Sample records for advanced reactivity controlled

  1. Comparison of Conventional Diesel and Reactivity Controlled Compressio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Advanced Diesel Engine Combustion Strategies Effect of Compression Ratio and Piston Geometry on RCCI load limit High Efficiency Fuel Reactivity Controlled Compression...

  2. Advancing Reactive Tracer Methods for Measuring Thermal Evolution...

    Open Energy Info (EERE)

    Advancing Reactive Tracer Methods for Measuring Thermal Evolution in CO2- and Water-Based Geothermal Reservoirs Geothermal Lab Call Project Jump to: navigation, search Last...

  3. Engine combustion control via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31T23:59:59.000Z

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  4. Advanced gray rod control assembly

    DOE Patents [OSTI]

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17T23:59:59.000Z

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  5. Reactivity control assembly for nuclear reactor

    DOE Patents [OSTI]

    Bollinger, Lawrence R. (Schenectady, NY)

    1984-01-01T23:59:59.000Z

    Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.

  6. Characterization of Dual-Fuel Reactivity Controlled Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel Characterization of Dual-Fuel Reactivity Controlled Compression Ignition (RCCI)...

  7. Reactive Support and Voltage Control Service: Key Issues and Challenges

    E-Print Network [OSTI]

    Gross, George

    reactive support and voltage control services. Keywords ­ Competitive Electricity Markets, Reactive PowerReactive Support and Voltage Control Service: Key Issues and Challenges George Gross^, Paolo Marannino° and Gianfranco Chicco* ^ Department of Electrical and Computer Engineering, University

  8. Nuclear reactivity control using laser induced polarization

    DOE Patents [OSTI]

    Bowman, Charles D. (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neturons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  9. Nuclear reactivity control using laser induced polarization

    DOE Patents [OSTI]

    Bowman, Charles D. (Los Alamos, NM)

    1991-01-01T23:59:59.000Z

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neutrons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  10. Controlling uranium reactivity March 18, 2008

    E-Print Network [OSTI]

    Meyer, Karsten

    for the last decade. Most of their work involves depleted uranium, a more common form of uraniumMarch 2008 Controlling uranium reactivity March 18, 2008 Uranium is an often misunderstood metal uranium research. In reality, uranium presents a wealth of possibilities for funda- mental chemistry. Many

  11. Reactivity control assembly for nuclear reactor. [LMFBR

    DOE Patents [OSTI]

    Bollinger, L.R.

    1982-03-17T23:59:59.000Z

    This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.

  12. Layered reactive particles with controlled geometries, energies, and reactivities, and methods for making the same

    DOE Patents [OSTI]

    Fritz, Gregory M; Knepper, Robert Allen; Weihs, Timothy P; Gash, Alexander E; Sze, John S

    2013-04-30T23:59:59.000Z

    An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.

  13. Particulate Emissions Control by Advanced Filtration Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Particulate Emissions Control by Advanced Filtration Systems or GDI Engines Particulate Emissions Control by Advanced Filtration Systems or GDI Engines 2013 DOE Hydrogen and Fuel...

  14. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect (OSTI)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01T23:59:59.000Z

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  15. Advanced Rooftop Unit Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethodsServices »

  16. Toward Optimized Bioclogging and Biocementation Through Combining Advanced Geophysical Monitoring and Reactive Transport Modeling

    E-Print Network [OSTI]

    Hubbard, Susan

    and electrical techniques); (ii) developing and using a reactive transport simulator capable of predicting and Reactive Transport Modeling Approaches Christopher G Hubbard1 , Susan S. Hubbard1 , Yuxin Wu1 , Vikranth heterogeneities at the field scale. Optimization of these strategies requires advances in mechanistic reactive

  17. A Modified Reactive Control Framework for Cooperative Mobile Robots

    E-Print Network [OSTI]

    A Modified Reactive Control Framework for Cooperative Mobile Robots J. Salido a , J.M. Dolan a , J Dept. of Electrical & Computer Engineering, Carnegie Mellon Univ. Pittsburgh, PA 15213­3890 USA. Purely reactive approaches such as that of Brooks are efficient, but lack a mechanism for global control

  18. Advanced control documentation for operators

    SciTech Connect (OSTI)

    Ayral, T.E. (Mobil Oil, Torrance, CA (US)); Conley, R.C. (Profimatics, Inc., Thousand Oaks, CA (US)); England, J.; Antis, K. (Ashland Oil, Ashland, KY (US))

    1988-09-01T23:59:59.000Z

    Advanced controls were implemented on Ashland Oil's Reduced Crude Conversion (RCC) and Metals Removal System (MRS) units, the RCC and MRS main fractionators and the unit gas plant. This article describes the format used for the operator documentation at Ashland. Also, a potential process unit problem is described which can be solved by good operator documentation. The situation presented in the paper is hypothetical, however,the type of unit upset described an occur if proper precautions are not taken.

  19. High Efficiency Fuel Reactivity Controlled Compression Ignition...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications Effect of Compression Ratio and Piston Geometry on RCCI load limit Optimization of Advanced Diesel Engine Combustion Strategies Vehicle Technologies Office Merit...

  20. Dynamic Reactive Power Control of Isolated Power Systems

    E-Print Network [OSTI]

    Falahi, Milad

    2012-10-03T23:59:59.000Z

    This dissertation presents dynamic reactive power control of isolated power systems. Isolated systems include MicroGrids in islanded mode, shipboard power systems operating offshore, or any other power system operating in islanded mode intentionally...

  1. Advanced nuclear plant control complex

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1993-01-01T23:59:59.000Z

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  2. Application of the ''reactivity constraint approach'' to automatic reactor control

    SciTech Connect (OSTI)

    Bernard, J.A.; Henry, A.F.; Lanning, D.D.

    1988-02-01T23:59:59.000Z

    The ''reactivity constraint approach'' is described and demonstrated to be an effective and reliable means for the automatic control of power in nuclear reactors. This approach functions by restricting the effect of the delayed neutron populations to that which can be balanced by an induced change in the prompt population. This is done by limiting the net reactivity to the amount that can be offset by reversing the direction of motion of the automated control mechanism. The necessary reactivity constraints are obtained from the dynamic period equation, which gives the instantaneous reactor period as a function of the reactivity and the rate of change of reactivity. The derivation of this equation is described with emphasis on the recently obtained ''alternate'' formulation. Following a discussion of the behavior of each term of this alternate equation as a function of reactivity, its use in the design and operation of a nonlinear, closed-loop, digital controller for reactor power is in the design and operation of a nonlinear, closed-loop, digital controller for reactor power is described. Details of the initial experimental trials of the resulting controller are given.

  3. Local Control of Reactive Power by Distributed Photovoltaic Generators

    E-Print Network [OSTI]

    Turitsyn, Konstantin S; Backhaus, Scott; Chertkov, Misha

    2010-01-01T23:59:59.000Z

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the re...

  4. Neutron economic reactivity control system for light water reactors

    DOE Patents [OSTI]

    Luce, Robert G. (Glenville, NY); McCoy, Daniel F. (Latham, NY); Merriman, Floyd C. (Rotterdam, NY); Gregurech, Steve (Scotia, NY)

    1989-01-01T23:59:59.000Z

    A neutron reactivity control system for a LWBR incorporating a stationary seed-blanket core arrangement. The core arrangement includes a plurality of contiguous hexagonal shaped regions. Each region has a central and a peripheral blanket area juxapositioned an annular seed area. The blanket areas contain thoria fuel rods while the annular seed area includes seed fuel rods and movable thoria shim control rods.

  5. Austrian refiner benefits from advanced control

    SciTech Connect (OSTI)

    Richard, L.A.; Spencer, M. [Setpoint Inc., Houston, TX (United States); Schuster, R.; Tuppinger, D.M.; Wilmsen, W.F. [OeMV-AG Energy, Schwechat (Austria)

    1995-03-20T23:59:59.000Z

    OeMV-AG Energy implemented advanced process controls on 27 units at its refinery in Schwechat, Austria. A variety of controls were implemented on the butadiene and methyl tertiary butyl ether (MTBE) units in January 1993. After more than 1 year of operation, the butadiene/MTBE project has shown a number of benefits, including reduced energy consumption and increased capacity in both units. The paper discusses the process, advanced control, the simple model predictive controller, control objectives, the butadiene unit, the MTBE unit, and benefits of the advanced controllers.

  6. Advanced hydraulic fracturing methods to create in situ reactive barriers

    SciTech Connect (OSTI)

    Murdoch, L. [FRx Inc., Cincinnati, OH (United States); [Clemson Univ., SC (United States); Siegrist, B. [Oak Ridge National Lab., TN (United States); Vesper, S. [Univ. of Cincinnati, OH (United States)] [and others

    1997-12-31T23:59:59.000Z

    Many contaminated areas consist of a source area and a plume. In the source area, the contaminant moves vertically downward from a release point through the vadose zone to an underlying saturated region. Where contaminants are organic liquids, NAPL may accumulate on the water table, or it may continue to migrate downward through the saturated region. Early developments of permeable barrier technology have focused on intercepting horizontally moving plumes with vertical structures, such as trenches, filled with reactive material capable of immobilizing or degrading dissolved contaminants. This focus resulted in part from a need to economically treat the potentially large volumes of contaminated water in a plume, and in part from the availability of construction technology to create the vertical structures that could house reactive compounds. Contaminant source areas, however, have thus far remained largely excluded from the application of permeable barrier technology. One reason for this is the lack of conventional construction methods for creating suitable horizontal structures that would place reactive materials in the path of downward-moving contaminants. Methods of hydraulic fracturing have been widely used to create flat-lying to gently dipping layers of granular material in unconsolidated sediments. Most applications thus far have involved filling fractures with coarse-grained sand to create permeable layers that will increase the discharge of wells recovering contaminated water or vapor. However, it is possible to fill fractures with other compounds that alter the chemical composition of the subsurface. One early application involved development and field testing micro-encapsulated sodium percarbonate, a solid compound that releases oxygen and can create aerobic conditions suitable for biodegradation in the subsurface for several months.

  7. Options for Control of Reactive Power by Distributed Photovoltaic Generators

    E-Print Network [OSTI]

    Sulc, Petr; Backhaus, Scott; Chertkov, Michael

    2010-01-01T23:59:59.000Z

    High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

  8. Engine combustion control at low loads via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2014-10-07T23:59:59.000Z

    A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

  9. Advanced hydraulic fracturing methods to create in situ reactive barriers

    SciTech Connect (OSTI)

    Murdoch, L. [FRX Inc., Cincinnati, OH (United States)]|[Clemson Univ., SC (United States). Dept. of Geological Sciences; Siegrist, B.; Meiggs, T. [Oak Ridge National Lab., TN (United States)] [and others

    1997-12-31T23:59:59.000Z

    This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed.

  10. Dependency Analysis for Control Flow Cycles in Reactive Communicating Processes

    E-Print Network [OSTI]

    Leue, Stefan

    of the system. The way in which cycle executions are combined is not ar- bitrary since cycles may depend are combined is certainly not arbitrary. For instance, the repetition of one cycle may rely on the repetitionsDependency Analysis for Control Flow Cycles in Reactive Communicating Processes Stefan Leue1 , Alin

  11. Dependency Analysis for Control Flow Cycles in Reactive Communicating Processes

    E-Print Network [OSTI]

    Reiterer, Harald

    processes of the system. The way in which cycle executions are combined is not ar- bitrary since cycles may in which cycle executions are combined is certainly not arbitrary. For instance, the repetition of oneDependency Analysis for Control Flow Cycles in Reactive Communicating Processes Stefan Leue1 , Alin

  12. Options for Control of Reactive Power by Distributed Photovoltaic Generators

    E-Print Network [OSTI]

    Petr Sulc; Konstantin Turitsyn; Scott Backhaus; Michael Chertkov

    2010-08-04T23:59:59.000Z

    High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design decision that weighs on the speed and quality of communication required is whether the control should be centralized or distributed (i.e. local). In general, we find that local control schemes are capable for maintaining voltage within acceptable bounds. We consider the benefits of choosing different local variables on which to control and how the control system can be continuously tuned between robust voltage control, suitable for daytime operation when circuit conditions can change rapidly, and loss minimization better suited for nighttime operation.

  13. Reactive materials can quickly form plugs for blowout control

    SciTech Connect (OSTI)

    Flak, L.H. [Wright Boots and Coots, Houston, TX (United States)

    1995-04-17T23:59:59.000Z

    Various types of reactive materials, or gunk, can react directly with produced fluids (oil, condensate, or brine) or with an additionally injected fluid to form a plug to kill blowout wells or shut off large flow paths. Several recent blowouts were successfully controlled with reactive plugs; other conventional methods would have been more difficult operationally and cost more. Several plug mixtures are available on the market and can be made to suit the type of application and any particular environmental concerns. With proper planning and application, reactive plugs should be considered as a prime well control method when injection into the blowout flow path is available. This method of blowout control can save significant time and expense. The paper discusses the two basic methods of using reactive fluids depending on the flow path available, the use of cements, application steps, environmental concerns, and three case histories: a horizontal well in Texas, a high pressure, high temperature well offshore Louisiana, and a gas blowout in Argentina.

  14. Advanced Neutron Source reactor control and plant protection systems design

    SciTech Connect (OSTI)

    Anderson, J.L.; Battle, R.E.; March-Leuba, J. (Oak Ridge National Lab., TN (United States)); Khayat, M.I. (Tennessee Univ., Knoxville, TN (United States))

    1992-01-01T23:59:59.000Z

    This paper describes the reactor control and plant protection systems' conceptual design of the Advanced Neutron Source (ANS). The Plant Instrumentation, Control, and Data Systems and the Reactor Instrumentation and Control System of the ANS are planned as an integrated digital system with a hierarchical, distributed control structure of qualified redundant subsystems and a hybrid digital/analog protection system to achieve the necessary fast response for critical parameters. Data networks transfer information between systems for control, display, and recording. Protection is accomplished by the rapid insertion of negative reactivity with control rods or other reactivity mechanisms to shut down the fission process and reduce heat generation in the fuel. The shutdown system is designed for high functional reliability by use of conservative design features and a high degree of redundance and independence to guard against single failures. Two independent reactivity control systems of different design principles are provided, and each system has multiple independent rods or subsystems to provide appropriate margin for malfunctions such as stuck rods or other single failures. Each system is capable of maintaining the reactor in a cold shutdown condition independently of the functioning of the other system. A highly reliable, redundant channel control system is used not only to achieve high availability of the reactor, but also to reduce challenges to the protection system by maintaining important plant parameters within appropriate limits. The control system has a number of contingency features to maintain acceptable, off-normal conditions in spite of limited control or plant component failures thereby further reducing protection system challenges.

  15. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect (OSTI)

    Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Sulc, Petr [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  16. Reducing Safety Flaring through Advanced Control

    E-Print Network [OSTI]

    Hokanson, D.; Lehman, K.; Matsumoto, S.; Takai, N.; Takase, F.

    2010-01-01T23:59:59.000Z

    An advanced process control application, using DMCplus (Aspen Technology, Inc.), was developed to substantially reduce fuel gas losses to the flare at a large integrated refining / petrochemical complex. Fluctuations in internal fuel gas system...

  17. Advanced topics in control systems theory II

    E-Print Network [OSTI]

    Nesic, Dragan

    Advanced topics in control systems theory II Lecture notes from FAP 2005 Editors: Antonio Lor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 1.8.2 Inverted Pendulum.4 The desired energy function Hd with kv = 0. . . . . . . . . . . . . . . . . . 32 1.5 Closed-loop responses

  18. Optimization of an Advanced Passive/Active Diesel Emission Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Advanced PassiveActive Diesel Emission Control System Optimization of an Advanced PassiveActive Diesel Emission Control System Evaluation of PM exhaust aftertreatment...

  19. Development and Deployment of Advanced Emission Controls for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deployment of Advanced Emission Controls for the Retrofit Market Development and Deployment of Advanced Emission Controls for the Retrofit Market 2003 DEER Conference Presentation:...

  20. advanced control techniques: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30 Rabbit: a testbed for advanced control theory CiteSeer Summary: RABBIT is a bipedal robot specifically designed to advance the fundamental understanding of controlled legged...

  1. Sandia National Laboratories: advanced controls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wave EnergyLinksZparts of thecontrols Advanced

  2. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    A. P. Evans

    1998-12-03T23:59:59.000Z

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W?s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  3. Advanced Emission Control Development Program.

    SciTech Connect (OSTI)

    Evans, A.P.

    1997-12-31T23:59:59.000Z

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  4. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    A. P. Evans

    1998-12-03T23:59:59.000Z

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species, hydrogen chloride and hydrogen fluoride.

  5. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    M. J. Holmes

    1998-12-03T23:59:59.000Z

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and hydrogen chloride and hydrogen fluoride.

  6. Voltage Control of Distribution Networks with Distributed Generation using Reactive Power

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Voltage Control of Distribution Networks with Distributed Generation using Reactive Power to control voltage of distribution networks with DG using reactive power compensation approach. In this paper profile within the specified limits, it is essential to regulate the reactive power of the compensators

  7. advanced robot control: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Symposium on Measurement and Control in Robotics -Toward Advanced Robots: Design, Sensors, Control and Applications - Computer Technologies and Information Sciences...

  8. Etching radical controlled gas chopped deep reactive ion etching

    DOE Patents [OSTI]

    Olynick, Deidre; Rangelow, Ivo; Chao, Weilun

    2013-10-01T23:59:59.000Z

    A method for silicon micromachining techniques based on high aspect ratio reactive ion etching with gas chopping has been developed capable of producing essentially scallop-free, smooth, sidewall surfaces. The method uses precisely controlled, alternated (or chopped) gas flow of the etching and deposition gas precursors to produce a controllable sidewall passivation capable of high anisotropy. The dynamic control of sidewall passivation is achieved by carefully controlling fluorine radical presence with moderator gasses, such as CH.sub.4 and controlling the passivation rate and stoichiometry using a CF.sub.2 source. In this manner, sidewall polymer deposition thicknesses are very well controlled, reducing sidewall ripples to very small levels. By combining inductively coupled plasmas with controlled fluorocarbon chemistry, good control of vertical structures with very low sidewall roughness may be produced. Results show silicon features with an aspect ratio of 20:1 for 10 nm features with applicability to nano-applications in the sub-50 nm regime. By comparison, previous traditional gas chopping techniques have produced rippled or scalloped sidewalls in a range of 50 to 100 nm roughness.

  9. An Aircraft Electric Power Testbed for Validating Automatically Synthesized Reactive Control Protocols

    E-Print Network [OSTI]

    Xu , Huan

    An Aircraft Electric Power Testbed for Validating Automatically Synthesized Reactive Control reactive synthesis; testbed; aircraft electric power system 1. INTRODUCTION AND MOTIVATION Aircraft of Pennsylvania utopcu@seas.upenn.edu ABSTRACT Modern aircraft increasingly rely on electric power for sub

  10. The Advanced Photon Source main control room

    SciTech Connect (OSTI)

    Pasky, S.

    1998-07-01T23:59:59.000Z

    The Advanced Photon Source at Argonne National Laboratory is a third-generation light source built in the 1990s. Like the machine itself, the Main Control Room (MCR) employs design concepts based on today`s requirements. The discussion will center on ideas used in the design of the MCR, the comfort of personnel using the design, and safety concerns integrated into the control room layout.

  11. MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Ye Zhuang; Stanley J. Miller

    2005-05-01T23:59:59.000Z

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. An additional task was included in this project to evaluate mercury oxidation upstream of a dry scrubber by using mercury oxidants. This project demonstrated at the pilot-scale level a technology that provides a cost-effective technique to control mercury and, at the same time, greatly enhances fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution for improved fine particulate control combined with effective mercury control for a large segment of the U.S. utility industry as well as other industries.

  12. Advanced Thermal Control | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------ChapterJuly 20142 U.S.AdvancedThermal Control

  13. Advanced LD Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LD Engine Systems and Emissions Control Modeling and Analysis Advanced LD Engine Systems and Emissions Control Modeling and Analysis 2012 DOE Hydrogen and Fuel Cells Program and...

  14. Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity 2003 DEER Conference...

  15. Advanced PHEV Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEV Engine Systems and Emissions Control Modeling and Analysis Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis 2011 DOE Hydrogen and Fuel Cells Program,...

  16. Advanced HD Engine Systems and Emissions Control Modeling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HD Engine Systems and Emissions Control Modeling and Analysis Advanced HD Engine Systems and Emissions Control Modeling and Analysis 2012 DOE Hydrogen and Fuel Cells Program and...

  17. Advanced Control Design and Testing for Wind Turbines at the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Design and Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint Advanced Control Design and Testing for Wind Turbines at the National Renewable...

  18. Intelligent Voltage and Reactive Power Control of Mini-Hydro Power Stations for Maximisation of Real

    E-Print Network [OSTI]

    Harrison, Gareth

    1 Intelligent Voltage and Reactive Power Control of Mini-Hydro Power Stations for Maximisation Control (APFC) modes. The ability to export active and reactive power from mini-hydro power generators electrical power generation from renewable resources. Additionally, the potential early retiral of central

  19. Passive Ozone Control Through Use of Reactive Indoor Wall and Ceiling Materials

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Passive Ozone Control Through Use of Reactive Indoor Wall and Ceiling Materials Paper # 715 Donna A and unpainted drywall as passive ozone control surfaces in a room-sized laboratory chamber. Mean deposition-50%, resulted in increased reactivity for activated carbon. In our model for a typical house, about 35

  20. Advanced nuclear plant control room complex

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1993-01-01T23:59:59.000Z

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  1. Advanced Ceramic Filter For Diesel Emission Control

    Broader source: Energy.gov (indexed) [DOE]

    8 ACM Structure Overview Dow Automotive Advanced Ceramic Cordierite and Silicon carbide Advanced Ceramic Cordierite and Silicon carbide 9272004 DEER2004 9 ACM DPF Chemical...

  2. PAPER ACCEPTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, Nov. 2008 1 Reactive Power and Voltage Control in Distribution

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    PAPER ACCEPTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, Nov. 2008 1 Reactive Power and Voltage) problem associated with reactive power and voltage control in distribution systems to minimize daily--Distribution systems, reactive power control, voltage control, optimal switching operations, mixed integer nonlinear

  3. Advanced PHEV Engine Systems and Emissions Control Modeling and...

    Broader source: Energy.gov (indexed) [DOE]

    - Very limited transient engines and emissions models for PHEV simulations - PHEV optimization needs to include advanced engine combustion modes and emissions controls * Partners...

  4. Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - 2013 BTO Peer Review Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System - 2013 BTO Peer Review Commercial Buildings...

  5. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    SciTech Connect (OSTI)

    Yan, Wei; He, Hao, E-mail: haohe@tju.edu.cn; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China)

    2014-02-24T23:59:59.000Z

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca{sup 2+} release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

  6. 718 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 9, NO. 5, SEPTEMBER 2001 Reactive Power and Unbalance Compensation Using

    E-Print Network [OSTI]

    Stankoviæ, Aleksandar

    718 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 9, NO. 5, SEPTEMBER 2001 Reactive Power as reactive power and unbalance compensators, e.g., Static synchronous compensator (STATCOM). The approach practice. Index Terms--Active filters, adaptive control, dissipative sys- tems, nonlinear systems, reactive

  7. Reactive power control of grid-connected wind farm based on adaptive dynamic programming

    E-Print Network [OSTI]

    He, Haibo

    is widely used in the wind power system for its advantages over other two types [5]. The characteristicsReactive power control of grid-connected wind farm based on adaptive dynamic programming Yufei Tang Wind farm Power system Adaptive control a b s t r a c t Optimal control of large-scale wind farm has

  8. Particulate Emissions Control by Advanced Filtration Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Filtration Systems for GDI Engines (ANLCorningHyundai CRADA) June 19, 2014 DOE Annual Merit Review & Peer Evaluation Meeting PI: Kyeong Lee Co-investigators: Seung Choi,...

  9. Particulate Emissions Control by Advanced Filtration Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Filtration Systems for GDI Engines (ANLCorningHyundai CRADA) May 15, 2013 DOE Annual Merit Review & Peer Evaluation Meeting PI: Kyeong Lee Postdocs: Seung Choi, Heeje...

  10. Advanced Sensors, Control, Platforms, and Modeling

    Office of Environmental Management (EM)

    112 productivity and safety, and boost the U.S. sensor and automation industry. 113 2. Technology Assessment and Potential 114 2.1 Performance advances 115 DRAFT -...

  11. Analysis of Reactivity Induced Accident for Control Rods Ejection with Loss of Cooling

    E-Print Network [OSTI]

    Hend Mohammed El Sayed Saad; Hesham Mohammed Mohammed Mansour; Moustafa Aziz Abd El Wahab

    2013-06-05T23:59:59.000Z

    Understanding of the time-dependent behavior of the neutron population in nuclear reactor in response to either a planned or unplanned change in the reactor conditions, is a great importance to the safe and reliable operation of the reactor. In the present work, the point kinetics equations are solved numerically using stiffness confinement method (SCM). The solution is applied to the kinetics equations in the presence of different types of reactivities and is compared with different analytical solutions. This method is also used to analyze reactivity induced accidents in two reactors. The first reactor is fueled by uranium and the second is fueled by plutonium. This analysis presents the effect of negative temperature feedback with the addition positive reactivity of control rods to overcome the occurrence of control rod ejection accident and damaging of the reactor. Both power and temperature pulse following the reactivity- initiated accidents are calculated. The results are compared with previous works and satisfactory agreement is found.

  12. Analysis of Reactivity Induced Accident for Control Rods Ejection with Loss of Cooling

    E-Print Network [OSTI]

    Saad, Hend Mohammed El Sayed; Wahab, Moustafa Aziz Abd El

    2013-01-01T23:59:59.000Z

    Understanding of the time-dependent behavior of the neutron population in nuclear reactor in response to either a planned or unplanned change in the reactor conditions, is a great importance to the safe and reliable operation of the reactor. In the present work, the point kinetics equations are solved numerically using stiffness confinement method (SCM). The solution is applied to the kinetics equations in the presence of different types of reactivities and is compared with different analytical solutions. This method is also used to analyze reactivity induced accidents in two reactors. The first reactor is fueled by uranium and the second is fueled by plutonium. This analysis presents the effect of negative temperature feedback with the addition positive reactivity of control rods to overcome the occurrence of control rod ejection accident and damaging of the reactor. Both power and temperature pulse following the reactivity- initiated accidents are calculated. The results are compared with previous works and...

  13. Wind Farm Reactive Support and Voltage Control Daniel F. Opila Abdi M. Zeynu Ian A. Hiskens

    E-Print Network [OSTI]

    Hiskens, Ian A.

    Wind Farm Reactive Support and Voltage Control Daniel F. Opila Abdi M. Zeynu Ian A. Hiskens Abstract--Wind farms typically contain a variety of voltage control equipment including tap or wind farm; it is desirable to treat all the equipment as an integrated system rather than independent

  14. Anode reactive bleed and injector shift control strategy

    DOE Patents [OSTI]

    Cai, Jun [Rochester, NY; Chowdhury, Akbar [Pittsford, NY; Lerner, Seth E [Honeoye Falls, NY; Marley, William S [Rush, NY; Savage, David R [Rochester, NY; Leary, James K [Rochester, NY

    2012-01-03T23:59:59.000Z

    A system and method for correcting a large fuel cell voltage spread for a split sub-stack fuel cell system. The system includes a hydrogen source that provides hydrogen to each split sub-stack and bleed valves for bleeding the anode side of the sub-stacks. The system also includes a voltage measuring device for measuring the voltage of each cell in the split sub-stacks. The system provides two levels for correcting a large stack voltage spread problem. The first level includes sending fresh hydrogen to the weak sub-stack well before a normal reactive bleed would occur, and the second level includes sending fresh hydrogen to the weak sub-stack and opening the bleed valve of the other sub-stack when the cell voltage spread is close to stack failure.

  15. Distributed control for optimal reactive power compensation in smart microgrids

    E-Print Network [OSTI]

    Bolognani, Saverio

    2011-01-01T23:59:59.000Z

    We consider the problem of optimal reactive power compensation for the minimization of power distribution losses in a smart microgrid. We first propose an approximate model for the power distribution network, which allows us to cast the problem into the class of convex quadratic, linearly constrained, optimization problems. We also show how this model provides the tools for a distributed approach, in which agents have a partial knowledge of the problem parameters and state, and can only perform local measurements. Then, we design a randomized, gossip-like optimization algorithm, providing conditions for convergence together with an analytic characterization of the convergence speed. The analysis shows that the best performance can be achieved when we command cooperation among agents that are neighbors in the smart microgrid topology. Numerical simulations are included to validate the proposed model and to confirm the analytic results about the performance of the proposed algorithm.

  16. E-Print Network 3.0 - advanced thermal control Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    strategies, advanced emissions control... and indoor environments through advanced space conditioning, refrigeration, thermal distribution, appliances... , and building thermal...

  17. Reactive Gliosis Reactive Oxygen Species: Superoxide

    E-Print Network [OSTI]

    . By sensing the electric signals generated by other 3368 Reactive Gliosis #12;individuals, mormyrids are alsoReactive Gliosis Glial Scar Reactive Oxygen Species: Superoxide Anions Neuroinflammation motor output. Reafferent Control in Electric Communication Reafferent Control in Electric Communication

  18. Sandia National Laboratories: Advanced Controls of Wave Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Facility Tool at SWiFT Makes Rotor Work More Efficient Advanced Controls of Wave Energy Converters May Increase Power Capture Up to 330% On January 21, 2014, in...

  19. advanced control strategies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (more) Salah, Mohammad 2007-01-01 3 Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency Texas A&M University - TxSpace Summary: be set to...

  20. Advanced control strategies for fluidized bed dryers

    SciTech Connect (OSTI)

    Siettos, C.I.; Kiranoudis, C.T.; Bafas, G.V.

    1999-11-01T23:59:59.000Z

    Generating the best possible control strategy comprises a necessity for industrial processes, by virtue of product quality, cost reduction and design simplicity. Three different control approaches, namely an Input-Output linearizing, a fuzzy logic and a PID controller, are evaluated for the control of a fluidized bed dryer, a typical non-linear drying process of wide applicability. Based on several closed loop characteristics such as settling times, maximum overshoots and dynamic performance criteria such as IAE, ISE and ITAE, it is shown that the Input-Output linearizing and the fuzzy logic controller exhibit a better performance compared to the PID controller tuned optimally with respect to IAE, for a wide range of disturbances; yet, the relevant advantage of the fuzzy logic over the conventional nonlinear controller issues upon its design simplicity. Typical load rejection and set-point tracking examples are given to illustrate the effectiveness of the proposed approach.

  1. Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

    2012-01-01T23:59:59.000Z

    Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

  2. Designing and Testing Controls to Mitigate Tower Dynamic Loads in the Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Wright, A. D.; Fingersh, L. J.; Stol, K. A.

    2007-01-01T23:59:59.000Z

    This report describes NREL's efforts to design, implement, and test advanced controls for maximizing energy extraction and reducing structural dynamic loads in wind turbines.

  3. ADVANCING REACTIVE TRACER METHODS FOR MONITORING THERMAL DRAWDOWN IN GEOTHERMAL ENHANCED GEOTHERMAL RESERVOIRS

    SciTech Connect (OSTI)

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; George D. Redden; Laurence C. Hull

    2010-10-01T23:59:59.000Z

    Reactive tracers have long been considered a possible means of measuring thermal drawdown in a geothermal system, before significant cooling occurs at the extraction well. Here, we examine the sensitivity of the proposed method to evaluate reservoir cooling and demonstrate that while the sensitivity of the method as generally proposed is low, it may be practical under certain conditions.

  4. Abstract--This paper proposes an optimization based method of planning reactive power control for electric transmission

    E-Print Network [OSTI]

    Kumar, Ratnesh

    1 Abstract--This paper proposes an optimization based method of planning reactive power control for electric transmission systems to endow them with the capability of being reconfigured to a secure planning, reactive power control, reconfiguration, voltage stability. I. INTRODUCTION PPROPRIATE long

  5. Advanced mobile networking, sensing, and controls.

    SciTech Connect (OSTI)

    Feddema, John Todd; Kilman, Dominique Marie; Byrne, Raymond Harry; Young, Joseph G.; Lewis, Christopher L.; Van Leeuwen, Brian P.; Robinett, Rush D. III; Harrington, John J.

    2005-03-01T23:59:59.000Z

    This report describes an integrated approach for designing communication, sensing, and control systems for mobile distributed systems. Graph theoretic methods are used to analyze the input/output reachability and structural controllability and observability of a decentralized system. Embedded in each network node, this analysis will automatically reconfigure an ad hoc communication network for the sensing and control task at hand. The graph analysis can also be used to create the optimal communication flow control based upon the spatial distribution of the network nodes. Edge coloring algorithms tell us that the minimum number of time slots in a planar network is equal to either the maximum number of adjacent nodes (or degree) of the undirected graph plus some small number. Therefore, the more spread out that the nodes are, the fewer number of time slots are needed for communication, and the smaller the latency between nodes. In a coupled system, this results in a more responsive sensor network and control system. Network protocols are developed to propagate this information, and distributed algorithms are developed to automatically adjust the number of time slots available for communication. These protocols and algorithms must be extremely efficient and only updated as network nodes move. In addition, queuing theory is used to analyze the delay characteristics of Carrier Sense Multiple Access (CSMA) networks. This report documents the analysis, simulation, and implementation of these algorithms performed under this Laboratory Directed Research and Development (LDRD) effort.

  6. Methods and apparatuses for reagent delivery, reactive barrier formation, and pest control

    DOE Patents [OSTI]

    Gilmore, Tyler [Pasco, WA; Kaplan, Daniel I [Aiken, SC; Last, George [Richland, WA

    2002-07-09T23:59:59.000Z

    A reagent delivery method includes positioning reagent delivery tubes in contact with soil. The tubes can include a wall that is permeable to a soil-modifying reagent. The method further includes supplying the reagent in the tubes, diffusing the reagent through the permeable wall and into the soil, and chemically modifying a selected component of the soil using the reagent. The tubes can be in subsurface contact with soil, including groundwater, and can be placed with directional drilling equipment independent of groundwater well casings. The soil-modifying reagent includes a variety of gases, liquids, colloids, and adsorbents that may be reactive or non-reactive with soil components. The method may be used inter alia to form reactive barriers, control pests, and enhance soil nutrients for microbes and plants.

  7. Advanced Computer Control Concepts Facilitate Energy Recovery

    E-Print Network [OSTI]

    Cutler, C. R.

    1981-01-01T23:59:59.000Z

    Matrix Control that has been used successfully by Shell for several years. A brief description of the technique will be given and an illustration of its feed forward capabilities to compensate for load and soot blowing disturbances on a complex furnace...

  8. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    SciTech Connect (OSTI)

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01T23:59:59.000Z

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  9. Advanced concepts for controlling energy surety microgrids.

    SciTech Connect (OSTI)

    Menicucci, David F.; Ortiz-Moyet, Juan

    2011-05-01T23:59:59.000Z

    Today, researchers, engineers, and policy makers are seeking ways to meet the world's growing demand for energy while addressing critical issues such as energy security, reliability, and sustainability. Many believe that distributed generators operating within a microgrid have the potential to address most of these issues. Sandia National Laboratories has developed a concept called energy surety in which five of these 'surety elements' are simultaneously considered: energy security, reliability, sustainability, safety, and cost-effectiveness. The surety methodology leads to a new microgrid design that we call an energy surety microgrid (ESM). This paper discusses the unique control requirement needed to produce a microgrid system that has high levels of surety, describes the control system from the most fundamental level through a real-world example, and discusses our ideas and concepts for a complete system.

  10. Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in Geothermal Reservoirs: Final Report

    SciTech Connect (OSTI)

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; Laurence C. Hull; George D. Redden

    2011-07-01T23:59:59.000Z

    The injection of cold fluids into engineered geothermal system (EGS) and conventional geothermal reservoirs may be done to help extract heat from the subsurface or to maintain pressures within the reservoir (e.g., Rose et al., 2001). As these injected fluids move along fractures, they acquire heat from the rock matrix and remove it from the reservoir as they are extracted to the surface. A consequence of such injection is the migration of a cold-fluid front through the reservoir (Figure 1) that could eventually reach the production well and result in the lowering of the temperature of the produced fluids (thermal breakthrough). Efficient operation of an EGS as well as conventional geothermal systems involving cold-fluid injection requires accurate and timely information about thermal depletion of the reservoir in response to operation. In particular, accurate predictions of the time to thermal breakthrough and subsequent rate of thermal drawdown are necessary for reservoir management, design of fracture stimulation and well drilling programs, and forecasting of economic return. A potential method for estimating migration of a cold front between an injection well and a production well is through application of reactive tracer tests, using chemical whose rate of degradation is dependent on the reservoir temperature between the two wells (e.g., Robinson 1985). With repeated tests, the rate of migration of the thermal front can be determined, and the time to thermal breakthrough calculated. While the basic theory behind the concept of thermal tracers has been understood for some time, effective application of the method has yet to be demonstrated. This report describes results of a study that used several methods to investigate application of reactive tracers to monitoring the thermal evolution of a geothermal reservoir. These methods included (1) mathematical investigation of the sensitivity of known and hypothetical reactive tracers, (2) laboratory testing of novel tracers that would improve method sensitivity, (3) development of a software tool for design and interpretation of reactive tracer tests and (4) field testing of the reactive tracer temperature monitoring concept.

  11. Comparison of Reactivity Control Systems for the Submersion Subcritical Safe Space (S and 4) Reactor

    SciTech Connect (OSTI)

    Schriener, Timothy M.; El-Genk, Mohamed S. [Institute for Space and Nuclear Power Studies and Chemical and Nuclear Engineering Dept., University of New Mexico, Albuquerque, NM 87131 (United States)

    2008-01-21T23:59:59.000Z

    This paper compares the effectiveness of two control mechanisms for the S and 4 reactor, namely: (a) rotating BeO drums with 120 deg. thin segments of enriched B{sub 4}C in the radial reflector; and (b) sliding windows in the radial reflector. Investigated are the effects of using these control mechanisms on the differential reactor control worth, power generation profiles, and spatial neutrons flux distributions is the S and 4 reactor. For both control mechanism, the radial reflector has the same dimensions and volume. Results show that the difference in reactor performance with the two control mechanisms is small. The sliding reflector configuration features slightly lower mass and power peaking, and relatively more even fission power profiles in the core. The differential control worth for the sliding reflector segments is almost constant compared to that using rotating control drums, potentially simplifying the reactor control operation. The presence of a strong neutron absorber in the rotating drums slightly decreases the amount of excess reactivity at BOL compared with the sliding reflector configuration. However, the higher rate of reactivity depletion in the S and 4 reactor with the latter may negate this advantage.

  12. Distributed control of reactive power flow in a radial distribution circuit with high photovoltaic penetration

    SciTech Connect (OSTI)

    Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory; Sule, Petr [NEW MEXICO CONSORTIUM

    2009-01-01T23:59:59.000Z

    We show how distributed control of reactive power can serve to regulate voltage and minimize resistive losses in a distribution circuit that includes a significant level of photovoltaic (PV) generation. To demonstrate the technique, we consider a radial distribution circuit with a single branch consisting of sequentially-arranged residential-scale loads that consume both real and reactive power. In parallel, some loads also have PV generation capability. We postulate that the inverters associated with each PV system are also capable of limited reactive power generation or consumption, and we seek to find the optimal dispatch of each inverter's reactive power to both maintain the voltage within an acceptable range and minimize the resistive losses over the entire circuit. We assume the complex impedance of the distribution circuit links and the instantaneous load and PV generation at each load are known. We compare the results of the optimal dispatch with a suboptimal local scheme that does not require any communication. On our model distribution circuit, we illustrate the feasibility of high levels of PV penetration and a significant (20% or higher) reduction in losses.

  13. Advanced Burners and Combustion Controls for Industrial Heat Recovery Systems

    E-Print Network [OSTI]

    Ferri, J. L.

    ADVANCED BURNERS AND COMBUSTION CONTROLS FOR INDUSTRIAL HEAT RECOVERY SYSTEMS J.L.FERRI GTE PRODUCTS CORPORATION TOWANDA, PA ABSTRACT When recuperators are installed on indus trial furnaces, burners and ratio control systems must... recuperators by demonstrating their technical and economi cal feasibility in well monitored field installations (1). During the contract, it became evident to GTE that a systems approach (recuperator, burner, and con troIs) is necessary to be accepted...

  14. Experimental investigation of piston heat transfer under conventional diesel and reactivity-controlled compression ignition combustion regimes

    SciTech Connect (OSTI)

    Splitter, Derek A [ORNL; Hendricks, Terry Lee [Sandia National Laboratories (SNL); Ghandhi, Jaal B [University of Wisconsin

    2014-01-01T23:59:59.000Z

    The piston of a heavy-duty single-cylinder research engine was instrumented with 11 fast-response surface thermocouples, and a commercial wireless telemetry system was used to transmit the signals from the moving piston. The raw thermocouple data were processed using an inverse heat conduction method that included Tikhonov regularization to recover transient heat flux. By applying symmetry, the data were compiled to provide time-resolved spatial maps of the piston heat flux and surface temperature. A detailed comparison was made between conventional diesel combustion and reactivity-controlled compression ignition combustion operations at matched conditions of load, speed, boost pressure, and combustion phasing. The integrated piston heat transfer was found to be 24% lower, and the mean surface temperature was 25 C lower for reactivity-controlled compression ignition operation as compared to conventional diesel combustion, in spite of the higher peak heat release rate. Lower integrated piston heat transfer for reactivity-controlled compression ignition was found over all the operating conditions tested. The results showed that increasing speed decreased the integrated heat transfer for conventional diesel combustion and reactivity-controlled compression ignition. The effect of the start of injection timing was found to strongly influence conventional diesel combustion heat flux, but had a negligible effect on reactivity-controlled compression ignition heat flux, even in the limit of near top dead center high-reactivity fuel injection timings. These results suggest that the role of the high-reactivity fuel injection does not significantly affect the thermal environment even though it is important for controlling the ignition timing and heat release rate shape. The integrated heat transfer and the dynamic surface heat flux were found to be insensitive to changes in boost pressure for both conventional diesel combustion and reactivity-controlled compression ignition. However, for reactivity-controlled compression ignition, the mean surface temperature increased with changes in boost suggesting that equivalence ratio affects steady-state heat transfer.

  15. E-Print Network 3.0 - advanced control concept Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concept Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced control concept Page: << < 1 2 3 4 5 > >> 1 MIT LINCOLN LABORATORY ORGANIZATION OF...

  16. Integrated intelligent systems in advanced reactor control rooms

    SciTech Connect (OSTI)

    Beckmeyer, R.R.

    1989-01-01T23:59:59.000Z

    An intelligent, reactor control room, information system is designed to be an integral part of an advanced control room and will assist the reactor operator's decision making process by continuously monitoring the current plant state and providing recommended operator actions to improve that state. This intelligent system is an integral part of, as well as an extension to, the plant protection and control systems. This paper describes the interaction of several functional components (intelligent information data display, technical specifications monitoring, and dynamic procedures) of the overall system and the artificial intelligence laboratory environment assembled for testing the prototype. 10 refs., 5 figs.

  17. Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests

    SciTech Connect (OSTI)

    Wright, A. D.; Fingersh, L. J.

    2008-03-01T23:59:59.000Z

    The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

  18. Testing State-Space Controls for the Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Wright, A. D.; Fingersh, L. J.; Balas, M. J.

    2006-01-01T23:59:59.000Z

    Control can improve wind turbine performance by enhancing energy capture and reducing dynamic loads. At the National Renewable Energy Laboratory, we are implementing and testing state-space controls on the Controls Advanced Research Turbine (CART), a turbine specifically configured to test advanced controls. We show the design of control systems to regulate turbine speed in Region 3 using rotor collective pitch and reduce dynamic loads in Regions 2 and 3 using generator torque. These controls enhance damping in the first drive train torsion mode. We base these designs on sensors typically used in commercial turbines. We evaluate the performance of these controls by showing field test results. We also compare results from these modern controllers to results from a baseline proportional integral controller for the CART. Finally, we report conclusions to this work and outline future studies.

  19. Advanced Rooftop Control (ARC) Retrofit: Field-Test Results

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2013-07-31T23:59:59.000Z

    The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energys (DOEs) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

  20. Refinements and Tests of an Advanced Controller to Mitigate Fatigue Loads in the Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Wright, A.; Fleming, P.

    2010-12-01T23:59:59.000Z

    Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated 3-D turbulent wind inflow field, with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, while maximizing energy capture. Active damping should be added to these dynamic structures to maintain stability for operation in a complex environment. At the National Renewable Energy Laboratory (NREL), we have designed, implemented, and tested advanced controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on linear models of the turbine that are generated by specialized modeling software. In this paper, we present field test results of an advanced control algorithm to mitigate blade, tower, and drivetrain loads in Region 3.

  1. E-Print Network 3.0 - advanced main control Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    main control Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced main control Page: << < 1 2 3 4 5 > >> 1 CENPESEB-AB-G&EAEDC Corporativo...

  2. Replacement of the Advanced Test Reactor control room

    SciTech Connect (OSTI)

    Durney, J.L.; Klingler, W.B. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1989-01-01T23:59:59.000Z

    The control room for the Advanced Test Reactor has been replaced to provide modern equipment utilizing current standards and meeting the current human factors requirements. The control room was designed in the early 1960 era and had not been significantly upgraded since the initial installation. The replacement did not change any of the safety circuits or equipment but did result in replacement of some of the recorders that display information from the safety systems. The replacement was completed in concert with the replacement of the control room simulator which provided important feedback on the design. The design successfully incorporates computer-based systems into the display of the plant variables. This improved design provides the operator with more information in a more usable form than was provided by the original design. The replacement was successfully completed within the scheduled time thereby minimizing the down time for the reactor. 1 fig., 1 tab.

  3. Indicator system for advanced nuclear plant control complex

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1993-01-01T23:59:59.000Z

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  4. Coal surface control for advanced fine coal flotation

    SciTech Connect (OSTI)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. (California Univ., Berkeley, CA (United States)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (United States)); Hu, W.; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (United States)); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA (United States))

    1992-03-01T23:59:59.000Z

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  5. Advancing reactive tracer methods for measuring thermal evolution in CO2-and water-based geothermal reservoirs

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop reactive tracer method for monitoring thermal drawdown in enhanced geothermal systems.

  6. MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Stanley J. Miller; Ye Zhuang; Michelle R. Olderbak

    2002-11-01T23:59:59.000Z

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the ADVANCED HYBRID{trademark} Filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control.

  7. Second Generation Advanced Reburning for High Efficiency NOx Control

    SciTech Connect (OSTI)

    Roy Payne; Lary Swanson; Antonio Marquez; Ary Chang; Vladimir M. Zamansky; Pete M. Maly; Vitali V. Lissianski

    2000-09-30T23:59:59.000Z

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning (SGAR) which has the potential to achieve 90+% NO{sub x} control in coal-fired boilers at a significantly lower cost than SCR. The twelfth reporting period in Phase II (July 3-October 15, 2000) included design validation AR-Lean tests (Task No.2.6) in the 10 x 10{sup 6} Btu/hr Tower Furnace. The objective of tests was to determine the efficiency of AR-Lean at higher than optimum OFA/N-Agent injection temperatures in large pilot-scale combustion facility. Tests demonstrated that co-injection of urea with overfire air resulted in NO{sub x} reduction. However, observed NO{sub x} reduction was smaller than that under optimum conditions.

  8. Advanced Control and Protection system Design Methods for Modular HTGRs

    SciTech Connect (OSTI)

    Ball, Sydney J [ORNL; Wilson Jr, Thomas L [ORNL; Wood, Richard Thomas [ORNL

    2012-06-01T23:59:59.000Z

    The project supported the Nuclear Regulatory Commission (NRC) in identifying and evaluating the regulatory implications concerning the control and protection systems proposed for use in the Department of Energy's (DOE) Next-Generation Nuclear Plant (NGNP). The NGNP, using modular high-temperature gas-cooled reactor (HTGR) technology, is to provide commercial industries with electricity and high-temperature process heat for industrial processes such as hydrogen production. Process heat temperatures range from 700 to 950 C, and for the upper range of these operation temperatures, the modular HTGR is sometimes referred to as the Very High Temperature Reactor or VHTR. Initial NGNP designs are for operation in the lower temperature range. The defining safety characteristic of the modular HTGR is that its primary defense against serious accidents is to be achieved through its inherent properties of the fuel and core. Because of its strong negative temperature coefficient of reactivity and the capability of the fuel to withstand high temperatures, fast-acting active safety systems or prompt operator actions should not be required to prevent significant fuel failure and fission product release. The plant is designed such that its inherent features should provide adequate protection despite operational errors or equipment failure. Figure 1 shows an example modular HTGR layout (prismatic core version), where its inlet coolant enters the reactor vessel at the bottom, traversing up the sides to the top plenum, down-flow through an annular core, and exiting from the lower plenum (hot duct). This research provided NRC staff with (a) insights and knowledge about the control and protection systems for the NGNP and VHTR, (b) information on the technologies/approaches under consideration for use in the reactor and process heat applications, (c) guidelines for the design of highly integrated control rooms, (d) consideration for modeling of control and protection system designs for VHTR, and (e) input for developing the bases for possible new regulatory guidance to assist in the review of an NGNP license application. This NRC project also evaluated reactor and process heat application plant simulation models employed in the protection and control system designs for various plant operational modes and accidents, including providing information about the models themselves, and the appropriateness of the application of the models for control and protection system studies. A companion project for the NRC focused on the potential for new instrumentation that would be unique to modular HTGRs, as compared to light-water reactors (LWRs), due to both the higher temperature ranges and the inherent safety features.

  9. Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

    2013-01-01T23:59:59.000Z

    Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

  10. Voltage/Pitch Control for Maximization and Regulation of Active/Reactive Powers in Wind Turbines with Uncertainties

    E-Print Network [OSTI]

    Guo, Yi; Jiang, John N; Tang, Choon Yik; Ramakumar, Rama G

    2010-01-01T23:59:59.000Z

    This paper addresses the problem of controlling a variable-speed wind turbine with a Doubly Fed Induction Generator (DFIG), modeled as an electromechanically-coupled nonlinear system with rotor voltages and blade pitch angle as its inputs, active and reactive powers as its outputs, and most of the aerodynamic and mechanical parameters as its uncertainties. Using a blend of linear and nonlinear control strategies (including feedback linearization, pole placement, uncertainty estimation, and gradient-based potential function minimization) as well as time-scale separation in the dynamics, we develop a controller that is capable of maximizing the active power in the Maximum Power Tracking (MPT) mode, regulating the active power in the Power Regulation (PR) mode, seamlessly switching between the two modes, and simultaneously adjusting the reactive power to achieve a desired power factor. The controller consists of four cascaded components, uses realistic feedback signals, and operates without knowledge of the C_p-...

  11. E-Print Network 3.0 - advance stringent control Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: % since 1995. Acid gases have dropped by about 80%. ADVANCES IN AIR POLLUTION CONTROL TECHNOLOGY... Municipal Waste Combustors (MWCs), owners and operators of...

  12. Microsoft Word - Advanced Control Methods_Final_v2_0.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Need to incorporate advanced flow control, distributed energy resources (DER), and demand response (DR) options Distribution automation * IEDs have been integrated with...

  13. Interface control of surface photochemical reactivity in ultrathin epitaxial ferroelectric films

    SciTech Connect (OSTI)

    Chen, Jason [School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052 (Australia) [School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052 (Australia); CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, New South Wales 2070 (Australia); Lu, Haidong; Gruverman, Alexei [Department of Physics and Astronomy, University of Nebraska Lincoln, Lincoln, Nebraska 68588 (United States)] [Department of Physics and Astronomy, University of Nebraska Lincoln, Lincoln, Nebraska 68588 (United States); Liu, Heng-Jui; Chu, Ying-Hao [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan (China)] [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan (China); Dunn, Steve [School of Engineering and Materials, Queen Mary University of London, Mile End Road, E1 4NS London (United Kingdom)] [School of Engineering and Materials, Queen Mary University of London, Mile End Road, E1 4NS London (United Kingdom); Ostrikov, Kostya [CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, New South Wales 2070 (Australia) [CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, New South Wales 2070 (Australia); School of Physics, The University of Sydney, Sydney, New South Wales 2006 (Australia); Valanoor, Nagarajan [School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052 (Australia)] [School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052 (Australia)

    2013-05-06T23:59:59.000Z

    Asymmetrical electrical boundary conditions in (001)-oriented Pb(Zr{sub 0.2}TiO{sub 0.8})O{sub 3} (PZT) epitaxial ultrathin ferroelectric films are exploited to control surface photochemical reactivity determined by the sign of the surface polarization charge. It is shown that the preferential orientation of polarization in the as-grown PZT layer can be manipulated by choosing an appropriate type of bottom electrode material. PZT films deposited on the SrRuO{sub 3} electrodes exhibit preferential upward polarization (C{sup +}) whilst the same films grown on the (La,Sr)CoO{sub 3}-electrodes are polarized downward (C{sup -}). Photochemical activity of the PZT surfaces with different surface polarization charges has been tested by studying deposition of silver nanoparticles from AgNO{sub 3} solution under UV irradiation. PZT surfaces with preferential C{sup +} orientation possess a more active surface for metal reduction than their C{sup -} counterparts, evidenced by large differences in the concentration of deposited silver nanoparticles. This effect is attributed to band bending at the bottom interface which varies depending on the difference in work functions of PZT and electrode materials.

  14. Controlling ion fluxes during reactive sputter-deposition of SnO{sub 2}:F

    SciTech Connect (OSTI)

    Jger, Timo, E-mail: timo.jaeger@empa.ch; Romanyuk, Yaroslav E.; Tiwari, Ayodhya N. [EmpaSwiss Federal Laboratories for Materials Science and Technology, Laboratory for Thin Films and Photovoltaics, berlandstrasse 129, 8600 Dbendorf (Switzerland); Anders, Andr [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States)

    2014-07-21T23:59:59.000Z

    Magnetron sputtering of fluorine-doped tin oxide (FTO) is a scalable deposition method for large-area transparent conducting films used in fenestration, photovoltaics, and other applications. The electrical conductivity of sputtered FTO is, however, lower than that of spray-pyrolized FTO because of the ion damage induced by high energy ions leading to a reduction of the crystal quality in sputtered FTO films. In this study, various ion species present during the reactive sputtering of a metallic tin target in a mixed Ar/O{sub 2}/CF{sub 4} atmosphere are systematically characterized by energy and mass spectrometry, and possible ways of controlling the ion fluxes are explored. Ion energy distribution functions (IEDFs) of the negative ions F{sup ?} and O{sup ?} exhibit large peaks at an energy corresponding to the full target voltage. Although the applied partial pressure of CF{sub 4} is about 1/30 than that of O{sub 2}, the obtained IEDFs of F{sup ?} and O{sup ?} have comparable peak height, which can be attributed to a higher electronegativity of F. The IEDFs of positively charged O{sup +}, O{sub 2}{sup +}, Ar{sup +}, and Sn{sup +} species have their peaks around 28?eV. To control ion fluxes a solenoid or permanent magnets were placed between the target and the mass spectrometer. The flux of positive ions could be varied by several orders of magnitude as a function of the applied current through the solenoid, whereas the high-energy (>100?eV) negative F{sup ?} and O{sup ?} ions were not notably deflected. By using permanent magnets with the B-field orthogonal to the ion trajectory, the flux of O{sup ?} ions could be decreased by two orders and the exposure to the high-energy F{sup ?} ions was completely suppressed.

  15. Real Power and Reactive Power Control of a Three-Phase Single-Stage-PV System and PV voltage Stability

    SciTech Connect (OSTI)

    Li, Huijuan [ORNL] [ORNL; Xu, Yan [ORNL] [ORNL; Adhikari, Sarina [ORNL] [ORNL; Rizy, D Tom [ORNL] [ORNL; Li, Fangxing [ORNL] [ORNL; Irminger, Philip [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Grid-connected photovoltaic (PV) systems with power electronic interfaces can provide both real and reactive power to meet power system needs with appropriate control algorithms. This paper presents the control algorithm design for a three-phase single-stage grid-connected PV inverter to achieve either maximum power point tracking (MPPT) or a certain amount of real power injection, as well as the voltage/var control. The switching between MPPT control mode and a certain amount of real power control mode is automatic and seamless. Without the DC-to-DC booster stage, PV DC voltage stability is an important issue in the control design especially when the PV inverter is operating at maximum power point (MPP) with voltage/var control. The PV DC voltage collapse phenomenon and its reason are discussed. The method based on dynamic correction of the PV inverter output is proposed to ensure PV DC voltage stability. Simulation results of the single-stage PV system during system disturbances and fast solar irradiation changes confirm that the proposed control algorithm for single-stage PV inverters can provide appropriate real and reactive power services and ensure PV DC voltage stability during dynamic system operation and atmospheric conditions.

  16. Combining thorium with burnable poison for reactivity control of a very long cycle BWR

    E-Print Network [OSTI]

    Inoue, Yuichiro, 1969-

    2004-01-01T23:59:59.000Z

    The effect of utilizing thorium together with gadolinium, erbium, or boron burnable absorber in BWR fuel assemblies for very long cycle is investigated. Nuclear characteristics such as reactivity and power distributions ...

  17. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    SciTech Connect (OSTI)

    Bonne, Franois; Bonnay, Patrick [INAC, SBT, UMR-E 9004 CEA/UJF-Grenoble, 17 rue des Martyrs, 38054 Grenoble (France); Alamir, Mazen [Gipsa-Lab, Control Systems Department, CNRS-University of Grenoble, 11, rue des Mathmatiques, BP 46, 38402 Saint Martin d'Hres (France)

    2014-01-29T23:59:59.000Z

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  18. Field Testing LIDAR Based Feed-Forward Controls on the NREL Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Scholbrock, A. K.; Fleming, P. A.; Fingersh, L. J.; Wright, A. D.; Schlipf, D.; Haizmann, F.; Belen, F.

    2013-01-01T23:59:59.000Z

    Wind turbines are complex, nonlinear, dynamic systems driven by aerodynamic, gravitational, centrifugal, and gyroscopic forces. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a chaotic three-dimensional (3-D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. In order to reduce cost of energy, future large multimegawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energy Laboratory (NREL) and University of Stuttgart are designing, implementing, and testing advanced feed-back and feed-forward controls in order to reduce the cost of energy for wind turbines.

  19. advanced control systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems and Controls Laboratory Engineering Websites Summary: at high penetration rates Battery Energy Storage Systems A BESS consists of a battery bank, a control 80% loss...

  20. advanced control system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems and Controls Laboratory Engineering Websites Summary: at high penetration rates Battery Energy Storage Systems A BESS consists of a battery bank, a control 80% loss...

  1. DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE

    SciTech Connect (OSTI)

    Curran, Scott [ORNL; Briggs, Thomas E [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL

    2011-01-01T23:59:59.000Z

    In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

  2. Advanced Wind Turbine Controls Reduce Loads (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    NREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms.

  3. Advanced Sensors, Controls and Platforms for manufacturing (ASCPM)

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReportingEnergy Advanced Research ProjectsAdvanced

  4. Topographic control of asynchronous glacial advances: A case study from Annapurna, Nepal

    E-Print Network [OSTI]

    Heimsath, Arjun M.

    Topographic control of asynchronous glacial advances: A case study from Annapurna, Nepal Beth Pratt of asynchronous glacial advances: A case study from Annapurna, Nepal, Geophys. Res. Lett., 38, L24502, doi:10 10 Be dating [Zech et al., 2009]. Further east in Nepal, other glacial dating studies [Finkel et al

  5. CONTROL-THEORY AND ADVANCED TECHNOLOGY Vol. 8, No.1, pp.17-35, March, 1992

    E-Print Network [OSTI]

    Benmei, Chen

    CONTROL-THEORY AND ADVANCED TECHNOLOGY Vol. 8, No.1, pp.17-35, March, 1992 C91012R @MITA PRESS basis, The method is applicable to systems where the transfer function from the control input to the controlled output is right- invertible and has no invariant zeros on the jw axis, Two applications are also

  6. A Planning, Scheduling and Control Architecture for Advanced Life Support Systems

    E-Print Network [OSTI]

    Kortenkamp, David

    A Planning, Scheduling and Control Architecture for Advanced Life Support Systems V. Jorge Leon 77058 Abstract This paper describes an integrated planning, schedul- ing and control architecture and the requirements for plan- ning, scheduling and control architectures are pre- sented. Next, the main components

  7. Evaluation of traffic operations at diamond interchanges using advanced actuated control

    E-Print Network [OSTI]

    Koonce, Peter John Vincent

    1998-01-01T23:59:59.000Z

    This thesis documents an operational analysis of ographics. advanced actuated traffic control at signalized diamond interchanges. The study attempts to determine the benefits a "flexible'' phasing strategy provides to the interchange. Flexible...

  8. Advanced Powerhouse Controls Save Pulp Mill $500 in Purchased Energy in First Month

    E-Print Network [OSTI]

    Morrison, R.; Hilder, S.

    2004-01-01T23:59:59.000Z

    This case study describes the application of advanced regulatory and supervisory controls to powerhouse operations at a large pulp mill in central British Columbia. Substantial reductions in mill operating costs were achieved by actively managing...

  9. Advance of Systematic Design Methods on Fuzzy Control

    E-Print Network [OSTI]

    Zhang, J.; Chen, Y.

    2006-01-01T23:59:59.000Z

    The heating, ventilation and air-conditioning (HVAC) system possesses some characteristics such as multi-parameters, nonlinear, and coupled parameters. Aimed at control problems, the author targets real-time fuzzy control and research systematically...

  10. Author's personal copy Strength evolution of a reactive frictional interface is controlled

    E-Print Network [OSTI]

    -hold-slide experiments are conducted on a bare interface with various materials in contact (glass/glass, salt/glass, and salt/salt) with or without the presence of a reactive fluid and the slider-surface pull-off force for the salt/glass case; by a factor of 3 for the salt/salt case; and by about a factor of 20 when saturated

  11. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    SciTech Connect (OSTI)

    Dr. Zhen Song, Prof. Vivian Loftness, Dr. Kun Ji, Dr. Sam Zheng, Mr. Bertrand Lasternas, Ms. Flore Marion, Mr. Yuebin Yu

    2012-10-15T23:59:59.000Z

    we developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource Uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace??s northern section (IWn). The advanced control program was then installed in the IWn control system; the performance were measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building occupants and the building operator. Lifecycle cost analyses of the advanced building control were performed, and a Building Control System Guide was prepared and published to inform owners, architects, and engineers dealing with new construction or renovation of buildings.

  12. Advanced regulatory control and coordinated plant-wide control strategies for IGCC targeted towards improving power ramp-rates

    SciTech Connect (OSTI)

    Mahapatra, P.; Zitney, S.

    2012-01-01T23:59:59.000Z

    As part of ongoing R&D activities at the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training & Research (AVESTAR) Center, this paper highlights strategies for enhancing low-level regulatory control and system-wide coordinated control strategies implemented in a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with carbon capture. The underlying IGCC plant dynamic model contains 20 major process areas, each of which is tightly integrated with the rest of the power plant, making individual functionally-independent processes prone to routine disturbances. Single-loop feedback control although adequate to meet the primary control objective for most processes, does not take into account in advance the effect of these disturbances, making the entire power plant undergo large offshoots and/or oscillations before the feedback action has an opportunity to impact control performance. In this paper, controller enhancements ranging from retuning feedback control loops, multiplicative feed-forward control and other control techniques such as split-range control, feedback trim and dynamic compensation, applicable on various subsections of the integrated IGCC plant, have been highlighted and improvements in control responses have been given. Compared to using classical feedback-based control structure, the enhanced IGCC regulatory control architecture reduces plant settling time and peak offshoots, achieves faster disturbance rejection, and promotes higher power ramp-rates. In addition, improvements in IGCC coordinated plant-wide control strategies for Gasifier-Lead, GT-Lead and Plantwide operation modes have been proposed and their responses compared. The paper is concluded with a brief discussion on the potential IGCC controller improvements resulting from using advanced process control, including model predictive control (MPC), as a supervisory control layer.

  13. advanced control room: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for nuclear power and conducted. Overall, 36 participants operated a digital nuclear power plant control workstation simulation Cummings, Mary "Missy" 110 Proposal for the...

  14. advanced control rooms: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for nuclear power and conducted. Overall, 36 participants operated a digital nuclear power plant control workstation simulation Cummings, Mary "Missy" 110 Proposal for the...

  15. advanced motion control: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25 MARCH 2012 | DOI: 10.1038NPHYS2269 Attosecond control of collective electron motion Materials Science Websites Summary: electron motion in plasmas Antonin Borot1 , Arnaud...

  16. Advanced LD Engine Systems and Emissions Control Modeling and...

    Broader source: Energy.gov (indexed) [DOE]

    and aftertreatment systems in LD passenger vehicles. * Evaluate the merits of specific alternative hybrid engine-battery-aftertreatment configurations and control strategies...

  17. Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF...

    Broader source: Energy.gov (indexed) [DOE]

    unregulated pollutants beyond 2010 APBF-DEC Structure DOE, EPA, additive companies, automobile manufacturers, engine manufacturers, energy companies, emission control mfrs.,...

  18. advanced distillation control: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Morari California.Eng., Norwegian Institute of Technology (NTH), N-7034 Trondheim, Norway Paper presented at Symposium Distillation Skogestad, Sigurd 14 CONTROL AND ENERGY...

  19. advanced vehicle control: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Robot Vehicle James L. Crowley Patrick Cartesian coordinate space. In the same sense, robot vehicles require a "vehicle controller" to command. This paper presents the design of...

  20. advanced vehicle control systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Robot Vehicle James L. Crowley Patrick Cartesian coordinate space. In the same sense, robot vehicles require a "vehicle controller" to command. This paper presents the design of...

  1. advanced control technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    box chassis and the cabling between the boxes by integrating the electronics, thermal control and the structural support into one single element. The ultimate goal of the...

  2. advanced control technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    box chassis and the cabling between the boxes by integrating the electronics, thermal control and the structural support into one single element. The ultimate goal of the...

  3. Improving the Performance of a Two-Shell Column with Advanced Control

    E-Print Network [OSTI]

    Morrison, T. A.; Laflamme, D.

    acetylene content as well as total C]'s. A deadtime compensated PID algorithm sets the target for the reboiler steam flow controller to maintain the target concentration. The steam flow is also adjusted by moves from a feedforward controller... content increased. This also allows the rectifier to run cooler. RESULTS The advanced computer control strategies have improved product quality, increased column capacity and improved energy efficiency. The composition controls maintain operations...

  4. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan

    SciTech Connect (OSTI)

    Bruce Hallbert

    2012-09-01T23:59:59.000Z

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  5. Advanced Staged Control Design for Stellar Interferometry with Experimental Results on SPHERES

    E-Print Network [OSTI]

    Benjamin Fragnire, David W. Miller Septembre 2011 SSL # 15-11 #12;#12;Advanced Staged Control Design 2011 SSL # 15-11 This work is based on the unaltered text of the thesis by Benjamin Fragnire submitted by the Space System Laboratory (SSL). The goal was the control of the optical path length going from a laser

  6. Basics of Advanced Software Systems Static cyclic scheduling on automotive Electronic Control Units (ECU)

    E-Print Network [OSTI]

    Navet, Nicolas

    Basics of Advanced Software Systems Static cyclic scheduling on automotive Electronic Control Units Systems ­ Coursework ­ March 9, 2012. lic scheduling on automotive Electronic Control Units (ECU) (nicolas - Name, - Execution time, - Period of execution, - First activation date, also cal period. The scheduling

  7. Advanced control strategies for HVAC&R systemsAn overview: Part II: Soft and fusion control

    SciTech Connect (OSTI)

    D. Subbaram Naidu; Craig G. Rieger

    2011-04-01T23:59:59.000Z

    A chronological overview of the advanced control strategies for HVAC&R is presented. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and the fusion or hybrid of hard and soft control techniques. Part I focused on hardcontrol strategies; Part II focuses on soft and fusion control and some future directions in HVA&R research. This overview is not intended to be an exhaustive survey on this topic, and any omissions of other works is purely unintentional.

  8. Energy savings and economics of advanced control strategies for packaged air conditioners with gas heat

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2013-10-01T23:59:59.000Z

    This paper presents an evaluation of the potential energy savings from adding advanced control to existing packaged air conditioners. Advanced control options include air-side economizer, multi-speed fan control, demand control ventilation and staged cooling. The energy and cost savings from the different control strategies individually and in combination are estimated using the EnergyPlus detailed energy simulation program for four building types, namely, a small office building, a stand-alone retail building, a strip mall building and a supermarket building. For each of the four building types, the simulation was run for 16 locations covering all 15 climate zones in the U.S. The maximum installed cost of a replacement controller that provides acceptable payback periods to owners is estimated.

  9. The advanced-step %MPC controller - Optimization Online

    E-Print Network [OSTI]

    and F() o e tAf e pahg amet g ic pig oqp lemsr N(p ) ahg e t t ice con- tinuously diff evg ...... and one control v corresponding to the cooling w a- ter ? o w rate.

  10. Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency

    E-Print Network [OSTI]

    Kiliccote, S.; Piette, M. A.

    2005-01-01T23:59:59.000Z

    an overview of the economic opportunities for demand responsive control technologies and strategies in commercial buildings. The economic opportunities focus on advanced controls from a building owners perspective. The secondary objective is to evaluate.... Table 1 outlines how DR fits into historical demand side management (DSM) concepts. Column three compares DR with energy efficiency and daily peak load management. The emphasis for DR is dynamic control and event driven building response...

  11. Advanced Communication and Control Solutions of Distributed Energy Resources (DER)

    SciTech Connect (OSTI)

    Asgeirsson, Haukur; Seguin, Richard; Sherding, Cameron; de Bruet, Andre, G.; Broadwater, Robert; Dilek, Murat

    2007-01-10T23:59:59.000Z

    This report covers work performed in Phase II of a two phase project whose objective was to demonstrate the aggregation of multiple Distributed Energy Resources (DERs) and to offer them into the energy market. The Phase I work (DE-FC36-03CH11161) created an integrated, but distributed, system and procedures to monitor and control multiple DERs from numerous manufacturers connected to the electric distribution system. Procedures were created which protect the distribution network and personnel that may be working on the network. Using the web as the communication medium for control and monitoring of the DERs, the integration of information and security was accomplished through the use of industry standard protocols such as secure SSL,VPN and ICCP. The primary objective of Phase II was to develop the procedures for marketing the power of the Phase I aggregated DERs in the energy market, increase the number of DER units, and implement the marketing procedures (interface with ISOs) for the DER generated power. The team partnered with the Midwest Independent System Operator (MISO), the local ISO, to address the energy market and demonstrate the economic dispatch of DERs in response to market signals. The selection of standards-based communication technologies offers the ability of the system to be deployed and integrated with other utilities resources. With the use of a data historian technology to facilitate the aggregation, the developed algorithms and procedures can be verified, audited, and modified. The team has demonstrated monitoring and control of multiple DERs as outlined in phase I report including procedures to perform these operations in a secure and safe manner. In Phase II, additional DER units were added. We also expanded on our phase I work to enhance communication security and to develop the market model of having DERs, both customer and utility owned, participate in the energy market. We are proposing a two-part DER energy market model--a utility need business model and an independent energy aggregator-business model. The approach of developing two group models of DER energy participation in the market is unique. The Detroit Edison (DECo, Utility)-led team includes: DTE Energy Technologies (Dtech, DER provider), Electrical Distribution Design (EDD, Virginia Tech company supporting EPRIs Distribution Engineering Workstation, DEW), Systems Integration Specialists Company (SISCO, economic scheduling and real-time protocol integrator), and OSIsoft (PI software system for managing real-time information). This team is focused on developing the application engineering, including software systems necessary for DERs integration, control and sale into the market place. Phase II Highlights Installed and tested an ICCP link with SSL (security) between DECo, the utility, and DTE Energy Technologies (DTECH), the aggregator, making DER data available to the utility for both monitoring and control. Installed and tested PI process book with circuit & DER operational models for DECo SOC/ROC operators use for monitoring of both utility circuit and customer DER parameters. The PI Process Book models also included DER control for the DECo SOC/ROC operators, which was tested and demonstrated control. The DER Tagging and Operating Procedures were developed, which allowed that control to be done in a safe manner, were modified for required MOC/MISO notification procedures. The Distribution Engineering Workstation (DEW) was modified to include temperature normalized load research statistics, using a 30 hour day-ahead weather feed. This allowed day-ahead forecasting of the customer load profile and the entire circuit to determine overload and low voltage problems. This forecast at the point of common coupling was passed to DTech DR SOC for use in their economic dispatch algorithm. Standard Work Instructions were developed for DER notification, sale, and operation into the MISO market. A software mechanism consisting of a suite of new and revised functionality was developed that integrated with the local ISO such that offe

  12. Advanced Controls for Residential Whole-House Ventilation Systems

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain; Sherman, Max

    2014-08-01T23:59:59.000Z

    Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

  13. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT-GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect (OSTI)

    A. LOPEZ ORTIZ; D.P. HARRISON; F.R. GROVES; J.D. WHITE; S. ZHANG; W.-N. HUANG; Y. ZENG

    1998-10-31T23:59:59.000Z

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500C to 700C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in a twenty-five-cycle test. The sorbent was exposed for 58 consecutive days to temperatures between 600C and 800C and gas atmospheres from highly reducing to highly oxidizing without measurable loss of sulfur capacity or reactivity. In the process analysis phase of this study, a two-stage desulfurization process using cerium sorbent with SO2 regeneration followed by zinc sorbent with dilute O2 regeneration was compared to a single-stage process using zinc sorbent and O2 regeneration with SO2 in the regeneration product gas converted to elemental sulfur using the direct sulfur recovery process (DSRP). Material and energy balances were calculated using the process simulation package PRO/II. Major process equipment was sized and a preliminary economic analysis completed. Sorbent replacement rate, which is determined by the multicycle sorbent durability, was found to be the most significant factor in both processes. For large replacement rates corresponding to average sorbent lifetimes of 250 cycles or less, the single-stage zinc sorbent process with DSRP was estimated to be less costly. However, the cost of the two-stage cerium sorbent process was more sensitive to sorbent replacement rate, and, as the required replacement rate decreased, the economics of the two-stage process improved. For small sorbent replacement rates corresponding to average sorbent lifetimes of 1000 cycles or more, the two-stage cerium process was estimated to be less costly. In the relatively wide middle range of sorbent replacement rates, the relative economics of the two processes depends on other factors such as the unit cost of sorbents, oxygen, nitrogen, and the relative capital costs.

  14. Control problems for one-dimensional fluids and reactive fluids with moving interfaces

    E-Print Network [OSTI]

    Boyer, Edmond

    . It is organized as follows. In Sec- tion 2, a Diesel oxidation catalyst for the automotive industry is con of a controlled interface, are discussed. 2 Diesel oxidation catalyst This introductory example comes from the automotive engine control world. On most modern diesel vehicles, the increasing requirements re- garding

  15. Advanced control strategies for heating, ventilation, air-conditioning, and refrigeration systemsAn overview: Part I: Hard control

    SciTech Connect (OSTI)

    D. Subbaram Naidu; Craig G. Rieger

    2011-02-01T23:59:59.000Z

    A chronological overview of the advanced control strategies for heating, ventilation, air-conditioning, and refrigeration (HVAC&R) is presented in this article. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and on the fusion or hybrid of hard- and soft-control techniques. Thus, it is to be noted that the terminology hard and soft computing/control has nothing to do with the hardware and software that is being generally used. Part I of a two-part series focuses on hard-control strategies, and Part II focuses on softand fusion-control in addition to some future directions in HVAC&R research. This overview is not intended to be an exhaustive survey on this topic, and any omission of other works is purely unintentional.

  16. Enforcing safety policies in advanced digital reactor control systems

    SciTech Connect (OSTI)

    Wika, K.G.; Knight, J.C.

    1994-12-31T23:59:59.000Z

    Software-based digital systems in nuclear applications offer many potential benefits in the fields of safety, functionality, flexibility, and control, but they also present substantial challenges in demonstrating software reliability. In at least one nuclear system, serious concerns over the protection-system software have been raised. Achieving the required high level of software dependability through techniques such as testing, inspections, or mathematical verification is difficult because of the quantity and complexity of the software. The goal of the research described here is to facilitate dependability analysis by using a novel kernel software architecture. The kernel encapsulates into a relatively small piece of software the implementation of a set of critical safety policies so that policy enforcement is isolated from the rest of the system. Provided the kernel operates correctly, safety policy compliance is assured irrespective of the actions of the majority of the software.

  17. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    SciTech Connect (OSTI)

    Vehicle Projects LLC

    2003-01-28T23:59:59.000Z

    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost to the project) a new motor controller capable of operating the higher rpm motor and different power characteristics of the fuelcells. In early August 2002, CANMET, with the technical assistance of Nuvera Fuel Cells and Battery Electric, installed the new PLC software, installed the new motor controller, and installed the new fuelcell stacks. After minor adjustments, the fuelcell locomotive pulled its first fully loaded ore cars on a surface track. The fuelcell-powered locomotive easily matched the battery powered equivalent in its ability to pull tonnage and equaled the battery-powered locomotive in acceleration. The final task of Phase 2, testing the locomotive underground in a production environment, occurred in early October 2002 in a gold mine. All regulatory requirements to allow the locomotive underground were completed and signed off by Hatch Associates prior to going underground. During the production tests, the locomotive performed flawlessly with no failures or downtime. The actual tests occurred during a 2-week period and involved moving both gold ore and waste rock over a 1,000 meter track. Refueling, or recharging, of the metal-hydride storage took place on the surface. After each shift, the metal-hydride storage module was removed from the locomotive, transported to surface, and filled with hydrogen from high-pressure tanks. The beginning of each shift started with taking the fully recharged metal-hydride storage module down into the mine and re-installing it onto the locomotive. Each 8 hour shift consumed approximately one half to two thirds of the onboard hydrogen. This indicates that the fuelcell-powered locomotive can work longer than a similar battery-powered locomotive, which operates about 6 hours, before needing a recharge.

  18. Advanced turbine systems sensors and controls needs assessment study. Final report

    SciTech Connect (OSTI)

    Anderson, R.L.; Fry, D.N.; McEvers, J.A.

    1997-02-01T23:59:59.000Z

    The Instrumentation and Controls Division of the Oak Ridge National Laboratory performed an assessment of the sensors and controls needs for land-based advanced gas turbines being designed as a part of the Department of Energy`s (DOE`s) Advanced Turbine Systems (ATS) Program for both utility and industrial applications. The assessment included visits to five turbine manufacturers. During these visits, in-depth discussions were held with design and manufacturing staff to obtain their views regarding the need for new sensors and controls for their advanced turbine designs. The Unsteady Combustion Facilities at the Morgantown Energy Technology Center was visited to assess the need for new sensors for gas turbine combustion research. Finally, a workshop was conducted at the South Carolina Energy Research and Development Center which provided a forum for industry, laboratory, and university engineers to discuss and prioritize sensor and control needs. The assessment identified more than 50 different measurement, control, and monitoring needs for advanced turbines that cannot currently be met from commercial sources. While all the identified needs are important, some are absolutely critical to the success of the ATS Program.

  19. Advances

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScienceScripting forAdvances in

  20. Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect (OSTI)

    Joshi, Abhinaya; Lou, Xinsheng; Neuschaefer, Carl; Chaudry, Majid; Quinn, Joseph

    2012-07-31T23:59:59.000Z

    This document provides the results of the project through September 2009. The Phase I project has recently been extended from September 2009 to March 2011. The project extension will begin work on Chemical Looping (CL) Prototype modeling and advanced control design exploration in preparation for a scale-up phase. The results to date include: successful development of dual loop chemical looping process models and dynamic simulation software tools, development and test of several advanced control concepts and applications for Chemical Looping transport control and investigation of several sensor concepts and establishment of two feasible sensor candidates recommended for further prototype development and controls integration. There are three sections in this summary and conclusions. Section 1 presents the project scope and objectives. Section 2 highlights the detailed accomplishments by project task area. Section 3 provides conclusions to date and recommendations for future work.

  1. Recent VOC Control Test Data for a Reactive VOC Converter- Scrubber System for Non-Thermal Control of VOCs

    E-Print Network [OSTI]

    McGinness, M.

    of real estate. Non-thermal VOHAP (Volatile Organic Hazardous Air Pollutant) emission control devices require additional maintenance. They also require the replacement of costly consumables such as activated carbon or they use large amounts of energy...

  2. Energy Savings and Economics of Advanced Control Strategies for Packaged Heat Pumps

    SciTech Connect (OSTI)

    Wang, Weimin; Huang, Yunzhi; Katipamula, Srinivas

    2012-10-31T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energys (DOEs) Building Technologies Program (BTP), evaluated a number of control strategies for packaged cooling equipment that can be implemented in an advanced controller, which can be retrofit into existing packaged heat pump units to improve their operational efficiency. This report documents the results of that analysis.

  3. Project Information Form Project Title Using Connected Vehicle Technology for Advanced Signal Control

    E-Print Network [OSTI]

    California at Davis, University of

    ,387 Total Project Cost $59,387 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates 4/14/2014 ­ 9Project Information Form Project Title Using Connected Vehicle Technology for Advanced Signal/30/15 Brief Description of Research Project Today's conventional traffic control strategies typically rely

  4. CENPES/EB-AB-G&E/AEDC Corporativo Advanced Control System Industrial

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    the specification of products, Minimize energy consumption, Minimizes the process variability which increases safety in the propane refrigeration system Limitations due to low thermal exchange area were generating saturationCENPES/EB-AB-G&E/AEDC Corporativo Advanced Control System ­ Industrial Results and New Challenges

  5. An advanced control method for cascaded SMPS to reduce the energy storage requirements

    E-Print Network [OSTI]

    Prodiæ, Aleksandar

    An advanced control method for cascaded SMPS to reduce the energy storage requirements Damien Frost supplies con- tain large energy storage components that filter the pulsating power that is created by an AC strategies to reduce the size of those energy storage components to reduce the overall size and cost

  6. RECENT ADVANCES IN SMART-MATERIAL ROTOR CONTROL ACTUATION. Victor Giurgiutiu*,

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    RECENT ADVANCES IN SMART-MATERIAL ROTOR CONTROL ACTUATION. Victor Giurgiutiu*, University of South achievements in the application of active-materials actuation to counteract aeroelastic and vibration effects and capabilities is done first. Attention is focused on the smart rotor-blade applications. The induced twist

  7. In-Situ UV Absorption CF2 Sensor for Reactive Ion Etch Process Control

    E-Print Network [OSTI]

    Terry, Fred L.

    source of this absorption spectroscopy is a 100 W high pressure mercury arc lamp. To compensate and correlation of data from this and other plasma sensors to the etch rate of Si02 and a-Si in CF4/CHF3 plasmas-time feedback control could be used to reduce these problems provided that adequate plasma state sensors

  8. Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens

    SciTech Connect (OSTI)

    Byrne, J. M.; Telling, N. D.; Coker, V. S.; Pattrick, R. A. D.; Laan, G. van der; Arenholz, E.; Tuna, F.; Lloyd, J. R.

    2011-08-02T23:59:59.000Z

    The bioproduction of nano-scale magnetite by Fe(III)-reducing bacteria offers a potentially tunable, environmentally benign route to magnetic nanoparticle synthesis. Here, we demonstrate that it is possible to control the size of magnetite nanoparticles produced by Geobacter sulfurreducens, by adjusting the total biomass introduced at the start of the process. The particles have a narrow size distribution and can be controlled within the range of 10-50 nm. X-ray diffraction analysis indicates that controlled production of a number of different biominerals is possible via this method including goethite, magnetite and siderite, but their formation is strongly dependent upon the rate of Fe(III) reduction and total concentration and rate of Fe(II) produced by the bacteria during the reduction process. Relative cation distributions within the structure of the nanoparticles has been investigated by X-ray magnetic circular dichroism and indicates the presence of a highly reduced surface layer which is not observed when magnetite is produced through abiotic methods. The enhanced Fe(II)-rich surface, combined with small particle size, has important environmental applications such as in the reductive bioremediation of organics, radionuclides and metals. In the case of Cr(VI), as a model high-valence toxic metal, optimised biogenic magnetite is able to reduce and sequester the toxic hexavalent chromium very efficiently in the less harmful trivalent form.

  9. Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems

    SciTech Connect (OSTI)

    Chad Wocken; Michael Holmes; John Pavlish; Jeffrey Thompson; Katie Brandt; Brandon Pavlish; Dennis Laudal; Kevin Galbreath; Michelle Olderbak

    2008-06-30T23:59:59.000Z

    This project was awarded through the U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-PS26-03NT41718-01. The Energy & Environmental Research Center (EERC) led a consortium-based effort to resolve mercury (Hg) control issues facing the lignite industry. The EERC team-the Electric Power Research Institute (EPRI); the URS Corporation; the Babcock & Wilcox Company; ADA-ES; Apogee; Basin Electric Power Cooperative; Otter Tail Power Company; Great River Energy; Texas Utilities; Montana-Dakota Utilities Co.; Minnkota Power Cooperative, Inc.; BNI Coal Ltd.; Dakota Westmoreland Corporation; the North American Coal Corporation; SaskPower; and the North Dakota Industrial Commission-demonstrated technologies that substantially enhanced the effectiveness of carbon sorbents to remove Hg from western fuel combustion gases and achieve a high level ({ge} 55% Hg removal) of cost-effective control. The results of this effort are applicable to virtually all utilities burning lignite and subbituminous coals in the United States and Canada. The enhancement processes were previously proven in pilot-scale and limited full-scale tests. Additional optimization testing continues on these enhancements. These four units included three lignite-fired units: Leland Olds Station Unit 1 (LOS1) and Stanton Station Unit 10 (SS10) near Stanton and Antelope Valley Station Unit 1 (AVS1) near Beulah and a subbituminous Powder River Basin (PRB)-fired unit: Stanton Station Unit 1 (SS1). This project was one of three conducted by the consortium under the DOE mercury program to systematically test Hg control technologies available for utilities burning lignite. The overall objective of the three projects was to field-test and verify options that may be applied cost-effectively by the lignite industry to reduce Hg emissions. The EERC, URS, and other team members tested sorbent injection technologies for plants equipped with electrostatic precipitators (ESPs) and spray dryer absorbers combined with fabric filters (SDAs-FFs). The work focused on technology commercialization by involving industry and emphasizing the communication of results to vendors and utilities throughout the project.

  10. Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways

    SciTech Connect (OSTI)

    Brambley, Michael R.; Haves, Philip; McDonald, Sean C.; Torcellini, Paul; Hansen, David G.; Holmberg, David; Roth, Kurt

    2005-04-13T23:59:59.000Z

    Significant energy savings can be achieved in commercial building operation, along with increased comfort and control for occupants, through the implementation of advanced technologies. This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies. This paper is actually a synthesis of five other white papers: the first describes the market assessment including estimates of market potential and energy savings for sensors and control strategies currently on the market as well as a discussion of market barriers to these technologies. The other four cover technology pathways: (1) current applications and strategies for new applications, (2) sensors and controls, (3) networking, security, and protocols and standards, and (4) automated diagnostics, performance monitoring, commissioning, optimal control and tools. Each technology pathway chapter gives an overview of the technology or application. This is followed by a discussion of needs and the current status of the technology. Finally, a series of research topics is proposed.

  11. Human factors engineering evaluation of the Advanced Test Reactor Control Room

    SciTech Connect (OSTI)

    Boone, M.P.; Banks, W.W.

    1980-12-01T23:59:59.000Z

    The information presented here represents preliminary findings related to an ongoing human engineering evaluation of the Advanced Test Reactor (ATR) Control Room. Although many of the problems examined in this report have been previously noted by ATR operations personnel, the systematic approach used in this investigation produced many new insights. While many violations of Human Engineering military standards (MIL-STD) are noted, and numerous recommendations made, the recommendations should be examined cautiously. The reason for our suggested caution lies in the fact that many ATR operators have well over 10-years experience in operating the controls, meters, etc. Hence, it is assumed adaptation to the existing system is quite developed and the introduction of hardware/control changes, even though the changes enhance the system, may cause short-term (or long-term, depending upon the amount of operator experience and training) adjustment problems for operators adapting to the new controls/meters and physical layout.

  12. DEMONSTRATION OF AN ADVANCED INTEGRATED CONTROL SYSTEM FOR SIMULTANEOUS EMISSIONS REDUCTION

    SciTech Connect (OSTI)

    Suzanne Shea; Randhir Sehgal; Ilga Celmins; Andrew Maxson

    2002-02-01T23:59:59.000Z

    The primary objective of the project titled ''Demonstration of an Advanced Integrated Control System for Simultaneous Emissions Reduction'' was to demonstrate at proof-of-concept scale the use of an online software package, the ''Plant Environmental and Cost Optimization System'' (PECOS), to optimize the operation of coal-fired power plants by economically controlling all emissions simultaneously. It combines physical models, neural networks, and fuzzy logic control to provide both optimal least-cost boiler setpoints to the boiler operators in the control room, as well as optimal coal blending recommendations designed to reduce fuel costs and fuel-related derates. The goal of the project was to demonstrate that use of PECOS would enable coal-fired power plants to make more economic use of U.S. coals while reducing emissions.

  13. Application of a Virtual Reactivity Feedback Control Loop in Non-Nuclear Testing of a Fast Spectrum Reactor

    SciTech Connect (OSTI)

    Bragg-Sitton, Shannon M. [NASA Marshall Space Flight Center, Huntsville, Al, 35812 (United States); Forsbacka, Matthew [NASA Headquarters, 300 E St. S, Washington, DC 20465 (United States)

    2004-07-01T23:59:59.000Z

    For a compact, fast-spectrum reactor, reactivity feedback is dominated by core deformation at elevated temperature. Given the use of accurate deformation measurement techniques, it is possible to simulate nuclear feedback in non-nuclear electrically heated reactor tests. Implementation of simulated reactivity feedback in response to measured deflection is being tested at the Nasa Marshall Space Flight Center Early Flight Fission Test Facility (EFF-TF). During tests of the SAFE-100 reactor prototype, core deflection was monitored using a high resolution camera. 'Virtual' reactivity feedback was accomplished by applying the results of Monte Carlo calculations (MCNPX) to core deflection measurements; the computational analysis was used to establish the reactivity worth of various core deformations. The power delivered to the SAFE-100 prototype was then adjusted accordingly via kinetics calculations. The work presented in this paper will demonstrate virtual reactivity feedback as core power was increased from 1 kWt to 10 kWt, held approximately constant at 10 kWt, and then allowed to decrease based on the negative thermal reactivity coefficient. (authors)

  14. Development of GUS for control applications at the Advanced Photon Source

    SciTech Connect (OSTI)

    Chung, Y.; Barr, D.; Borland, M.; Kirchman, J.; Decker, G.; Kim, K.

    1994-08-01T23:59:59.000Z

    A script-based interpretive shell GUS (General Purpose Data Acquisition for Unix Shell) has been developed for application to the Advanced Photon Source (APS) control. The primary design objective of GUS is to provide a mechanism for efficient data flow among modularized objects called Data Access Modules (DAMs). GUS consists of four major components: user interface, kernel, built-in command module, and DAMS. It also incorporates the Unix shell to make use of the existing utility programs for file manipulation and data analysis. At this time, DAMs have been written for device access through EPICS (Experimental Physics and Industrial Control System), data I/O for SDDS (Self-Describing Data Set) files, matrix manipulation, graphics display, digital signal processing, and beam position feedback system control. The modular and object-oriented construction of GUS will facilitate addition of more DAMs with other functions in the future.

  15. E-Print Network 3.0 - accumulate reactive oxygen Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reactive oxygen Search Powered by Explorit Topic List Advanced Search Sample search results for: accumulate reactive oxygen Page: << < 1 2 3 4 5 > >> 1 CLINICAL CONCEPTS AND...

  16. Expanding Robust HCCI Operation with Advanced Valve and Fuel Control Technologies

    SciTech Connect (OSTI)

    Szybist, J. P. [Oak Ridge National Lab., Oak Ridge, TN (United States); Confer, K. [Delphi Automotive Systems (United States)

    2012-09-11T23:59:59.000Z

    Delphi Automotive Systems and ORNL established this CRADA to advance the commercialization potential of the homogeneous charge compression ignition (HCCI) advanced combustion strategy for gasoline engine platforms. HCCI combustion has been shown by others to produce high diesel-like efficiency on a gasoline engine platform while simultaneously producing low NOX and particulate matter emissions. However, the commercialization barriers that face HCCI combustion are significant, with requirements for a more active engine control system, likely with next-cycle closed-loop feedback control, and with advanced valve train technologies to enable negative valve overlap conditions. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has made a number of breakthroughs with production-intent valve train technologies and controls in recent years to make a part time production-intent HCCI engine plausible. ORNL has extensive knowledge and expertise with HCCI combustion, and also has a versatile research engine with hydraulic valve actuation (HVA) that is useful for guiding production of a cam-based HCCI system. Partnering these knowledge bases and capabilities was essential towards making progress to better understand HCCI combustion and the commercialization barriers that it faces. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided guidance to ORNL regarding operational strategies to investigate on their single-cylinder research engine with HVA and data from their experimental multi-cylinder engine for modeling. ORNL provided single-cylinder engine data and modeling results.

  17. Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992

    SciTech Connect (OSTI)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. [California Univ., Berkeley, CA (United States); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. [Columbia Univ., New York, NY (United States); Hu, W.; Zou, Y.; Chen, W. [Utah Univ., Salt Lake City, UT (United States); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. [Praxis Engineers, Inc., Milpitas, CA (United States)

    1992-03-01T23:59:59.000Z

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  18. Building America Case Study: Advanced Boiler Load Monitoring Controllers, Chicago, Illinois (Fact Sheet)

    SciTech Connect (OSTI)

    PARR

    2014-09-01T23:59:59.000Z

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  19. Technology Reinvestment Program/Advanced ``Zero Emission'' Control Valve (Phase II)

    SciTech Connect (OSTI)

    J. Napoleon

    1998-12-01T23:59:59.000Z

    The objectives of this effort are to determine, develop and demonstrate the feasibility of significantly reducing the cost and expanding the applications for a family of Advanced Zero Emissions Control Valves that meets the fugitive emissions requirements of the 1990 Amendments to the Clean Air Act. This program is a direct technology spin-off from the valve technology that is critical to the US Navy's Nuclear Powered Fleet. These zero emissions valves will allow the Hydrocarbon and Chemical Processing Industries, etc., to maintain their competitiveness and still meet environmental and safety requirements. Phase 2 is directed at refining the basic technologies developed during Phase 1 so that they can be more readily selected and utilized by the target market. In addition to various necessary certifications, the project will develop a full featured digital controller with ``smart valve'' growth capability, expanding valve sizes/applications and identifying valve materials to permit applications in severe operational environments.

  20. Final Report - ADVANCED LASER-BASED SENSORS FOR INDUSTRIAL PROCESS CONTROL

    SciTech Connect (OSTI)

    Gupta, Manish; Baer, Douglas

    2013-09-30T23:59:59.000Z

    The objective of this work is to capture the potential of real-time monitoring and overcome the challenges of harsh industrial environments, Los Gatos Research (LGR) is fabricating, deploying, and commercializing advanced laser-based gas sensors for process control monitoring in industrial furnaces (e.g. electric arc furnaces). These sensors can achieve improvements in process control, leading to enhanced productivity, improved product quality, and reduced energy consumption and emissions. The first sensor will utilize both mid-infrared and near-infrared lasers to make rapid in-situ measurements of industrial gases and associated temperatures in the furnace off-gas. The second sensor will make extractive measurements of process gases. During the course of this DOE project, Los Gatos Research (LGR) fabricated, tested, and deployed both in-situ tunable diode laser absorption spectrometry (TDLAS) analyzers and extractive Off-Axis Integrated Cavity Output Spectroscopy (Off-Axis ICOS) analyzers.

  1. Reactive Maintenance

    Broader source: Energy.gov [DOE]

    Reactive maintenance follows a run-it-until-it-breaks strategy where no actions or efforts are taken to maintain equipment as intended by the manufacturer. Studies indicate this is still the predominant mode of maintenance for Federal facilities.

  2. Controlling O&M Costs of Advanced SMRs using Prognostics and Enhanced Risk Monitoring

    SciTech Connect (OSTI)

    Ramuhalli, Pradeep; Hirt, Evelyn H.; Coles, Garill A.; Meyer, Ryan M.; Coble, Jamie B.; Wood, Richard T.

    2014-02-25T23:59:59.000Z

    Advanced small modular reactors (AdvSMRs) can contribute to safe, sustainable, and carbon-neutral energy production. The economics of small reactors (including AdvSMRs) will be impacted by the reduced economy-of-scale savings when compared to traditional light water reactors. The most significant controllable element of the day-to-day costs involves operations and maintenance (O&M). Enhancing affordability of AdvSMRs through technologies that help control O&M costs will be critical to ensuring their practicality for wider deployment.A significant component of O&M costs is the management and mitigation of degradation of components due to their impact on planning maintenance activities and staffing levels. Technologies that help characterize real-time risk of failure of key components are important in this context. Given the possibility of frequently changing AdvSMR plant configurations, approaches are needed to integrate three elements advanced plant configuration information, equipment condition information, and risk monitors to provide a measure of risk that is customized for each AdvSMR unit and support real-time decisions on O&M. This article describes an overview of ongoing research into diagnostics/prognostics and enhanced predictive risk monitors (ERM) for this purpose.

  3. Advanced emissions control development project. Phase I, Final report, November 1, 1993--February 19, 1996

    SciTech Connect (OSTI)

    NONE

    1996-02-29T23:59:59.000Z

    The primary objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESP`s), fabric filters (baghouse), and wet flue gas desulfurization. B&W`s Clean Environment Development Facility (CEDF) and the AECDP equipment combined to form a state-of-the-art facility for integrated evaluation of combustion and post-combustion emissions control options. Phase 1 activities were primarily aimed at providing a reliable, representative test facility for conducting air toxic emissions control development work later in the project. This report summarizes the AECDP Phase I activities which consisted of the design, installation, shakedown, verification, and air toxics benchmarking of the AECDP facility. All verification and air toxic tests were conducted with a high sulfur, bituminous Ohio coal.

  4. Reactive power compensator

    DOE Patents [OSTI]

    El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Woodinville, WA); Chen, Mingliang (Kirkland, WA); Andexler, George (Everett, WA); Huang, Tony (Seattle, WA)

    1992-01-01T23:59:59.000Z

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  5. Reactive Power Compensator.

    DOE Patents [OSTI]

    El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.

    1992-07-28T23:59:59.000Z

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.

  6. Advanced Instrumentation and Control Methods for Small and Medium Reactors with IRIS Demonstration

    SciTech Connect (OSTI)

    J. Wesley Hines; Belle R. Upadhyaya; J. Michael Doster; Robert M. Edwards; Kenneth D. Lewis; Paul Turinsky; Jamie Coble

    2011-05-31T23:59:59.000Z

    Development and deployment of small-scale nuclear power reactors and their maintenance, monitoring, and control are part of the mission under the Small Modular Reactor (SMR) program. The objectives of this NERI-consortium research project are to investigate, develop, and validate advanced methods for sensing, controlling, monitoring, diagnosis, and prognosis of these reactors, and to demonstrate the methods with application to one of the proposed integral pressurized water reactors (IPWR). For this project, the IPWR design by Westinghouse, the International Reactor Secure and Innovative (IRIS), has been used to demonstrate the techniques developed under this project. The research focuses on three topical areas with the following objectives. Objective 1 - Develop and apply simulation capabilities and sensitivity/uncertainty analysis methods to address sensor deployment analysis and small grid stability issues. Objective 2 - Develop and test an autonomous and fault-tolerant control architecture and apply to the IRIS system and an experimental flow control loop, with extensions to multiple reactor modules, nuclear desalination, and optimal sensor placement strategy. Objective 3 - Develop and test an integrated monitoring, diagnosis, and prognosis system for SMRs using the IRIS as a test platform, and integrate process and equipment monitoring (PEM) and process and equipment prognostics (PEP) toolboxes. The research tasks are focused on meeting the unique needs of reactors that may be deployed to remote locations or to developing countries with limited support infrastructure. These applications will require smaller, robust reactor designs with advanced technologies for sensors, instrumentation, and control. An excellent overview of SMRs is described in an article by Ingersoll (2009). The article refers to these as deliberately small reactors. Most of these have modular characteristics, with multiple units deployed at the same plant site. Additionally, the topics focus on meeting two of the eight needs outlined in the recently published 'Technology Roadmap on Instrumentation, Control, and Human-Machine Interface (ICHMI) to Support DOE Advanced Nuclear Energy Programs' which was created 'to provide a systematic path forward for the integration of new ICHMI technologies in both near-term and future nuclear power plants and the reinvigoration of the U.S. nuclear ICHMI community and capabilities.' The research consortium is led by The University of Tennessee (UT) and is focused on three interrelated topics: Topic 1 (simulator development and measurement sensitivity analysis) is led by Dr. Mike Doster with Dr. Paul Turinsky of North Carolina State University (NCSU). Topic 2 (multivariate autonomous control of modular reactors) is led by Dr. Belle Upadhyaya of the University of Tennessee (UT) and Dr. Robert Edwards of Penn State University (PSU). Topic 3 (monitoring, diagnostics, and prognostics system development) is led by Dr. Wes Hines of UT. Additionally, South Carolina State University (SCSU, Dr. Ken Lewis) participated in this research through summer interns, visiting faculty, and on-campus research projects identified throughout the grant period. Lastly, Westinghouse Science and Technology Center (Dr. Mario Carelli) was a no-cost collaborator and provided design information related to the IRIS demonstration platform and defining needs that may be common to other SMR designs. The results of this research are reported in a six-volume Final Report (including the Executive Summary, Volume 1). Volumes 2 through 6 of the report describe in detail the research and development under the topical areas. This volume serves to introduce the overall NERI-C project and to summarize the key results. Section 2 provides a summary of the significant contributions of this project. A list of all the publications under this project is also given in Section 2. Section 3 provides a brief summary of each of the five volumes (2-6) of the report. The contributions of SCSU are described in Section 4, including a summary of undergraduate research exper

  7. Advanced Combustion Diagnostics and Control for Furnaces, Fired Heaters and Boilers

    SciTech Connect (OSTI)

    Tate, J. D.; Le, Linh D.; Knittel,Trevor; Cowie, Alan

    2010-03-20T23:59:59.000Z

    The objective of this project was to develop and apply enabling tools and methods towards advanced combustion diagnostics and control of fired-equipment in large-scale petrochemical manufacturing. There are a number of technology gaps and opportunities for combustion optimization, including technologies involving advanced in-situ measurements, modeling, and thermal imaging. These technologies intersect most of manufacturing and energy systems within the chemical industry. This project leveraged the success of a previous DOE funded project led by Dow, where we co-developed an in-situ tunable diode laser (TDL) analyzer platform (with Analytical Specialties Inc, now owned by Yokogawa Electric Corp.). The TDL platform has been tested and proven in a number of combustion processes within Dow and outside of Dow. The primary focus of this project was on combustion diagnostics and control applied towards furnaces, fired heaters and boilers. Special emphasis was placed on the development and application of in-situ measurements for O2, CO and methane since these combustion gases are key variables in optimizing and controlling combustion processes safely. Current best practice in the industry relies on measurements that suffer from serious performance gaps such as limited sampling volume (point measurements), poor precision and accuracy, and poor reliability. Phase I of the project addressed these gaps by adding improved measurement capabilities such as CO and methane (ppm analysis at combustion zone temperatures) as well as improved optics to maintain alignment over path lengths up to 30 meters. Proof-of-concept was demonstrated on a modern olefins furnace located at Dow Chemical's facility in Freeport TX where the improved measurements were compared side-by-side to accepted best practice techniques (zirconium oxide and catalytic bead or thick film sensors). After developing and installing the improved combustion measurements (O2, CO, and methane), we also demonstrated the ability to improve control of an olefins furnace (via CO-trim) that resulted in significant energy savings and lower emissions such as NOx and other greenhouse gases. The cost to retrofit measurements on an existing olefins furnace was found to be very attractive, with an estimated payback achieved in 4 months or less.

  8. Advanced Communication and Control of Distributed Energy Resources at Detroit Edison

    SciTech Connect (OSTI)

    Haukur Asgeirsson; Richard Seguin

    2004-01-31T23:59:59.000Z

    The project objective was to create the communication and control system, the process and the economic procedures that will allow owners (e.g., residential, commercial, industrial, manufacturing, etc.) of Distributed Energy Resources (DER) connected in parallel to the electric distribution to have their resources operated in a manner that protects the electric utility distribution network and personnel that may be working on the network. The Distribution Engineering Workstation (DEW) (a power flow and short circuit modeling tool) was modified to calculate the real-time characteristics of the distribution network based on the real-time electric distribution network information and provide DER operating suggestions to the Detroit Edison system operators so that regional electric stability is maintained. Part of the suggestion algorithm takes into account the operational availability of DERs, which is known by the Energy Aggregator, DTE Energy Technologies. The availability information will be exchanged from DTE Energy Technologies to Detroit Edison. For the calculated suggestions to be used by the Detroit Edison operators, procedures were developed to allow an operator to operate a DER by requesting operation of the DER through DTE Energy Technologies. Prior to issuing control of a DER, the safety of the distribution network and personnel needs to be taken into account. This information will be exchanged from Detroit Edison to DTE Energy Technologies. Once it is safe to control the DER, DTE Energy Technologies will issue the control signal. The real-time monitoring of the DECo system will reflect the DER control. Multi-vendor DER technologies representing approximately 4 MW of capacity was monitored and controlled using a web-based communication path. The DER technologies included are a photovoltaic system, energy storage, fuel cells and natural gas/diesel internal combustion engine generators. This report documents Phase I result for the Detroit Edison (Utility) led team, which also includes: DTE Energy Technology (DER provider & Aggregator), Electrical Distribution Design (Virginia Tech company supporting DEW); Systems Integration Specialists Company (real-time protocol integrator); and OSIsoft (software system for managing real-time information). This work was performed in anticipation of being selected for Phase II of the Advanced Communication and Control of Distributed Energy Resources project.

  9. Advanced international training course on state systems of accounting for and control of nuclear materials

    SciTech Connect (OSTI)

    Not Available

    1981-10-01T23:59:59.000Z

    This report incorporates all lectures and presentations at the Advanced International Training Course on State Systems of Accounting for and Control of Nuclear Material held April 27 through May 12, 1981 at Santa Fe and Los Alamos, New Mexico, and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards. Major emphasis for the 1981 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory, the Battelle Pacific Northwest Laboratory, and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at both the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, Richland, Washington.

  10. Progress in physics and control of the resistive wall mode in advanced tokamaks

    SciTech Connect (OSTI)

    Liu Yueqiang; Chapman, I. T.; Gimblett, C. G.; Hastie, R. J.; Hender, T. C. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Chu, M. S.; Garofalo, A. M.; Jackson, G. L.; La Haye, R. J.; Strait, E. J. [General Atomics, San Diego, California 92186 (United States); Reimerdes, H. [Columbia University, New York, New York 10027 (United States); Villone, F.; Ambrosino, G.; Pironti, A. [ENEA/CREATE, DAEIMI, Universita di Cassino, Via di Biasio 43, I-03043 Cassino (Italy); Albanese, R.; Rubinacci, G. [ENEA/CREATE, Universita Federico II di Napoli, Via Claudio 21, I-80125 Napoli (Italy); Okabayashi, M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Portone, A. [Fusion For Energy, C/Josep Pla 2, B3, 08019 Barcelona (Spain)

    2009-05-15T23:59:59.000Z

    Self-consistent computations are carried out to study the stability of the resistive wall mode (RWM) in DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] plasmas with slow plasma rotation, using the hybrid kinetic-magnetohydrodynamic code MARS-K[Y. Q. Liu et al., Phys. Plasmas 15, 112503 (2008)]. Based on kinetic resonances between the mode and the thermal particle toroidal precession drifts, the self-consistent modeling predicts less stabilization of the mode compared to perturbative approaches, and with the DIII-D experiments. A simple analytic model is proposed to explain the MARS-K results, which also gives a qualitative interpretation of the recent experimental results observed in JT-60U [S. Takeji et al., Nucl. Fusion 42, 5 (2002)]. Our present analysis does not include the kinetic contribution from hot ions, which may give additional damping on the mode. The effect of particle collision is not included either. Using the CARMA code [R. Albanese et al., IEEE Trans. Magn. 44, 1654 (2008)], a stability and control analysis is performed for the RWM in ITER [R. Aymar et al., Plasma Phys. Controlled Fusion 44, 519 (2002)] steady state advanced plasmas, taking into account the influence of three-dimensional conducting structures.

  11. Advanced Communication and Control for Distributed Energy Resource Integration: Phase 2 Scientific Report

    SciTech Connect (OSTI)

    BPL Global

    2008-09-30T23:59:59.000Z

    The objective of this research project is to demonstrate sensing, communication, information and control technologies to achieve a seamless integration of multivendor distributed energy resource (DER) units at aggregation levels that meet individual user requirements for facility operations (residential, commercial, industrial, manufacturing, etc.) and further serve as resource options for electric and natural gas utilities. The fully demonstrated DER aggregation system with embodiment of communication and control technologies will lead to real-time, interactive, customer-managed service networks to achieve greater customer value. Work on this Advanced Communication and Control Project (ACCP) consists of a two-phase approach for an integrated demonstration of communication and control technologies to achieve a seamless integration of DER units to reach progressive levels of aggregated power output. Phase I involved design and proof-of-design, and Phase II involves real-world demonstration of the Phase I design architecture. The scope of work for Phase II of this ACCP involves demonstrating the Phase I design architecture in large scale real-world settings while integrating with the operations of one or more electricity supplier feeder lines. The communication and control architectures for integrated demonstration shall encompass combinations of software and hardware components, including: sensors, data acquisition and communication systems, remote monitoring systems, metering (interval revenue, real-time), local and wide area networks, Web-based systems, smart controls, energy management/information systems with control and automation of building energy loads, and demand-response management with integration of real-time market pricing. For Phase II, BPL Global shall demonstrate the Phase I design for integrating and controlling the operation of more than 10 DER units, dispersed at various locations in one or more Independent System Operator (ISO) Control Areas, at an aggregated scale of more than 1 MW, to provide grid support. Actual performance data with respect to each specified function above is to be collected during the Phase II field demonstration. At a minimum, the Phase II demonstration shall span one year of field operations. The demonstration performance will need to be validated by the target customer(s) for acceptance and subsequent implementation. An ISO must be involved in demonstration planning and execution. As part of the Phase II work, BPL Global shall develop a roadmap to commercialization that identifies and quantifies the potential markets for the integrated, aggregated DER systems and for the communication and control technologies demonstrated in Phase I. In addition, the roadmap must identify strategies and actions, as well as the regional and national markets where the aggregated DER systems with communication and control solutions will be introduced, along with a timeline projected for introduction into each identified market. In Phase I of this project, we developed a proof-of-concept ACCP system and architecture and began to test its functionality at real-world sites. These sites had just over 10 MW of DERs and allowed us to identify what needed to be done to commercialize this concept. As a result, we started Phase II by looking at our existing platform and identified its strengths and weaknesses as well as how it would need to evolve for commercialization. During this process, we worked with different stakeholders in the market including: Independent System Operators, DER owners and operators, and electric utility companies to fully understand the issues from all of the different perspectives. Once we had an understanding of the commercialized ACCP system, we began to document and prepare detailed designs of the different system components. The components of the system with the most significant design improvements were: the on-site remote terminal unit, the communication technology between the remote site and the data center, and the scalability and reliability of the data center application.

  12. Energy Savings and Economics of Advanced Control Strategies for Packaged Air-Conditioning Units with Gas Heat

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2011-12-31T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) with funding from the U.S. Department of Energy's Building Technologies Program (BTP) evaluated a number of control strategies that can be implemented in a controller, to improve the operational efficiency of the packaged air conditioning units. The two primary objectives of this research project are: (1) determine the magnitude of energy savings achievable by retrofitting existing packaged air conditioning units with advanced control strategies not ordinarily used for packaged units and (2) estimating what the installed cost of a replacement control with the desired features should be in various regions of the U.S. This document reports results of the study.

  13. DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program

    SciTech Connect (OSTI)

    Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

    2012-10-26T23:59:59.000Z

    The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

  14. Sensitization phenomena on aged SAF 2205 duplex stainless steel and their control using the electrochemical potentiokinetic reactivation test

    SciTech Connect (OSTI)

    Angelini, E.; Benedetti, B. de; Maizza, G.; Rosalbino, F. (Politecnico, Torino (Italy). Dept. of Materials Science and Chemical Engineering)

    1999-06-01T23:59:59.000Z

    Microstructural changes and resulting properties were studied for SAF 2205 (UNS S31803) austeno-ferritic stainless steel (SS) aged between 700 C and 900 C for up to 2 weeks and then water-quenched. Quantitative metallography coupled with x-ray diffraction techniques were adopted to follow ferrite ([alpha]) transformation with subsequent formation of secondary austenite ([gamma][sub 2]) and sigma ([sigma]) phase. The kinetic model of a transformation was interpreted in the form of an Avrami-type expression. The electrochemical potentiokinetic reactivation (EPR) test was used to evaluate the degree of sensitization of the aged specimens. Results were compared with results from the corrosion test in boiling nitric acid (HNO[sub 3]). Influences of the transformation of ferrite into austenite, sigma phase, and of other microstructural variations such as chromium nitride (Cr[sub 2]N) precipitation on stability of the passive film were shown. The susceptibility to intergranular corrosion phenomena was caused by chromium depletion caused by sigma phase precipitation, while chromium nitrides appeared less harmful. Results were expressed as an isocharge line diagram that allowed concise identification of sensitization and desensitization ranges.

  15. Qualification issues associated with the use of advanced instrumentation and control systems hardware in nuclear power plants

    SciTech Connect (OSTI)

    Korsah, K. [Oak Ridge National Lab., TN (United States); Antonescu, C. [Nuclear Regulatory Commission, Rockville, MD (United States). Office of Nuclear Regulatory Research

    1993-10-01T23:59:59.000Z

    The instrumentation and control (I&C) systems in advanced reactors will make extensive use of digital controls, microprocessors, multiplexing, and Tiber-optic transmission. Elements of these advances in I&C have been implemented on some current operating plants. However, the widespread use of the above technologies, as well as the use of artificial intelligence with minimum reliance on human operator control of reactors, highlights the need to develop standards for qualifying I&C used in the next generation of nuclear power plants. As a first step in this direction, the protection system I&C for present-day plants was compared to that proposed for advanced light water reactors (ALWRs). An evaluation template was developed by assembling a configuration of a safety channel instrument string for a generic ALWR, then comparing the impact of environmental stressors on that string to their effect on an equivalent instrument string from an existing light water reactor. The template was then used to address reliability issues for microprocessor-based protection systems. Standards (or lack thereof) for the qualification of microprocessor-based safety I&C systems were also identified. This approach addresses in part issues raised in Nuclear Regulatory Commission policy document SECY-91-292. which recognizes that advanced I&C systems for the nuclear industry are ``being developed without consensus standards, as the technology available for design is ahead of the technology that is well understood through experience and supported by application standards.``

  16. E-Print Network 3.0 - advanced control surface Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as well as Surface Energy Tools. Advanced includes - in addition to CA... and SE tools - surface and interfacial tension tools. ... Source: Clare, Anthony S. - School of Civil...

  17. DAINTREE NETWORKS PARTNERS WITH CLTC TO ADVANCE LIGHTING CONTROLS UC Davis' California Lighting Technology Center (CLTC) and Daintree team up to increase adoption with

    E-Print Network [OSTI]

    California at Davis, University of

    - more - DAINTREE NETWORKS PARTNERS WITH CLTC TO ADVANCE LIGHTING CONTROLS UC Davis' California affiliate partnership with UC Davis' California Lighting Technology Center (CLTC) with the goal of advancing wireless smart building solutions for enterprise control and energy management, today announced its

  18. Advanced Power Electronic Interfaces for Distributed Energy Systems, Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter

    SciTech Connect (OSTI)

    Chakraborty, S.; Kroposki, B.; Kramer, W.

    2008-11-01T23:59:59.000Z

    Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report also analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.

  19. Advanced In-Furnace NOx Control for Wall and Cyclone-Fired Boilers

    SciTech Connect (OSTI)

    Hamid Sarv

    2009-02-28T23:59:59.000Z

    A NO{sub x} minimization strategy for coal-burning wall-fired and cyclone boilers was developed that included deep air staging, innovative oxygen use, reburning, and advanced combustion control enhancements. Computational fluid dynamics modeling was applied to refine and select the best arrangements. Pilot-scale tests were conducted by firing an eastern high-volatile bituminous Pittsburgh No.8 coal at 5 million Btu/hr in a facility that was set up with two-level overfire air (OFA) ports. In the wall-fired mode, pulverized coal was burned in a geometrically scaled down version of the B and W DRB-4Z{reg_sign} low-NO{sub x} burner. At a fixed overall excess air level of 17%, NO{sub x} emissions with single-level OFA ports were around 0.32 lb/million Btu at 0.80 burner stoichiometry. Two-level OFA operation lowered the NO{sub x} levels to 0.25 lb/million Btu. Oxygen enrichment in the staged burner reduced the NO{sub x} values to 0.21 lb/million Btu. Oxygen enrichment plus reburning and 2-level OFA operation further curbed the NO{sub x} emissions to 0.19 lb/million Btu or by 41% from conventional air-staged operation with single-level OFA ports. In the cyclone firing arrangement, oxygen enrichment of the cyclone combustor enabled high-temperature and deeply staged operation while maintaining good slag tapping. Firing the Pittsburgh No.8 coal in the optimum arrangement generated 112 ppmv NO{sub x} (0.15 lb/million Btu) and 59 ppmv CO. The optimum emissions results represent 88% NO{sub x} reduction from the uncontrolled operation. Levelized costs for additional NO{sub x} removal by various in-furnace control methods in reference wall-fired or cyclone-fired units already equipped with single-level OFA ports were estimated and compared with figures for SCR systems achieving 0.1 lb NO{sub x}/10{sup 6} Btu. Two-level OFA ports could offer the most economical approach for moderate NO{sub x} control, especially for smaller units. O{sub 2} enrichment in combination with 2-level OFA was not cost effective for wall-firing. For cyclone units, NO{sub x} removal by two-level OFA plus O{sub 2} enrichment but without coal reburning was economically attractive.

  20. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    SciTech Connect (OSTI)

    Monteleone, S. [Brookhaven National Lab., Upton, NY (United States)] [comp.

    1994-04-01T23:59:59.000Z

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

  1. Fuel Temperature Coefficient of Reactivity

    SciTech Connect (OSTI)

    Loewe, W.E.

    2001-07-31T23:59:59.000Z

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  2. A Tariff for Reactive Power

    SciTech Connect (OSTI)

    Kueck, John D [ORNL; Kirby, Brendan J [ORNL; Li, Fangxing [ORNL; Tufon, Christopher [Pacific Gas and Electric Company; Isemonger, Alan [California Independent System Operator

    2008-07-01T23:59:59.000Z

    Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would reduce system losses, increase circuit capacity, increase reliability, and improve efficiency. Reactive power is theoretically available from any inverter-based equipment such as photovoltaic (PV) systems, fuel cells, microturbines, and adjustable-speed drives. However, the installation is usually only economical if reactive power supply is considered during the design and construction phase. In this report, we find that if the inverters of PV systems or the generators of combined heat and power (CHP) systems were designed with capability to supply dynamic reactive power, they could do this quite economically. In fact, on an annualized basis, these inverters and generators may be able to supply dynamic reactive power for about $5 or $6 per kVAR. The savings from the local supply of dynamic reactive power would be in reduced losses, increased capacity, and decreased transmission congestion. The net savings are estimated to be about $7 per kVAR on an annualized basis for a hypothetical circuit. Thus the distribution company could economically purchase a dynamic reactive power service from customers for perhaps $6/kVAR. This practice would provide for better voltage regulation in the distribution system and would provide an alternate revenue source to help amortize the cost of PV and CHP installations. As distribution and transmission systems are operated under rising levels of stress, the value of local dynamic reactive supply is expected to grow. Also, large power inverters, in the range of 500 kW to 1 MW, are expected to decrease in cost as they become mass produced. This report provides one data point which shows that the local supply of dynamic reactive power is marginally profitable at present for a hypothetical circuit. We expect that the trends of growing power flow on the existing system and mass production of inverters for distributed energy devices will make the dynamic supply of reactive power from customers an integral component of economical and reliable system operation in the future.

  3. Structural control Architecture Optimization for 3-D Systems Using Advanced Multi-Objective Genetic Algorithms

    E-Print Network [OSTI]

    Cha, Young Jin

    2010-01-14T23:59:59.000Z

    The architectures of the control devices in active control algorithm are an important fact in civil structural buildings. Traditional research has limitations in finding the optimal architecture of control devices such as using predefined numbers...

  4. E-Print Network 3.0 - advanced process control Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Reinforcement Learning Based Neural Controllers for Dynamic Processes without Exploration Frank... , the controller is able to learn offline on observed training data...

  5. E-Print Network 3.0 - advanced branching control Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control... caused by hard-to-predict branch mispredictions, by collapsing multiple control flow paths and scheduling... - tion of the branch guarding predicate. Depending on...

  6. BioSim: An Integrated Simulation of an Advanced Life Support System for Intelligent Control Research

    E-Print Network [OSTI]

    Kortenkamp, David

    waste heat. · Waste: collects and conditions waste material from anywhere in the vehicle revitalization, water recovery, food production, solid waste processing and the crew. The goal of autonomously acceptable food, and managing wastes. A typical advanced life support system consists of the following

  7. Advanced Controllers for Microelectromechanical Robert N. Dean, Jr. John Y. Hung Bogdan M. Wilamowski

    E-Print Network [OSTI]

    Wilamowski, Bogdan Maciej

    array chips for adaptive optic systems, potentially useful for low-cost advanced optical systems. Each capacitance. When a voltage v is applied, the resulting electrostatic force pulls the movable part toward (conductive) handle layer is used to fabricate the simple PPA. The 10 ,um thick Si device layer is used to set

  8. Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Cho, Kukwon [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

  9. E-Print Network 3.0 - advanced control methods Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    network is largely deter- mined by its flow-control: the method used... -the-fly scheduling of existing flow-control methods idles each buffer for a considerable period...

  10. Anisotropic reactive ion etching of vanadium dioxide

    E-Print Network [OSTI]

    Radle, Byron K

    1990-01-01T23:59:59.000Z

    . Weichold Vanadium dioxide (V02) was anisotropically reactive ion etched using carbon tetrafluoride (CF4) . CF4, as an etch gas, provided the chemistry along with the control needed to achieve an anisotropic etch. This chemistry was practically inert... with vanadium quite easily. This leads to interest in using a fluorine- based chemistry. The goal of this research is to produce a selective anisotropic reactive ion etch for VO2 /photoresist using only carbon tetrafluoride (CFq) . Reactive ion etching...

  11. Guidance Document Reactive Chemicals

    E-Print Network [OSTI]

    showers and chillers. Health Hazards: The reactive chemicals are grouped primarily because of the physical

  12. Active flow control in an advanced serpentine jet engine inlet duct

    E-Print Network [OSTI]

    Kirk, Aaron Michael

    2009-05-15T23:59:59.000Z

    ..........................................................................................................55 1 INTRODUCTION General Current trends in the advancement of U.S. military air superiority require aircraft that emit low radar and infrared signatures. With regards to propulsion, this need for stealth capabilities has led... strengthening, wooden ribs were integrated in the layers of fiberglass matting, as were wooden flanges for connecting adjacent sections. Rubber gasket material was compressed between the flanges during assembly to prevent leakage. In similar fashion...

  13. A Research Framework for Demonstrating Benefits of Advanced Control Room Technologies

    SciTech Connect (OSTI)

    Ronald Boring; Jeffrey Joe; Bruce Hallbert; Kenneth Thomas; Katya Le Blanc

    2014-12-01T23:59:59.000Z

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Previous research under the U.S. Department of Energys Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research presented here is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report serves as an outline for planned research on the benefits of greater modernization in the main control rooms of nuclear power plants.

  14. E-Print Network 3.0 - atom-diatom reactive scattering Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diatom reactive scattering Search Powered by Explorit Topic List Advanced Search Sample search results for: atom-diatom reactive scattering Page: << < 1 2 3 4 5 > >> 1 Eur. Phys....

  15. E-Print Network 3.0 - advanced combustion control Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Actually, the burning of organic... control equip ment; (4) low noise level; (S) self-sustaining combustion after initial pre-heating; and (6... combustion without fluid...

  16. E-Print Network 3.0 - advanced stability control Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stability Radius of an Optimal or an Approximate... background in production planning, scheduling and control, and in other real-life problems with sequencing... and the...

  17. NERI PROJECT 99-119. TASK 1. ADVANCED CONTROL TOOLS AND METHODS. FINAL REPORT

    SciTech Connect (OSTI)

    March-Leuba, J.A.

    2002-09-09T23:59:59.000Z

    Nuclear plants of the 21st century will employ higher levels of automation and fault tolerance to increase availability, reduce accident risk, and lower operating costs. Key developments in control algorithms, fault diagnostics, fault tolerance, and communication in a distributed system are needed to implement the fully automated plant. Equally challenging will be integrating developments in separate information and control fields into a cohesive system, which collectively achieves the overall goals of improved performance, safety, reliability, maintainability, and cost-effectiveness. Under the Nuclear Energy Research Initiative (NERI), the U. S. Department of Energy is sponsoring a project to address some of the technical issues involved in meeting the long-range goal of 21st century reactor control systems. This project, ''A New Paradigm for Automated Development Of Highly Reliable Control Architectures For Future Nuclear Plants,'' involves researchers from Oak Ridge National Laboratory, University of Tennessee, and North Carolina State University. This paper documents a research effort to develop methods for automated generation of control systems that can be traced directly to the design requirements. Our final goal is to allow the designer to specify only high-level requirements and stress factors that the control system must survive (e.g. a list of transients, or a requirement to withstand a single failure.) To this end, the ''control engine'' automatically selects and validates control algorithms and parameters that are optimized to the current state of the plant, and that have been tested under the prescribed stress factors. The control engine then automatically generates the control software from validated algorithms. Examples of stress factors that the control system must ''survive'' are: transient events (e.g., set-point changes, or expected occurrences such a load rejection,) and postulated component failures. These stress factors are specified by the designer and become a database of prescribed transients and component failures. The candidate control systems are tested, and their parameters optimized, for each of these stresses. Examples of high-level requirements are: response time less than xx seconds, or overshoot less than xx% ... etc. In mathematical terms, these types of requirements are defined as ''constraints,'' and there are standard mathematical methods to minimize an objective function subject to constraints. Since, in principle, any control design that satisfies all the above constraints is acceptable, the designer must also select an objective function that describes the ''goodness'' of the control design. Examples of objective functions are: minimize the number or amount of control motions, minimize an energy balance... etc.

  18. Trends in Energy Management Technology - Part 4: Review ofAdvanced Applications in Energy Management, Control, and InformationSystems

    SciTech Connect (OSTI)

    Yee, Gaymond; Webster, Tom

    2003-08-01T23:59:59.000Z

    In this article, the fourth in a series, we provide a review of advanced applications in Energy Management, Control, and Information Systems (EMCIS). The available features for these products are summarized and analyzed with regard to emerging trends in EMCIS and potential benefits to the Federal sector. The first article [1] covered enabling technologies for emerging energy management systems. The second article [2] serves as a basic reference for building control system (BCS) networking fundamentals and includes an assessment of current approaches to open communications. The third article [3] evaluated several products that exemplify the current state of practice in EMCIS. It is important for energy managers in the Federal sector to have a high level of knowledge and understanding of these complex energy management systems. This series of articles provides energy practitioners with some basic informational and educational tools to help make decisions relative to energy management systems design, specification, procurement, and energy savings potential.

  19. Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    Chan-Chiao Lin, Huei Peng and J. W. Grizzle University of Michigan Jason Liu and Matt Busdiecker Eaton Corporation Copyright © 2003 SAE International ABSTRACT The power management control system development management control system for the prototype truck produced by the Eaton Innovation Center

  20. E-Print Network 3.0 - advanced control tools Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    outside world. For example, tool agents are used by a debugger to control application process... to the front end or can distribute messages sent from the front end to the agents....

  1. A Versatile and Powerful Simulator for Design, Advanced Control and Expert Systems

    E-Print Network [OSTI]

    Schindler, H. E.; Leaver, E. W.; Shewchuk, C. F.

    and powerful steady state simulator which has been satisfactorily applied to both on-line and off-line applications for plant utility and other process systems. Designated as MASSBAL MK II, the simulator has a unique architecture, menu/and or graphic... optimization Process synthesis Start-up,shut-down,on-line changes Training Debugging, trouble-shooting and monitoring Control Plantwide control, scheduling and Economic management [1] MASSBAL MK II was developed over a two-year period by SACDA...

  2. Modular Inverter for Advanced Control Applications In the fall of 2003, a team of graduate students was assembled to design and construct a

    E-Print Network [OSTI]

    Kimball, Jonathan W.

    a set of well-documented inverters of various ratings capable of quickly implementing a new control-powernts2\\ece power design archives\\documents\\specification documents\\sd00004-001 modular inverter systemModular Inverter for Advanced Control Applications May 2006 In the fall of 2003, a team of graduate

  3. Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors

    SciTech Connect (OSTI)

    Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.; Mitchell, Mark R.; Gore, Bryan F.; Faris, Drury K.

    2009-10-09T23:59:59.000Z

    The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commissions (NRCs) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected to come from increasingly diverse educational and experiential backgrounds.

  4. Integration of Photovoltaics into Building Energy Usage through Advanced Control of Rooftop Unit

    SciTech Connect (OSTI)

    Starke, Michael R [ORNL] [ORNL; Nutaro, James J [ORNL] [ORNL; Irminger, Philip [ORNL] [ORNL; Ollis, Benjamin [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Kuruganti, Phani Teja [ORNL] [ORNL; Fugate, David L [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    This paper presents a computational approach to forecast photovoltaic (PV) power in kW based on a neural network linkage of publicly available cloud cover data and on-site solar irradiance sensor data. We also describe a control approach to utilize rooftop air conditioning units (RTUs) to support renewable integration. The PV forecasting method is validated using data from a rooftop PV panel installed on the Distributed Energy, Communications, and Controls (DECC) laboratory at Oak Ridge National Laboratory. The validation occurs in multiple phases to ensure that each component of the approach is the best representation of the actual expected output. The control of the RTU is based on model predictive methods.

  5. Field Test Results from Lidar Measured Yaw Control for Improved Yaw Alignment with the NREL Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Scholbrock, A.; Fleming, P.; Wright, A.; Slinger, C.; Medley, J.; Harris, M.

    2014-12-01T23:59:59.000Z

    This paper describes field tests of a light detection and ranging (lidar) device placed forward looking on the nacelle of a wind turbine and used as a wind direction measurement to directly control the yaw position of a wind turbine. Conventionally, a wind turbine controls its yaw direction using a nacelle-mounted wind vane. If there is a bias in the measurement from the nacelle-mounted wind vane, a reduction in power production will be observed. This bias could be caused by a number of issues such as: poor calibration, electromagnetic interference, rotor wake, or other effects. With a lidar mounted on the nacelle, a measurement of the wind could be made upstream of the wind turbine where the wind is not being influenced by the rotor's wake or induction zone. Field tests were conducted with the lidar measured yaw system and the nacelle wind vane measured yaw system. Results show that a lidar can be used to effectively measure the yaw error of the wind turbine, and for this experiment, they also showed an improvement in power capture because of reduced yaw misalignment when compared to the nacelle wind vane measured yaw system.

  6. Status Report on the Development of Micro-Scheduling Software for the Advanced Outage Control Center Project

    SciTech Connect (OSTI)

    Shawn St. Germain; Kenneth Thomas; Ronald Farris; Jeffrey Joe

    2014-09-01T23:59:59.000Z

    The long-term viability of existing nuclear power plants (NPPs) in the United States (U.S.) is dependent upon a number of factors, including maintaining high capacity factors, maintaining nuclear safety, and reducing operating costs, particularly those associated with refueling outages. Refueling outages typically take 20-30 days, and for existing light water NPPs in the U.S., the reactor cannot be in operation during the outage. Furthermore, given that many NPPs generate between $1-1.5 million/day in revenue when in operation, there is considerable interest in shortening the length of refueling outages. Yet, refueling outages are highly complex operations, involving multiple concurrent and dependent activities that are difficult to coordinate. Finding ways to improve refueling outage performance while maintaining nuclear safety has proven to be difficult. The Advanced Outage Control Center project is a research and development (R&D) demonstration activity under the Light Water Reactor Sustainability (LWRS) Program. LWRS is a R&D program which works with industry R&D programs to establish technical foundations for the licensing and managing of long-term, safe, and economical operation of current NPPs. The Advanced Outage Control Center project has the goal of improving the management of commercial NPP refueling outages. To accomplish this goal, this INL R&D project is developing an advanced outage control center (OCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This report describes specific recent efforts to develop a capability called outage Micro-Scheduling. Micro-Scheduling is the ability to allocate and schedule outage support task resources on a sub-hour basis. Micro-Scheduling is the real-time fine-tuning of the outage schedule to react to the actual progress of the primary outage activities to ensure that support task resources are optimally deployed with the least amount of delay and unproductive use of resources. The remaining sections of this report describe in more detail the scheduling challenges that occur during outages, how a Micro-Scheduling capability helps address those challenges, and provides a status update on work accomplished to date and the path forward.

  7. Advanced emissions control development program. Quarterly technical progress report No. 9, October 1--December 31, 1996

    SciTech Connect (OSTI)

    Evans, A.P.

    1996-12-31T23:59:59.000Z

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U.S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emission compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emission control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  8. CONTROL-THEORY AND ADVANCED TECHNOLOGY Vol. 9, No.2, pp.501-515, June, 1993

    E-Print Network [OSTI]

    Benmei, Chen

    , H2 and H co optimal control. This paper is an extension of the results of Chen, Saberi and Sannuti transfer recovery (Zhang and Freudenberg, 1990), H2-optimization (Chen, Saberi, Sannuti and Shamash, 1992) and H co-optimization(Saberi et aI., 1991). Traditionally, the minimum phase/all-pass factorization has

  9. E-Print Network 3.0 - advanced pwr fuel Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced nuclear reactor theory... equations, prompt jump approximation; subcritical reactor kinetics, circulating fuel reactor dynamics 5... Short-term Reactivity...

  10. On Some Properties of Instantaneous Active and Reactive Powers

    E-Print Network [OSTI]

    Czarnecki, Leszek S.

    On Some Properties of Instantaneous Active and Reactive Powers Leszek S. CZARNECKI, Fellow IEEE Louisiana State University, USA Abstract: Some features of the instantaneous active and reactive powers p control. Also it was shown that the instantaneous reactive power q cannot be interpreted as a measure

  11. RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Doebber, I.; Dean, J.; Dominick, J.; Holland, G.

    2014-03-01T23:59:59.000Z

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This was one of several demonstrations of new and underutilized commercial energy efficiency technologies. The consistent year-round demand for air conditioning and dehumidification in Hawaii provides an advantageous demonstration location for advanced rooftop control (ARC) retrofit kits to packaged rooftop units (RTUs). This report summarizes the field demonstration of ARCs installed on nine RTUs serving a 70,000-ft2 exchange store (large retail) and two RTUs, each serving small office buildings located on Joint Base Pearl Harbor-Hickam (JBPHH).

  12. Accelerating development of advanced inverters : evaluation of anti-islanding schemes with grid support functions and preliminary laboratory demonstration.

    SciTech Connect (OSTI)

    Neely, Jason C.; Gonzalez, Sigifredo; Ropp, Michael [Northern Plains Power Technologies, Brookings, SD] [Northern Plains Power Technologies, Brookings, SD; Schutz, Dustin [Northern Plains Power Technologies, Brookings, SD] [Northern Plains Power Technologies, Brookings, SD

    2013-11-01T23:59:59.000Z

    The high penetration of utility interconnected photovoltaic (PV) systems is causing heightened concern over the effect that variable renewable generation will have on the electrical power system (EPS). These concerns have initiated the need to amend the utility interconnection standard to allow advanced inverter control functionalities that provide: (1) reactive power control for voltage support, (2) real power control for frequency support and (3) better tolerance of grid disturbances. These capabilities are aimed at minimizing the negative impact distributed PV systems may have on EPS voltage and frequency. Unfortunately, these advanced control functions may interfere with island detection schemes, and further development of advanced inverter functions requires a study of the effect of advanced functions on the efficacy of antiislanding schemes employed in industry. This report summarizes the analytical, simulation and experimental work to study interactions between advanced inverter functions and anti-islanding schemes being employed in distributed PV systems.

  13. Advanced engine management of individual cylinders for control of exhaust species

    DOE Patents [OSTI]

    Graves, Ronald L [Knoxville, TN; West, Brian H [Knoxville, TN; Huff, Shean P [Knoxville, TN; Parks, II, James E

    2008-12-30T23:59:59.000Z

    A method and system controls engine-out exhaust species of a combustion engine having a plurality of cylinders. The method typically includes various combinations of steps such as controlling combustion parameters in individual cylinders, grouping the individual cylinders into a lean set and a rich set of one or more cylinders, combusting the lean set in a lean combustion parameter condition having a lean air:fuel equivalence ratio, combusting the rich set in a rich combustion parameter condition having a rich air:fuel equivalence ratio, and adjusting the lean set and the rich set of one or more cylinders to generate net-lean combustion. The exhaust species may have elevated concentrations of hydrogen and oxygen.

  14. Advances in Ultrafast Control and Probing of Correlated-Electron Materials

    SciTech Connect (OSTI)

    Wall, Simon; Rini, Matteo; Dhesi, Sarnjeet S.; Schoenlein, Robert W.; Cavalleri, Andrea

    2011-02-01T23:59:59.000Z

    In this paper, we present recent results on ultrafast control and probing of strongly correlated-electron materials. We focus on magnetoresistive manganites, applying excitation and probing wavelengths that cover the mid-IR to the soft X-rays. In analogy with near-equilibrium filling and bandwidth control of phase transitions, our approach uses both visible and mid-IR pulses to stimulate the dynamics by exciting either charges across electronic bandgaps or specific vibrational resonances. X-rays are used to unambiguously measure the microscopic electronic, orbital, and structural dynamics. Our experiments dissect and separate the nonequilibrium physics of these compounds, revealing the complex interplay and evolution of spin, lattice, charge, and orbital degrees of freedoms in the time domain.

  15. Joint System Prognostics For Increased Efficiency And Risk Mitigation In Advanced Nuclear Reactor Instrumentation and Control

    SciTech Connect (OSTI)

    Donald D. Dudenhoeffer; Tuan Q. Tran; Ronald L. Boring; Bruce P. Hallbert

    2006-08-01T23:59:59.000Z

    The science of prognostics is analogous to a doctor who, based on a set of symptoms and patient tests, assesses a probable cause, the risk to the patient, and a course of action for recovery. While traditional prognostics research has focused on the aspect of hydraulic and mechanical systems and associated failures, this project will take a joint view in focusing not only on the digital I&C aspect of reliability and risk, but also on the risks associated with the human element. Model development will not only include an approximation of the control system physical degradation but also on human performance degradation. Thus the goal of the prognostic system is to evaluate control room operation; to identify and potentially take action when performance degradation reduces plant efficiency, reliability or safety.

  16. Advanced Outage and Control Center: Strategies for Nuclear Plant Outage Work Status Capabilities

    SciTech Connect (OSTI)

    Gregory Weatherby

    2012-05-01T23:59:59.000Z

    The research effort is a part of the Light Water Reactor Sustainability (LWRS) Program. LWRS is a research and development program sponsored by the Department of Energy, performed in close collaboration with industry to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. The LWRS Program serves to help the US nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The Outage Control Center (OCC) Pilot Project was directed at carrying out the applied research for development and pilot of technology designed to enhance safe outage and maintenance operations, improve human performance and reliability, increase overall operational efficiency, and improve plant status control. Plant outage management is a high priority concern for the nuclear industry from cost and safety perspectives. Unfortunately, many of the underlying technologies supporting outage control are the same as those used in the 1980s. They depend heavily upon large teams of staff, multiple work and coordination locations, and manual administrative actions that require large amounts of paper. Previous work in human reliability analysis suggests that many repetitive tasks, including paper work tasks, may have a failure rate of 1.0E-3 or higher (Gertman, 1996). With between 10,000 and 45,000 subtasks being performed during an outage (Gomes, 1996), the opportunity for human error of some consequence is a realistic concern. Although a number of factors exist that can make these errors recoverable, reducing and effectively coordinating the sheer number of tasks to be performed, particularly those that are error prone, has the potential to enhance outage efficiency and safety. Additionally, outage management requires precise coordination of work groups that do not always share similar objectives. Outage managers are concerned with schedule and cost, union workers are concerned with performing work that is commensurate with their trade, and support functions (safety, quality assurance, and radiological controls, etc.) are concerned with performing the work within the plants controls and procedures. Approaches to outage management should be designed to increase the active participation of work groups and managers in making decisions that closed the gap between competing objectives and the potential for error and process inefficiency.

  17. Cyclone Boiler Field Testing of Advanced Layered NOx Control Technology in Sioux Unit 1

    SciTech Connect (OSTI)

    Marc A. Cremer; Bradley R. Adams

    2006-06-30T23:59:59.000Z

    A four week testing program was completed during this project to assess the ability of the combination of deep staging, Rich Reagent Injection (RRI), and Selective Non-Catalytic Reduction (SNCR) to reduce NOx emissions below 0.15 lb/MBtu in a cyclone fired boiler. The host site for the tests was AmerenUE's Sioux Unit 1, a 500 MW cyclone fired boiler located near St. Louis, MO. Reaction Engineering International (REI) led the project team including AmerenUE, FuelTech Inc., and the Electric Power Research Institute (EPRI). This layered approach to NOx reduction is termed the Advanced Layered Technology Approach (ALTA). Installed RRI and SNCR port locations were guided by computational fluid dynamics (CFD) based modeling conducted by REI. During the parametric testing, NOx emissions of 0.12 lb/MBtu were achieved consistently from overfire air (OFA)-only baseline NOx emissions of 0.25 lb/MBtu or less, when firing the typical 80/20 fuel blend of Powder River Basin (PRB) and Illinois No.6 coals. From OFA-only baseline levels of 0.20 lb/MBtu, NOx emissions of 0.12 lb/MBtu were also achieved, but at significantly reduced urea flow rates. Under the deeply staged conditions that were tested, RRI performance was observed to degrade as higher blends of Illinois No.6 were used. NOx emissions achieved with ALTA while firing a 60/40 blend were approximately 0.15 lb/MBtu. NOx emissions while firing 100% Illinois No.6 were approximately 0.165 lb/MBtu. Based on the performance results of these tests, economics analyses of the application of ALTA to a nominal 500 MW cyclone unit show that the levelized cost to achieve 0.15 lb/MBtu is well below 75% of the cost of a state of the art SCR.

  18. GUIDELINES FOR IMPLEMENTATION OF AN ADVANCED OUTAGE CONTROL CENTER TO IMPROVE OUTAGE COORDINATION, PROBLEM RESOLUTION, AND OUTAGE RISK MANAGEMENT

    SciTech Connect (OSTI)

    Germain, Shawn St; Farris, Ronald; Whaley, April M; Medema, Heather; Gertman, David

    2014-09-01T23:59:59.000Z

    This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provide the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Managing NPP outages is a complex and difficult task due to the large number of maintenance and repair activities that are accomplished in a short period of time. During an outage, the outage control center (OCC) is the temporary command center for outage managers and provides several critical functions for the successful execution of the outage schedule. Essentially, the OCC functions to facilitate information inflow, assist outage management in processing information, and to facilitate the dissemination of information to stakeholders. Currently, outage management activities primarily rely on telephone communication, face to face reports of status, and periodic briefings in the OCC. It is a difficult task to maintain current the information related to outage progress and discovered conditions. Several advanced communication and collaboration technologies have shown promise for facilitating the information flow into, across, and out of the OCC. The use of these technologies will allow information to be shared electronically, providing greater amounts of real-time information to the decision makers and allowing OCC coordinators to meet with supporting staff remotely. Passively monitoring status electronically through advances in the areas of mobile worker technologies, computer-based procedures, and automated work packages will reduce the current reliance on manually reporting progress. The use of these technologies will also improve the knowledge capture and management capabilities of the organization. The purpose of this research is to improve management of NPP outages through the development of an advanced outage control center (AOCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This technical report for industry implementation outlines methods and considerations for the establishment of an AOCC. This report provides a process for implementation of a change management plan, evaluation of current outage processes, the selection of technology, and guidance for the implementation of the selected technology. Methods are presented for both adoption of technologies within an existing OCC and for a complete OCC replacement, including human factors considerations for OCC design and setup.

  19. Advanced Models and Controls for Prediction and Extension of Battery Lifetime (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Pesaran, A.

    2014-02-01T23:59:59.000Z

    Predictive models of capacity and power fade must consider a multiplicity of degradation modes experienced by Li-ion batteries in the automotive environment. Lacking accurate models and tests, lifetime uncertainty must presently be absorbed by overdesign and excess warranty costs. To reduce these costs and extend life, degradation models are under development that predict lifetime more accurately and with less test data. The lifetime models provide engineering feedback for cell, pack and system designs and are being incorporated into real-time control strategies.

  20. A novel feedback algorithm for simulating controlled dynamics and confinement in the advanced reversed-field pinch

    SciTech Connect (OSTI)

    Dahlin, J.-E.; Scheffel, J. [Alfven Laboratory, Royal Institute of Technology, 10044 Stockholm (Sweden)

    2005-06-15T23:59:59.000Z

    In the advanced reversed-field pinch (RFP), the current density profile is externally controlled to diminish tearing instabilities. Thus the scaling of energy confinement time with plasma current and density is improved substantially as compared to the conventional RFP. This may be numerically simulated by introducing an ad hoc electric field, adjusted to generate a tearing mode stable parallel current density profile. In the present work a current profile control algorithm, based on feedback of the fluctuating electric field in Ohm's law, is introduced into the resistive magnetohydrodynamic code DEBSP [D. D. Schnack and D. C. Baxter, J. Comput. Phys. 55, 485 (1984); D. D. Schnack, D. C. Barnes, Z. Mikic, D. S. Marneal, E. J. Caramana, and R. A. Nebel, Comput. Phys. Commun. 43, 17 (1986)]. The resulting radial magnetic field is decreased considerably, causing an increase in energy confinement time and poloidal {beta}. It is found that the parallel current density profile spontaneously becomes hollow, and that a formation, being related to persisting resistive g modes, appears close to the reversal surface.

  1. Achievement of Low Emissions by Engine Modification to Utilize Gas-to-Liquid Fuel and Advanced Emission Controls on a Class 8 Truck

    SciTech Connect (OSTI)

    Alleman, T. L.; Tennant, C. J.; Hayes, R. R.; Miyasato, M.; Oshinuga, A.; Barton, G.; Rumminger, M.; Duggal, V.; Nelson, C.; Ray, M.; Cherrillo, R. A.

    2005-11-01T23:59:59.000Z

    A 2002 Cummins ISM engine was modified to be optimized for operation on gas-to-liquid (GTL) fuel and advanced emission control devices. The engine modifications included increased exhaust gas recirculation (EGR), decreased compression ratio, and reshaped piston and bowl configuration.

  2. Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their

    E-Print Network [OSTI]

    Cummings, Mary "Missy"

    Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their effects on human reliability is critical of complexity leveraging network theory. INTRODUCTION The nuclear power industry in United States has declined

  3. Advanced Natural Gas Reciprocating Engine: Parasitic Loss Control through Surface Modification

    SciTech Connect (OSTI)

    Farshid Sadeghi; Chin-Pei Wang

    2008-12-31T23:59:59.000Z

    This report presents results of our investigation on parasitic loss control through surface modification in reciprocating engine. In order to achieve the objectives several experimental and corresponding analytical models were designed and developed to corroborate our results. Four different test rigs were designed and developed to simulate the contact between the piston ring and cylinder liner (PRCL) contact. The Reciprocating Piston Test Rig (RPTR) is a novel suspended liner test apparatus which can be used to accurately measure the friction force and side load at the piston-cylinder interface. A mixed lubrication model for the complete ring-pack and piston skirt was developed to correlate with the experimental measurements. Comparisons between the experimental and analytical results showed good agreement. The results revealed that in the reciprocating engines higher friction occur near TDC and BDC of the stroke due to the extremely low piston speed resulting in boundary lubrication. A Small Engine Dynamometer Test Rig was also designed and developed to enable testing of cylinder liner under motored and fired conditions. Results of this study provide a baseline from which to measure the effect of surface modifications. The Pin on Disk Test Rig (POD) was used in a flat-on-flat configuration to study the friction effect of CNC machining circular pockets and laser micro-dimples. The results show that large and shallow circular pockets resulted in significant friction reduction. Deep circular pockets did not provide much load support. The Reciprocating Liner Test Rig (RLTR) was designed to simplifying the contact at the PRCL interface. Accurate measurement of friction was obtained using 3-axis piezoelectric force transducer. Two fiber optic sensors were used to measure the film thickness precisely. The results show that the friction force is reduced through the use of modified surfaces. The Shear Driven Test Rig (SDTR) was designed to simulate the mechanism of the piston ring pass through the liner. Micro PIV system was provided to observing the flow of lubricant in the cavity (pocket). The Vorticity-Stream Function Code was developed to simulate the incompressible fluid flow in the rectangular cavity.

  4. 248 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 17, NO. 1, JANUARY 2002 Modeling, Analysis, and Control of a Current Source

    E-Print Network [OSTI]

    Lehn, Peter W.

    --This paper presents a new approach for the dy- namic control of a current source inverter (CSI)-based STATic-commutated inverters to achieve advanced reactive power control have been confirmed by many researchers [1248 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 17, NO. 1, JANUARY 2002 Modeling, Analysis

  5. AISI/DOE Advanced Process Control Program Vol. 1 of 6: Optical Sensors and Controls for Improved Basic Oxygen Furnace Operations

    SciTech Connect (OSTI)

    Sarah Allendorf; David Ottesen; Donald Hardesty

    2002-01-31T23:59:59.000Z

    The development of an optical sensor for basic oxygen furnace (BOF) off-gas composition and temperature in this Advanced Process Control project has been a laboratory spectroscopic method evolve into a pre-commercialization prototype sensor system. The sensor simultaneously detects an infrared tunable diode laser ITDL beam transmitted through the process off-gas directly above the furnace mouth, and the infrared greybody emission from the particulate-laden off-gas stream. Following developmental laboratory and field-testing, the sensor prototype was successfully tested in four long-term field trials at Bethlehem Steel's Sparrows Point plant in Baltimore, MD> The resulting optical data were analyzed and reveal correlations with four important process variables: (1) bath turndown temperature; (2) carbon monoxide post-combustion control; (2) bath carbon concentration; and (4) furnace slopping behavior. The optical sensor measurement of the off-gas temperature is modestly correlated with bath turndown temperature. A detailed regression analysis of over 200 heats suggests that a dynamic control level of +25 Degree F can be attained with a stand-alone laser-based optical sensor. The ability to track off-gas temperatures to control post-combustion lance practice is also demonstrated, and may be of great use in optimizing post-combustion efficiency in electric furnace steelmaking operations. In addition to the laser-based absorption spectroscopy data collected by this sensor, a concurrent signal generated by greybody emission from the particle-laden off-gas was collected and analyzed. A detailed regression analysis shows an excellent correlation of a single variable with final bath turndown carbon concentration. Extended field trials in 1998 and early 1999 show a response range from below 0.03% to a least 0.15% carbon concentration with a precision of +0.0007%. Finally, a strong correlation between prolonged drops in the off-gas emission signal and furnace slopping events was observed. A simple computer algorithm was written that successfully predicts furnace slopping for 90% of the heats observed; over 80% are predicted with at least a 30-second warning prior to the initial slopping events,

  6. Advanced Thermal Control

    Broader source: Energy.gov (indexed) [DOE]

    Requirements 0 100 200 300 400 500 600 2000 2005 2010 2015 Year Chip Max Steady State Power (W), Heat Flux (Wcm2) Flux Power Other industry heat flux projections Source:...

  7. Advanced Rooftop Unit Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Energy Efficiency Emerging Technologies Current Research Portfolio...

  8. Instrumentation and Control and Human Machine Interface Science and Technology Roadmap in Support of Advanced Reactors and Fuel Programs in the U.S.

    SciTech Connect (OSTI)

    Miller, Don W.; Arndt, Steven A.; Dudenhoeffer, Donald D.; Hallbert, Bruce P.; Bond, Leonard J.; Holcomb, David E.; Wood, Richard T.; Naser, Joseph A.; O'Hara, John M.; Quinn, Edward L.

    2008-06-01T23:59:59.000Z

    The purpose of this paper is to provide an overview of the current status of the Instrumentation, Control and Human Machine Interface (ICHMI) Science and Technology Roadmap (Reference xi) that was developed to address the major challenges in this technical area for the Gen IV and other U.S. Department of Energy (DOE) initiatives that support future deployments of nuclear energy systems. Reliable, capable ICHMI systems will be necessary for the advanced nuclear plants to be economically competitive. ICHMI enables measurement, control, protection, monitoring, and maintenance for processes and components. Through improvements in the technologies and demonstration of their use to facilitate licensing, ICHMI can contribute to the reduction of plant operations and maintenance costs while helping to ensure high plant availability. The impact of ICHMI can be achieved through effective use of the technologies to improve operational efficiency and optimize use of human resources. However, current licensing experience with digital I&C systems has provided lessons learned concerning the difficulties that can be encountered when introducing advanced technologies with expanded capabilities. Thus, in the development of advanced nuclear power designs, it will be important to address both the technical foundations of ICHMI systems and their licensing considerations. The ICHMI roadmap will identify the necessary research, development and demonstration activities that are essential to facilitate necessary technology advancement and resolve outstanding issues.

  9. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    SciTech Connect (OSTI)

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-04-01T23:59:59.000Z

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability.

  10. Optimization of Advanced Diesel Engine Combustion Strategies

    Broader source: Energy.gov (indexed) [DOE]

    - UW-ERC 1 "University Research in Advanced Combustion and Emissions Control" Optimization of Advanced Diesel Engine Combustion Strategies Profs. Rolf Reitz, D. Foster, J....

  11. Advanced intelligent coordinated control of coal fired power plant based on fuzzy reasoning and auto-tuning

    SciTech Connect (OSTI)

    Li, S.Y.; Liu, H.B.; Cai, W.J.; Soh, Y.C.; Xie, L.H. [Shanghai Jiao Tong University, Shanghai (China)

    2004-07-01T23:59:59.000Z

    The load following operation of coal-fired boiler-turbine unit in power plants can lead to changes in operating points, and it results in nonlinear variations of the plant variables and parameters. As there exist strong couplings between the main steam pressure control loop and the power output control loop in the boiler-turbine unit with large time-delay and uncertainties, automatic coordinated control of the two loops is a very challenging problem. This paper presents a new coordinated control strategy (CCS) which is organized into two levels: a basic control level and a high supervision level. PID-type controllers are used in the basic level to perform basic control functions while the decoupling between two control loops can be realized in the high level. Moreover, PID-type controllers can be auto-tuned to achieve a better control performance in the whole operating range and to reject the unmeasurable disturbances. A special subclass of fuzzy inference systems, namely the Gaussian partition system with evenly spaced midpoints, is also proposed to auto-tune the PID controller in the main steam pressure loop based on the error signal and its first difference to overcome uncertainties caused by changing fuel calorific value, machine wear, contamination of the boiler heating surfaces and plant modeling errors, etc. The developed CCS has been implemented in a power plant in China, and satisfactory industrial operation results demonstrate that the proposed control strategy has enhanced the adaptability and robustness of the process.

  12. Reactive Power Compensating System.

    DOE Patents [OSTI]

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04T23:59:59.000Z

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  13. Biodiesel Fuel Property Effects on Particulate Matter Reactivity

    SciTech Connect (OSTI)

    Williams, A.; Black, S.; McCormick, R. L.

    2010-06-01T23:59:59.000Z

    Controlling diesel particulate emissions to meet the 2007 U.S. standard requires the use of a diesel particulate filter (DPF). The reactivity of soot, or the carbon fraction of particulate matter, in the DPF and the kinetics of soot oxidation are important in achieving better control of aftertreatment devices. Studies showed that biodiesel in the fuel can increase soot reactivity. This study therefore investigated which biodiesel fuel properties impact reactivity. Three fuel properties of interest included fuel oxygen content and functionality, fuel aromatic content, and the presence of alkali metals. To determine fuel effects on soot reactivity, the performance of a catalyzed DPF was measured with different test fuels through engine testing and thermo-gravimetric analysis. Results showed no dependence on the aromatic content or the presence of alkali metals in the fuel. The presence and form of fuel oxygen was the dominant contributor to faster DPF regeneration times and soot reactivity.

  14. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  15. Dynamically stable, self-similarly evolving, and self-organized states of high beta tokamak and reversed pinch plasmas and advanced active control

    SciTech Connect (OSTI)

    Kondoh, Yoshiomi; Fukasawa, Toshinobu [Division of Electrical and Electronic Engineering, Graduate School, Gunma University, Kiryu, Gunma 376-8515 (Japan)

    2009-11-15T23:59:59.000Z

    Generalized simultaneous eigenvalue equations derived from a generalized theory of self-organization are applied to a set of simultaneous equations for two-fluid model plasmas. An advanced active control by using theoretical time constants is proposed by predicting quantities to be controlled. Typical high beta numerical configurations are presented for the ultra low q tokamak plasmas and the reversed-field pinch (RFP) ones in cylindrical geometry by solving the set of simultaneous eigenvalue equations. Improved confinement with no detectable saw-teeth oscillations in tokamak experiments is reasonably explained by the shortest time constant of ion flow. The shortest time constant of poloidal ion flow is shown to be a reasonable mechanism for suppression of magnetic fluctuations by pulsed poloidal current drives in RFP experiments. The bifurcation from basic eigenmodes to mixed ones deduced from stability conditions for eigenvalues is shown to be a good candidate for the experimental bifurcation from standard RFP plasmas to their improved confinement regimes.

  16. A 100 MWe advanced sodium-cooled fast reactor core concept

    SciTech Connect (OSTI)

    Kim, T. K.; Grandy, C.; Hill, R. N. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2012-07-01T23:59:59.000Z

    An Advanced sodium-cooled Fast Reactor core concept (AFR-100) was developed targeting a small electrical grid to be transportable to the plant site and operable for a long time without frequent refueling. The reactor power rating was strategically decided to be 100 MWe, and the core barrel diameter was limited to 3.0 m for transportability. The design parameters were determined by relaxing the peak fast fluence limit and bulk coolant outlet temperature to beyond irradiation experience assuming that advanced cladding and structural materials developed under US-DOE programs would be available when the AFR-100 is deployed. With a de-rated power density and U-Zr binary metallic fuel, the AFR-100 can maintain criticality for 30 years without refueling. The average discharge burnup of 101 MWd/kg is comparable to conventional design values, but the peak discharge fast fluence of {approx}6x10{sup 23} neutrons/cm{sup 2} is beyond the current irradiation experiences with HT-9 cladding. The evaluated reactivity coefficients provide sufficient negative feedbacks and the reactivity control systems provide sufficient shutdown margins. The integral reactivity parameters obtained from quasi-static reactivity balance analysis indicate that the AFR-100 meets the sufficient conditions for acceptable asymptotic core outlet temperature following postulated unprotected accidents. Additionally, the AFR-100 has sufficient thermal margins by grouping the fuel assemblies into eight orifice zones. (authors)

  17. Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies

    SciTech Connect (OSTI)

    Bruce P. Hallbert; J. J. Persensky; Carol Smidts; Tunc Aldemir; Joseph Naser

    2009-08-01T23:59:59.000Z

    The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U.S. Department of Energy (DOE). The program is operated in close collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of Nuclear Power Plants that are currently in operation. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. Advanced instruments and control (I&C) technologies are needed to support the safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear assets. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. The strategic objective of the LWRS Program Advanced Instrumentation, Information, and Control Systems Technology R&D pathway is to establish a technical basis for new technologies needed to achieve safety and reliability of operating nuclear assets and to implement new technologies in nuclear energy systems. This will be achieved by carrying out a program of R&D to develop scientific knowledge in the areas of: Sensors, diagnostics, and prognostics to support characterization and prediction of the effects of aging and degradation phenomena effects on critical systems, structures, and components (SSCs) Online monitoring of SSCs and active components, generation of information, and methods to analyze and employ online monitoring information New methods for visualization, integration, and information use to enhance state awareness and leverage expertise to achieve safer, more readily available electricity generation. As an initial step in accomplishing this effort, the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies was held March 2021, 2009, in Columbus, Ohio, to enable industry stakeholders and researchers in identification of the nuclear industrys needs in the areas of future I&C technologies and corresponding technology gaps and research capabilities. Approaches for collaboration to bridge or fill the technology gaps were presented and R&D activities and priorities recommended. This report documents the presentations and discussions of the workshop and is intended to serve as a basis for the plan under development to achieve the goals of the I&C research pathway.

  18. LIGHT WATER REACTOR SUSTAINABILITY PROGRAM ADVANCED INSTRUMENTATION, INFORMATION, AND CONTROL SYSTEMS TECHNOLOGIES TECHNICAL PROGRAM PLAN FOR 2013

    SciTech Connect (OSTI)

    Hallbert, Bruce; Thomas, Ken

    2014-07-01T23:59:59.000Z

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  19. E-Print Network 3.0 - anti-glutathione peroxidase-antibody reactive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Reactive Support and Voltage Control Service: Key Issues and Challenges George Gross, Paolo... -mail: gianfranco.chicco@polito.it Abstract -- This paper reviews...

  20. U.S. Department Of Energy Advanced Small Modular Reactor R&D Program: Instrumentation, Controls, and Human-Machine Interface (ICHMI) Pathway

    SciTech Connect (OSTI)

    Holcomb, David Eugene [ORNL; Wood, Richard Thomas [ORNL

    2013-01-01T23:59:59.000Z

    Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by licenseability concerns. Although the recent progress in constructing new plants has spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, development of advanced reactor concepts, such as Generation IV designs and small modular reactors, introduces different plant conditions (e.g., higher temperatures, different coolants, etc.) and unique plant configurations (e.g., multiunit plants with shared systems, balance of plant architectures with reconfigurable co-generation options) that increase the need for enhanced ICHMI capabilities to fully achieve industry goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, significant challenges remain to be addressed to enable the nuclear power industry to complete the transition to safe and comprehensive use of modern ICHMI technology. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, several DOE programs have substantial ICHMI RD&D elements within their respective research portfolios. This paper describes current ICHMI research in support of advanced small modular reactors. The objectives that can be achieved through execution of the defined RD&D are to provide optimal technical solutions to critical ICHMI issues, resolve technology gaps arising from the unique measurement and control characteristics of advanced reactor concepts, provide demonstration of needed technologies and methodologies in the nuclear power application domain, mature emerging technologies to facilitate commercialization, and establish necessary technical evidence and application experience to enable timely and predictable licensing. 1 Introduction Instrumentation, controls, and human-machine interfaces are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface (ICHMI) systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by licenseability concerns. Although the recent progress in constructing new plants has spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, development of advanced reactor concepts, such as Generation IV designs and small modular reactors, introduces different plant conditions (e.g., higher temperatures, different coolants, etc.) and unique plant configurations (e.g., multiunit plants with shared systems, balance of plant architectures with reconfigurable co-generation options) that increase the need for enhanced ICHMI capabilities to fully achieve industry goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, significant challenges remain to be addressed to enable the nuclear power industry to complete the transition to safe and comprehensive use of m

  1. Advanced control room design review guidelines: Integration of the NUREG-0700 guidelines and development of new human-system interface guidelines

    SciTech Connect (OSTI)

    Carter, R.J.

    1997-07-01T23:59:59.000Z

    This report documents the work conducted in four tasks of the Nuclear Regulatory Commission (NRC) project entitled Review Criteria for Human Factors Aspects of Advanced Controls and Instrumentation. The purpose of the first task was to integrate the applicable sections of NUREG-0700 into the advanced control room design review (ACRDR) guidelines to ensure that all applicable guidelines are together in one document and conveniently accessible to users. The primary objective of the second task was to formulate a strategy for the development of new ACRDR guidelines that have not otherwise been identified. The main focus of the third task was to modify the individual ACRDR guidelines generated to date to ensure that they are suitable for the intended nuclear power plant (NPP) control station system application. The goal of the fourth task was to develop human factors guidelines for two human-system interface categories that are missing from the current ACRDR guidelines document. During the first task those areas in NUREG-0700 that are not addressed by the ACRDR guidelines document were identified, the areas were subsequently reviewed against six recent industry human factors engineering review guidelines, and the NUREG-0700 guidelines were updated as necessary. In the second task 13 general categories of human-system interface guidelines that are either missing from or not adequately addressed by the ACRDR document were discovered. An approach was derived for the development of new ACRDR guidelines, a preliminary assessment of the available sources that may be useful in the creation of new guidelines and their applicability to the identified human-system interface categories was performed, and an estimate was made of the amount of time and level of effort required to complete the development of needed new ACRDR guidelines. During the third task those NPP control station systems to which the NUREG-0700 and ACRDR guidelines apply were identified, matrices of such applicability were developed to support the needs of the NRC inspectors and reviewers, a guideline modification audit and tracking system was designed, and the ACRDR guidelines were reviewed and modified where appropriate to ensure that their language is applicable to the nuclear industry. In the fourth task control and input device guidelines were generated and human factors guidelines for specific nuclear operations were drafted.

  2. PHYSICAL FIDELITY CONSIDERATIONS FOR NRC ADVANCED REACTOR CONTROL ROOM TRAINING SIMULATORS USED FOR INSPECTOR/EXAMINER TRAINING

    SciTech Connect (OSTI)

    Branch, Kristi M.; Mitchell, Mark R.; Miller, Mark; Cochrum, Steven

    2010-11-07T23:59:59.000Z

    This paper describes research into the physical fidelity requirements of control room simulators to train U.S. Nuclear Regulatory Commission (NRC) staff for their duties as inspectors and license examiners for next-generation nuclear power plants. The control rooms of these power plants are expected to utilize digital instrumentation and controls to a much greater extent than do current plants. The NRC is assessing training facility needs, particularly for control room simulators, which play a central role in NRC training. Simulator fidelity affects both training effectiveness and cost. Research has shown high simulation fidelity sometimes positively affects transfer to the operational environment but sometimes makes no significant difference or actually impedes learning. The conditions in which these different effects occur are often unclear, especially for regulators (as opposed to operators) about whom research is particularly sparse. This project developed an inventory of the tasks and knowledges, skills, and abilities that NRC regulators need to fulfill job duties and used expert panels to characterize the inventory items by type and level of cognitive/behavioral capability needed, difficulty to perform, importance to safety, frequency of performance, and the importance of simulator training for learning these capabilities. A survey of current NRC staff provides information about the physical fidelity of the simulator on which the student trained to the control room to which the student was assigned and the effect lack of fidelity had on learning and job performance. The study concludes that a high level of physical fidelity is not required for effective training of NRC staff.

  3. Proceedings of the 2002 Advanced Vehicle Control Conference, Hiroshima, Japan, September 2002 Control of a Hybrid Electric Truck Based on Driving

    E-Print Network [OSTI]

    Peng, Huei

    initiated, aiming to duplicate the success of hybrid powertrain on passenger cars to light and heavy trucks demonstrated by several prototype hybrid passenger cars, produced by the PNGV program, will be an unrealistic Control of a Hybrid Electric Truck Based on Driving Pattern Recognition Chan-Chiao Lin, Huei Peng Soonil

  4. An advanced control system for fine coal flotation. Fourth quarterly technical progress report, July 1, 1996--September 30, 1996

    SciTech Connect (OSTI)

    Adel, G.T.; Luttrell, G.H.

    1997-03-04T23:59:59.000Z

    A model-based flotation control scheme is being implemented to achieve optimal performance in the handling and treatment of fine coal. The control scheme monitors flotation performance through on-line analysis of ash content. Then, based on the economic and metallurgical performance of the circuit, variables such as reagent dosage, pulp density and pulp level are adjusted using model-based control algorithms to compensate for feed variations and other process disturbances. Recent developments in sensor technology are being applied for on-line determination of slurry ash content. During the fourth quarter of this project, a final attempt was made to calibrate a video-based ash analyzer for use in this application. It was concluded that the low ash content and the coarse particle size of the flotation tailings slurry at the Maple Meadow plant site made the video-based system unsuitable for this application. Plans are now underway to lease a nuclear-based analyzer as the primary sensor for this project.

  5. Comparison of Conventional Diesel and Reactivity Controlled...

    Broader source: Energy.gov (indexed) [DOE]

    3000 0 2 4 6 8 10 12 Speed revmin IMEP g bar 4 3 2 5 1 * Five operating points of Ad- hoc fuels working group * Tier 2 bin 5 NOx targets from: (assumes 3500lb Passenger...

  6. Demonstration/Development of Reactivity Controlled Compression...

    Broader source: Energy.gov (indexed) [DOE]

    information. Slide 12 Slide 12 Task 2.1 - LD GasolineDiesel Experiments Approach Ad-hoc modal points used to prescribe engine speed and load conditions for LD RCCI...

  7. High Efficiency Fuel Reactivity Controlled Compression Ignition...

    Broader source: Energy.gov (indexed) [DOE]

    0.1 0.2 0.3 0.4 0.5 0.6 PM gbhp-hr NOx gbhp-hr 1988 1991 2004 2007 2010 * SI gasoline engine with 3-Way Catalyst: Thermal Efficiency 30% * Diesel engines are the most...

  8. Heating, Ventilating, and Air-Conditioning: Recent Advances in Diagnostics and Controls to Improve Air-Handling System Performance

    SciTech Connect (OSTI)

    Wray, Craig; Wray, Craig P.; Sherman, Max H.; Walker, I.S.; Dickerhoff, D.J.; Federspiel, C.C.

    2008-02-01T23:59:59.000Z

    The performance of air-handling systems in buildings needs to be improved. Many of the deficiencies result from myths and lore and a lack of understanding about the non-linear physical principles embedded in the associated technologies. By incorporating these principles, a few important efforts related to diagnostics and controls have already begun to solve some of the problems. This paper illustrates three novel solutions: one rapidly assesses duct leakage, the second configures ad hoc duct-static-pressure reset strategies, and the third identifies useful intermittent ventilation strategies. By highlighting these efforts, this paper seeks to stimulate new research and technology developments that could further improve air-handling systems.

  9. Mechanical-plowing-based high-speed patterning on hard material via advanced-control and ultrasonic probe vibration

    SciTech Connect (OSTI)

    Wang, Zhihua; Zou, Qingze, E-mail: qzzou@rci.rutgers.edu [Mechanical and Aerospace Engineering Department, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854 (United States)] [Mechanical and Aerospace Engineering Department, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854 (United States); Tan, Jun; Jiang, Wei [Electrical and Computer Engineering Department, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854 (United States)] [Electrical and Computer Engineering Department, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854 (United States)

    2013-11-15T23:59:59.000Z

    In this paper, we present a high-speed direct pattern fabrication on hard materials (e.g., a tungsten-coated quartz substrate) via mechanical plowing. Compared to other probe-based nanolithography techniques based on chemical- and/or physical-reactions (e.g., the Dip-pen technique), mechanical plowing is meritorious for its low cost, ease of process control, and capability of working with a wide variety of materials beyond conductive and/or soft materials. However, direct patterning on hard material faces two daunting challenges. First, the patterning throughput is ultimately hindered by the writing (plowing) speed, which, in turn, is limited by the adverse effects that can be excited/induced during high-speed, and/or large-range plowing, including the vibrational dynamics of the actuation system (the piezoelectric actuator, the cantilever, and the mechanical fixture connecting the cantilever to the actuator), the dynamic cross-axis coupling between different axes of motion, and the hysteresis and the drift effects related to the piezoelectric actuators. Secondly, it is very challenging to directly pattern on ultra-hard materials via plowing. Even with a diamond probe, the line depth of the pattern via continuous plowing on ultra-hard materials such as tungsten, is still rather small (<0.5 nm), particularly when the writing speed becomes high. To overcome these two challenges, we propose to utilize a novel iterative learning control technique to achieve precision tracking of the desired pattern during high-speed, large-range plowing, and introduce ultrasonic vibration of the probe in the normal (vertical) direction during the plowing process to enable direct patterning on ultra hard materials. The proposed approach was implemented to directly fabricate patterns on a mask with tungsten coating and quartz substrate. The experimental results demonstrated that a large-size pattern of four grooves (20 ?m in length with 300 nm spacing between lines) can be fabricated at a high speed of ?5 mm/s, with the line width and the line depth at ?95 nm and 2 nm, respectively. A fine pattern of the word NANO is also fabricated at the speed of ?5 mm/s.

  10. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  11. Advancing reactive tracer methods for measuring thermal evolution...

    Broader source: Energy.gov (indexed) [DOE]

    et al. (2003) - Use simplified geometry of hypothetical fracture system - Develop in MATLAB, to allow distribution to industry via the MATLAB compiler * Conducted 2-D finite...

  12. Advancing reactive tracer methods for measuring thermal evolution...

    Broader source: Energy.gov (indexed) [DOE]

    Partitioning, and Nonreactive Tracers to Determine Temperature Distribution and FractureHeat Transfer Surface Area in Geothermal Reservoirs Quantum Dot Tracers for Use in...

  13. TECHNICAL ADVANCE Minitags for small molecules: detecting targets of reactive

    E-Print Network [OSTI]

    Bogyo, Matthew

    @mpiz-koeln.mpg.de). Present address: Chemie der Biopolymere, Technical University Munich, Weihenstephanerberg 3, Freising

  14. Development of an Advanced Simulator to Model Mobility Control and Geomechanics during CO{sub 2} Floods

    SciTech Connect (OSTI)

    Delshad, Mojdeh; Wheeler, Mary; Sepehrnoori, Kamy; Pope, Gary

    2013-12-31T23:59:59.000Z

    The simulator is an isothermal, three-dimensional, four-phase, compositional, equation-of state (EOS) simulator. We have named the simulator UTDOE-CO2 capable of simulating various recovery processes (i.e., primary, secondary waterflooding, and miscible and immiscible gas flooding). We include both the Peng-Robinson EOS and the Redlich-Kwong EOS models. A Gibbs stability test is also included in the model to perform a phase identification test to consistently label each phase for subsequent property calculations such as relative permeability, viscosity, density, interfacial tension, and capillary pressure. Our time step strategy is based on an IMPEC-type method (implicit pressure and explicit concentration). The gridblock pressure is solved first using the explicit dating of saturation-dependent terms. Subsequently, the material balance equations are solved explicitly for the total concentration of each component. The physical dispersion term is also included in the governing equations. The simulator includes (1) several foam model(s) for gas mobility control, (2) compositional relative permeability models with the hysteresis option, (3) corner point grid and several efficient solvers, (4) geomechanics module to compute stress field as the result of CO{sub 2} injection/production, (5) the format of commercial visualization software, S3graf from Science-soft Ltd., was implemented for user friendly visualization of the simulation results. All tasks are completed and the simulator was fully tested and delivered to the DOE office including a users guide and several input files and the executable for Windows Pcs. We have published several SPE papers, presented several posters, and one MS thesis is completed (V. Pudugramam, 2013) resulting from this DOE funded project.

  15. E-Print Network 3.0 - automatic reactive power Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power Page: << < 1 2 3 4 5 > >> 1 Power control of a wind farm with active stall wind turbines and AC grid connection Summary: , reactive power control and automatic voltage...

  16. Lger A., Duval C., Weber P., Levrat E., Farret R. "BAYESIAN NETWORK MODELLING THE RISK ANALYSIS OF COMPLEX SOCIO TECHNICAL SYSTEMS". Submitted to: 4th Workshop on Advanced Control and Diagnosis, Nancy -France, 16 et 17 nov., 2006.

    E-Print Network [OSTI]

    Boyer, Edmond

    , Probabilistic risk assessment. 1. INTRODUCTION In classified installations1 (nuclear power plants, chemical OF COMPLEX SOCIO TECHNICAL SYSTEMS". Submitted to: 4th Workshop on Advanced Control and Diagnosis, Nancy - France, 16 et 17 nov., 2006. BAYESIAN NETWORK MODELLING THE RISK ANALYSIS OF COMPLEX SOCIO TECHNICAL

  17. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    SciTech Connect (OSTI)

    Rapp, VH; Singer, BC

    2014-03-01T23:59:59.000Z

    The research summarized in this report is part of a larger effort to evaluate the potential air quality impacts of using liquefied natural gas in California. A difference of potential importance between many liquefied natural gas blends and the natural gas blends that have been distributed in California in recent years is the higher Wobbe number of liquefied natural gas. Wobbe number is a measure of the energy delivery rate for appliances that use orifice- or pressure-based fuel metering. The effect of Wobbe number on pollutant emissions from residential water heaters was evaluated in controlled experiments. Experiments were conducted on eight storage water heaters, including five with ultra low-NO{sub X} burners, and four on-demand (tankless) water heaters, all of which featured ultra low-NO{sub X} burners. Pollutant emissions were quantified as air-free concentrations in the appliance flue and fuel-based emission factors in units of nanogram of pollutant emitter per joule of fuel energy consumed. Emissions were measured for carbon monoxide (CO), nitrogen oxides (NO{sub X}), nitrogen oxide (NO), formaldehyde and acetaldehyde as the water heaters were operated through defined operating cycles using fuels with varying Wobbe number. The reference fuel was Northern California line gas with Wobbe number ranging from 1344 to 1365. Test fuels had Wobbe numbers of 1360, 1390 and 1420. The most prominent finding was an increase in NO{sub X} emissions with increasing Wobbe number: all five of the ultra low-NO{sub X} storage water heaters and two of the four ultra low-NO{sub X} on-demand water heaters had statistically discernible (p<0.10) increases in NO{sub X} with fuel Wobbe number. The largest percentage increases occurred for the ultra low-NO{sub X} water heaters. There was a discernible change in CO emissions with Wobbe number for all four of the on-demand devices tested. The on-demand water heater with the highest CO emissions also had the largest CO increase with increasing fuel Wobbe number.

  18. Abstract--This paper discusses various complex issues associated with reactive power management and pricing in the

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    --Ancillary services, electricity markets, deregulation, reactive power management, system operation. I. INTRODUCTION, and recommended strengthening the reactive power and voltage control practices in all North American Electric, provision by the utilities of reactive power was embedded within the electricity supply to customers

  19. IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 6, NOVEMBER 2008 2905 Eliminate Reactive Power and Increase System

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 6, NOVEMBER 2008 2905 Eliminate Reactive Power of "reactive power" is de- fined, and the corresponding equations are derived for isolated bidirectional dc­dc converters. It is shown that the reactive power in traditional phase-shift control is inherent

  20. Abstract: In this paper we provide a systematic review of generator-provided reactive support as an unbundled ancillary

    E-Print Network [OSTI]

    , the provision of reactive power and voltage support was bundled with other services in supplying electricity electricity. Under open access, however, reactive support and voltage control from generation sources becomes1 Abstract: In this paper we provide a systematic review of generator-provided reactive support

  1. Abstract--This paper proposes a reactive power dispatch model that takes into account both the technical and economical

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    the reactive power and voltage control practices in all North American Electric Reliability Council (NERC and transformers taps deviations [12]. In the context of deregulated electricity markets, reactive power dispatch1 Abstract--This paper proposes a reactive power dispatch model that takes into account both

  2. Spatial xenon oscillation control with expert systems

    SciTech Connect (OSTI)

    Alten, S. (Turkish Atomic Energy Authority, Ankara (Turkey)); Danofsky, R.A. (Iowa State Univ., Ames, IA (United States))

    1993-01-01T23:59:59.000Z

    Spatial power oscillations were attributed to the xenon transients in a reactor core in 1958 by Randall and St. John. These transients are usually initiated by a local reactivity insertion and lead to divergent axial flux oscillations in the core at constant power. Several heuristic manual control strategies and automatic control methods were developed to damp the xenon oscillations at constant power operations. However, after the load-follow operation of the reactors became a necessity of life, a need for better control strategies arose. Even though various advanced control strategies were applied to solve the xenon oscillation control problem for the load-follow operation, the complexity of the system created difficulties in modeling. The strong nonlinearity of the problem requires highly sophisticated analytical approaches that are quite inept for numerical solutions. On the other hand, the complexity of a system and heuristic nature of the solutions are the basic reasons for using artificial intelligence techniques such as expert systems.

  3. Rational Catalyst Design Applied to Development of Advanced Oxidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control Rational Catalyst Design Applied to Development of Advanced Oxidation...

  4. Vehicle Technologies Office Merit Review 2014: Advanced Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Heavy-Duty Engine Systems and Emissions Control Modeling and Analysis Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions...

  5. COAL SLAGGING AND REACTIVITY TESTING

    SciTech Connect (OSTI)

    Donald P. McCollor; Kurt E. Eylands; Jason D. Laumb

    2003-10-01T23:59:59.000Z

    Union Fenosa's La Robla I Power Station is a 270-MW Foster Wheeler arch-fired system. The unit is located at the mine that provides a portion of the semianthracitic coal. The remaining coals used are from South Africa, Russia, Australia, and China. The challenges at the La Robla I Station stem from the various fuels used, the characteristics of which differ from the design coal. The University of North Dakota Energy & Environmental Research Center (EERC) and the Lehigh University Energy Research Center (LUERC) undertook a program to assess problematic slagging and unburned carbon issues occurring at the plant. Full-scale combustion tests were performed under baseline conditions, with elevated oxygen level and with redistribution of air during a site visit at the plant. During these tests, operating information, observations and temperature measurements, and coal, slag deposit, and fly ash samples were obtained to assess slagging and unburned carbon. The slagging in almost all cases appeared due to elevated temperatures rather than fuel chemistry. The most severe slagging occurred when the temperature at the sampling port was in excess of 1500 C, with problematic slagging where first-observed temperatures exceeded 1350 C. The presence of anorthite crystals in the bulk of the deposits analyzed indicates that the temperatures were in excess of 1350 C, consistent with temperature measurements during the sampling period. Elevated temperatures and ''hot spots'' are probably the result of poor mill performance, and a poor distribution of the coal from the mills to the specific burners causes elevated temperatures in the regions where the slag samples were extracted. A contributing cause appeared to be poor combustion air mixing and heating, resulting in oxygen stratification and increased temperatures in certain areas. Air preheater plugging was observed and reduces the temperature of the air in the windbox, which leads to poor combustion conditions, resulting in unburned carbon as well as slagging. A second phase of the project involved advanced analysis of the baseline coal along with an Australian coal fired at the plant. These analysis results were used in equilibrium thermodynamic modeling along with a coal quality model developed by the EERC to assess slagging, fouling, and opacity for the coals. Bench-scale carbon conversion testing was performed in a drop-tube furnace to assess the reactivity of the coals. The Australian coal had a higher mineral content with significantly more clay minerals present than the baseline coal. The presence of these clay minerals, which tend to melt at relatively low temperatures, indicated a higher potential for problematic slagging than the baseline coal. However, the pyritic minerals, comprising over 25% of the baseline mineral content, may form sticky iron sulfides, leading to severe slagging in the burner region if local areas with reducing conditions exist. Modeling results indicated that neither would present significant fouling problems. The Australian coal was expected to show slagging behavior much more severe than the baseline coal except at very high furnace temperatures. However, the baseline coal was predicted to exhibit opacity problems, as well as have a higher potential for problematic calcium sulfate-based low-temperature fouling. The baseline coal had a somewhat higher reactivity than the Australian coal, which was consistent with both the lower average activation energy for the baseline coal and the greater carbon conversion at a given temperature and residence time. The activation energy of the baseline coal showed some effect of oxygen on the activation energy, with E{sub a} increasing at the lower oxygen concentration, but may be due to the scatter in the baseline coal kinetic values at the higher oxygen level tested.

  6. Electrocatalytic Reactivity for Oxygen Reduction of Palladium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactivity for Oxygen Reduction of Palladium-Modified Carbon Nanotubes Synthesized in Supercritical Fluid. Electrocatalytic Reactivity for Oxygen Reduction of Palladium-Modified...

  7. Formation, characterization and reactivity of adsorbed oxygen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Formation, characterization and reactivity of adsorbed oxygen on BaOPt(111). Formation, characterization and reactivity of adsorbed oxygen on BaOPt(111). Abstract: The formation...

  8. Conservation of reactive electromagnetic energy in reactive time

    E-Print Network [OSTI]

    Gerald Kaiser

    2015-01-05T23:59:59.000Z

    The complex Poynting theorem (CPT) is extended to a canonical time-scale domain $(t,s)$. Time-harmonic phasors are replaced by the positive-frequency parts of general fields, which extend analytically to complex time $t+is$, with $s>0$ interpreted as a time resolution scale. The real part of the extended CPT gives conservation in $t$ of a time-averaged field energy, and its imaginary part gives conservation in $s$ of a time-averaged reactive energy. In both cases, the averaging windows are determined by a Cauchy kernel of width $\\Delta t\\sim \\pm s$. This completes the time-harmonic CPT, whose imaginary part is generally supposed to be vaguely `related to' reactive energy without giving a conservation law, or even an expression, for the latter. The interpretation of $s$ as reactive time, tracking the leads and lags associated with stored capacitative and inductive energy, gives a simple explanation of the volt-ampere reactive (var) unit measuring reactive power: a var is simply one Joule per reactive second. The related 'complex radiation impedance density' is introduced to represent the field's local reluctance to radiate.

  9. Conservation of reactive electromagnetic energy in reactive time

    E-Print Network [OSTI]

    Kaiser, Gerald

    2015-01-01T23:59:59.000Z

    The complex Poynting theorem (CPT) is extended to a canonical time-scale domain $(t,s)$. Time-harmonic phasors are replaced by the positive-frequency parts of general fields, which extend analytically to complex time $t+is$, with $s>0$ interpreted as a time resolution scale. The real part of the extended CPT gives conservation in $t$ of a time-averaged field energy, and its imaginary part gives conservation in $s$ of a time-averaged reactive energy. In both cases, the averaging windows are determined by a Cauchy kernel of width $\\Delta t\\sim \\pm s$. This completes the time-harmonic CPT, whose imaginary part is generally supposed to be vaguely `related to' reactive energy without giving a conservation law, or even an expression, for the latter. The interpretation of $s$ as reactive time, tracking the leads and lags associated with stored capacitative and inductive energy, gives a simple explanation of the volt-ampere reactive (var) unit measuring reactive power: a var is simply one Joule per reactive second. T...

  10. Adaptive Radiotherapy for Locally Advanced Non-Small-Cell Lung Cancer Does Not Underdose the Microscopic Disease and has the Potential to Increase Tumor Control

    SciTech Connect (OSTI)

    Guckenberger, Matthias, E-mail: guckenberger_m@klinik.uni-wuerzburg.de [Department of Radiation Oncology, University Hospital Wuerzburg, Wuerzburg (Germany); Academic Unit of Radiotherapy and Oncology, Institute of Cancer Research, Sutton, Surrey (United Kingdom); Lung Unit, The Royal Marsden NHS Foundation Trust, Sutton, Surrey (United Kingdom); Richter, Anne; Wilbert, Juergen; Flentje, Michael [Department of Radiation Oncology, University Hospital Wuerzburg, Wuerzburg (Germany); Partridge, Mike [Joint Department of Physics, Institute of Cancer Research, Sutton, Surrey (United Kingdom)

    2011-11-15T23:59:59.000Z

    Purpose: To evaluate doses to the microscopic disease (MD) in adaptive radiotherapy (ART) for locally advanced non-small-cell lung cancer (NSCLC) and to model tumor control probability (TCP). Methods and Materials: In a retrospective planning study, three-dimensional conformal treatment plans for 13 patients with locally advanced NSCLC were adapted to shape and volume changes of the gross tumor volume (GTV) once or twice during conventionally fractionated radiotherapy with total doses of 66 Gy; doses in the ART plans were escalated using an iso-mean lung dose (MLD) approach compared to non-adapted treatment. Dose distributions to the volumes of suspect MD were simulated for a scenario with synchronous shrinkage of the MD and GTV and for a scenario of a stationary MD despite GTV shrinkage; simulations were performed using deformable image registration. TCP calculations considering doses to the GTV and MD were performed using three different models. Results: Coverage of the MD at 50 Gy was not compromised by ART. Coverage at 60 Gy in the scenario of a stationary MD was significantly reduced from 92% {+-} 10% to 73% {+-} 19% using ART; however, the coverage was restored by iso-MLD dose escalation. Dose distributions in the MD were sufficient to achieve a TCP >80% on average in all simulation experiments, with the clonogenic cell density the major factor influencing TCP. The combined TCP for the GTV and MD was 19.9% averaged over all patients and TCP models in non-adaptive treatment with 66 Gy. Iso-MLD dose escalation achieved by ART increased the overall TCP by absolute 6% (adapting plan once) and by 8.7% (adapting plan twice) on average. Absolute TCP values were significantly different between the TCP models; however, all TCP models suggested very similar TCP increase by using ART. Conclusions: Adaptation of radiotherapy to the shrinking GTV did not compromise dose coverage of volumes of suspect microscopic disease and has the potential to increase TCP by >40% compared with radiotherapy planning without ART.

  11. Rollable multicolor display using electrically induced blueshift of a cholesteric reactive mesogen mixture

    E-Print Network [OSTI]

    Wu, Shin-Tson

    Rollable multicolor display using electrically induced blueshift of a cholesteric reactive mesogen September 2006 Electrically controllable blueshift of the reflection band in a planar cholesteric reactive mesogen cell is observed. The responsible mechanism is electric-field-induced Helfrich deformation J. Chem

  12. Field, Laboratory, and Modeling Study of Reactive Transport of

    E-Print Network [OSTI]

    University of New York, Flushing, New York 11367, Department of Marine Chemistry and Geochemistry, Woods Hole Bay, MA, shed light on coupled control of chemistry and hydrology on reactive transport), phosphate (5), and oxyanions of molybdenum (6) and uranium (7, 8) in aquifers. In addition

  13. Advanced Components and Materials | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel energy materials Advanced sensors Power electronics Intelligent power flow control High-capacity cables and conductors Compact modular transformers Community Energy Storage...

  14. Advanced Collaborative Emissions Study (ACES) - Cooperative multi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Cooperative multi-party effort to characterize emissions and possible health effects of new advanced heavy duty engine and control systems and fuels in the market 2007 - 2010...

  15. Improved Solvers for Advanced Engine Combustion Simulation

    Broader source: Energy.gov [DOE]

    Document: ace076_mcnenly_2013_o.pdfTechnology Area: Advanced Combustion; Combustion and Emissions ControlPresenter: Matthew McNenlyPresenting Organization: Lawrence Livermore National Laboratory ...

  16. Development of Methodologies for Technology Deployment for Advanced Outage Control Centers that Improve Outage Coordination, Problem Resolution and Outage Risk Management

    SciTech Connect (OSTI)

    Shawn St. Germain; Ronald Farris; Heather Medeman

    2013-09-01T23:59:59.000Z

    This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The long term viability of existing nuclear power plants in the U.S. will depend upon maintaining high capacity factors, avoiding nuclear safety issues and reducing operating costs. The slow progress in the construction on new nuclear power plants has placed in increased importance on maintaining the output of the current fleet of nuclear power plants. Recently expanded natural gas production has placed increased economic pressure on nuclear power plants due to lower cost competition. Until recently, power uprate projects had steadily increased the total output of the U.S. nuclear fleet. Errors made during power plant upgrade projects have now removed three nuclear power plants from the U.S. fleet and economic considerations have caused the permanent shutdown of a fourth plant. Additionally, several utilities have cancelled power uprate projects citing economic concerns. For the past several years net electrical generation from U.S. nuclear power plants has been declining. One of few remaining areas where significant improvements in plant capacity factors can be made is in minimizing the duration of refueling outages. Managing nuclear power plant outages is a complex and difficult task. Due to the large number of complex tasks and the uncertainty that accompanies them, outage durations routinely exceed the planned duration. The ability to complete an outage on or near schedule depends upon the performance of the outage management organization. During an outage, the outage control center (OCC) is the temporary command center for outage managers and provides several critical functions for the successful execution of the outage schedule. Essentially, the OCC functions to facilitate information inflow, assist outage management in processing information and to facilitate the dissemination of information to stakeholders. Currently, outage management activities primarily rely on telephone communication, face to face reports of status and periodic briefings in the OCC. Much of the information displayed in OCCs is static and out of date requiring an evaluation to determine if it is still valid. Several advanced communication and collaboration technologies have shown promise for facilitating the information flow into, across and out of the OCC. Additionally, advances in the areas of mobile worker technologies, computer based procedures and electronic work packages can be leveraged to improve the availability of real time status to outage managers.

  17. Advanced Photovoltaic Inverter Functionality using 500 kW Power Hardware-in-Loop Complete System Laboratory Testing: Preprint

    SciTech Connect (OSTI)

    Mather, B. A.; Kromer, M. A.; Casey, L.

    2013-01-01T23:59:59.000Z

    With the increasing penetration of distribution connected photovoltaic (PV) systems, more and more PV developers and utilities are interested in easing future PV interconnection concerns by mitigating some of the impacts of PV integration using advanced PV inverter controls and functions. This paper describes the testing of a 500 kW PV inverter using Power Hardware-in-Loop (PHIL) testing techniques. The test setup is described and the results from testing the inverter in advanced functionality modes, not commonly used in currently interconnected PV systems, are presented. PV inverter operation under PHIL evaluation that emulated both the DC PV array connection and the AC distribution level grid connection are shown for constant power factor (PF) and constant reactive power (VAr) control modes. The evaluation of these modes was completed under varying degrees of modeled PV variability.

  18. Shaping the Next - Buildings and Energy: Advanced Lighting

    SciTech Connect (OSTI)

    Richman, Eric E.

    2014-01-01T23:59:59.000Z

    short bit on advanced lighting for the future relating specifically to controls and new tech such as LEDs

  19. Particle Swarm Optimization Based Reactive Power Optimization

    E-Print Network [OSTI]

    Sujin, P R; Linda, M Mary

    2010-01-01T23:59:59.000Z

    Reactive power plays an important role in supporting the real power transfer by maintaining voltage stability and system reliability. It is a critical element for a transmission operator to ensure the reliability of an electric system while minimizing the cost associated with it. The traditional objectives of reactive power dispatch are focused on the technical side of reactive support such as minimization of transmission losses. Reactive power cost compensation to a generator is based on the incurred cost of its reactive power contribution less the cost of its obligation to support the active power delivery. In this paper an efficient Particle Swarm Optimization (PSO) based reactive power optimization approach is presented. The optimal reactive power dispatch problem is a nonlinear optimization problem with several constraints. The objective of the proposed PSO is to minimize the total support cost from generators and reactive compensators. It is achieved by maintaining the whole system power loss as minimum...

  20. Reactive Power Support Services in Electricity Markets

    E-Print Network [OSTI]

    Reactive Power Support Services in Electricity Markets Costing and Pricing of Ancillary Services Final Project Report Power Systems Engineering Research Center A National Science Foundation Industry Reactive Power Support Services in Electricity Markets Costing and Pricing of Ancillary Services Project

  1. Mitochondrial reactive oxygen species and cancer

    E-Print Network [OSTI]

    Chandel, Navdeep S

    Mitochondria produce reactive oxygen species (mROS) as a natural by-product of electron transport chain activity. While initial studies focused on the damaging effects of reactive oxygen species, a recent paradigm shift ...

  2. Reducing Office Plug Loads through Simple and Inexpensive Advanced Power Strips: Preprint

    SciTech Connect (OSTI)

    Metzger, I.; Sheppy, M.; Cutler, D.

    2013-07-01T23:59:59.000Z

    This paper documents the process (and results) of applying Advanced Power Strips with various control approaches.

  3. {yjoh, jmcho, jbyoo, sdcha}@salmosa.kaist.ac.kr A Technique to Specify and Analyze Reactive and Real-Time Software

    E-Print Network [OSTI]

    and Analyze Reactive and Real-Time Software Younju Oh, Jaemyoung Cho, Junbeom Yoo, Sungdeok Cha Div. of CS, Dept. of Electrical Engineering and Computer Science Korea Advanced Institute of Science and Technology requirements specification (SRS). Many specification languages are suggested to specify reactive and real

  4. IEEE TRANSACTIONS ON POWER SYSTEMS (ACCEPTED NOVEMBER 8, 2014) 1 Stochastic Reactive Power Management

    E-Print Network [OSTI]

    Giannakis, Georgios

    response, and electric vehicles. Advances in photovoltaic (PV) inverters offer new opportunitiesIEEE TRANSACTIONS ON POWER SYSTEMS (ACCEPTED NOVEMBER 8, 2014) 1 Stochastic Reactive Power are being challenged by reverse power flows and voltage fluctuations due to renewable generation, demand

  5. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R. [NETL

    2013-03-11T23:59:59.000Z

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  6. Advanced Power Electronic Interfaces for Distributed

    E-Print Network [OSTI]

    , and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter S Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter S. Chakraborty, BAdvanced Power Electronic Interfaces for Distributed Energy Systems Part 2: Modeling, Development

  7. Analysis of fuel options for the breakeven core configuration of the Advanced Recycling Reactor

    SciTech Connect (OSTI)

    Stauff, N.E.; Klim, T.K.; Taiwo, T.A. [Argonne National Laboratory, Argonne, IL (United States); Fiorina, C. [Politecnico di Milano, Milan (Italy); Franceschini, F. [Westinghouse Electric Company LLC., Cranberry Township, Pennsylvania (United States)

    2013-07-01T23:59:59.000Z

    A trade-off study is performed to determine the impacts of various fuel forms on the core design and core physics characteristics of the sodium-cooled Toshiba- Westinghouse Advanced Recycling Reactor (ARR). The fuel forms include oxide, nitride, and metallic forms of U and Th. The ARR core configuration is redesigned with driver and blanket regions in order to achieve breakeven fissile breeding performance with the various fuel types. State-of-the-art core physics tools are used for the analyses. In addition, a quasi-static reactivity balance approach is used for a preliminary comparison of the inherent safety performances of the various fuel options. Thorium-fueled cores exhibit lower breeding ratios and require larger blankets compared to the U-fueled cores, which is detrimental to core compactness and increases reprocessing and manufacturing requirements. The Th cores also exhibit higher reactivity swings through each cycle, which penalizes reactivity control and increases the number of control rods required. On the other hand, using Th leads to drastic reductions in void and coolant expansion coefficients of reactivity, with the potential for enhancing inherent core safety. Among the U-fueled ARR cores, metallic and nitride fuels result in higher breeding ratios due to their higher heavy metal densities. On the other hand, oxide fuels provide a softer spectrum, which increases the Doppler effect and reduces the positive sodium void worth. A lower fuel temperature is obtained with the metallic and nitride fuels due to their higher thermal conductivities and compatibility with sodium bonds. This is especially beneficial from an inherent safety point of view since it facilitates the reactor cool-down during loss of power removal transients. The advantages in terms of inherent safety of nitride and metallic fuels are maintained when using Th fuel. However, there is a lower relative increase in heavy metal density and in breeding ratio going from oxide to metallic or nitride Th fuels relative to the U counterpart fuels. (authors)

  8. Degradation of Vinyl Chloride and 1,2-Dichloroethane by Advanced Reduction Processes

    E-Print Network [OSTI]

    Liu, Xu

    2013-07-27T23:59:59.000Z

    A new treatment technology, called Advanced Reduction Process (ARP), was developed by combining UV irradiation with reducing reagents to produce highly reactive species that degrade contaminants rapidly. Vinyl chloride (VC) and 1,2-dichloroethane (1...

  9. Advanced Mud System for Microhole Coiled Tubing Drilling

    SciTech Connect (OSTI)

    Kenneth Oglesby

    2008-12-01T23:59:59.000Z

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  10. Low-rank coal research: Volume 2, Advanced research and technology development: Final report

    SciTech Connect (OSTI)

    Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.

    1987-04-01T23:59:59.000Z

    Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

  11. Advanced in-duct sorbent injection for SO{sub 2} control. Topical report number 3, Subtask 2.3: Sorbent optimization

    SciTech Connect (OSTI)

    Rosenhoover, W.A.; Maskew, J.T.; Withum, J.A.; Stouffer, M.R.

    1994-11-01T23:59:59.000Z

    The objective of this research project is to develop second-generation duct injection technology as a cost-effective compliance option for the 1990 Clean Air Act Amendments. Specific process performance goals are to achieve 90% SO{sub 2} removal and 60% sorbent utilization efficiency. Research is focused on the Advanced Coolside process, which has shown the potential of achieving these targets. The objective of Subtask 2.3, Sorbent Optimization, was to explore means of improving performance and economics of the Advanced Coolside process through optimizing the sorbent system. Pilot plant tests of commercial and specially prepared hydrated limes showed that the process is relatively insensitive to sorbent source. This can be an important economic advantage, allowing the use of the lowest cost sorbent available at a site. A pilot plant hydration study conducted in cooperation with Dravo Lime Company further indicated the relative insensitivity of process performance to lime source and to lime physical properties. Pilot plant tests indicated that the use of very small amounts of additives in the Advanced Coolside process can improve performance under some circumstances; however, additives are not necessary to exceed process performance targets.

  12. Advanced Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4T opAddress:AdolphusAdvanced Energy

  13. Resilient Networked Control of Distributed Energy Resources

    E-Print Network [OSTI]

    Hadjicostis, Christoforos

    to the grid they are connected to, e.g., reactive power support for voltage control. In this problem, each system component can contribute a certain amount of active and/or reactive power, bounded from above as to collectively provide a predetermined total amount of active and/or reactive power. In the class of algorithms

  14. Effectiveness of a Diesel Oxidation Catalyst (DOC) to control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effectiveness of a Diesel Oxidation Catalyst (DOC) to control CO and hydrocarbon emissions from Reactivity Controlled Compression Ignition (RCCI) combustion Effectiveness of a...

  15. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov (indexed) [DOE]

    Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

  16. Advanced LIGO

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration

    2014-11-17T23:59:59.000Z

    The Advanced LIGO gravitational wave detectors are second generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid- and high- frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

  17. Deep Reactive Ion Etching | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINL isSeparationsRelevantDeep Reactive Ion

  18. Non-Energetic Reactive Armor (NERA) and Semi-Energetic Reactive Armor (SERA) FY13 Final Report

    SciTech Connect (OSTI)

    Ben Langhorst; Nikki Rasmussen; Andrew Robinson

    2013-08-01T23:59:59.000Z

    INL researchers have proposed prototypes for future lightweight armor systems that reside in a technology gap between explosive reactive armor and passive armor. The targets were designed to react under impact and throw a steel front plate into the path of the projectile, forcing the projectile to engage more of the front plate during its penetration process. These prototypes are intended to exhibit the enhanced efficiency of explosive reactive armor without the collateral damage often associated with explosive reactive armor. One of the prototype systems, Semi Energetic Reactive Armor (SERA), functions similarly to explosive reactive armor, but features a reactive material that reacts much slower than explosive reactive armor. Two different SERA test groups were built and featuring different ratios of aluminum Teflon(copyright) powders pressed into 0.5 in. thick energetic tiles and sandwiched between 0.25 in. thick RHA plates. The other prototype system, Non Energetic Reactive Armor (NERA), utilizes the strain energy in compressed rubber to launch a front flyer plate into the path of an incoming projectile. It is comprised of a 1 in. thick rubber layer sandwiched between two 0.25 in. thick RHA plates with bolt holes around the perimeter. Bolts are inserted through the entire target and tightened to compress the rubber sheet to significant strain levels (approximately 40%). A fourth group of targets was tested as a control group. It featured a 0.5 in. thick rubber sheet sandwiched between two 0.25 in. thick RHA plates, similar to the NERA test articles, but the rubber is uncompressed. The four test groups (uncompressed rubber, compressed rubber, 70/30 Al/PTFE, 50/50 Al/PTFE) were each fabricated with three identical test articles in each group. All twelve targets were subjected to ballistic testing at the National Security Test Range on July 17, 2013. They were tested with 0.5 in. diameter steel rods shot at a consistent velocity at each target. In order to characterize the energetic materials, break wires were embedded in the targets and burn velocities were measured. The residual mass method was used to compare the target performance of each group and final performance data is presented below.

  19. Development of advanced, dry, SO{sub x}/NO{sub x} emission control technologies for high-sulfur coal. Final report, April 1, 1993--December 31, 1994

    SciTech Connect (OSTI)

    Amrhein, G.T.

    1994-12-23T23:59:59.000Z

    Dry Scrubbing is a common commercial process that has been limited to low- and medium-sulfur coal applications because high-sulfur coal requires more reagent than can be efficiently injected into the process. Babcock & Wilcox has made several advances that extend dry scrubbing technologies to higher sulfur coals by allowing deposit-free operation at low scrubber exit temperatures. This not only increases the amount of reagent that can be injected into the scrubber, but also increases SO{sub 2} removal efficiency and sorbent utilization. The objectives of this project were to demonstrate, at pilot scale, that advanced, dry-scrubbing-based technologies can attain the performance levels specified by the 1990 Clean Air Act Amendments for SO{sub 2} and NO{sub x} emissions while burning high-sulfur coal, and that these technologies are economically competitive with wet scrubber systems. The use of these technologies by utilities in and around Ohio, on new or retrofit applications, will ensure the future of markets for high-sulfur coal by creating cost effective options to coal switching.

  20. Advanced fuel chemistry for advanced engines.

    SciTech Connect (OSTI)

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01T23:59:59.000Z

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  1. An Online Scheduling Algorithm with Advance Reservation for Large-Scale Data Transfers

    E-Print Network [OSTI]

    Balman, Mehmet

    2012-01-01T23:59:59.000Z

    Flow scheduling and endpoint rate control in gridnetworks.granularity and ?ner control in scheduling with a cost ofMukherjee. Control plane for advance bandwidth scheduling in

  2. Rejuvenating Permeable Reactive Barriers by Chemical Flushing

    Broader source: Energy.gov [DOE]

    Final Report:Rejuvenating Permeable Reactive Barriers by Chemical Flushing,U.S. Environmental Protection Agency, Region 8 Support.August 2004

  3. Exploring the reactivity of bacterial multicomponent monooxygenases

    E-Print Network [OSTI]

    Tinberg, Christine Elaine

    2010-01-01T23:59:59.000Z

    Chapter 1. Introduction: The Reactivity of Bacterial Multicomponent Monooxygenases Bacterial multicomponent monooxygenases constitute a remarkable family of enzymes that oxidize small, inert hydrocarbon substrates using ...

  4. Permeable Reactive Barriers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    react with a contaminant plume in ground water. Typically, PRBs are emplaced by replacing soils with reactive material in a trench cut through a contaminated ground water aquifer....

  5. Method for reactivating catalysts and a method for recycling supercritical fluids used to reactivate the catalysts

    DOE Patents [OSTI]

    Ginosar, Daniel M. (Idaho Falls, ID); Thompson, David N. (Idaho Falls, ID); Anderson, Raymond P. (Idaho Falls, ID)

    2008-08-05T23:59:59.000Z

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  6. REACTIVE LOAD MODELINGIMPACTS ONNODAL PRICESINPOOL MODELELECTRICITYMARKETS

    E-Print Network [OSTI]

    Gross, George

    REACTIVE LOAD MODELINGIMPACTS ONNODAL PRICESINPOOL MODELELECTRICITYMARKETS EttoreBompard, Enrico of the nodal prices in competitive electricity markets based on the Pool paradigm. Such prices focus of the paper is on the explicit evaluation of the impactsof the reactive load onthenodal real

  7. REACTIVE ENVIRONMENTS AND AUGMENTED MEDIA SPACES

    E-Print Network [OSTI]

    Cooperstock, Jeremy R.

    REACTIVE ENVIRONMENTS AND AUGMENTED MEDIA SPACES by Jeremy R. Cooperstock A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Electrical and Computer Engineering University of Toronto © Copyright by Jeremy R. Cooperstock, 1996 #12;ii REACTIVE

  8. Validation of ATR SINDA using SPERT-3 reactivity-initiated transient test data

    SciTech Connect (OSTI)

    Oh, C.H.; Ambrosek, R.G.; Wadkins, R.P. (Idaho National Engineering Lab., Idaho Falls (United States))

    1991-01-01T23:59:59.000Z

    Thermal-hydraulic analyses of Special Power Excursion Reactor Test-3 (SPERT-3) reactivity-initiated accident (RIA) test data are presented to validate ATR SINDA, a three-dimensional thermal-hydraulic computer code used to conduct transient analysis of Advanced Test Reactor (ATR) fuel plates. Because SPERT-3-C core test results are the only existing data of reactivity insertions for plate-type reactors, validating ATR SINDA is important for safety analysis of postulated reactivity initiated accidents (RIAs) for the plate-type ATR operated at the Idaho National Engineering Laboratory (INEL). The SPERT-3 facility was designed to study the kinetic behavior and safety of pressurized, light water-moderated reactors.

  9. How Advanced Batteries Are Energizing the Economy

    Broader source: Energy.gov [DOE]

    Earlier today, President Obama visited Johnson Controls in Holland, Michigan to highlight how this once shuttered factory is helping rev up the advanced battery industry in the United States. This...

  10. Advanced Combustion Concepts - Enabling Systems and Solutions...

    Broader source: Energy.gov (indexed) [DOE]

    advanced control concepts and enabling system to manage multi-modemulti-fuel combustion events and achieve an up to 30 percent fuel economy improvement deer11yilmaz.pdf...

  11. Advanced PID type fuzzy logic power system stabilizer

    SciTech Connect (OSTI)

    Hiyama, Takashi; Kugimiya, Masahiko; Satoh, Hironori (Kumamoto Univ. (Japan). Dept. of Electrical Engineering and Computer Science)

    1994-09-01T23:59:59.000Z

    An advanced fuzzy logic control scheme has been proposed for a micro-computer based power system stabilizer to enhance the overall stability of power systems. The proposed control scheme utilizes the PID information of the generator speed. The input signal to the stabilizer is the real power output of a study unit. Simulations show the effectiveness of the advanced fuzzy logic control scheme.

  12. Assessment of the Economic Potential of Microgrids for Reactive Power Supply

    SciTech Connect (OSTI)

    Appen, Jan von; Marnay, Chris; Stadler, Michael; Momber, Ilan; Klapp, David; Scheven, Alexander von

    2011-05-01T23:59:59.000Z

    As power generation from variable distributed energy resources (DER) grows, energy flows in the network are changing, increasing the requirements for ancillary services, including voltage support. With the appropriate power converter, DER can provide ancillary services such as frequency control and voltage support. This paper outlines the economic potential of DERs coordinated in a microgrid to provide reactive power and voltage support at its point of common coupling. The DER Customer Adoption Model assesses the costs of providing reactive power, given local utility rules. Depending on the installed DER, the cost minimizing solution for supplying reactive power locally is chosen. Costs include the variable cost of the additional losses and the investment cost of appropriately over-sizing converters or purchasing capacitors. A case study of a large health care building in San Francisco is used to evaluate different revenue possibilities of creating an incentive for microgrids to provide reactive power.

  13. Advanced Experimental Analysis of Controls on Microbial Fe(III) Oxide Reduction - Final Report - 09/16/1996 - 03/16/2001

    SciTech Connect (OSTI)

    Roden, Eric E.

    2001-03-16T23:59:59.000Z

    Considering the broad influence that microbial Fe(III) oxide reduction can have on subsurface metal/organic contaminant biogeochemistry, understanding the mechanisms that control this process is critical for predicting the behavior and fate of these contaminants in anaerobic subsurface environments. Knowledge of the factors that influence the rates of growth and activity of Fe(III) oxide-reducing bacteria is critical for predicting (i.e., modeling) the long-term influence of these organisms on the fate of contaminants in the subsurface, and for effectively utilizing Fe(III) oxide reduction and associated geochemical affects for the purpose of subsurface metal/organic contamination bioremediation. This research project will refine existing models for microbiological and geochemical controls on Fe(III) oxide reduction, using laboratory reactor systems that mimic, to varying degrees, the physical and chemical conditions of the subsurface. Novel experimental methods for studying the kinetics of microbial Fe(III) oxide reduction and measuring growth rates of Fe(III) oxide-reducing bacteria will be developed. These new methodologies will be directly applicable to studies on subsurface contaminant transformations directly coupled to or influenced by microbial Fe(III) oxide reduction.

  14. A smoothed particle hydrodynamics model for reactive transport...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A smoothed particle hydrodynamics model for reactive transport and mineral precipitation in porous and fractured porous media. A smoothed particle hydrodynamics model for reactive...

  15. advanced vehicle tools: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Advances in autonomy have made it possible to invert the operator-to-vehicle ratio so that a single operator can control multiple heterogeneous Unmanned Vehicles...

  16. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    SciTech Connect (OSTI)

    Wishart, J.F.

    2011-06-12T23:59:59.000Z

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs generally have low volatilities and are combustion-resistant, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of primary radiation chemistry, charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of reactions and product distributions. We study these issues by characterization of primary radiolysis products and measurements of their yields and reactivity, quantification of electron solvation dynamics and scavenging of electrons in different states of solvation. From this knowledge we wish to learn how to predict radiolytic mechanisms and control them or mitigate their effects on the properties of materials used in nuclear fuel processing, for example, and to apply IL radiation chemistry to answer questions about general chemical reactivity in ionic liquids that will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that the slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increase the importance of pre-solvated electron reactivity and consequently alter product distributions and subsequent chemistry. This difference from conventional solvents has profound effects on predicting and controlling radiolytic yields, which need to be quantified for the successful use under radiolytic conditions. Electron solvation dynamics in ILs are measured directly when possible and estimated using proxies (e.g. coumarin-153 dynamic emission Stokes shifts or benzophenone anion solvation) in other cases. Electron reactivity is measured using ultrafast kinetics techniques for comparison with the solvation process.

  17. Fossil plant layup and reactivation conference: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The Fossil Plant Layup and Reactivation Conference was held in New Orleans, Louisiana on April 14--15, 1992. The Conference was sponsored by EPRI and hosted by Entergy Services, Inc. to bring together representatives from utilities, consulting firms, manufacturers and architectural engineers. Eighteen papers were presented in three sessions. These sessions were devoted to layup procedures and practices, and reactivation case studies. A panel discussion was held on the second day to interactively discuss layup and reactivation issues. More than 80 people attended the Conference. This report contains technical papers and a summary of the panel discussion. Of the eighteen papers, three are related to general, one is related to regulatory issues, three are related to specific equipment, four are related to layup procedures and practices, and seven are layup and reactivation case studies.

  18. Groundwater well with reactive filter pack

    DOE Patents [OSTI]

    Gilmore, Tyler J. (Pasco, WA); Holdren, Jr., George R. (Kennewick, WA); Kaplan, Daniel I. (Richland, WA)

    1998-01-01T23:59:59.000Z

    A method and apparatus for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques.

  19. A Tariff for Reactive Power - IEEE

    SciTech Connect (OSTI)

    Kueck, John D [ORNL; Tufon, Christopher [Pacific Gas and Electric Company; Isemonger, Alan [California Independent System Operator; Kirby, Brendan J [ORNL

    2008-11-01T23:59:59.000Z

    This paper describes a suggested tariff or payment for the local supply of reactive power from distributed energy resources. The authors consider four sample customers, and estimate the cost of supply of reactive power for each customer. The power system savings from the local supply of reactive power are also estimated for a hypothetical circuit. It is found that reactive power for local voltage regulation could be supplied to the distribution system economically by customers when new inverters are installed. The inverter would be supplied with a power factor of 0.8, and would be capable of local voltage regulation to a schedule supplied by the utility. Inverters are now installed with photovoltaic systems, fuel cells and microturbines, and adjustable-speed motor drives.

  20. Consideration of spatial effects in reactivity measurements

    SciTech Connect (OSTI)

    Matveenko, I. P., E-mail: matveenko@ippe.ru; Lititskii, V. A.; Shokod'ko, A. G. [Institute of Physics and Power Engineering (Russian Federation)

    2010-12-15T23:59:59.000Z

    Various methods of considering spatial effects in reactivity measurements are presented. These methods are employed both at the critical (mainly fast-neutron) facilities and at the BN-600 reactor.

  1. Systematic approach for chemical reactivity evaluation

    E-Print Network [OSTI]

    Aldeeb, Abdulrehman Ahmed

    2004-09-30T23:59:59.000Z

    Screening Tool (RSST) and the Automatic Pressure Tracking Adiabatic Calorimeter (APTAC) were employed to evaluate the reactive systems experimentally. The RSST detected exothermic behavior and measured the overall liberated energy. The APTAC simulated...

  2. Groundwater well with reactive filter pack

    DOE Patents [OSTI]

    Gilmore, T.J.; Holdren, G.R. Jr.; Kaplan, D.I.

    1998-09-08T23:59:59.000Z

    A method and apparatus are disclosed for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques. 3 figs.

  3. Reactive Attachment Disorder: Concepts, Treatment, and Research

    E-Print Network [OSTI]

    Walter, Uta M.; Petr, Chris

    2004-06-01T23:59:59.000Z

    Reactive Attachment Disorder (RAD) is a disorder characterized by controversy, both with respect to its definition and its treatment. By definition, the RAD diagnosis attempts to characterize and explain the origin of ...

  4. Relative reactivities of solid benzoic acids

    E-Print Network [OSTI]

    Warwas, Edwin James

    2012-06-07T23:59:59.000Z

    RELATIVE REACTIVITIES OF SOLID BENZOIC ACIDS A Thesis By EDWIN J, WARWAS Submitted to the Graduate College of the Texas A8rM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE January 1967' Major... Subject: Chemistry RELATIVE REACTIVITIES OF SOLID BENZOIC ACIDS A Thesis By EDWIN J. WARWAS Submitted to the Graduate College of the Texas ASSAM University in partial fulfillment of the requirements for the degree of MAST ER OF S CIENCE January...

  5. A Preliminary Analysis of the Economics of Using Distributed Energy as a Source of Reactive Power Supply

    SciTech Connect (OSTI)

    Li, Fangxing [ORNL; Kueck, John D [ORNL; Rizy, D Tom [ORNL; King, Thomas F [ORNL

    2006-04-01T23:59:59.000Z

    A major blackout affecting 50 million people in the Northeast United States, where insufficient reactive power supply was an issue, and an increased number of filings made to the Federal Energy Regulatory Commission by generators for reactive power has led to a closer look at reactive power supply and compensation. The Northeastern Massachusetts region is one such area where there is an insufficiency in reactive power compensation. Distributed energy due to its close proximity to loads seems to be a viable option for solving any present or future reactive power shortage problems. Industry experts believe that supplying reactive power from synchronized distributed energy sources can be 2 to 3 times more effective than providing reactive support in bulk from longer distances at the transmission or generation level. Several technology options are available to supply reactive power from distributed energy sources such as small generators, synchronous condensers, fuel cells or microturbines. In addition, simple payback analysis indicates that investments in DG to provide reactive power can be recouped in less than 5 years when capacity payments for providing reactive power are larger than $5,000/kVAR and the DG capital and installation costs are lower than $30/kVAR. However, the current institutional arrangements for reactive power compensation present a significant barrier to wider adoption of distributed energy as a source of reactive power. Furthermore, there is a significant difference between how generators and transmission owners/providers are compensated for reactive power supplied. The situation for distributed energy sources is even more difficult, as there are no arrangements to compensate independent DE owners interested in supplying reactive power to the grid other than those for very large IPPs. There are comparable functionality barriers as well, as these smaller devices do not have the control and communications requirements necessary for automatic operation in response to local or system operators. There are no known distributed energy asset owners currently receiving compensation for reactive power supply or capability. However, there are some cases where small generators on the generation and transmission side of electricity supply have been tested and have installed the capability to be dispatched for reactive power support. Several concerns need to be met for distributed energy to become widely integrated as a reactive power resource. The overall costs of retrofitting distributed energy devices to absorb or produce reactive power need to be reduced. There needs to be a mechanism in place for ISOs/RTOs to procure reactive power from the customer side of the meter where distributed energy resides. Novel compensation methods should be introduced to encourage the dispatch of dynamic resources close to areas with critical voltage issues. The next phase of this research will investigate in detail how different options of reactive power producing DE can compare both economically and functionally with shunt capacitor banks. Shunt capacitor banks, which are typically used for compensating reactive power consumption of loads on distribution systems, are very commonly used because they are very cost effective in terms of capital costs. However, capacitor banks can require extensive maintenance especially due to their exposure to lightning at the top of utility poles. Also, it can be problematic to find failed capacitor banks and their maintenance can be expensive, requiring crews and bucket trucks which often requires total replacement. Another shortcoming of capacitor banks is the fact that they usually have one size at a location (typically sized as 300, 600, 900 or 1200kVAr) and thus don't have variable range as do reactive power producing DE, and cannot respond to dynamic reactive power needs. Additional future work is to find a detailed methodology to identify the hidden benefit of DE for providing reactive power and the best way to allocate the benefit among customers, utilities, transmission companies or RTOs.

  6. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Stanley Miller; Rich Gebert; William Swanson

    1999-11-01T23:59:59.000Z

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a manner that has not been done before. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and collection of dust in conventional baghouses. The AHPC is currently being tested at the 2.7-MW scale at the Big Stone power station.

  7. Reactive Blast Waves from Composite Charges

    SciTech Connect (OSTI)

    Kuhl, A L; Bell, J B; Beckner, V E

    2009-10-16T23:59:59.000Z

    Investigated here is the performance of composite explosives - measured in terms of the blast wave they drive into the surrounding environment. The composite charge configuration studied here was a spherical booster (1/3 charge mass), surrounded by aluminum (Al) powder (2/3 charge mass) at an initial density of {rho}{sub 0} = 0.604 g/cc. The Al powder acts as a fuel but does not detonate - thereby providing an extreme example of a 'non-ideal' explosive (where 2/3 of the charge does not detonate). Detonation of the booster charge creates a blast wave that disperses the Al powder and ignites the ensuing Al-air mixture - thereby forming a two-phase combustion cloud embedded in the explosion. Afterburning of the booster detonation products with air also enhances and promotes the Al-air combustion process. Pressure waves from such reactive blast waves have been measured in bomb calorimeter experiments. Here we describe numerical simulations of those experiments. A Heterogeneous Continuum Model was used to model the dispersion and combustion of the Al particle cloud. It combines the gasdynamic conservation laws for the gas phase with a dilute continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models of Khasainov. It incorporates a combustion model based on mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Adaptive Mesh Refinement (AMR) was used to capture the energy-bearing scales of the turbulent flow on the computational grid, and to track/resolve reaction zones. Numerical simulations of the explosion fields from 1.5-g and 10-kg composite charges were performed. Computed pressure histories (red curve) are compared with measured waveforms (black curves) in Fig. 1. Comparison of these results with a waveform for a non-combustion case in nitrogen (blue curve) demonstrates that a reactive blast wave was formed. Cross-sectional views of the temperature field at various times are presented in Fig. 2, which shows that the flow is turbulent. Initially, combustion occurs at the fuel-air interface, and the energy release rate is controlled by the rate of turbulent mixing. Eventually, oxidizer becomes distributed throughout the cloud via ballistic mixing of the particles with air; energy release then occurs in a distributed combustion mode, and Al particle kinetics controls the energy release rate. Details of the Heterogeneous Continuum Model and results of the numerical simulations of composite charge explosions will be described in the paper.

  8. E-Print Network 3.0 - adaptive power control Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    controller, which does not need any... Coordinating Control of a Power System with Wind Farm Integration and Multiple FACTS Devices", Neural Networks... , "Coordinated Reactive...

  9. E-Print Network 3.0 - advanced mass spectrometric Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    optical, electrochemical, and mass... spectrometric sensing, closed-loop control, microfluidics, numerical modeling, and bioinformatics. A doctoral... and advanced analytical...

  10. Eoeective Recognizability and Model Checking of Reactive Fioeo Automata

    E-Print Network [OSTI]

    Sutre, Grégoire

    Electre. For this, we deøne a particular behavioral model for Electre programs, Reactive Fioeo Au­ tomata speciøed with the reactive language Electre [CR95]. A reactive pro­ gram is supposed to reactEoeective Recognizability and Model Checking of Reactive Fioeo Automata G. Sutre 1 , A. Finkel 1

  11. Ancillary service details: Voltage control

    SciTech Connect (OSTI)

    Kirby, B.; Hirst, E.

    1997-12-01T23:59:59.000Z

    Voltage control is accomplished by managing reactive power on an alternating-current power system. Reactive power can be produced and absorbed by both generation and transmission equipment. Reactive-power devices differ substantially in the magnitude and speed of response and in their capital costs. System operators, transmission owners, generators, customers, power marketers, and government regulators need to pay close attention to voltage control as they restructure the U.S. electricity industry. Voltage control can affect reliability and commerce in three ways: (1) Voltages must be maintained within an acceptable range for both customer and power-system equipment to function properly. (2) The movement of reactive power consumes transmission resources, which limits the ability to move real power and worsens congestion. (3) The movement of reactive power results in real-power losses. When generators are required to supply excessive amounts of reactive power, their real-power production must be curtailed. These opportunity costs are not currently compensated for in most regions. Current tariffs are based on embedded costs. These embedded-cost tariffs average about $0.51/MWh, equivalent to $1.5 billion annually for the United States as a whole. Although this cost is low when compared with the cost of energy, it still aggregates to a significant amount of money. This report takes a basic look at why the power system requires reactive power (an appendix explains the fundamentals of real and reactive power). The report then examines the various types of generation and transmission resources used to supply reactive power and to control voltage. Finally it discusses how these resources are deployed and paid for in several reliability regions around the country. As the U.S. electricity industry is restructured, the generation, transmission, and system-control equipment and functions that maintain voltages within the appropriate ranges are being deintegrated.

  12. In Situ Formation Of Reactive Barriers For Pollution Control

    DOE Patents [OSTI]

    Gilmore, Tyler J. (Pasco, WA); Riley, Robert G. (West Richland, WA)

    2004-04-27T23:59:59.000Z

    A method of treating soil contamination by forming one or more zones of oxidized material in the path of percolating groundwater is disclosed. The zone or barrier region is formed by delivering an oxidizing agent into the ground for reaction with an existing soil component. The oxidizing agent modifies the existing soil component creating the oxidized zone. Subsequently when soil contaminates migrate into the zone, the oxidized material is available to react with the contaminates and degrade them into benign products. The existing soil component can be an oxidizable mineral such as manganese, and the oxidizing agent can be ozone gas or hydrogen peroxide. Soil contaminates can be volatile organic compounds. Oxidized barriers can be used single or in combination with other barriers.

  13. Lillgrund Wind Farm Modelling and Reactive Power Control.

    E-Print Network [OSTI]

    Boulanger, Isabelle

    2009-01-01T23:59:59.000Z

    ?? The installation of wind power plant has significantly increased since several years due to the recent necessity of creating renewable and clean energy sources. (more)

  14. Neural systems for preparatory and reactive imitation control

    E-Print Network [OSTI]

    Cross, Katy

    2013-01-01T23:59:59.000Z

    ImI), spatial compatible (SpC) and spatial incompatible (conditions [spatial compatible (SpC), spatial incompatible (each block type (ImC, ImI, SpC, SpI) was included as a

  15. ?Control System for Reactive Power of an Offshore Wind Farm.

    E-Print Network [OSTI]

    Berglund, Arne

    2010-01-01T23:59:59.000Z

    ?? Until just a few years ago wind farms where excluded from many of the requirementsthat can be found in grid codes. But as the (more)

  16. Assessment of Controlling Processes for Field-Scale Uranium Reactive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the 300A site. However, the model simulations also revealed that the groundwater chemistry was relatively stable during the uranium tracer experiment and therefore...

  17. Hierarchical Reactive Control for Soccer Playing Humanoid Robots

    E-Print Network [OSTI]

    Behnke, Sven

    robots kick a ball into a goal? The answer lies not only in the fascination of the soccer game the capabilities of current computer systems. Perceptual processes, which interpret the flood of stimuli streaming are not aware of the difficulties involved. The performance of our perceptual system becomes clear only when

  18. Characterization of Dual-Fuel Reactivity Controlled Compression Ignition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Day withCharacterization and Valorization of(RCCI)

  19. Comparison of Conventional Diesel and Reactivity Controlled Compression

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheat TwoDepartment ofComparison of Clean

  20. A Reactive Control Approach for Pipeline Inspection with an AUV

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    robots, or UUVs (unmanned underwater vehicles) have long been present per- forming commercial operations operations suggest that autonomous underwater vehicles will become increasingly present in com- mercial autonomous underwater vehicle. The method presented here, called the Deformable Virtual Zones (DVZ) method

  1. Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDI Vehicle TechnologyEconomy

  2. High Efficiency Fuel Reactivity Controlled Compression Ignition Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency| Department of

  3. Assessment of Controlling Processes for Field-Scale Uranium Reactive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssembly of aB - ProgramServices

  4. Assessment of Controlling Processes for Field-Scale Uranium Reactive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDear Friend,Arthur J. Nozik -Grown byAssembly of a

  5. Chemical Imaging and Dynamical Studies of Reactivity and Emergent Behavior in Complex Interfacial Systems. Final Technical Report

    SciTech Connect (OSTI)

    Sibener, Steven J. [University of Chicago, IL (United States)] [University of Chicago, IL (United States)

    2014-03-11T23:59:59.000Z

    This research program explored the efficacy of using molecular-level manipulation, imaging and scanning tunneling spectroscopy in conjunction with supersonic molecular beam gas-surface scattering to significantly enhance our understanding of chemical processes occurring on well-characterized interfaces. One program focus was on the spatially-resolved emergent behavior of complex reaction systems as a function of the local geometry and density of adsorbate-substrate systems under reaction conditions. Another focus was on elucidating the emergent electronic and related reactivity characteristics of intentionally constructed single and multicomponent atom- and nanoparticle-based materials. We also examined emergent chirality and self-organization in adsorbed molecular systems where collective interactions between adsorbates and the supporting interface lead to spatial symmetry breaking. In many of these studies we combined the advantages of scanning tunneling (STM) and atomic force (AFM) imaging, scanning tunneling local electronic spectroscopy (STS), and reactive supersonic molecular beams to elucidate precise details of interfacial reactivity that had not been observed by more traditional surface science methods. Using these methods, it was possible to examine, for example, the differential reactivity of molecules adsorbed at different bonding sites in conjunction with how reactivity is modified by the local configuration of nearby adsorbates. At the core of this effort was the goal of significantly extending our understanding of interfacial atomic-scale interactions to create, with intent, molecular assemblies and materials with advanced chemical and physical properties. This ambitious program addressed several key topics in DOE Grand Challenge Science, including emergent chemical and physical properties in condensed phase systems, novel uses of chemical imaging, and the development of advanced reactivity concepts in combustion and catalysis including carbon management. These activities directly benefitted national science objectives in the areas of chemical energy production and advanced materials development.

  6. Advanced Critical Advanced Energy Retrofit Education and Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Advanced Energy Retrofit Education and Training and Credentialing - 2014 BTO Peer Review Advanced Critical Advanced Energy Retrofit Education and Training and...

  7. Advanced robot locomotion.

    SciTech Connect (OSTI)

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01T23:59:59.000Z

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  8. Reactive Protocols for Aircraft Electric Power Distribution Huan Xu, Ufuk Topcu, and Richard M. Murray

    E-Print Network [OSTI]

    Murray, Richard M.

    Reactive Protocols for Aircraft Electric Power Distribution Huan Xu, Ufuk Topcu, and Richard M. Murray Abstract-- The increasing complexity of electric power sys- tems leads to integration and verification challenges. We consider the problem of designing a control protocol for the aircraft electric

  9. Italian Academy Advanced Studies

    E-Print Network [OSTI]

    Qian, Ning

    The Italian Academy for Advanced Studies in America at Columbia University Annual Report 20062007 The Italian Academy for Advanced Studies in America at Columbia University Annual Report 20062007 #12;italian academy for advanced studies in america 1161 Amsterdam Avenue New York, NY 10027 tel: (212) 854-2306 fax

  10. Advanced Search Search Tips

    E-Print Network [OSTI]

    Kinosita Jr., Kazuhiko

    Advanced Search Search Tips Advanced Search Search Tips springerlink.com SpringerLink 2,000 40,000 20,000 2010 11 Please visit 7 http://www.springerlink.com GO 1997 1997 SpringerLink Advanced Search Search Tips CONTENT DOI CITATION DOI ISSN ISBN CATEGORY AND DATE LIMITERS Journals Books Protocols

  11. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Gregory Gaul

    2004-04-21T23:59:59.000Z

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

  12. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25T23:59:59.000Z

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  13. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21T23:59:59.000Z

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  14. Experimental Results Of Fuzzy Logic Control For Lateral Vehicle Guidance

    E-Print Network [OSTI]

    Hessburg, Thomas; Peng, Hei; Zhang, Wei-bin; Arai, Alan; Tomizuka, Masayoshi

    1994-01-01T23:59:59.000Z

    M. , Advances in Fuzzy Logic Control for Lateral VehicleExperimental Results of Fuzzy Logic Control for Lateral1425 Experimental Results of Fuzzy Logic Control for Lateral

  15. WSi2/Si Multilayer Sectioning by Reactive Ion Etching for Multilayer Laue Lens Fabrication

    SciTech Connect (OSTI)

    Bouet, N.; Conley, R.; Biancarosaa, J.; Divanc, R.; Macrander, A. T.

    2010-08-01T23:59:59.000Z

    SPIE Conference paper/talk presentation: Introduction: Reactive ion etching (RIE) has been employed in a wide range of fields such as semiconductor fabrication, MEMS (microelectromechanical systems), and refractive x-ray optics with a large investment put towards the development of deep RIE. Due to the intrinsic differing chemistries related to reactivity, ion bombardment, and passivation of materials, the development of recipes for new materials or material systems can require intense effort and resources. For silicon in particular, methods have been developed to provide reliable anisotropic profiles with good dimensional control and high aspect ratios1,2,3, high etch rates, and excellent material to mask etch selectivity...

  16. An Advanced Oxygen Trim Control System

    E-Print Network [OSTI]

    Miller, J. G.

    cell has fundamental design problems that can cause errors. First, the output of the cell is determined by the Nernst equation (B). (B) E RT 4r logn Pl P2 where E e.m.f. (potential) R Gas Co nstant T Absolute Temperature F Faraday Constant...

  17. Advanced controls for floating wind turbines

    E-Print Network [OSTI]

    Casanovas, Carlos (Casanovas Bermejo)

    2014-01-01T23:59:59.000Z

    Floating Offshore Wind Turbines (FOWT) is a technology that stands to spearhead the rapid growth of the offshore wind energy sector and allow the exploration of vast high quality wind resources over coastal and offshore ...

  18. Advanced particulate matter control apparatus and methods

    DOE Patents [OSTI]

    Miller, Stanley J. (Grand Forks, ND); Zhuang, Ye (Grand Forks, ND); Almlie, Jay C. (East Grand Forks, MN)

    2012-01-10T23:59:59.000Z

    Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

  19. Advanced Controls for Industrial Compressed Air Systems

    E-Print Network [OSTI]

    Vold, P.; Gabel, S.; Carmichael, L.; Curtner, K.; Cirillo, N. C. Jr.

    at a Goulds Pumps manufacturing plant in Seneca Falls, New York, and is currently undergoing field testing. The compressed air system will optimize the energy efficiency of the 7 compressor system (1,850hp) at Goulds, while reducing system pressure...

  20. Human Factors Aspects of Advanced Process Control

    E-Print Network [OSTI]

    Shaw, J. A.

    -----+---l A ? FE 10\\ FLOW )>-__~II~------I B FE 202 LITERATURE CITED .1. Nuclear regulatory commission; ''1MI-2 Lessons Learned" Task Force Final Report, NUREG-0585, NTIS (Springfieid, VA), October 1978. 2. Perrow, Charles, Normal Accidents, Basic...

  1. Advanced Power Systems and Controls Laboratory

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    photovoltaic generation facility. Solar panel output is in white, and the response of the XP DPR is in red Solar Power Generation Introduction The rapid growth of wind and solar power is a key driver of the development of grid-scale Battery Energy Storage Systems (BESS). A well implemented BESS co-located with solar

  2. Advanced Instrumentation, Information, and Control System Technologies:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReporting (Connecticut)41Adam GarberStartDepartment

  3. Advanced Sensors, Control, Platforms, and Modeling

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, AprilEdward

  4. Advanced CHP Control Algorithms: Scope Specification

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Brambley, Michael R.

    2006-04-28T23:59:59.000Z

    The primary objective of this multiyear project is to develop algorithms for combined heat and power systems to ensure optimal performance, increase reliability, and lead to the goal of clean, efficient, reliable and affordable next generation energy systems.

  5. Sandia National Laboratories: advanced heliostat control algorithms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wave EnergyLinksZparts of thecontrolscontrol

  6. Studies on Waterborne Pathogen Reactivation after Disinfection

    E-Print Network [OSTI]

    Kaur, Jasjeet

    2013-12-09T23:59:59.000Z

    ultraviolet (LP UV) irradiation at five titanium dioxide (TiO_(2)) concentrations (1 g/L, 0.5 g/L, 0.75 g/L, and 0.1 g/L) to achieve 5 log_(10) reduction of a laboratory E. coli K-12 strain (ATCC 10798). Regrowth and reactivation of E. coli in dark and light...

  7. Gasification reactivities of solid biomass fuels

    SciTech Connect (OSTI)

    Moilanen, A.; Kurkela, E.

    1995-12-31T23:59:59.000Z

    The design and operation of the biomass based gasification processes require knowledge about the biomass feedstocks characteristics and their typical gasification behaviour in the process. In this study, the gasification reactivities of various biomasses were investigated in laboratory scale Pressurized Thermogravimetric apparatus (PTG) and in the PDU-scale (Process Development Unit) Pressurized Fluidized-Bed (PFB) gasification test facility of VTT.

  8. Development of an Enhanced GenVARR (Generator Volt Ampere Reactive Reserve) System

    SciTech Connect (OSTI)

    Schatz, Joe E.

    2009-03-12T23:59:59.000Z

    Transmission system operators require near real time knowledge of reactive power capability to reliably operate large electric power transmission systems. Reactive power produced by, or capable of being produced by, a power generator is often estimated based on a series of mega volt amperes (MVA) capability curves for the generator. These curves indicate the ability of the generator to produce real and reactive power under a variety of conditions. In transmission planning and operating studies, it is often assumed, based on estimates for these capability curves, that the generator can provide its rated MVA capability output when needed for system stability However, generators may not always operate at levels depicted by the maximum MVA capability curve due to present constraints. Transmission system operators utilizing the generators capability curves for operation decisions regarding transmission system stability or for planning horizons may overestimate the capability of the generators to supply reactive power when required. Southern Company has enhanced GenVARR(TM), the system of plant data query, retrieval, and analysis and calculates the actual not estimated -- remaining reactive power output capability. The remaining reactive output is considered spinning reserve and is displayed graphically to transmission control center and generating plant operators to identify real time VAR limits. GenVARR is capable of aggregating generators from a defined region, or other user selectable combinations, to represent the available reserves that the operators are specifically interested in. GenVARR(TM) has been put into live production operation and is expected to significantly improve the overall visibility of the reactive reserve capability of the system. This new version of GenVARR(TM) significantly enhances the products structure and performance, and enables links to other key transmission system operation tools.

  9. Reactive power interconnection requirements for PV and wind plants : recommendations to NERC.

    SciTech Connect (OSTI)

    McDowell, Jason (General Electric, Schenectady, NY); Walling, Reigh (General Electric, Schenectady, NY); Peter, William (SunPower, Richmond, CA); Von Engeln, Edi (NV Energy, Reno, NV); Seymour, Eric (AEI, Fort Collins, CO); Nelson, Robert (Siemens Wind Turbines, Orlando, FL); Casey, Leo (Satcon, Boston, MA); Ellis, Abraham; Barker, Chris. (SunPower, Richmond, CA)

    2012-02-01T23:59:59.000Z

    Voltage on the North American bulk system is normally regulated by synchronous generators, which typically are provided with voltage schedules by transmission system operators. In the past, variable generation plants were considered very small relative to conventional generating units, and were characteristically either induction generator (wind) or line-commutated inverters (photovoltaic) that have no inherent voltage regulation capability. However, the growing level of penetration of non-traditional renewable generation - especially wind and solar - has led to the need for renewable generation to contribute more significantly to power system voltage control and reactive power capacity. Modern wind-turbine generators, and increasingly PV inverters as well, have considerable dynamic reactive power capability, which can be further enhanced with other reactive support equipment at the plant level to meet interconnection requirements. This report contains a set of recommendations to the North-America Electricity Reliability Corporation (NERC) as part of Task 1-3 (interconnection requirements) of the Integration of Variable Generation Task Force (IVGTF) work plan. The report discusses reactive capability of different generator technologies, reviews existing reactive power standards, and provides specific recommendations to improve existing interconnection standards.

  10. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Stanley J. Miller; Grant L. Schelkoph; Grant E. Dunham

    2000-12-01T23:59:59.000Z

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and recollection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hour parametric tests and 100-hour proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency.

  11. Advanced hybrid gasification facility

    SciTech Connect (OSTI)

    Sadowski, R.S.; Skinner, W.H. [CRS Sirrine, Inc., Greenville, SC (United States); Johnson, S.A. [PSI Technology Co., Andover, MA (United States); Dixit, V.B. [Riley Stoker Corp., Worcester, MA (United States). Riley Research Center

    1993-08-01T23:59:59.000Z

    The objective of this procurement is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology for electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas{trademark} staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may react with aluminosilicates in the coal ash thereby minimizing their concentration in the hot raw coal gas passing through the system to the gas turbine. This paper describes a novel, staged, airblown, fixed-bed gasifier designed to solve both through the incorporation of pyrolysis (carbonization) with gasification. It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration which occurs in a fixed-bed process when coal is gradually heated through the 400{degrees}F to 900{degrees}F range. In a pyrolyzer, the coal is rapidly heated such that coal tar is immediately vaporized. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can be chemically bound to aluminosilicates in (or added to) the ash. To reduce NOx from fuel home nitrogen, moisture is minimized to control ammonia generation, and HCN in the upper gasifier region is partially oxidized to NO which reacts with NH3/HCN to form N2.

  12. Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform

    SciTech Connect (OSTI)

    Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.; Palmintier, Bryan; Lundstrom, Blake; Chakraborty, Sudipta

    2014-10-11T23:59:59.000Z

    High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been proposed that have the potential to mitigate many power quality concerns. However, closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. In order to enable the study of the performance of advanced control schemes in a detailed distribution system environment, a Hardware-in-the-Loop (HIL) platform has been developed. In the HIL system, GridLAB-D, a distribution system simulation tool, runs in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling to hardware located at the National Renewable Energy Laboratory (NREL). Hardware inverters interact with grid and PV simulators emulating an operational distribution system and power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of controls applied to inverters that are integrated into a simulation of the IEEE 8500-node test feeder, with inverters in either constant power factor control or active volt/VAR control. We demonstrate that this HIL platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, the results from HIL are used to validate GridLAB-D simulations of advanced inverter controls. ?

  13. Assessment of the Economic Potential of Microgrids for Reactive Power Supply

    E-Print Network [OSTI]

    Appen, Jan von

    2012-01-01T23:59:59.000Z

    Reactive Power from Distributed Energy, The Electricityvoltage. Electricity consumers demand for reactive power ison electricity supply security, the costs of local reactive

  14. Parallel Web Scripting with Reactive Constraints Thibaud Hottelier

    E-Print Network [OSTI]

    Bodik, Rastisla

    Parallel Web Scripting with Reactive Constraints Thibaud Hottelier James Ide Doug Kimelman Ras Bodik Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report to lists, requires prior specific permission. #12;Parallel Web Scripting with Reactive Constraints Thibaud

  15. Advanced Studies Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Institute Advanced Studies Institute Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff...

  16. Advanced Reciprocating Engine Systems

    Broader source: Energy.gov [DOE]

    The Advanced Reciprocating Engine Systems (ARES) program is designed to promote separate but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the...

  17. Advanced Propulsion Technology Strategy

    Broader source: Energy.gov (indexed) [DOE]

    Alternative Sources) Hydrogen Time ADVANCED PROPULSION TECHNOLOGY STRATEGY DOWNSIZED TURBO GAS ENGINE CHEVROLET CRUZE 1.4L TURBO ECOTEC Downsized SIDI Turbo Boosting HCCI -...

  18. Advanced Fuel Cycle Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working with INL Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor...

  19. Advanced Fuel Cycle Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working with INL Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor...

  20. Advances in Physical Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hindawi Publishing Corporation Advances in Physical Chemistry Volume 2011, Article ID 907129, 18 pages doi:10.11552011907129 Review Article Contrast and Synergy between...

  1. Local Dynamic Reactive Power for Correction of System Voltage Problems

    SciTech Connect (OSTI)

    Kueck, John D [ORNL; Rizy, D Tom [ORNL; Li, Fangxing [ORNL; Xu, Yan [ORNL; Li, Huijuan [University of Tennessee, Knoxville (UTK); Adhikari, Sarina [ORNL; Irminger, Philip [ORNL

    2008-12-01T23:59:59.000Z

    Distribution systems are experiencing outages due to a phenomenon known as local voltage collapse. Local voltage collapse is occurring in part because modern air conditioner compressor motors are much more susceptible to stalling during a voltage dip than older motors. These motors can stall in less than 3 cycles (.05s) when a fault, such as on the sub-transmission system, causes voltage to sag to 70 to 60%. The reasons for this susceptibility are discussed in the report. During the local voltage collapse, voltages are depressed for a period of perhaps one or two minutes. There is a concern that these local events are interacting together over larger areas and may present a challenge to system reliability. An effective method of preventing local voltage collapse is the use of voltage regulation from Distributed Energy Resources (DER) that can supply or absorb reactive power. DER, when properly controlled, can provide a rapid correction to voltage dips and prevent motor stall. This report discusses the phenomenon and causes of local voltage collapse as well as the control methodology we have developed to counter voltage sag. The problem is growing because of the use of low inertia, high efficiency air conditioner (A/C) compressor motors and because the use of electric A/C is growing in use and becoming a larger percentage of system load. A method for local dynamic voltage regulation is discussed which uses reactive power injection or absorption from local DER. This method is independent, rapid, and will not interfere with conventional utility system voltage control. The results of simulations of this method are provided. The method has also been tested at the ORNL s Distributed Energy Communications and Control (DECC) Laboratory using our research inverter and synchronous condenser. These systems at the DECC Lab are interconnected to an actual distribution system, the ORNL distribution system, which is fed from TVA s 161kV sub-transmission backbone. The test results are also provided and discussed. The simulations and testing show that local voltage control from DER can prevent local voltage collapse. The results also show that the control can be provided so quickly, within 0.5 seconds, that is does not interfere with conventional utility methods.

  2. Spectral shift reactor control method

    SciTech Connect (OSTI)

    Impink, A.J. Jr.

    1984-02-21T23:59:59.000Z

    A method of operating a pressurized water nuclear reactor is described which comprises the determining of the present core power and reactivity levels and predicting the change in such levels due to displacer rod movements. Groups or single clusters of displacer rods can be inserted or withdrawn based on the predicted core power and reactivity levels to change the core power level and power distribution thereby providing load follow capability, without changing control rod positions or coolant boron concentrations.

  3. Undergraduate reactor control experiment

    SciTech Connect (OSTI)

    Edwards, R.M.; Power, M.A.; Bryan, M. (Pennsylvania State Univ., University Park (United States))

    1992-01-01T23:59:59.000Z

    A sequence of reactor and related experiments has been a central element of a senior-level laboratory course at Pennsylvania State University (Penn State) for more than 20 yr. A new experiment has been developed where the students program and operate a computer controller that manipulates the speed of a secondary control rod to regulate TRIGA reactor power. Elementary feedback control theory is introduced to explain the experiment, which emphasizes the nonlinear aspect of reactor control where power level changes are equivalent to a change in control loop gain. Digital control of nuclear reactors has become more visible at Penn State with the replacement of the original analog-based TRIGA reactor control console with a modern computer-based digital control console. Several TRIGA reactor dynamics experiments, which comprise half of the three-credit laboratory course, lead to the control experiment finale: (a) digital simulation, (b) control rod calibration, (c) reactor pulsing, (d) reactivity oscillator, and (e) reactor noise.

  4. ENVIRONMENTAL REACTIVITY OF SOLID STATE HYDRIDE MATERIALS

    SciTech Connect (OSTI)

    Gray, J; Donald Anton, D

    2009-04-23T23:59:59.000Z

    In searching for high gravimetric and volumetric density hydrogen storage systems, it is inevitable that higher energy density materials will be used. In order to make safe and commercially acceptable condensed phase hydrogen storage systems, it is important to understand quantitatively the risks involved in using and handling these materials and to develop appropriate mitigation strategies to handle potential material exposure events. A crucial aspect of the development of risk identification and mitigation strategies is the development of rigorous environmental reactivity testing standards and procedures. This will allow for the identification of potential risks and implementation of risk mitigation strategies. Modified testing procedures for shipping air and/or water sensitive materials, as codified by the United Nations, have been used to evaluate two potential hydrogen storage materials, 2LiBH{sub 4} {center_dot} MgH{sub 2} and NH{sub 3}BH{sub 3}. The modified U.N. procedures include identification of self-reactive substances, pyrophoric substances, and gas-emitting substances with water contact. The results of these tests for air and water contact sensitivity will be compared to the pure material components where appropriate (e.g. LiBH{sub 4} and MgH{sub 2}). The water contact tests are divided into two scenarios dependent on the hydride to water mole ratio and heat transport characteristics. Air contact tests were run to determine whether a substance will spontaneously react with air in a packed or dispersed form. In the case of the 2LiBH{sub 4} {center_dot} MgH{sub 2} material, the results from the hydride mixture compared to the pure materials results showed the MgH{sub 2} to be the least reactive component and LiBH{sub 4} the more reactive. The combined 2LiBH{sub 4} {center_dot} MgH{sub 2} resulted in a material having environmental reactivity between these two materials. Relative to 2LiBH{sub 4} {center_dot} MgH{sub 2}, the chemical hydride NH{sub 3}BH{sub 3} was observed to be less environmentally reactive.

  5. The Simulation of Synchronous Reactive Systems In Ptolemy II

    E-Print Network [OSTI]

    The Simulation of Synchronous Reactive Systems In Ptolemy II by Paul Whitaker Submitted to the Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, in partial;_____________________________________________________________________ Simulation of Synchronous Reactive Systems in Ptolemy II ii Abstract The Synchronous Reactive (SR) domain

  6. Autonomic Reactive Systems via Online Learning Sanjit A. Seshia

    E-Print Network [OSTI]

    California at Irvine, University of

    Autonomic Reactive Systems via Online Learning Sanjit A. Seshia Department of Electrical@eecs.berkeley.edu Abstract-- Reactive systems are those that maintain an ongoing interaction with their environment- covering a class of reactive systems from run-time failures. This class of systems comprises those whose

  7. Towards Synthesis of Reactive & Robust Behavior Chains Amol D. Mali

    E-Print Network [OSTI]

    Mali, Amol D.

    Towards Synthesis of Reactive & Robust Behavior Chains Amol D. Mali Electrical Engg. & Computer robots need to be reactive and robust. Behavior-based robots that identify and repair the failures have of reactivity and robustness have been hitherto only informally used and have been loaded with var- ious

  8. A Synchronous Approach to Reactive System Design1 Charles Andr

    E-Print Network [OSTI]

    André, Charles

    our experience teaching discrete-event reactive systems to Electrical Engineering students. The courseA Synchronous Approach to Reactive System Design1 Charles André I3S Laboratory ­ UNSA/CNRS BP 121 This paper was presented at the 12th EAEEIE Annual Conf., 14-16 May 2001, Nancy (France). Abstract Reactive

  9. Mined land reclamation by biological reactivation

    SciTech Connect (OSTI)

    Gozon, J.S.; Konya, C.J.; Lukovic, S.S.; Lundquist, R.G.; Olah, J.

    1982-12-01T23:59:59.000Z

    A mine reclamation technique, developed in Europe, restores land to full productivity within two years without topsoil replacement. The method deliberately reestablishes within one year following mining, the required biological balance between microbes, enzymes, and trace elements in the rock spoil rather than waiting five or more years for natural processes to restore balance. The technique is called Biological Reactivation (BR). This paper discusses the feasibility of BR reclamation after surface mining operations in the US. Staff of the Ohio Mining and Mineral Resources Research Institute completed an OSM-sponsored research project on BR in which physical and chemical tests characterized 140 spoil samples obtained from 10 surface mining operations. Test results indicated that Biological Reactivation technology could be effectively applied, at least in the test areas sampled within Appalachia. Preliminary estimates make clear that the new technique reduces reclamation costs on prime farmland by approximately 95% compared to topsoil segregation and replacement methods.

  10. Kansas Advanced Semiconductor Project

    SciTech Connect (OSTI)

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21T23:59:59.000Z

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  11. E-Print Network 3.0 - advanced test manage Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manage Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced test manage Page: << < 1 2 3 4 5 > >> 1 Current Strategies for Bovine TB Control...

  12. Soft Selves and Ecological Control

    E-Print Network [OSTI]

    Clark, Andy

    2006-01-01T23:59:59.000Z

    Advanced biological brains are by nature open-ended opportunistic controllers. Such controllers compute, pretty much on a moment-to-moment basis, what problem-solving resources are readily available and recruit them into ...

  13. Chemistry 685 (CHE 685) Advanced Organic Chemistry: Organic Reaction Mechanisms and Molecular Interactions

    E-Print Network [OSTI]

    Mather, Patrick T.

    Chemistry 685 (CHE 685) Advanced Organic Chemistry: Organic Reaction Mechanisms and Molecular and physical chemistry Course description and rationale CHE685 is a graduate-level organic chemistry course. These two courses focus on physical organic chemistry, which deals with the structure and reactivity

  14. Criticality Safety Evaluation for the Advanced Test Reactor U-Mo Demonstration Elements

    SciTech Connect (OSTI)

    Leland M. Montierth

    2010-12-01T23:59:59.000Z

    The Reduced Enrichment Research Test Reactors (RERTR) fuel development program is developing a high uranium density fuel based on a (LEU) uranium-molybdenum alloy. Testing of prototypic RERTR fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. Two RERTR-Full Size Demonstration fuel elements based on the ATR-Reduced YA elements (all but one plate fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). The two fuel elements will be irradiated in alternating cycles such that only one element is loaded in the reactor at a time. Existing criticality analyses have analyzed Standard (HEU) ATR elements (all plates fueled) from which controls have been derived. This criticality safety evaluation (CSE) documents analysis that determines the reactivity of the Demonstration fuel elements relative to HEU ATR elements and shows that the Demonstration elements are bound by the Standard HEU ATR elements and existing HEU ATR element controls are applicable to the Demonstration elements.

  15. advanced ceramics advanced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  16. A novel reactive processing technique: using telechelic polymers to reactively compatibilize polymer blends

    SciTech Connect (OSTI)

    Ashcraft, Earl C [ORNL; Ji, Haining [ORNL; Mays, Jimmy [ORNL; Dadmun, Mark D [ORNL

    2009-01-01T23:59:59.000Z

    Difunctional reactive polymers, telechelics, were used to reactively form multiblock copolymers in situ when melt-blended with a blend of polystyrene and polyisoprene. To quantify the ability of the copolymer to compatibilize the blends, the time evolution of the domain size upon annealing was analyzed by SEM. It was found that the most effective parameter to quantify the ability of the copolymer to inhibit droplet coalescence is Kreltstable, the relative coarsening constant multiplied by the stabilization time. These results indicate that intermediate-molecular-weight telechelic pairs of both highly reactive Anhydride-PS-Anhydride/NH2-PI-NH2 and slower reacting Epoxy-PS-Epoxy/COOH-PI-COOH both effectively suppress coalescence, with the optimal molecular weight being slightly above the critical molecular weight of the homopolymer,Mc. The effects of telechelic loading were also investigated, where the optimal loading concentration for this system was 0.5 wt %, as higher concentrations exhibited a plasticizing effect due to the presence of unreacted low-molecular-weight telechelics present in the blend. A determination of the interfacial coverage of the copolymer shows that a conversion of 1.5-3.0% was required for 20% surface coverage at 5.0 wt % telechelic loading, indicating a large excess of telechelics in this system. At the optimal loading level of 0.5 wt %, a conversion of 15% was required for 20% surface coverage. The results of these experiments provide a clear understanding of the role of telechelic loading and molecular weight on its ability to reactively form interfacial modifiers in phase-separated polymer blends and provide guidelines for the development of similar reactive processing schemes that can use telechelic polymers to reactively compatibilize a broad range of polymer blends.

  17. Advanced Manufacturing Use Cases and Early Results in GENI Infrastructure

    E-Print Network [OSTI]

    Calyam, Prasad

    for controlling remote processes in manufacturing facilities. In addition, there is a need to suitably configureAdvanced Manufacturing Use Cases and Early Results in GENI Infrastructure Alex Berryman, Prasad to advanced manufacturing communities are exciting prospects due to the growth of the global marketplace

  18. Advanced RISC Machines Document Number: ARM DDI 0035A

    E-Print Network [OSTI]

    Grantner, Janos L.

    the ARM710 microprocessor, the ARM7100 integrates LCD control, glueless DRAM interface, UART with infraAdvanced RISC Machines ARM Document Number: ARM DDI 0035A Issued: January 1996 Copyright Advanced Data Sheet ARM DDI 0035A The ARM7100 is a high integration microcontroller particularly well

  19. Draft Advanced Nuclear Energy Projects Solicitation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Draft Advanced Nuclear Energy Projects Solicitation Draft Advanced Nuclear Energy Projects Solicitation INFORMATIONAL MATERIALS DRAFT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION...

  20. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership...

  1. Spectral shift reactor control method

    SciTech Connect (OSTI)

    Impink, A.J. Jr.

    1987-08-18T23:59:59.000Z

    The method is described of closely controlling the reactor water coolant temperature of an operating spectral-shift nuclear reactor, the reactor comprising a core formed of fuel assemblies through which the reactor water coolant flows; different types of elongated elements operable to be controllably moved into and out of the core; one type of the elongated elements comprising control rods formed of neutron absorbing material and operable to decrease reactivity through neutron absorption when inserted into the core; another of the types of elongated elements comprising displacer rods formed of material which has a low absorption for neutrons and which have overall neutron-absorbing and moderating characteristics essentially not exceeding those of hollow tubular Zircaloy members with a filling zirconium oxide or aluminum oxide, the displacer rods operating to displace an equivalent volume of water coolant fluid from the core when inserted therein to decrease reactivity and to increase reactivity when moved from the core.

  2. E-Print Network 3.0 - advanced reactivity measurement facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    < 1 2 3 4 5 > >> Page: << < 1 2 3 4 5 > >> 41 STANDARDS FOR MEASUREMENTS AND TESTING OF WIND TURBINE POWER QUALITY Poul Srensen, Ris National Laboratory, P.O.Box 49, DK-4000...

  3. E-Print Network 3.0 - advanced reactivity measurement Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    < 1 2 3 4 5 > >> Page: << < 1 2 3 4 5 > >> 41 STANDARDS FOR MEASUREMENTS AND TESTING OF WIND TURBINE POWER QUALITY Poul Srensen, Ris National Laboratory, P.O.Box 49, DK-4000...

  4. Reactive Air Aluminizing of Nicrofer-6025HT for Use in Advanced Coal-Based Power Plants

    SciTech Connect (OSTI)

    Joshi, Vineet V.; Choi, Jung-Pyung; Darsell, Jens T.; Meier, Alan; Weil, K. Scott

    2013-01-01T23:59:59.000Z

    The present work demonstrated the feasibility of preparing RAA coatings on Nicrofer and compared the effect of aluminum powder size on the RAA process.

  5. Advancing Reactive Tracer Methods for Measuring Thermal Evolution in CO2-

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:IowaResource Evaluation And Reservoir Management

  6. Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models

    SciTech Connect (OSTI)

    Cetiner, Mustafa Sacit; none,; Flanagan, George F. [ORNL] [ORNL; Poore III, Willis P. [ORNL] [ORNL; Muhlheim, Michael David [ORNL] [ORNL

    2014-07-30T23:59:59.000Z

    An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two types of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal ReactorPower Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.

  7. HVDC control developments - addressing system requirements

    SciTech Connect (OSTI)

    Hauth, R.L.; Patel, H.S.; Piwko, R.J.

    1984-01-01T23:59:59.000Z

    This article describes typical high voltage direct current (HVDC) control systems and some of the new developments in the control area. HVDC control systems are showing their flexible characteristics as demonstrated, for example, by the new modulation, torsional damping, and alternating current voltage and reactive power controllers. Extensive studies are conducted to design and integrate such controllers into HVDC systems and to assure against any detrimental interactions within the total control system. 8 figures.

  8. Search Asia Advanced Search

    E-Print Network [OSTI]

    Asia Times Search Asia Times Advanced Search Southeast Asia Malaysia tackles illegal logging:52:14 AM Search #12;Asia Times illegal logging," he said, adding that nine Malaysians had been arrested

  9. Search Asia Advanced Search

    E-Print Network [OSTI]

    Asia Times Search Asia Times Advanced Search Southeast Asia Indonesia looks to curb log smuggling.html (1 of 2)9/4/2007 12:59:34 PM Search #12;Asia Times No material from Asia Times Online may

  10. Advanced Review Geometry optimization

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    Advanced Review Geometry optimization H. Bernhard Schlegel Geometry optimization is an important part of most quantum chemical calcu- lations. This article surveys methods for optimizing equilibrium geometries, lo- cating transition structures, and following reaction paths. The emphasis is on optimizations

  11. Advanced Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials SHARE Advanced Materials ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of...

  12. Renewable Chemicals and Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Advanced Biofuels & PolicyBrett Lund, Executive Vice President, General Counsel and Secretary, Gevo Inc.

  13. Partial control of complex processing systems. Final Report

    SciTech Connect (OSTI)

    Shinnar, Reuel; Rinard, Irv

    2003-04-17T23:59:59.000Z

    Research program for the design and control of advanced chemical process systems, typified by refineries/petro chemical plants.

  14. IAEA sodium void reactivity benchmark calculations

    SciTech Connect (OSTI)

    Hill, R.N.; Finck, P.J.

    1992-12-01T23:59:59.000Z

    In this paper, the IAEA-1 992 ``Benchmark Calculation of Sodium Void Reactivity Effect in Fast Reactor Core`` problem is evaluated. The proposed design is a large axially heterogeneous oxide-fueled fast reactor as described in Section 2; the core utilizes a sodium plenum above the core to enhance leakage effects. The calculation methods used in this benchmark evaluation are described in Section 3. In Section 4, the calculated core performance results for the benchmark reactor model are presented; and in Section 5, the influence of steel and interstitial sodium heterogeneity effects is estimated.

  15. IAEA sodium void reactivity benchmark calculations

    SciTech Connect (OSTI)

    Hill, R.N.; Finck, P.J.

    1992-01-01T23:59:59.000Z

    In this paper, the IAEA-1 992 Benchmark Calculation of Sodium Void Reactivity Effect in Fast Reactor Core'' problem is evaluated. The proposed design is a large axially heterogeneous oxide-fueled fast reactor as described in Section 2; the core utilizes a sodium plenum above the core to enhance leakage effects. The calculation methods used in this benchmark evaluation are described in Section 3. In Section 4, the calculated core performance results for the benchmark reactor model are presented; and in Section 5, the influence of steel and interstitial sodium heterogeneity effects is estimated.

  16. Theoretical and Experimental Evaluation of Chemical Reactivity

    E-Print Network [OSTI]

    Wang, Qingsheng

    2011-10-21T23:59:59.000Z

    released and the rate of energy released for a specific reactive chemical. 2.1 DSC DSC is a popular screening tool (safe and fast) and can provide an overall indication of exothermic activity of the chemical being tested. In a DSC, a sample and a... endothermic or exothermic reaction. When the rate of heat generation in the sample exceeds a particular value, the heat supply to the sample is cut off and this additional heat gain is attributed to exothermic activity within the sample.17 From the DSC...

  17. Preparation of reactive beta-dicalcium silicate

    DOE Patents [OSTI]

    Shen, Ming-Shing (Laramie, WY, NJ); Chen, James M. (Rahway, NJ); Yang, Ralph T. (Amherst, NY)

    1982-01-01T23:59:59.000Z

    This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane and hydrogen, at a temperature of about 850.degree.-1000.degree. C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

  18. Preparation of reactive beta-dicalcium silicate

    DOE Patents [OSTI]

    Shen, M.S.; Chen, J.M.; Yang, R.T.

    1980-02-28T23:59:59.000Z

    This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica, and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane, and hydrogen, at a temperature of about 850 to 1000/sup 0/C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

  19. Implementation of Multi-valued Fuzzy Behavior Control for Robot Navigation in Cluttered

    E-Print Network [OSTI]

    Collins, Emmanuel

    , resulting in the development of reactive fuzzy behavior methods that use fuzzy logic controllers, which canImplementation of Multi-valued Fuzzy Behavior Control for Robot Navigation in Cluttered for navigation control of robotic vehicles using multivalued reactive fuzzy behaviors. This design allows

  20. 2008 Annual Merit Review Results Summary - 5. Advanced Power...

    Broader source: Energy.gov (indexed) [DOE]

    Electric Motors R&D (NA, NA) 4.00 5-10 Advanced Thermal Control of Power Electronics (Kelly, Ken, National Renewable Energy Laboratory) 4.25 0.96 5-13 Bi-Directional DC-DC...

  1. Centralized wind power plant voltage control with optimal power flow algorithm.

    E-Print Network [OSTI]

    Kline, Jared Andrew

    2011-01-01T23:59:59.000Z

    ??This thesis presents a method of controlling the reactive power injected into a medium-voltage collection system by multiple wind turbine generators such that the voltage (more)

  2. Section 10: Turbulence and reactive flows 1 Section 10: Turbulence and reactive flows

    E-Print Network [OSTI]

    Kohlenbach, Ulrich

    premixed combustion is recently a theme of interest in gas turbines and other industrial applications flames #12;2 Section 10: Turbulence and reactive flows for gas turbine application. In: International Gas combustion LES in- cluding thickened flame model A. Hosseinzadeh, A. Sadiki, J. Janicka (TU Darmstadt) Lean

  3. Advancement of Electrochromic Windows

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    whole building controls makes sense for demand response,building-wide control solutions for demand response, real-of building-wide control based on demand response, real-time

  4. Effects of V2G Reactive Power Compensation on the Component Selection in an EV or PHEV Bidirectional Charger

    E-Print Network [OSTI]

    Tolbert, Leon M.

    , electric vehicle, EV, PHEV, reactive power, V2G. I. NOMENCLATURE Vde (t) instantaneous dc link voltage, [V electric vehicles throughout this paper. EV power electronics and related control systems are the system vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are becoming a part of the electric grid day

  5. MATLAB muliplatform research license: Numeric computation, advanced graphics and visualization, and a high-level programming

    E-Print Network [OSTI]

    Dawson, Jeff W.

    MATLAB muliplatform research license: Numeric computation, advanced graphics and visualization license allows research and includes the following: Feature # of users MATLAB 7 Simulink 6 Control System

  6. E-Print Network 3.0 - advanced heat exchangers Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and integration Molecular-scale design Advanced materials Digital control technology Hydrogen may be leading... and mechanically integrate the reformer to maximize heat recovery,...

  7. E-Print Network 3.0 - advanced turbine systems-research Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    models and advanced control strategies... .139) Track: Technical VARIABLE SPEED WIND TURBINES - FAULT RIDE-THROUGH AND GRID SUPPORT CAPABILITIES... is on the fault ride through...

  8. E-Print Network 3.0 - advanced non-polluting turbine Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    models and advanced control strategies... .139) Track: Technical VARIABLE SPEED WIND TURBINES - FAULT RIDE-THROUGH AND GRID SUPPORT CAPABILITIES... is on the fault ride through...

  9. E-Print Network 3.0 - advanced multistage turbine Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    models and advanced control strategies... .139) Track: Technical VARIABLE SPEED WIND TURBINES - FAULT RIDE-THROUGH AND GRID SUPPORT CAPABILITIES... is on the fault ride through...

  10. E-Print Network 3.0 - advanced wind turbine Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    models and advanced control strategies... .139) Track: Technical VARIABLE SPEED WIND TURBINES - FAULT RIDE-THROUGH AND GRID SUPPORT CAPABILITIES... is on the fault ride through...

  11. E-Print Network 3.0 - advanced hydropower turbine Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    models and advanced control strategies... .139) Track: Technical VARIABLE SPEED WIND TURBINES - FAULT RIDE-THROUGH AND GRID SUPPORT CAPABILITIES... is on the fault ride through...

  12. E-Print Network 3.0 - advanced fuel fusion Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced energy sources, inertial fusion requires... principles of controlled inertial fusion: thermonuclear ignition and burn of deuterium-tritium (DT) fuel... by the...

  13. Reactive Dehydration technology for Production of Fuels and Chemicals...

    Broader source: Energy.gov (indexed) [DOE]

    Catalytic and Reactive Distillation) for compact, inexpensive production of biomass-based chemicals from complex aqueous mixtures. SeparationPurification of Biomass...

  14. Chemically Reactive Working Fluids for the Capture and Transport...

    Broader source: Energy.gov (indexed) [DOE]

    Optical Waveguide Coupler Transformers for High-Power Solar Enegy Collection and Transmission Chemically Reactive Working Fluids Low-Cost Light Weigh Thin Film Solar Concentrators...

  15. Chemical Analysis of Complex Organic Mixtures Using Reactive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass Spectrometry. Abstract: Reactive nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was utilized for the analysis of...

  16. Airborne measurement of OH reactivity during INTEX-B

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    plus OH sign), reactiv- propane ing different gases gases atisoprene (plus sign), propane (star) and propene (triangle).NMHC includes ethane, ethene, propane, propene, i-butane, n-

  17. Sensors and Actuators for the Advanced LIGO Mirror Suspensions

    E-Print Network [OSTI]

    L. Carbone; S. M. Aston; R. M. Cutler; A. Freise; J. Greenhalgh; J. Heefner; D. Hoyland; N. A. Lockerbie; D. Lodhia; N. A. Robertson; C. C. Speake; K. A. Strain; A. Vecchio

    2012-05-25T23:59:59.000Z

    We have developed, produced and characterised integrated sensors, actuators and the related read-out and drive electronics that will be used for the control of the Advanced LIGO suspensions. The overall system consists of the BOSEMs (displacement sensor with integrated electro-magnetic actuator), the satellite boxes (BOSEM readout and interface electronics) and six different types of coil-driver units. In this paper we present the design of this read-out and control system, we discuss the related performance relevant for the Advanced LIGO suspensions, and we report on the experimental activity finalised at the production of the instruments for the Advanced LIGO detectors.

  18. Preliminary core design studies for the advanced burner reactor over a wide range of conversion ratios.

    SciTech Connect (OSTI)

    Hoffman, E. A.; Yang, W. S.; Hill, R. N.; Nuclear Engineering Division

    2008-05-05T23:59:59.000Z

    A consistent set of designs for 1000 MWt commercial-scale sodium-cooled Advance Burner Reactors (ABR) have been developed for both metal and oxide-fueled cores with conversion ratios from breakeven (CR=1.0) to fertile-free (CR=0.0). These designs are expected to satisfy thermal and irradiation damage limits based on the currently available data. The very low conversion ratio designs require fuel that is beyond the current fuel database, which is anticipated to be qualified by and for the Advanced Burned Test Reactor. Safety and kinetic parameters were calculated, but a safety analysis was not performed. Development of these designs was required to achieve the primary goal of this study, which was to generate representative fuel cycle mass flows for system studies of ABRs as part of the Global Nuclear Energy Partnership (GNEP). There are slight variations with conversion ratio but the basic ABR configuration consists of 144 fuel assemblies and between 9 and 22 primary control assemblies for both the metal and oxide-fueled cores. Preliminary design studies indicated that it is feasible to design the ABR to accommodate a wide range of conversion ratio by employing different assembly designs and including sufficient control assemblies to accommodate the large reactivity swing at low conversion ratios. The assemblies are designed to fit within the same geometry, but the size and number of fuel pins within each assembly are significantly different in order to achieve the target conversion ratio while still satisfying thermal limits. Current irradiation experience would allow for a conversion ratio of somewhat below 0.75. The fuel qualification for the first ABR should expand this experience to allow for much lower conversion ratios and higher bunrups. The current designs were based on assumptions about the performance of high and very high enrichment fuel, which results in significant uncertainty about the details of the designs. However, the basic fuel cycle performance trends such as conversion ratio and mass flow parameters are less sensitive to these parameters and the current results should provide a good basis for static and dynamic system analysis. The conversion ratio is fundamentally a ratio of the macroscopic cross section of U-238 capture to that of TRU fission. Since the microscopic cross sections only change moderately with fuel design and isotopic concentration for the fast reactor, a specific conversion ratio requires a specific enrichment. The approximate average charge enrichment (TRU/HM) is 14%, 21%, 33%, 56%, and 100% for conversion ratios of 1.0, 0.75, 0.50, 0.25, and 0.0 for the metal-fueled cores. The approximate average charge enrichment is 17%, 25%, 38%, 60%, and 100% for conversion ratios of 1.0, 0.75, 0.50, 0.25, and 0.0 for the oxide-fueled core. For the split batch cores, the maximum enrichment will be somewhat higher. For both the metal and oxide-fueled cores, the reactivity feedback coefficients and kinetics parameters seem reasonable. The maximum single control assembly reactivity faults may be too large for the low conversion ratio designs. The average reactivity of the primary control assemblies was increased, which may cause the maximum reactivity of the central control assembly to be excessive. The values of the reactivity coefficients and kinetics parameters show that some values appear to improve significantly at lower conversion ratios while others appear far less favorable. Detailed safety analysis is required to determine if these designs have adequate safety margins or if appropriate design modifications are required. Detailed system analysis data has been generated for both metal and oxide-fueled core designs over the entire range of potential burner reactors. Additional data has been calculated for a few alternative fuel cycles. The systems data has been summarized in this report and the detailed data will be provided to the systems analysis team so that static and dynamic system analyses can be performed.

  19. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal

    SciTech Connect (OSTI)

    Zauderer, B.; Fleming, E.S.

    1991-08-30T23:59:59.000Z

    This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

  20. Advanced Vehicle Testing and Evaluation

    SciTech Connect (OSTI)

    Garetson, Thomas

    2013-03-31T23:59:59.000Z

    The objective of the United States (U.S.) Department of Energy?s (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations. Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing. Testing and evaluations were conducted in the following phases: ? Development of test procedures, which established testing procedures; ? Baseline performance testing, which established a performance baseline; ? Accelerated reliability testing, which determined vehicle reliability; ? Fleet testing, used to evaluate vehicle economics in fleet operation, and ? End of test performance evaluation. Test results are reported by two means and posted by Idaho National Laboratory (INL) to their website: quarterly progress reports, used to document work in progress; and final test reports. This final report documents work conducted for the entirety of the contract by the Clarity Group, Inc., doing business as ECOtality North America (ECOtality). The contract was performed from 1 October 2005 through 31 March 2013. There were 113 light-duty on-road (95), off-road (3) and low speed (15) vehicles tested.

  1. Advanced Hydride Laboratory

    SciTech Connect (OSTI)

    Motyka, T.

    1989-01-01T23:59:59.000Z

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  2. Advanced Hydride Laboratory

    SciTech Connect (OSTI)

    Motyka, T.

    1989-12-31T23:59:59.000Z

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, ``cold,`` process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility`s metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  3. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector...

  4. Advanced Optical Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAbout Us >Portal AdvancedAdvanced

  5. Modular High-Temperature Gas-Cooled Reactor short term thermal response to flow and reactivity transients

    SciTech Connect (OSTI)

    Cleveland, J.C.

    1988-01-01T23:59:59.000Z

    The analyses reported here have been conducted at the Oak Ridge National Laboratory (ORNL) for the US Nuclear Regulatory Commission's (NRC's) Division of Regulatory Applications of the Office of Nuclear Regulatory Research. The short-term thermal response of the Modular High-Temperature Gas-Cooled Reactor (MHTGR) is analyzed for a range of flow and reactivity transients. These include loss of forced circulation (LOFC) without scram, moisture ingress, spurious withdrawal of a control rod group, hypothetical large and rapid positive reactivity insertion, and a rapid core cooling event. The coupled heat transfer-neutron kinetics model is also described.

  6. Ceramic Technology for Advanced Heat Engines Project

    SciTech Connect (OSTI)

    Not Available

    1990-08-01T23:59:59.000Z

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  7. Reactivity Accountability Attributed to Reflector Poisons in the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

    2009-12-01T23:59:59.000Z

    The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positions since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.

  8. Completing the complex Poynting theorem: Conservation of reactive energy in reactive time

    E-Print Network [OSTI]

    Gerald Kaiser

    2014-12-11T23:59:59.000Z

    The complex Poynting theorem is extended canonically to a time-scale domain $(t, s)$ by replacing the phasors of time-harmonic fields by the analytic signals $X(r, t+is)$ of fields $X(r,t)$ with general time dependence. The imaginary time $s>0$ is shown to play the role of a time resolution scale, and the extended Poynting theorem splits into two conservation laws: its real part gives the conservation in $t$ of the scale-averaged active energy at fixed $s$, and its imaginary part gives the conservation in $s$ of the scale-averaged reactive energy at fixed $t$. At coarse scales (large $s$, slow time), where the system reduces to the circuit level, this may have applications to the theory of electric power transmission and conditioning. At fine scales (small $s$, fast time) it describes reactive energy dynamics in radiating systems.

  9. The Specification and Execution of Heterogeneous Synchronous Reactive Systems

    E-Print Network [OSTI]

    The Specification and Execution of Heterogeneous Synchronous Reactive Systems by Stephen Anthony in Engineering---Electrical Engineering and Computer Sciences in the GRADUATE DIVISION of the UNIVERSITY of Heterogeneous Synchronous Reactive Systems Copyright ã 1997 by Stephen Anthony Edwards #12; Abstract

  10. Reactive Sputtering of Bismuth Vanadate Photoanodes for Solar Water Splitting

    E-Print Network [OSTI]

    Javey, Ali

    Reactive Sputtering of Bismuth Vanadate Photoanodes for Solar Water Splitting Le Chen,, Esther of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94720 has remained relatively underexplored. Here, we report the synthesis of BiVO4 thin films by reactive

  11. Reactive Rearrangement of Parts under Sensor Inaccuracy: Particle Filter Approach

    E-Print Network [OSTI]

    Reactive Rearrangement of Parts under Sensor Inaccuracy: Particle Filter Approach Hal^uk Bayram, Electrical and Electronic Engineering Bogazici University, Bebek 34342 Istanbul Turkey Abstract-- The paper will be left undisturbed, the robot is required to employ a reactive strategy. A feedback-based event

  12. Reactive oxygen species deglycosilate glomerular a-dystroglycan

    E-Print Network [OSTI]

    Campbell, Kevin P.

    Reactive oxygen species deglycosilate glomerular a-dystroglycan NPJ Vogtla¨nder1 , WPM Tamboer1 open. Reactive oxygen species (ROS) are known to degrade and depolymerize carbohydrates, and to playDa in skeletal muscle, ranging from 120 kDa in brain to 190 kDa in the Torpedo electric organ.8

  13. Towards Interactive Timing Analysis for Designing Reactive Systems

    E-Print Network [OSTI]

    Towards Interactive Timing Analysis for Designing Reactive Systems Insa Fuhrmann David Broman Steven Smyth Reinhard von Hanxleden Electrical Engineering and Computer Sciences University of California Interactive Timing Analysis for Designing Reactive Systems Insa Fuhrmann1 , David Broman2,3 , Steven Smyth1

  14. Reactive ion etched substrates and methods of making and using

    DOE Patents [OSTI]

    Rucker, Victor C. (San Francisco, CA); Shediac, Rene (Oakland, CA); Simmons, Blake A. (San Francisco, CA); Havenstrite, Karen L. (New York, NY)

    2007-08-07T23:59:59.000Z

    Disclosed herein are substrates comprising reactive ion etched surfaces and specific binding agents immobilized thereon. The substrates may be used in methods and devices for assaying or isolating analytes in a sample. Also disclosed are methods of making the reactive ion etched surfaces.

  15. Tropospheric Reactive Nitrogen Speciation, Deposition, and Chemistry at Harvard Forest

    E-Print Network [OSTI]

    and absolute contributions of nitric acid (HNO3) and NOx (nitric oxide (NO) + nitrogen dioxide (NO2)) to totalTropospheric Reactive Nitrogen Speciation, Deposition, and Chemistry at Harvard Forest A thesis. Steven C. Wofsy Cassandra Volpe Horii Tropospheric Reactive Nitrogen Speciation, Deposition

  16. On-Road Emission Measurements of Reactive Nitrogen Compounds from

    E-Print Network [OSTI]

    Denver, University of

    , nitric oxide (NO), nitrogen dioxide (NO2), ammonia (NH3), and nitrous acid (HONO) produced by internalOn-Road Emission Measurements of Reactive Nitrogen Compounds from Three California Cities G A R Y measurements of reactive nitrogen compounds from light-duty vehicles. At the San Jose and wLA sites

  17. ALUMINOSILICATE-COATED SILICA SAND FOR REACTIVE TRANSPORT EXPERIMENTS

    E-Print Network [OSTI]

    Flury, Markus

    ALUMINOSILICATE-COATED SILICA SAND FOR REACTIVE TRANSPORT EXPERIMENTS By JORGE ANTONIO JEREZ transport experiments; Dr. Barbara Williams and Jason Shira from University of Idaho for providing access-COATED SILICA SAND FOR REACTIVE TRANSPORT EXPERIMENTS Abstract by Jorge Antonio Jerez Briones, Ph.D. Washington

  18. Arnold Schwarzenegger ADVANCEMENT OF

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor ADVANCEMENT OF ELECTROCHROMIC WINDOWS Prepared For: California the time to provide insightful technical and market-related input into the direction of this R&D: Carl Mechoshade Systems, Inc. Grant Brohard Pacific Gas & Electric Company Charles Hayes SAGE Electrochromics, Inc

  19. Advanced fossil energy utilization

    SciTech Connect (OSTI)

    Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

    2010-01-01T23:59:59.000Z

    This special issue of Fuel is a selection of papers presented at the symposium Advanced Fossil Energy Utilization co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 2630, 2009.

  20. Standard version Advanced version

    E-Print Network [OSTI]

    Hall, Julian

    Minimum octane 8.5 7 4.5 To produce these products, Margaret purchases crude oil at a price of £11 per version Margaret Oil - basic (2) Before crude can be used to produce products for sale, it must version Advanced version Margaret Oil - basic (3) Crude Distill Naphtha Gasoline Distilled 1 Jet fuel

  1. Advanced Test Reactor Tour

    SciTech Connect (OSTI)

    Miley, Don

    2011-01-01T23:59:59.000Z

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  2. Advanced Test Reactor Tour

    ScienceCinema (OSTI)

    Miley, Don

    2013-05-28T23:59:59.000Z

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  3. International for Advanced Studies

    E-Print Network [OSTI]

    Pfeifer, Holger

    and Technology at the University of Ulm ICAS-Affiliations The International Center for Advanced Studies in Health in medical technology and pharma- ceutical industry. The International Advisory Panel of ICAS consists, transfer of state-of-the-art clinical technologies, and utilization of methodologies appropriate

  4. Advanced Biotechnology and Medicine

    E-Print Network [OSTI]

    , Training and Technology Transfer 43 Lectures and Seminars 44 CABM Lecture Series 45 Annual Retreat 46 15th An Advanced Technology Center of The New Jersey Commission on Science and Technology Jointly Administered from CABM laboratories have appeared in high impact international journals including Development, Genes

  5. Advanced Biotechnology and Medicine

    E-Print Network [OSTI]

    Shatkin 41 Education, Training and Technology Transfer 43 Lectures and Seminars 44 CABM Lecture Series 45 An Advanced Technology Center of The New Jersey Commission on Science and Technology Jointly Administered for the improvement of human health. In 2002 peer-reviewed CABM studies were published in leading international

  6. Advanced Biotechnology and Medicine

    E-Print Network [OSTI]

    Vikas Nanda 63 Protein Crystallography Ann Stock 67 Education, Training and Technology Transfer 71 Report An Advanced Technology Center of the New Jersey Commission on Science and Technology Jointly, the CIPR will house the Rutgers-based Protein Data Bank (PDB), an international repository directed

  7. Advanced Distillation Final Report

    SciTech Connect (OSTI)

    Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode

    2010-03-24T23:59:59.000Z

    The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were performed with the targeted mixture, ethane-ethylene, as well as with analogous low relative volatility systems: cyclohexane-hexane and cyclopentane-pentane. Devices and test stands were specifically designed for these efforts. Development progressed from experiments and models considering sections of a full scale device to the design, fabrication, and operation of a single-channel distillation unit with integrated heat transfer. Throughout the project, analytical and numerical models and Computational Fluid Dynamics (CFD) simulations were validated with experiments in the process of developing this platform technology. Experimental trials demonstrated steady and controllable distillation for a variety of process conditions. Values of Height-to-an-Equivalent Theoretical Plate (HETP) ranging from less than 0.5 inch to a few inches were experimentally proven, demonstrating a ten-fold performance enhancement relative to conventional distillation. This improvement, while substantial, is not sufficient for MPT distillation to displace very large scale distillation trains. Fortunately, parallel efforts in the area of business development have yielded other applications for MPT distillation, including smaller scale separations that benefit from the flowsheet flexibility offered by the technology. Talks with multiple potential partners are underway. Their outcome will also help determine the path ahead for MPT distillation.

  8. Advanced Integrated Traction System

    SciTech Connect (OSTI)

    Greg Smith; Charles Gough

    2011-08-31T23:59:59.000Z

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.

  9. Advanced Microturbine Systems

    SciTech Connect (OSTI)

    Rosfjord, T; Tredway, W; Chen, A; Mulugeta, J; Bhatia, T

    2008-12-31T23:59:59.000Z

    In July 2000, the United Technologies Research Center (UTRC) was one of five recipients of a US Department of Energy contract under the Advanced Microturbine System (AMS) program managed by the Office of Distributed Energy (DE). The AMS program resulted from several government-industry workshops that recognized that microturbine systems could play an important role in improving customer choice and value for electrical power. That is, the group believed that electrical power could be delivered to customers more efficiently and reliably than the grid if an effective distributed energy strategy was followed. Further, the production of this distributed power would be accomplished with less undesirable pollutants of nitric oxides (NOx) unburned hydrocarbons (UHC), and carbon monoxide (CO). In 2000, the electrical grid delivered energy to US customers at a national average of approximately 32% efficiency. This value reflects a wide range of powerplants, but is dominated by older, coal burning stations that provide approximately 50% of US electrical power. The grid efficiency is also affected by transmission and distribution (T&D) line losses that can be significant during peak power usage. In some locations this loss is estimated to be 15%. Load pockets can also be so constrained that sufficient power cannot be transmitted without requiring the installation of new wires. New T&D can be very expensive and challenging as it is often required in populated regions that do not want above ground wires. While historically grid reliability has satisfied most customers, increasing electronic transactions and the computer-controlled processes of the 'digital economy' demand higher reliability. For them, power outages can be very costly because of transaction, work-in-progress, or perishable commodity losses. Powerplants that produce the grid electrical power emit significant levels of undesirable NOx, UHC, and CO pollutants. The level of emission is quoted as either a technology metric or a system-output metric. A common form for the technology metric is in the units of PPM {at} 15% O2. In this case the metric reflects the molar fraction of the pollutant in the powerplant exhaust when corrected to a standard exhaust condition as containing 15% (molar) oxygen, assuring that the PPM concentrations are not altered by subsequent air addition or dilution. Since fuel combustion consumes oxygen, the output oxygen reference is equivalent to a fuel input reference. Hence, this technology metric reflects the moles of pollutant per mole of fuel input, but not the useful output of the powerplant-i.e. the power. The system-output metric does embrace the useful output and is often termed an output-based metric. A common form for the output-based metric is in the units of lb/MWh. This is a system metric relating the pounds of pollutant to output energy (e.g., MWh) of the powerplant.

  10. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30T23:59:59.000Z

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.

  11. Predictive modeling of reactive wetting and metal joining.

    SciTech Connect (OSTI)

    van Swol, Frank B.

    2013-09-01T23:59:59.000Z

    The performance, reproducibility and reliability of metal joints are complex functions of the detailed history of physical processes involved in their creation. Prediction and control of these processes constitutes an intrinsically challenging multi-physics problem involving heating and melting a metal alloy and reactive wetting. Understanding this process requires coupling strong molecularscale chemistry at the interface with microscopic (diffusion) and macroscopic mass transport (flow) inside the liquid followed by subsequent cooling and solidification of the new metal mixture. The final joint displays compositional heterogeneity and its resulting microstructure largely determines the success or failure of the entire component. At present there exists no computational tool at Sandia that can predict the formation and success of a braze joint, as current capabilities lack the ability to capture surface/interface reactions and their effect on interface properties. This situation precludes us from implementing a proactive strategy to deal with joining problems. Here, we describe what is needed to arrive at a predictive modeling and simulation capability for multicomponent metals with complicated phase diagrams for melting and solidification, incorporating dissolutive and composition-dependent wetting.

  12. Reactivity initiated accident test series Test RIA 1-4

    SciTech Connect (OSTI)

    Martinson, Z.R.; El-Genk, M.S.; Fukuda, S.K.; LaPointe, R.E.; Osetek, D.J.

    1980-05-01T23:59:59.000Z

    The Reactivity Initiated Accident (RIA) Test RIA 1-4, the first 9-rod fuel rod bundle RIA Test to be performed at BWR hot startup conditions, was completed on April 16, 1980. The test was performed in the Power Burst Facility (PBF). Objective for Test RIA 1-4 was to provide information regarding loss-of-coolable fuel rod geometry following a RIA event for a peak fuel enthalpy equivalent to the present licensing criteria of 280 cal/g. The most severe RIA is the postulated Boiling Water Reactor (BWR) control rod drop during reactor startup. Therefore the test was conducted at BWR hot startup coolant conditions (538 K, 6.45 MPa, 0.8 1/sec). The test sequence began with steady power operation to condition the fuel, establish a short-lived fission product inventory, and calibrate the calorimetric measurements and core power chambers, neutron flux and gamma flux detectors. The test train was removed from the in-pile tube (IPT) to replace one of the fuel rods with a nominally identical irradiated rod and twelve flux wire monitors. A 2.8 ms period power burst was then performed. Coolant flow measurements were made before and after the power burst to characterize the flow blockage that occurred as a result of fuel rod failure.

  13. Multicomponent reactive transport modeling of uranium bioremediation field experiments

    SciTech Connect (OSTI)

    Fang, Yilin; Yabusaki, Steven B.; Morrison, Stan J.; Amonette, James E.; Long, Philip E.

    2009-10-15T23:59:59.000Z

    Biostimulation field experiments with acetate amendment are being performed at a former uranium mill tailings site in Rifle, Colorado, to investigate subsurface processes controlling in situ bioremediation of uranium-contaminated groundwater. An important part of the research is identifying and quantifying field-scale models of the principal terminal electron-accepting processes (TEAPs) during biostimulation and the consequent biogeochemical impacts to the subsurface receiving environment. Integrating abiotic chemistry with the microbially mediated TEAPs in the reaction network brings into play geochemical observations (e.g., pH, alkalinity, redox potential, major ions, and secondary minerals) that the reactive transport model must recognize. These additional constraints provide for a more systematic and mechanistic interpretation of the field behaviors during biostimulation. The reaction network specification developed for the 2002 biostimulation field experiment was successfully applied without additional calibration to the 2003 and 2007 field experiments. The robustness of the model specification is significant in that 1) the 2003 biostimulation field experiment was performed with 3 times higher acetate concentrations than the previous biostimulation in the same field plot (i.e., the 2002 experiment), and 2) the 2007 field experiment was performed in a new unperturbed plot on the same site. The biogeochemical reactive transport simulations accounted for four TEAPs, two distinct functional microbial populations, two pools of bioavailable Fe(III) minerals (iron oxides and phyllosilicate iron), uranium aqueous and surface complexation, mineral precipitation, and dissolution. The conceptual model for bioavailable iron reflects recent laboratory studies with sediments from the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site that demonstrated that the bulk (~90%) of Fe(III) bioreduction is associated with the phyllosilicates rather than the iron oxides. The uranium reaction network includes a U(VI) surface complexation model based on laboratory studies with Old Rifle UMTRA sediments and aqueous complexation reactions that include ternary complexes (e.g., calcium-uranyl-carbonate). The bioreduced U(IV), Fe(II), and sulfide components produced during the experiments are strongly associated with the solid phases and may play an important role in long-term uranium immobilization.

  14. Systems Engineering and Innovation in Control--anSystems Engineering and Innovation in Control an Industry Perspective and an Application to Automotive

    E-Print Network [OSTI]

    Shapiro, Benjamin

    in the industrial context Trends in automotive powertrain control Advanced control for powertrains calibration time B ildi C t l HVAC d ti t l 7 33% t iBuilding Control HVAC adaptive control 7-33% energyOutline Honeywell and controls Advanced control applications in the industrial context Trends in automotive

  15. Herty Advanced Materials Development Center

    Broader source: Energy.gov [DOE]

    Session 1-B: Advancing Alternative Fuels for the Military and Aviation Sector Breakout Session 1: New Developments and Hot Topics Jill Stuckey, Acting Director, Herty Advanced Materials Development Center

  16. Search Advanced Search Home > News

    E-Print Network [OSTI]

    Rogers, John A.

    Search Advanced Search Home > News [-] Text [+] Email Print tweet 0 tweets RSS Feeds Newsletters with bodily tissues, "these approaches might have the potential to redefine design strategies for advanced

  17. Advanced Modular Inverter Technology Development

    SciTech Connect (OSTI)

    Adam Szczepanek

    2006-02-04T23:59:59.000Z

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

  18. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01T23:59:59.000Z

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  19. Advanced Separation Consortium

    SciTech Connect (OSTI)

    NONE

    2006-01-01T23:59:59.000Z

    The Center for Advanced Separation Technologies (CAST) was formed in 2001 under the sponsorship of the US Department of Energy to conduct fundamental research in advanced separation and to develop technologies that can be used to produce coal and minerals in an efficient and environmentally acceptable manner. The CAST consortium consists of seven universities - Virginia Tech, West Virginia University, University of Kentucky, Montana Tech, University of Utah, University of Nevada-Reno, and New Mexico Tech. The consortium brings together a broad range of expertise to solve problems facing the US coal industry and the mining sector in general. At present, a total of 60 research projects are under way. The article outlines some of these, on topics including innovative dewatering technologies, removal of mercury and other impurities, and modelling of the flotation process. 1 photo.

  20. Advanced Photon Source Upgrade Project

    ScienceCinema (OSTI)

    Mitchell, John; Gibson, Murray; Young, Linda; Joachimiak, Andrzej

    2013-04-19T23:59:59.000Z

    Upgrade to Advanced Photon Source announced by Department Of Energy. Read more: http://go.usa.gov/ivZ