Energy Use and Indoor Thermal Environment of Residential Buildings in China Speaker(s): Hiroshi Yoshino Date: December 16, 2003 - 12:00pm Location: 90-3122 The first part of this talk will deal with the project on Energy Consumption and Indoor Environment Problems of Residential Buildings in China, organized by the Architectural Institute of Japan. Prof. Yoshino will discuss the results of project elements, including: 1) Literature survey and field investigation on energy consumption and indoor environment of residential buildings, 2) Compilation of weather data for building design based on observed data in China, 3) Literature survey and field investigation on energy consumption and indoor environment of residential buildings, 4) Estimation and verification of the effects of various

174

Al Azhar International Conference, Cairo 2008 Environmental healthy requirements in residential buildings: Amman as a case study  

E-Print Network (OSTI)

in residential buildings: Amman as a case study Environmental healthy requirements in residential buildings in the Jordanian residential buildings, in general, and in Amman particularly, considering the healthy problems requested for a healthy environment in the modern buildings, especially regarding the natural aeration

175

AB 758 COMPREHENSIVE ENERGY EFFICIENCY PROGRAM FOR EXISTING RESIDENTIAL AND NONRESIDENTIAL BUILDINGS  

E-Print Network (OSTI)

1 AB 758 COMPREHENSIVE ENERGY EFFICIENCY PROGRAM FOR EXISTING RESIDENTIAL AND NONRESIDENTIAL homes energy efficient through Title 24 Part 6 Building Energy Efficiency Standards (Standards for Energy Efficiency in Existing Buildings (AB 549 Report), the Energy Commission made a series

176

Use-phase memory: a tool for the sustainable construction and renovation of residential buildings  

E-Print Network (OSTI)

). The statistics show that this sector consumes and pollutes more than industry (22% energy) or transport sectors1 Use-phase memory: a tool for the sustainable construction and renovation of residential buildings in the variability of the energy consumption and environmental impact of residential buildings during their use

Paris-Sud XI, Université de

177

Buildings Energy Data Book: 2.4 Residential Environmental Data  

Buildings Energy Data Book (EERE)

1 1 Carbon Dioxide Emissions for U.S. Residential Buildings, by Year (Million Metric Tons) (1) Residential U.S. Site Res.% Res.% Fossil Electricity Total Total of Total U.S. of Total Global 1980 385 525 909 4723 19% 4.9% 1981 361 518 878 4601 19% 4.8% 1982 359 511 870 4357 20% 4.8% 1983 340 525 865 4332 20% 4.7% 1984 349 535 883 4561 19% 4.6% 1985 351 549 901 4559 20% 4.6% 1986 343 551 894 4564 20% 4.5% 1987 346 574 920 4714 20% 4.5% 1988 367 603 970 4939 20% 4.6% 1989 374 606 980 4983 20% 4.6% 1990 340 624 963 5039 19% 4.5% 1991 347 633 980 4996 20% 4.6% 1992 357 624 981 5093 19% 4.6% 1993 372 667 1040 5185 20% 4.8% 1994 364 668 1032 5258 20% 4.7% 1995 361 678 1039 5314 20% 4.7% 1996 389 710 1099 5501 20% 4.9% 1997 371 719 1090 5575 20% 4.7% 1998 339 759 1097 5622 20% 4.8% 1999 360 762 1122 5682 20% 4.8% 2000 380 805 1185 5867 20% 5.0% 2001 367 805 1172 5759 20% 4.9% 2002 368 835 1204 5809 21% 4.9% 2003 383 847 1230

178

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2001 2001 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 107.0 85.2 211.3 116 47 92.2 36 1,875 0.76 1,493 583 Census Region and Division Northeast 20.3 14.1 43.7 153 49 106.6 44 2,501 0.81 1,741 715 New England 5.4 4.1 13.2 152 47 115.3 48 2,403 0.75 1,825 768 Middle Atlantic 14.8 10.0 30.5 154 50 103.4 42 2,541 0.83 1,710 696

179

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

3 3 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 96.6 76.5 181.2 131 55 103.6 40 1,620 0.68 1,282 491 Census Region and Division Northeast 19.5 13.8 40.1 173 60 122.4 47 2,157 0.74 1,526 583 New England 5.1 3.7 10.6 168 59 123.1 48 2,094 0.73 1,532 598 Middle Atlantic 14.4 10.1 29.4 175 60 122.1 46 2,180 0.75 1,523 578

180

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 86.3 67.5 144.4 134 63 104.7 39 1,437 0.67 1,123 417 Census Region and Division Northeast 18.3 13.0 35.0 176 65 125.2 46 2,033 0.75 1,443 533 New England 4.3 3.1 9.0 174 61 127.6 46 2,010 0.70 1,471 527 Middle Atlantic 14.0 9.9 26.0 177 67 124.5 46 2,040 0.77 1,435 535

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 90.5 70.4 156.8 130 58 100.8 39 1,388 0.62 1,080 416 Census Region and Division Northeast 19.0 13.2 36.8 179 64 124.4 48 1,836 0.66 1,276 494 New England 4.3 3.0 8.4 174 61 121.0 47 1,753 0.62 1,222 475 Middle Atlantic 14.8 10.3 28.4 181 65 125.4 48 1,860 0.67 1,292 499

182

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

1 1 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (millionBtu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 83.1 66.1 144.2 141 64 111.7 40 1,256 0.58 998 356 Census Region and Division Northeast 17.9 12.1 35.1 194 67 131.6 46 2,016 0.70 1,365 475 New England 4.3 2.9 8.3 181 63 123.9 44 2,018 0.71 1,384 492 Middle Atlantic 13.7 9.2 26.7 199 68 134.0 46 2,016 0.69 1,359 470

183

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average of Major Energy Sources Residential Buildings Consumption Expenditures Total per per per per Total Total Floorspace per Square per Household per Square per Household Households Number (billion Building Foot Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) (million Btu) (thousand Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 81.6 65.4 142.5 143 65 114.1 41 1,156 0.53 926 330 Census Region and Division Northeast 17.7 12.3 34.8 199 70 138.3 49 1,874 0.66 1,301 459 New England 4.3 2.9 8.9 197 65 134.4 47 1,964 0.65 1,341 466 Middle Atlantic 13.4 9.3 26.0 200 72 139.5 49 1,846 0.66 1,288 456

184

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 94.0 74.2 169.2 124 54 98.1 38 1,485 0.65 1,172 450 Census Region and Division Northeast 19.2 13.9 40.3 165 57 119.6 45 2,034 0.70 1,471 556 New England 4.5 3.2 9.3 164 56 113.9 45 2,023 0.69 1,408 562 Middle Atlantic 14.7 10.7 31.1 166 57 121.3 45 2,037 0.70 1,491 555

185

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2 2 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 83.8 66.1 142.2 130 60 102.3 37 1,309 0.61 1,033 377 Census Region and Division Northeast 18.0 12.5 34.4 175 64 121.7 44 1,942 0.71 1,353 490 New England 4.2 3.0 9.1 173 56 121.9 43 1,991 0.65 1,402 498 Middle Atlantic 13.7 9.5 25.2 175 66 121.7 44 1,926 0.73 1,338 487

186

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 94.0 74.2 169.2 124 54 98.1 38 1,485 0.65 1,172 450 Census Region and Division Northeast 19.2 13.9 40.3 165 57 119.6 45 2,038 0.70 1,471 556 New England 4.5 3.2 9.3 164 56 113.9 45 2,028 0.69 1,408 562 Middle Atlantic 14.7 10.7 31.1 166 57 121.3 45 2,041 0.70 1,491 555

187

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average of Major Energy Sources Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space(2) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 101.5 83.2 168.8 123 61 101.0 39 1,633 0.80 1,338 517 Census Region and Division Northeast 19.7 15.1 34.6 158 69 121.0 48 2,153 0.94 1,644 658 New England 5.3 4.2 9.3 156 70 123.0 48 2,085 0.94 1,647 648 Middle Atlantic 14.4 10.9 25.3 159 68 120.0 48 2,179 0.94 1,643 662

188

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

4 4 Cost of a Generic Quad Used in the Residential Sector ($2010 Billion) (1) Residential 1980 10.45 1981 11.20 1982 11.58 1983 11.85 1984 11.65 1985 11.43 1986 10.90 1987 10.55 1988 10.18 1989 9.98 1990 10.12 1991 9.94 1992 9.78 1993 9.77 1994 9.78 1995 9.44 1996 9.44 1997 9.59 1998 9.23 1999 8.97 2000 9.57 2001 10.24 2002 9.33 2003 10.00 2004 10.32 2005 11.10 2006 11.60 2007 11.61 2008 12.29 2009 11.65 2010 9.98 2011 9.99 2012 9.87 2013 9.77 2014 9.76 2015 9.88 2016 9.85 2017 9.83 2018 9.86 2019 9.88 2020 9.91 2021 10.00 2022 10.09 2023 10.11 2024 10.12 2025 10.09 2026 10.10 2027 10.13 2028 10.11 2029 10.06 2030 10.06 2031 10.13 2032 10.23 2033 10.34 2034 10.45 2035 10.57 Note(s): 1) See Table 1.5.1 for generic quad definition. This table provides the consumer cost of a generic quad in the buildings sector. Use this table to estimate the average consumer cost savings resulting from the savings of a generic (primary) quad in the buildings sector. 2) Price of

189

Use-phase memory: A tool for the sustainable construction and renovation of residential buildings  

Science Journals Connector (OSTI)

Abstract Residents' usages and behavior play a determining role in the variability of the energy consumption and environmental impact of residential buildings during their use-phase. At present, however, they are inadequately documented and understood, as well as being highly variable. In this paper, we propose a use-phase memory model for residential buildings, whose aim is to store energy consumption and usage patterns. This storage can be done automatically or voluntarily. We give examples of useful information extracted from the data captured. The objective of this data analysis and synthesis is to provide building experts two specific use-cases: designing a new sustainable building, and renovating an existing one. Our model is deployed on a residential building, integrating the beneficial services for all stakeholders to demonstrate a sustainable relationship between designers, the residential building and the users.

Lucile Picon; Bernard Yannou; Toufic Zaraket; Stéphanie Minel; Gwenola Bertoluci; François Cluzel; Romain Farel

2013-01-01T23:59:59.000Z

190

Buildings Energy Data Book: 2.4 Residential Environmental Data  

Buildings Energy Data Book (EERE)

7 7 2009 Methane Emissions for U.S. Residential Buildings Energy Production, by Fuel Type Fuel Type Petroleum 1.0 Natural Gas 38.8 Coal 0.0 Wood 2.6 Electricity (2) 51.6 Total 94.0 Note(s): Source(s): MMT CO2 Equivalent (1) 1) Sources of emissions include oil and gas production, processing, and distribution; coal mining; and utility and site combustion. Carbon Dioxide equivalent units are calculated by converting methane emissions to carbon dioxide emissions (methane's global warming potential is 23 times that of carbon dioxide). 2) Emissions of electricity generators attributable to the buildings sector. EIA, Emissions of Greenhouse Gases in the U.S. 2009, Mar. 2011, Table 18, p. 37 for energy production emissions; EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2009, April 2011, Table 3-10, p. 3-9 for stationary combustion emissions; and EIA, Annual Energy Outlook 2012 Early Release,

191

Next Generation Advanced Framing - Building America Top Innovation...  

Energy Savers (EERE)

Next Generation Advanced Framing - Building America Top Innovation Next Generation Advanced Framing - Building America Top Innovation This photo shows advanced framing on a rim...

192

Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies  

Energy.gov (U.S. Department of Energy (DOE))

This report presents the key gaps and barriers to implementing residential energy efficiency strategies in the U.S. market, as identified in sessions at the U.S. Department of Energy's Building America 2010 Residential Energy Efficiency Meeting held in Denver, Colorado, on July 20-22, 2010.

193

Building Technologies Office: Building America's Top Innovations Advance  

NLE Websites -- All DOE Office Websites (Extended Search)

America's Top Innovations Advance High Performance Homes America's Top Innovations Advance High Performance Homes Building America Top Innovations. Recognizing top innovations in building science. Innovations sponsored by the U.S. Department of Energy's (DOE) Building America program and its teams of building science experts continue to have a transforming impact, leading our nation's home building industry to high-performance homes. Building America researchers have worked directly with more than 300 U.S. production home builders and have boosted the performance of more than 42,000 new homes. Learn more about Building America Top Innovations. 2013 Top Innovations New Top Innovations are awarded annually for outstanding Building America research achievements. Learn more about the 2013 Top Innovations recently awarded by selecting a category or award recipient below.

194

Building America Expert Meeting: Summary for Diagnostic and Performance Feedback for Residential Space Conditioning System Equipment  

Energy.gov (U.S. Department of Energy (DOE))

The Building Science Consortium held an Expert Meeting on Diagnostic and Performance Feedback for Residential Space Conditioning System Equipment on April 26,l 2010 on the NIST campus in Gaithersburg, Maryland.

195

Energy Department Announces $5 Million for Residential Building Energy Efficiency Research and University-Industry Partnerships  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced a $5 million investment to develop and demonstrate new residential energy efficiency solutions, and that will support building energy efficiency research at universities and colleges.

196

Energy Savings Potential and RD&D Opportunities for Residential Building HVAC Systems  

Energy.gov (U.S. Department of Energy (DOE))

This report assesses 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development.

197

Calculation program for design of windows in residential buildings Ins Palma Santos and Svend Svendsen*  

E-Print Network (OSTI)

sustainable buildings at the Department of Civil Engineering at the Technical University of Denmark1 Calculation program for design of windows in residential buildings InĂŞs Palma Santos and Svend Svendsen* Department of Civil Engineering, Brovej, Building 118, Technical University of Denmark, DK-2800

198

Impacts of the 2009 IECC for Residential Buildings at State Level - West Virginia  

NLE Websites -- All DOE Office Websites (Extended Search)

West Virginia West Virginia September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN WEST VIRGINIA BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN WEST VIRGINIA Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in West Virginia Summary West Virginia is proceeding with adoption of the 2009 International Energy Conservation Code (IECC) through the State Fire Commission. No energy analysis was conducted here comparing the current West Virginia code to the 2009 IECC for this reason. However, the West Virginia energy code has been one of the weaker codes in

199

Impacts of the 2009 IECC for Residential Buildings at State Level - Kansas  

NLE Websites -- All DOE Office Websites (Extended Search)

Kansas Kansas September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN KANSAS BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN KANSAS Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Kansas Summary Kansas currently does not have a mandatory energy efficiency code. The 2009 International Energy Conservation Code (IECC) would substantially improve energy efficiency in Kansas homes. A limited analysis of the impact of the 2009 IECC resulted in estimated savings of $355 to $582 a year for an average new house

200

Impacts of the 2009 IECC for Residential Buildings at State Level - New Mexico  

NLE Websites -- All DOE Office Websites (Extended Search)

Mexico Mexico September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEW MEXICO BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN NEW MEXICO Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in New Mexico Summary The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current state code, the 2006 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $216 to

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Impacts of the 2009 IECC for Residential Buildings at State Level - South Dakota  

NLE Websites -- All DOE Office Websites (Extended Search)

South Dakota South Dakota September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN SOUTH DAKOTA BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN SOUTH DAKOTA Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in South Dakota Summary South Dakota currently does not have a mandatory energy efficiency code. The 2009 International Energy Conservation Code (IECC) would substantially improve energy efficiency in South Dakota homes. A limited analysis of the impact of the 2009 IECC resulted in estimated savings of $383 to $427 a year for an average

202

Impacts of the 2009 IECC for Residential Buildings at State Level - Arizona  

NLE Websites -- All DOE Office Websites (Extended Search)

Arizona Arizona September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN ARIZONA BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN ARIZONA Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Arizona Summary Arizona is a "home rule" state with no mandatory state-wide energy efficiency code. However, many counties and cities have adopted an energy efficiency code, most often the 2006 International Energy Conservation Code (IECC). The 2009 IECC contains several major improvements in energy efficiency over the 2006 IECC. The

203

Building Energy Software Tools Directory: Right-Suite Residential for  

NLE Websites -- All DOE Office Websites (Extended Search)

Right-Suite Residential for Windows Right-Suite Residential for Windows Right-Suite Residential for Windows logo. All-in-one HVAC software performs residential loads calculations, duct sizing, energy analysis, equipment selection, cost comparison calculations, and geothermal loop design. Also allows you to design your own custom proposals. Used for system design, for sales representation, and for quotation preparations. Buy only what you need. Unused functions are shipped as demos, so the program can grow with your needs. Keywords residential loads calculations, duct sizing, energy analysis, HVAC equipment selection, system design Validation/Testing N/A Expertise Required Knowledge of general HVAC concepts. High level of computer literacy not required. Users Over 10,000 users of Right-J loads.

204

Optimizing Hydronic System Performance in Residential Applications, Ithaca, New York (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Optimizing Hydronic Optimizing Hydronic System Performance in Residential Applications Ithaca, New York PROJECT INFORMATION Project Name: Condensing Boiler Optimization Location: Ithaca, NY Partners: Ithaca Neighborhood Housing Services, www.ithacanhs.org; Appropriate Designs, www.hydronicpros.com; HTP, www.htproducts.com; Peerless, www.peerlessboilers.com; Grundfos, us.grundfos.com; Bell & Gossett, www.bell-gossett.com; Emerson Swan, www.emersonswan.com. Consortium for Advanced Residential Buildings, www.carb-swa.com Building Component: Space heating, water heating Application: New; single and multifamily Year Tested: 2012-2013 Applicable Climate Zone(s): 4,5,6,7 PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $6,100-$8,200 Projected Energy Savings:

205

Buildings Energy Data Book: 2.4 Residential Environmental Data  

Buildings Energy Data Book (EERE)

4 4 2015 Residential Buildings Energy End-Use Carbon Dioxide Emissions Splits, by Fuel Type (Million Metric Tons) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity (3) Total Percent Space Heating (4) 180.5 34.9 16.6 1.8 53.3 0.6 66.6 301.0 27.4% Space Cooling 0.0 161.1 161.1 14.7% Water Heating 69.6 5.1 3.1 8.2 75.3 153.1 13.9% Lighting 83.7 83.7 7.6% Refrigeration (5) 71.7 71.7 6.5% Electronics (6) 52.0 52.0 4.7% Wet Cleaning (7) 3.2 51.6 54.7 5.0% Cooking 11.5 1.8 1.8 17.9 31.1 2.8% Computers 30.0 30.0 2.7% Other (8) 10.6 10.6 149.3 160.0 14.6% Total 264.7 40.1 32.2 1.8 74.0 0.6 100% Note(s): Source(s): 759.1 1,098.4 1) Emissions assume complete combustion from energy consumption, excluding gas flaring, coal mining, and cement production. Emissions exclude wood since it is assumed that the carbon released from combustion is reabsorbed in a future carbon cycle. 2) Includes kerosene

206

Buildings Energy Data Book: 2.4 Residential Environmental Data  

Buildings Energy Data Book (EERE)

3 3 2010 Residential Buildings Energy End-Use Carbon Dioxide Emissions Splits, by Fuel Type (Million Metric Tons) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity (3) Total Percent Space Heating (4) 185.5 38.8 18.7 2.2 59.7 0.7 77.6 323.5 26.3% Space Cooling 0.0 210.2 210.2 17.1% Water Heating 68.7 7.1 4.6 11.7 90.4 170.8 13.9% Lighting 126.0 126.0 10.2% Electronics (5) 96.5 96.5 7.8% Refrigeration (6) 80.7 80.7 6.6% Wet Cleaning (7) 2.9 57.8 60.8 4.9% Cooking 11.4 1.9 1.9 42.6 55.9 4.5% Computers 30.5 30.5 2.5% Other (8) 10.2 10.2 36.3 46.5 3.8% Adjust to SEDS (9) 30.1 30.1 2.4% Total 268.5 45.9 35.3 2.2 83.5 0.7 100% Note(s): Source(s): 878.7 1,231.4 1) Emissions assume complete combustion from energy consumption, excluding gas flaring, coal mining, and cement production. Emissions exclude wood since it is assumed that the carbon released from combustion is reabsorbed in a future carbon cycle. Carbon emissions

207

Buildings Energy Data Book: 2.4 Residential Environmental Data  

Buildings Energy Data Book (EERE)

6 6 2035 Residential Buildings Energy End-Use Carbon Dioxide Emissions Splits, by Fuel Type (Million Metric Tons) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Total Percent Space Heating (4) 169.7 22.8 14.1 1.5 38.3 0.5 76.7 285.3 23.1% Water Heating 67.2 2.6 2.1 4.7 84.8 156.7 12.7% Space Cooling 0.0 194.5 194.5 15.7% Electronics (5) 68.1 68.1 5.5% Refrigeration (6) 81.5 81.5 6.6% Lighting 74.3 74.3 6.0% Wet Cleaning (7) 3.5 50.0 53.4 4.3% Cooking 12.2 1.5 1.5 23.2 37.0 3.0% Computers 41.9 41.9 3.4% Other (8) 14.1 14.1 229.6 243.7 19.7% Total 252.7 25.4 31.9 1.5 58.7 0.5 100% Note(s): Source(s): Electricity (3) 924.5 1,236.4 1) Emissions assume complete combustion from energy consumption, excluding gas flaring, coal mining, and cement production. Emissions exclude wood since it is assumed that the carbon released from combustion is reabsorbed in a future carbon cycle. 2) Includes kerosene

208

Buildings Energy Data Book: 2.4 Residential Environmental Data  

Buildings Energy Data Book (EERE)

5 5 2025 Residential Buildings Energy End-Use Carbon Dioxide Emissions Splits, by Fuel Type (Million Metric Tons) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity (3) Total Percent Space Heating (4) 173.9 27.9 15.2 1.6 44.7 0.6 73.2 292.3 25.1% Space Cooling 0.0 177.2 177.2 15.2% Water Heating 70.2 3.5 2.5 6.0 83.7 159.9 13.8% Lighting 74.1 74.1 6.4% Refrigeration (5) 75.8 75.8 6.5% Electronics (6) 58.7 58.7 5.1% Wet Cleaning (7) 3.3 47.9 51.2 4.4% Cooking 11.7 1.6 1.6 20.8 34.2 2.9% Computers 37.6 37.6 3.2% Other (8) 12.4 12.4 189.1 201.5 17.3% Total 259.1 31.3 31.8 1.6 64.7 0.6 100% Note(s): Source(s): 838.1 1,162.5 1) Emissions assume complete combustion from energy consumption, excluding gas flaring, coal mining, and cement production. Emissions exclude wood since it is assumed that the carbon released from combustion is reabsorbed in a future carbon cycle. 2) Includes kerosene

209

City of Portland - Streamlined Building Permits for Residential Solar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Oregon Program Type Solar/Wind Permitting Standards Provider City of Portland The City of Portland's Bureau of Development Services (BDS) developed an electronic permitting process for residential solar energy system installations. With this streamlined, expedited process, solar contractors can submit the project plans and permit application online for residential installations. In order to file the online application, the contractor must first be trained. The City of Portland has staff at the permitting desk trained as solar experts to assist solar contractors who need help filing their permits in person. This process has a turnaround time of

210

Investigation of "Sick" Residential and Workplace Buildings using a  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigation of "Sick" Residential and Workplace Buildings using a Investigation of "Sick" Residential and Workplace Buildings using a Computerized/Web-Based Occupant Health Survey Instrument Speaker(s): James Craner Date: September 15, 2005 - 12:00pm Location: Bldg. 90 Epidemiological investigation of occupants of a residential or non-industrial workplace building (or building complex) is a well-established, public health method used to identify and measure the nature, distribution, and cause of occupational or environmental illness related to indoor air quality (IAQ) problems or concerns. Such an investigation is particularly useful where disease-exposure associations have not been clearly established and multiple environmental and human factors may be implicated or considered. --The "sick building syndrome"

211

Ranking cost effective energy conservation measures for heating in Hellenic residential buildings  

Science Journals Connector (OSTI)

Abstract Residential buildings comprise the biggest segment of the European building stock and they are responsible for the majority of the building's sector energy consumption and CO2 emissions. This paper documents the potential benefits and sets the priorities of individual energy conservation measures (ECMs) to reduce heating energy consumption in Hellenic residential buildings, including space heating and domestic hot water production. The analysis is facilitated by using the available Hellenic typology for residential buildings that consists of 24 typical buildings, derived after a classification in three construction periods, two building sizes and four climate zones. The focus is mainly on the implementation of \\{ECMs\\} that have low first-cost investment and short payback period. In order to prioritize \\{ECMs\\} that would be most attractive to building owners, two ranking criteria are used, namely primary heating energy savings and payback period. Finally, the preliminary results are used to provide an insight on the potential abatement of CO2 emissions for the national residential building stock.

K.G. Droutsa; S. Kontoyiannidis; E.G. Dascalaki; C.A. Balaras

2014-01-01T23:59:59.000Z

212

Advanced Energy Retrofit Guide Retail Buildings  

SciTech Connect

The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

2011-09-19T23:59:59.000Z

213

SPP sales flyer for residential home builders | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

residential home builders residential home builders Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

214

Summary of Components of the "Best of the Region" Standard for New Non-Residential Buildings  

E-Print Network (OSTI)

Summary of Components of the "Best of the Region" Standard for New Non-Residential Buildings Specifications for Implementation of Fifth Power Plan Model Conservation Standards for New Commercial Buildings Adapted from: Northwest Energy NWBest Project Summary of Components of the "Best of the Region" Standard

215

Lighting in Residential and Commercial Buildings (1993 and 1995 Data) --  

U.S. Energy Information Administration (EIA) Indexed Site

Types of Lights > Lit Floorspace In Lit Buildings Types of Lights > Lit Floorspace In Lit Buildings Lit Floorspace in Lit Buildings To analyze the use of different kinds of lighting equipment with data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), building floorspace can be described in three different ways: total floorspace in all buildings; total floorspace in lit buildings; and total lit floorspace in buildings. The latter two measures of floorspace with lighting differ because not all of the floorspace in lit buildings is illuminated (see Table 1): Table 1: Floorspace Denominators Used To Analyze Lighting Equipment Usage (Million Square Feet) 1995 CBECS Total Floorspace in All Buildings: 58, 772 1995 CBECS Total Floorspace in Lit Buildings: 56, 261 1995 CBECS Total Lit Floorspace in Buildings: 50, 303

216

BetterBuildings for Michigan Residential Case Study  

Energy.gov (U.S. Department of Energy (DOE))

This is a document from BetterBuilding for Michigan posted on the website of the U.S. Department of Energy's BetterBuildings Neighborhood Program.

217

Building America Technology Solutions for New and Existing Homes: Selecting Ventilation Systems for Existing Homes  

Energy.gov (U.S. Department of Energy (DOE))

This research effort by the Building America team, Consortium for Advanced Residential Buildings, evaluated four different strategies for provide make-up air to multifamily residential buildings, which included several weeks of building pressure monitoring.

218

Advanced Commercial Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect

Factsheet describing the Advanced Commercial Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

Not Available

2009-09-01T23:59:59.000Z

219

The Temperature Sensitivity of the Residential Load and Commercial Building Load  

SciTech Connect

This paper presents a building modeling approach to quickly quantify climate change impacts on energy consumption, peak load, and load composition of residential and commercial buildings. This research focuses on addressing the impact of temperature changes on the building heating and cooling load in 10 major cities across the Western United States and Canada. A building simulation software are first used to quantify the hourly energy consumption of different building types by end-use and by vintage. Then, the temperature sensitivities are derived based on the climate data inputs.

Lu, Ning; Taylor, Zachary T.; Jiang, Wei; Correia, James; Leung, Lai R.; Wong, Pak C.

2009-07-26T23:59:59.000Z

220

EA-2001: Energy Efficiency Design Standards: New Federal Commercial and Multi-Family High-Rise Residential Buildings and New Federal Low-Rise Residential Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) is publishing this final rule to implement provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal commercial and multi-family high-rise residential buildings. This rule updates the baseline Federal commercial standard to the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2013.

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Potential Job Creation as a Result of Adopting New Residential Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential Job Creation as a Result of Adopting New Residential Building Potential Job Creation as a Result of Adopting New Residential Building Energy Codes The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. The overall analysis found that transforming the U.S. housing stock through the adoption of more energy-efficient building energy codes could create hundreds of jobs in each of several states. The following reports discuss the analysis and results for four representative states. Minnesota Nevada Rhode Island Tennessee *Please note, these reports have been formatted to facilitate double-sided printing. Contacts Web Site Policies

222

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

1 1 2005 Energy Expenditures per Household, by Housing Type and Square Footage ($2010) Per Household Single-Family 1.16 Detached 1.16 Attached 1.20 Multi-Family 1.66 2 to 4 units 1.90 5 or more units 1.53 Mobile Home 1.76 All Homes 1.12 Note(s): Source(s): 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-1 part1; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for

223

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

2 2 2005 Household Energy Expenditures, by Vintage ($2010) | Year | Prior to 1950 887 | 22% 1950 to 1969 771 | 22% 1970 to 1979 736 | 16% 1980 to 1989 741 | 16% 1990 to 1999 752 | 16% 2000 to 2005 777 | 9% | Average 780 | Total 100% Note(s): Source(s): 1.24 2,003 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008 for 2005 expenditures; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price inflators.

224

Building the Advanced Photon Source  

SciTech Connect

This timelapse video shows the U.S. Department of Energy's Advanced Photon Source (APS) rising from an empty field at Argonne National Laboratory to become the source of the Western Hemisphere's brightest x-rays for research. The video was compiled from still photographs taken from 1990-1996.

None

2010-01-01T23:59:59.000Z

225

Evaluation on Cooling Energy Load with Varied Envelope Design for High-Rise Residential Buildings in Malaysia  

E-Print Network (OSTI)

With the development of the economy in the recent years, Malaysia is maintaining a high economic growth and therefore, its energy consumption increases dramatically. Residential buildings are characterized by being envelope-load dominated buildings...

Al-Tamimi, N.; Fadzil, S.

2010-01-01T23:59:59.000Z

226

Building America Residential Energy Efficiency Technical Update Meeting: August 2011  

Energy.gov (U.S. Department of Energy (DOE))

On this page, you may link to the summary report and presentations for the Building America Technical Update meeting in August 2011, held in Denver, Colorado.

227

Building America Residential Energy Efficiency Stakeholders Meeting: March 2011  

Energy.gov (U.S. Department of Energy (DOE))

On this page, you may link to the summary report and presentations for the Building America Stakeholders meeting in March 2011, held in Atlanta, Georgia.

228

Building America Residential Energy Efficiency Research Planning Meeting: October 2011  

Energy.gov (U.S. Department of Energy (DOE))

On this page, you may link to the summary report and presentations for the Building America Research Planning meeting in October 2011, held in Washington, D.C.

229

Building America Research Teams: Spotlight on Alliance for Residential...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

explore specific technology areas that can radically improve home performance. BARA communication projects include Building America outreach products and activities (see...

230

EA-1463: 10 CFR 433: Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings and 10 CFR 435: Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The EA examines the potential environmental impacts of the Final Rule on building habitability and the outdoor environment. To identify the potential environmental impacts that may result from implementing the Final Rule for new Federal commercial and residential buildings, DOE compared the Final Rule with the “no-action alternative” of using the current Federal standards – 10 CFR Part 434 and 10 CFR Part 435 Subpart C (referred to as the “no-action alternative”).

231

Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy  

Science Journals Connector (OSTI)

Abstract Buildings are the dominant source of energy consumption and environmental emissions in urban areas. Therefore, the ability to forecast and characterize building energy consumption is vital to implementing urban energy management and efficiency initiatives required to curb emissions. Advances in smart metering technology have enabled researchers to develop “sensor based” approaches to forecast building energy consumption that necessitate less input data than traditional methods. Sensor-based forecasting utilizes machine learning techniques to infer the complex relationships between consumption and influencing variables (e.g., weather, time of day, previous consumption). While sensor-based forecasting has been studied extensively for commercial buildings, there is a paucity of research applying this data-driven approach to the multi-family residential sector. In this paper, we build a sensor-based forecasting model using Support Vector Regression (SVR), a commonly used machine learning technique, and apply it to an empirical data-set from a multi-family residential building in New York City. We expand our study to examine the impact of temporal (i.e., daily, hourly, 10 min intervals) and spatial (i.e., whole building, by floor, by unit) granularity have on the predictive power of our single-step model. Results indicate that sensor based forecasting models can be extended to multi-family residential buildings and that the optimal monitoring granularity occurs at the by floor level in hourly intervals. In addition to implications for the development of residential energy forecasting models, our results have practical significance for the deployment and installation of advanced smart metering devices. Ultimately, accurate and cost effective wide-scale energy prediction is a vital step towards next-generation energy efficiency initiatives, which will require not only consideration of the methods, but the scales for which data can be distilled into meaningful information.

Rishee K. Jain; Kevin M. Smith; Patricia J. Culligan; John E. Taylor

2014-01-01T23:59:59.000Z

232

The Technical and Economical Analysis of a Centralized Air-Conditioning System with Cold Storage Refrigeration in High-Rise Residential Buildings  

E-Print Network (OSTI)

In recent years, the application of a centralized air-conditioning system (CACS) with cold storage refrigeration in high-rise residential buildings has gradually increased. Due to the large difference between civil residential buildings...

Xiang, C.; Xie, G.

2006-01-01T23:59:59.000Z

233

Better Buildings Residential Network: Using Loan Performance Data to Inform Program Implementation  

Energy.gov (U.S. Department of Energy (DOE))

Please join the Better Buildings Residential Network for the Financing & Revenue/Data & Evaluation co-series peer exchange call: “Using Loan Performance Data to Inform Program Implementation.” What is the relationship, if any, between loan performance and completed energy efficiency measures? How are home affordability, loan default rates, and decreasing energy costs related?

234

2008 Residential Building Efficiency Standards 1 Efficiency Ratings and Performance Modeling Inputs  

E-Print Network (OSTI)

Residential Building Efficiency Standards 2 a. Refrigerant charge and metering (Reference Appendices, RA3 Cooling · SplitHeatPump: SEER 13 · Refrigerant charge (or charge indicator light), watts/cfm and air flow.2), or presence of charge indicator display (Reference Appendices, RA3.4) b. Air system fan flow and air handler

235

Revised: March 6, 2013 2013 Residential Building Energy Efficiency Standards Measures Summary  

E-Print Network (OSTI)

for all residential buildings including kitchens, bathrooms, dining rooms, utility rooms, garages, hall.0(j)2Aii and Section 150.0(j)4) 5. Solar Ready Measure ­ 250 square feet of solar ready zone on single family roofs. (Section150.0(r)) Compliance Options 1. Solar Photovoltaic can be used

236

A Temporal Motif Mining Approach to Unsupervised Energy Disaggregation: Applications to Residential and Commercial Buildings  

E-Print Network (OSTI)

every device in a building. The ensu- ing computational problem is to disaggregate total energy us- age disaggregation. This is the task of, non-intrusively, monitoring aggregate energy usage (electricity, waterA Temporal Motif Mining Approach to Unsupervised Energy Disaggregation: Applications to Residential

Ramakrishnan, Naren

237

Impacts of the 2009 IECC for Residential Buildings at State Level  

NLE Websites -- All DOE Office Websites (Extended Search)

1 DISCLAIMER: The results contained in this report are complete and accurate to the best of BECP's knowledge, based on information available at the time it was written. BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS AT STATE LEVEL V Table of Contents 1.0 Chapter 1 Overview of the 2009 IECC ........................................................................................................ 1 1.1 Introduction .............................................................................................................................................. 1 1.2 Overview of the 2009 IECC ..................................................................................................................... 1

238

Expansion of the residential conservation service program to multi-family and small commercial buildings  

SciTech Connect

Alternative regulatory provisions are considered which might permit achievement of the building energy conservation regulatory goals at a lower cost. Major issues, regulatory and legislative options, and cost-benefit analyses are discussed for multi-family and commercial buildings. The following are presented: related government programs, urban and community impact analysis, institutional impacts, energy cost, Residential Conservation Service coverage, methods of analysis, and regional studies. (MHR)

None

1980-11-01T23:59:59.000Z

239

Energy Efficient Residential Building Code for Arab Countries  

E-Print Network (OSTI)

of building envelope and weather data in reducing electrical energy consumption. The impacts of the following parameters were studied namely; walls and roof constructions, window size and glazing type for different geographical locations in the Arab Countries...

Hanna, G. B.

2010-01-01T23:59:59.000Z

240

Energy savings from direct-DC in U.S. residential buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

savings from direct-DC in U.S. residential buildings savings from direct-DC in U.S. residential buildings Title Energy savings from direct-DC in U.S. residential buildings Publication Type Journal Article Year of Publication 2013 Authors Vossos, Vagelis, Karina Garbesi, and Hongxia Shen Journal Energy and Buildings Volume Volume 68, Part A Pagination 223-231 Date Published 09/2013 Keywords Direct current (DC), energy conservation, Photovoltaics (PV), residential buildings Abstract An increasing number of energy-efficient appliances operate on direct current (DC) internally, offering the potential to use DC directly from renewable energy systems, thereby avoiding the energy losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of a 'direct-DC house' compared to that of a typical net-metered house with AC distribution, assuming identical DC-internal loads. The model comparisons were run for 14 cities in the United States, using hourly, simulated PV-system output and residential loads. The model tested the effects of climate and battery storage. A sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect potential energy savings. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate.

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Efficiency Trends in Residential and Commercial Buildings Â… August 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Efficiency Trends in Residential and Commercial Buildings August 2010 Prepared by McGraw-Hill Construction for the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy OF ENERGY Table of Contents INTRODUCTION 3 EXECUTIVE SUMMARY 4 Chapter One DRIVERS OF ENERGY USE IN BUILDINGS 5 Chapter Two PROFILES OF BUILDING-SECTOR ENERGY USE 13 Chapter Three PATTERNS OF ENERGY-EFFICIENT BUILDING PRODUCT ADOPTION IN COMMERCIAL BUILDING DESIGN 17 Chapter Four INDUSTRY RESEARCH FINDINGS DRIVING ENERGY-EFFICIENT BUILDINGS 25 Chapter Five ENERGY EFFICIENCY STANDARDS, CODES AND INCENTIVES 31 Chapter Six VOLUNTARY PROGRAMS AND LOCAL AND STATE POLICIES FOR GREEN AND ENERGY-EFFICIENT BUILDINGS 38 Chapter Seven RESOURCES FOR MORE INFORMATION 50 Notes and definitions:

242

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

4 4 2005 Average Household Expenditures as Percent of Annual Income, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Average Annual Expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other categories are calculated from the Consumer Expenditure Survey (CE). RECS assumed total US households to be 111,090,617 in 2005, while the CE data is based on 117,356,000 "consumer units," which the Bureau of Labor Statistics defines to be financially independent persons or groups of people that use their incomes to make joint expenditure decisions, including all members of a

243

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

3 3 2005 Average Household Expenditures, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Other expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other categories are calculated from the Consumer Expenditure Survey (CE). RECS assumed total US households to be 111,090,617 in 2005, while the CE data is based on 117,356,000 "consumer units," which the Bureau of Labor Statistics defines to be financially independent persons or groups of people that use their incomes to make joint expenditure decisions, including all members of a

244

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

5 5 2010 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 38.7 11.2 8.0 19.8 0.0 14.3 72.9 28.9% Space Cooling (3) 0.0 35.4 35.4 14.0% Water Heating (4) 14.3 2.1 2.0 4.0 14.2 32.6 12.9% Lighting 22.6 22.6 9.0% Refrigeration (5) 14.9 14.9 5.9% Electronics (6) 17.8 17.8 7.1% Cooking 2.4 0.8 0.8 6.0 9.2 3.7% Wet Cleaning (7) 0.6 10.7 11.3 4.5% Computers 5.6 5.6 2.2% Other (8) 0.0 4.4 4.4 6.7 11.1 4.4% Adjust to SEDS (9) 13.6 13.6 5.4% Total 56.1 13.3 15.2 29.0 0.0 166.8 251.8 100% Note(s): Source(s): 0.5 0.5 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.5 billion). 3) Fan energy use included. 4) Includes residential recreational water heating ($1.4 billion). 5) Includes refrigerators ($15.3 billion) and freezers ($4.4 billion). 6) Includes color televisions ($11.0

245

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

3 3 Residential Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Total 1980 158.5 1981 164.0 1982 172.3 1983 176.1 1984 178.5 1985 176.8 1986 169.2 1987 167.1 1988 170.1 1989 172.8 1990 168.2 1991 169.9 1992 166.7 1993 175.6 1994 174.9 1995 172.7 1996 181.8 1997 180.0 1998 173.5 1999 174.0 2000 192.8 2001 203.3 2002 192.1 2003 208.8 2004 215.1 2005 236.7 2006 240.0 2007 246.1 2008 259.6 2009 241.6 2010 251.8 2011 251.3 2012 247.1 2013 240.3 2014 239.4 2015 241.7 2016 241.8 2017 243.0 2018 244.7 2019 246.4 2020 247.9 2021 250.4 2022 253.3 2023 255.6 2024 257.8 2025 260.3 2026 263.2 2027 266.0 2028 267.6 2029 268.1 2030 269.7 2031 272.9 2032 276.6 2033 280.4 2034 284.6 2035 288.6 Note(s): Source(s): 1) Residential petroleum products include distillate fuel oil, LPG, and kerosene. EIA, State Energy Data 2009: Prices and Expenditures, Jun. 2011, Table 2 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table

246

ASHRAE Standard 90.1 1999 Energy Conservation in Non-Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

ASHRAE Standard 90.1 1999 Energy Conservation in Non-Residential Buildings ASHRAE Standard 90.1 1999 Energy Conservation in Non-Residential Buildings Speaker(s): Steve Taylor Date: April 20, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Steve Taylor, the principal of Taylor Engineering, will be providing an overview of the envelope, lighting, and HVAC requirements of Standard 90.1. Mr. Taylor is a registered mechanical engineer specializing in HVAC system design, control system design, indoor air quality engineering, computerized building energy analysis, and HVAC system commissioning. He graduated from Stanford University with a BS in Physics and a MS in Mechanical Engineering and has over 20 years of commercial HVAC system design and construction experience. He was the primary author of the HVAC

247

Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gaps and Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies 2010 Residential Buildings Energy Efficiency Meeting Denver, Colorado - July 20 - 22, 2010 August 2010 Prepared by the National Renewable Energy Laboratory For the U.S. Department of Energy Building Technologies Program NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned

248

Using Direct-DC Power Distribution in U.S. Residential Buildings Can Save  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Direct-DC Power Distribution in U.S. Residential Buildings Can Save Using Direct-DC Power Distribution in U.S. Residential Buildings Can Save Energy October 2013 October-November Special Focus: Energy Efficiency, Buildings and the Electric Grid An increasing fraction of the most efficient appliances on the market operate on direct current (DC) internally, making it possible to use DC from renewable energy systems directly and avoid the losses inherent in converting power to alternating current (AC) and back, as is current practice. Products are also emerging on the commercial market that take advantage of that possibility. Lawrence Berkeley National Laboratory researchers Vagelis Vossos, Karina Garbesi, and Hongxia Shen investigated the potential savings of direct-DC power distribution in net-metered residences with on-site photovoltaics

249

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

5 5 2005 Households and Energy Expenditures, by Income Level ($2010) Energy Expenditures by Household Income Households (millions) Household Less than $10,000 9.9 9% $10,000 to $14,999 8.5 8% $15,000 to $19,999 8.4 8% $20,000 to $29,999 15.1 14% $30,000 to $39,999 13.6 12% $40,000 to $49,999 11.0 10% $50,000 to $74,999 19.8 18% $75,000 to $99,999 10.6 10% $100,000 or more 14.2 13% Total 111.1 100% Note(s): Source(s): 7% 1) See Table 2.3.15 for more on energy burdens. 2) A household is defined as a family, an individual, or a group of up to nine unrelated individuals occupying the same housing unit. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-1 part 2; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price inflators. 2,431 847 3% 2,774 909 3% 1,995

250

TOPIC Brief BUILDING TECHNOLOGIES PROGRAM Residential Duct Insulation and Sealing Requirements TOPIC BRIEF 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Duct Insulation and Sealing Requirements TOPIC BRIEF 1 Duct Insulation and Sealing Requirements TOPIC BRIEF 1 Residential Duct Insulation and Sealing Requirements Studies show that duct air leakage results in major energy losses. A ll versions of the International Energy Conservation Code (IECC) require ducts, air handlers, filter boxes, and air cavities used as ducts to be sealed, and reference Chapter 16 of the International Residential Code for details on air sealing. This sealing is required on all ducts and other air distribution components regardless of whether they are located inside or outside the conditioned living space. For single-family homes and other low-rise residential buildings, the 2009 and 2012 IECC have duct insulation and sealing requirements in Section 403.2. Both codes require insulation

251

Building America Top Innovations Hall of Fame Profile Â… National Residential Efficiency Measures Database  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Robust cost data for energy-efficiency Robust cost data for energy-efficiency measures provide an essential framework for transforming the housing industry to high-performance homes. These data allow for effective optimization capabilities to guide builders, researchers, HERS raters, contractors, and designers. Researchers at the U.S. Department of Energy (DOE)'s National Renewable Energy Laboratory (NREL) have developed a public database that characterizes the performance and costs of common residential energy-efficiency measures. The database, called the National Residential Efficiency Measures Database, can be found at www.buildingamerica.gov. The data are available for use in software programs that evaluate cost-effective measures to improve the energy efficiency of new and existing residential buildings.

252

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

7 7 Range 10 4 48 Clothes Dryer 359 (2) 4 49 Water Heating Water Heater-Family of 4 40 64 (3) 26 294 Water Heater-Family of 2 40 32 (3) 12 140 Note(s): Source(s): 1) $1.139/therm. 2) Cycles/year. 3) Gallons/day. A.D. Little, EIA-Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case, Sept. 2, 1998, p. 30 for range and clothes dryer; LBNL, Energy Data Sourcebook for the U.S. Residential Sector, LBNL-40297, Sept. 1997, p. 62-67 for water heating; GAMA, Consumers' Directory of Certified Efficiency Ratings for Heating and Water Heating Equipment, Apr. 2002, for water heater capacity; and American Gas Association, Gas Facts 1998, December 1999, www.aga.org for range and clothes dryer consumption. Operating Characteristics of Natural Gas Appliances in the Residential Sector

253

Buildings-to-Grid Technical Opportunities: From the Buildings...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Opportunities: From the Buildings Perspective Technological advances in demand response and energy efficiency have increased the utility of residential and commercial...

254

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

8 8 2035 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 44.3 10.3 7.7 18.6 0.0 16.0 79.0 27.4% Space Cooling (3) 0.0 40.6 40.6 14.1% Water Heating 17.6 1.2 1.2 2.3 17.7 37.6 13.0% Lighting 15.5 15.5 5.4% Refrigeration (4) 17.0 17.0 5.9% Electronics (5) 14.2 14.2 4.9% Wet Cleaning (6) 0.9 10.4 11.3 3.9% Cooking 3.2 0.8 0.8 4.8 8.9 3.1% Computers 8.7 8.7 3.0% Other (7) 0.0 7.7 7.7 47.9 55.7 19.3% Total 66.0 11.5 17.5 29.6 0.0 193.0 288.6 100% Note(s): Source(s): 0.6 0.6 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.8 billion). 3) Fan energy use included. 4) Includes refrigerators ($14.1 billion) and freezers ($2.9 billion). 5) Includes color televisions ($14.2 billion). 6) Includes clothes washers ($0.8 billion), natural gas

255

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

2 2 Residential Energy Prices, by Year and Fuel Type ($2010) LPG ($/gal) 1980 2.24 1981 2.51 1982 2.30 1983 2.14 1984 2.10 1985 1.96 1986 1.54 1987 1.42 1988 1.39 1989 1.48 1990 1.69 1991 1.56 1992 1.40 1993 1.33 1994 1.27 1995 1.22 1996 1.37 1997 1.34 1998 1.15 1999 1.16 2000 1.70 2001 1.59 2002 1.42 2003 1.67 2004 1.84 2005 2.36 2006 2.64 2007 2.81 2008 3.41 2009 2.52 2010 2.92 2011 3.62 2012 3.65 2013 3.43 2014 3.60 2015 3.74 2016 3.79 2017 3.86 2018 3.89 2019 3.92 2020 3.96 2021 3.99 2022 4.02 2023 4.07 2024 4.10 2025 4.15 2026 4.19 2027 4.23 2028 4.26 2029 4.30 2030 4.34 2031 4.35 2032 4.38 2033 4.43 2034 4.50 2035 4.55 Source(s): EIA, State Energy Data 2009: Prices and Expenditures, Jun. 2011, Table 2, p. 24-25 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table A3, p. 6-8 for 2010-2035 and Table G1, p. 215 for fuels' heat content; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for

256

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

7 7 2025 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 39.7 11.5 7.8 19.9 0.0 15.0 74.5 28.6% Space Cooling (3) 0.0 36.2 36.2 13.9% Water Heating 16.0 1.4 1.3 2.7 17.1 35.9 13.8% Lighting 15.2 15.2 5.8% Refrigeration (4) 15.5 15.5 6.0% Electronics (5) 12.0 12.0 4.6% Wet Cleaning (6) 0.8 9.8 10.5 4.1% Cooking 2.7 0.8 0.8 4.3 7.8 3.0% Computers 7.7 7.7 2.9% Other (7) 0.0 6.4 6.4 38.7 45.0 17.3% Total 59.1 12.9 16.3 29.8 0.0 171.3 260.3 100% Note(s): Source(s): 0.6 0.6 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.7 billion). 3) Fan energy use included. 4) Includes refrigerators ($12.7 billion) and freezers ($2.8 billion). 5) Includes color televisions ($12 billion). 6) Includes clothes washers ($0.8 billion), natural gas

257

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

6 6 2015 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 35.0 13.0 8.1 21.6 0.0 14.0 70.6 29.2% Space Cooling (3) 0.0 33.8 33.8 14.0% Water Heating 13.5 1.9 1.5 3.4 15.8 32.7 13.5% Lighting 17.6 17.6 7.3% Refrigeration (4) 15.0 15.0 6.2% Electronics (5) 10.9 10.9 4.5% Wet Cleaning (6) 0.6 10.8 11.4 4.7% Cooking 2.2 0.9 0.9 3.8 6.8 2.8% Computers 6.3 6.3 2.6% Other (7) 0.0 5.2 5.2 31.3 36.5 15.1% Total 51.3 14.9 15.7 31.1 0.0 159.3 241.7 100% Note(s): Source(s): 0.6 0.6 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.6 billion). 3) Fan energy use included. 4) Includes refrigerators ($12.3 billion) and freezers ($2.8 billion). 5) Includes color televisions ($10.9 billion). 6) Includes clothes washers ($1.1 billion), natural gas

258

Advanced Lighting Technology Program for Federal Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E's Innovative Federal Collaboration E's Innovative Federal Collaboration Advanced Lighting Technology Program for Federal Buildings Federal Utility Partnership Working Group November 1, 2006 "A 3 MW Success Story: Delivering on the Promise" Today's Presentation * Setting the Scene - U.S & Global Perspective * Program Overview: - Advanced Lighting Technology Program for Federal Buildings * Benefits - Energy and environmental * Conclusion: - The Lamborghini Analogy Setting the Scene U.S. Policy: The National Direction "The answer to high energy prices is the kind of comprehensive approach embraced by the President-that includes...increasing our reliance on energy efficiency and conservation. "Let me be clear: Encouraging greater energy efficiency is part and parcel of changing the way we power our homes and

259

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

Residential Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Electricity Natural Gas Petroleum (1) Avg. 1980 36.40 8.35 16.77 17.64 1981 38.50 8.88 18.35 19.09 1982 40.15 10.08 17.28 19.98 1983 40.43 11.30 16.08 21.00 1984 38.80 11.02 15.61 20.20 1985 38.92 10.68 14.61 20.10 1986 38.24 9.98 11.88 19.38 1987 37.29 9.22 11.23 18.73 1988 36.22 8.80 10.83 18.02 1989 35.67 8.71 11.96 17.93 1990 35.19 8.63 13.27 18.64 1991 34.88 8.38 12.49 18.31 1992 34.79 8.28 11.23 17.76 1993 34.52 8.47 10.75 17.76 1994 34.04 8.63 10.63 17.87 1995 33.43 8.00 10.33 17.50 1996 32.63 8.21 11.70 17.28 1997 32.34 8.83 11.47 17.69 1998 31.33 8.55 9.96 17.73 1999 30.52 8.29 10.13 17.09 2000 30.13 9.54 14.18 18.06 2001 30.71 11.50 13.98 19.38 2002 29.73 9.24 12.26 17.89 2003 30.05 10.87 14.21 18.88 2004 29.98 11.97 15.54 19.76 2005 30.64 13.66 18.93 21.50 2006 32.67 14.30 21.06 23.34 2007 32.50

260

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book (EERE)

3 3 Share of Total U.S. Households, by Census Region, Division, and Vintage, as of 2005 Prior to 1950 to 1970 to 1980 to 1990 to 2000 to Region 1950 1969 1979 1989 1999 2005 Northeast 6.7% 5.2% 2.4% 2.1% 1.3% 0.8% 18.5% New England 2.1% 1.2% 0.5% 0.5% 0.3% 0.3% 4.9% Middle Atlantic 4.6% 4.0% 1.9% 1.6% 1.0% 0.5% 13.6% Midwest 5.7% 5.8% 3.6% 2.5% 3.7% 1.7% 23.0% East North Central 4.3% 3.9% 2.7% 1.8% 2.1% 1.1% 16.0% West North Central 1.4% 1.9% 0.9% 0.7% 1.6% 0.6% 7.1% South 4.0% 6.9% 6.4% 7.5% 7.5% 4.3% 36.6% South Atlantic 2.0% 3.4% 3.5% 4.2% 4.3% 2.2% 17.4% East South Central 0.9% 1.3% 0.9% 1.0% 1.3% 0.7% 6.2% West South Central 1.2% 2.3% 4.7% 2.2% 1.8% 1.4% 13.6% West 3.4% 4.6% 4.5% 4.6% 3.1% 1.5% 21.8% Mountain 0.7% 1.2% 1.3% 1.5% 1.3% 0.9% 6.8% Pacific 2.8% 3.4% 3.3% 3.1% 1.8% 0.6% 15.0% United States 19.9% 22.5% 17.0% 16.7% 15.6% 8.3% 100% Source(s): All Vintages EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table HC10

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Building Technologies Office: Advanced Energy Retrofit Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrofit Guides Retrofit Guides Photo of the cover of the Advanced Energy Retrofit Guide for Healthcare Facilities. The Advanced Energy Retrofit Guides (AERGs) help building owners and managers as well as design and construction professionals plan, design, and implement energy efficiency upgrades in commercial buildings. The Advanced Energy Retrofit Guides (AERGs) were created to help decision makers plan, design, and implement energy improvement projects in their facilities. With energy managers in mind, they present practical guidance for kick-starting the process and maintaining momentum throughout the project life cycle. These guides are primarily reference documents, allowing energy managers to consult the particular sections that address the most pertinent topics.. Useful resources are also cited throughout the guides for further information. Each AERG is tailored specifically to the needs of a specific building type, with an emphasis on the most effective retro-commissioning and retrofit measures identified by experts familiar with those unique opportunities and challenges. The guides present a broad range of proven practices that can help energy managers take specific actions at any stage of the retrofit process, resulting in energy savings for many years to come.

262

Lighting in Residential and Commercial Buildings (1993 and 1995 data) --  

U.S. Energy Information Administration (EIA) Indexed Site

Light Type Used > Related Goverment Sites Light Type Used > Related Goverment Sites Links to Related Government Sites Publications list from U.S. Department of Energy's Office of Federal Energy Management Programs (FEMP) U.S. Environmental Protection Agency Green Lights Program Updated FLEX 3.0 Lighting software solution available from U.S. Department of Energy's Office of Federal Energy Management Programs Section 3.4 on Lighting and Section 7.2 on Lighting Control can be obtained at this site U.S. Department of Energy's Office of Federal Energy Management Programs lights basic training will be completed in FY '98 Lighting mailing list for exchange of information on lighting issues Lights in commercial buildings in the 21st Century List of major areas of expertise at Lawrence Berkeley National Laboratory, illustrated with specific projects

263

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book (EERE)

7 7 Characteristics of a Typical Single-Family Home (1) Year Built | Building Equipment Fuel Age (5) Occupants 3 | Space Heating Natural Gas 12 Floorspace | Water Heating Natural Gas 8 Heated Floorspace (SF) 1,934 | Space Cooling 8 Cooled Floorspace (SF) 1,495 | Garage 2-Car | Stories 1 | Appliances Size Age (5) Foundation Concrete Slab | Refrigerator 19 Cubic Feet 8 Total Rooms (2) 6 | Clothes Dryer Bedrooms 3 | Clothes Washer Other Rooms 3 | Range/Oven Full Bathroom 2 | Microwave Oven Half Bathroom 0 | Dishwasher Windows | Color Televisions 3 Area (3) 222 | Ceiling Fans 3 Number (4) 15 | Computer 2 Type Double-Pane | Printer Insulation: Well or Adequate | Note(s): Source(s): 2-Door Top and Bottom Electric Top-Loading Electric 1) This is a weighted-average house that has combined characteristics of the Nation's stock homes. Although the population of homes with

264

Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances  

Energy.gov (U.S. Department of Energy (DOE))

These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

265

Impact of Different Glazing Systems on Cooling Load of a Detached Residential Building at Bhubaneswar, India  

E-Print Network (OSTI)

assuming north?south and east?west facings of the building. For each orientation, different types of glazing (Table 4) and different glazing areas are considered. The first case(the base case) assumes a single clear glazing with a window-to-wall ratio.... Floor plan of the east-west oriented residential building taken for study (not to scale) Table 1. The zones basic characteristics Zone Area (m2) Volume (m3) Occupancy (people/m2) Venti- lation (l/s) HVAC system Bed room1 15.12 52...

Sahoo, P. K.; Sahoo, R.

2010-01-01T23:59:59.000Z

266

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

U.S. Residential Electricity Consumption by End Use. 2011a [average residential electricity consumption by end-use inaverage residential electricity consumption by end-use in

Garbesi, Karina

2012-01-01T23:59:59.000Z

267

Environmental Assessment for Direct Final Rule, 10 CFR 434, ÂŤEnergy Standards for New Federal Commercial and High-Rise Multi-FamilyResidential BuildingsÂŽ and 10 CFR 435, ÂŤEnergy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings"  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposed Rule, 10 CFR 433, Proposed Rule, 10 CFR 433, "Sustainable Design and Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Sustainable Design and Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings" (DOE/EA-1463) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR 433, "Sustainable Design and Energy Efficiency Standards for the Design and Construction of New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Sustainable Design and Energy Efficiency Standards for New Federal Residential Low- Rise Residential Buildings". Section 305(a) of the Energy Conservation and Production

268

Environmental Assessment for Direct Final Rule, 10 CFR 434, ÂŤEnergy Standards for New Federal Commercial and High-Rise Multi-FamilyResidential BuildingsÂŽ and 10 CFR 435, ÂŤEnergy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Rule, 10 CFR 433, Proposed Rule, 10 CFR 433, "Sustainable Design and Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Sustainable Design and Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings" (DOE/EA-1463) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR 433, "Sustainable Design and Energy Efficiency Standards for the Design and Construction of New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Sustainable Design and Energy Efficiency Standards for New Federal Residential Low- Rise Residential Buildings". Section 305(a) of the Energy Conservation and Production

269

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book (EERE)

1 1 Total Number of Households and Buildings, Floorspace, and Household Size, by Year 1980 80 N.A. 227 2.9 1981 83 N.A. 229 2.8 1982 84 N.A. 232 2.8 1983 85 N.A. 234 2.8 1984 86 N.A. 236 2.7 1985 88 N.A. 238 2.7 1986 89 N.A. 240 2.7 1987 91 N.A. 242 2.7 1988 92 N.A. 244 2.7 1989 93 N.A. 247 2.6 1990 94 N.A. 250 2.6 1991 95 N.A. 253 2.7 1992 96 N.A. 257 2.7 1993 98 N.A. 260 2.7 1994 99 N.A. 263 2.7 1995 100 N.A. 266 2.7 1996 101 N.A. 269 2.7 1997 102 N.A. 273 2.7 1998 104 N.A. 276 2.7 1999 105 N.A. 279 2.7 2000 106 N.A. 282 2.7 2001 107 2% 285 2.7 2002 105 3% 288 2.7 2003 106 5% 290 2.8 2004 107 7% 293 2.7 2005 109 9% 296 2.7 2006 110 11% 299 2.7 2007 110 12% 302 2.7 2008 111 13% 304 2.8 2009 111 13% 307 2.8 2010 114 14% 310 2.7 2011 115 14% 313 2.7 2012 116 15% 316 2.7 2013 117 16% 319 2.7 2014 118 17% 322 2.7 2015 119 18% 326 2.7 2016 120 19% 329 2.7 2017 122 21% 332 2.7 2018 123 22% 335 2.7 2019 125 23% 338 2.7 2020 126 25% 341 2.7 2021 127 26% 345

270

EA-1871: Environmental Assessment for Final Rule, 10 CFR 433, “EE Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings” and 10 CFR 435, “EE Standards for New Federal Residential Low-Rise Residential Buildings"  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE‘s Final Rule, 10 CFR 433, ?Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings? and 10 CFR 435, ?Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings? Baseline Standards Update. The final rule updates the baseline standards in 10 CFR 433 and 10 CFR 435 to the latest private sector standards based on the cost-effectiveness of the latest private sector standards and DOE‘s determination that energy efficiency has been improved in these codes as required by 42 U.S.C 6831 et seq. DOE is issuing its final determinations on American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 (ASHRAE 2007) and the International Code Council‘s 2009 International Energy Conservation Code (IECC) in the same edition of the Federal Register as this final rule.

271

Building Technologies Office: Advanced, Variable Speed Air-Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced, Variable Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project to someone by E-mail Share Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Facebook Tweet about Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Twitter Bookmark Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Google Bookmark Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Delicious Rank Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Digg Find More places to share Building Technologies Office: Advanced,

272

Modelling the impacts of building regulations and a property bubble on residential space and water heating  

Science Journals Connector (OSTI)

This paper develops a bottom-up model of space and water heating energy demand for new build dwellings in the Irish residential sector. This is used to assess the impacts of measures proposed in Ireland's National Energy Efficiency Action Plan (NEEAP). The impact of the housing construction boom, which resulted in 23% of occupied dwellings in 2008 having been built since 2002, and the subsequent bust, are also assessed. The model structure treats separately new dwellings added to the stock after 2007 and pre-existing occupied dwellings. The former is modelled as a set of archetype dwellings with energy end use affected by the relevant set of building regulations that apply during construction. Energy demand of existing dwellings is predicted by a simpler top down method based on historical energy use trends. The baseline scenario suggests residential energy demand will grow by 19% from 3206 ktoe in 2007 to 3810 ktoe in 2020. The results indicate that 2008 and 2010 building regulations will lead to energy savings of 305 ktoe (8.0%) in 2020. Had the 2008 building regulations been introduced in 2002, at the start of the boom, there would be additional savings of 238 ktoe (6.7%) in 2020.

D. Dineen; B.P. Ó Gallachóir

2011-01-01T23:59:59.000Z

273

Development of a housing performance evaluation model for multi-family residential buildings in Korea  

Science Journals Connector (OSTI)

This paper presents the development and application of a housing performance evaluation model for multi-family residential buildings in Korea. This model is intended to encourage initiatives toward achieving better housing performance and to support a homebuyer's decision-making on housing comparison and selection. Forty-one objective and feasible housing performance indicators, which were selected from the review of existing evaluation models and interviews with experts, are classified into a series of categories. The weights of each category and indicator are calculated by using the analytic hierarchy process (AHP) analysis, and a weight is converted into credit. Next, the performance grades are divided into four levels, and evaluation criteria are suggested based on statutory performance value or the one frequently met in practice. Finally, the evaluation program and the application procedure are established through the field case study. This model can be used for objective and practical evaluation and comparison of residential housing alternatives.

Sun-Sook Kim; In-Ho Yang; Myoung-Souk Yeo; Kwang-Woo Kim

2005-01-01T23:59:59.000Z

274

Residential | OpenEI  

Open Energy Info (EERE)

Residential Residential Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

275

Advanced Controls for Residential Whole-House Ventilation Systems  

SciTech Connect

Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

Turner, William; Walker, Iain; Sherman, Max

2014-08-01T23:59:59.000Z

276

Assessment of Cost-optimal Energy Performance Requirements for the Italian Residential Building Stock  

Science Journals Connector (OSTI)

Abstract Directive 2010/31/EU establishes that Member States must ensure that minimum energy performance requirements for buildings are set with a view to achieve cost-optimal levels. The paper presents a methodology for identifying the cost-optimal levels for the Italian residential building stock, following the Guidelines accompanying the Commission Delegated Regulation No. 244/2012. The methodology is applied to a reference building of the IEE-TABULA project and considering different energy efficiency measures. The energy performance and the global cost calculations are performed according to UNI/TS 11300 and UNI EN 15459, respectively. A new cost optimisation procedure based on a sequential search-optimisation technique considering discrete options is applied.

Vincenzo Corrado; Ilaria Ballarini; Simona Paduos

2014-01-01T23:59:59.000Z

277

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings Title Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings Publication Type Report LBNL Report Number LBNL-5193E Year of Publication 2011 Authors Garbesi, Karina, Vagelis Vossos, Alan H. Sanstad, and Gabriel Burch Document Number LBNL-5193E Pagination 59 Date Published October Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the 'direct-DC house' with respect to today's typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative of the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate. While direct-DC for residential applications will most likely arise as a spin-off of developments in the commercial sector-because of lower barriers to market entry and larger energy benefits resulting from the higher coincidence between load and insolation-this paper demonstrates that there are substantial benefits in the residential sector as well. Among residential applications, space cooling derives the largest energy savings from being delivered by a direct-DC system. It is the largest load for the average residence on a national basis and is particularly so in high-load regions. It is also the load with highest solar coincidence.

278

EA-1926: Energy Efficiency Design Standards for New Federal Low-Rise Residential Buildings (RIN# 1904-AC61)  

Energy.gov (U.S. Department of Energy (DOE))

This EA will evaluate the potential environmental impacts of implementing the provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal buildings, including low-rise residential buildings.

279

Building Technologies Office: Advanced Insulation for High Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Insulation for Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project to someone by E-mail Share Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Facebook Tweet about Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Twitter Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Google Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Delicious Rank Building Technologies Office: Advanced Insulation for High

280

Agenda for Public Meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances  

Energy.gov (U.S. Department of Energy (DOE))

Download the agenda below for the July 11 Public Meeting on the Physical Characterization of Grid-Connected Commercial and  Residential Buildings End-Use Equipment and Appliances.

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Next Generation Advanced Framing- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

Building America researchers garnered a Top Innovation award for research into simple, cost-effective ways to implement advanced framing techniques.

282

13 - Micro combined heat and power (CHP) systems for residential and small commercial buildings  

Science Journals Connector (OSTI)

Abstract: The principal market for micro-CHP is as a replacement for gas boilers in the 18 million or so existing homes in the UK currently provided with gas-fired central heating systems. In addition there are a significant number of potential applications of micro-CHP in small commercial and residential buildings. In order to gain the optimum benefit from micro-CHP, it is essential to ensure that an appropriate technology is selected to integrate with the energy systems of the building. This chapter describes the key characteristics of the leading micro-CHP technologies, external and internal combustion engines and fuel cells, and how these align with the relevant applications.

J. Harrison

2011-01-01T23:59:59.000Z

283

Monitoring energy reduction through applying green roofs to residential buildings in Dubai  

Science Journals Connector (OSTI)

Green roofing in a building has many advantages including absorbing rainwater, providing thermal insulation, enhancing the ecology, creating a peaceful retreat for people and animals, improving air quality and helping to offset the air temperature and heat island effect. The aim of this paper is to monitor energy saving in the residential buildings of Dubai after applying green roofing techniques. The paper also attempts to provide a thermal analysis after the application of green roofs. A villa in Dubai was chosen as a case study. With the aid of energy simulation software, namely DesignBuilder, as well as manual recording and calculations, the energy savings after applying the green roofing were detected. To that extent, the paper draws some recommendations with regard to the types of green roofing that should be used in these particular climatic conditions based on this real experiment that took place over a one year period.

Hanan Taleb

2014-01-01T23:59:59.000Z

284

Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings  

SciTech Connect

The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

2011-07-31T23:59:59.000Z

285

Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates  

SciTech Connect

The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

2006-08-01T23:59:59.000Z

286

Advanced, Integrated Control for Building Operations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced, Integrated Control for Building Advanced, Integrated Control for Building Operations Advanced, Integrated Control for Building Operations The U.S. Department of Energy (DOE) is currently conducting research into advanced integrated controls for building operations and seeking to validate energy savings strategies by simulations. Project Description This project will develop an advanced, integrated control for the following building systems: Cooling and heating Lighting Ventilation Window and blind operation. A variety of operation and energy saving control strategies will be evaluated on a building equipped with alternative cooling and heating methods, including fan coil units, radiant mullions, and motorized window and blinds. Project Partners Research is being undertaken by DOE, Siemens Corporate Research, Siemens

287

Building America Whole-House Solutions for Existing Homes: 56th and Walnut: A Philly Gut Rehab Development  

Energy.gov (U.S. Department of Energy (DOE))

In this project, CPM partnered with the Consortium for Advanced Residential Buildings team to renovate 32 units in 11 three-story, historic, brick masonry urban buildings.

288

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

3 3 Building Type Pre-1995 1995-2005 Pre-1995 1995-2005 Pre-1995 1995-2005 Single-Family 38.4 44.9 102.7 106.2 38.5 35.5 Detached 37.9 44.7 104.5 107.8 38.8 35.4 Attached 43.8 55.5 86.9 85.1 34.2 37.6 Multi-Family 63.8 58.7 58.3 49.2 27.2 24.3 2 to 4 units 69.0 55.1 70.7 59.4 29.5 25.0 5 or more units 61.5 59.6 53.6 47.2 26.3 24.2 Mobile Homes 82.4 57.1 69.6 74.5 29.7 25.2 Note(s): Source(s): 2005 Residential Delivered Energy Consumption Intensities, by Principal Building Type and Vintage Per Square Foot (thousand Btu) (1) Per Household (million Btu) Per Household Member (million Btu) 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average

289

Stochastic model for electrical loads in Mediterranean residential buildings: Validation and applications  

Science Journals Connector (OSTI)

Abstract A major issue in modelling the electrical load of residential building is reproducing the variability between dwellings due to the stochastic use of different electrical equipment. In that sense and with the objective to reproduce this variability, a stochastic model to obtain load profiles of household electricity is developed. The model is based on a probabilistic approach and is developed using data from the Mediterranean region of Spain. A detailed validation of the model has been done, analysing and comparing the results with Spanish and European data. The results of the validation show that the model is able to reproduce the most important features of the residential electrical consumption, especially the particularities of the Mediterranean countries. The final part of the paper is focused on the potential applications of the models, and some examples are proposed. The model is useful to simulate a cluster of buildings or individual households. The model allows obtaining synthetic profiles representing the most important characteristics of the mean dwelling, by means of a stochastic approach. The inputs of the proposed model are adapted to energy labelling information of the electric devices. An example case is presented considering a dwelling with high performance equipment.

Joana Ortiz; Francesco Guarino; Jaume Salom; Cristina Corchero; Maurizio Cellura

2014-01-01T23:59:59.000Z

290

The effect of an enclosure retrofit on air leakage rates for a multi-unit residential case-study building  

Science Journals Connector (OSTI)

Abstract This paper presents a relatively new, simple and robust, method for air leakage testing. A thirteen-story multi-unit residential building was tested for air leakage before and after an enclosure retrofit. The building suites had a pre-retrofit NLA50 average of 6.77 cm2/m2 and an average post-retrofit NLA50 of 2.82 cm2/m2—a 58% betterment. The effect of the retrofit on air leakage rates was assessed and compared to other multi-unit residential buildings across Canada and USA. The case study building was significantly tighter than other multi-unit residential buildings included in published studies. Recommendations were made for field-testing procedures in order to maximize the potential for accurate measured flow characteristics. Field-testing for air-tightness needs to be standardized in order for useful comparative results to be generated in order to inform future research and operational considerations for the multi-unit residential building stock across North America.

Robin Urquhart; Russell Richman; Graham Finch

2015-01-01T23:59:59.000Z

291

Advanced oil burner for residential heating -- development report  

SciTech Connect

The development of advanced oil burner concepts has long been a part of Brookhaven National Laboratory`s (BNL) oil heat research program. Generally, goals of this work include: increased system efficiency, reduced emissions of soot and NO{sub x}, and the practical extension of the firing rate range of current burners to lower input rates. The report describes the results of a project at BNL aimed at the development of air atomized burners. Two concepts are discussed. The first is an air atomizer which uses air supplied at pressures ranging from 10 to 20 psi and requiring the integration of an air compressor in the system. The second, more novel, approach involves the use of a low-pressure air atomizing nozzle which requires only 8-14 inches of water air pressure for fuel atomization. This second approach requires the use of a fan in the burner instead of a compressor although the fan pressure is higher than with conventional, pressure atomized retention head burners. In testing the first concept, high pressure air atomization, a conventional retention head burner was modified to accept the new nozzle. In addition, the burner head was modified to reduce the flow area to maintain roughly 1 inch of water pressure drop across the head at a firing rate of 0.25 gallons of oil per hour. The burner ignited easily and could be operated at low excess air levels without smoke. The major disadvantage of this burner approach is the need for the air compressor as part of the system. In evaluating options, a vane-type compressor was selected although the use of a compressor of this type will lead to increased burner maintenance requirements.

Butcher, T.A.

1995-07-01T23:59:59.000Z

292

Updated Buildings Sector Appliance and Equipment Costs and Efficiency  

U.S. Energy Information Administration (EIA) Indexed Site

Full report (4.1 mb) Full report (4.1 mb) Heating, cooling, & water heating equipment Appendix A - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case (1.9 mb) Appendix B - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case (1.3 mb) Lighting and commercial ventilation & refrigeration equipment Appendix C - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case (1.1 mb) Appendix D - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case (1.1 mb) Updated Buildings Sector Appliance and Equipment Costs and Efficiency Release date: August 7, 2013 Energy used in the residential and commercial sectors provides a wide range

293

Building America's Top Innovations Advance High Performance Homes |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America's Top America's Top Innovations Advance High Performance Homes Building America's Top Innovations Advance High Performance Homes Building America Top Innovations. Recognizing top innovations in building science. Innovations sponsored by the U.S. Department of Energy's (DOE) Building America program and its teams of building science experts continue to have a transforming impact, leading our nation's home building industry to high-performance homes. Building America researchers have worked directly with more than 300 U.S. production home builders and have boosted the performance of more than 42,000 new homes. Learn more about Building America Top Innovations. 2013 Top Innovations New Top Innovations are awarded annually for outstanding Building America research achievements. Learn more about the 2013 Top Innovations recently

294

Experimental Investigation of Direct Expansion Dynamic Ice-on-coil Storage System Used in Residential Buildings  

E-Print Network (OSTI)

The reduction in electricity consumption of an ice-storage system in the daytime leads to financial savings for building owners and extension savings for a power plant and national economy. Great advancements have been made in domestic ice-storage...

Zheng, M.; Kong, F.; Han, Z.; Liu, W.

2006-01-01T23:59:59.000Z

295

Assessing and Improving the Accuracy of Energy Analysis for Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing and Improving the Assessing and Improving the Accuracy of Energy Analysis for Residential Buildings B. Polly, N. Kruis, and D. Roberts July 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,

296

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

NLE Websites -- All DOE Office Websites (Extended Search)

Window-Related Energy Consumption in the US Window-Related Energy Consumption in the US Residential and Commercial Building Stock Joshua Apte and Dariush Arasteh, Lawrence Berkeley National Laboratory LBNL-60146 Abstract We present a simple spreadsheet-based tool for estimating window-related energy consumption in the United States. Using available data on the properties of the installed US window stock, we estimate that windows are responsible for 2.15 quadrillion Btu (Quads) of heating energy consumption and 1.48 Quads of cooling energy consumption annually. We develop estimates of average U-factor and SHGC for current window sales. We estimate that a complete replacement of the installed window stock with these products would result in energy savings of approximately 1.2 quads. We demonstrate

297

Discussion on Energy-Efficient Technology for the Reconstruction of Residential Buildings in Cold Areas  

E-Print Network (OSTI)

to wall is 0.33 in south, 0.30 in north, 0.05 in east and 0.03 in west. The heat transfer coefficient of roof is 1.26 W/m2?K and the area is 1028.5m2. The ICEBO2006, Shenzhen, China Building Commissioning for Energy Efficiency and Comfort, Vol. VI-5...-1 ) heat transfer coefficient of external wall is 1.57 W/m2?K and the area is 3002.67 m2. The heat transfer coefficient of external window is 6.4 W/m2?K and the area is 908.64 m2. 2.2 Design Heating Load The design heating load of residential...

Zhao, J.; Wang, S.; Chen, H.; Shi, Y.; Li, D.

2006-01-01T23:59:59.000Z

298

Development and validation of regression models to predict monthly heating demand for residential buildings  

Science Journals Connector (OSTI)

The present research work concerns development of regression models to predict the monthly heating demand for single-family residential sector in temperate climates, with the aim to be used by architects or design engineers as support tools in the very first stage of their projects in finding efficiently energetic solutions. Another interest to use such simplified models is to make it possible a very quick parametric study in order to optimize the building structure versus environmental or economic criteria. All the energy prediction models were based on an extended database obtained by dynamic simulations for 16 major cities of France. The inputs for the regression models are the building shape factor, the building envelope U-value, the window to floor area ratio, the building time constant and the climate which is defined as function of the sol-air temperature and heating set-point. If the neural network (NN) methods could give precise representations in predicting energy use, with the advantage that they are capable of adjusting themselves to unexpected pattern changes in the incoming data, the multiple regression analysis was also found to be an efficient method, nevertheless with the requirement that an extended database should be used for the regression. The validation is probably the most important level when trying to find prediction models, so 270 different scenarios are analysed in this research work for different inputs of the models. It has been established that the energy equations obtained can do predictions quite well, a maximum deviation between the predicted and the simulated is noticed to be 5.1% for Nice climate, with an average error of 2%. In this paper, we also show that is possible to predict the building heating demand even for more complex scenarios, when the construction is adjacent to non-heated spaces, basements or roof attics.

Tiberiu Catalina; Joseph Virgone; Eric Blanco

2008-01-01T23:59:59.000Z

299

Assessing the sustainability of the energy use of residential buildings in Belgrade through multi-criteria analysis  

Science Journals Connector (OSTI)

Abstract The paper presents a method for selecting and calculation indicators of sustainable development, needed for determining the level of sustainable development, expressed through sustainability index of residential buildings. It is important to verify procedure for determining economic, social and environmental sub-indicators based on consumption of final energy (used to meet space heating, hot water generation and household cooking needs, as well as for operation of various household electrical appliances, indoor temperature and humidity). It was done for representative sample of Belgrade buildings stock. Different dwelling types constructed in two different periods and heated by electricity, district heating and fossil fuels were analysed. Multi-criteria analysis was used to evaluate residential buildings sustainability. The results showed that the best building options, constructed in the period 1981–2006, are: the apartment buildings and single family houses (electricity for space heating) when economy indicator has priority; the apartments connected to the district heating system when environmental indicator has priority; and single family houses connected to the district heating system when social indicator has priority. Implementation of proposed methodology is beneficial when evaluating and comparing sustainability of different residential buildings, enabling decision makers to more easily reach decisions on the issues related to energy policy and environmental protection.

Biljana Vu?i?evi?; Marina Jovanovi?; Naim Afgan; Valentina Turanjanin

2014-01-01T23:59:59.000Z

300

Technical Support Document: Development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings - 50% Energy Savings  

SciTech Connect

This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-MBBR) ASHRAE et al. (2011b). The AEDG-MBBR is intended to provide recommendations for achieving 50% whole-building energy savings in retail stores over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-MBBR was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy.

Bonnema, E.; Leach, M.; Pless, S.

2013-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Draft Environmental Assessment for Direct Final Rule, 10 CFR 434, "Energy Standards for New Federal Commercial and High-Rise High-Rise Multi-FamilyResidential Buildings" and 10 CFR 435, "Energy Efficiency Standards for New Federal Residential Low-Rise Re  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Energy "Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings" Baseline Standards Update (DOE/EA-1871) March 16, 2011 2 Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings" Baseline Standards Update

302

Advanced Commercial Buildings Initiative- 2014 BTO Peer Review  

Energy.gov (U.S. Department of Energy (DOE))

Presenter: Sydney Roberts, Southface Energy Institute The Southface Advanced Commercial Buildings Initiative (ACBI) leverages existing local and regional commercial energy efficiency programs and U.S. Department of Energy resources to create research-driven solutions.

303

A methodology to assess energy-demand savings and cost effectiveness of retrofitting in existing Swedish residential buildings  

Science Journals Connector (OSTI)

Abstract Swedish residential buildings are typically retrofitted on a case-by-case basis. Large numbers of building consultants are involved in the decision-making, and stakeholders find it difficult to quantify the sustainable profits from retrofits and to make an efficient selection of the optimal alternative. The present paper presents an approach to design and assess energy-demand retrofitting scenarios. This aims to contribute to retrofitting decision-making regarding the main archetypes of existing Swedish residential buildings and to the evaluation of their long-term cost effectiveness. The approach combines energy-demand modeling and retrofit option rankings with life-cycle cost analysis (LCCA). Four types of typical Swedish residential buildings are used to demonstrate the model. Retrofits in the archetypes are defined, analyzed and ranked to indicate the long-term energy savings and economic profits. The model indicates that the energy saving potential of retrofitting is 36–54% in the archetypes. However, retrofits with the largest energy-saving potential are not always the most cost effective. The long-term profits of retrofitting are largely dominated by the building types. The finding can contribute to the standardization of future retrofitting designs on municipality scale in Sweden.

Qian Wang; Sture Holmberg

2015-01-01T23:59:59.000Z

304

Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation  

SciTech Connect

This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define 'explicit' input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

Robertson, J.; Polly, B.; Collis, J.

2013-09-01T23:59:59.000Z

305

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

plausible future penetration rates for residential PVefficiencies and penetration rates. A subset of outputs areof localized high penetration rates, but the lack of a sound

Garbesi, Karina

2012-01-01T23:59:59.000Z

306

Demand response-enabled autonomous control for interior space conditioning in residential buildings.  

E-Print Network (OSTI)

Demand Response Autonomous Controlssystem under the context of demand response for residential10] E. Arens et al. , Demand response enabling technology

Chen, Xue

2008-01-01T23:59:59.000Z

307

Residential building solar thermal analysis| A case study on Sophia Gordon Hall.  

E-Print Network (OSTI)

?? Solar thermal technologies, such as residential hot water heating and space conditioning, have potential for reducing green house gas emissions and fossil fuel consumption.… (more)

Trethewey, Ross M.

2010-01-01T23:59:59.000Z

308

Smart Operation of Centralized Temperature Control System in Multi-Unit Residential Buildings.  

E-Print Network (OSTI)

??Smart Grid has emerged a very important concept in modern power systems. The integration of different loads such as residential, commercial and industrial into the… (more)

Kundu, Rajib

2013-01-01T23:59:59.000Z

309

Residential Retrofit Program Design Guide  

Energy.gov (U.S. Department of Energy (DOE))

This Residential Retrofit Program Design Guide focuses on the key elements and design characteristics of building and maintaining a successful residential retrofit program.

310

2014-04-30 Public Meeting Agenda: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances  

Energy.gov (U.S. Department of Energy (DOE))

This document is the agenda for the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting being held on April 30, 2014.

311

OpenEI - Residential  

Open Energy Info (EERE)

Commercial and Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States http://en.openei.org/datasets/node/961 This dataset contains hourly load profile data for 16 commercial building types (based off the buildings/commercial/ref_buildings.html">DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols).  This dataset also includes the residential/">Residential Energy Consumption Survey (RECS) for statistical references of building types

312

Advanced Optical Materials for Daylighting in Office Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Optical Materials for Daylighting in Office Buildings Advanced Optical Materials for Daylighting in Office Buildings Title Advanced Optical Materials for Daylighting in Office Buildings Publication Type Conference Paper LBNL Report Number LBL-20080 Year of Publication 1985 Authors Johnson, Russell, Deborah J. Connell, Stephen E. Selkowitz, and Dariush K. Arasteh Conference Name 10th Passive Solar Conference Date Published 10/1985 Conference Location Raleigh, NC Call Number LBL-20080 Abstract The use of daylighting to supplant electric light in office buildings offers substantial energy savings and peak electrical demand reductions. The benefits from electric lighting reductions can, however, be easily offset by increased cooling loads if solar gains are not controlled.sThe use of advanced glazing materials having optical switching propertiesscan facilitate solar control and, with proper design, maximize energy and cost benefits. The potential net annual performance of these materials, based on simulation studies using DOE-2.1C, are discussed insthis paper. Actively and passively controlled response functions aresanalyzed for the cooling-load-dominated climate of Lake Charles. The effects of advanced materials on net annual energy consumption, peak electrical demand, and chiller size are compared with those of conventional materials. The results demonstrate the importance of operable solar control to achieve energy-effective daylighting design. Advanced optical materials that provide the necessary level of control are shown to minimize peak electrical demand and electricity consumption.

313

Global warming implications of facade parameters: A life cycle assessment of residential buildings in Bahrain  

SciTech Connect

On a global scale, the Gulf Corporation Council Countries (GCCC), including Bahrain, are amongst the top countries in terms of carbon dioxide emissions per capita. Building authority in Bahrain has set a target of 40% reduction of electricity consumption and associated CO{sub 2} emissions to be achieved by using facade parameters. This work evaluates how the life cycle CO{sub 2} emissions of buildings are affected by facade parameters. The main focus is placed on direct and indirect CO{sub 2} emissions from three contributors, namely, chemical reactions during production processes (Pco{sub 2}), embodied energy (Eco{sub 2}) and operational energy (OPco{sub 2}). By means of the life cycle assessment (LCA) methodology, it has been possible to show that the greatest environmental impact occurs during the operational phase (80-90%). However, embodied CO{sub 2} emissions are an important factor that needs to be brought into the systems used for appraisal of projects, and hence into the design decisions made in developing projects. The assessment shows that masonry blocks are responsible for 70-90% of the total CO{sub 2} emissions of facade construction, mainly due to their physical characteristics. The highest Pco{sub 2} emissions factors are those of window elements, particularly aluminium frames. However, their contribution of CO{sub 2} emissions depends largely on the number and size of windows. Each square metre of glazing is able to increase the total CO{sub 2} emissions by almost 30% when compared with the same areas of opaque walls. The use of autoclaved aerated concrete (AAC) walls reduces the total life cycle CO{sub 2} emissions by almost 5.2% when compared with ordinary walls, while the use of thermal insulation with concrete wall reduces CO{sub 2} emissions by 1.2%. The outcome of this work offers to the building industry a reliable indicator of the environmental impact of residential facade parameters. - Highlights: Black-Right-Pointing-Pointer Life cycle carbon assessment of facade parameters. Black-Right-Pointing-Pointer Greatest environmental impact occurs during the operational phase. Black-Right-Pointing-Pointer Masonry blocks are responsible for 70-90% of the total CO2 emissions of facade construction. Black-Right-Pointing-Pointer Window contribution of CO2 emissions depends on the number and size of windows. Black-Right-Pointing-Pointer Without insulation, AAC walls offer more savings in CO2 emissions.

Radhi, Hassan, E-mail: h_alradhi@yahoo.com [Global Engineering Bureau, P.O Box 33130, Manama, Kingdom of Bahrain (Bahrain); Sharples, Stephen, E-mail: steve.sharples@liverpool.ac.uk [School of Architecture, University of Liverpool (United Kingdom)

2013-01-15T23:59:59.000Z

314

Advanced Residential Envelopes for Two Pair of Energy-Saver Homes  

SciTech Connect

Four homes are under construction in the Tennessee Valley to showcase homes that are at least 50% energy savers as compared to homes built to local code. Schaad Companies LLC, the Tennessee Valley Authority (TVA), the Oak Ridge National Laboratory (ORNL), Barber McMurry Architects (BMA) and the Department of Energy (DOE) intend to transform new and existing buildings into affordable, durable and efficient housing. All formed a private- and federal-sector consortium herein called the Zero Energy Building Research Alliance (ZEBRA). The consortium is about to evaluate the market viability for making two pairs of homes 50 percent more energy efficient than homes of similar size and style. Achieving the goal requires the most advanced building technology, products and techniques available. The homes are located on adjacent cul-de-sacs and are unoccupied for the duration of a two-year field study, thereby eliminating the confounding issue of occupancy habits.

Miller, William A [ORNL] [ORNL; Karagiozis, Achilles N [ORNL] [ORNL; Kosny, Jan [ORNL] [ORNL; Shrestha, Som S [ORNL] [ORNL; Christian, Jeffrey E [ORNL] [ORNL; Kohler, Christian [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL); Dinse, David [Tennessee Valley Authority (TVA)] [Tennessee Valley Authority (TVA)

2010-01-01T23:59:59.000Z

315

Building a Better Battery | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Method for Measuring X-ray Optics Aberrations A New Method for Measuring X-ray Optics Aberrations New Clues for Asthma Treatment Extending Resonant Diffraction to Very High Energies for Structural Studies of Complex Materials Tuning the Collective Properties of Artificial Nanoparticle Supercrystals The Workings of a Key Staph Enzyme and How to Block It Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Building a Better Battery APRIL 23, 2011 Bookmark and Share (Top panel) Schematic arrangement of lithium (yellow), cobalt (blue), and manganese (magenta) atoms in the transition metal plane of the layered Li1.2Co0.4Mn0.4O2 structure. Well connected areas with LiCoO2, where only cobalt is present, and Li2MnO3, where manganese atoms surround lithium

316

An Interpretive, Multilevel Theory of Scenario Planning: Advancing Human Resource Development Theory Building  

E-Print Network (OSTI)

This study advances theory building as the process of modeling real-world phenomena and uses a theory-to-research strategy in the theory building process. A five-step theory building methodology constitutes applied theory building in general...

Matlock, James 1958-

2012-12-01T23:59:59.000Z

317

Dynamic Simulation and Analysis of Factors Impacting the Energy Consumption of Residential Buildings  

E-Print Network (OSTI)

Buildings have a close relationship with climate. There are a lot of important factors that influence building energy consumption such as building shape coefficient, insulation work of building envelope, covered area, and the area ratio of window...

Lian, Y.; Hao, Y.

2006-01-01T23:59:59.000Z

318

Envelope-related energy demand: A design indicator of energy performance for residential buildings in early design stages  

Science Journals Connector (OSTI)

The architectural design variables which most influence the energy performance of a building are the envelope materials, shape and window areas. As these start to be defined in the early design stages, designers require simple tools to obtain information about the energy performance of the building for the design variations being considered at this phase. The shape factor is one of those tools, but it fails to correlate with energy demand in the presence of important solar gains. This paper presents a new design indicator of energy performance for residential buildings, the Envelope-Related Energy Demand (ERED), which aims to overcome the shortcomings of the shape factor while maintaining a reasonable simplicity of use. The inputs to ERED are areas of envelope elements (floor, walls, roofs and windows), U-values of envelope materials, solar heat gain coefficients (SHGC) of windows and site related parameters, concerning temperature and solar irradiation. ERED was validated against detailed simulation results of 8000 hypothetical residential buildings, varying in envelope shape, window areas and materials. Results show that there is a strong correlation between ERED and simulated energy demand. These results confirm the adequacy of ERED to assist design decisions in early stages of the design process.

Vasco Granadeiro; Joăo R. Correia; Vítor M.S. Leal; José P. Duarte

2013-01-01T23:59:59.000Z

319

About Residential | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » About Residential Residential Buildings » About Residential About Residential The Building Technologies Office (BTO) collaborates with home builders, energy professionals, state and local governments, utilities, product manufacturers, educators, and researchers to improve the energy efficiency of both new and existing homes. Residential Sector Activities Include: Demonstrating to builders and remodelers how to build and renovate for high performance through best practice guides and case studies and continuing to developing innovative whole-house energy efficiency solutions through Building America research projects. We also provide guidelines and tools for researchers conducting building related research projects. Promoting a trusted, whole-house process for upgrading existing homes with

320

Where and how much : density scenarios for the residential build-out of Gaoming, China  

E-Print Network (OSTI)

The author will use Gaoming District in the western part of China's Pearl River Delta (PRD) as an opportunity to examine the impact a range of residential densities along planned public transportation corridors can have ...

Hu, Karen Jia Ying

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

Efficiency and Renewable Energy, Building Technologies, U.S.and Renewable Energy (2005). 2005 Buildings Energy Databook,Buildings Energy Databook Table 1.2.3 (US DOE Office of Energy Efficiency and Renewable

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

322

Residential building energy analysis : development and uncertainty assessment of a simplified model  

E-Print Network (OSTI)

Effective design of energy-efficient buildings requires attention to energy issues during the preliminary stages of design. To aid in the early consideration of a building's future energy usage, a simplified building energy ...

Spindler, Henry C. (Henry Carlton), 1970-

1998-01-01T23:59:59.000Z

323

Corrosiveness of wet residential building thermal insulation---Mechanisms and evaluation of electrochemical methods for assessing corrosion behavior  

SciTech Connect

An evaluation has been made of the corrosiveness of selected wet residential building thermal insulation materials in contact with low carbon steel. Investigations were conducted both in wet insulations and in filtered leachates from insulations derived from thirteen cellulosic, three mineral fiber and four foam products. Potentiodynamic polarization measurements are reported from which the overall corrosion response was assessed and then the techniques of Tafel and polarization resistance analysis applied to estimate corrosion rates. Corrosion rates were also estimated electrochemically using a direct reading instrument which performs the rate calculation based on the polarization resistance principle. Direct determinations of corrosion rate were based on weight loss measurements.

Stansbury, E.E. [Stansbury (E.E.), Knoxville, TN (United States)

1991-10-01T23:59:59.000Z

324

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

4 4 Ownership (1) Owned 54.9 104.5 40.3 78% Rented 77.4 71.7 28.4 22% Public Housing 75.7 62.7 28.7 2% Not Public Housing 77.7 73.0 28.4 19% 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008 2005 Residential Delivered Energy Consumption Intensities, by Ownership of Unit Per Square Per Household Per Household Percent of Foot (thousand Btu) (million Btu) Members (million Btu) Total Consumption

325

Achieving 50% Energy Savings in Office Buildings, Advanced Energy Design Guides: Office Buildings (Brochure)  

SciTech Connect

This fact sheet summarizes recommendations for designing new office buildings that result in 50% less energy use than conventional designs meeting minimum code requirements. The recommendations are drawn from the Advanced Energy Design Guide for Small to Medium Office Buildings, an ASHRAE publication that provides comprehensive recommendations for designing low-energy-use office buildings with gross floor areas up to 100,000 ft2 (see sidebar). Designed as a stand-alone document, this fact sheet provides key principles and a set of prescriptive design recommendations appropriate for smaller office buildings with insufficient budgets to fully implement best practices for integrated design and optimized performance. The recommendations have undergone a thorough analysis and review process through ASHRAE, and have been deemed the best combination of measures to achieve 50% savings in the greatest number of office buildings.

Not Available

2014-09-01T23:59:59.000Z

326

Supporting Photovoltaics in Market-Rate Residential New Construction: A Summary of Programmatic Experience to Date and Lessons Learned  

E-Print Network (OSTI)

of, new, multi- family residential buildings with PV (seemarket-rate, multi-family residential building. One of thecapacity) on multi- family residential buildings. Installed

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

327

ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low- Rise Residential Buildings- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This 2014 Top Innovation describes Building America research and support in developing and gaining adoption of ASHRAE 62.2.

328

Price Responsiveness in the AEO2003 NEMS Residential and Commercial Buildings Sector Models  

Reports and Publications (EIA)

This paper describes the demand responses to changes in energy prices in the Annual Energy Outlook 2003 versions of the Residential and Commercial Demand Modules of the National Energy Modeling System (NEMS). It updates a similar paper completed for the Annual Energy Outlook 1999 version of the NEMS.

2003-01-01T23:59:59.000Z

329

Buildings Energy Data Book: 1.2 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

Residential Sector Energy Consumption March 2012 1.2.9 Implicit Price Deflators (2005 1.00) Year Year Year 1980 0.48 1990 0.72 2000 0.89 1981 0.52 1991 0.75 2001 0.91 1982 0.55...

330

Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems  

SciTech Connect

This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

2011-01-01T23:59:59.000Z

331

Battery Power for Your Residential Solar Electric System: Better Buildings Series Solar Electric Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRIC ELECTRIC Battery Power for Your Residential Solar Electric System A Winning Combination-Design, Efficiency, and Solar Technology A battery bank stores electricity produced by a solar electric system. If your house is not connected to the utility grid, or if you antici- pate long power outages from the grid, you will need a battery bank. This fact sheet pro- vides an overview of battery basics, including information to help you select and maintain your battery bank. Types of Batteries There are many types of batteries avail- able, and each type is designed for specific applications. Lead-acid batteries have been used for residential solar electric systems for many years and are still the best choice for this application because of their low mainte- nance requirements and cost. You may

332

Draft Environmental Assessment for Direct Final Rule, 10 CFR 434, ÂŤEnergy Standards for New Federal Commercial and High-Rise High-Rise Multi-FamilyResidential BuildingsÂŽ and 10 CFR 435, ÂŤEnergy Efficiency Standards for New Federal Residential Low-Rise Re  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings" (DOE/EA-1463) Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings" and 10 CFR 435, "Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings" (DOE/EA-1463) SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Final Rule, 10 CFR 433, "Energy Efficiency Standards for

333

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

1 1 Type (1) Single-Family: 55.4 106.6 39.4 80.5% Detached 55.0 108.4 39.8 73.9% Attached 60.5 89.3 36.1 6.6% Multi-Family: 78.3 64.1 29.7 14.9% 2 to 4 units 94.3 85.0 35.2 6.3% 5 or more units 69.8 54.4 26.7 8.6% Mobile Homes 74.6 70.4 28.5 4.6% All Housing Types 58.7 95.0 37.0 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008. 2005 Residential Delivered Energy Consumption Intensities, by Housing Type

334

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

2 2 Year Built (1) Prior to 1950 74.5 114.9 46.8 24% 1950 to 1969 66.0 96.6 38.1 23% 1970 to 1979 59.4 83.4 33.5 15% 1980 to 1989 51.9 81.4 32.3 14% 1990 to 1999 48.2 94.4 33.7 16% 2000 to 2005 44.7 94.7 34.3 8% Average 58.7 95.0 40.0 Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008. 2005 Residential Delivered Energy Consumption Intensities, by Vintage Per Square Per Household Per Household

335

Buildings Energy Data Book: 8.2 Residential Sector Water Consumption  

Buildings Energy Data Book (EERE)

1 1 Residential Water Use by Source (Million Gallons per Day) Year 1980 3,400 1985 3,320 1990 3,390 1995 3,390 2000 (3) (3) 3,590 2005 3,830 Note(s): Source(s): 29,430 25,600 1) Public supply water use: water withdrawn by public and private water suppliers that furnish water to at least 25 people or have a minimum of 15 connections. 2) Self-supply water use: Water withdrawn from a groundwater or surface-water source by a user rather than being obtained from a public supply. 3) USGS did not provide estimates of residential use from public supplies in 2000. This value was estimated based on the residential portion of public supply in 1995 and applied to the total public supply water use in 2000. U.S. Geological Survey, Estimated Use of Water in the U.S. in 1985, U.S. Geological Survey Circular 1004, 1988; U.S. Geological Survey, Estimated Use of

336

Building America Technology Solutions for New and Existing Homes: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

This research effort, conducted by the Consortium for Advanced Residential Buildings, included several weeks of building pressure monitoring to validate system performance of four different strategies for providing make-up air to multifamily apartments.

337

Building Technologies Office: Building America Research Teams  

NLE Websites -- All DOE Office Websites (Extended Search)

Teams Teams Building America research projects are completed by industry consortia (teams) comprised of leading experts from across the country. The research teams design, test, upgrade and build high performance homes using strategies that significantly cut energy use. Building America research teams are selected through a competitive process initiated by a request for proposals. Team members are experts in the field of residential building science, and have access to world-class research facilities, partners, and key personnel, ensuring successful progress toward U.S. Department of Energy (DOE) goals. This page provides a brief description of the teams, areas of focus, and key team members. Advanced Residential Integrated Energy Solutions Alliance for Residential Building Innovation

338

IMPACT OF REDUCED INFILTRATION AND VENTILATION ON INDOOR AIR QUALITY IN RESIDENTIAL BUILDINGS  

E-Print Network (OSTI)

Critical Analysis of Nitrogen Dioxide Air Quality Standards.contaminants-. ;--- ---- nitrogen dioxide from gas stoves,buildings: nitrogen dioxide (N02), formaldehyde (HCHO), and

Hollowell, Craig D.

2011-01-01T23:59:59.000Z

339

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

wind turbines, and micro- hydro, PV dominates building-sitedgrid-integrated), 3% micro-hydro, and 2% micro-wind. Grid-

Garbesi, Karina

2012-01-01T23:59:59.000Z

340

Lawrence Livermore to build advanced laser system in Czech Republic  

NLE Websites -- All DOE Office Websites (Extended Search)

9-06 9-06 For immediate release: 09/17/2013 | NR-13-09-06 High Resolution Image The High Repetition-Rate Advanced Petawatt Laser System, or HAPLS, will be designed, developed, assembled and tested at Lawrence Livermore. It will be transferred to the ELI Beamlines facility in 2016, where it will be commissioned for use by the international scientific community. Lawrence Livermore to build advanced laser system in Czech Republic Breanna Bishop, LLNL, (925) 423-9802, bishop33@llnl.gov High Resolution Image Artist renderings of the ELI Beamlines facility, currently under construction in the Czech Republic. High Resolution Image A CAD image of the ELI-HAPLS laser. LIVERMORE, Calif. - Lawrence Livermore National Laboratory (LLNL), through Lawrence Livermore National Security LLC (LLNS), has been awarded more than

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Analysis of improved fenestration for code-compliant residential buildings in hot and humid climates  

E-Print Network (OSTI)

glazing technologies were developed, tested and subsequently adopted by the building industry. The underlying goal that has been carried through to present day research has been to develop the potential of windows as net energy suppliers (Arasteh 1994...

Mukhopadhyay, Jaya

2006-10-30T23:59:59.000Z

342

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

window related primary energy consumption of the US building= 1.056 EJ. “Primary” energy consumption includes a site-to-the amount of primary energy consumption required by space

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

343

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

roughly 2.7% of total US energy consumption. The final tworoughly 1.5% of total US energy consumption. The final twoSpace Conditioning Energy Consumption in US Buildings Annual

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

344

EnergyGauge USA: A Residential Building Energy Simulation Design Tool  

E-Print Network (OSTI)

simulation in less than 20 seconds. A simplified user interface allows buildings to be quickly defined while bringing the computing power and accuracy of an hourly computer simulation to builders, designers and raters....

Fairey, P.; Vieira, R. K.; Parker, D. S.; Hanson, B.; Broman, P. A.; Grant, J. B.; Fuehrlein, B.; Gu, L.

2002-01-01T23:59:59.000Z

345

Cost-effective retrofitting of Swedish residential buildings: effects of energy price developments and discount rates  

Science Journals Connector (OSTI)

This paper investigates how the cost-effectiveness of different energy-saving measures (ESMs) in buildings is dependent upon energy prices and discount rates. A bottom-up ... different ESMs for Swedish residentia...

Érika Mata; Angela Sasic Kalagasidis; Filip Johnsson

2014-08-01T23:59:59.000Z

346

Advanced Load Identification and Management for Buildings: Cooperative Research and Development Final Report, CRADA Number: CRD-11-422  

SciTech Connect

The goal of this CRADA work is to support Eaton Innovation Center (Eaton) efforts to develop advanced load identification, management technologies, and solutions to reduce building energy consumption by providing fine granular visibility of energy usage information and safety protection of miscellaneous electric loads (MELs) in commercial and residential buildings. MELs load identification and prediction technology will be employed in a novel 'Smart eOutlet*' to provide critical intelligence and information to improve the capability and functionality of building load analysis and design tools and building power management systems. The work scoped in this CRADA involves the following activities: development and validation of business value proposition for the proposed technologies through voice of customer investigation, market analysis, and third-party objective assessment; development and validation of energy saving impact as well as assessment of environmental and economic benefits; 'smart eOutlet' concept design, prototyping, and validation; field validation of the developed technologies in real building environments. (*Another name denoted as 'Smart Power Strip (SPS)' will be used as an alternative of the name 'Smart eOutlet' for a clearer definition of the product market position in future work.)

Gentile-Polese, L.

2014-05-01T23:59:59.000Z

347

Buildings Energy Data Book: 8.2 Residential Sector Water Consumption  

Buildings Energy Data Book (EERE)

6 6 Residential Water Billing Rate Structures for Community Water Systems Rate Structure Uniform Rates Declining Block Rate Increasing Block Rate Peak Period or Seasonal Rate Separate Flat Fee Annual Connection Fee Combined Flat Fee Other Rate Structures Note(s): Source(s): 3.0% 9.0% 1) Systems serving more than 10,000 users provide service to 82% of the population served by community water systems. Columns do not sum to 100% because some systems use more than one rate structure. 2) Uniform rates charge a set price for each unit of water. Block rates charge a different price for each additional increment of usage. The prices for each increment is higher for increasing block rates and lower for decreasing block rates. Peak rates and seasonal rates charge higher prices when demand is highest. Flat fees charge a set price for

348

Buildings Energy Data Book: 7.3 Efficiency Standards for Residential HVAC  

Buildings Energy Data Book (EERE)

3 3 Efficiency Standards for Residential Boilers Effective for products manufactured before September 1, 2012 AFUE(%) (1) Boilers (excluding gas steam) Gas Steam Boilers Effective for products manufactured on or after September 1, 2012 (2) AFUE (%) (1) No Constant Burning Pilot Automatic Means for Adjusting Water Temperature Gas Steam No Constant Burning Pilot Oil Hot Water Automatic Means for Adjusting Water Temperature Oil Steam None Electric Hot water Automatic Means for Adjusting Water Temperature Electric Steam None Note(s): Source(s): 84 82 None None 1) Annual Fuel Utilization Efficiency. 2) Boilers manufactured to operate without any need for electricity, an electric connection, electric gauges, electric pumps, electric wires, or electric devices are not required to comply with the revised standards that take effect September 1,

349

Buildings Energy Data Book: 7.5 Efficiency Standards for Residential Appliances  

Buildings Energy Data Book (EERE)

2 2 Efficiency Standards for Residential Refrigerators and Freezers (1) 1) 2) 3) 4) 5) 6) Note(s): Source(s): Refrigerator-freezers, automatic defrost with side-mounted freezer with through-the-door ice service 10.10AV + 406.0 1) Effective for products manufactured on or after July 1, 2001. Standards do not apply to refrigerators and refrigerator-freezers with total refrigerated volume exceeding 39 cubic feet or freezers with total refrigerated volume exceeding 30 cubic feet. AV = total adjusted volume (ft^3). Title 10, Code of Federal Regulations, Part 430 - Energy Conservation Program for Consumer Products, Subpart C - Energy and Water Conservation Standards and Their Effective Dates. January 1, 2010. Refrigerator-freezers, automatic defrost with side-mounted freezer without through-the-

350

Buildings Energy Data Book: 7.5 Efficiency Standards for Residential Appliances  

Buildings Energy Data Book (EERE)

3 3 Efficiency Standards for Residential Water Heaters (1) Effective for products manufactured from January 20, 2004 through April 15, 2015 Gas-Fired Storage Water Heaters Oil-Fired Water Heaters EF = 0.67 - (0.0019 x Rated Storage Volume in gallons) EF = 0.59 - (0.0019 x Rated Storage Volume in gallons) Instantaneous Gas-Fired Water Heaters Instantaneous Electric and Table Top Water Heaters EF = 0.62 - (0.0019 x Rated Storage Volume in gallons) EF = 0.93 - (0.00132 x Rated Storage Volume in gallons) Electric Storage Water Heaters EF = 0.97 - (0.00132 x Rated Storage Volume in gallons) Effective for products manufactured on or after April 16, 2015 Gas-Fired Storage Water Heaters Rated Storage Volume ≤ 55 gallons EF = 0.675 - (0.0015 x Rated Storage Volume in gallons)

351

Advanced Interactive Facades - Critical Elements for Future Green Buildings?  

E-Print Network (OSTI)

Elements for Future Green Buildings? Stephen Selkowitzelement for a “green building” that provides daylighting andcurrent interest in green buildings there was no shortage of

Selkowitz, Stephen; Aschehoug, Oyvind; Lee, Eleanor S.

2003-01-01T23:59:59.000Z

352

Advanced benchmarking for complex building types: laboratories as an exemplar.  

E-Print Network (OSTI)

Study of Energy Efficiency in Buildings. ACEEE, Washington©2010 ACEEE Summer Study on Energy Efficiency in BuildingsSummer Study on Energy Efficiency in Buildings Mathew, P. ,

Mathew, Paul; Clear, Robert; Kircher, Kevin; Webster, Tom; Lee, Kwang Ho; Hoyt, Tyler

2010-01-01T23:59:59.000Z

353

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

20 20 Site Consumption Primary Consumption Total Residential Industry Electric Gen. Transportation Residential Industry Transportation (quads) 1980 5% 28% 8% 56% | 8% 31% 56% 34.2 1981 5% 26% 7% 59% | 7% 29% 59% 31.9 1982 5% 26% 5% 61% | 6% 28% 61% 30.2 1983 4% 25% 5% 62% | 6% 27% 62% 30.1 1984 5% 26% 4% 61% | 6% 27% 61% 31.1 1985 5% 25% 4% 63% | 6% 26% 63% 30.9 1986 5% 24% 5% 63% | 6% 26% 63% 32.2 1987 5% 25% 4% 63% | 6% 26% 63% 32.9 1988 5% 24% 5% 63% | 6% 26% 63% 34.2 1989 5% 24% 5% 63% | 7% 25% 63% 34.2 1990 4% 25% 4% 64% | 5% 26% 64% 33.6 1991 4% 24% 4% 65% | 5% 26% 65% 32.8 1992 4% 26% 3% 65% | 5% 27% 65% 33.5 1993 4% 25% 3% 65% | 5% 26% 65% 33.8 1994 4% 25% 3% 65% | 5% 26% 65% 34.7 1995 4% 25% 2% 67% | 5% 26% 67% 34.6 1996 4% 25% 2% 66% | 5% 26% 66% 35.8 1997 4% 26% 3% 66% | 5% 26% 66% 36.3 1998 3% 25% 4% 66% | 5% 26% 66% 36.9 1999 4% 25% 3% 66% | 5% 26% 66% 38.0 2000 4% 24% 3% 67% | 5% 25% 67% 38.4 2001 4% 24% 3% 67% | 5% 25% 67% 38.3 2002 4% 24% 3% 68% | 5% 25% 68% 38.4 2003

354

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

9 9 Total Residential Industry Electric Gen. Transportation Residential Industry Transportation (quads) 1980 24% 41% 19% 3% | 30% 49% 3% 20.22 1981 23% 42% 19% 3% | 30% 49% 3% 19.74 1982 26% 39% 18% 3% | 32% 45% 3% 18.36 1983 26% 39% 17% 3% | 32% 46% 3% 17.20 1984 25% 40% 17% 3% | 31% 47% 3% 18.38 1985 25% 40% 18% 3% | 32% 46% 3% 17.70 1986 26% 40% 16% 3% | 32% 46% 3% 16.59 1987 25% 41% 17% 3% | 31% 47% 3% 17.63 1988 26% 42% 15% 3% | 31% 47% 3% 18.44 1989 25% 41% 16% 3% | 30% 47% 3% 19.56 1990 23% 43% 17% 3% | 29% 49% 4% 19.57 1991 23% 43% 17% 3% | 29% 49% 3% 20.03 1992 23% 43% 17% 3% | 29% 49% 3% 20.71 1993 24% 43% 17% 3% | 30% 48% 3% 21.24 1994 23% 42% 18% 3% | 29% 48% 3% 21.75 1995 22% 42% 19% 3% | 28% 49% 3% 22.71 1996 23% 43% 17% 3% | 29% 49% 3% 23.14 1997 22% 43% 18% 3% | 28% 49% 3% 23.34 1998 20% 43% 20% 3% | 27% 50% 3% 22.86 1999 21% 41% 21% 3% | 28% 48% 3% 22.88 2000 21% 40% 22% 3% | 29% 47% 3% 23.66 2001 21% 38% 24% 3% | 30% 45% 3% 22.69 2002 21% 38% 24% 3% | 30% 45%

355

Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland - Second Year of Data Collection  

SciTech Connect

Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources. Building on previous research, CNT Energy identified 10 test buildings in Chicago and conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam system balancing. A package of common steam balancing measures was assembled and data were collected on the buildings before and after these retrofits were installed to investigate the process, challenges, and the cost effectiveness of improving steam systems through improved venting and control systems. The test buildings that received venting upgrades and new control systems showed 10.2% savings on their natural gas heating load, with a simple payback of 5.1 years. The methodologies for and findings from this study are presented in detail in this report. This report has been updated from a version published in August 2012 to include natural gas usage information from the 2012 heating season and updated natural gas savings calculations.

Choi, J.; Ludwig, P.; Brand, L.

2013-08-01T23:59:59.000Z

356

Advanced Interactive Facades - Critical Elements for Future Green Buildings?  

E-Print Network (OSTI)

local, non-polluting energy suppliers to the building. Thefacades act as “net energy suppliers” to buildings, with

Selkowitz, Stephen; Aschehoug, Oyvind; Lee, Eleanor S.

2003-01-01T23:59:59.000Z

357

DOE Announces More Than $76 Million for Advanced Energy-Efficient Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces More Than $76 Million for Advanced Energy-Efficient Announces More Than $76 Million for Advanced Energy-Efficient Building Technologies and Commercial Building Training Programs DOE Announces More Than $76 Million for Advanced Energy-Efficient Building Technologies and Commercial Building Training Programs June 17, 2010 - 12:00am Addthis WASHINGTON-U.S. Energy Secretary Steven Chu today announced awards totaling more than $76 million in funding from the American Recovery and Reinvestment Act to support advanced energy-efficient building technology projects and the development of training programs for commercial building equipment technicians, building operators, and energy auditors. The 58 projects selected today will help make the nation's buildings more energy efficient and cost-effective. They will also support programs to

358

DOE Announces More Than $76 Million for Advanced Energy-Efficient Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces More Than $76 Million for Advanced Energy-Efficient DOE Announces More Than $76 Million for Advanced Energy-Efficient Building Technologies and Commercial Building Training Programs DOE Announces More Than $76 Million for Advanced Energy-Efficient Building Technologies and Commercial Building Training Programs June 17, 2010 - 12:00am Addthis WASHINGTON-U.S. Energy Secretary Steven Chu today announced awards totaling more than $76 million in funding from the American Recovery and Reinvestment Act to support advanced energy-efficient building technology projects and the development of training programs for commercial building equipment technicians, building operators, and energy auditors. The 58 projects selected today will help make the nation's buildings more energy efficient and cost-effective. They will also support programs to

359

Advancing Solutions to Improve the Energy Efficiency of Commercial Buildings FOA Webinar (Text Version)  

Energy.gov (U.S. Department of Energy (DOE))

Below is the text version of the webinar, Advancing Solutions to Improve the Energy Efficiency of Commercial Buildings FOA, presented by Kristen Taddonio of the Commercial Buildings program in...

360

An Analysis of Building Envelope Upgrades for Residential Energy Efficiency in Hot and Humid Climates  

E-Print Network (OSTI)

and exterior walls, and windows. A DOE-2 simulation model of a 2000/2001 IECC code-compliant house in Houston, Texas, was used for the analysis. The results demonstrated the effect of incremental changes in these properties on the building's energy use...

Malhotra, M.; Haberl, J.

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy retrofit of residential building envelopes in Israel: A cost-benefit analysis  

Science Journals Connector (OSTI)

Abstract It is often taken for granted that thermal renovation of building envelopes not only conserves operational energy and reduces the environmental impact of generating electricity, but is also economically beneficial to the individual homeowner. While this may be true in cold climates, it may not necessarily be true in the case of Israel, most of which has a relatively mild Mediterranean climate but parts of which are hot and arid. This study, which sought to address this question, comprised two stages: a) Analysis of the direct economic benefits to the individual homeowner of different strategies for refurbishing the envelope of an existing building; and b) Examination of other (external) benefits to society arising from electricity conservation resulting from such retrofit. The analysis demonstrates that in Israel, given current electricity prices and building construction costs, insulating the roof is a cost-effective strategy – but the payback period is 15–30 years, making it unattractive to most homeowners. Insulating the external walls of a typical apartment results in electricity savings comparable to only one third of the retrofit cost, and is thus not economically viable. Accounting for the external benefits to society does make some marginal retrofits more attractive, but not sufficiently to justify most envelope retrofit options. This highlights the importance of adopting stringent standards for new construction, since the marginal cost of additional thermal insulation in new buildings is far lower than the cost of renovating them.

Chanoch Friedman; Nir Becker; Evyatar Erell

2014-01-01T23:59:59.000Z

362

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

Buildings, by Fuel and Region (Thousand BtuSF) Region Electricity Natural Gas Fuel Oil Total Northeast 27.7 45.9 39.9 71.5 Midwest 22.5 49.9 N.A. 70.3 South 53.5 27.9 N.A....

363

E-Print Network 3.0 - advanced building efficiency Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy and material efficiency and sustainability known... to activities that facilitates green and advanced energy efficiency technologies in buildings. 3. LEADERSHIP 3......

364

Buildings Energy Data Book: 2.5 Residential Construction and Housing Market  

Buildings Energy Data Book (EERE)

2 2 2010 Five Largest Residential Homebuilders Homebuilder PulteGroup 5.3% D.R. Horton 5.9% NVR 3.1% Lennar Corporation 3.4% KB Home 2.3% Top Five Total 19.9% Habitat for Humanity (3) 0.1% Note(s): Source(s): 6,032 402 1) 2010 total U.S. new home closings were 323,000 (only single-family). 2) Total share of closings of top 20 builders was 35%. Total share of the top 100 builders was 54%. 3) Habitat for Humanity built more than 400 homes during the week of May 31, 2007; Habitat for Humanity has built over 1,000 homes in the New Orleans area since Hurricane Katrina. Habitat for Humanity's 2,100 worldwide affiliates have completed more than 200,000 homes since 1976, providing more than 1,000,000 with housing. Housing Giants Magazine, May 2011, Professional Builder's 2011 Housing Giants Rankings.

365

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

0 0 Region (1) Northeast 73.5 122.2 47.7 24% New England 77.0 129.4 55.3 7% Middle Atlantic 72.2 119.7 45.3 17% Midwest 58.9 113.5 46.0 28% East North Central 61.1 117.7 47.3 20% West North Central 54.0 104.1 42.9 8% South 51.5 79.8 31.6 31% South Atlantic 47.4 76.1 30.4 16% East South Central 56.6 87.3 36.1 6% West South Central 56.6 82.4 31.4 9% West 56.6 77.4 28.1 18% Mountain 54.4 89.8 33.7 6% Pacific 58.0 71.8 25.7 11% U.S. Average 58.7 94.9 37.0 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet.

366

Buildings Energy Data Book: 8.2 Residential Sector Water Consumption  

Buildings Energy Data Book (EERE)

2 2 1999 Single-Family Home Daily Water Consumption by End Use (Gallons per Capita) (1) Fixture/End Use Toilet 18.5 18.3% Clothes Washer 15 14.9% Shower 11.6 11.5% Faucet 10.9 10.8% Other Domestic 1.6 1.6% Bath 1.2 1.2% Dishwasher 1 1.0% Leaks 9.5 9.4% Outdoor Use (2) 31.7 31.4% Total (2) 101 100% Note(s): Source(s): Average gallons Total Use per capita per day Percent 1) Based analysis of 1,188 single-family homes at 12 study locations. 2) Total Water use derived from USGS. Outdoor use is the difference between total and indoor uses. American Water Works Association Research Foundation, Residential End Uses of Water, 1999; U.S. Geological Survey, Estimated Use of Water in the U.S. in 2000, U.S. Geological Survey Circular 1268, 2004, Table 6, p. 17; and Vickers, Amy, Handbook of Water Use and Conservation, June 2002, p. 15.

367

Advancement of DOE's EnergyPlus Building Energy Simulation Payment  

SciTech Connect

EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOEâ??s Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Floridaâ??s Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced significantly under this project, more enhancements are needed for further improvement to ensure that EnergyPlus is able to simulate the latest technologies and perform desired HAVC system operations for the development of next generation HVAC systems. Additional development will be performed under a new 5-year project managed by the National Renewable Energy Laboratory.

Lixing Gu; Don Shirey; Richard Raustad; Bereket Nigusse; Chandan Sharma; Linda Lawrie; Rich Strand; Curt Pedersen; Dan Fisher; Edwin Lee; Mike Witte; Jason Glazer; Chip Barnaby

2011-03-31T23:59:59.000Z

368

Buildings Energy Data Book: 2.5 Residential Construction and Housing Market  

Buildings Energy Data Book (EERE)

Construction Statistics of New Homes Completed/Placed Year Thousand Units Average SF Thousand Units Average SF 1980 234 1981 229 1982 234 1983 278 1984 288 1985 283 1986 256 1987 239 1988 224 1989 203 1990 195 1991 174 1992 212 1993 243 1994 291 1995 319 1996 338 1997 336 1998 374 1999 338 2000 281 2001 196 2002 174 2003 140 2004 124 2005 123 2006 112 2007 95 2008 81 2009 55 2010 50 Source(s): 496 2,392 155 1,172 701 DOC, 2010 Characteristics of New Housing, 2010, "Median and Average Square Feet of Floor Area in New Single-Family Houses Completed by Location", "Presence of Air-Conditioning in New Single Family Houses", "Number of Multifamily Units Completed by Number of Units Per Building", "Median and Average Square Feet of Floor Area in Units in New Multifamily Buildings Completed", "Placements of New Manufactured Homes by Region and Size of Home, 1980-

369

Building Code Compliance and Enforcement: The Experience of SanFrancisco's Residential Energy Conservation Ordinanace and California'sBuildign Standards for New Construction  

SciTech Connect

As part of Lawrence Berkeley Laboratory's (LBL) technical assistance to the Sustainable City Project, compliance and enforcement activities related to local and state building codes for existing and new construction were evaluated in two case studies. The analysis of the City of San Francisco's Residential Energy Conservation Ordinance (RECO) showed that a limited, prescriptive energy conservation ordinance for existing residential construction can be enforced relatively easily with little administrative costs, and that compliance with such ordinances can be quite high. Compliance with the code was facilitated by extensive publicity, an informed public concerned with the cost of energy and knowledgeable about energy efficiency, the threat of punishment (Order of Abatement), the use of private inspectors, and training workshops for City and private inspectors. The analysis of California's Title 24 Standards for new residential and commercial construction showed that enforcement of this type of code for many climate zones is more complex and requires extensive administrative support for education and training of inspectors, architects, engineers, and builders. Under this code, prescriptive and performance approaches for compliance are permitted, resulting in the demand for alternative methods of enforcement: technical assistance, plan review, field inspection, and computer analysis. In contrast to existing construction, building design and new materials and construction practices are of critical importance in new construction, creating a need for extensive technical assistance and extensive interaction between enforcement personnel and the building community. Compliance problems associated with building design and installation did occur in both residential and nonresidential buildings. Because statewide codes are enforced by local officials, these problems may increase over time as energy standards change and become more complex and as other standards (eg, health and safety codes) remain a higher priority. The California Energy Commission realizes that code enforcement by itself is insufficient and expects that additional educational and technical assistance efforts (eg, manuals, training programs, and toll-free telephone lines) will ameliorate these problems.

Vine, E.

1990-11-01T23:59:59.000Z

370

Advanced Benchmarking for Complex Building Types: Laboratories as an Exemplar  

E-Print Network (OSTI)

Office Buildings,” Proceedings of the 1996 ACEEE Summer Study of Energy EfficiencyEnergy Efficiency and Renewable Energy, Office of Building

Mathew, Paul A.

2010-01-01T23:59:59.000Z

371

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

5 5 Natural Fuel Other Renw. Site Site Primary Gas Oil LPG Fuel(1) En.(2) Electric Total Percent Electric (3) Total Percent Space Heating (4) 3.50 0.53 0.30 0.04 0.43 0.44 5.23 44.7% | 1.35 6.15 27.8% Water Heating 1.29 0.10 0.07 0.01 0.45 1.92 16.4% | 1.38 2.86 12.9% Space Cooling 0.00 1.08 1.08 9.2% | 3.34 3.34 15.1% Lighting 0.69 0.69 5.9% | 2.13 2.13 9.7% Refrigeration (6) 0.45 0.45 3.9% | 1.41 1.41 6.4% Electronics (5) 0.54 0.54 4.7% | 1.68 1.68 7.6% Wet Cleaning (7) 0.06 0.33 0.38 3.3% | 1.01 1.06 4.8% Cooking 0.22 0.03 0.18 0.43 3.7% | 0.57 0.81 3.7% Computers 0.17 0.17 1.5% | 0.53 0.53 2.4% Other (8) 0.00 0.16 0.01 0.20 0.37 3.2% | 0.63 0.80 3.6% Adjust to SEDS (9) 0.42 0.42 3.6% | 1.29 1.29 5.8% Total 5.06 0.63 0.56 0.04 0.45 4.95 11.69 100% | 15.34 22.07 100% Note(s): Source(s): 2010 Residential Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Primary 1) Kerosene and coal are assumed attributable to space heating. 2) Comprised of wood space heating (0.42 quad), solar water heating (0.01

372

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

8 8 Natural Fuel Other Renw. Site Site Primary Gas Oil LPG Fuel(1) En.(2) Electric Total Percent Electric (3) Total Percent Space Heating (4) 3.20 0.31 0.22 0.03 0.46 0.49 4.72 38.9% | 1.45 5.67 23.9% Water Heating 1.27 0.04 0.03 0.02 0.54 1.90 15.6% | 1.60 2.96 12.5% Space Cooling 0.00 1.25 1.25 10.3% | 3.68 3.68 15.5% Lighting 0.48 0.48 3.9% | 1.41 1.41 5.9% Refrigeration (5) 0.52 0.52 4.3% | 1.54 1.54 6.5% Electronics (6) 0.44 0.44 3.6% | 1.29 1.29 5.4% Wet Cleaning (7) 0.07 0.32 0.39 3.2% | 0.95 1.01 4.3% Cooking 0.23 0.02 0.15 0.40 3.3% | 0.44 0.69 2.9% Computers 0.27 0.27 2.2% | 0.79 0.79 3.3% Other (8) 0.00 0.22 0.07 1.48 1.77 14.6% | 4.35 4.64 19.6% Total 4.76 0.35 0.51 0.03 0.55 5.94 12.14 100% | 17.50 23.69 100% Note(s): Source(s): 2035 Residential Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Primary 1) Kerosene and coal are assumed attributable to space heating. 2) Comprised of wood space heating (0.44 quad), solar water heating (0.02

373

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

7 7 Natural Fuel Other Renw. Site Site Primary Gas Oil LPG Fuel(1) En.(2) Electric Total Percent Electric (3) Total Percent Space Heating (4) 3.28 0.38 0.24 0.03 0.46 0.46 4.85 41.5% | 1.40 5.78 25.8% Water Heating 1.32 0.05 0.04 0.02 0.53 1.96 16.8% | 1.60 3.03 13.5% Space Cooling 0.00 1.12 1.12 9.6% | 3.38 3.38 15.1% Lighting 0.47 0.47 4.0% | 1.42 1.42 6.3% Refrigeration (5) 0.48 0.48 4.1% | 1.45 1.45 6.5% Electronics (6) 0.37 0.37 3.2% | 1.12 1.12 5.0% Wet Cleaning (7) 0.06 0.30 0.37 3.1% | 0.91 0.98 4.4% Cooking 0.22 0.03 0.13 0.38 3.2% | 0.40 0.64 2.9% Computers 0.24 0.24 2.0% | 0.72 0.72 3.2% Other (8) 0.00 0.20 0.07 1.20 1.46 12.5% | 3.61 3.87 17.3% Total 4.88 0.43 0.50 0.03 1.00 5.30 11.69 100% | 16.00 22.39 100% Note(s): Source(s): 2025 Residential Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Primary 1) Kerosene and coal are assumed attributable to space heating. 2) Comprised of wood space heating (0.43 quad), solar water heating (0.02

374

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

6 6 Natural Fuel Other Renw. Site Site Primary Gas Oil LPG Fuel(1) En.(2) Electric Total Percent Electric (3) Total Percent Space Heating (4) 3.40 0.48 0.26 0.03 0.44 0.42 5.03 44.2% | 1.27 5.88 27.9% Water Heating 1.31 0.07 0.05 0.02 0.48 1.92 16.9% | 1.44 2.88 13.7% Space Cooling 0.00 1.02 1.02 8.9% | 3.07 3.07 14.6% Lighting 0.53 0.53 4.6% | 1.60 1.60 7.6% Refrigeration (5) 0.45 0.45 4.0% | 1.37 1.37 6.5% Electronics (6) 0.33 0.33 2.9% | 0.99 0.99 4.7% Wet Cleaning (7) 0.06 0.33 0.39 3.4% | 0.98 1.04 5.0% Cooking 0.22 0.03 0.11 0.36 3.1% | 0.34 0.59 2.8% Computers 0.19 0.19 1.7% | 0.57 0.57 2.7% Other (8) 0.00 0.17 0.05 0.94 1.17 10.2% | 2.85 3.07 14.6% Total 4.99 0.55 0.51 0.03 0.51 4.79 11.38 100% | 14.47 21.06 100% Note(s): Source(s): 2015 Residential Energy End-Use Splits, by Fuel Type (Quadrillion Btu) Primary 1) Kerosene and coal are assumed attributable to space heating. 2) Comprised of wood space heating (0.43 quad), solar water heating (0.02

375

Construction cost impact analysis of the U.S. Department of Energy mandatory performance standards for new federal commercial and multi-family, high-rise residential buildings  

SciTech Connect

In accordance with federal legislation, the U.S. Department of Energy (DOE) has conducted a project to demonstrate use of its Energy Conservation Voluntary Performance Standards for Commercial and Multi-Family High-Rise Residential Buildings; Mandatory for New Federal Buildings; Interim Rule (referred to in this report as DOE-1993). A key requisite of the legislation requires DOE to develop commercial building energy standards that are cost effective. During the demonstration project, DOE specifically addressed this issue by assessing the impacts of the standards on (1) construction costs, (2) builders (and especially small builders) of multi-family, high-rise buildings, and (3) the ability of low-to moderate-income persons to purchase or rent units in such buildings. This document reports on this project.

Di Massa, F.V.; Hadley, D.L.; Halverson, M.A.

1993-12-01T23:59:59.000Z

376

Statistical Analysis of Baseline Load Models for Non-Residential Buildings  

SciTech Connect

Policymakers are encouraging the development of standardized and consistent methods to quantify the electric load impacts of demand response programs. For load impacts, an essential part of the analysis is the estimation of the baseline load profile. In this paper, we present a statistical evaluation of the performance of several different models used to calculate baselines for commercial buildings participating in a demand response program in California. In our approach, we use the model to estimate baseline loads for a large set of proxy event days for which the actual load data are also available. Measures of the accuracy and bias of different models, the importance of weather effects, and the effect of applying morning adjustment factors (which use data from the day of the event to adjust the estimated baseline) are presented. Our results suggest that (1) the accuracy of baseline load models can be improved substantially by applying a morning adjustment, (2) the characterization of building loads by variability and weather sensitivity is a useful indicator of which types of baseline models will perform well, and (3) models that incorporate temperature either improve the accuracy of the model fit or do not change it.

Coughlin, Katie; Piette, Mary Ann; Goldman, Charles; Kiliccote, Sila

2008-11-10T23:59:59.000Z

377

April 30 Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances  

Energy.gov (U.S. Department of Energy (DOE))

These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014. The first document includes the first presentation from the meeting: DOE Vision and Objectives. The second document includes all other presentations from the meeting: Terminology and Definitions; End-User and Grid Services; Physical Characterization Framework; Value, Benefits & Metrics.

378

Comparison of DOE-2.1E with Energyplus and TRNSYS for Ground Coupled Residential Buildings in Hot anf Humid Climates Stage 1  

E-Print Network (OSTI)

ESL-TR-11-12-08 COMPARISON OF DOE-2.1E WITH ENERGYPLUS AND TRNSYS FOR GROUND COUPLED RESIDENTIAL BUILDINGS IN HOT AND HUMID CLIMATES STAGE 1 “Literature Survey on Slab-on-grade Heat Transfer Models of DOE-2, EnergyPlus and TRNSYS... .................................................................................................................... 4 2. Introduction ........................................................................................................................................... 4 3. Literature Survey on Slab-on-grade Models of DOE-2, EnergyPlus and TRNSYS...

Andolsun, S.; Culp, C.

2011-01-01T23:59:59.000Z

379

Guide for Benchmarking Residential Energy Efficiency Program Progress  

Energy.gov (U.S. Department of Energy (DOE))

Guide for Benchmarking Residential Energy Efficiency Program Progress as part of the DOE Better Buildings Program.

380

Building America Expert Meeting: Retrofit Implementation- A Neighborhood at a Time  

Energy.gov (U.S. Department of Energy (DOE))

This report provides information about a Building America expert meeting hosted by research team Consortium for Advanced Residential Buildings on October 25, 2011, in New York City. The meeting discussed several community residential retrofit projects underway across the United States, and included representatives from utilities, energy program implementation firms, affordable housing agencies, and the financing industry.

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Buildings Energy Data Book: 2.5 Residential Construction and Housing Market  

Buildings Energy Data Book (EERE)

8 8 2009 Sales Price and Construction Cost Breakdown of an Average New Single-Family Home ($2010) (1) Function Finished Lot 20% Construction Cost 59% Financing 2% Overhead & General Expenses 5% Marketing 1% Sales Commission 3% Profit 9% Total 100% Function Building Permit Fees 2% Impact Fees 1% Water and Sewer Inspection 2% Excavation, Foundation, & Backfill 7% Steel 1% Framing and Trusses 16% Sheathing 2% Windows 3% Exterior Doors 1% Interior Doors & Hardware 2% Stairs 1% Roof Shingles 4% Siding 6% Gutters & Downspouts 0% Plumbing 5% Electrical Wiring 4% Lighting Fixtures 1% HVAC 4% Insulation 2% Drywall 5% Painting 3% Cabinets, Countertops 6% Appliances 2% Tiles & Carpet 5% Trim Material 3% Landscaping & Sodding 3% Wood Deck/Patio 1% Asphalt Driveway 1% Other 9% Total 100% Note(s): Source(s): NAHB, Breaking Down House Price and Construction Costs, 2010, Table 1; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price

382

Simplified Prescriptive Options in the Texas Residential Building Energy Code Make Compliance Easy  

E-Print Network (OSTI)

.65; SHGCs less than 0.40; R-30 or greater insulation in the ceilings; and R-13 or greater insulation in the walls. B. Building Energy Efficiency Requirements for Additions to Existing Homes and Replacement Windows. Even easier than the IRC...,000 ? 2,499 0.65 0.40 R-30 R-13 R-11 R-5 R-0 R-6 2,500 ? 2,999 0.60 0.40 R-30 R-13 R-19 R-6 R-4, 2 ft. R-7 3,000 ? 3,499 0.55 0.40 R-30 R-13 R-19 R-7 R-4, 2 ft. R-8 3,500 ? 3,999 0.50 Any R-30 R-13 R-19 R-8 R-5, 2 ft. R-10 4...

Stone, G. A.; DeVito, E. M.; Nease, N. H.

2002-01-01T23:59:59.000Z

383

Residential Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales Allocation Tool...

384

Residential Weatherization  

NLE Websites -- All DOE Office Websites (Extended Search)

Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales Allocation Tool...

385

Apply: Funding Opportunity- Advancing Solutions to Improve Energy Efficiency of Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE))

Closed Application Deadline: January 20, 2015 The Building Technologies Office (BTO) Commercial Buildings Integration Program has announced the availability of nearly $9 million for Funding Opportunity Announcement (FOA) DE-FOA-0001168, “Advancing Solutions to Improve the Energy Efficiency of U.S. Commercial Buildings.”

386

Viability of exterior shading devices for high-rise residential buildings: Case study for cooling energy saving and economic feasibility analysis  

Science Journals Connector (OSTI)

Abstract Proper use of building shading devices can only improve the thermal comfort in indoor environment, but also reduce cooling energy consumption effectively. Researches on this topic have been mostly conducted for office buildings, but were limited for exterior shading devices of high-rise buildings, where cooling is a major energy consumer. This paper presents an integrated approach for exterior shading design analysis about energy performance and economic feasibility in a high-rise residential building (Seoul, Korea) by both numerical simulations and field mock-up test for possibility of installing. The sun-shading/daylighting performance analysis of the 48 exterior shading devices was measured with 4.0 m × 3.2 m window module size during the period of May–September. Furthermore, quantitative analysis of the cooling energy saving potential of solar radiation controls was conducted with DOE-2.1E simulation program. The cooling energy saving potential was about 20%, while the reducing of solar heat gain by the two exterior shading devices (the horizontal overhang and the vertical panel) would lead to a decrease of the cooling energy demand 19.7% and 17.3%, respectively. Cost benefit and economic feasibility was also analyzed, in consideration of the OPEX and CAPEX, depending on the shading type. The significance of this study lies in providing basic information for rational exterior shading planning, when designing high-rise residential buildings.

Jinkyun Cho; Changwoo Yoo; Yundeok Kim

2014-01-01T23:59:59.000Z

387

Emergy-based life cycle assessment (Em-LCA) of multi-unit and single-family residential buildings in Canada  

Science Journals Connector (OSTI)

Abstract The construction and building process depends on substantial consumption of natural resources with far-reaching impacts beyond their development area. In general, a significant portion of annual resource consumption by the building and construction industry is a result of applying traditional building strategies and practices such as designing and selecting types of development (e.g. multi-unit condo and single-family house, etc.), building materials and structure, heating/cooling systems, and planning renovation and maintenance practices. On the other hand, apart from structural suitability, building developers mostly consider the basic requirements of public owners or private occupants of the buildings, where the main criteria for selecting building strategies are costs, and long-term environmental and socio-economic impacts are generally ignored. The main purpose of this paper is to develop an improved building sustainability assessment framework to measure and integrate different sustainability factors, i.e. long-term environmental upstream and downstream impacts and associated socio-economic costs, in a unified and quantitative basis. The application of the proposed framework has been explained through a case study of single-family houses and multi-unit residential buildings in Canada. A comprehensive framework based on the integration of emergy synthesis and life cycle assessment (LCA) has been developed and applied. The results of this research prove that the proposed emergy-based life cycle assessment (Em-LCA) framework offers a practical sustainability assessment tool by providing quantitative and transparent results for informed decision-making.

Bahareh Reza; Rehan Sadiq; Kasun Hewage

2014-01-01T23:59:59.000Z

388

Regional variations in US residential sector fuel prices: implications for development of building energy performance standards  

SciTech Connect

The Notice of Proposed Rulemaking for Energy Performance Standards for New Buildings presented life-cycle-cost based energy budgets for single-family detached residences. These energy budgets varied with regional climatic conditions but were all based on projections of national average prices for gas, oil and electricity. The Notice of Proposed Rulemaking indicated that further analysis of the appropriateness of various price measures for use in setting the Standards was under way. This part of that ongoing analysis addresses the availability of fuel price projections, the variation in fuel prices and escalation rates across the US and the effects of aggregating city price data to the state, Region, or national level. The study only provides a portion of the information required to identify the best price aggregation level for developing of the standards. The research addresses some of the economic efficiency considerations necessary for design of a standard that affects heterogeneous regions. The first section discusses the effects of price variation among and within regions on the efficiency of resource allocation when a standard is imposed. Some evidence of the extreme variability in fuel prices across the US is presented. In the second section, time series, cross-sectional fuel price data are statistically analyzed to determine the similarity in mean fuel prices and price escalation rates when the data are treated at increasing levels of aggregation. The findings of this analysis are reported in the third section, while the appendices contain price distributions details. The last section reports the availability of price projections and discusses some EIA projections compared with actual prices.

Nieves, L.A.; Tawil, J.J.; Secrest, T.J.

1981-03-01T23:59:59.000Z

389

Enabling Advanced Environmental Conditioning with a Building Application Stack  

E-Print Network (OSTI)

, the challenges in integrating additional sensors to building control systems today are myriad: the systems de--There is enormous potential for building-focused applications to improve operation and sustainability, both or grid-aware energy management. We show that a building application stack ­ that addresses shortcomings

Culler, David E.

390

Energy Department Updates Home Energy Scoring Tool for Advancing Residential Energy Performance  

Office of Energy Efficiency and Renewable Energy (EERE)

As part of the Energy Department's commitment to helping families across the U.S. save money by saving energy, the Department announced today its first major software update to the Home Energy Scoring Tool, developed by the Department's Building Technologies Office and Lawrence Berkeley National Laboratory (LBNL).

391

Integrated window systems: An advanced energy-efficient residential fenestration product  

SciTech Connect

The last several years have produced a wide variety of new window products aimed at reducing the energy impacts associated with residential windows. Improvements have focused on reducing the rate at which heat flows through the total window product by conduction/convection and thermal radiation (quantified by the U-factor) as well as in controlling solar heat gain (measured by the Solar Heat Gain Coefficient (SHGC) or Shading Coefficient (SC)). Significant improvements in window performance have been made with low-E coated glazings, gas fills in multiple pane windows and with changes in spacer and frame materials and designs. These improvements have been changes to existing design concepts. They have pushed the limits of the individual features and revealed weaknesses. The next generation of windows will have to incorporate new materials and ideas, like recessed night insulation, seasonal sun shades and structural window frames, into the design, manufacturing and construction process, to produce an integrated window system that will be an energy and comfort asset.

Arasteh, D.; Griffith, B.; LaBerge, P.

1994-03-01T23:59:59.000Z

392

Building a More Competitive American Manufacturing Industry with Advanced Composites  

Office of Energy Efficiency and Renewable Energy (EERE)

Our new Manufacturing Innovation Institute for Advanced Composites will help revolutionize clean energy technology one material at a time.

393

Shaping the Next - Buildings and Energy: Advanced Lighting  

SciTech Connect

short bit on advanced lighting for the future relating specifically to controls and new tech such as LEDs

Richman, Eric E.

2014-01-01T23:59:59.000Z

394

Advanced Technologies and Practices - Building America Top Innovations...  

Energy Savers (EERE)

and construction practices that improve the building envelope; heating, ventilation, and air conditioning (HVAC); water heating components; and indoor air quality and safety...

395

Advanced Technologies and Practices- Building America Top Innovations  

Energy.gov (U.S. Department of Energy (DOE))

Top Innovations in this category encompass research in specific technologies and construction practices that improve the building envelope, HVAC components, ventilation, and health and safety issues.

396

Focus Series: Maine—Residential Direct Install Program  

Energy.gov (U.S. Department of Energy (DOE))

Better Buildings Neighborhood Program Focus Series: Maine—Residential Direct Install Program: Residential Air Sealing Program Drives Maine Home Energy Savings Through the Roof.

397

Advanced Energy Efficiency Design Strategies In Retail Buildings  

SciTech Connect

This paper presents two US retail building projects that were designed and constructed using the energy design process. These buildings, the BigHorn Center in Silverthorne, Colorado, and the Zion National Park Visitor Center in Springdale, Utah, were both completed and occupied during the spring of 2000.

Hayter, S.; Torcellini, P.

2000-08-17T23:59:59.000Z

398

Building America Top Innovations Hall of Fame Profile Â… Advanced Framing Systems and Packages  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

studies involving studies involving thousands of homes have documented significant material, labor, and energy savings when production builders implement advanced framing techniques. Advanced framing can reduce the number of studs in the walls by up to one-third, reducing the cost of materials. and reducing the cost of labor in terms of the time it takes to handle, cut, install, drill, and attach to studs. Actual savings have exceeded $1,000 per home. Studies show the resulting improvement in thermal performance can yield 13% energy savings. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.1 Building Science Solutions Advanced Framing Systems and Packages Building America has developed best practices for advanced framing

399

Funding Opportunity Webinar- Advancing Solutions To Improve the Energy Efficiency of US Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE))

This webinar provides an overview of the DOE Funding Opportunity Announcement DE-FOA-0001168, "Advancing Solutions to Improve the Energy Efficiency of U.S. Commercial Buildings," which seeks to fund the scale-up of promising solutions to the market barriers that hinder the growth of energy efficiency in the commercial building sector.

400

Comparison of DOE-2.1E with Energyplus and TRNSYS for Ground Coupled Residential Buildings in Hot anf Humid Climates Stage 4  

E-Print Network (OSTI)

ESL-TR-12-02-02 COMPARISON OF DOE-2.1E WITH ENERGYPLUS AND TRNSYS FOR GROUND COUPLED RESIDENTIAL BUILDINGS IN HOT AND HUMID CLIMATES STAGE 4 “Fully Loaded IECC Compliant Slab-on-grade Houses in the Four U.S. Climates” A Report...F/Btu) Rfic resistance of the fictitious insulation layer (hr-ft2-oF/Btu) GI ground isolated EP modeled with EnergyPlus D2 modeled with DOE-2 TR modeled with TRNSYS GCW ground coupled with Winkelmann’s slab-on-grade model GCS ground coupled with Slab...

Andolsun, S.; Culp, C.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Building America: The Advanced Whole-Home Efficiency Program (Presentation)  

SciTech Connect

This presentation discusses the Building America Program. This presentation discusses the background and goals of the program. A few hot topic technologies are discussed. Outreach activities are discussed as well.

Engebrecht, C.

2012-02-01T23:59:59.000Z

402

Building America Technology Solutions for New and Existing Homes: Duct Sealing Using Injected Spray Sealant  

Energy.gov (U.S. Department of Energy (DOE))

In this project, the Raleigh Housing Authority worked with Building America team, the Advanced Residential Integrated Solutions Collaborative to determine the most cost-effective ways to reduce duct leakage in its low-rise housing units.

403

Building America Technology Solutions for New and Existing Homes:Hydronic Systems Designing for Setback Operations  

Energy.gov (U.S. Department of Energy (DOE))

This guide, developed by Consortium for Advanced Residential Buildings, provides step-by-step instructions for heating contractors and hydronic designers for selecting the proper control settings to maximize system performance and improve response time when using a thermostat setback.

404

Advances in Understanding Durability of the Building Envelope: ORNL Research  

SciTech Connect

Moisture, and its accompanying outriders things like mold, corrosion, freeze damage, and decay present powerful threats to the durability and long-term performance of a building envelope. Miscalculating the impact of environmental factors like rain, solar radiation, temperature, humidity, and indoor sources of moisture can cause significant damage to many types of building envelope components and materials, and also can lead to unhealthy indoor living environments.

Kehrer, Manfred [ORNL] [ORNL; Desjarlais, Andre Omer [ORNL] [ORNL

2013-01-01T23:59:59.000Z

405

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Average Residential Price Residential Price - Local Distribution Companies Residential Price - Marketers Residential % Sold by Local Distribution Companies Average...

406

Current Building Energy Codes: Using the Process to Advance Energy Efficient Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12 12 NREL / Build America Stakeholders Meeting Presented by David Karmol, VP, Federal & External Affairs ď‚ž The purpose of this presentation is to provide information on ICC model codes that impact the design and construction of buildings, and tactics to allow Building America advances to be incorporated into the model code and/or recognized by building code officials ď‚ž The expected outcome is an ability to expand the reach of Build America innovations, by using available resources to mainstream new energy efficiency systems into building practices nationwide 2 3 ď‚ž Will apply to traditional commercial and high-performance buildings. ď‚ž Consistent and coordinated with the ICC family of Codes & Standards. ď‚ž Applicable to the construction of

407

Residential Lighting: Title 24 and Technology Update  

E-Print Network (OSTI)

Residential Lighting: Title 24 and Technology Update Best practices in lighting design to comply the development and deployment of energy-efficient lighting and daylighting technologies in partnership. Effectively apply the residential Title 24 Building Energy Efficiency Standards requirements specific

California at Davis, University of

408

Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings" (DOE/EA-1918)  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Assessment for Final Rule, 10 CFR 433, "Energy Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings" (DOE/EA-1918) June 28, 2013 1 Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings" (DOE/EA-1918) SUMMARY The U.S. Department of Energy (DOE) has prepared this environmental assessment (EA) for DOE's Final Rule, 10 CFR Part 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings". The Final Rule updates the baseline standard in 10 CFR 433 to the latest private sector standard based on cost-effectiveness and DOE's determination that energy efficiency has

409

Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings" (DOE/EA-1918)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment for Final Rule, 10 CFR 433, "Energy Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings" (DOE/EA-1918) June 28, 2013 1 Environmental Assessment for Final Rule, 10 CFR 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings" (DOE/EA-1918) SUMMARY The U.S. Department of Energy (DOE) has prepared this environmental assessment (EA) for DOE's Final Rule, 10 CFR Part 433, "Energy Efficiency Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings". The Final Rule updates the baseline standard in 10 CFR 433 to the latest private sector standard based on cost-effectiveness and DOE's determination that energy efficiency has

410

Florida Solar Energy Center (Building America Partnership for...  

Open Energy Info (EERE)

for Improved Residential Construction Jump to: navigation, search Name: Florida Solar Energy Center (Building America Partnership for Improved Residential Construction...

411

Building a market for small wind: The break-even turnkey cost of residential wind systems in the United States  

SciTech Connect

Although small wind turbine technology and economics have improved in recent years, the small wind market in the United States continues to be driven in large part by state incentives, such as cash rebates, favorable loan programs, and tax credits. This paper examines the state-by-state economic attractiveness of small residential wind systems. Economic attractiveness is evaluated primarily using the break-even turnkey cost (BTC) of a residential wind system as the figure of merit. The BTC is defined here as the aggregate installed cost of a small wind system that could be supported such that the system owner would break even (and receive a specified return on investment) over the life of the turbine, taking into account current available incentives, the wind resource, and the retail electricity rate offset by on-site generation. Based on the analysis presented in this paper, we conclude that: (1) the economics of residential, grid-connected small wind systems is highly variable by state and wind resource class, (2) significant cost reductions will be necessary to stimulate widespread market acceptance absent significant changes in the level of policy support, and (3) a number of policies could help stimulate the market, but state cash incentives currently have the most significant impact, and will be a critical element of continued growth in this market.

Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

2004-03-01T23:59:59.000Z

412

Advanced Energy Design Guide for Small Retail Buildings - Saving Energy in the Retail Sector  

SciTech Connect

ASHRAE, AIA, DOE, IESNA and USGBC have partnered to produce an advanced energy design guide for use in small retail building applications. The guide contains recommendations for saving 30% energy over the minimum requirements of ASHRAE Standard 90.1-1999. This paper describes the guide, compares it to a similar guide previously produced for small office buildings, and then presents simulation results demonstrating the energy savings over the 8 climate regions of the U.S.

Jarnagin, Ronald E.; McBride, Merle F.; Colliver, Donald G.

2006-09-06T23:59:59.000Z

413

Building America Whole-House Solutions for Existing Homes: Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades vs. Cost-Optimized Solutions, Chicago, Illinois  

Energy.gov (U.S. Department of Energy (DOE))

This case study presents information about a Building America study conducted by the Partnership for Advanced Residential Retrofit team comparing measure packages installed during 800 Illinois Home Performance with ENERGY STAR® residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software.

414

Analysis of advanced solar hybrid desiccant cooling systems for buildings  

SciTech Connect

This report describes an assessment of the energy savings possible from developing hybrid desiccant/vapor-compression air conditioning systems. Recent advances in dehumidifier design for solar desiccant cooling systems have resulted in a dehumidifier with a low pressure drop and high efficiency in heat and mass transfer. A recent study on hybrid desiccant/vapor compression systems showed a 30%-80% savings in resource energy when compared with the best conventional systems with vapor compression. A system consisting of a dehumidifier with vapor compression subsystems in series was found to be the simplest and best overall performer.

Schlepp, D.; Schultz, K.

1984-10-01T23:59:59.000Z

415

Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document  

SciTech Connect

The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

1994-07-01T23:59:59.000Z

416

Advancing Net-Zero Energy Commercial Buildings; Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect

This fact sheet provides an overview of the research the National Renewable Energy Laboratory is conducting to achieve net-zero energy buildings (NZEBs). It also includes key definitions of NZEBs and inforamtion about an NZEB database that captures information about projects around the world.

Not Available

2009-10-01T23:59:59.000Z

417

Recommendations for 15% Above-Code Energy Efficiency Measures on Implementing Houston Amendments to Multifamily Residential Buildings in Houston, Texas  

E-Print Network (OSTI)

categories were then chosen to form group measures whose combined energy savings is above 15%. Six group measures were simulated for the electric/gas base case building and five group measures for the all-electric base case building. The cost of implementing...

Mukhopadhyay, Jaya; Liu, Zi; Malhotra, Mini; Kota, Sandeep; Blake, Sheila; Haberl, Jeff; Culp, Charles; Yazdani, Bahman

418

Recommendations for 15% Above-Code Energy Efficiency Measures on Implementing Houston Amendments to Multifamily Residential Buildings in Houston Texas  

E-Print Network (OSTI)

categories were then chosen to form group measures whose combined energy savings is above 15%. Six group measures were simulated for the electric/gas base case building and five group measures for the all-electric base case building. The cost of implementing...

Mukhopadhyay, J.; Liu, Z.; Malhotra, M.; Kota, S.; Blake, S.; Haberl, J.; Culp, C.; Yazdani, B.

419

Technical and economical assessment of the utilization of photovoltaic systems in residential buildings: The case of Jordan  

Science Journals Connector (OSTI)

This paper studies the feasibility of utilizing photovoltaic systems in a standard residential apartment in Amman city in Jordan. Data on solar radiation, sunshine duration and the ambient temperature has been recorded in Amman city. An apartment in Amman was chosen as a case study to conduct energy and economic calculations. The electrical power needs and cost were calculated for the apartment. The component design and cost of PV system required to supply required energy was calculated and the payback period for the suggested stand-alone PV system in this paper was estimated in a constant inflation rate in electricity price similar to that of interest rate. The calculated payback period was high in a stand-alone system, to decrease payback period a grid-connected PV system is suggested. Considering an annual increase of 3% in electricity price, 15% of payback period was decreased in a stand-alone PV system and 21% in a grid-connected PV system. The output results of this study show that installation of PV system in a residential flat in Jordan may not be economically rewarding owing to the high cost of PV system compared to the cost of grid electricity. A feed-in tariff law of solar electricity may help to reduce PV system cost like the case of Germany. Additional conclusions are PV systems may be economically rewarding in Jordan if applied in locations far from electrical grid or in remote large scale PV power installations to overcome economical limitations of PV technology.

A. Al-Salaymeh; Z. Al-Hamamre; F. Sharaf; M.R. Abdelkader

2010-01-01T23:59:59.000Z

420

Residential | Open Energy Information  

Open Energy Info (EERE)

Residential Residential Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends In the AEO2011 Reference case, residential energy use per capita declines by 17.0 percent from 2009 to 2035 (Figure 58). Delivered energy use stays relatively constant while population grows by 26.7 percent during the period. Growth in the number of homes and in average square footage leads to increased demand for energy services, which is offset in part by efficiency gains in space heating, water heating, and lighting equipment. Population shifts to warmer and drier climates also reduce energy demand for space heating.[1] Issues in Focus In 2009, the residential and commercial buildings sectors used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Advanced Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Systems: Advanced Systems: high Performance fenestration systems Research areas: Research activities to improve the performance of windows and other fenestration products must address window systems issues as well as Glazing Materials research. LBNL activities in the area of Advanced Systems include research at both the product level and the building envelope and building systems levels. Highly insulating windows - using non structural center layers Lower cost solutions to more insulating three layer glazing systems, with the potential to turn windows in U.S. heating dominated residential applications into net-energy gainers. Highly Insulating Window Frames In collaboration with the Norwegian University of Science and Technology, we are researching the potentials for highly insulating window frames. Our initial work examines European frames with reported U-factors under 0.15 Btu/hr-ft2-F. Future research aims to analyze these designs, verify these performance levels and ensure that procedures used to calculate frame performance are accurate.

422

Advanced Envelope Research for Factory-Built Housing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 14, 2011 December 14, 2011 Advanced Envelope Research for Factory-Built Housing Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction December 14. 2011 Mike Gestwick Michael.Gestwick@nrel.gov Building Technologies Program Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies www.buildingamerica.gov Introduction to Building America Building Technologies Program eere.energy.gov Building America Industry Consortia

423

Advances in Understanding Durability of the Building Envelope | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Advances in Understanding Durability of the Building Envelope: ORNL Advances in Understanding Durability of the Building Envelope: ORNL Research November 22, 2013 Figure 1. Installed wall site location in Syracuse, New York. Test walls were examined to determine the impact of increased airtightness, indoor moisture sources, the moisture capacity of materials in the wall cavity, the thermal resistance of continuous exterior insulation, and the amount of winter solar radiation. Photo courtesy Oak Ridge National Laboratory. Moisture, and its accompanying outriders - things like mold, corrosion, freeze damage, and decay - present powerful threats to the durability and long-term performance of a building envelope. Miscalculating the impact of environmental factors like rain, solar radiation, temperature, humidity, and indoor sources of moisture can cause significant damage to many types

424

The Trade-off between Solar Reflectance and Above-Sheathing Ventilation for Metal Roofs on Residential and Commercial Buildings  

SciTech Connect

An alternative to white and cool-color roofs that meets prescriptive requirements for steep-slope (residential and non-residential) and low-slope (non-residential) roofing has been documented. Roofs fitted with an inclined air space above the sheathing (herein termed above-sheathing ventilation, or ASV), performed as well as if not better than high-reflectance, high-emittance roofs fastened directly to the deck. Field measurements demonstrated the benefit of roofs designed with ASV. A computer tool was benchmarked against the field data. Testing and benchmarks were conducted at roofs inclined at 18.34 ; the roof span from soffit to ridge was 18.7 ft (5.7 m). The tool was then exercised to compute the solar reflectance needed by a roof equipped with ASV to exhibit the same annual cooling load as that for a direct-to-deck cool-color roof. A painted metal roof with an air space height of 0.75 in. (0.019 m) and spanning 18.7 ft (5.7 m) up the roof incline of 18.34 needed only a 0.10 solar reflectance to exhibit the same annual cooling load as a direct-to-deck cool-color metal roof (solar reflectance of 0.25). This held for all eight ASHRAE climate zones complying with ASHRAE 90.1 (2007a). A dark heat-absorbing roof fitted with 1.5 in. (0.038 m) air space spanning 18.7 ft (5.7 m) and inclined at 18.34 was shown to have a seasonal cooling load equivalent to that of a conventional direct-to-deck cool-color metal roof. Computations for retrofit application based on ASHRAE 90.1 (1980) showed that ASV air spaces of either 0.75 or 1.5 in. (0.019 and 0.038 m) would permit black roofs to have annual cooling loads equivalent to the direct-to-deck cool roof. Results are encouraging, and a parametric study of roof slope and ASV aspect ratio is needed for developing guidelines applicable to all steep- and low-slope roof applications.

Desjarlais, Andre Omer [ORNL] [ORNL; Kriner, Scott [Metal Construction Association, Glenview, IL] [Metal Construction Association, Glenview, IL; Miller, William A [ORNL] [ORNL

2013-01-01T23:59:59.000Z

425

Elaboration of energy saving renovation measures for urban existing residential buildings in north China based on simulation and site investigations  

Science Journals Connector (OSTI)

It is necessary to determine whether to implement a retrofit measure or not based on its energy saving and economic benefits, when conducting a retrofit ... up a building simulation model and calculate its energy

Shuqin Chen; Jun Guan; Mark D. Levine; Linna Xie; P. Yowargana

2013-06-01T23:59:59.000Z

426

Progress in Residential Retrofit  

NLE Websites -- All DOE Office Websites (Extended Search)

The Cutting Edge: Progress in Residential Retrofit The Cutting Edge: Progress in Residential Retrofit A geographic representation of saturations of ceiling fans based on data from the RASSes. White areas indicate a lack of data for that region. Many utilities survey their customers to learn more about the buildings and the occupants in their service areas. These surveys-usually called "residential appliance saturation surveys," or RASSes-ask for the number and types of appliances present, the number of people living in the home, and sometimes personal information. The RASSes are also used to collect information about the presence of conservation measures such as wall and ceiling insulation, weatherstripping, multipane windows, and water flow restrictors. Building Energy Analysis Group researchers Alan Meier and Brian Pon gathered RASSes

427

Building America Technology Solutions for New and Existing Homes: Field Performance of Heat Pump Water Heaters in the Northeast (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

In this project, the Consortium for Advanced Residential Buildings evaluated three newly released heat pump water heater products in order to provide publicly available field data on these products.

428

Better Buildings Network View | November 2014  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

429

Better Buildings Network View | October 2014  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

430

Better Buildings Network View | September 2014  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

431

Better Buildings Network View | January 2015  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

432

Better Buildings Network View | December 2014  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

433

Better Buildings Network View | February 2014  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

434

Better Buildings Network View | April 2014  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

435

Better Buildings Network View | May 2014  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

436

Better Buildings Network View | March 2014  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

437

Better Buildings Network View | June 2014  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

438

Energy Savings Potential and RD&D Opportunities for Residential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building HVAC Systems This report assesses 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and...

439

Residential Mechanical Precooling  

SciTech Connect

This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

German, A.; Hoeschele, M.

2014-12-01T23:59:59.000Z

440

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

3 Commercial and Residential Building Site Energy Usagecommercial and residential prototype buildings discussed in the previous section is simulated in EnergyPlus (DOE, 2011). The energy usage

Feng, Wei

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Advanced Metering Plan for Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings  

SciTech Connect

This updated Advanced Metering Plan for monitoring whole building energy use in Pacific Northwest National Laboratory (PNNL) EMS4 buildings on the PNNL campus has been prepared in accordance with the requirements of the Energy Policy Act of 2005 (EPAct 2005), Section 103, U.S. Department of Energy (DOE) Order 430.2B, and Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, Federal Energy Management Program, October 2007 (Sullivan et al. 2007). The initial PNNL plan was developed in July 2007 (Olson 2007), updated in September 2008 (Olson et al. 2008), updated in September 2009 (Olson et al. 2009), and updated again in August 2010 (Olson et al. 2010).

Pope, Jason E.; Olson, Norman J.; Berman, Marc J.; Schielke, Dale R.

2011-08-17T23:59:59.000Z

442

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network (OSTI)

of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andfor Residential Energy Consumption in China Nan Zhou,

Zhou, Nan

2010-01-01T23:59:59.000Z

443

Residential Energy Efficiency Stakeholder Meeting - Spring 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Stakeholder Meeting - Spring 2012 Residential Energy Efficiency Stakeholder Meeting - Spring 2012 Residential Energy Efficiency Stakeholder Meeting - Spring 2012 The U.S. Department of Energy (DOE) Building America program held the second annual Residential Energy Efficiency Stakeholder Meeting on February 29-March 2, 2012, in Austin, Texas. At this meeting, hundreds of building industry professionals came together to share their perspective on the most current innovation projects in the residential buildings sector. This meeting provided an opportunity for researchers and industry stakeholders to showcase and discuss the latest in cutting-edge, energy-efficient residential building technologies and practices. The meeting also included working sessions from each Standing Technical Committee (STC), which outlined work that will best assist in overcoming

444

Structure, energy and cost efficiency evaluation of three different lightweight construction systems used in low-rise residential buildings  

Science Journals Connector (OSTI)

Abstract This article presents the analysis of the structure, energy and cost efficiency of three lightweight structural systems – wood light frames (WLF), lightweight steel frames (LGSF) and 3D sandwich (3DSP) panels – during their useful life. The structural systems focussed upon in this study are commonly used in Eastern Europe with specific reference to Turkey. The structural analysis and design was carried out using ETABS while EnergyPlus was used in the analysis of the energy consumption of the buildings. The results of the structural analysis of the three alternative construction systems show that 3DSP has better structural behaviour in terms of resistance against lateral loads. The thermal performance evaluation of the walls and ceilings shows that the WLF and LGSF walls have better insulation values (12.5% lower U-value) while the roof construction of the 3DSP has much better insulation performance (70% lower U-value). Moreover, the building designed with 3DSP requires 11% less energy for total heating and cooling during one year. The information for the building industry in Turkey shows that the cost of construction for 3DSP construction is 34.6% lower than for WLF and 27.7% lower than LGSF.

Sareh Naji; O?uz Cem Çelik; U. Johnson Alengaram; Mohd Zamin Jumaat; Shahaboddin Shamshirband

2014-01-01T23:59:59.000Z

445

Estimating Demand Response Load Impacts: Evaluation of BaselineLoad Models for Non-Residential Buildings in California  

SciTech Connect

Both Federal and California state policymakers areincreasingly interested in developing more standardized and consistentapproaches to estimate and verify the load impacts of demand responseprograms and dynamic pricing tariffs. This study describes a statisticalanalysis of the performance of different models used to calculate thebaseline electric load for commercial buildings participating in ademand-response (DR) program, with emphasis onthe importance of weathereffects. During a DR event, a variety of adjustments may be made tobuilding operation, with the goal of reducing the building peak electricload. In order to determine the actual peak load reduction, an estimateof what the load would have been on the day of the event without any DRactions is needed. This baseline load profile (BLP) is key to accuratelyassessing the load impacts from event-based DR programs and may alsoimpact payment settlements for certain types of DR programs. We testedseven baseline models on a sample of 33 buildings located in California.These models can be loosely categorized into two groups: (1) averagingmethods, which use some linear combination of hourly load values fromprevious days to predict the load on the event, and (2) explicit weathermodels, which use a formula based on local hourly temperature to predictthe load. The models were tested both with and without morningadjustments, which use data from the day of the event to adjust theestimated BLP up or down.Key findings from this study are: - The accuracyof the BLP model currently used by California utilities to estimate loadreductions in several DR programs (i.e., hourly usage in highest 3 out of10 previous days) could be improved substantially if a morning adjustmentfactor were applied for weather-sensitive commercial and institutionalbuildings. - Applying a morning adjustment factor significantly reducesthe bias and improves the accuracy of all BLP models examined in oursample of buildings. - For buildings with low load variability, all BLPmodels perform reasonably well in accuracy. - For customer accounts withhighly variable loads, we found that no BLP model produced satisfactoryresults, although averaging methods perform best in accuracy (but notbias). These types of customers are difficult to characterize withstandard BLP models that rely on historic loads and weather data.Implications of these results for DR program administrators andpolicymakersare: - Most DR programs apply similar DR BLP methods tocommercial and industrial sector customers. The results of our study whencombined with other recent studies (Quantum 2004 and 2006, Buege et al.,2006) suggests that DR program administrators should have flexibility andmultiple options for suggesting the most appropriate BLP method forspecific types of customers.

Coughlin, Katie; Piette, Mary Ann; Goldman, Charles; Kiliccote,Sila

2008-01-01T23:59:59.000Z

446

Encouraging PV Adoption in New Market-Rate Residential Construction: A Critical Review of Program Experiences to Date  

E-Print Network (OSTI)

on new multi-family buildings State Organization Standard PVmulti- family residential construction projects with PV and other green building

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

447

2008 Building Energy2008 Building Energyg gy Efficiency Standards  

E-Print Network (OSTI)

Buildings p , p g , Luminaire Power, etc. for Nonresidential Buildings 4 #12;What is New for 2008? R d l B ld What is New for 2008? R d l B ldResidential BuildingsResidential Buildings Mandatory Measures2008 Building Energy2008 Building Energyg gy Efficiency Standards g gy Efficiency Standardsfficie

448

Development of a New ASHRAE Protocol for Measuring and Reporting the On-Site Performance of Buildings Except Low-Rise Residential Buildings  

E-Print Network (OSTI)

that includes descriptions and installation instructions for sensors needed for measuring, procedures for retrieving data from remote buildings, and an overview of analysis methods in the Texas LoanSTAR program. • ORNL Report “Measuring Energy...-Saving Retrofits: Experiences from the Texas LoanSTAR Program” (1996). This ORNL Report contains a complete description of the measurement and verification methods developed for the Texas LoanSTAR program. • Sustainability Assessment of the Robert E. Johnson...

Haberl, Jeff; Case, Mark; Kettler, Herald; Hunn, Bruce; Owens, Brendan

449

Building America Top Innovations 2013 Profile Â… Next Generation Advanced Framing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

It's well known that advanced framing techniques that reduce the amount of It's well known that advanced framing techniques that reduce the amount of framing in the stud-framed walls improve the thermal performance of walls by allowing more room for insulation and reducing thermal bridging-the heat transfer that happens through wood framing that extends from the inside surface to the outside surface of the wall. Unfortunately even though the benefits are known, builders have been slow to adopt advanced framing methods because some of the techniques are difficult to apply, trades are not familiar with these nonstandard techniques, and implementation can require design and materials changes. One Building America team, the Partnership for Home Innovation (PHI) led by the Home Innovation Research Labs (formerly known as the National

450

Building America Top Innovations 2013 Profile Â… Next Generation Advanced Framing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

It is well known that advanced framing techniques that reduce the amount of It is well known that advanced framing techniques that reduce the amount of framing in stud-framed walls improve the thermal performance of the walls by allowing more room for insulation and reducing thermal bridging-the heat transfer that happens through wood framing that extends from the inside surface to the outside surface of the wall. Unfortunately, even though the benefits are known, builders have been slow to adopt advanced framing methods because some of the techniques are difficult to apply, trades are not familiar with these nonstandard techniques, and implementation can require design and materials changes. One Building America team, the Partnership for Home Innovation (PHI) led by the Home Innovation Research Labs (formerly known as the National

451

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network (OSTI)

commercial and residential buildings, appliances and equipment, and the vali- dation of computational tools for estimating energy usage.

Wall, L.W.

2009-01-01T23:59:59.000Z

452

Building America Whole-House Solutions for New Homes: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York  

Energy.gov (U.S. Department of Energy (DOE))

In this project, the Consortium for Advanced Residential Buildings team sought to create a well-documented design and implementation strategy for air sealing in low-rise multifamily buildings that would assist in compliance with new building infiltration requirements of the 2012 IECC.

453

Building America Research Teams | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Teams Teams Building America Research Teams Building America research projects are completed by industry consortia (teams) comprised of leading experts from across the country. The research teams design, test, upgrade and build high performance homes using strategies that significantly cut energy use. Building America research teams are selected through a competitive process initiated by a request for proposals. Team members are experts in the field of residential building science, and have access to world-class research facilities, partners, and key personnel, ensuring successful progress toward U.S. Department of Energy (DOE) goals. This page provides a brief description of the teams, areas of focus, and key team members. Advanced Residential Integrated Energy Solutions

454

Residential Network Members Impact More Than 42,000 Households  

Energy.gov (U.S. Department of Energy (DOE))

Eligible Better Buildings Residential Network members reported completing 27,563 home energy upgrades during 2013 as part of the Residential Network’s first reporting cycle. In addition, 13 Better...

455

Solar access of residential rooftops in four California cities  

E-Print Network (OSTI)

H. Akbari. Shade trees reduce building energy use and CO 2uence of tree shading on residential energy use for heatingestimates of tree-shade e?ects on residential energy use.

Levinson, Ronnen

2010-01-01T23:59:59.000Z

456

Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison  

E-Print Network (OSTI)

commercial and residential prototype buildings was simulated in EnergyPlus [15]. The commercial and residential energy usage

Mendes, Goncalo

2014-01-01T23:59:59.000Z

457

Better Buildings Network View | July-August 2014  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

458

Building Technologies Program: Building America Publications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Program » Residential Buildings About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes Feature featured product thumbnail Building America Best Practices Series Volume 14 - HVAC: A Guide for Contractors to Share with Homeowners Details Bookmark &

459

building | OpenEI  

Open Energy Info (EERE)

building building Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

460

Using EnergyPlus to Simulate the Dynamic Response of a Residential Building to Advanced Cooling Strategies: Preprint  

SciTech Connect

This study demonstrates the ability of EnergyPlus to accurately model complex cooling strategies in a real home with a goal of shifting energy use off peak and realizing energy savings. The house was retrofitted through the Sacramento Municipal Utility District's (SMUD) deep energy retrofit demonstration program; field tests were operated by the National Renewable Energy Laboratory (NREL). The experimental data were collected as part of a larger study and are used here to validate simulation predictions.

Booten, C.; Tabares-Velasco, P. C.

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy Department Updates Home Energy Scoring Tool for Advancing...  

Energy Savers (EERE)

Energy Department Updates Home Energy Scoring Tool for Advancing Residential Energy Performance Energy Department Updates Home Energy Scoring Tool for Advancing Residential Energy...

462

Better Buildings Neighborhood Program: Better Buildings Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Partners to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Partners on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Partners on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Partners on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY

463

Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments  

SciTech Connect

The research summarized in this report is part of a larger effort to evaluate the potential air quality impacts of using liquefied natural gas in California. A difference of potential importance between many liquefied natural gas blends and the natural gas blends that have been distributed in California in recent years is the higher Wobbe number of liquefied natural gas. Wobbe number is a measure of the energy delivery rate for appliances that use orifice- or pressure-based fuel metering. The effect of Wobbe number on pollutant emissions from residential water heaters was evaluated in controlled experiments. Experiments were conducted on eight storage water heaters, including five with “ultra low-NO{sub X}” burners, and four on-demand (tankless) water heaters, all of which featured ultra low-NO{sub X} burners. Pollutant emissions were quantified as air-free concentrations in the appliance flue and fuel-based emission factors in units of nanogram of pollutant emitter per joule of fuel energy consumed. Emissions were measured for carbon monoxide (CO), nitrogen oxides (NO{sub X}), nitrogen oxide (NO), formaldehyde and acetaldehyde as the water heaters were operated through defined operating cycles using fuels with varying Wobbe number. The reference fuel was Northern California line gas with Wobbe number ranging from 1344 to 1365. Test fuels had Wobbe numbers of 1360, 1390 and 1420. The most prominent finding was an increase in NO{sub X} emissions with increasing Wobbe number: all five of the ultra low-NO{sub X} storage water heaters and two of the four ultra low-NO{sub X} on-demand water heaters had statistically discernible (p<0.10) increases in NO{sub X} with fuel Wobbe number. The largest percentage increases occurred for the ultra low-NO{sub X} water heaters. There was a discernible change in CO emissions with Wobbe number for all four of the on-demand devices tested. The on-demand water heater with the highest CO emissions also had the largest CO increase with increasing fuel Wobbe number.

Rapp, VH; Singer, BC

2014-03-01T23:59:59.000Z

464

Advanced Design and Commissioning Tools for Energy-Efficient Building Technologies  

E-Print Network (OSTI)

energy building was achieved through an integrated design2. Integrated Design Associates, Inc. (IDeAs) Building, Santhe Integrated Design Associates, Inc. (IDeAs) Building, San

Bauman, Fred; Webster, Tom; Zhang, Hui; Arens, Ed

2012-01-01T23:59:59.000Z

465

Residential Marketing Toolkit  

NLE Websites -- All DOE Office Websites (Extended Search)

Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales Allocation Tool...

466

Building America Technology Solutions for New and Existing Homes: Balancing Hydronic Systems in Multifamily Buildings, Chicago, Illinois (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

In this case study , Partnership for Advanced Residential Retrofit and Elevate Energy. explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs.

467

Building America Technology Solutions for New and Existing Homes: Buried and Encapsulated Ducts, Jacksonville, Florida (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

In a study of three single-story houses in Florida, the Building America research team Consortium for Advanced Residential Buildings (CARB) investigated the strategy of using buried and/or encapsulated ducts (BED) to reduce duct thermal losses in existing homes.

468

Central Georgia EMC- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Central Georgia Electric Member Corporation (CGEMC) offers rebates for residential customers to increase the energy efficiency of existing homes or to build new energy efficient homes. This year,...

469

Commercial and Residential Hourly Load Profiles for all TMY3...  

Open Energy Info (EERE)

America House Simulation Protocols). This dataset also uses the Residential Energy Consumption Survey (RECS) for statistical references of building types by location (Additional...

470

What's Working in Residential Energy Efficiency Upgrade Programs Workshop, May 2011  

Energy.gov (U.S. Department of Energy (DOE))

On May 20, 2011, the Better Buildings Neighborhood Program held the What's Working in Residential Energy Efficiency Upgrade Programs workshop. Better Buildings hosted the workshop in collaboration...

471

Street-facing Dwelling Units and Livability: The Impacts of Emerging Building Types in Vancouver's New High-density Residential Neighbourhoods  

E-Print Network (OSTI)

design guidelines with new building types that have ground-?oor direct entry dwelling units integrated

Macdonald, Elizabeth

2006-01-01T23:59:59.000Z

472

Building America Top Innovations Hall of Fame Profile Â… Building Science-Based Climate Maps  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a a climate zone map for the DOE based on the IECC climate zone map. It may not be intuitively obvious why a U.S. climate zone map is so important to the construction industry. Thanks to this Building America innovation, building science education, energy code development, and residential design can much more effectively integrate climate-specific best practices and advanced technologies across the United States. Climate has a major impact on the energy use of residential buildings, and energy codes and standards rely on a clear definition of climate zones to convey requirements to builders. However, prior to 2004, there was no single, agreed- upon climate zone map for the United States for use with building codes. Four different methods for specifying climate-dependent requirements were used by

473

Building Technologies Office: Building America: Bringing Building  

NLE Websites -- All DOE Office Websites (Extended Search)

America: Bringing Building Innovations to Market America: Bringing Building Innovations to Market Building America logo The U.S. Department of Energy's (DOE) Building America program has been a source of innovations in residential building energy performance, durability, quality, affordability, and comfort for more than 15 years. This world-class research program partners with industry (including many of the top U.S. home builders) to bring cutting-edge innovations and resources to market. For example, the Solution Center provides expert building science information for building professionals looking to gain a competitive advantage by delivering high performance homes. At Building America meetings, researchers and industry partners can gather to generate new ideas for improving energy efficiency of homes. And, Building America research teams and DOE national laboratories offer the building industry specialized expertise and new insights from the latest research projects.

474

A. Buonomano, M. Sherman, USA: Analysis of residential hybrid ventilation performance in U.S. climates 1 Intern. Symposium on Building and Ductwork Air tightness  

E-Print Network (OSTI)

A. Buonomano, M. Sherman, USA: Analysis of residential hybrid ventilation performance in U Laboratory, 1 Cyclotron Road, Berkeley 94720, CA, USA. (phone:+1 510 486 4022, fax: +1 510 486 6658, email on analysis methods for hybrid ventilation system is limited. #12;2 A. Buonomano, M. Sherman, USA: Analysis

475

Better Buildings Network View | January 2014 | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2014 Better Buildings Network View | January 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential...

476

Better Buildings Network View | March 2014 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2014 Better Buildings Network View | March 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential...

477

Better Buildings Network View | May 2014 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 2014 Better Buildings Network View | May 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network....

478

Worldwide Status of Energy Standards for Buildings - Appendices  

E-Print Network (OSTI)

for NON-RESIDENTIAL BUILDINGS. This survey has been designedtypes of energy standards for buildings. Please respond asI: GENERAL OVERVIEW OF BUILDING ENERGY STANDARDS Does your

Janda, K.B.

2008-01-01T23:59:59.000Z

479

Better Buildings Network View | September 2014 | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 2014 Better Buildings Network View | September 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential...

480

Better Buildings Network View | February 2014 | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 2014 Better Buildings Network View | February 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential...

Note: This page contains sample records for the topic "advanced residential buildings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Better Buildings Network View | June 2014 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 2014 Better Buildings Network View | June 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network....

482

Grid-Responsive Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The U.S.-India Joint Center for Building Energy Research and Development (CBERD) conducts energy efficiency research and development with a focus on integrating information technology with building controls and physical systems for commercial/high-rise residential units.

483

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

Summer Study on Energy Efficiency in Buildings August 12,Standard for Energy Efficiency of Public Buildings. Energyfor Energy Efficiency of Residential Buildings in Hot Summer

Feng, Wei

2013-01-01T23:59:59.000Z

484

Other Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Other Other Characteristics by Activity... Other Other buildings are those that do not fit into any of the specifically named categories. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Other Buildings... Other buildings include airplane hangars; laboratories; buildings that are industrial or agricultural with some retail space; buildings having several different commercial activities that, together, comprise 50 percent or more of the floorspace, but whose largest single activity is agricultural, industrial/manufacturing, or residential; and all other miscellaneous buildings that do not fit into any other CBECS category. Since these activities are so diverse, the data are probably less meaningful than for other activities; they are provided here to complete

485

Evaluation of the Heating & Cooling Energy Demand of a Case Residential Building by Comparing The National Calculation Methodology of Turkey and EnergyPlus through Thermal Capacity Calculations  

E-Print Network (OSTI)

usage and energy performance in buildings was published by European Union. In this scope, Turkey has developed a National Building Energy Performance Calculation Methodology, BepTr, which is based on simple hourly method in ISO EN 13790 Umbrella Document...

Atamaca, Merve; Kalaycioglu, Ece; Yilmaz, Zerrin

2011-10-01T23:59:59.000Z

486

Residential appliances technology atlas  

SciTech Connect

Residential appliance technology and efficiency opportunities for refrigerators and freezers, cooking appliances, clothes washers and dryers, dishwashers, and some often-ignored household devices such as spas, pool pumps, waterbed heaters, televisions, and home computers are thoroughly covered in this Atlas. The US appliance market, fuel shares, efficiency standards, labeling, and advances in home automation, design for recycling, and CFC issues are also discussed. The resource section contains lists of appliance manufacturers and distributors, and trade, professional, and governmental organizations, a summary of key resources for further information, and an index.

NONE

1994-12-31T23:59:59.000Z

487

The National Energy Modeling System: An Overview 2000 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. Figure 5. Residential Demand Module Structure RDM incorporates the effects of four broadly-defined determinants of energy consumption: economic and demographic effects, structural effects, technology turnover and advancement effects, and energy market effects. Economic and demographic effects include the number, dwelling type (single-family, multi-family or mobile homes), occupants per household, and location of housing units. Structural effects include increasing average dwelling size and changes in the mix of desired end-use services provided by energy (new end uses and/or increasing penetration of current end uses, such as the increasing popularity of electronic equipment and computers). Technology effects include changes in the stock of installed equipment caused by normal turnover of old, worn out equipment with newer versions which tend to be more energy efficient, the integrated effects of equipment and building shell (insulation level) in new construction, and in the projected availability of even more energy-efficient equipment in the future. Energy market effects include the short-run effects of energy prices on energy demands, the longer-run effects of energy prices on the efficiency of purchased equipment and the efficiency of building shells, and limitations on minimum levels of efficiency imposed by legislated efficiency standards.

488

Cost-Effecitive Energy Efficiency Measure for Above 2003 and 2009 IECC Code-Compliant Residential and Commercial Buildings in the City of Arlington  

E-Print Network (OSTI)

payback calculations. Figure 1 through Figure 4 present a description of the individual measures and combinations of these measures which achieve 15% savings above the 2003 and 2009 IECC code-compliant house. Annual energy savings, estimated costs..., simple payback, and NOx, SO2, and CO2 emissions reduction are provided. CoA Residential Project, p.iii July 2011 Energy Systems Laboratory, Texas A&M University Figure 1. Individual and Combined Energy Efficiency Measures for 2003 IECC Code-Compliant...

Kim, H.; Do, S.; Baltazar, J.C.; Haberl, J.; Lewis, C.

489

Residential Solar Valuation Rates  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to...

490

Building Technologies Office: Commercial Reference Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

491

Advanced Variable Speed Air-Source Integrated Heat Pump  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

variable speed air-source variable speed air-source integrated heat pump (AS-IHP) - CRADA Van D. Baxter Oak Ridge National Laboratory vdb@ornl.gov; 865-574-2104 April 3, 2013 Development of advanced HVAC/WH system options for efficient residential or small commercial buildings, new const. or retrofit * ET R&D project in support of DOE/BTO Goal of 50% Reduction in Building Energy Use by 2030 IHP concept - all HVAC & WH services integrated into

492

Advanced Variable Speed Air-Source Integrated Heat Pump  

NLE Websites -- All DOE Office Websites (Extended Search)

variable speed air-source variable speed air-source integrated heat pump (AS-IHP) - CRADA Van D. Baxter Oak Ridge National Laboratory vdb@ornl.gov; 865-574-2104 April 3, 2013 Development of advanced HVAC/WH system options for efficient residential or small commercial buildings, new const. or retrofit * ET R&D project in support of DOE/BTO Goal of 50% Reduction in Building Energy Use by 2030 IHP concept - all HVAC & WH services integrated into

493

Choose the Right Advanced Power Strip for You | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Choose the Right Advanced Power Strip for You Choose the Right Advanced Power Strip for You Choose the Right Advanced Power Strip for You October 28, 2013 - 11:33am Addthis Choose the right advanced power strip based on your habits to reduce the electricity wasted when your electronic devices are idle. Choose the right advanced power strip based on your habits to reduce the electricity wasted when your electronic devices are idle. Lieko Earle, Ph.D. Senior Engineer, Residential Buildings, National Renewable Energy Laboratory Bethany Sparn, M.S. Engineer, Residential Buildings, National Renewable Energy Laboratory What are the key facts? Advanced power strips (APS) can help reduce the electricity wasted when electronics are idle, without changing habits or how you use devices Choose the right APS based on your habits and the devices you want

494

Residential heating conservation in Krakow  

SciTech Connect

A four-building conservation experiment was conducted in Krakow, Poland, during the 1992--1993 and 1993--1994 winters, aimed at determining potential savings of heat in typical multifamily residential buildings connected to the district heat network. Four identical multifamily buildings were selected for measurement and retrofitting. Together with the U.S. team, the local district heat utility, the Krakow development authority, and a Polish energy-efficiency foundation designed and conducted the 264-residence test of utility, building, and occupant conservation strategies during the 1992--1993 winter Baseline data were collected on each building prior to any conservation work. A different scope of work was planned and executed for each building, ranging from controls at the building level only to thermostatic valve control and weatherization. The project team has identified and demonstrated affordable and effective conservation technologies that can be applied to Krakow`s existing concrete-element residential housing. The results suggest that conservation strategies will be key to many alternatives in Krakow`s plan to eliminate low-emission air pollution sources. Conservation can allow connecting more customers to the utility network and eliminating local boilers without requiring construction of new combined heat and power plants. It can reduce heat costs for customers converting from solid-fuel heat sources to less polluting sources. By reducing heat demand, more customers can be served by existing gas and electric distribution systems.

Markel, L.C. [Electrotek Concepts, Knoxville, TN (United States); Reeves, G. [George Reeves Associates, Lake Hopatcong, NJ (United States); Gula, A.; Szydlowski, R.F. [Battelle Pacific Northwest Labs., Richland, WA (United States)

1995-08-01T23:59:59.000Z

495

Apply: Building Energy Efficiency Frontiers and Incubator Technologies (BENEFIT)- 2014 (DE-FOA-0001027)  

Energy.gov (U.S. Department of Energy (DOE))

Closed Total DOE Funding: $14 million Deadline: April 21, 2014 This funding opportunity intends to advance innovative, energy-efficient technologies, approaches, and design tools for commercial and/or residential buildings. The funding opportunity covers two focus areas, Incubators and Frontiers (Innovations).

496

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, ÂŤEnergy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential BuildingsÂŽ  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings" and 10 CFR Part 435 "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings" (DOE/EA-1778) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential

497

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, ÂŤEnergy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential BuildingsÂŽ  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings" and 10 CFR Part 435 "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings" (DOE/EA-1778) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential

498

ASHRAE's Residential Ventilation Standard: Exegesis of Proposed Standard 62.2  

E-Print Network (OSTI)

In February 2000, ASHRAE's Standard Project Committee on "Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings", SPC 62.2P7 recommended ASHRAE's first complete standard on residential ventilation for public review...

Sherman, M.

2000-01-01T23:59:59.000Z

499

Residential Energy Simulation and Scheduling: A Case Study Approach Jagannathan Venkatesh, Baris Aksanli, Tajana Simuni Rosing  

E-Print Network (OSTI)

, green energy, residential energy management, smart scheduling I. INTRODUCTION Building energy nature of home energy consumption [5]. A majority of work has focused on characterizing green energyResidential Energy Simulation and Scheduling: A Case Study Approach Jagannathan Venkatesh, Baris

Simunic, Tajana

500

Middle Tennessee EMC - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Middle Tennessee EMC - Residential Energy Efficiency Rebate Program Middle Tennessee EMC - Residential Energy Efficiency Rebate Program Middle Tennessee EMC - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Ventilation Manufacturing Heat Pumps Windows, Doors, & Skylights Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Windows (Replacement): $500 Storm Windows: $500 Duct Work: $500 HVAC (Replacement): $250 Building Insulation (Contractor Installed): $500 Building Insulation (Self Installed): $250 Water Heater Insulation: $50 Air Sealing: $500 HVAC Tune-Up: $150 Provider Middle Tennessee Electric Membership Corporation