Powered by Deep Web Technologies
Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

ADVANCED CO2 CYCLE POWER GENERATION  

SciTech Connect (OSTI)

Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2004-01-01T23:59:59.000Z

2

ADVANCED CO2 CYCLE POWER GENERATION  

SciTech Connect (OSTI)

Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2003-10-01T23:59:59.000Z

3

ADVANCED CO{sub 2} CYCLE POWER GENERATION  

SciTech Connect (OSTI)

Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2003-07-01T23:59:59.000Z

4

Advances in steam turbine technology for the power generation industry. PWR-Volume 26  

SciTech Connect (OSTI)

This is a collection of the papers on advances in steam turbine technology for the power generation industry presented at the 1994 International Joint Power Generation Conference. The topics include advances in steam turbine design, application of computational fluid dynamics to turbine aerodynamic design, life extension of fossil and nuclear powered steam turbine generators, solid particle erosion control technologies, and artificial intelligence, monitoring and diagnostics.

Moore, W.G. [ed.

1994-12-31T23:59:59.000Z

5

Assessment of Metal Media Filters for Advanced Coal-Based Power Generation Applications  

SciTech Connect (OSTI)

Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. This paper reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion conditions.

Alvin, M.A.

2002-09-19T23:59:59.000Z

6

Advanced liquid fuel production from biomass for power generation  

SciTech Connect (OSTI)

In the European Union, important political decisions recently adopted and concerning the evolution of the Common Agriculture Policy, the GATT trade liberalisation Agreement and new measures actually under discussion (CARBON TAX, Financial support for rural development...) will have significant impact, in a no distant future, on the bioenergy activity. Also the considerable energy import ({approximately} 55% of the consumption) is of increasing concerns. The biomass potential in the E.U. is large, but the availability of commercial technologies for processing and utilising this renewable energy resource is very modest. Thus, a strong effort for the development of new and efficient technologies (like the one implemented by ENEL/CRT) is essential, as well as the build-up of an efficient industry for the commercialisation of reliable, low-cost biomass conversion/utilisation systems. The recently founded {open_quotes}European Bioenergy Industry Association{close_quotes} will make an effort for the promotion of this specific new industrial sector. In this framework, a new research effort (in Germany/Italy) for up-grading the bio-crude-oil by high energetic electrons. This process, if demonstrated feasible, could be of great interest for the production of new liquid fuels of sufficient quality to be utilised in most types of modern power generator.

Grassi, G.; Palmarocchi, M.; Joeler, J. [Zentrum fuer Sonnenenergie, Pisa (Italy)] [and others

1995-11-01T23:59:59.000Z

7

Solar energy power generators with advanced thermionic converters for spacecraft applications  

SciTech Connect (OSTI)

This study presents (1) a 50 kW/sub e/ solar energy generator in a geostationary orbit for direct tv-broadcasting and (2) a 10 GW/sub e/ space power plant, with the basic engineering outlines using an advanced thermionic converter proposal given for each. Further, a comparison of the main technical data for the generators with corresponding energy output using (1) advanced thermionic converter and (2) ordinary thermionic converter without auxiliary emitter is shown. 25 refs.

Sahin, S.

1981-01-01T23:59:59.000Z

8

STATEMENT OF CONSIDERATIONS REQUEST BY CUMMINS POWER GENERATION, INC. FOR AN ADVANCE WAIVER OF  

Broader source: Energy.gov (indexed) [DOE]

CUMMINS POWER GENERATION, INC. FOR AN ADVANCE WAIVER OF CUMMINS POWER GENERATION, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-01NT41244; W(A)-04-017, CH-1186 The Petitioner, Cummins Power Generation (Cummins) was awarded this cooperative agreement for the performance of work entitled, "Development and Commercialization of 10kW Solid Oxide Fuel Cell." Teaming with SOFCo-EFS Holdings LLC, Cummins proposes to develop a 10 kWe net generator system for use in recreational vehicles (RVs), commercial vehicles, and telecommunications emergency power applications using propane (LP) and natural gas as fuel. Further details of the work are described in response to question 2 of the waiver petition. The work is being performed under the Solid State Energy Conversion Alliance (SECA) initiative. This waiver

9

REQUEST BY ABB POWER GENERATION, INC., FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN  

Broader source: Energy.gov (indexed) [DOE]

ABB POWER GENERATION, INC., FOR AN ABB POWER GENERATION, INC., FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER DEPARTMENT OF ENERGY CONTRACT NO. DE-AC21-95MC30245; DOE WAIVER DOCKET W(A)-95-035[ORO-604] ABB Power Generation, Inc., (ABB) has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Contract No. DE-AC21-95MC30245. The scope of the work calls for the completion of the conceptual preliminary design of a selected utility advanced turbine system (ATS), to identify technical barrier issues, and to conduct test programs of prospective conceptual designs that address these issues. The work is sponsored by the Office of Fossil Energy. The dollar amount of the contract is $4,807,507 with ABB cost sharing 25%, or

10

STATEMENT OF CONSIDERATIONS REQUEST BY CUMMINS POWER GENERATION FOR AN ADVANCE WAIVER  

Broader source: Energy.gov (indexed) [DOE]

CUMMINS POWER GENERATION FOR AN ADVANCE WAIVER CUMMINS POWER GENERATION FOR AN ADVANCE WAIVER OF PATENT RIGHTS TO INVENTIONS MADE UNDER DOE COOPERATIVE AGREEMENT DE-EE0003392; W(A)-1 0-070; CH-1595 Cummins Power Generation (Cummins), requests an advance waiver of domestic and foreign patent rights for all subject inventions made under the above cooperative agreement with the Department of Energy. The purpose of the cooperative agreement is to develop a flexible, 330 kWe packaged CHP system that can be deployed to commercial and light industrial applications at a lower cost than current CHP solutions. The program intends to reduce the total installed cost for a CHP system via volume manufacturing and minimization of custom site engineering. The customer input and technology development work from this project also forms the foundation for

11

STATEMENT OF CONSIDERATIONS REQUEST BY HYBRID POWER GENERATION SYSTEMS, LLC FOR AN ADVANCE  

Broader source: Energy.gov (indexed) [DOE]

JRN 19 2006 15:31 FR IPL DOE CH 630 252 2779 TO AGCP-HQ P.02/03 JRN 19 2006 15:31 FR IPL DOE CH 630 252 2779 TO AGCP-HQ P.02/03 * * STATEMENT OF CONSIDERATIONS REQUEST BY HYBRID POWER GENERATION SYSTEMS, LLC FOR AN ADVANCE WAIVER OF PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC36-04G014351 ENTITLED "HIGH PERFORMANCE FLEXIBLE REVERSIBLE SOLID OXIDE FUEL CELL"; W(A)-04-080; CH-1259 As set out in the attached waiver petition and in subsequent discussions with DOE patent counsel, Hybrid Power Generation Systems, LLC (Hybrid Power), a wholly owned subsidiary of General Electric Company (GE), has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above-identified cooperative agreement by its employees and its subcontractors' employees, regardless of tier, except

12

STATEMENT OF CONSIDERATIONS REQUEST BY HYBRID POWER GENERATION SYSTEMS, LLC, FOR AN ADVANCE  

Broader source: Energy.gov (indexed) [DOE]

AN ADVANCE AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-01NT40779; W(A)-03-015, CH-1142 The Petitioner, Hybrid Power Generation Systems, LLC, a wholly owned subsidiary of General Electric Company (GE HPGS), was awarded this cooperative agreement for the performance of work entitled, "Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation". The purpose of the cooperative agreement is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The proposed hybrid system is based on planar SOFC and turbogenerator power technologies. The focus of this work is to test a sub-scale SOFC and turbocharger hybrid

13

Forecast of Advanced Technology Adoption for Coal Fired Power Generation Towards the Year of 2050  

Science Journals Connector (OSTI)

The considered systems of coal fired power generation are Supercritical Unit, Ultra Supercritical Unit, ... . In order to compare with the natural gas case, Natural Gas Combined Cycle (NGCC) is included. Evaluati...

Keiji Makino

2013-01-01T23:59:59.000Z

14

Electronic Power Conversion System for an Advanced Mobile Generator Set Leon M. Tolbert1,3  

E-Print Network [OSTI]

. The military generator set uses an internal combustion diesel engine to drive a radial-gap permanent magnet. The variable frequency, variable voltage produced by the permanent magnet alternator is diode-rectified to dc synchronous machines are presently used to convert the mechanical power of the rotating shaft into three

Tolbert, Leon M.

15

Cost-Competitive Advanced Thermoelectric Generators for Direct...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Cost-Competitive Advanced Thermoelectric Generators for...

16

U.S.Air Force Advanced Power  

E-Print Network [OSTI]

efficiency,improved power distribution,reduced fuel dependency,reduction of noise,heat,and visual signatureU.S.Air Force Advanced Power Technology Office (APTO) U.S.Air Force Advanced Power Technology/Wind Powered Hydrogen Generation for Fuel Cell Applications · Waste-To-Energy APTO/Small Business Innovation

17

Carbon dioxide capture and separation techniques for advanced power generation point sources  

SciTech Connect (OSTI)

The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (postcombustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle – IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Fabrication techniques and mechanistic studies for hybrid membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic silanes incorporated into an alumina support or ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. An overview of two novel techniques is presented along with a research progress status of each technology.

Pennline, H.W.; Luebke, D.R.; Morsi, B.I.; Heintz, Y.J.; Jones, K.L.; Ilconich, J.B.

2006-09-01T23:59:59.000Z

18

Advanced control for power density maximization of the brushless DC generator  

E-Print Network [OSTI]

-to line EMF............................... 129 96 Original phase EMF and current reference waveform................................... 130 97 Original phase EMF, current reference waveform, and controlled current... 130 98 Impact of the current... ................. 6 A. Mechanical structure of the BLDC generator .............................. 7 B. Permanent magnets of the BLDC generator................................. 10 C. Induced EMF of the BLDC generator...

Lee, Hyung-Woo

2005-02-17T23:59:59.000Z

19

Development of Cost-Competitive Advanced Thermoelectric Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Development of Cost-Competitive Advanced Thermoelectric...

20

Forecast of Advanced Technology for Coal Power Generation Towards the Year of 2050 in CO2 Reduction Model of Japan  

Science Journals Connector (OSTI)

Abstract In the fossil fuel, coal is enough to get easily because it has supply and price stability brought about its ubiquitously. Coal is used for power generation as the major fuel in the world. However it is true that control of global warming should be applied to coal power generations. Therefore, many people expect CO2 reduction by technical innovation such as efficiency improvement, Carbon dioxide Capture and Storage (CCS). In case of coal power plant are considered for improving efficiency. Some of them have already put into commercial operation but others are still under R&D stage. Especially, the technical development prospect of the power plant is very important for planning the energy strategy in the resource-importing country. Japan Coal Energy Center (JCOAL) constructed a program to forecast the share of advanced coal fired plants/natural gas power plants towards the year of 2050. Then, we simulated the future prediction about 2 cases (the Japanese scenario and the world scenario). The fuel price and the existence of CCS were considered in the forecast of the technical development of the thermal power generation. Especially in the Japanese scenario, we considered the CO2 reduction target which is 80% reduction in 1990. In the world scenario, coal price had almost no influence on the share of coal fired plant. However, when the gas price increased 1.5% or more, the share of coal fired plant increased. In that case, CO2 emissions increased because coal-fired plant increased. Compared with both cases, the amount of CO2 in 2050 without CCS case was 50% higher than that of with CCS case. In Japanese scenario, achievement of 80% CO2 reduction target is impossible without CCS. If CCS is introduced into all the new establishment coal fired plant, CO2 reduction target can be attained. In the Japanese scenario, the gas price more expensive than a coal price so that the amount of the coal fired plant does not decline. Since the reduction of the amount of CO2 will be needed in all over the world, introductory promotion and technical development of CCS are very important not only Japan but also all over the world.

Takashi Nakamura; Keiji Makino; Kunihiko Shibata; Michiaki Harada

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Technology status and project development risks of advanced coal power generation technologies in APEC developing economies  

SciTech Connect (OSTI)

The report reviews the current status of IGCC and supercritical/ultrasupercritical pulverized-coal power plants and summarizes risks associated with project development, construction and operation. The report includes an economic analysis using three case studies of Chinese projects; a supercritical PC, an ultrasupercritical PC, and an IGCC plant. The analysis discusses barriers to clean coal technologies and ways to encourage their adoption for new power plants. 25 figs., 25 tabs.

Lusica, N.; Xie, T.; Lu, T.

2008-10-15T23:59:59.000Z

22

Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Final report, September 1989--March 1994  

SciTech Connect (OSTI)

This project has successfully advanced the technology for MSOFCs for coal-based power generation. Major advances include: tape-calendering processing technology, leading to 3X improved performance at 1000 C; stack materials formulations and designs with sufficiently close thermal expansion match for no stack damage after repeated thermal cycling in air; electrically conducting bonding with excellent structural robustness; and sealants that form good mechanical seals for forming manifold structures. A stack testing facility was built for high-spower MSOFC stacks. Comprehensive models were developed for fuel cell performance and for analyzing structural stresses in multicell stacks and electrical resistance of various stack configurations. Mechanical and chemical compatibility properties of fuel cell components were measured; they show that the baseline Ca-, Co-doped interconnect expands and weakens in hydrogen fuel. This and the failure to develop adequate sealants were the reason for performance shortfalls in large stacks. Small (1-in. footprint) two-cell stacks were fabricated which achieved good performance (average area-specific-resistance 1.0 ohm-cm{sup 2} per cell); however, larger stacks had stress-induced structural defects causing poor performance.

Not Available

1994-05-01T23:59:59.000Z

23

Geothermal Power Generation  

SciTech Connect (OSTI)

The report provides an overview of the renewed market interest in using geothermal for power generation including a concise look at what's driving interest in geothermal power generation, the current status of geothermal power generation, and plans for the future. Topics covered in the report include: an overview of geothermal power generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in geothermal power generation; an analysis of the challenges that are hindering the implementation of geothermal power generation projects; a description of geothermal power generation technologies; a review of the economic drivers of geothermal power generation project success; profiles of the major geothermal power producing countries; and, profiles of the major geothermal power project developers.

NONE

2007-11-15T23:59:59.000Z

24

Geothermal: Sponsored by OSTI -- GEOTHERMAL POWER GENERATION...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL POWER GENERATION PLANT Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

25

Advancing Next-Generation Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- brid, plug-in hybrid, battery electric, and alternative fuel vehicles, Argonne provides transportation research critical to advancing the development of next-generation vehicles. Central to this effort is the Lab's Advanced Powertrain Research Facility (APRF), an integrated four-wheel drive chassis dynamometer and component test facility.

26

Wind power generating system  

SciTech Connect (OSTI)

Normally feathered propeller blades of a wind power generating system unfeather in response to the actuation of a power cylinder that responds to actuating signals. Once operational, the propellers generate power over a large range of wind velocities. A maximum power generation design point signals a feather response of the propellers so that once the design point is reached no increase in power results, but the system still generates power. At wind speeds below this maximum point, propeller speed and power output optimize to preset values. The propellers drive a positive displacement pump that in turn drives a positive displacement motor of the swash plate type. The displacement of the motor varies depending on the load on the system, with increasing displacement resulting in increasing propeller speeds, and the converse. In the event of dangerous but not clandestine problems developing in the system, a control circuit dumps hydraulic pressure from the unfeathering cylinder resulting in a predetermined, lower operating pressure produced by the pump. In the event that a problem of potentially cladestine consequence arises, the propeller unfeathering cylinder immediately unloads. Upon startup, a bypass around the motor is blocked, applying a pressure across the motor. The motor drives the generator until the generator reaches a predetermined speed whereupon the generator is placed in circuit with a utility grid and permitted to motor up to synchronous speed.

Schachle, Ch.; Schachle, E. C.; Schachle, J. R.; Schachle, P. J.

1985-03-12T23:59:59.000Z

27

Application of IGCC Technology to Power Generation  

Science Journals Connector (OSTI)

Improved efficiency and low cost are two of the objectives in the development and commercialization of power generation cycles. With the advent of today’s commercial advanced gas turbines and high-temperature gas

R. E. Ayala

1998-01-01T23:59:59.000Z

28

Peak power ratio generator  

DOE Patents [OSTI]

A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

Moyer, Robert D. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

29

Oscillating fluid power generator  

SciTech Connect (OSTI)

A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

Morris, David C

2014-02-25T23:59:59.000Z

30

Siemens Power Generation, Inc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2005 Pittsburgh Coal Conference 2005 Pittsburgh Coal Conference Siemens Power Generation, Inc. Page 1 of 10 © Siemens Power Generation, Inc., All Rights Reserved Development of a Catalytic Combustor for Fuel Flexible Turbines W. R. Laster Siemens Westinghouse Power Corporation Abstract Siemens has been working on a catalytic combustor for natural gas operation for several years using the Rich Catalytic Lean (RCL TM ) design. The design has been shown to produce low NOx emissions on natural gas operation. By operating the catalyst section fuel rich, the design shows considerable promise for robust operation over a wide range of fuel compositions including syngas. Under the sponsorship of the U. S. Department of Energy' s National Energy Technology Laboratory, Siemens Westinghouse is conducting a three year

31

Vehicle Technologies Office: 2012 Advanced Power Electronics...  

Energy Savers [EERE]

2 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress...

32

Advanced downhole periodic seismic generator  

DOE Patents [OSTI]

An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

1991-07-16T23:59:59.000Z

33

Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016.  

SciTech Connect (OSTI)

Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

Reno, Matthew J.; Riehm, Andrew Charles; Hoekstra, Robert John; Munoz-Ramirez, Karina; Stamp, Jason Edwin; Phillips, Laurence R.; Adams, Brian M.; Russo, Thomas V.; Oldfield, Ron A.; McLendon, William Clarence, III; Nelson, Jeffrey Scott; Hansen, Clifford W.; Richardson, Bryan T.; Stein, Joshua S.; Schoenwald, David Alan; Wolfenbarger, Paul R.

2011-02-01T23:59:59.000Z

34

GEOTHERMAL POWER GENERATION PLANT  

SciTech Connect (OSTI)

Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

Boyd, Tonya

2013-12-01T23:59:59.000Z

35

Power Systems Advanced Research  

SciTech Connect (OSTI)

In the 17 quarters of the project, we have accomplished the following milestones - first, construction of the three multiwavelength laser scattering machines for different light scattering study purposes; second, build up of simulation software package for simulation of field and laboratory particulates matters data; third, carried out field online test on exhaust from combustion engines with our laser scatter system. This report gives a summary of the results and achievements during the project's 16 quarters period. During the 16 quarters of this project, we constructed three multiwavelength scattering instruments for PM2.5 particulates. We build up a simulation software package that could automate the simulation of light scattering for different combinations of particulate matters. At the field test site with our partner, Alturdyne, Inc., we collected light scattering data for a small gas turbine engine. We also included the experimental data feedback function to the simulation software to match simulation with real field data. The PM scattering instruments developed in this project involve the development of some core hardware technologies, including fast gated CCD system, accurately triggered Passively Q-Switched diode pumped lasers, and multiwavelength beam combination system. To calibrate the scattering results for liquid samples, we also developed the calibration system which includes liquid PM generator and size sorting instrument, i.e. MOUDI. In this report, we give the concise summary report on each of these subsystems development results.

California Institute of Technology

2007-03-31T23:59:59.000Z

36

Power Generation and the Environment  

Science Journals Connector (OSTI)

...such as hydro and gas tur- bines. It...these increases in power costs will be a...aspects of power generation: the exploration...residual fuels for power plants, as well...concepts of oil-fired power generation plants for the...

Rolf Eliassen

1971-01-01T23:59:59.000Z

37

BPA Power Generation (pbl/main)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Power Generation Hydro Power Federal Columbia River Power System (FCRPS) Hydro Projects FCRPS...

38

Dynamic power systems for power generation  

SciTech Connect (OSTI)

The characteristics of dynamic power systems have considerable potential value, especially for the space station. The base of technology that makes these dynamic power systems practical is reviewed. The following types of power-generating systems are examined herein: organic Rankine cycle, potassium Rankine cycle, Brayton cycle, and Stirling cycle.

English, R.E.

1984-04-01T23:59:59.000Z

39

Chapter 10 - Novel Power Generating Systems  

Science Journals Connector (OSTI)

Abstract In this chapter, some novel power generating systems are discussed. It is believed that sustainable thermal energy sources such as industrial waste heat recovery, concentrated solar radiation, ocean thermal energy, nuclear heat, and biomass combustion will gradually become more important. The first part of the chapter presents a novel system for power conversion from low-grade heat. This is an advanced ammonia–water-based power cycle able to operate with minimal exergy destruction due to an excellent match of temperature profiles at the heat source and sink. The chapter continues with thermoelectric power generators that can address the challenge of efficient power generation from high-grade thermal energy. Chemical looping combustion systems for power generation are treated thereafter for situations when carbon emissions must be reduced by carbon dioxide separation and sequestration or partial recycling. The last section of the chapter presents a number of selected novel systems for power generation, including magneto-hydrodynamic generators, thermoacoustic generators, and cryogenic compression oxy-combustion power plants with supercritical carbon dioxide and some novel integrated systems.

Ibrahim Dincer; Calin Zamfirescu

2014-01-01T23:59:59.000Z

40

Vehicle Technologies Office: 2009 Advanced Power Electronics...  

Broader source: Energy.gov (indexed) [DOE]

Power Electronics R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report Annual report focusing on understanding and...

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Projects To Develop Novel Monitoring Networks for Advanced Power Systems  

Broader source: Energy.gov (indexed) [DOE]

To Develop Novel Monitoring Networks for Advanced Power To Develop Novel Monitoring Networks for Advanced Power Systems Selected Projects To Develop Novel Monitoring Networks for Advanced Power Systems Selected September 1, 2010 - 1:00pm Addthis Washington, DC - Five projects that will develop technologically sophisticated monitoring networks for advanced fossil energy power systems have been selected for continued research by the U.S. Department of Energy (DOE). The projects will support efforts by the Office of Fossil Energy's (FE) Advanced Research--Coal Utilization Science (CUS) Program to study novel approaches in model development and validation; monitoring refractory health; and wireless, self-powered sensors for advanced, next-generation power systems. They will monitor the status of equipment, materials

42

High-density thermoelectric power generation and nanoscale thermal metrology  

E-Print Network [OSTI]

Thermoelectric power generation has been around for over 50 years but has seen very little large scale implementation due to the inherently low efficiencies and powers available from known materials. Recent material advances ...

Mayer, Peter (Peter Matthew), 1978-

2007-01-01T23:59:59.000Z

43

Advanced, High Power, Next Scale, Wave Energy Conversion Device...  

Broader source: Energy.gov (indexed) [DOE]

Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy...

44

Mid America Advanced Power Solutions | Open Energy Information  

Open Energy Info (EERE)

Mid America Advanced Power Solutions Jump to: navigation, search Logo: Mid America Advanced Power Solutions Name: Mid America Advanced Power Solutions Place: Swansea, Illinois Zip:...

45

Next Generation Advanced Framing - Building America Top Innovation...  

Energy Savers [EERE]

Next Generation Advanced Framing - Building America Top Innovation Next Generation Advanced Framing - Building America Top Innovation This photo shows advanced framing on a rim...

46

Mesofluidic magnetohydrodynamic power generation  

E-Print Network [OSTI]

Much of the previous research into magnetohydrodynamics has involved large-scale systems. This thesis explores the miniaturization and use of devices to convert the power dissipated within an expanding gas flow into ...

Fucetola, Jay J

2012-01-01T23:59:59.000Z

47

Advancing Concentrating Solar Power Research (Fact Sheet)  

SciTech Connect (OSTI)

Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

Not Available

2014-02-01T23:59:59.000Z

48

NREL: Advanced Power Electronics - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications The National Renewable Energy Laboratory and its partners have produced many papers and presentations related to the Advanced Power Electronics project. For more information about the following documents, contact Sreekant Narumanchi. Software Spray System Evaluation (Software 1.1 MB) Papers 2013 Steady and Unsteady Air Impingement Heat Transfer for Electronics Cooling Applications Paper Source: Arik, M.; Sharma, R.; Lustbader, J.; He, X. (2013). Article No. 111009. Journal of Heat Transfer. Vol. 135(11), November 2013; 8 pp.; NREL Report No. JA-5400-56618. http://dx.doi.org/10.1115/1.4024614 Pool Boiling Heat Transfer Characteristics of HFO-1234yf on Plain and Microporous-Enhanced Surfaces Paper Source: Moreno, G.; Narumanchi, S.; King, C. (2013). Article No. 111014.

49

Tide operated power generating apparatus  

SciTech Connect (OSTI)

An improved tide operated power generating apparatus is disclosed in which a hollow float, rising and falling with the ocean tide, transmits energy to a power generator. The improvement comprises means for filling the float with water during the incoming tide to provide a substantial increase in the float dead weight during the outgoing tide. Means are further provided to then empty the float before the outgoing tide whereby the float becomes free to rise again on the next incoming tide.

Kertzman, H. Z.

1981-02-03T23:59:59.000Z

50

NREL: Advanced Power Electronics - Research and Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Development Research and Development The Advanced Power Electronics activity focuses on the electric drive system for hybrid electric and fuel cell vehicles. At NREL, we research and develop electronic components and systems that will overcome major technical barriers to commercialization of hybrid, advanced internal combustion, and fuel cell vehicle technologies. Researchers focus on developing advanced power electronics and electric machinery technologies that improve reliability, efficiency, and ruggedness, and dramatically decrease systems costs for advanced vehicles. To accomplish this, the power electronics team investigates cooling and heating of advanced vehicles by looking at the thermal management of motor controllers, inverters, and traction motors with one- and two-phase cooling

51

Advanced Solar Power ASP | Open Energy Information  

Open Energy Info (EERE)

ASP Jump to: navigation, search Name: Advanced Solar Power (ASP) Place: Israel Sector: Solar Product: Involved in the development and manufacturing of innovative solar energy...

52

Vehicle Technologies Office: 2011 Advanced Power Electronics...  

Energy Savers [EERE]

2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters...

53

Power Generation and Human Health  

Science Journals Connector (OSTI)

Emissions from power generation are associated with adverse health and ecological effects. Fossil fuel-based power plants (such as coal, oil, and to a lesser extent, natural gas) are associated with emissions of particulate matter (PM), nitrogen oxides (NOx), sulfur dioxide (SO2), and a variety of organic contaminants such as mercury and volatile organic compounds (VOCs). Exposure to emissions from power plants has been associated with a variety of respiratory symptoms, typically based on short-term (e.g., from 5–10 min to 24 h) increases in ambient concentrations. In addition, exposure to constituents from emissions generated by fossil fuels has been associated with increases in premature mortality, particularly in the elderly, and a variety of respiratory and cardiovascular illnesses. Fossil fuels, particularly coal-fired power plants, are responsible for generating the majority of emissions to which humans are exposed.

K. von Stackelberg

2011-01-01T23:59:59.000Z

54

Advanced Accessory Power Supply Topologies  

SciTech Connect (OSTI)

This Cooperative Research and Development Agreement (CRADA) began December 8, 2000 and ended September 30, 2009. The total funding provided by the Participant (General Motors Advanced Technology Vehicles [GM]) during the course of the CRADA totaled $1.2M enabling the Contractor (UT-Battelle, LLC [Oak Ridge National Laboratory, a.k.a. ORNL]) to contribute significantly to the joint project. The initial task was to work with GM on the feasibility of developing their conceptual approach of modifying major components of the existing traction inverter/drive to develop low cost, robust, accessory power. Two alternate methods for implementation were suggested by ORNL and both were proven successful through simulations and then extensive testing of prototypes designed and fabricated during the project. This validated the GM overall concept. Moreover, three joint U.S. patents were issued and subsequently licensed by GM. After successfully fulfilling the initial objective, the direction and duration of the CRADA was modified and GM provided funding for two additional tasks. The first new task was to provide the basic development for implementing a cascaded inverter technology into hybrid vehicles (including plug-in hybrid, fuel cell, and electric). The second new task was to continue the basic development for implementing inverter and converter topologies and new technology assessments for hybrid vehicle applications. Additionally, this task was to address the use of high temperature components in drive systems. Under this CRADA, ORNL conducted further research based on GM’s idea of using the motor magnetic core and windings to produce bidirectional accessory power supply that is nongalvanically coupled to the terminals of the high voltage dc-link battery of hybrid vehicles. In order not to interfere with the motor’s torque, ORNL suggested to use the zero-sequence, highfrequency harmonics carried by the main fundamental motor current for producing the accessory power. Two studies were conducted at ORNL. One was to put an additional winding in the motor slots to magnetically link with the high frequency of the controllable zero-sequence stator currents that do not produce any zero-sequence harmonic torques. The second approach was to utilize the corners of the square stator punching for the high-frequency transformers of the dc/dc inverter. Both approaches were successful. This CRADA validated the feasibility of GM’s desire to use the motor’s magnetic core and windings to produce bidirectional accessory power supply. Three joint U.S. patents with GM were issued to ORNL and GM by the U.S. Patent Office for the research results produced by this CRADA.

Marlino, L.D.

2010-06-15T23:59:59.000Z

55

E-Print Network 3.0 - advanced test generation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: advanced test generation Page: << < 1 2 3 4 5 > >> 1 WISE 2004 -Brisbane AutoDBT: A Framework for...

56

EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...  

Broader source: Energy.gov (indexed) [DOE]

6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

57

Thermoelectric Power Generation System with Loop Thermosyphon...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency...

58

Using Backup Generators: Alternative Backup Power Options  

Broader source: Energy.gov [DOE]

In addition to electric generators powered by fuel, homeowners and business owners may consider alternative backup power options.

59

Development of 3rd Generation Advanced High Strength Steels ...  

Broader source: Energy.gov (indexed) [DOE]

3rd Generation Advanced High Strength Steels (AHSS) with an Integrated Experimental and Simulation Approach Development of 3rd Generation Advanced High Strength Steels (AHSS) with...

60

Solid state pulsed power generator  

DOE Patents [OSTI]

A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

2014-02-11T23:59:59.000Z

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

MARKET-BASED ADVANCED COAL POWER SYSTEMS FINAL REPORT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MARKET-BASED ADVANCED MARKET-BASED ADVANCED COAL POWER SYSTEMS FINAL REPORT MAY 1999 DOE/FE-0400 U.S. Department of Energy Office of Fossil Energy Washington, DC 20585 Market-Based Advanced Coal Power Systems 1-1 December 1998 1. INTRODUCTION As deregulation unfolds and privatization of the utility market takes shape, priorities for power plant economics have shifted toward those of a "bottom-line" business and away from a regulated industry. Competition in utility generation and the exposure risks of large capital investments have led to a preference to minimize capital costs and fixed and variable operation and maintenance costs. With global competition from independent power producers (IPPs), non- utility generators, and utilities, the present trend of investments is with conventional pulverized

62

Solar energy power generation system  

SciTech Connect (OSTI)

A solar energy power generation system is described which consists of: (a) means for collecting and concentrating solar energy; (b) heat storage means; (c) Stirling engine means for producing power; (d) first heat transfer means for receiving the concentrated solar energy and for transferring heat to the heat storage means; and (e) second heat transfer means for controllably transferring heat from the storage means to the Stirling engine means and including a discharge heat pipe means for transferring heat to the Stirling engine means and further including means for inserting and withdrawing the discharge heat pipe means into and out of the heat storage means.

Nilsson, J.E.; Cochran, C.D.

1986-05-06T23:59:59.000Z

63

ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT  

SciTech Connect (OSTI)

Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

Ronald Bischoff; Stephen Doyle

2005-01-20T23:59:59.000Z

64

Wyoming Wind Power Project (generation/wind)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

65

2008 Annual Merit Review Results Summary - 5. Advanced Power...  

Broader source: Energy.gov (indexed) [DOE]

5. Advanced Power Electronics 2008 Annual Merit Review Results Summary - 5. Advanced Power Electronics DOE Vehicle Technologies Annual Merit Review 2008meritreview5.pdf More...

66

Air Cooling Technology for Advanced Power Electronics and Electric...  

Broader source: Energy.gov (indexed) [DOE]

Air Cooling Technology for Advanced Power Electronics and Electric Machines Air Cooling Technology for Advanced Power Electronics and Electric Machines 2009 DOE Hydrogen Program...

67

Development of an Advanced Combined Heat and Power (CHP) System...  

Broader source: Energy.gov (indexed) [DOE]

an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2011 Development of an Advanced Combined Heat and Power (CHP) System...

68

Advanced Materials and Concepts for Portable Power Fuel Cells...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Materials and Concepts for Portable Power Fuel Cells Advanced Materials and Concepts for Portable Power Fuel Cells These slides were presented at the 2010 New Fuel Cell...

69

Advanced Power Systems and Controls Laboratory  

E-Print Network [OSTI]

photovoltaic generation facility. Solar panel output is in white, and the response of the XP DPR is in red Solar Power Generation Introduction The rapid growth of wind and solar power is a key driver of the development of grid-scale Battery Energy Storage Systems (BESS). A well implemented BESS co-located with solar

Ben-Yakar, Adela

70

Advance Power Co | Open Energy Information  

Open Energy Info (EERE)

Advance Power Co Advance Power Co Jump to: navigation, search Name Advance Power Co Place Calpella, California Zip 95418 Sector Hydro, Solar, Wind energy Product Distributor of stand alone and backup power systems based on solar, hydro, wind and fuel cell energy. Coordinates 39.23423°, -123.205162° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.23423,"lon":-123.205162,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

71

SunShot Initiative: Baseload Concentrating Solar Power Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrating Solar Power Generation Concentrating Solar Power Generation In 2010, DOE issued the Baseload Concentrating Solar Power (CSP) Generation funding opportunity announcement (FOA). The following projects were selected under this competitive solicitation: Abengoa: Advanced Nitrate Salt Central Receiver Power Plant eSolar: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility General Atomics: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage HiTek: Low-Cost Heliostat Development Infinia: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power PPG: Next-Generation Low-Cost Reflector Rocketdyne: Solar Power Tower Improvements with the Potential to Reduce Costs SENER: High-Efficiency Thermal Storage System for Solar Plants

72

NETL: News Release - Tax Credit Program Promotes Advanced Coal Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

December 5, 2007 December 5, 2007 Tax Credit Program Promotes Advanced Coal Power Generation and Gasification Technologies DOE Will Assist Internal Revenue Service in Project Selection WASHINGTON, DC - The U.S. Department of Energy (DOE) is partnering with the Internal Revenue Service (IRS) to evaluate five projects that have recently applied for tax credits under the Energy Policy Act of 2005 (EPAct 2005). Accepted projects will help bring about rapid deployment of advanced coal-based power generation and gasification technologies and enable the clean and efficient use of coal, America's most abundant energy resource. In June 2007, the Treasury Department and DOE released revised guidance on the procedures for awarding the tax credits authorized under EPAct 2005 for qualifying advanced coal projects and qualifying gasification projects. Under the revised guidance, applications for DOE certification received before October 31, 2007, will be acted on in 2008.

73

Power generation using solar power plant.  

E-Print Network [OSTI]

??Pursuing the commitment of California State to generate at least 20 percent of total generated energy from the renewable source by the year 2010 rather… (more)

Amin, Parth

2010-01-01T23:59:59.000Z

74

Energy Department Announces New Investments in Advanced Nuclear Power  

Broader source: Energy.gov (indexed) [DOE]

Investments in Advanced Nuclear Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear Power Reactors June 27, 2013 - 2:20pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to accelerate clean energy leadership and to enable a low-carbon economy, the Energy Department today announced $3.5 million for four advanced nuclear reactor projects that go beyond traditional light water designs. These projects -- led by General Atomics, GE Hitachi, Gen4 Energy and Westinghouse -- will address key technical challenges to designing, building and operating the next generation of nuclear reactors. These steps support the President's plan to cut carbon pollution and spark innovation

75

Energy Department Announces New Investments in Advanced Nuclear Power  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Announces New Investments in Advanced Nuclear Energy Department Announces New Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear Power Reactors June 27, 2013 - 2:20pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to accelerate clean energy leadership and to enable a low-carbon economy, the Energy Department today announced $3.5 million for four advanced nuclear reactor projects that go beyond traditional light water designs. These projects -- led by General Atomics, GE Hitachi, Gen4 Energy and Westinghouse -- will address key technical challenges to designing, building and operating the next generation of nuclear reactors. These steps support the President's plan to cut carbon pollution and spark innovation

76

EA-290 Ontario Power Generation, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ontario Power Generation, Inc. EA-290 Ontario Power Generation, Inc. Order authorizing Ontario Power Generation, Inc. to export electric energy to Canada EA-290 Ontario Power...

77

The Industrialization of Thermoelectric Power Generation Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost...

78

Interagency Advanced Power Group meeting minutes  

SciTech Connect (OSTI)

This document contains the minutes and viewgraphs from a meeting of military personnel on the subject of power generation and distribution systems for military applications. Topics include heating and cooling systems for standard shelters, SDIO power programs, solar dynamic space power systems, hybrid solar dynamic/ photovoltaic systems, pulsed power technology, high-{Tc} superconductors, and actuators and other electronic equipment for aerospace vehicles. Attendees represented the US Air Force, Army, Navy, and NASA. (GHH)

Not Available

1991-12-31T23:59:59.000Z

79

Interagency Advanced Power Group meeting minutes  

SciTech Connect (OSTI)

This document contains the minutes and viewgraphs from a meeting of military personnel on the subject of power generation and distribution systems for military applications. Topics include heating and cooling systems for standard shelters, SDIO power programs, solar dynamic space power systems, hybrid solar dynamic/ photovoltaic systems, pulsed power technology, high-{Tc} superconductors, and actuators and other electronic equipment for aerospace vehicles. Attendees represented the US Air Force, Army, Navy, and NASA. (GHH)

Not Available

1991-01-01T23:59:59.000Z

80

Advanced radioisotope power source options for Pluto Express  

SciTech Connect (OSTI)

In the drive to reduce mass and cost, Pluto Express is investigating using an advanced power conversion technology in a small Radioisotope Power Source (RPS) to deliver the required mission power of 74 W(electric) at end of mission. Until this year the baseline power source under consideration has been a Radioisotope Thermoelectric Generator (RTG). This RTG would be a scaled down GPHS RTG with an inventory of 6 General Purpose Heat Sources (GPHS) and a mass of 17.8 kg. High efficiency, advanced technology conversion options are being examined to lower the power source mass and to reduce the amount of radioisotope needed. Three technologies are being considered as the advanced converter technology: the Alkali Metal Thermal-to-Electric Converter (AMTEC), Thermophotovoltaic (TPV) converters, and Stirling Engines. Conceptual designs for each of these options have been prepared. Each converter would require only 2 GPHSs to provide the mission power and would have a mass of 6.1, 7.2, and 12.4 kg for AMTEC, TPV, and Stirling Engines respectively. This paper reviews the status of each technology and the projected performance of an advanced RPS based on each technology. Based on the projected performance and spacecraft integration issues, Pluto Express would prefer to use the AMTEC based RPS. However, in addition to technical performance, selection of a power technology will be based on many other factors.

Underwood, M.L. [California Inst. of Technology, Pasadena, CA (United States). Jet Propulsion Lab.

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Advanced Distributed Generation LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name Advanced Distributed Generation LLC Address 200 West Scott Park Drive, MS # 410 Place Toledo, Ohio Zip 43607 Sector Solar Product Agriculture; Consulting; Installation; Maintenance and repair; Retail product sales and distribution Phone number 419-725-3401 Website http://www.advanced-dg.com Coordinates 41.6472294°, -83.5975882° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6472294,"lon":-83.5975882,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

82

Conditions on Electric Power Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Analysis of the Effects of Drought An Analysis of the Effects of Drought Conditions on Electric Power Generation in the Western United States April 2009 DOE/NETL-2009/1365 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

83

Vehicle Technologies Office Merit Review 2014: Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power  

Broader source: Energy.gov [DOE]

Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about cost-competitive advanced...

84

Merchant vessel advanced power systems. Final report  

SciTech Connect (OSTI)

This study identifies and evaluates potential highly advanced propulsion power plants which may have marine applications beyond the year 2000. Various promising current technologies were screened and an evaluation of each plant concept and its suitability for use as a merchant ship propulsion system is contained in this report.

Baham, G.J.; Swensson, G.

1982-01-01T23:59:59.000Z

85

E-Print Network 3.0 - advanced power plants Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plants Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced power plants...

86

E-Print Network 3.0 - advanced power system Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

system Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced power system...

87

E-Print Network 3.0 - advanced power electronics Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electronics Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced power electronics...

88

E-Print Network 3.0 - advanced power plant Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plant Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced power plant...

89

E-Print Network 3.0 - advanced power electronic Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electronic Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced power electronic...

90

Power generation of a thermoelectric generator with phase change materials  

Science Journals Connector (OSTI)

In this paper, a thermoelectric generator that embeds phase change materials for wasted heat energy harvesting is proposed. The proposed thermoelectric generator embeds phase change materials in its device structure. The phase change materials store large amounts of heat energy using the latent heat of fusion. When the heat source contacts the thermoelectric generator, dissipated heat from the heat source is stored in the phase change materials. When the heat source is removed from the thermoelectric generator, the output power of the thermoelectric generator slowly decreases, while the output power of conventional thermoelectric generators decreases rapidly without the heat source. The additional air layer in the proposed thermoelectric generator disturbs the heat dissipation from the phase change materials, so the thermoelectric generator can maintain the power generation for longer without a heat source. The experimental results for the thermoelectric generator fabricated clearly show the latent heat effect of the phase change materials and the embedded air layer.

Sung-Eun Jo; Myoung-Soo Kim; Min-Ki Kim; Yong-Jun Kim

2013-01-01T23:59:59.000Z

91

New power politics will determine generation's path  

SciTech Connect (OSTI)

The US power industry's story in 2009 will be all about change, to borrow a now-familiar theme. Though the new administration's policy specifics had not been revealed as this report was prepared, it appears that flat load growth in 2009 will give the new Obama administration a unique opportunity to formulate new energy policy without risking that the lights will go out. New coal projects are now facing increasing difficulties. It looks as though the electricity supply industry will continue to muddle through. It may see an advancement in infrastructure investment, significant new generation or new technology development. It also faces the possibility that policies necessary to achieving those goals will not materialize, for political and economic reasons. 4 figs.

Maize, K.; Neville, A.; Peltier, R.

2009-01-15T23:59:59.000Z

92

Aircraft Power Generators: Hybrid Modeling and  

E-Print Network [OSTI]

Aircraft Power Generators: Hybrid Modeling and Simulation for Fault Detection ASHRAF TANTAWY University Integrated drive generators (IDGs) are the main source of electrical power for a number, and a majority of the existing FDI techniques for the electrical subsystem (brushless generator) are based

Koutsoukos, Xenofon D.

93

New Advanced System Utilizes Industrial Waste Heat to Power Water...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Water Reuse ADVANCED MANUFACTURING OFFICE New Advanced System Utilizes Industrial Waste Heat to Power Water Purification Introduction As population growth and associated factors...

94

Advanced Power Plant Development and Analysis Methodologies  

SciTech Connect (OSTI)

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

2006-06-30T23:59:59.000Z

95

Advanced Power Plant Development and Analyses Methodologies  

SciTech Connect (OSTI)

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

G.S. Samuelsen; A.D. Rao

2006-02-06T23:59:59.000Z

96

EA-290-B Ontario Power Generation, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

-B Ontario Power Generation, Inc. EA-290-B Ontario Power Generation, Inc. Order authorizing Ontario Power Generation, Inc. to export electric energy to Canada EA-290-B Ontario...

97

EA-290-A Ontario Power Generation, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

-A Ontario Power Generation, Inc. EA-290-A Ontario Power Generation, Inc. Order authorizing Ontario Power Generation, Inc. to export electric energy to Canada EA-290-A Ontario...

98

Fuel Cell Comparison of Distributed Power Generation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cell Comparison of Distributed Power Generation Technologies Fuel Cell Comparison of Distributed Power Generation Technologies This report examines backup power and prime power...

99

Waste Heat Recovery Power Generation with WOWGen  

E-Print Network [OSTI]

Waste Heat Recovery Power Generation with WOWGen? Business Overview WOW operates in the energy efficiency field - one of the fastest growing energy sectors in the world today. The two key products - WOWGen? and WOWClean? provide more... energy at cheaper cost and lower emissions. ? WOWGen? - Power Generation from Industrial Waste Heat ? WOWClean? - Multi Pollutant emission control system Current power generation technology uses only 35% of the energy in a fossil fuel...

Romero, M.

100

Nuclear power eyed to generate industrial heat  

Science Journals Connector (OSTI)

Nuclear power eyed to generate industrial heat ... The American Nuclear Society has called for "an aggresssive national policy aimed at demonstrating specific capabilities and providing incentives for the application of nuclear power to meeting industrial energy needs." ...

1983-10-24T23:59:59.000Z

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Power Generating Inc | Open Energy Information  

Open Energy Info (EERE)

while consuming on-site emissions of volatile organic compounds (VOC's). References: Power Generating Inc1 This article is a stub. You can help OpenEI by expanding it. Power...

102

Clean coal technologies in electric power generation: a brief overview  

SciTech Connect (OSTI)

The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

Janos Beer; Karen Obenshain [Massachusetts Institute of Technology (MIT), MA (United States)

2006-07-15T23:59:59.000Z

103

Power Generation and the Environment  

Science Journals Connector (OSTI)

...this session, Richard Post reported on the current status and hopes for the future of power genera- tion by controlled thermonuclear fusion. The possibility of achieving a thermal efficiency approximating 90% in a rela- tively "clean" power reactor...

Rolf Eliassen

1971-01-01T23:59:59.000Z

104

Recent developments of thermoelectric power generation  

Science Journals Connector (OSTI)

One form of energy generation that is expected to be on the rise in the next several decades is thermoelectric power generation (TEPG) which converts heat directly to electricity. Compared with other methods, ...

Luan Weiling; Tu Shantung

2004-06-01T23:59:59.000Z

105

Heat Transfer Enhancement in Thermoelectric Power Generation.  

E-Print Network [OSTI]

??Heat transfer plays an important role in thermoelectric (TE) power generation because the higher the heat-transfer rate from the hot to the cold side of… (more)

Hu, Shih-yung

2009-01-01T23:59:59.000Z

106

Thermoelectric power generator with intermediate loop  

DOE Patents [OSTI]

A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

Bell, Lon E; Crane, Douglas Todd

2013-05-21T23:59:59.000Z

107

Thermoelectric power generator with intermediate loop  

DOE Patents [OSTI]

A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

Bel,; Lon E. (Altadena, CA); Crane, Douglas Todd (Pasadena, CA)

2009-10-27T23:59:59.000Z

108

Rotordynamics in alternative energy power generation.  

E-Print Network [OSTI]

??This thesis analyses and discusses the main alternative energy systems that work with rotordynamics machines to generate power. Hydropower systems, wave and ocean energy, geothermal,… (more)

Cortes-Zambrano, Ivan

2011-01-01T23:59:59.000Z

109

Power Generation and the Environment  

Science Journals Connector (OSTI)

...transmission and distribution of electric power. Systems...decision-making and planning. Simulation...Symposium on Energy for the Future...increasing role in planning for the location...furnishing electric power, such...transmission and distribution of electric power. Sys...making and planning. Simulation...meet the energy needs for...

Rolf Eliassen

1971-01-01T23:59:59.000Z

110

Engineered Sequestration and Advanced Power Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia University. Predictions of innovative energy technologies for the next century usually include everything from fusion to photovoltaics with the one notable exception of fossil fuels. Because of fears of diminishing supplies, pollution and climate change, the public is reluctant to consider these hydrocarbon fuels for the energy needs of the twenty- first century. An energy strategy for the new century, however, cannot ignore fossil fuels. Contrary to popular belief, they are plentiful and inexpensive. While it is true that fossil fuels are limited by their environmental impact, new technologies to eliminate environmental concerns are currently being developed. Managing the emission of

111

NREL: Advanced Power Electronics - About the Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Project About the Project The Vehicle Technologies Program supports the development of technologies that will achieve transportation energy security through a U.S. highway vehicle fleet that consists of affordable, full-function cars and trucks that are free from petroleum dependence and harmful emissions, without sacrificing mobility, safety, and vehicle choice. The electric drive system is the technology foundation for hybrid electric and fuel cell vehicles. NREL focuses on developing advanced power electronics and electric machinery technologies that improve and dramatically decrease vehicle systems costs, under DOE's Power Electronics and Electric Machines (PEEM) subactivity. NREL supports the PEEM project goals to ensure high reliability, efficiency, and ruggedness; and

112

IEEE POWER ENGINEERING SOCIETY ENERGY DEVELOPMENT AND POWER GENERATION COMMITTEE  

E-Print Network [OSTI]

--Price Cap Regulation: Stimulating Efficiency in Electricity Distribution in Latin America. (Luiz Barroso Sponsored by: International Practices for Energy Development and Power Generation Chairs: Luiz Barroso, PSR

Catholic University of Chile (Universidad CatĂłlica de Chile)

113

Advanced ceramic materials for next-generation nuclear applications  

Science Journals Connector (OSTI)

The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high-temperature plasma systems. Fusion reactors will likely depend on lithium-based ceramics to produce tritium that fuels the fusion plasma, while high-temperature alloys or ceramics will contain and control the hot plasma. All the while, alloys, ceramics, and ceramic-related processes continue to find applications in the management of wastes and byproducts produced by these processes.

John Marra

2011-01-01T23:59:59.000Z

114

NETL: News Release - Advanced Natural Gas Turbine Hailed as Top Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

December 30, 2003 December 30, 2003 Advanced Natural Gas Turbine Hailed as Top Power Project of 2003 Power Engineering Cites Product of Energy Department's Advanced Turbine Systems Program WASHINGTON, DC - A power plant featuring a next-generation gas turbine developed as part of the U.S. Department of Energy's advanced turbine systems program has been selected by Power Engineering magazine as one of three "2003 Projects of the Year." Baglan Bay Power Station Baglan Bay Power Station, South Wales, U.K. Photo courtesy of GE Power Systems The Baglan Bay Power Station near Cardiff, Wales, UK reached a major milestone for the global power industry when GE Power System's H System gas turbine debuted there earlier this year. The most advanced combustion turbine in the world, the H System is the first gas turbine combined-cycle

115

Advanced Power Electronics and Electric Motors Annual Report -- 2013  

SciTech Connect (OSTI)

This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

Narumanchi, S.; Bennion, K.; DeVoto, D.; Moreno, G.; Rugh, J.; Waye, S.

2015-01-01T23:59:59.000Z

116

Thermal Stress and Reliability for Advanced Power Electronics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Power Electronic Thermal System Performance and Integration Thermal Performance and...

117

Integrated Combined Heat and Power/Advanced Reciprocating Internal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and PowerAdvanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications Development of an Improved Modular Landfill Gas Cleanup and...

118

Thermal Strategies for High Efficiency Thermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system...

119

Advanced Plasma Power APP | Open Energy Information  

Open Energy Info (EERE)

Power APP Power APP Jump to: navigation, search Name Advanced Plasma Power (APP) Place London, Greater London, United Kingdom Zip EC2A 1BR Product London-based geoplasma process technology developer for waste-to-energy systems. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

Next Generation Short-Term Forecasting of Wind Power Overview of the ANEMOS Project.  

E-Print Network [OSTI]

1 Next Generation Short-Term Forecasting of Wind Power ­ Overview of the ANEMOS Project. G outperform current state-of-the-art methods, for onshore and offshore wind power forecasting. Advanced forecasts for the power system management and market integration of wind power. Keywords: Wind power, short

Boyer, Edmond

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Power Generation and the Environment  

Science Journals Connector (OSTI)

...I agree with conservationists that the recent 5-9% yearly increase in the consumption...federal agencies. Planning for 10 years in advance is hardly enough to satisfy all of the...skilled scientists and engineers from the aerospace industry. Gas This is the cleanest fossil...

Rolf Eliassen

1971-01-01T23:59:59.000Z

122

Development of Cost-Competitive Advanced Thermoelectric Generators...  

Broader source: Energy.gov (indexed) [DOE]

vehicles by 5% using advanced low cost TE technology: - Low cost materials, modules, heat exchangers, power conditioning, and vehicle integration for exhaust gas waste heat...

123

FACTSHEET: Next Generation Power Electronics Manufacturing Innovation  

Broader source: Energy.gov (indexed) [DOE]

FACTSHEET: Next Generation Power Electronics Manufacturing FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - 9:20am Addthis The Obama Administration today announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. Supported by a $70 million Energy Department investment over five years as well as a matching $70 million in non-federal cost-share, the institute will bring together over 25 companies, universities and state and federal organizations to invent and manufacture wide bandgap (WBG) semiconductor-based power electronics that are cost-competitive and 10 times more powerful than current

124

Recent Advances in Steels for Coal Fired Power Plant: A Review  

Science Journals Connector (OSTI)

The current status of the development of materials for advanced ultra supercritical power generation technology is considered in the light of changes in the priorities and opportunities worldwide for high effi...

Thomas B. Gibbons

2013-12-01T23:59:59.000Z

125

A review of ash in conventional and advanced coal-based power systems  

SciTech Connect (OSTI)

Process conditions are briefly described for conventional and advanced power systems. The advanced systems include both combustion and gasification processes. We discuss problems in coal-based power generation systems, including deposition, agglomeration and sintering of bed materials, and ash attack are discussed. We also discuss methods of mitigating ash problems and anticipated changes anticipated in ash use by converting from conventional to advanced systems.

Holcombe, N.T.

1995-12-31T23:59:59.000Z

126

First Generation Advanced High-Strength Steels Deformation Fundamental...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Deformation Fundamentals First Generation Advanced High-Strength Steels Deformation Fundamentals 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

127

Advanced, High Power, Next Scale, Wave Energy Conversion Device  

SciTech Connect (OSTI)

The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Dufera, Hiz [Project Manager] [Project Manager; Montagna, Deb [Business Point of Contact] [Business Point of Contact

2012-10-29T23:59:59.000Z

128

ADVANCED POWER SYSTEMS ASH BEHAVIOR IN POWER SYSTEMS  

SciTech Connect (OSTI)

The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: ? Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. ? Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. ? Identify the relationship between the temperature of critical viscosity (Tcv ) as measured in a viscometer and the crystallization occurring in the melt. ? Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. ? Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. ? Evaluate corrosion for alloys being used in supercritical combustion systems.

CHRISTOPHER J. ZYGARLICKE; DONALD P. MCCOLLOR; JOHN P. KAY; MICHAEL L. SWANSON

1998-09-01T23:59:59.000Z

129

Power Generation and the Environment  

Science Journals Connector (OSTI)

...fuels) leads to waste heat which the environment...duction, and the waste heat to be dissipated to the...matter, carbon monoxide, hydrocarbons, nitrogen oxides, and...5 3.1 5.9 Waste heat generated (1015) Btu...resulting from fossil fuel combustion to the year 2000 might...

Rolf Eliassen

1971-01-01T23:59:59.000Z

130

Central power generation versus distributed generation e An air quality assessment in the South Coast Air Basin of California  

E-Print Network [OSTI]

., Suite 200, San Francisco, CA 94111, USA c Advanced Power and Energy Program, Department of Mechanical obstacles to transmission line additions may force even central power generation back into air basins by the year 2020. The intermittent nature of renewable sources like wind and solar power may require

Dabdub, Donald

131

Cascading Closed Loop Cycle Power Generation  

E-Print Network [OSTI]

marketed as WOWGen®. The WOW Energies patents represent the production of efficient power from low, medium and high temperature heat generated from the combustion of fuels; heat from renewable energy sources such as solar and geothermal heat; or waste heat...

Romero, M.

2008-01-01T23:59:59.000Z

132

Analysis of power generation processes using petcoke  

E-Print Network [OSTI]

Petroleum coke or petcoke, a refinery byproduct, has generally been considered as an unusable byproduct because of its high sulfur content. However energy industries now view petcoke as a potential feedstock for power generation because it has...

Jayakumar, Ramkumar

2009-05-15T23:59:59.000Z

133

The Industrialization of Thermoelectric Power Generation Technology  

Broader source: Energy.gov [DOE]

Presents module and system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost scalability, raw material availability and module reliability

134

Electric Power Generation and Transmission (Iowa)  

Broader source: Energy.gov [DOE]

Electric power generating facilities with a combined capacity greater than 25 MW, as well as associated transmission lines, may not be constructed or begin operation prior to the issuance of a...

135

Power generation method including membrane separation  

DOE Patents [OSTI]

A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

136

Integration of Advanced Emissions Controls to Produce Next-Generation Circulating Fluid Bed Coal Generating Unit (withdrawn prior to award)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

contacts contacts Brad tomer Director Office of Major Demonstrations National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4692 brad.tomer@netl.doe.gov PaRtIcIPant Colorado Springs Utilities Colorado Springs, CO aDDItIonaL tEaM MEMBERs Foster Wheeler Power Group, Inc. Clinton, NJ IntegratIon of advanced emIssIons controls to Produce next-generatIon cIrculatIng fluId Bed coal generatIng unIt (wIthdrawn PrIor to award) Project Description Colorado Springs Utilities (Springs Utilities) and Foster Wheeler are planning a joint demonstration of an advanced coal-fired electric power plant using advanced, low-cost emission control systems to produce exceedingly low emissions. Multi- layered emission controls will be

137

Synchrophasor Applications for Wind Power Generation  

SciTech Connect (OSTI)

The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

Muljadi, E.; Zhang, Y. C.; Allen, A.; Singh, M.; Gevorgian, V.; Wan, Y. H.

2014-02-01T23:59:59.000Z

138

Safe Operation of Backup Power Generators  

E-Print Network [OSTI]

E-395 04/06 Portable generators are useful when temporary or remote electric power is needed, but they can also be deadly. The primary hazards to avoid when us- ing a generator are carbon monoxide (CO) poison- ing from generator exhaust fumes..., electrocution and fire. Carbon monoxide danger Carbon monoxide is an odorless, colorless gas byproduct of incomplete combustion of fuels, such as natural gas, heating oil and diesel. This toxic gas interferes with the blood?s ability to carry oxygen...

Smith, David

2006-04-19T23:59:59.000Z

139

Advanced Power Projects | Open Energy Information  

Open Energy Info (EERE)

Projects Projects Jump to: navigation, search Name Advanced Power Projects Place Fremont, California Zip 94539 Sector Efficiency Product Gas turbine efficiency company, developing a simplified combined cycle system to lower system fuel consumption and lower emissions. Coordinates 44.2605°, -88.880509° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2605,"lon":-88.880509,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

140

Definition: Thermoelectric power generation | Open Energy Information  

Open Energy Info (EERE)

Thermoelectric power generation Thermoelectric power generation Jump to: navigation, search Dictionary.png Thermoelectric power generation The conversion of thermal energy into electrical energy. Thermoelectric generation relies on a fuel source (e.g. fossil, nuclear, biomass, geothermal, or solar) to heat a fluid to drive a turbine[1] View on Wikipedia Wikipedia Definition The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice-versa. A thermoelectric device creates voltage when there is a different temperature on each side. Conversely, when a voltage is applied to it, it creates a temperature difference. At the atomic scale, an applied temperature gradient causes charge carriers in the material to diffuse from the hot side to the cold

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Combined-Cycle Power Generation — A Promising Alternative for the Generation of Electric Power from Coal  

Science Journals Connector (OSTI)

The classic concept of generating electric power from a fossil energy source (coal, oil, gas) comprises the following essential process steps (Fig. 1): Combustion of coal and g...

Eberhard Nitschke

1987-01-01T23:59:59.000Z

142

Thermal Stress and Reliability for Advanced Power Electronics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Performance and Reliability of Bonded Interfaces Physics of Failure of Electrical Interconnects Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines...

143

Advanced Power Electronics and Electric Motors R&D  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies to the Marketplace Advancing Power Electronics and Electric Motors More Fuel Efficient Vehicles on the Road * Ames Laboratory * Argonne National Laboratory * Oak...

144

Techno-economic modelling of integrated advanced power cycles  

Science Journals Connector (OSTI)

Concerns regarding the environmental impacts of power generation have stimulated interest in energy efficient cycles such as the integrated gasification combined cycle (IGCC) and the integrated gasification humid air turbine (IGHAT) cycle. These advanced power cycles are complex owing to the large number of units involved, interactions among the units, and the presence of streams of diverse compositions and properties. In this paper, techno-economic computer models of IGCC and IGHAT cycles are presented along with some sample results that illustrate the models' capabilities. The models, which were validated using actual data, provide performance predictions, inventories of capital and operating costs, as well as levels of gaseous emissions and solid wastes. While the models are simple enough for use in parametric, sensitivity and optimisation studies, they are responsive to variations in coal characteristics, design and operating conditions, part load operations and financial parameters.

A.O. Ong'iro; V.I. Ugursal; A.M. Al Taweel

2001-01-01T23:59:59.000Z

145

Directions for advanced use of nuclear power in century XXI  

SciTech Connect (OSTI)

Nuclear power can provide a significant contribution to electricity generation and meet other needs of the world and the US during the next century provided that certain directions are taken to achieve its public acceptance. These directions include formulation of projections of population, energy consumption, and energy resources over a responsible period of time. These projections will allow assessment of cumulative effects on the environment and on fixed resources. Use of fossil energy resources in a century of growing demand for energy must be considered in the context of long-term environmental damage and resource depletion. Although some question the validity of these consequences, they can be mitigated by use of advanced fast reactor technology. It must be demonstrated that nuclear power technology is safe, resistant to material diversion for weapon use, and economical. An unbiased examination of all the issues related to energy use, especially of electricity, is an essential direction to take.

Walter, C E

1999-05-01T23:59:59.000Z

146

Reliability Modeling for the Advanced Electric Power Grid  

Science Journals Connector (OSTI)

The advanced electric power grid promises a self-healing infrastructure using distributed, ... and control network that can dynamically change the power grid to achieve higher dependability. The goal is ... them ...

Ayman Z. Faza; Sahra Sedigh…

2007-01-01T23:59:59.000Z

147

Optimization of advanced telecommunication algorithms from power and performance perspective   

E-Print Network [OSTI]

This thesis investigates optimization of advanced telecommunication algorithms from power and performance perspectives. The algorithms chosen are MIMO and LDPC. MIMO is implemented in custom ASIC for power optimization ...

Khan, Zahid

2011-11-22T23:59:59.000Z

148

Coal-fired high performance power generating system. Final report  

SciTech Connect (OSTI)

As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

NONE

1995-08-31T23:59:59.000Z

149

Ningxia Yinyi Wind Power Generation Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Yinyi Wind Power Generation Co Ltd Jump to: navigation, search Name: Ningxia Yinyi Wind Power Generation Co Ltd Place: Ningxia Autonomous Region, China Sector: Wind energy Product:...

150

Overview of Thermoelectric Power Generation Technologies in Japan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Thermoelectric Power Generation Technologies in Japan Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy...

151

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

152

REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF...  

Broader source: Energy.gov (indexed) [DOE]

position in the power generation field. It is the second largest commercial supplier of power generation gas turbines in the United States and the fourth single largest supplier...

153

Renewable Power Options for Electricity Generation on Kaua'i...  

Office of Environmental Management (EM)

Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Renewable Power Options for Electricity Generation on Kaua'i: Economics and...

154

Electric Power Generation from Coproduced Fluids from Oil and...  

Broader source: Energy.gov (indexed) [DOE]

Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Electric Power Generation from Coproduced Fluids from Oil and Gas Wells The primary objective of this...

155

High Reliability, High TemperatureThermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies...

156

Datang Jilin Power Generation Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Jilin Power Generation Co Ltd Jump to: navigation, search Name: Datang Jilin Power Generation Co Ltd Place: Changchun, Jilin Province, China Sector: Wind energy Product: Set up...

157

Velagapudi Power Generation Ltd VPGL | Open Energy Information  

Open Energy Info (EERE)

Velagapudi Power Generation Ltd VPGL Jump to: navigation, search Name: Velagapudi Power Generation Ltd. (VPGL) Place: Vijayawada, Andhra Pradesh, India Zip: 520 007 Sector: Biomass...

158

Overview of Progress in Thermoelectric Power Generation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview of Progress in Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Presents progress in...

159

Chapter 14 - Marine Power Generation Technologies  

Science Journals Connector (OSTI)

Abstract There are four ways in which the world’s oceans can provide an energy source for power generation. Marine currents around coastlines, inlets, and estuaries can be exploited with underwater turbines. Ocean waves are also a source of energy that can be tapped using a variety of different devices that convert the oscillating motion of waves into a motion that can be used to provide electricity generation. The world’s oceans, particularly in the tropical regions, are massive solar collectors, absorbing heat that creates a hot layer on the surface of the sea. This hot water can be used to drive a heat engine, with cooling taken from the ocean depths where the temperature remains low. The mixing of fresh and salt water also releases energy, and this too can be tapped in a number of ways to generate electricity. All of these are being developed as means of power generation.

Paul Breeze

2014-01-01T23:59:59.000Z

160

Vehicle Technologies Office: 2008 Advanced Power Electronics...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies An integrated approach towards efficient, scalable, and low...

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Microelectromechanical power generator and vibration sensor  

DOE Patents [OSTI]

A microelectromechanical (MEM) apparatus is disclosed which can be used to generate electrical power in response to an external source of vibrations, or to sense the vibrations and generate an electrical output voltage in response thereto. The MEM apparatus utilizes a meandering electrical pickup located near a shuttle which holds a plurality of permanent magnets. Upon movement of the shuttle in response to vibrations coupled thereto, the permanent magnets move in a direction substantially parallel to the meandering electrical pickup, and this generates a voltage across the meandering electrical pickup. The MEM apparatus can be fabricated by LIGA or micromachining.

Roesler, Alexander W. (Tijeras, NM); Christenson, Todd R. (Albuquerque, NM)

2006-11-28T23:59:59.000Z

162

NREL: Vehicles and Fuels Research - Advanced Power Electronics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Search More Search Options Site Map The electric drive system is the technology foundation for hybrid electric and fuel cell vehicles. That's why NREL's Advanced Power Electronics project supports and promotes the design, development, and demonstration of power electronic components and systems that will overcome major technical barriers to the commercialization of hybrid, advanced internal combustion, and fuel cell vehicle technologies. In support of DOE's Vehicle Technologies Office, our researchers focus on developing advanced power electronics and electric machinery technologies that improve reliability, efficiency, and ruggedness, and dramatically decrease systems costs for advanced vehicles. Key components for these vehicles include the motor controller, DC to DC converters, and inverters

163

Project Sponsors: California Energy Commission Advanced Power and Energy Program  

E-Print Network [OSTI]

Project Sponsors: California Energy Commission Advanced Power and Energy Program ADVANCED POWER by the California Energy Commission (CEC) in its 2012 solicitation After the intersections were scored, Voronoi & ENERGY PROGRAM www.apep.uci.edu RESULTS For each of the specified 68 station locations, nearby major

Mease, Kenneth D.

164

System and method for advanced power management  

DOE Patents [OSTI]

A power management system is provided that includes a power supply means comprising a plurality of power supply strings, a testing means operably connected to said plurality of power supply strings for evaluating performance characteristics of said plurality of power supply strings, and a control means for monitoring power requirements and comprising a switching means for controlling switching of said plurality of power supply strings to said testing means.

Atcitty, Stanley (Albuquerque, NM); Symons, Philip C. (Surprise, AZ); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM)

2009-07-28T23:59:59.000Z

165

Electric generating prospects for nuclear power  

Science Journals Connector (OSTI)

Most of the nuclear power plants in the U.S. today are of the light-water variety. In many parts of the U.S. these plants are competitive with plants burning coal, but the electricity that they generate will be more costly in the future as uranium supplies ...

Manson Benedict

1970-07-01T23:59:59.000Z

166

E-Print Network 3.0 - advanced nuclear power Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: advanced nuclear power Page: << < 1 2 3 4 5 > >> 1 Nuclear Engineering Graduate Program Summary: Power...

167

Advanced fusion MHD power conversion using the CFAR (compact fusion advanced Rankine) cycle concept  

SciTech Connect (OSTI)

The CFAR (compact fusion advanced Rankine) cycle concept for a tokamak reactor involves the use of a high-temperature Rankine cycle in combination with microwave superheaters and nonequilibrium MHD disk generators to obtain a compact, low-capital-cost power conversion system which fits almost entirely within the reactor vault. The significant savings in the balance-of-plant costs are expected to result in much lower costs of electricity than previous concepts. This paper describes the unique features of the CFAR cycle and a high- temperature blanket designed to take advantage of it as well as the predicted performance of the MHD disk generators using mercury seeded with cesium. 40 refs., 8 figs., 3 tabs.

Hoffman, M.A.; Campbell, R.; Logan, B.G. (California Univ., Davis, CA (USA); Lawrence Livermore National Lab., CA (USA))

1988-10-01T23:59:59.000Z

168

Siemens Power Generation | Open Energy Information  

Open Energy Info (EERE)

Generation Generation Jump to: navigation, search Name Siemens Power Generation Place Erlangen, Bavaria, Germany Zip 91058 Product Erlangen-based subsidiary of Siemens AG that develops, manufactures, and installs power plants and related equipment such as turbines. Its fuel cell subsidiary is Siemens Westinghouse. Coordinates 49.59795°, 11.00258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.59795,"lon":11.00258,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

Advanced cathode material for high power applications.  

SciTech Connect (OSTI)

In our efforts to develop low cost high-power Li-ion batteries with excellent safety, as well as long cycle and calendar life, lithium manganese oxide spinel and layered lithium nickel cobalt manganese oxide cathode materials were investigated. Our studies with the graphite/LiPF{sub 6}/spinel cells indicated a very significant degradation of capacity with cycling at 55 C. This degradation was caused by the reduction of manganese ions on the graphite surface which resulted in a significant increase of the charge-transfer impedance at the anode/electrolyte interface. To improve the stability of the spinel, we investigated an alternative salt that would not generate HF acid that may attack the spinel. The alternative salt we selected for this work was lithium bisoxalatoborate, LiB(C{sub 2}O{sub 4}){sub 2} ('LiBoB'). In this case, the graphite/LiBoB/spinel Li-ion cells exhibited much improved cycle/calendar life at 55 C and better abuse tolerance, as well as excellent power. A second system based on LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} layered material was also investigated and its performance was compared to commercial LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}. Cells based on LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} showed lower power fade and better thermal safety than the LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}-based commercial cells under similar test conditions. Li-ion cells based on the material with excess lithium (Li{sub 1.1}Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2}) exhibited excellent power performance that exceeded the FreedomCAR requirements.

Amine, K.; Belharouak, I.; Kang, S. H.; Liu, J.; Vissers, D.; Henriksen, G.; Chemical Engineering

2005-01-01T23:59:59.000Z

170

Advanced coal technologies in Czech heat and power systems  

SciTech Connect (OSTI)

Coal is the only domestic source of fossil fuel in the Czech Republic. The coal reserves are substantial and their share in total energy use is about 60%. Presently necessary steps in making coal utilisation more friendly towards the environment have been taken and fairly well established, and an interest to develop and build advanced coal units has been observed. One IGCC system has been put into operation, and circa 10 AFBC units are in operation or under construction. Preparatory steps have been taken in building an advanced combustion unit fuelled by pulverised coal and retrofit action is taking place in many heating plants. An actual experience has shown two basic problems: (1) Different characteristic of domestic lignite, especially high content of ash, cause problems applying well-tried foreign technologies and apparently a more focused attention shall have to be paid to the quality of coal combusted. (2) Low prices of lignite (regarding energy, lignite is four times cheaper then coal) do not oblige to increase efficiency of the standing equipment applying advanced technologies. It will be of high interest to observe the effect of the effort of the European Union to establish a kind of carbon tax. It could dramatically change the existing scene in clean coal power generation by the logical pressure to increase the efficiency of energy transformation. In like manner the gradual liberalisation of energy prices might have similar consequences and it is a warranted expectation that, up to now not the best, energy balance will improve in near future.

Noskievic, P.; Ochodek, T. [VSB-Technical Univ., Ostrava (Czechoslovakia)

1998-04-01T23:59:59.000Z

171

High-efficiency solar dynamic space power generation system  

SciTech Connect (OSTI)

Space power technologies have undergone significant advances over the past few years, and great emphasis is being placed on the development of dynamic power systems at this time. A design study has been conducted to evaluate the applicability of a combined cycle concept-closed Brayton cycle and organic Rankine cycle coupling-for solar dynamic space power generation systems. In the concept presented in this paper (solar dynamic combined cycle), the waste heat rejected by the closed Brayton cycle working fluid is utilized to heat the organic working fluid of an organic Rankine cycle system. This allows the solar dynamic combined cycle efficiency to be increased compared to the efficiencies of two subsystems (closed Brayton cycle and organic fluid cycle). Also, for small-size space power systems (up to 50 kW), the efficiency of the solar dynamic combined cycle can be comparable with Stirling engine performance. The closed Brayton cycle and organic Rankine cycle designs are based on a great deal of maturity assessed in much previous work on terrestrial and solar dynamic power systems. This is not yet true for the Stirling cycles. The purpose of this paper is to analyze the performance of the new space power generation system (solar dynamic combined cycle). The significant benefits of the solar dynamic combined cycle concept such as efficiency increase, mass reduction, specific area-collector and radiator-reduction, are presented and discussed for a low earth orbit space station application.

Massardo, A. (Dept. di Ingegneria Energetica, Univ. di Genova, 16145 Genova (IT))

1991-08-01T23:59:59.000Z

172

Isotope powered Stirling generator for terrestrial applications  

SciTech Connect (OSTI)

An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995.

Tingey, G.L.; Sorensen, G.C. [Pacific Northwest Lab., Richland, WA (United States); Ross, B.A. [Stirling Technology Co., Richland, WA (United States)

1995-01-01T23:59:59.000Z

173

Isotope powered stirling generator for terrestrial applications  

SciTech Connect (OSTI)

An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling ENgine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to data: (a) a development model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

Tingey, G.L.; Sorensen, G.C. [Battelle, Paific Laboratory, P.O. Box 999, Richland, Washington 99352 (United States); Ross, B.A. [Stirling Technology Company, 2952 George Washington Way, Richland, Washington 99352 (United States)

1995-01-20T23:59:59.000Z

174

Federal Energy Management Program: New and Underutilized Power Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New and New and Underutilized Power Generation Technologies to someone by E-mail Share Federal Energy Management Program: New and Underutilized Power Generation Technologies on Facebook Tweet about Federal Energy Management Program: New and Underutilized Power Generation Technologies on Twitter Bookmark Federal Energy Management Program: New and Underutilized Power Generation Technologies on Google Bookmark Federal Energy Management Program: New and Underutilized Power Generation Technologies on Delicious Rank Federal Energy Management Program: New and Underutilized Power Generation Technologies on Digg Find More places to share Federal Energy Management Program: New and Underutilized Power Generation Technologies on AddThis.com... Energy-Efficient Products Technology Deployment

175

Coal Gasification for Power Generation, 3. edition  

SciTech Connect (OSTI)

The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

NONE

2007-11-15T23:59:59.000Z

176

Advanced pulverized-coal power plants: A U.S. export opportunity  

SciTech Connect (OSTI)

This paper provides an overview of Low Emission Boiler System (LEBS) power generation systems and its potential for generating power worldwide. Based on the fuel availability, power requirements, and environmental regulations, countries have been identified that need to build advanced, clean, efficient, and economical power generation, systems. It is predicted that ``more electrical generation capacity will be built over the next 25 years than was built in the previous century``. For example, China and India alone, with less than 10% of today`s demand, plan to build what would amount to a quarter of the world`s new capacity. For the near- to mid-term, the LEBS program of Combustion 2000 has the promise to fill some of the needs of the international coal-fired power generation market. The high efficiency of LEBS, coupled with the use of advanced, proven technologies and low emissions, make it a strong candidate for export to those areas whose need for additional power is greatest. LEBS is a highly advanced version of conventional coal-based power plants that have been utilized throughout the world for decades. LEBS employs proven technologies and doesn`t require gasification and/or an unconventional combustion environment (e.g., fluidized bed). LEBS is viewed by the utility industry as technically acceptable and commercially feasible.

Ruth, L.A. [USDOE Pittsburgh Energy Technology Center, PA (United States); Ramezan, M.; Izsak, M.S. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1995-09-01T23:59:59.000Z

177

Design of advanced fossil-fuel systems (DAFFS): a study of three developing technologies for coal-fired, base-load electric power generation. Integrated coal gasification/combined cycle power plant with Texaco gasification process  

SciTech Connect (OSTI)

The objectives of this report are to present the facility description, plant layouts and additional information which define the conceptual engineering design, and performance and cost estimates for the Texaco Integrated Gasification Combined Cycle (IGCC) power plant. Following the introductory comments, the results of the Texaco IGCC power plant study are summarized in Section 2. In Section 3, a description of plant systems and facilities is provided. Section 4 includes pertinent performance information and assessments of availability, natural resource requirements and environmental impact. Estimates of capital costs, operation and maintenance costs and cost of electricity are presented in Section 5. A Bechtel Group, Inc. assessment and comments on the designs provided by Burns and Roe-Humphreys and Glasgow Synthetic Fuel, Inc. are included in Section 6. The design and cost estimate reports which were prepared by BRHG for those items within their scope of responsibility are included as Appendices A and B, respectively. Appendix C is an equipment list for items within the BGI scope. The design and cost estimate classifications chart referenced in Section 5 is included as Appendix D. 8 references, 17 figures, 15 tables.

Not Available

1983-06-01T23:59:59.000Z

178

Design of advanced fossil-fuel systems (DAFFS): a study of three developing technologies for coal-fired, base-load electric power generation. Integrated coal-gasification/combined power plant with BGC/Lurgi gasification process  

SciTech Connect (OSTI)

The objectives of this report are to present the facility description, plant layouts and additional information which define the conceptual engineering design, and performance and cost estimates for the BGC/Lurgi Integrated Gasification Combined Cycle (IGCC) power plant. Following the introductory comments, the results of the British Gas Corporation (BGC)/Lurgi IGCC power plant study are summarized in Section 2. In Secion 3, a description of plant systems and facilities is provided. Section 4 includes pertinent performance information and assessments of availability, natural resource requirements and environmental impact. Estimates of capital costs, operating and maintenance costs and cost of electricity are presented in Section 5. A Bechtel Group Inc. (BGI) assessment and comments on the designs provided by Burns and Roe-Humphreys and Glasgow Synthetic Fuels, Inc. (BRHG) are included in Section 6. The design and cost estimate reports which were prepared by BRHG for those items within their scope of responsibility are included as Appendices A and B, respectively. Apendix C is an equipment list for items within the BGI scope. The design and cost estimate classifications chart referenced in Section 5 is included as Appendix D. 8 references, 18 figures, 5 tables.

Not Available

1983-06-01T23:59:59.000Z

179

The Advanced Composition Explorer power subsystem  

SciTech Connect (OSTI)

The Johns Hopkins University Applied Physics Laboratory, under contract with NASA Goddard Space Flight Center, has designed and launched the Advanced Composition Explorer (ACE) spacecraft. ACE is a scientific observatory housing ten instruments, and is located in a halo orbit about the L1 Sun-Earth libration point. ACE is providing real-time solar wind monitoring and data on elemental and isotopic matter of solar and galactic origin. The ACE Electrical Power Subsystem (EPS) is a fault tolerant, solar powered, shunt regulated, direct energy transfer architecture based on the Midcourse Space Experiment (MSX) EPS. The differences are that MSX used oriented solar arrays with a nickel hydrogen-battery defined bus, while ACE uses fixed solar panels with a regulated bus decoupled from its nickel cadmium (NiCd) battery. Also, magnetometer booms are mounted on two of the four ACE solar panels. The required accuracy of the magnetometers impose severe requirements on the magnetic fields induced by the solar array. Other noteworthy features include a solar cell degradation experiment, in-flight battery reconditioning, a battery requalified to a high vibrational environment, and an adjustable bus voltage setpoint. The four solar panels consist of aluminum honeycomb substrates covered with 15.1% efficient silicon cells. The cells are strung using silver interconnects and are back-wired to reduce magnetic emissions below 0.1nT. Pyrotechnic actuated, spring loaded hinges deploy the panels after spacecraft separation from the Delta II launch vehicle. Solar cell experiments on two of the panels track cell performance degradation at L1, and also distinguish any hydrazine impingement degradation which may be caused by the thrusters. Each solar panel uses a digital shunt box, containing blocking diodes and MOSFETs, for short-circuit control of its 5 solar strings. A power box contains redundant analog MOSFET shunts, the 90% efficient boost regulator, and redundant battery chargers which provide closed-loop voltage and current limiting. The booster can also be configured in flight to cause a regulated 0.6A discharge to provide partial battery reconditioning. The battery uses 18 spare 12Ah NiCd cells from the retired constellation of Navy navigation satellites. The battery unintentionally received twice the intended amplitude during vibration testing, but a packaging review and cell requalification proved the battery capable of safely operating in the more rugged environment. The control box contains redundant hybrid switching converters, shunt regulation electronics, and a circuit to switch sides in response to bus under or over-voltage. The control box also contains redundant 80C85RH-based processors which digitize all EPS telemetry and decode digital commands communicated over cross-strapped serial links with the redundant spacecraft command and data handling systems.

Panneton, P.E.; Tarr, J.E.; Goliaszewski, L.T.

1998-07-01T23:59:59.000Z

180

NAFTA opportunities: Electrical equipment and power generation  

SciTech Connect (OSTI)

The North American Free Trade Agreement (NAFTA) provides significant commercial opportunities in Mexico and Canada for the United States electric equipment and power generation industries, through increased goods and services exports to the Federal Electricity Commission (CFE) and through new U.S. investment in electricity generation facilities in Mexico. Canada and Mexico are the United States' two largest export markets for electrical equipment with exports of $1.53 billion and $1.51 billion, respectively, in 1992. Canadian and Mexican markets represent approximately 47 percent of total U.S. exports of electric equipment. The report presents an economic analysis of the section.

Not Available

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

$60 Million to Fund Projects Advancing Concentrating Solar Power |  

Broader source: Energy.gov (indexed) [DOE]

$60 Million to Fund Projects Advancing Concentrating Solar Power $60 Million to Fund Projects Advancing Concentrating Solar Power $60 Million to Fund Projects Advancing Concentrating Solar Power November 8, 2011 - 10:34am Addthis A 101 video on concentrating solar panel systems. | Courtesy of the Energy Department Jesse Gary Solar Energy Technologies Program On Tuesday, October 25, the Energy Department's SunShot initiative announced a $60 million funding opportunity (FOA) to advance concentrating solar power in the United States. The SunShot program seeks to support research into technologies with potential to dramatically increase efficiency, lower costs, and deliver more reliable performance than existing commercial and near-commercial concentrating solar power (CSP) systems. The Department expects to fund 20 to 22 projects, and we encourage

182

$60 Million to Fund Projects Advancing Concentrating Solar Power |  

Broader source: Energy.gov (indexed) [DOE]

$60 Million to Fund Projects Advancing Concentrating Solar Power $60 Million to Fund Projects Advancing Concentrating Solar Power $60 Million to Fund Projects Advancing Concentrating Solar Power November 8, 2011 - 10:34am Addthis A 101 video on concentrating solar panel systems. | Courtesy of the Energy Department Jesse Gary Solar Energy Technologies Program On Tuesday, October 25, the Energy Department's SunShot initiative announced a $60 million funding opportunity (FOA) to advance concentrating solar power in the United States. The SunShot program seeks to support research into technologies with potential to dramatically increase efficiency, lower costs, and deliver more reliable performance than existing commercial and near-commercial concentrating solar power (CSP) systems. The Department expects to fund 20 to 22 projects, and we encourage

183

Modeling Generator Power Plant Portfolios and Pollution Taxes in  

E-Print Network [OSTI]

Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain-term solution (e.g.,are long-term solution (e.g., solar power and wind power (solar power and wind power Heavy user of fossil fuels:Heavy user of fossil fuels: Electric power industryElectric power industry

Nagurney, Anna

184

Financing future power generation in Italy  

SciTech Connect (OSTI)

Under Italian law, independent power generation fueled by renewable and so-called ``assimilated'' sources must be given incentives. To implement this provision, a resolution known as ``CIP 6'' and a decree setting forth the procedure to sell such electricity to ENEL were issued. CIP 6 has recently been revoked and new incentives have been announced. In the meantime, CIP 6 continues to apply to various projects which have been approved but not yet constructed.

Esposito, P.

1998-07-01T23:59:59.000Z

185

FY 2009 Annual Progress Report for Advanced Power Electronics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PROGRESS REPORT PROGRESS REPORT FOR ADVANCED POWER ELECTRONICS annual progress report 2009 2009 2009 2009 2009 2009 2009 2009 2009 U.S. Department of Energy FreedomCAR and Vehicle Technologies, EE-2G 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2009 Annual Progress Report for Advanced Power Electronics Prepared by: Susan A. Rogers, Technology Development Manager Submitted to: Energy Efficiency and Renewable Energy Vehicle Technologies Program January 2010 Advanced Power Electronics FY 2009 Progress Report Contents Page Acronyms and Abbreviations ..............................................................................................................v

186

Next Generation Power Electronics National Manufacturing Innovation Institute  

Broader source: Energy.gov [DOE]

The Next Generation Power Electronics National Manufacturing Innovation Institute will focus on wide bandgap (WBG) semiconductors - the same materials used in LED light fixtures and many flat screen TVs. The Institute will use $70 million provided by the U.S. Department of Energy's Advanced Manufacturing Office to support and manage its programs over the next five years. This Institute is one of three new innovation hubs announced by President Obama in his 2013 State of the Union address and part of the National Network for Manufacturing Innovation (NNMI).

187

IEP - Water-Energy Interface: Power Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Plant Water Management Power Plant Water Management The availability of clean and reliable sources of water is a critical issue across the United States and throughout the world. Under the Innovations for Existing Plants Program (IEP), the National Energy Technology Laboratory (NETL) has pursued an integrated water-energy R&D program that addresses water management issues relative to coal-based power generation. This initiative intended to clarify the link between energy and water, deepen the understanding of this link and its implications, and integrate current water-related R&D activities into a national water-energy R&D program. Please click on each research area for additional information. Non-Traditional Sources of Process and Cooling Water Non-Traditional Sources of Process and Cooling Water

188

Cummins Power Generation SECA Phase 1  

SciTech Connect (OSTI)

The following report documents the progress of the Cummins Power Generation (CPG) SECA Phase 1 SOFC development and final testing under the U.S. Department of Energy Solid State Energy Conversion Alliance (SECA) contract DE-FC26-01NT41244. This report overviews and summarizes CPG and partner research development leading to successful demonstration of the SECA Phase 1 objectives and significant progress towards SOFC commercialization. Significant Phase 1 Milestones: (1) Demonstrated: (a) Operation meeting Phase 1 requirements on commercial natural gas. (b) LPG and Natural Gas CPOX fuel reformers. (c) SOFC systems on dry CPOX reformate. (c) Steam reformed Natural Gas operation. (d) Successful start-up and shut-down of SOFC system without inert gas purge. (e) Utility of stack simulators as a tool for developing balance of plant systems. (2) Developed: (a) Low cost balance of plant concepts and compatible systems designs. (b) Identified low cost, high volume components for balance of plant systems. (c) Demonstrated high efficiency SOFC output power conditioning. (d) Demonstrated SOFC control strategies and tuning methods. The Phase 1 performance test was carried out at the Cummins Power Generation facility in Minneapolis, Minnesota starting on October 2, 2006. Performance testing was successfully completed on January 4, 2007 including the necessary steady-state, transient, efficiency, and peak power operation tests.

Charles Vesely

2007-08-17T23:59:59.000Z

189

REQUEST BY UTC POWER, FOR AN ADVANCE WAIVER OF DOMESTIC AND  

Broader source: Energy.gov (indexed) [DOE]

UTC POWER, FOR AN ADVANCE WAIVER OF DOMESTIC AND UTC POWER, FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER A SUBTIER CONTRACT UNDER SUBCONTRACT NO. 4000009920 UNDER DOE PRIME CONTRACT NO. DE-AC05-00OR22725; DOE WAIVER DOCKET W(A)- 2004-035 [ORO-789] Petitioner, UTC Power, has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under a subtler contract under UT-Battelle, LLC Subcontract No 4000009920 with Capstone Turbine Corporation (Capstone) under DOE Prime Contract No. DE-AC05-00OR22725. The scope of this project relates to the installation and testing of a distributed generation, combined heating, cooling, and power system for a building (BCHP). Under this subtler contract with Capstone, UTC Power will demonstrate a system with a

190

Testing of Passive Safety System Performance for Higher Power Advanced Reactors  

SciTech Connect (OSTI)

This report describes the results of NERI research on the testing of advanced passive safety performance for the Westinghouse AP1000 design. The objectives of this research were: (a) to assess the AP1000 passive safety system core cooling performance under high decay power conditions for a spectrum of breaks located at a variety of locations, (b) to compare advanced thermal hydraulic computer code predictions to the APEX high decay power test data and (c) to develop new passive safety system concepts that could be used for Generation IV higher power reactors.

brian G. Woods; Jose Reyes, Jr.; John Woods; John Groome; Richard Wright

2004-12-31T23:59:59.000Z

191

NREL: Advanced Power Electronics - Technology Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Basics Technology Basics Graphic of a small hydrogen-fueled fuel cell vehicle. Check out the interactive graphic of the power electronic components of a hydrogen-fueled fuel cell vehicle. If you drive a car, use a computer, cook with a microwave oven, talk on any type of telephone, listen to a stereo, or use a cordless drill, you use power electronics. Thanks to power electronics, the electricity that runs the things we use every day is processed, filtered, and delivered with maximum efficiency and minimum size and weight. Inside a vehicle's electronic power steering system, power electronics control motors and help move the steering rack. This translates into improved steering response and lower energy consumption. In broad terms, power electronics control the flow of electric power via

192

Projects Selected to Advance Innovative Materials for Fossil Energy Power  

Broader source: Energy.gov (indexed) [DOE]

Selected to Advance Innovative Materials for Fossil Energy Selected to Advance Innovative Materials for Fossil Energy Power Systems Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems September 14, 2010 - 1:00pm Addthis Washington, DC - Four projects that will develop capabilities for designing sophisticated materials that can withstand the harsh environments of advanced fossil energy power systems have been selected by the U.S. Department of Energy. The projects will develop computational capabilities for designing materials with unique thermal, chemical and mechanical properties necessary for withstanding the high temperatures and extreme environments of advanced energy systems. These innovative systems are both fuel efficient and produce lower amounts of emissions, including carbon dioxide for permanent

193

Projects Selected to Advance Innovative Materials for Fossil Energy Power  

Broader source: Energy.gov (indexed) [DOE]

Projects Selected to Advance Innovative Materials for Fossil Energy Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems September 14, 2010 - 1:00pm Addthis Washington, DC - Four projects that will develop capabilities for designing sophisticated materials that can withstand the harsh environments of advanced fossil energy power systems have been selected by the U.S. Department of Energy. The projects will develop computational capabilities for designing materials with unique thermal, chemical and mechanical properties necessary for withstanding the high temperatures and extreme environments of advanced energy systems. These innovative systems are both fuel efficient and produce lower amounts of emissions, including carbon dioxide for permanent

194

Advanced Power Electronics and Electric Motors R&D | Department...  

Energy Savers [EERE]

R&D Advanced Power Electronics and Electric Motors R&D 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle...

195

Audit of Funding for Advanced Radioisotope Power Systems, IG-0413  

Broader source: Energy.gov (indexed) [DOE]

October 17, 1997 October 17, 1997 MEMORANDUM FOR THE SECRETARY FROM: John C. Layton Inspector General SUBJECT: INFORMATION: "Audit of Funding for Advanced Radioisotope Power Systems" BACKGROUND: The Department of Energy's (Department) Advanced Radioisotope Power Systems Program maintains the sole national capability and facilities to produce radioisotope power systems for the National Aeronautics and Space Administration (NASA), the Department of Defense, and other Federal agencies. For the past seven years the program emphasis has been on providing power systems for NASA's Cassini mission to Saturn, which was launched earlier this month. We initiated this audit to determine whether the

196

Vehicle Technologies Office: 2010 Advanced Power Electronics...  

Broader source: Energy.gov (indexed) [DOE]

Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies....

197

Vehicle Technologies Office: 2013 Advanced Power Electronics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that...

198

Kalex Advanced Low Temp Geothemal Power Cycle | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Single-well Low Temperature CO2- based Engineered Geothemal System...

199

NREL: Advanced Power Electronics - Working with Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with Us Working with Us Interaction with industrial, university, and government partners is key to moving advanced vehicle and fuels technologies into the marketplace and the U.S. economy. There are a variety of ways to get involved with NREL's advanced vehicle and fuels research activities: Work collaboratively with NREL through a variety of Technology Partnership Agreements. We can assist you in selecting which agreement is most appropriate for your research project. Gain access to the Center for Transportation Technologies and Systems expertise and specialized research facilities through an Analytical Services Agreement (ASA). In addition, NREL's patented transportation technologies are available for commercialization and NREL's vehicles and fuels research facilities are

200

Development and application of an advanced switched reluctance generator drive  

E-Print Network [OSTI]

of the generator, system designers always strive for increasing power density, or in other words, maximizing the output power for a given size. Despite the extensive research on the motoring operation of the Switched Reluctance Machine, only a few publications have...

Asadi, Peyman

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Simulation of a generator for a wind-power unit  

Science Journals Connector (OSTI)

Analysis of excitation systems of generators for wind-power units is carried out, a software package for generator simulation is presented, and the sequence of the...

I. M. Kirpichnikova; A. S. Mart’yanov; E. V. Solomin

2013-10-01T23:59:59.000Z

202

STATEMENT OF CONSIDERATIONS REQUEST BY SIEMENS WESTINGHOUSE POWER CORP. FOR AN ADVANCE  

Broader source: Energy.gov (indexed) [DOE]

WESTINGHOUSE POWER CORP. FOR AN ADVANCE WESTINGHOUSE POWER CORP. FOR AN ADVANCE WAIIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-03NT41907; W(A)-04-018, CH-1187 The Petitioner, Siemens Westinghouse Power Corporation, (Siemens) was awarded this subcontract under a cooperative agreement with the Energy and Environmental Research Corporation (EERC) for the performance of work entitled, "Water Extraction from Coal-Fired Power Plant Flue Gas." The purpose of the cooperative agreement is to develop a liquid desiccant- based, flue gas dehydration process technology to reduce water consumption in power plants. Specifically, the objective of the program is to generate sufficient sub-scale test data and conceptual commercial power plant evaluation to assess the process feasibility and merits for

203

APRIL 1998 THE LEADING EDGE 461 ncreases in computing power and advances in mathe-  

E-Print Network [OSTI]

optimization theory have combined to produce a new generation of algorithms that can invert geophysical dataAPRIL 1998 THE LEADING EDGE 461 ncreases in computing power and advances in mathe- matical. In this short article, we illustrate both the practicability of inverting geophysical data and the impor- tant

Oldenburg, Douglas W.

204

Geothermal Binary Power Generation System Using Unutilized Energy  

Science Journals Connector (OSTI)

Binary power generating system is based on the Rankine cycle with geothermal fluid as heating source and low boiling ... can generate electric power from low temperature (energy) source. Employing the binary powe...

Hiroaki Shibata; Hiroshi Oyama…

2007-01-01T23:59:59.000Z

205

Datang Jilin Resourceful New Energy Power Generation Co Ltd formerly...  

Open Energy Info (EERE)

Resourceful New Energy Power Generation Co Ltd formerly known as Roaring 40s and Datan Jump to: navigation, search Name: Datang Jilin Resourceful New Energy Power Generation Co Ltd...

206

Efficient coal-based power generation in India: A market opportunity  

SciTech Connect (OSTI)

The planned addition of over 100,000 MW power generation capacity in India in the next 10 years will provide attractive business opportunities for independent power producers, engineering and consulting companies, and equipment manufacturers in the US. The US Agency for International Development (USAID) is providing, through the US Department of Energy (DOE), necessary technical and project development support to the government stakeholders (Indian Ministries of Power and Coal) and private stakeholders (Ahmedabad Electric Co. and Bombay Suburban Electric Supply) for identifying and promoting advanced clean coal technologies. Implementation of advanced technologies improves electric power generation efficiency and economics, and environmental management in India (e.g., reduces emissions of greenhouse gases and particulates, and increases byproduct utilization). This paper presents a brief overview of the coal-based power generation and related technical support activities being provided in India by the DOE's Federal Energy Technology Center and its support contractor, Burns and Roe Services Corporation.

Gollakota, S.; Rao, N.; Staats, G.; Sinha, K.

1998-07-01T23:59:59.000Z

207

Overview of Thermoelectric Power Generation Technologies in Japan  

Broader source: Energy.gov [DOE]

Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

208

Calling All Coders: Help Advance America's Ocean Power Industry |  

Broader source: Energy.gov (indexed) [DOE]

Calling All Coders: Help Advance America's Ocean Power Industry Calling All Coders: Help Advance America's Ocean Power Industry Calling All Coders: Help Advance America's Ocean Power Industry December 10, 2013 - 3:57pm Addthis The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. | Graphic courtesy of TopCoder The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. | Graphic courtesy of TopCoder Alison LaBonte Marine and Hydrokinetic Technology Manager Brooke White Oceanographer, Water Power Program

209

Electromagnetic Generators for Portable Power Applications Matthew Kurt Senesky  

E-Print Network [OSTI]

or turbines paired with electrical generators. Producing such a system to run efficiently on the milli to power tools to electric vehicle drives to wind power generation -- that would benefit from highElectromagnetic Generators for Portable Power Applications by Matthew Kurt Senesky B.A. (Dartmouth

Sanders, Seth

210

Energy Conversion Advanced Heat Transport Loop and Power Cycle  

SciTech Connect (OSTI)

The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various operating conditions as well as trade offs between efficiency and capital cost. Prametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling. Recommendations on the optimal working fluid for each configuration were made. A steady state model comparison was made with a Closed Brayton Cycle (CBC) power conversion system developed at Sandia National Laboratory (SNL). A preliminary model of the CBC was developed in HYSYS for comparison. Temperature and pressure ratio curves for the Capstone turbine and compressor developed at SNL were implemented into the HYSYS model. A comparison between the HYSYS model and SNL loop demonstrated power output predicted by HYSYS was much larger than that in the experiment. This was due to a lack of a model for the electrical alternator which was used to measure the power from the SNL loop. Further comparisons of the HYSYS model and the CBC data are recommended. Engineering analyses were performed for several configurations of the intermediate heat transport loop that transfers heat from the nuclear reactor to the hydrogen production plant. The analyses evaluated parallel and concentric piping arrangements and two different working fluids, including helium and a liquid salt. The thermal-hydraulic analyses determined the size and insulation requirements for the hot and cold leg pipes in the different configurations. Economic analyses were performed to estimate the cost of the va

Oh, C. H.

2006-08-01T23:59:59.000Z

211

Funding Opportunity Announcement: Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities  

Broader source: Energy.gov [DOE]

The SunShot Initiative's Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities (CSP: APOLLO) funding opportunity announcement (FOA) seeks transformative projects targeting all components of a concentrating solar power (CSP) plant. Projects should seek to meet the targets set out in the SunShot Vision Study , enabling CSP to become fully cost-competitive with traditional forms of electric power generation. Projects can address challenges in any technical system of the plant, including solar collectors, receivers and heat transfer fluids, thermal energy storage, power cycles, as well as operations and maintenance.

212

SunShot Initiative: Baseload Concentrating Solar Power Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrating Solar Concentrating Solar Power Generation to someone by E-mail Share SunShot Initiative: Baseload Concentrating Solar Power Generation on Facebook Tweet about SunShot Initiative: Baseload Concentrating Solar Power Generation on Twitter Bookmark SunShot Initiative: Baseload Concentrating Solar Power Generation on Google Bookmark SunShot Initiative: Baseload Concentrating Solar Power Generation on Delicious Rank SunShot Initiative: Baseload Concentrating Solar Power Generation on Digg Find More places to share SunShot Initiative: Baseload Concentrating Solar Power Generation on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative

213

Nuclear Power Generating Facilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Radiation Control Program The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in Maine. The Legislature

214

Georgia Power - Small and Medium Scale Advanced Solar Initiative (GPASI)  

Broader source: Energy.gov (indexed) [DOE]

Georgia Power - Small and Medium Scale Advanced Solar Initiative Georgia Power - Small and Medium Scale Advanced Solar Initiative (GPASI) (Georgia) Georgia Power - Small and Medium Scale Advanced Solar Initiative (GPASI) (Georgia) < Back Eligibility Agricultural Commercial General Public/Consumer Installer/Contractor Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info Start Date 03/01/2013 State Georgia Program Type Other Incentive Provider GPASI Project Manager '''''Note: The application process for the small and medium scale solar programs began on March 1, 2013 and will continue through March 11, 2013. If completed applications exceed program capacity limit of 45 megawatts (MW), a lottery will be conducted, with Georgia Public Service Commission

215

Rayapati Power Generation Pvt Ltd RPGPL | Open Energy Information  

Open Energy Info (EERE)

Rayapati Power Generation Pvt Ltd RPGPL Rayapati Power Generation Pvt Ltd RPGPL Jump to: navigation, search Name Rayapati Power Generation Pvt. Ltd. (RPGPL) Place Hyderabad, Andhra Pradesh, India Zip 500 082 Sector Biomass Product Biomass plant developer and operater. References Rayapati Power Generation Pvt. Ltd. (RPGPL)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Rayapati Power Generation Pvt. Ltd. (RPGPL) is a company located in Hyderabad, Andhra Pradesh, India . References ↑ "[ Rayapati Power Generation Pvt. Ltd. (RPGPL)]" Retrieved from "http://en.openei.org/w/index.php?title=Rayapati_Power_Generation_Pvt_Ltd_RPGPL&oldid=350208" Categories: Clean Energy Organizations

216

A Method of Decreasing Power Output Fluctuation of Solar Chimney Power Generating Systems  

Science Journals Connector (OSTI)

Severe fluctuation of power output is a common problem in the various generating systems of renewable energies. The hybrid energy storage system with water and soil is adopted to decrease the fluctuation of solar chimney power generating systems in the ... Keywords: Solar chimney power generating system, power output fluctuation, hybrid energy storage layer, collector, chimney

Meng Fanlong; Ming Tingzhen; Pan Yuan

2011-01-01T23:59:59.000Z

217

Software Framework for Advanced Power Plant Simulations  

SciTech Connect (OSTI)

This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. These include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.

John Widmann; Sorin Munteanu; Aseem Jain; Pankaj Gupta; Mark Moales; Erik Ferguson; Lewis Collins; David Sloan; Woodrow Fiveland; Yi-dong Lang; Larry Biegler; Michael Locke; Simon Lingard; Jay Yun

2010-08-01T23:59:59.000Z

218

Power generation from nuclear reactors in aerospace applications  

SciTech Connect (OSTI)

Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

English, R.E.

1982-01-01T23:59:59.000Z

219

Advanced Techniques for Power System Identification from Measured Data  

SciTech Connect (OSTI)

Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacific Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block processing techniques. Bootstrap techniques have been developed to estimate confidence intervals for the electromechanical modes from field measured data. Results were obtained using injected signal data provided by BPA. A new probing signal was designed that puts more strength into the signal for a given maximum peak to peak swing. Further simulations were conducted on a model based on measured data and with the modifications of the 19-machine simulation model. Montana Tech researchers participated in two primary activities: (1) continued development of the 19-machine simulation test system to include a DC line; and (2) extensive simulation analysis of the various system identification algorithms and bootstrap techniques using the 19 machine model. Researchers at the University of Alaska-Fairbanks focused on the development and testing of adaptive filter algorithms for mode estimation using data generated from simulation models and on data provided in collaboration with BPA and PNNL. There efforts consist of pre-processing field data, testing and refining adaptive filter techniques (specifically the Least Mean Squares (LMS), the Adaptive Step-size LMS (ASLMS), and Error Tracking (ET) algorithms). They also improved convergence of the adaptive algorithms by using an initial estimate from block processing AR method to initialize the weight vector for LMS. Extensive testing was performed on simulated data from the 19 machine model. This project was also extensively involved in the WECC (Western Electricity Coordinating Council) system wide tests carried out in 2005 and 2006. These tests involved injecting known probing signals into the western power grid. One of the primary goals of these tests was the reliable estimation of electromechanical mode properties from measured PMU data. Applied to the system were three types of probing inputs: (1) activation of the Chief Joseph Dynamic Brake, (2) mid-level probing at the Pacific DC Intertie (PDCI), and (3) low-level probing on the PDCI. The Chief Joseph Dynamic Brake is a 1400 MW disturbance to the system and is injected for a ha

Pierre, John W.; Wies, Richard; Trudnowski, Daniel

2008-11-25T23:59:59.000Z

220

Generation of electron beams from a laser-based advanced accelerator at Shanghai Jiao Tong University  

E-Print Network [OSTI]

At Shanghai Jiao Tong University, we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wakefield acceleration (LWFA) scheme, multi-hundred MeV electron beams having a reasonable quality are generated using 20-40 TW, 30 femtosecond laser pulses interacting independently with helium, neon, nitrogen and argon gas jet targets. The laser-plasma interaction conditions are optimized for stabilizing the electron beam generation from each type of gas. The electron beam pointing angle stability and divergence angle as well as the energy spectra from each gas jet are measured and compared.

Elsied, Ahmed M M; Li, Song; Mirzaie, Mohammad; Sokollik, Thomas; Zhang, Jie

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Apparatus for advancing a wellbore using high power laser energy  

DOE Patents [OSTI]

Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

2014-09-02T23:59:59.000Z

222

Advanced radioisotope power sources for future deep space missions  

Science Journals Connector (OSTI)

The use of Radioisotope Thermoelectric Generators (RTGs) has been well established for deep space mission applications. The success of the Voyager Galileo Cassini and numerous other missions proved the efficacy of these technologies in deep space. Future deep space missions may also require Advanced Radioisotope Power System (ARPS) technologies to accomplish their goals. In the Exploration of the Solar System (ESS) theme several missions are in the planning stages or under study that would be enabled by ARPS technology. Two ESS missions in the planning stage may employ ARPS. Currently planned for launch in 2006 the Europa Orbiter mission (EO) will perform a detailed orbital exploration of Jupiter’s moon Europa to determine the presence of liquid water under the icy surface. An ARPS based upon Stirling engine technology is currently baselined for this mission. The Pluto Kuiper Express mission (PKE) planned for launch in 2004 to study Pluto its moon Charon and the Kuiper belt is baselined to use a new RTG (F-8) assembled from parts remaining from the Cassini spare RTG. However if this unit is unavailable the Cassini spare RTG (F-5) or ARPS technologies would be required. Future missions under study may also require ARPS technologies. Mission studies are now underway for a detailed exploration program for Europa with multiple mission concepts for landers and future surface and subsurface explorers. For the orbital phase of these missions ARPS technologies may provide the necessary power for the spacecraft and orbital telecommunications relay capability for landed assets. For extended surface and subsurface operations ARPS may provide the power for lander operations and for drilling. Saturn Ring Observer (SRO) will perform a detailed study of Saturn’s rings and ring dynamics. The Neptune Orbiter (NO) mission will perform a detailed multi disciplinary study of Neptune. Titan Explorer (TE) will perform in-situ exploration of Saturn’s moon Titan with both orbital operations and landed operations enabled by ARPS technologies. All of these missions would be enabled by ARPS technology. This paper presents the current status of ongoing studies of future ESS mission concepts and the design assumptions and capabilities required from ARPS technologies. Where specific capabilities have been assumed in the studies the results are presented along with a discussion of the implementation alternatives. No decision on power sources would be made until after completion of an Environmental Impact Statement for each project.

Erik N. Nilsen

2001-01-01T23:59:59.000Z

223

The Optimal Power Tracking Control Strategy of Grid-Connected Excited Synchronous Wind Power Generator.  

E-Print Network [OSTI]

??In this thesis, the wind power system is a coaxial coupling structure between servo motor and excited synchronous wind power generator. By using the excited… (more)

Cheng, Wen-kai

2014-01-01T23:59:59.000Z

224

High efficiency electric power generation: The environmental role  

Science Journals Connector (OSTI)

Electric power generation system development is reviewed with special attention to plant efficiency. It is generally understood that efficiency improvement that is consistent with high plant reliability and low cost of electricity is economically beneficial, but its effect upon reduction of all plant emissions without installation of additional environmental equipment, is less well appreciated. As CO2 emission control is gaining increasing acceptance, efficiency improvement, as the only practical tool capable of reducing CO2 emission from fossil fuel plant in the short term, has become a key concept for the choice of technology for new plant and upgrades of existing plant. Efficiency is also important for longer-term solutions of reducing CO2 emission by carbon capture and sequestration (CCS); it is essential for the underlying plants to be highly efficient so as to mitigate the energy penalty of CCS technology application. Power generating options, including coal-fired Rankine cycle steam plants with advanced steam parameters, natural gas-fired gas turbine-steam, and coal gasification combined cycle plants are discussed and compared for their efficiency, cost and operational availability. Special attention is paid to the timeline of the various technologies for their development, demonstration and commercial availability for deployment.

János M. Beér

2007-01-01T23:59:59.000Z

225

Using Backup Generators: Alternative Backup Power Options | Department of  

Broader source: Energy.gov (indexed) [DOE]

Alternative Backup Power Options Alternative Backup Power Options Using Backup Generators: Alternative Backup Power Options Using Backup Generators: Alternative Backup Power Options In addition to electric generators powered by fuel, homeowners and business owners may consider alternative backup power options. Battery-stored backup power-Allows you to continue operating lights, refrigerators and other appliances, fans, and communications during a power outage. These systems can connect to renewable sources of energy, like solar panels and small-scale wind generators, to help the batteries stay charged during an emergency. You can also recharge many of these battery systems with diesel generators. The length of time you will be able to draw electricity from your batteries will depend on the size of your

226

Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) |  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) < Back Eligibility Commercial Construction Industrial Utility Program Info State Louisiana Program Type Fees Generating Facility Rate-Making Provider Louisiana Public Service Commission The Incentive Cost Recovery Rule for Nuclear Power Generation establishes guidelines for any utility seeking to develop a nuclear power plant in Louisiana. The rule clarifies, as well as supplements the Louisiana Public Service Commission's 1983 General Order for the acquisition of nuclear generation resources. The goal of the rule is to provide a transparent process that identifies the responsibilities parties in the regulatory

227

Advanced NOx Emissions Control: Control Technology - Second Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Second Generation Advanced Reburning Second Generation Advanced Reburning General Electric - Energy and Environmental Research Corporation (GE-EER) is carrying out a two Phase research program to develop novel Advanced Reburning (AR) concepts for high efficiency and low cost NOx control from coal-fired utility boilers. AR technologies are based on combination of basic reburning and N-agent/promoter injections. Phase I of the project was successfully completed and EER was selected to continue to develop AR technology during Phase II. Phase I demonstrated that AR technologies are able to provide effective NOx control for coal-fired combustors. Three technologies were originally envisioned for development: AR-Lean, AR-Rich, and Multiple Injection AR (MIAR). Along with these, three additional technologies were identified during the project: reburning plus promoted SNCR; AR-Lean plus promoted SNCR; and AR-Rich plus promoted SNCR. The promoters are sodium salts, in particular sodium carbonate. These AR technologies have different optimum reburn heat input levels and furnace temperature requirements. For full scale application, an optimum technology can be selected on a boiler-specific basis depending on furnace temperature profile and regions of injector access.

228

Coal pulverizing systems for power generation  

SciTech Connect (OSTI)

The pulverized coal-fired boiler for power generation is a mature technology which requires the production of fine coal for combustion. The product material particle size is smaller than 250 microns and about 70 percent smaller than 75 microns. It is no coincidence that most of the new coal technologies for combustion or gasification require a product with a similar particle size distribution for complete reaction. This particle size distribution provides coal particles which can react with oxygen in the air at local velocities and resident times in the boiler furnace to result in almost complete combustion or gasification with 1 or 2 percent carbon loss in the resulting ash. Size reduction, while being one of the most common unit operations on material is also one of the least understood, requiring a high energy input. When pulverizing coal of the particle size required there is an added complication that the product may spontaneously ignite, particularly if the process passes through a stage when an explosive or at least highly combustible mixture of fine coal and air is present. The pulverized coal system covers that portion of the power station from coal bunkers to feeders, pulverizers and delivery system to the boiler burner or gasifier injection point. The transport medium has traditionally been air and in some cases inert gases. The system has usually been lean phase with air to coal ratios in excess of 1:4:1. More recently, a few systems have been dense phase with air to coal ratios of 1:30 up to 1:100. This has the distinct advantage of reduced transport pipe diameter. The key element in the system, the coal pulverizer, will be considered first.

Sligar, J.

1993-12-31T23:59:59.000Z

229

Potential wind power generation in South Egypt  

Science Journals Connector (OSTI)

Egypt is one of the developing countries. The production of electricity in Egypt is basically on petroleum, natural gas, hydro-power and wind energy. The objective of this work to prove the availability of sufficient wind potential in the wide area of deep south Egypt for the operation of wind turbines there. Nevertheless, it gives in general an approximate profile which is useful to the wind parks design for this area. The data used in the calculation are published and analyzed for the first time. The diagrams of the measured wind data for three meteorological stations over a period of two years (wind speed, frequency, direction), wind shear coefficient, the mean monthly and annual wind speed profile for every location are presented. Monthly Weibull parameters, standard deviation and coefficient of variation have been statistically discussed. A comparison of the rose diagrams shows that the wind speed is more persistent and blow over this region of Egypt in two main sectors N and NNW with long duration of frequencies from 67% to 87% over the year with an average wind speed in the range 6.8–7.9 m/s at the three stations. Evaluation of monthly wind energy density at 10 m height by two different methods was carried out. And the final diagram for every site shows no significant difference between them. The annual natural wind energies at 70 m A.G.L. lie between 333 and 377 W/m2 for Dakhla South and Kharga stations, respectively, which is similar to the inland wind potential of Vindeby (Denmark) and some European countries. These results indicate that Kharga and Dakhla South locations are new explored sites for future wind power generation projects.

Ahmed Shata Ahmed

2012-01-01T23:59:59.000Z

230

A Virtual Engineering Framework for Simulating Advanced Power System  

SciTech Connect (OSTI)

In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering. Furthermore, with little effort the modeling capabilities described in this report can be extended to support other DOE programs, such as ultra super critical boiler development, oxy-combustion boiler development or modifications to existing plants to include CO2 capture and sequestration.

Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

2008-06-18T23:59:59.000Z

231

E-Print Network 3.0 - advanced power train Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

train Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced power train Page: << < 1 2 3 4 5 > >> 1 training.uark.edu Microsoft PowerPoint 2010...

232

SunShot Initiative: Advanced Nitrate Salt Central Receiver Power Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Nitrate Salt Central Receiver Power Plant Advanced Nitrate Salt Central Receiver Power Plant Abengoa logo Photo of two lit towers surrounded by much smaller blue flat plates that are mounted on the ground. Commercial central receiver plant designs Abengoa, under the Baseload CSP FOA, will demonstrate a 100-megawatt electrical (MWe) central receiver plant using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator. Approach The plan is to operate the plant at full load for 6,400 hours each year using only solar energy. Abengoa is working to create a team of suppliers capable of deploying a commercially ready nitrate salt central receiver technology that can be competitive in the current power marketplace. Innovation Abengoa is developing a new molten-salt power tower technology with a surround heliostat field. Key components include:

233

BORON NITRIDE CAPACITORS FOR ADVANCED POWER ELECTRONIC DEVICES  

SciTech Connect (OSTI)

This project fabricates long-life boron nitride/boron oxynitride thin film -based capacitors for advanced SiC power electronics with a broad operating temperature range using a physical vapor deposition (PVD) technique. The use of vapor deposition provides for precise control and quality material formation.

N. Badi; D. Starikov; C. Boney; A. Bensaoula; D. Johnstone

2010-11-01T23:59:59.000Z

234

Wide Bandgap Semiconductors for Power Electronics, Optoelectronics, and Advanced Communications  

E-Print Network [OSTI]

Wide Bandgap Semiconductors for Power Electronics, Optoelectronics, and Advanced Communications with material composition over a range of 0.7 to 5 eV. This factor allows them to be used for optoelectronic. Improvement in growth quality and doping of GaN is needed to improve the performance of optoelectronics

Li, Mo

235

Generator powered electrically heated diesel particulate filter  

DOE Patents [OSTI]

A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

Gonze, Eugene V; Paratore, Jr., Michael J

2014-03-18T23:59:59.000Z

236

Steam Oxidation of Fossil Power Plant Materials: Collaborative Research to Enable Advanced Steam Power Cycles  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Research into improved materials systems and associated manufacturing and reliability issues is a major part of initiatives to produce cleaner and cheaper energy systems in the UK and the USA. Under the auspices of a Memorandum of Understanding on Energy R&D, a work programme concerned with steam oxidation has been conducted. The focus was on the generation of definitive information regarding the oxidation behaviour in steam of current and developmental ferritic steels, austenitic steels, and nickelbased alloys required to enable advanced steam power cycles. The results were intended to provide a basis for quantifying the rate of metal loss expected under advanced steam cycle conditions, as well as understanding of the evolution of oxide scale morphologies with time and temperature to identify features that could influence scale exfoliation characteristics. This understanding and acquired data were used to develop and validate models of oxide growth and loss by exfoliation. This paper provides an overview of the activity and highlights a selection of the results coming from the programme.

A. T. Fry; I. G Wright; N. J Simms; B. McGhee; G. R. Holcomb

2013-11-19T23:59:59.000Z

237

Loranger Power Generation Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Loranger Power Generation Wind Farm Loranger Power Generation Wind Farm Jump to: navigation, search Name Loranger Power Generation Wind Farm Facility Loranger Power Generation Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Loranger Power Generation Developer Loranger Power Generation Location Berlin NH Coordinates 44.501183°, -71.231588° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.501183,"lon":-71.231588,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

Gasification CFD Modeling for Advanced Power Plant Simulations  

SciTech Connect (OSTI)

In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

Zitney, S.E.; Guenther, C.P.

2005-09-01T23:59:59.000Z

239

Assessment of postcombustion carbon capture technologies for power generation  

Science Journals Connector (OSTI)

A significant proportion of power generation stems from coal-combustion processes and accordingly represents one of the largest point sources of CO2 emissions worldwide. Coal power plants are major assets with la...

Mikel C. Duke; Bradley Ladewig; Simon Smart…

2010-06-01T23:59:59.000Z

240

Future Trends in Nuclear Power Generation [and Discussion  

Science Journals Connector (OSTI)

...Future Trends in Nuclear Power Generation [and Discussion...the Calder Hall reactors were ordered...building and operating nuclear power stations...situations, a high nuclear share of new capacity...1980s. The fast reactor, prototypes of...

1974-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

OPTIMAL DISTRIBUTED POWER GENERATION UNDER NETWORK LOAD CONSTRAINTS,  

E-Print Network [OSTI]

-producers. Decentralized Power Generation (DPG) refers to an electric power source such as solar, wind or combined heat (the approach used in the traditional electric power paradigm), DPG systems employ numerous, but small¨EL BLOEMHOF, JOOST BOSMAN§, DAAN CROMMELIN¶, JASON FRANK , AND GUANGYUAN YANG Abstract. In electrical power

Frank, Jason

242

Ames Lab 101: Next Generation Power Lines  

SciTech Connect (OSTI)

Ames Laboratory scientist Alan Russell discusses the need to develop new power lines that are stronger and more conductive as a way to address the problem of the nation's aging and inadequate power grid.

Russell, Alan

2010-01-01T23:59:59.000Z

243

Intelligent Control of Energy-Saving Power Generation System  

Science Journals Connector (OSTI)

Highway power generation system which is environmentally friendly and sustainable provides an innovative method of energy conversion. It is also as a kind ... solar electric generation system integration. Develop...

Zhiyuan Zhang; Guoqing Zhang; Zhizhong Guo

2013-01-01T23:59:59.000Z

244

Combined desalination and power generation using solar energy.  

E-Print Network [OSTI]

??Integrated desalination and power generation using solar energy is a prospective way to help solve the twin challenges of energy and fresh water shortage, while… (more)

Zhao, Y

2009-01-01T23:59:59.000Z

245

Water generator replaces bottled water in nuclear power plant  

Science Journals Connector (OSTI)

WaterPure International Incorporated of Doylestown, Pennsylvania, USA, has announced that it has placed its atmospheric water generator (AWG) inside a selected nuclear power plant.

2007-01-01T23:59:59.000Z

246

Kraftwerk Union KWU Siemens Power Generation | Open Energy Information  

Open Energy Info (EERE)

Services Product: KWU is a provider of components and services to the commercial nuclear utility industry. References: Kraftwerk Union (KWU) - Siemens Power Generation.1...

247

Proactive Strategies for Designing Thermoelectric Materials for Power Generation  

Broader source: Energy.gov [DOE]

New p-type and n-type multiple-rattler skutterudite thermoelectric materials design, synthesis, fabrication, and characterization for power generation using vehicle exhaust waste heat.

248

World Net Nuclear Electric Power Generation, 1980-2007 - Datasets...  

Open Energy Info (EERE)

U.S. Energy Information ... World Net Nuclear Electric ... Dataset Activity Stream World Net Nuclear Electric Power Generation, 1980-2007 International data showing world net...

249

Novel NDE techniques in the power generation industry.  

E-Print Network [OSTI]

??The thesis presented here comprises the work undertaken for research into novel NDE techniques in the power generation industry. This has been undertaken as part… (more)

Ward, Christopher M. S.

2010-01-01T23:59:59.000Z

250

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Environmental Management (EM)

Office 2013 Peer Review Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells PI - Bernie Karl Chena Hot Springs Resort Track 1 Project Officer:...

251

Analysis of solar power generation on California turkey ranches.  

E-Print Network [OSTI]

??The objective of this thesis is to conduct a net present value analysis of installing a solar power generation system on company owned turkey grow… (more)

Palermo, Rick

2009-01-01T23:59:59.000Z

252

A Flashing Binary Combined Cycle For Geothermal Power Generation | Open  

Open Energy Info (EERE)

Flashing Binary Combined Cycle For Geothermal Power Generation Flashing Binary Combined Cycle For Geothermal Power Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Flashing Binary Combined Cycle For Geothermal Power Generation Details Activities (0) Areas (0) Regions (0) Abstract: The performance of a flashing binary combined cycle for geothermal power generation is analysed. It is proposed to utilize hot residual brine from the separator in flashing-type plants to run a binary cycle, thereby producing incremental power. Parametric variations were carried out to determine the optimum performance of the combined cycle. Comparative evaluation with the simple flashing plant was made to assess its thermodynamic potential and economic viability. Results of the analyses indicate that the combined cycle can generate 13-28% more power than the

253

Next Generation Power Electronics National Manufacturing Innovation...  

Energy Savers [EERE]

components of modern data center systems. WBG chips will eliminate up to 90% of the energy losses in today's rectifiers that perform these conversions. WBG-based power...

254

Optimal Power Sharing for Microgrid with Multiple Distributed Generators  

Science Journals Connector (OSTI)

Abstract This paper describes the active power sharing of multiple distributed generators (DGs) in a microgrid. The operating modes of a microgrid are 1) a grid-connected mode and 2) an autonomous mode. During islanded operation, one DG unit should share its output power with other DG units in exact accordance with the load. Unit output power control (UPC) is introduced to control the active power of DGs. The viability of the proposed power control mode is simulated by MATLAB/SIMULINK.

V. Logeshwari; N. Chitra; A. Senthil Kumar; Josiah Munda

2013-01-01T23:59:59.000Z

255

Axeon Power Limited formerly Advanced Batteries Ltd ABL | Open Energy  

Open Energy Info (EERE)

formerly Advanced Batteries Ltd ABL formerly Advanced Batteries Ltd ABL Jump to: navigation, search Name Axeon Power Limited (formerly Advanced Batteries Ltd (ABL)) Place Dundee, United Kingdom Zip DD2 4UH Product Lithium ion battery pack developer. Coordinates 45.27939°, -123.009669° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.27939,"lon":-123.009669,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

Power Electronic Control for Wind Generation Systems  

Science Journals Connector (OSTI)

...? mathematical models for wind turbines such as wind turbine (WT) with doubly fed induction generator (DFIG) and WT with direct-drive permanent magnet...

Xiao-Ping Zhang; Christian Rehtanz…

2012-01-01T23:59:59.000Z

257

Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)  

SciTech Connect (OSTI)

This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

2014-06-01T23:59:59.000Z

258

DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS  

SciTech Connect (OSTI)

The development work during this quarter was focused in the assembly of the downhole power generator hardware and its electronics module. The quarter was also spent in the development of the surface system electronics and software to extract the acoustic data transmitted from downhole to the surface from the noise generated by hydrocarbon flow in wells and to amplify very small acoustic signals to increase the distance between the downhole tool and the surface receiver. The tasks accomplished during this report period were: (1) Assembly of the downhole power generator mandrel for generation of electrical power due to flow in the wellbore. (2) Test the piezoelectric wafers to assure that they are performing properly prior to integrating them to the mechanical power generator mandrel. (3) Coat the power generator wafers to prevent water from shorting the power generator wafers. (4) Test of the power generator using a water tower and an electric pump to create a water flow loop. (5) Test the power harvesting electronics module. (6) Upgrade the signal condition and amplification from downhole into the surface system. (7) Upgrade the surface processing system capability to process data faster. (8) Create a new filtering technique to extract the signal from noise after the data from downhole is received at the surface system.

Paul Tubel

2004-02-01T23:59:59.000Z

259

Power and Voltage Smooth Control of Doubly Fed Induction Generator  

Science Journals Connector (OSTI)

Doubly-fed induction generator (DFIG) is the leading in wind power technology currently. In this paper, decoupling control of DFIG is studied and a new energy storage device is used in the smooth control of DFIG system's power and voltage. This new method ... Keywords: Doubly fed induction generator, Energy storage device, Decoupling control

An-Ren Ma; Cai-Xia Wang; Zhi-Wen Zhou; Tao Wu

2012-07-01T23:59:59.000Z

260

ENERGY PAYBACK OPTIMIZATION OF THERMOELECTRIC POWER GENERATOR SYSTEMS  

E-Print Network [OSTI]

and the thermoelectric module should be performed. Active cooling and the design of the heat sink are customized to findENERGY PAYBACK OPTIMIZATION OF THERMOELECTRIC POWER GENERATOR SYSTEMS Kazuaki Yazawa Dept model for optimizing thermoelectric power generation system is developed and utilized for parametric

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advanced numerical methods in mesh generation and mesh adaptation  

SciTech Connect (OSTI)

Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge-based error estimates. We conclude that the quasi-optimal mesh must be quasi-uniform in this metric. All numerical experiments are based on the publicly available Ani3D package, the collection of advanced numerical instruments.

Lipnikov, Konstantine [Los Alamos National Laboratory; Danilov, A [MOSCOW, RUSSIA; Vassilevski, Y [MOSCOW, RUSSIA; Agonzal, A [UNIV OF LYON

2010-01-01T23:59:59.000Z

262

Siemens Westinghouse Power Generation SWPG | Open Energy Information  

Open Energy Info (EERE)

Siemens Westinghouse Power Generation SWPG Siemens Westinghouse Power Generation SWPG Jump to: navigation, search Name Siemens Westinghouse Power Generation (SWPG) Place Pittsburgh, Pennsylvania Zip PA 15235-5 Product Siemens Westinghouse Power Generation is the fuel cell subsidiary of Siemens Power Generation. It develops and manufactures stationary solide oxide fuel cells. Coordinates 40.438335°, -79.997459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.438335,"lon":-79.997459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

Application Filing Requirements for Wind-Powered Electric Generation  

Broader source: Energy.gov (indexed) [DOE]

Application Filing Requirements for Wind-Powered Electric Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio) Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio) < Back Eligibility Commercial Developer Utility Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Savings Category Wind Buying & Making Electricity Program Info State Ohio Program Type Siting and Permitting Provider Ohio Power Siting Board Chapter 4906-17 of the Ohio Administrative Code states the Application Filing Requirements for wind-powered electric generating facilities in Ohio. The information requested in this rule shall be used to assess the environmental effects of the proposed facility. An applicant for a certificate to site a wind-powered electric generation

264

INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION  

SciTech Connect (OSTI)

An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

Peet M. Soot; Dale R. Jesse; Michael E. Smith

2005-08-01T23:59:59.000Z

265

Impact of Power Generation Uncertainty on Power System Static Performance  

E-Print Network [OSTI]

--The rapid growth in renewable energy resources such as wind and solar generation introduces significant and solar generation, into the existing grid. Since these resources are highly intermittent, variable state variables, i.e., bus voltage magnitudes and angles, remain within acceptable ranges while

Liberzon, Daniel

266

Advanced Distributed Generation LLC ADG | Open Energy Information  

Open Energy Info (EERE)

LLC ADG LLC ADG Jump to: navigation, search Name Advanced Distributed Generation LLC (ADG) Place Toledo, Ohio Zip OH 43607 Product ADG is a general contracting company specializing in the design and installation of photovoltaic (PV) systems. Coordinates 46.440613°, -122.847838° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.440613,"lon":-122.847838,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

Local control of reactive power by distributed photovoltaic generators  

SciTech Connect (OSTI)

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Sulc, Petr [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

268

National Lab Helping to Train Operators for Next Generation of Power Plants  

Broader source: Energy.gov (indexed) [DOE]

National Lab Helping to Train Operators for Next Generation of National Lab Helping to Train Operators for Next Generation of Power Plants National Lab Helping to Train Operators for Next Generation of Power Plants January 25, 2013 - 11:10am Addthis AVESTAR provides high-quality, hands-on, simulator-based workforce training delivered by an experienced team of power industry training professionals for West Virginia students. | Photo courtesy of the Office of Fossil Energy. AVESTAR provides high-quality, hands-on, simulator-based workforce training delivered by an experienced team of power industry training professionals for West Virginia students. | Photo courtesy of the Office of Fossil Energy. Gayland Barksdale Technical Writer, Office of Fossil Energy What Does AVESTAR Provide? Advanced dynamic simulation, control and virtual plant technologies

269

National Lab Helping to Train Operators for Next Generation of Power Plants  

Broader source: Energy.gov (indexed) [DOE]

Lab Helping to Train Operators for Next Generation of Lab Helping to Train Operators for Next Generation of Power Plants National Lab Helping to Train Operators for Next Generation of Power Plants January 25, 2013 - 11:10am Addthis AVESTAR provides high-quality, hands-on, simulator-based workforce training delivered by an experienced team of power industry training professionals for West Virginia students. | Photo courtesy of the Office of Fossil Energy. AVESTAR provides high-quality, hands-on, simulator-based workforce training delivered by an experienced team of power industry training professionals for West Virginia students. | Photo courtesy of the Office of Fossil Energy. Gayland Barksdale Technical Writer, Office of Fossil Energy What Does AVESTAR Provide? Advanced dynamic simulation, control and virtual plant technologies

270

REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF CBS CORPORATION, FOR AN  

Broader source: Energy.gov (indexed) [DOE]

GRANT NO. GRANT NO. DE-FG21-94MC32071; DOE WAIVER DOCKET W(A)-98-005 [ORO-736] Westinghouse Power Generation, a former division of CBS Corporation (hereinafter referred to as "the Grantee"), has requested an advance waiver of worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Grant No. DE-FG21-94MC32071. The goal of the grant was to perform system analysis, selection and optimization to develop the next generation of gas-fired advanced turbine systems (ATS's) for green field and repowered electricity generation applications. The goal of the ATS program is to develop and commercialize ultra-high efficiency, environmentally superior, and cost-competitive gas turbine systems for base- load applications in the utility, independent power producer, and industrial markets. This work

271

PLATO Power--a robust, low environmental impact power generation system for the Antarctic plateau  

E-Print Network [OSTI]

PLATO Power--a robust, low environmental impact power generation system for the Antarctic plateau the power generation and management system of PLATO. Two redundant arrays of solar panels and a multiply astronomical facilities on the Antarctic plateau, offering minimum environmental impact and requiring minimal

Ashley, Michael C. B.

272

Advanced NOx Emissions Control: Control Technology - Second Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In Situ Device for Real-Time Catalyst Deactivation Measurements in Full-Scale SCR Systems In Situ Device for Real-Time Catalyst Deactivation Measurements in Full-Scale SCR Systems To support trends in the electric generating industry of moving from seasonal to year-round operation of Selective Catalytic Reduction (SCR) for control of NOx and mercury, as well as extending the time between generating unit outages, Fossil Energy Research Corporation (FERCo) is developing technology to determine SCR catalyst activity and remaining life without requiring an outage to obtain and analyze catalyst samples. FERCo intends to use SCR catalyst performance results measured with their in situ device at Alabama PowerÂ’s Plant Gorgas during the 2005 and 2006 ozone seasons, along with EPRIÂ’s CatReactTM catalyst management software, to demonstrate the value of real-time activity measurements with respect to the optimization of catalyst replacement strategy. Southern Company and the Electric Power Research Institute are co-funding the project.

273

Wind Power Generation’s Impact on Peak Time Demand and on Future Power Mix  

Science Journals Connector (OSTI)

Although wind power is regarded as one of the ways to actively respond to climate change, the stability of the whole power system could be a serious problem in the future due to wind power’s uncertainties. These ...

Jinho Lee; Suduk Kim

2010-01-01T23:59:59.000Z

274

Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators |  

Broader source: Energy.gov (indexed) [DOE]

Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators January 29, 2008 - 7:06pm Addthis Mars Science Laboratory, aka Curiosity, is part of NASA's Mars Exploration Program, a long-term program of robotic exploration of the Red Planet. It's powered by the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Photo courtesy of NASA/JPL-Caltech. Mars Science Laboratory, aka Curiosity, is part of NASA's Mars Exploration Program, a long-term program of robotic exploration of the Red Planet. It's powered by the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Photo courtesy of NASA/JPL-Caltech. What are the key facts? Over the last four decades, the United States has launched 26

275

Combined fuel and air staged power generation system  

SciTech Connect (OSTI)

A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

2014-05-27T23:59:59.000Z

276

MHK Technologies/Direct Drive Power Generation Buoy | Open Energy  

Open Energy Info (EERE)

Power Generation Buoy Power Generation Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Direct Drive Power Generation Buoy.jpg Technology Profile Primary Organization Columbia Power Technologies Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Direct drive point absorber In 2005 Oregon State University entered into an exclusive license agreement with Columbia Power Technologies to jointly develop a direct drive wave energy conversion device Designed to be anchored 2 5 miles off the Oregon coast in 130 feet of water it uses the rise and fall of ocean waves to generate electricity Mooring Configuration Anchored

277

Protective, Modular Wave Power Generation System  

SciTech Connect (OSTI)

The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

Vvedensky, Jane M.; Park, Robert Y.

2012-11-27T23:59:59.000Z

278

Generating power with drained coal mine methane  

SciTech Connect (OSTI)

The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

NONE

2005-09-01T23:59:59.000Z

279

Coal-fired power generation: Proven technologies and pollution control systems  

SciTech Connect (OSTI)

During the last two decades, significant advances have been made in the reduction of emissions from coal-fired power generating plants. New technologies include better understanding of the fundamentals of the formation and destruction of criteria pollutants in combustion processes (low nitrogen oxides burners) and improved methods for separating criteria pollutants from stack gases (FGD technology), as well as efficiency improvements in power plants (clean coal technologies). Future demand for more environmentally benign electric power, however, will lead to even more stringent controls of pollutants (sulphur dioxide and nitrogen oxides) and greenhouse gases such as carbon dioxide.

Balat, M. [University of Mah, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

280

Low-Power Maximum Power Point Tracker with Digital Control for Thermophotovoltaic Generators  

E-Print Network [OSTI]

This paper describes the design, optimization, and evaluation of the power electronics circuitry for a low-power portable thermophotovotaic (TPV) generator system. TPV system is based on a silicon micro-reactor design and ...

Pilawa, Robert

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Testing of power-generating gas-turbine plants at Russian electric power stations  

Science Journals Connector (OSTI)

This paper cites results of thermal testing of various types and designs of power-generating gas-turbine plants (GTP), which have been placed in service at electric-power stations in Russia in recent years. Therm...

G. G. Ol’khovskii; A. V. Ageev; S. V. Malakhov…

2006-07-01T23:59:59.000Z

282

Advanced Lithium Power Inc ALP | Open Energy Information  

Open Energy Info (EERE)

ALP ALP Jump to: navigation, search Name Advanced Lithium Power Inc (ALP) Place Vancouver, British Columbia, Canada Product They develop lithium ion and advanced battery control systems and their primary asset is intellectual property. Coordinates 49.26044°, -123.114034° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.26044,"lon":-123.114034,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

Property:Distributed Generation System Power Application | Open Energy  

Open Energy Info (EERE)

Application Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Power Application" Showing 21 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Based Load + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Based Load + Distributed Generation Study/Arrow Linen + Based Load + Distributed Generation Study/Dakota Station (Minnegasco) + Based Load +, Backup + Distributed Generation Study/Elgin Community College + Based Load +, Backup + Distributed Generation Study/Emerling Farm + Based Load + Distributed Generation Study/Floyd Bennett + Based Load + Distributed Generation Study/Harbec Plastics + Based Load + Distributed Generation Study/Hudson Valley Community College + Based Load +

284

Coal-fueled diesels for modular power generation  

SciTech Connect (OSTI)

Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970`s. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980`s, Morgantown Energy Technology Center (METC) of the US Department of Energy. initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10--100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990`s and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

Wilson, R.P. [Little (Arthur D.), Inc., Cambridge, MA (United States); Rao, A.K. [Cooper-Bessemer Reciprocating, Grove City, PA (United States); Smith, W.C. [Department of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center

1993-11-01T23:59:59.000Z

285

Power and Frequency Control as it Relates to Wind-Powered Generation  

E-Print Network [OSTI]

Wind-Powered Generation Examples are: The rough running bands of hydro turbines Loadings of coal burning steam plants at which coal mills

Lacommare, Kristina S H

2011-01-01T23:59:59.000Z

286

WWTP Power Generation Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Generation Station Biomass Facility Power Generation Station Biomass Facility Jump to: navigation, search Name WWTP Power Generation Station Biomass Facility Facility WWTP Power Generation Station Sector Biomass Facility Type Non-Fossil Waste Location Alameda County, California Coordinates 37.6016892°, -121.7195459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6016892,"lon":-121.7195459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Springerville Generating Station Solar System Solar Power Plant | Open  

Open Energy Info (EERE)

Springerville Generating Station Solar System Solar Power Plant Springerville Generating Station Solar System Solar Power Plant Jump to: navigation, search Name Springerville Generating Station Solar System Solar Power Plant Facility Springerville Generating Station Solar System Sector Solar Facility Type Photovoltaic Developer Tucson Electric Power Location Springerville, Arizona Coordinates 34.1333799°, -109.2859196° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1333799,"lon":-109.2859196,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Integration of decentralized generators with the electric power grid  

E-Print Network [OSTI]

This report develops a new methodology for studying the economic interaction of customer-owned electrical generators with the central electric power grid. The purpose of the report is to study the reciprocal effects of the ...

Finger, Susan

1981-01-01T23:59:59.000Z

289

Risk Framework for the Next Generation Nuclear Power Plant Construction  

E-Print Network [OSTI]

sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks...

Yeon, Jaeheum 1981-

2012-12-11T23:59:59.000Z

290

Improving heat capture for power generation in coal gasification plants  

E-Print Network [OSTI]

Improving the steam cycle design to maximize power generation is demonstrated using pinch analysis targeting techniques. Previous work models the steam pressure level in composite curves based on its saturation temperature ...

Botros, Barbara Brenda

2011-01-01T23:59:59.000Z

291

Impact of GHG Emission Reduction on Power Generation Expansion Planning  

Science Journals Connector (OSTI)

In this work the impact of greenhouse gas (GHG) emission reduction on Power Generation Expansion Planning ... models, which also consider environmental constraints and GHG emission limits, is presented. After a s...

F. Careri; C. Genesi; P. Marannino; M. Montagna…

2012-01-01T23:59:59.000Z

292

Power Generation From Waste Heat Using Organic Rankine Cycle Systems  

E-Print Network [OSTI]

Many efforts are currently being pursued to develop and implement new energy technologies aimed at meeting our national energy goals The use of organic Rankine cycle engines to generate power from waste heat provides a near term means to greatly...

Prasad, A.

1980-01-01T23:59:59.000Z

293

The Homopolar Generator as a Pulsed Industrial Power Supply  

E-Print Network [OSTI]

high current, low voltage electrical pulses. The homopolar generator is allowing numerous industrial joining and forming processes to be extended to larger work pieces and higher power output capabilities than were previously possible. The basic...

Weldon, J. M.; Weldon, W. F.

1979-01-01T23:59:59.000Z

294

Gasifier-based power generation: Technology and economics  

Science Journals Connector (OSTI)

The paper describes a 100 kW power generation system installed at Port Blair, Andaman and Nicobar Islands, under a project sponsored by the Department of Non-Conventional Energy Sources, Government of India. The ...

B N Baliga; S Dasappa; U Shrinivasa; H S Mukunda

1993-03-01T23:59:59.000Z

295

A Natural-Gas-Fired Thermoelectric Power Generation System  

Science Journals Connector (OSTI)

This paper presents a combustion-driven thermoelectric power generation system that uses PbSnTe-based thermoelectric modules. The modules were integrated into a gas-fired furnace with a special burner design. The...

K. Qiu; A.C.S. Hayden

2009-07-01T23:59:59.000Z

296

SECOND GENERATION REFORMS IN CHILE, POWER EXCHANGE MODEL. THE SOLUTION?  

E-Print Network [OSTI]

SECOND GENERATION REFORMS IN CHILE, POWER EXCHANGE MODEL. THE SOLUTION? David Watts Paulo Atienza to participate. Chile was the pioneer introducing this kind of reforms, through the application of a centralized

Catholic University of Chile (Universidad CatĂłlica de Chile)

297

Local Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network [OSTI]

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the re...

Turitsyn, Konstantin S; Backhaus, Scott; Chertkov, Misha

2010-01-01T23:59:59.000Z

298

Energy Department Announces $4.4 Million to Support Next-Generation Advanced Hydropower Manufacturing  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $4.4 million to support the application of advanced materials and manufacturing techniques to the development of next-generation hydropower technologies.

299

Advanced Heat Transfer Fluids for Concentrated Solar Power (CSP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Science Computing, Environment & Life Sciences Energy Engineering & Systems Analysis Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Science Highlights Postdoctoral Researchers Advanced Heat Transfer Fluids for Concentrated Solar Power (CSP) Applications November 1, 2011 Tweet EmailPrint The current levelized cost of energy (LCOE) from concentrated solar power (CSP) is ~ $0.11/kWh. The U.S. Department of Energy has set goals to reduce this cost to ~$0.07/kWh with 6 hours of storage by 2015 and to ~$0.05/kWh with 16 hours of storage by 2020. To help meet these goals, scientists at Argonne National Laboratory are working to improve the overall CSP plant efficiency by enhancing the thermophysical properties of heat transfer

300

Advanced Materials and Concepts for Portable Power Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 1 DOE Kick-off Meeting, Washington, DC September 28, 2010 Fuel Cell Projects Kick-off Meeting Washington, DC - September 28, 2010 Advanced Materials and Concepts for Portable Power Fuel Cells for Portable Power Fuel Cells Piotr Zelenay Los Alamos National Laboratory Los Alamos National Laboratory Los Alamos, New Mexico 87545 This presentation does not contain any proprietary, confidential, or otherwise restricted information - t t Overview Timeline * Start date: September 2010 * End date: Four-year duration Budget Budget * Total funding estimate: - DOE share: $3,825K Contractor share: $342K $342K - Contractor share: * FY10 funding received: $250K * FY11 funding estimate: $1,000K Barriers * A. Durability (catalyst; electrode) (catalyst; electrode)

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Membrane-based processes for sustainable power generation using water  

Science Journals Connector (OSTI)

... 18 GW of salinity-gradient power. Although 800 GW of power is currently obtained from hydroelectric processes globally, salinity-gradient energy remains a large and untapped resource. Capturing this energy ... not ions — through the membranes to produce pressurized water that generates electricity using mechanical turbines. RED uses membranes for ion — but not water — transport, and the electrical ...

Bruce E. Logan; Menachem Elimelech

2012-08-15T23:59:59.000Z

302

Mineralization of Pentachlorophenol With Enhanced Degradation and Power Generation From  

E-Print Network [OSTI]

­2221. � 2012 Wiley Periodicals, Inc. KEYWORDS: microbial fuel cell; PCP degradation rate; power production Cathode Microbial Fuel Cells Liping Huang,1 Linlin Gan,1 Ning Wang,1 Xie Quan,1 Bruce E. Logan,2 GuohuaARTICLE Mineralization of Pentachlorophenol With Enhanced Degradation and Power Generation From Air

303

Turbine Drive Gas Generator for Zero Emission Power Plants  

SciTech Connect (OSTI)

The Vision 21 Program seeks technology development that can reduce energy costs, reduce or eliminate atmospheric pollutants from power plants, provide choices of alternative fuels, and increase the efficiency of generating systems. Clean Energy Systems is developing a gas generator to replace the traditional boiler in steam driven power systems. The gas generator offers the prospects of lower electrical costs, pollution free plant operations, choices of alternative fuels, and eventual net plant efficiencies in excess of 60% with sequestration of carbon dioxide. The technology underlying the gas generator has been developed in the aerospace industry over the past 30 years and is mature in aerospace applications, but it is as yet unused in the power industry. This project modifies and repackages aerospace gas generator technology for power generation applications. The purposes of this project are: (1) design a 10 MW gas generator and ancillary hardware, (2) fabricate the gas generator and supporting equipment, (3) test the gas generator using methane as fuel, (4) submit a final report describing the project and test results. The principal test objectives are: (1) define start-up, shut down and post shutdown control sequences for safe, efficient operation; (2) demonstrate the production of turbine drive gas comprising steam and carbon dioxide in the temperature range 1500 F to 3000 F, at a nominal pressure of 1500 psia; (3) measure and verify the constituents of the drive gas; and (4) examine the critical hardware components for indications of life limitations. The 21 month program is in its 13th month. Design work is completed and fabrication is in process. The gas generator igniter is a torch igniter with sparkplug, which is currently under-going hot fire testing. Fabrication of the injector and body of the gas generator is expected to be completed by year-end, and testing of the full gas generator will begin in early 2002. Several months of testing are anticipated. When demonstrated, this gas generator will be the prototype for use in demonstration power plants planned to be built in Antioch, California and in southern California during 2002. In these plants the gas generator will demonstrate durability and its operational RAM characteristics. In 2003, it is expected that the gas generator will be employed in new operating plants primarily in clean air non-attainment areas, and in possible locations to provide large quantities of high quality carbon dioxide for use in enhanced oil recovery or coal bed methane recovery. Coupled with an emission free coal gasification system, the CES gas generator would enable the operation of high efficiency, non-polluting coal-fueled power plants.

Doyle, Stephen E.; Anderson, Roger E.

2001-11-06T23:59:59.000Z

304

Piezoelectric and Semiconducting Coupled Power Generating Process of a  

E-Print Network [OSTI]

of the electric generator relies on the unique coupling of piezoelectric and semiconducting dual properties of ZnPiezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt/Wire. A Technology for Harvesting Electricity from the Environment Jinhui Song, Jun Zhou, and Zhong Lin Wang* School

Wang, Zhong L.

305

Low-cost distributed solar-thermal-electric power generation  

E-Print Network [OSTI]

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed: Solar Thermal Collectors, Solar Thermal Electricity, Stirling Engine 1. INTRODUCTION In this paper, we

Sanders, Seth

306

A novel dual stator-winding induction generator system applied in wind power generation  

Science Journals Connector (OSTI)

This paper presents a novel usage of 6/3-phase dual stator-winding induction generator (DWIG) with a static excitation power controller (SEC) as a wind power generator. This generator is composed of a standard squirrel-cage rotor and two sets of winding housed in the stator slots. One is referred to as the 6-phase power winding, and the other is defined as the 3-phase control winding. On the basis of the instantaneous power theory, the control mechanism of DWIG wind power system is analysed, and the control winding flux orientation control strategy is obtained consequently. The simulation and experimental results from a prototype of 18 kW 6/3-phase DWIG wind power system are presented to verify the correctness and feasibility of control strategy, and a desirable performance is implemented.

Bu Feifei; Huang Wenxin; Hu Yuwen; Shi Kai

2010-01-01T23:59:59.000Z

307

Lamp for generating high power ultraviolet radiation  

DOE Patents [OSTI]

The apparatus is a gas filled ultraviolet generating lamp for use as a liquid purifier. The lamp is powred by high voltage AC, but has no metallic electrodes within or in contact with the gas enclosure which is constructed as two concentric quartz cylinders sealed together at their ends with the gas fill between the cylinders. Cooling liquid is pumped through the volume inside the inner quartz cylinder where an electrically conductive pipe spaced from the inner cylinder is used to supply the cooling liquid and act as the high voltage electrode. The gas enclosure is enclosed within but spaced from a metal housing which is connected to operate as the ground electrode of the circuit and through which the treated fluid flows. Thus, the electrical circuit is from the central pipe, and through the cooling liquid, the gas enclosure, the treated liquid on the outside of the outer quartz cylinder, and to the housing. The high voltage electrode is electrically isolated from the source of cooling liquid by a length of insulated hose which also supplies the cooling liquid.

Morgan, Gary L. (Elkridge, MD); Potter, James M. (Los Alamos, NM)

2001-01-01T23:59:59.000Z

308

Chapter 3 - Coal Processing and Use for Power Generation  

Science Journals Connector (OSTI)

Coal is an important source of energy and raw material for electric power production. Despite climate change legislation, growth in coal consumption thus far outpaced that of other fossil fuels in the twenty-first century. Coal is a reliable energy source, abundant, easily transported, easily traded and competitive in terms of price compared to other fossil fuels. The technology of coal preparation, coal cleaning and use in power generation is discussed. It covers issues such as coal properties and how these relate to coal performance in power generation, as well as ways to remove sulphur, mineral matter and water before coal combustion to improve the efficiency of power generation and reduce emissions from coal use.

Maria E. Holuszko; Arno de Klerk

2014-01-01T23:59:59.000Z

309

Options for Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network [OSTI]

High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

Sulc, Petr; Backhaus, Scott; Chertkov, Michael

2010-01-01T23:59:59.000Z

310

MHK Technologies/Gyroscopic wave power generation system | Open Energy  

Open Energy Info (EERE)

Gyroscopic wave power generation system Gyroscopic wave power generation system < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Gyrodynamics Corporation Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description This gyroscopic wave power generation system is a pure rotational mechanical system that does not use conventional air turbines and is housed on a unique floating platform float In particular its outstanding feature is that it utilizes the gyroscopic spinning effect A motor is used to turn a 1 meter diameter steel disc flywheel inside the apparatus and when the rolling action of waves against the float tilts it at an angle the gyroscopic effect causes the disc to rotate longitudinally This energy turns a generator producing electricity

311

Next Generation Advanced Framing- Building America Top Innovation  

Broader source: Energy.gov [DOE]

Building America researchers garnered a Top Innovation award for research into simple, cost-effective ways to implement advanced framing techniques.

312

ePOWER Seminar AC solar cells: A new breed of PV power generation  

E-Print Network [OSTI]

ePOWER Seminar AC solar cells: A new breed of PV power generation Professor Faisal Khan Assistant dc output which needs to be processed and inverted for ac applications. Using a modern manufacturing facility, PV panels could be mass produced without any apparent issues. Unfortunately, power converters

Abolmaesumi, Purang

313

Major Environmental Aspects of Gasification-Based Power Generation Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems DECEMBER 2002 U.S. DOE/NETL 2-1 2. DETAILED EVALUATION OF THE ENVIRONMENTAL PERFORMANCE OF GASIFICATION-BASED POWER SYTEMS 2.1 Introduction and Summary of Information Presented The single most compelling reason for utilities to consider coal gasification for electric power generation is superior environmental performance. 1 As shown in Figure 2-1, gasification has fundamental environmental advantages over direct coal combustion. Commercial-scale plants for both integrated gasification combined cycle (IGCC) electric power generation and chemicals applications have already successfully demonstrated these advantages. The superior environmental capabilities of coal gasification apply to all three areas of concern: air emissions,

314

The ARIES Advanced And Conservative Tokamak (ACT) Power Plant Study  

SciTech Connect (OSTI)

Tokamak power plants are studied with advanced and conservative design philosophies in order to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding, and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared to older studies. The advanced configuration assumes a self-cooled lead lithium (SCLL) blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q95 of 4.5, a {beta}N{sup total} of 5.75, H{sub 98} of 1.65, n/nGr of 1.0, and peak divertor heat flux of 13.7 MW/m{sup 2}. The conservative configuration assumes a dual coolant lead lithium (DCLL) blanket concept with ferritic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma major radius is 9.75 m, a toroidal field of 8.75 T, a q95 of 8.0, a {beta}N{sup total} of 2.5, H{sub 98} of 1.25, n/n{sub Gr} of 1.3, and peak divertor heat flux of 10 MW/m{sup 2}. The divertor heat flux treatment with a narrow power scrape-off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range of 10-15 MW/m{sup 2}. Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Papers in this issue provide more detailed discussion of the work summarized here.

Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N. [Princeton Plasma Physics Lab., Princeton, NJ (United States)] [Princeton Plasma Physics Lab., Princeton, NJ (United States); Tillack, M. S.; Najmabadi, F.; Wang, X. R.; Navaei, D.; Toudeshki, H. H. [Univ. of California, San Diego, CA (United States)] [Univ. of California, San Diego, CA (United States); Koehly, C. [Karlsruhe Inst. of Technology, Karlsruhe (Germany)] [Karlsruhe Inst. of Technology, Karlsruhe (Germany); El-Guebaly, L.; Blanchard, J. P.; Martin, C. J.; Mynsburge, L. [Univ. of Wisconsin, Madison, WI (United States)] [Univ. of Wisconsin, Madison, WI (United States); Humrickhouse, P. [Idaho National Lab., Idaho Falls, ID (United States)] [Idaho National Lab., Idaho Falls, ID (United States); Rensink, M. E.; Rognlien, T. D. [Lawrence Livermore National Lab., Livermore, CA (United States)] [Lawrence Livermore National Lab., Livermore, CA (United States); Yoda, M.; Abdel-Khalik, S. I.; Hageman, M. D.; Mills, B. H.; Radar, J. D.; Sadowski, D. L. [Georgia Inst. of Technology, Atlanta, GA (United States)] [Georgia Inst. of Technology, Atlanta, GA (United States); Snyder, P. B.; St. John, H.; Turnbull, A. D. [General Atomics, La Jolla, CA (United States)] [General Atomics, La Jolla, CA (United States); Waganer, L. M.; Malang, S.; Rowcliffe, A. F.

2014-03-05T23:59:59.000Z

315

More Efficient Power Conversion for EVs: Gallium-Nitride Advanced Power Semiconductor and Packaging  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Delphi is developing power converters that are smaller and more energy efficient, reliable, and cost-effective than current power converters. Power converters rely on power transistors which act like a very precisely controlled on-off switch, controlling the electrical energy flowing through an electrical circuit. Most power transistors today use silicon (Si) semiconductors. However, Delphi is using semiconductors made with a thin layer of gallium-nitride (GaN) applied on top of the more conventional Si material. The GaN layer increases the energy efficiency of the power transistor and also enables the transistor to operate at much higher temperatures, voltages, and power-density levels compared to its Si counterpart. Delphi is packaging these high-performance GaN semiconductors with advanced electrical connections and a cooling system that extracts waste heat from both sides of the device to further increase the device’s efficiency and allow more electrical current to flow through it. When combined with other electronic components on a circuit board, Delphi’s GaN power transistor package will help improve the overall performance and cost-effectiveness of HEVs and EVs.

None

2010-02-01T23:59:59.000Z

316

Energy Department Announces $45 Million to Advance Next-Generation Vehicle  

Broader source: Energy.gov (indexed) [DOE]

$45 Million to Advance Next-Generation $45 Million to Advance Next-Generation Vehicle Technologies Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies September 4, 2013 - 12:00pm Addthis Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies Thirty-eight projects will accelerate the research and development of technologies to improve vehicle fuel efficiency, lower transportation costs, and cut carbon pollution. Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies Thirty-eight projects will accelerate the research and development of technologies to improve vehicle fuel efficiency, lower transportation costs, and cut carbon pollution. Building on President Obama's Climate Action Plan to build a 21st century

317

Programme A. Nuclear Power Subprogramme A.4 Technology Development for Advanced Reactor Lines  

E-Print Network [OSTI]

Programme A. Nuclear Power Subprogramme A.4 Technology Development for Advanced Reactor Lines the databases that will be produced in the course of the CRP and make them accessible through the IAEA's nuclear-Electrical Applications of Nuclear Power Project A.5.02: Nuclear hydrogen production CRP Title: Advances in nuclear power

De Cindio, Fiorella

318

NREL: Advanced Power Electronics - Modeling of Cooling Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling of Cooling Technologies Improves Performance Modeling of Cooling Technologies Improves Performance Thermal modeling image of spray cooling of inverter chip surface shows the liquid breaking up into fine droplets that impinge on the liquid wall, which enhances the spacial uniformity of heat removal. Modeling Cooling Technologies-Spray Cooling The NREL advanced power electronics team is modeling cooling technologies that would enhance performance of the inverters and motors in hybrid-electric and fuel cell vehicles. The team is modeling two-phase spray cooling, jet impingement, and mini- and micro-channel cooling, and has successfully used Fluent software to show a good comparison between numerical models and published experimental data. Currently, the team is conducting modeling to simulate real life conditions such as those that

319

Advanced Research Power Program--CO2 Mineral Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sequestration Sequestration Robert Romanosky National Energy Technology Laboratory Mineral Carbonation Workshop August 8, 2001 Advanced Research Power Program Descriptor - include initials, /org#/date Mineral Sequestration Research Research effort seeks to refine and validate a promising CO 2 sequestration technology option, mineral sequestration also known as mineral carbonation Descriptor - include initials, /org#/date What is Mineral Carbonation * Reaction of CO 2 with Mg or Ca containing minerals to form carbonates * Lowest energy state of carbon is a carbonate and not CO 2 * Occurs naturally in nature as weathering of rock * Already proven on large scale - Carbonate formation linked to formation of the early atmosphere Descriptor - include initials, /org#/date Advantages of Mineral Carbonation

320

Advanced Fusion Reactors for Space Propulsion and Power Systems  

SciTech Connect (OSTI)

In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

Chapman, John J.

2011-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Choose the Right Advanced Power Strip for You | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Choose the Right Advanced Power Strip for You Choose the Right Advanced Power Strip for You Choose the Right Advanced Power Strip for You October 28, 2013 - 11:33am Addthis Choose the right advanced power strip based on your habits to reduce the electricity wasted when your electronic devices are idle. Choose the right advanced power strip based on your habits to reduce the electricity wasted when your electronic devices are idle. Lieko Earle, Ph.D. Senior Engineer, Residential Buildings, National Renewable Energy Laboratory Bethany Sparn, M.S. Engineer, Residential Buildings, National Renewable Energy Laboratory What are the key facts? Advanced power strips (APS) can help reduce the electricity wasted when electronics are idle, without changing habits or how you use devices Choose the right APS based on your habits and the devices you want

322

Jiangsu Dongsheng Biomass Power Generation Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Dongsheng Biomass Power Generation Co Ltd Dongsheng Biomass Power Generation Co Ltd Jump to: navigation, search Name Jiangsu Dongsheng Biomass Power Generation Co Ltd Place Dongtai, Jiangsu Province, China Zip 224212 Sector Biomass Product A biomass project developer in China. Coordinates 32.845699°, 120.301224° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.845699,"lon":120.301224,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

Nuclear Power Generation and Fuel Cycle Report 1997  

Gasoline and Diesel Fuel Update (EIA)

7) 7) Distribution Category UC-950 Nuclear Power Generation and Fuel Cycle Report 1997 September 1997 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts Energy Information Administration/ Nuclear Power Generation and Fuel Cycle Report 1997 ii The Nuclear Power Generation and Fuel Cycle Report is prepared by the U.S. Department of Energy's Energy Information Administration. Questions and comments concerning the contents of the report may be directed to:

324

Next-Generation Distributed Power Management for Photovoltaic Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-Generation Distributed Power Management for Photovoltaic Systems Next-Generation Distributed Power Management for Photovoltaic Systems Speaker(s): Jason Stauth Date: July 29, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Steven Lanzisera In recent years, the balance of systems (BOS) side of photovoltaic (PV) energy has become a major focus in the effort to drive solar energy towards grid parity. The power management architecture has expanded to include a range of distributed solutions, including microinverters and 'micro' DC-DC converters to solve problems with mismatch (shading), expand networking and control, and solve critical BOS issues such as fire safety. This talk will introduce traditional and distributed approaches for PV systems, and will propose a next-generation architecture based on a new

325

Qingdao Hengfeng Wind Power Generator Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Qingdao Hengfeng Wind Power Generator Co Ltd Qingdao Hengfeng Wind Power Generator Co Ltd Jump to: navigation, search Name Qingdao Hengfeng Wind Power Generator Co Ltd Place Jiaonan, Shandong Province, China Sector Wind energy Product Shandong, Jiaonan-based wind turbine supplier. Coordinates 35.875°, 119.977203° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.875,"lon":119.977203,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

Environmentally Protective Power Generation EPPG | Open Energy Information  

Open Energy Info (EERE)

Environmentally Protective Power Generation EPPG Environmentally Protective Power Generation EPPG Jump to: navigation, search Name Environmentally Protective Power Generation (EPPG) Place Tucson, Arizona Sector Wind energy Product Seeking financing for a Tower system, about which little has been disclosed, which would have wind and other backup. Coordinates 32.221553°, -110.969754° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.221553,"lon":-110.969754,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

327

Solar Power Generates Big Savings in Salinas, California | Department of  

Broader source: Energy.gov (indexed) [DOE]

Power Generates Big Savings in Salinas, California Power Generates Big Savings in Salinas, California Solar Power Generates Big Savings in Salinas, California October 15, 2012 - 4:40pm Addthis A portion of the new 141 kilowatt solar photovoltaic energy system at Monterey County’s Laurel Yard Complex in Salinas, California. The system is expected to save the county thousands of dollars a year in energy costs. Click here to see a panoramic view of the entire solar array. | Photo courtesy of Santa Cruz Westside Electric, DBA Sandbar. A portion of the new 141 kilowatt solar photovoltaic energy system at Monterey County's Laurel Yard Complex in Salinas, California. The system is expected to save the county thousands of dollars a year in energy costs.

328

New San Antonio Airport Terminal Generating Clean Power | Department of  

Broader source: Energy.gov (indexed) [DOE]

San Antonio Airport Terminal Generating Clean Power San Antonio Airport Terminal Generating Clean Power New San Antonio Airport Terminal Generating Clean Power January 27, 2011 - 2:03pm Addthis The new photovoltaic system at the San Antonio International Airport. The new photovoltaic system at the San Antonio International Airport. Todd G. Allen Project Officer, Golden Field Office What are the key facts? The City of San Antonio's EECBG proram staff awarded a block grant for a solar photovoltaic (PV) system at the airport, designed and built the project, and complied with all local and federal regulations... all in seven months. In early 2010, the City of San Antonio's Energy Efficiency and Conservation Block Grant (EECBG) program staff quickly realized a golden opportunity lay right at their fingertips. The opening of the new San

329

Solar Power Generates Big Savings in Salinas, California | Department of  

Broader source: Energy.gov (indexed) [DOE]

Solar Power Generates Big Savings in Salinas, California Solar Power Generates Big Savings in Salinas, California Solar Power Generates Big Savings in Salinas, California October 15, 2012 - 4:40pm Addthis A portion of the new 141 kilowatt solar photovoltaic energy system at Monterey County’s Laurel Yard Complex in Salinas, California. The system is expected to save the county thousands of dollars a year in energy costs. Click here to see a panoramic view of the entire solar array. | Photo courtesy of Santa Cruz Westside Electric, DBA Sandbar. A portion of the new 141 kilowatt solar photovoltaic energy system at Monterey County's Laurel Yard Complex in Salinas, California. The system is expected to save the county thousands of dollars a year in energy costs.

330

Environmental impact of fossil fuel combustion in power generation  

SciTech Connect (OSTI)

All the recent developments in the combustion systems employed for power generation have been based on environmental considerations. Combustion modifications have been developed and utilised in order to control NO{sub x} emissions and improvements continue to be made as the legislative requirements tighten. Chemical processes and fuel switching are used to control SO{sub x} emissions. After nitrogen, carbon dioxide is the major gas emitted from the combustion process and its potential potency as a greenhouse gas is well documented. Increased efficiency cycles, mainly based on natural gas as the prime fuel, can minimise the amount of CO{sub x} produced per unit of power generated. As the economics of natural gas utilisation become less favourable a return to clean coal technology based power generation processes may be required.

Allen, J.W.; Beal, P.R. [International Combustion Ltd., Derby (United Kingdom)

1996-12-31T23:59:59.000Z

331

Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems  

Science Journals Connector (OSTI)

Solar and wind energy systems are omnipresent, freely available, environmental friendly, and they are considered as promising power generating sources due to their availability and topological advantages for local power generations. Hybrid solar–wind energy systems, uses two renewable energy sources, allow improving the system efficiency and power reliability and reduce the energy storage requirements for stand-alone applications. The hybrid solar–wind systems are becoming popular in remote area power generation applications due to advancements in renewable energy technologies and substantial rise in prices of petroleum products. This paper is to review the current state of the simulation, optimization and control technologies for the stand-alone hybrid solar–wind energy systems with battery storage. It is found that continued research and development effort in this area is still needed for improving the systems’ performance, establishing techniques for accurately predicting their output and reliably integrating them with other renewable or conventional power generation sources.

Wei Zhou; Chengzhi Lou; Zhongshi Li; Lin Lu; Hongxing Yang

2010-01-01T23:59:59.000Z

332

Power Plant Emission Reductions Using a Generation Performance Standard  

Gasoline and Diesel Fuel Update (EIA)

Power Plant Emission Reductions Power Plant Emission Reductions Using a Generation Performance Standard by J. Alan Beamon, Tom Leckey, and Laura Martin There are many policy instruments available for reducing power plant emissions, and the choice of a policy will affect compliance decisions, costs, and prices faced by consumers. In a previous analysis, the Energy Information Administration analyzed the impacts of power sector caps on nitrogen oxides (NO x ), sulfur dioxide (SO 2 ), and carbon dioxide (CO 2 ) emissions, assuming a policy instru- ment patterned after the SO 2 allowance program created in the Clean Air Act Amendments of 1990. 1 This report compares the results of that work with the results of an analysis that assumes the use of a dynamic generation performance standard (GPS) as an instrument for reducing CO 2 emissions. 2 In general, the results of the two analyses are similar: to reduce

333

Most Viewed Documents - Power Generation and Distribution | OSTI, US Dept  

Office of Scientific and Technical Information (OSTI)

Most Viewed Documents - Power Generation and Distribution Most Viewed Documents - Power Generation and Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; et al. (1994) ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Quarterly technical progress report, September 1993--December 1993 Benemann, J.R.; Oswald, W.J. (1994) Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; et al. (1997) Multilevel converters -- A new breed of power converters Lai, J.S. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.]; Peng, F.Z. [Univ. of Tennessee, Knoxville, TN (United

334

Major Environmental Aspects of Gasification-Based Power Generation Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detailed Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems DECEMBER 2002 U.S. DOE/NETL 2-1 2. DETAILED EVALUATION OF THE ENVIRONMENTAL PERFORMANCE OF GASIFICATION-BASED POWER SYTEMS 2.1 Introduction and Summary of Information Presented The single most compelling reason for utilities to consider coal gasification for electric power generation is superior environmental performance. 1 As shown in Figure 2-1, gasification has fundamental environmental advantages over direct coal combustion. Commercial-scale plants for both integrated gasification combined cycle (IGCC) electric power generation and chemicals applications have already successfully demonstrated these advantages. The superior environmental capabilities of coal gasification apply to all three areas of concern: air emissions, water discharges, and solid

335

Solana Generating Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Solar Power Plant Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Developer Abengoa Solar Location Gila Bend, Arizona Coordinates 32.916163°, -112.968727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.916163,"lon":-112.968727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

336

Power generation considerations in a solar biomodal receiver  

SciTech Connect (OSTI)

The Integrated Solar Upper Stage (ISUS), or solar bimodal stage provides both propulsive thrust for efficient orbital transfer(s) and electrical power generation for the spacecraft. The combined propulsive and power systems allow the solar bimodal system to effectively compete for a variety of missions. Once on station, thermionic converters are used to supply continuous electrical power to the satellite, even during periods when the spacecraft is in the Earth`s shadow. The key to continuous power supply is thermal energy storage. The ISUS propulsion system also benefits through the use of thermal storage. By utilizing a graphite receiver, large amounts of sensible heat can be stored for later power generation. Waste heat is radiated to space through the use of heat pipes. Clearly, the graphite mass must be minimized without sacrificing electrical power capability. Voltage and current characteristics are carefully designed to operate within acceptable ranges. The detailed design of the receiver/absorber/converter (RAC) power system must meet these requirements with as little impact to the remainder of the bimodal system as possible. This paper addresses the key design considerations of a solar bimodal receiver as a power plant. Factors including the thermal storage and heat transfer from the graphite receiver to the thermionic converters, the support structures, electrical insulation and converter string design will be discussed.

Rochow, R.F. [NovaTech, Lynchburg, VA (United States); Miles, B.J. [Babcock and Wilcox, Lynchburg, VA (United States)

1996-12-31T23:59:59.000Z

337

Microsoft PowerPoint - AECC Hydroelectric Generation 2010.pptx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Electric Cooperative Corporation Cooperative Corporation AECC H d l i AECC Hydroelectric Generation Facilities Generation Facilities Arkansas Electric Cooperative Corporation Cooperative Corporation * Generation and Transmission Cooperative headquartered in Little Rock * Wholesale power provider for 16 distribution cooperatives * Serves about 62% of Arkansas with over 400,000 consumers O b 2 600 MW f i 12 * Owns about 2,600 MW of generation at 12 different facilities. Arkansas Electric Cooperative Corporation Cooperative Corporation 2009 G i b S f A CC 2009 Generation by Energy Source for AECC Owned and Co-Owned Plants * Natural Gas and Oil 4.0% * Wyoming Coal 88.8% * Water 7.2% Water 7.2% Arkansas Electric Cooperative Corporation Cooperative Corporation E i ti H d l t i Existing Hydroelectric Generating Resources

338

A Power Energy Generation Systems Ltd APWR | Open Energy Information  

Open Energy Info (EERE)

Generation Systems Ltd APWR Generation Systems Ltd APWR Jump to: navigation, search Name A-Power Energy Generation Systems Ltd (APWR) Place Shenyang, Liaoning Province, China Zip 110021 Product Chinese-based provider of power generation systems, acting as the holding company of Liaoning Gaoke Energy. Coordinates 41.788509°, 123.40612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.788509,"lon":123.40612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents [OSTI]

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

Hart, M.M.

1995-04-18T23:59:59.000Z

340

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents [OSTI]

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

Hart, Mark M. (Aiken, SC)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Photonic microwave generation with high-power photodiodes  

E-Print Network [OSTI]

We utilize and characterize high-power, high-linearity modified uni-traveling carrier (MUTC) photodiodes for low-phase-noise photonic microwave generation based on optical frequency division. When illuminated with picosecond pulses from a repetition-rate-multiplied gigahertz Ti:sapphire modelocked laser, the photodiodes can achieve 10 GHz signal power of +14 dBm. Using these diodes, a 10 GHz microwave tone is generated with less than 500 attoseconds absolute integrated timing jitter (1 Hz-10 MHz) and a phase noise floor of -177 dBc/Hz. We also characterize the electrical response, amplitude-to-phase conversion, saturation and residual noise of the MUTC photodiodes.

Fortier, Tara M; Hati, Archita; Nelson, Craig; Taylor, Jennifer A; Fu, Yang; Campbell, Joe; Diddams, Scott A

2013-01-01T23:59:59.000Z

342

Power and Hydrogen Co-generation from Biogas  

Science Journals Connector (OSTI)

Furthermore, the Piedmont Regional framework is very oriented toward clean transport, in both the public sector (the GTT public transportation fleet has a multitude of natural gas-fueled buses) and the private one (FIAT has decided on methane cars as a market target in the short term, and Centro Ricerche FIAT has already developed several generations of H2-fueled car prototypes). ... The first configuration (A in Figure 1) requires less water and air, produces a higher amount of hydrogen, but has a lower power generation at the turbine. ... Cannock landfill gas powering a small tubular solid oxide fuel cell - a case study ...

Samir Bensaid; Nunzio Russo; Debora Fino

2010-02-19T23:59:59.000Z

343

New geothermal heat extraction process to deliver clean power generation  

ScienceCinema (OSTI)

A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

Pete McGrail

2012-12-31T23:59:59.000Z

344

PEM fuel cells for transportation and stationary power generation applications  

SciTech Connect (OSTI)

We describe recent activities at LANL devoted to polymer electrolyte fuel cells in the contexts of stationary power generation and transportation applications. A low cost/high performance hydrogen or reformate/air stack technology is being developed based on ultralow Pt loadings and on non-machined, inexpensive elements for flow-fields and bipolar plates. On board methanol reforming is compared to the option of direct methanol fuel cells because of recent significant power density increases demonstrated in the latter.

Cleghorn, S.J.; Ren, X.; Springer, T.E.; Wilson, M.S.; Zawodzinski, C.; Zawodzinski, T.A. Jr.; Gottesfeld, S.

1996-05-01T23:59:59.000Z

345

The next generation of power reactors - safety characteristics  

SciTech Connect (OSTI)

The next generation of commercial nuclear power reactors is characterized by a new approach to achieving reliability of their safety systems. In contrast to current generation reactors, these designs apply passive safety features that rely on gravity-driven transfer processes or stored energy, such as gas-pressurized accumulators or electric batteries. This paper discusses the passive safety system of the AP600 and Simplified Boiling Water Reactor (SBWR) designs.

Modro, S.M.

1995-01-01T23:59:59.000Z

346

Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report  

Broader source: Energy.gov [DOE]

This report describes the progress made on the research and development projects funded by the Advanced Power Electronics and Electric Motors subprogram in the Vehicle Technologies Office.

347

Energy Department Announces Projects to Advance Cost-Effective Concentrating Solar Power Systems  

Broader source: Energy.gov [DOE]

The Energy Department today announced $10 million for six new research and development projects that will advance innovative concentrating solar power (CSP) technologies. The projects will develop...

348

Energy Department Announces Projects to Advance Cost-Effective Concentrating Solar Power Systems  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $10 million for six new research and development projects that will advance innovative concentrating solar power (CSP) technologies.

349

MHK Technologies/Submergible Power Generator | Open Energy Information  

Open Energy Info (EERE)

Submergible Power Generator Submergible Power Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Submergible Power Generator.jpg Technology Profile Primary Organization Current to Current Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The design of the SPG leverages water flows in varying scenarios to generate electricity While the focus of the C2C deployments is ocean currents the SPG works in a bi directional manner Therefore the SPG can be deployed to generate electricity from tidal differential tidal streams In areas where currents and tidal differential streams converge the SPG with remote control and telemetry systems will track the water velocity In this manner the SPG can be maneuver in three dimensions to optimize water flow Each tube of the catamaran is approximately 150 feet in length The inner tube contains the electronic components and the outer tube is the rotating impeller system comprising a generator with a four blade turbine which measures approximately 100 feet in diameter The total area covered by each SPG is about the size of a football field

350

Fuel cycle comparison of distributed power generation technologies.  

SciTech Connect (OSTI)

The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

Elgowainy, A.; Wang, M. Q.; Energy Systems

2008-12-08T23:59:59.000Z

351

REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF CBS CORPORATION, FOR AN  

Broader source: Energy.gov (indexed) [DOE]

CONTRACT NO. CONTRACT NO. DE-AC21-95MC30247; DOE WAIVER DOCKET W(A)-98-006 [ORO-737] Westinghouse Power Generation, a former division of CBS Corporation (hereinafter referred to as "the Contractor"), has requested an advance waiver of worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Contract No. DE-AC21- 95MC30247. This contract covers Phase 2 of DOE's Advance Turbine System (ATS) program. The goal of the ATS program is to develop and commercialize ultra-high efficiency, environmentally superior, and cost-competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. The purposes of Phase 2 were to complete conceptual design of a selected system, identify technical barrier issues and begin

352

High power terahertz generation using 1550?nm plasmonic photomixers  

SciTech Connect (OSTI)

We present a 1550?nm plasmonic photomixer operating under pumping duty cycles below 10%, which offers significantly higher terahertz radiation power levels compared to previously demonstrated photomixers. The record-high terahertz radiation powers are enabled by enhancing the device quantum efficiency through use of plasmonic contact electrodes, and by mitigating thermal breakdown at high optical pump power levels through use of a low duty cycle optical pump. The repetition rate of the optical pump can be specifically selected at a given pump duty cycle to control the spectral linewidth of the generated terahertz radiation. At an average optical pump power of 150 mW with a pump modulation frequency of 1 MHz and pump duty cycle of 2%, we demonstrate up to 0.8 mW radiation power at 1 THz, within each continuous wave radiation cycle.

Berry, Christopher W. [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hashemi, Mohammad R.; Jarrahi, Mona [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Electrical Engineering Department, University of California Los Angeles, Los Angeles, California 90095 (United States); Preu, Sascha [Department of Electrical Engineering and Information Technology, Technical University Darmstadt, D-64283 Darmstadt (Germany); Lu, Hong; Gossard, Arthur C. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

2014-07-07T23:59:59.000Z

353

ADVANCED REFLECTIVE FILMS AND PANELS FOR NEXT GENERATION SOLAR COLLECTORS  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

354

April 2013 Most Viewed Documents for Power Generation And Distribution |  

Office of Scientific and Technical Information (OSTI)

April 2013 Most Viewed Documents for Power Generation And Distribution April 2013 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 719 Seventh Edition Fuel Cell Handbook NETL (2004) 628 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 343 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 290 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 248 Controlled low strength materials (CLSM), reported by ACI Committee 229 Rajendran, N. (1997) 106 Micro-CHP Systems for Residential Applications Timothy DeValve; Benoit Olsommer (2007)

355

September 2013 Most Viewed Documents for Power Generation And Distribution  

Office of Scientific and Technical Information (OSTI)

Power Generation And Distribution Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 200 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 103 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 76 Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G. (1982) 69 Seventh Edition Fuel Cell Handbook NETL (2004) 65 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 52 Controlled low strength materials (CLSM), reported by ACI Committee

356

Thermodynamic, Energy Efficiency, and Power Density Analysis of Reverse Electrodialysis Power Generation with Natural Salinity Gradients  

Science Journals Connector (OSTI)

Thermodynamic, Energy Efficiency, and Power Density Analysis of Reverse Electrodialysis Power Generation with Natural Salinity Gradients ... solns. of different salinities. ... River mouths are potentially abundant locations for the exploitation of the clean and renewable salinity gradient energy (SGE) as here perpetually fresh water mixes with saline seawater. ...

Ngai Yin Yip; David A. Vermaas; Kitty Nijmeijer; Menachem Elimelech

2014-04-03T23:59:59.000Z

357

Nonlinear power flow control applications to conventional generator swing equations subject to variable generation.  

SciTech Connect (OSTI)

In this paper, the swing equations for renewable generators are formulated as a natural Hamiltonian system with externally applied non-conservative forces. A two-step process referred to as Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) is used to analyze and design feedback controllers for the renewable generator system. This formulation extends previous results on the analytical verification of the Potential Energy Boundary Surface (PEBS) method to nonlinear control analysis and design and justifies the decomposition of the system into conservative and non-conservative systems to enable a two-step, serial analysis and design procedure. In particular, this approach extends the work done by developing a formulation which applies to a larger set of Hamiltonian Systems that has Nearly Hamiltonian Systems as a subset. The results of this research include the determination of the required performance of a proposed Flexible AC Transmission System (FACTS)/storage device to enable the maximum power output of a wind turbine while meeting the power system constraints on frequency and phase. The FACTS/storage device is required to operate as both a generator and load (energy storage) on the power system in this design. The Second Law of Thermodynamics is applied to the power flow equations to determine the stability boundaries (limit cycles) of the renewable generator system and enable design of feedback controllers that meet stability requirements while maximizing the power generation and flow to the load. Necessary and sufficient conditions for stability of renewable generators systems are determined based on the concepts of Hamiltonian systems, power flow, exergy (the maximum work that can be extracted from an energy flow) rate, and entropy rate.

Robinett, Rush D., III; Wilson, David Gerald

2010-05-01T23:59:59.000Z

358

Overland Tidal Power Generation Using Modular Tidal Prism  

SciTech Connect (OSTI)

Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (? 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

2010-03-01T23:59:59.000Z

359

A Look at Safety Goals and Safety Design Trends for Advanced Light Water Power Reactors  

Science Journals Connector (OSTI)

Technical Paper / NSF Workshop on the Research Needs of the Next Generation Nuclear Power Technology / Nuclear Safety

David Okrent

360

Evaluation of performance of combined heat and power systems with dual power generation units (D-CHP).  

E-Print Network [OSTI]

?? In this research, a new combined heat and power (CHP) system configuration has been proposed that uses two power generation units (PGU) operating simultaneously… (more)

Knizley, Alta Alyce

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Short-term Wind Power Forecasting Using Advanced Statistical T.S. Nielsen1  

E-Print Network [OSTI]

Short-term Wind Power Forecasting Using Advanced Statistical Methods T.S. Nielsen1 , H. Madsen1 , H considered in the ANEMOS project for short-term fore- casting of wind power. The total procedure typically in for prediction of wind power or wind speed, estimating the uncertainty of the wind power forecast, and finally

Paris-Sud XI, Université de

362

Evaluation of Advanced Wind Power Forecasting Models Results of the Anemos Project  

E-Print Network [OSTI]

1 Evaluation of Advanced Wind Power Forecasting Models ­ Results of the Anemos Project I. Martí1.kariniotakis@ensmp.fr Abstract An outstanding question posed today by end-users like power system operators, wind power producers or traders is what performance can be expected by state-of-the-art wind power prediction models. This paper

Paris-Sud XI, Université de

363

Advanced Acid Gas Separation Technology for Clean Power and Syngas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Syngas Processing Systems Syngas Processing Systems Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications Air Products and Chemicals, Inc. Project Number: FE0013363 Project Description In this project, Air Products will operate a two-bed mobile system at the National Carbon Capture Center (NCCC) facility. A slipstream of authentic, high-hydrogen syngas based on low-rank coal will be evaluated as the feedstock. Testing will be conducted for approximately eight weeks, thereby providing far longer adsorbent exposure data than demonstrated to date. By utilizing real-world, high- hydrogen syngas, information necessary to understand the utility of the system for methanol production will be made available. In addition, Air Products will also operate a multi-bed PSA process development unit (PDU), located at its Trexlertown, PA headquarters, to evaluate the impact of incorporating pressure equalization steps in the process cycle. This testing will be conducted utilizing a sulfur-free, synthetic syngas, and will improve the reliability of the prediction of the system's operating performance at commercial scale.

364

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

power system modeling, wind energy I. I NTRODUCTION Generating electricity from wind technology has several advantages

Hand, Maureen

2008-01-01T23:59:59.000Z

365

Low-power electricity generation from dynamical systems  

Science Journals Connector (OSTI)

This talk will review our research on energy harvesting from electroelastic dynamical systems for low-power electricity generation with an emphasis on piezoelectric transduction. The transformation of vibrations into electricity using piezoelectric materials with the goal of powering small electronic components has received growing attention over the last decade. Enabling energy-autonomous small electronic components can lead to reduced maintenance costs in various wireless applications such as structural health monitoring of civil and military systems. After a brief discussion of energy harvesting methods for low-power electricity generation this talk will be focused on linear and nonlinear energy harvesting using piezoelectric materials through the topics of distributed-parameter electroelastic dynamics of energy harvesters performance and frequency bandwidth enhancement by exploiting nonlinear dynamic phenomena deterministic and stochastic excitation of monostable and bistable configurations effects of dissipative and inherent electroelastic nonlinearities electroaeroelastic flow energy harvesting using airfoil-based and bluff body-based configurations and enhanced harvesting of structure-borne propagating waves using elastoacoustic mirrors and metamaterial structures. A brief introduction to our efforts on multifunctional underwater thrust and power generation using flexible piezoelectric composites will also be given.

Alper Erturk

2013-01-01T23:59:59.000Z

366

Advanced virtual energy simulation training and research: IGCC with CO2 capture power plant  

SciTech Connect (OSTI)

In this presentation, we highlight the deployment of a real-time dynamic simulator of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture at the Department of Energy's (DOE) National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTARTM) Center. The Center was established as part of the DOE's accelerating initiative to advance new clean coal technology for power generation. IGCC systems are an attractive technology option, generating low-cost electricity by converting coal and/or other fuels into a clean synthesis gas mixture in a process that is efficient and environmentally superior to conventional power plants. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Fueled with coal, petroleum coke, and/or biomass, the gasification island of the simulated IGCC plant consists of two oxygen-blown, downward-fired, entrained-flow, slagging gasifiers with radiant syngas coolers and two-stage sour shift reactors, followed by a dual-stage acid gas removal process for CO{sub 2} capture. The combined cycle island consists of two F-class gas turbines, steam turbine, and a heat recovery steam generator with three-pressure levels. The dynamic simulator can be used for normal base-load operation, as well as plant start-up and shut down. The real-time dynamic simulator also responds satisfactorily to process disturbances, feedstock blending and switchovers, fluctuations in ambient conditions, and power demand load shedding. In addition, the full-scope simulator handles a wide range of abnormal situations, including equipment malfunctions and failures, together with changes initiated through actions from plant field operators. By providing a comprehensive IGCC operator training system, the AVESTAR Center is poised to develop a workforce well-prepared to operate and control commercial-scale gasification-based power plants capable of 90% pre-combustion CO{sub 2} capture and compression, as well as low sulfur, mercury, and NOx emissions. With additional support from the NETL-Regional University Alliance (NETL-RUA), the Center will educate and train engineering students and researchers by providing hands-on 'learning by operating' experience The AVESTAR Center also offers unique collaborative R&D opportunities in high-fidelity dynamic modeling, advanced process control, real-time optimization, and virtual plant simulation. Objectives and goals are aimed at safe and effective management of power generation systems for optimal efficiency, while protecting the environment. To add another dimension of realism to the AVESTAR experience, NETL will introduce an immersive training system with innovative three-dimensional virtual reality technology. Wearing a stereoscopic headset or eyewear, trainees will enter an interactive virtual environment that will allow them to move freely throughout the simulated 3-D facility to study and learn various aspects of IGCC plant operation, control, and safety. Such combined operator and immersive training systems go beyond traditional simulation and include more realistic scenarios, improved communication, and collaboration among co-workers.

Zitney, S.; Liese, E.; Mahapatra, P.; Bhattacharyya, D.; Provost, G.

2011-01-01T23:59:59.000Z

367

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating  

Open Energy Info (EERE)

Upstate New York Upstate New York Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 105, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation Upstate New York Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / Upstate New York- Reference Case (xls, 119 KiB) Quality Metrics Level of Review Peer Reviewed

368

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating  

Open Energy Info (EERE)

Northeast Northeast Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 102, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Generation Northeast Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / Northeast- Reference Case (xls, 119 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

369

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating  

Open Energy Info (EERE)

Long Island Long Island Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 104, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Long Island Renewable Energy Generation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / Long Island- Reference Case (xls, 118.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment

370

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating  

Open Energy Info (EERE)

NYC-Westchester NYC-Westchester Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 103, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Generation Fuel Westchester Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / NYC-Westchester- Reference Case (xls, 118.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment

371

Research on Low Voltage Ride through of Doubly-Fed Induction Generator Wind Power System  

Science Journals Connector (OSTI)

Due to the double fed induction generator’s(DFIG) advantage of controlling active and reactive power independently and partly power converter, DFIG is becoming a popular type of wind power generation system. However, the converter is quite sensitive ...

Yongfeng Ren; Hongyan Xu; Jianlin Li; Shuju Hu

2008-12-01T23:59:59.000Z

372

E&WR - Water-Energy Interface: Power Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

E&WR - Water-Energy Interface E&WR - Water-Energy Interface Mine Water for Thermoelectric Power Generation: A Modeling Framework The purpose of this study, conducted by the National Mine Land Reclamation Center at West Virginia University, is to develop and demonstrate a framework for assessing the costs, technical and regulatory aspects, and environmental benefits of using mine water for thermo-electric power generation. The framework provides a systematic process for evaluating the hydrologic, chemical, engineering, and environmental factors to be considered and evaluated in using mine water as an alternative to traditional freshwater supply. Development and demonstration of the framework involves the following activities: A field investigation and case study conducted for the proposed Beech Hollow Power Plant located in Champion, Pennsylvania. This 300 megawatt power plant has been proposed to burn coal refuse from the Champion coal refuse pile, which is the largest coal waste pile in Western Pennsylvania. The field study, based on previous mine pool research conducted by the National Mine Land Reclamation Center (NMLRC), identifies mine water sources sufficient to reliably supply the 2,000 to 3,000 gpm power plant water requirement.

373

Concentrated solar power in the future of electricity generation: a synthesis of reasons  

Science Journals Connector (OSTI)

...electricity generation. Experience...steam-Rankine coal-fired power plants, nuclear...defaults in generation units. Large...need to have a generation system with...the unitary power will have to...and natural gas. Evidently...

2013-01-01T23:59:59.000Z

374

The effects of energy storage properties and forecast accuracy on mitigating variability in wind power generation  

E-Print Network [OSTI]

Electricity generation from wind power is increasing worldwide. Wind power can offset traditional fossil fuel generators which is beneficial to the environment. However, wind generation is unpredictable. Wind speeds have ...

Jaworsky, Christina A

2013-01-01T23:59:59.000Z

375

Coal gasification for power generation. 2nd ed.  

SciTech Connect (OSTI)

The report gives an overview of the opportunities for coal gasification in the power generation industry. It provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered in the report include: An overview of coal generation including its history, the current market environment, and the status of coal gasification; A description of gasification technology including processes and systems; An analysis of the key business factors that are driving increased interest in coal gasification; An analysis of the barriers that are hindering the implementation of coal gasification projects; A discussion of Integrated Gasification Combined Cycle (IGCC) technology; An evaluation of IGCC versus other generation technologies; A discussion of IGCC project development options; A discussion of the key government initiatives supporting IGCC development; Profiles of the key gasification technology companies participating in the IGCC market; and A description of existing and planned coal IGCC projects.

NONE

2006-10-15T23:59:59.000Z

376

Boulder Wind Power Advanced Gearless Drivetrain: Cooperative Research and Development Final Report, CRADA Number CRD-12-00463  

SciTech Connect (OSTI)

The Boulder Wind Power (BWP) Advanced Gearless Drivetrain Project explored the application of BWP's innovative, axial-gap, air-core, permanent-magnet direct-drive generator in offshore wind turbines. The objective of this CRADA is to assess the benefits that result from reduced towerhead mass of BWP's technology when used in 6 MW offshore turbines installed on a monopile or a floating spar foundation.

Cotrell, J.

2013-04-01T23:59:59.000Z

377

Advanced Power Electronic Interfaces for Distributed Energy Systems, Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter  

SciTech Connect (OSTI)

Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report also analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.

Chakraborty, S.; Kroposki, B.; Kramer, W.

2008-11-01T23:59:59.000Z

378

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Faress Rahman; Nguyen Minh

2004-01-04T23:59:59.000Z

379

Nanodevices for generating power from molecules and batteryless sensing  

DOE Patents [OSTI]

A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.

Wang, Yinmin; Wang, Xianying; Hamza, Alex V.

2014-07-15T23:59:59.000Z

380

Nuclear Power Generation and Fuel Cycle Report 1996  

Gasoline and Diesel Fuel Update (EIA)

6) 6) Distribution Category UC-950 Nuclear Power Generation and Fuel Cycle Report 1996 October 1996 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Energy Information Administration/ Nuclear Power Generation and Fuel Cycle Report 1996 ii Contacts This report was prepared in the Office of Coal, Nuclear, report should be addressed to the following staff Electric and Alternate Fuels by the Analysis and Systems

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Information discovery applied to a power generation database  

SciTech Connect (OSTI)

An information discovery system is presented that extracts knowledge from databases in a form that is much more compact and easy to understand than the original set of records. The system was tested with a subset of a real power generation database of the Federal Commission of Electricity in Mexico (CFE = Comision Federal de Electricidad). The paper discusses a machine learning algorithm for induction of rules and the heuristics used to obtain the simplest rules that define the knowledge hidden in a database.

Rodriguez, G.; Hernandez, V. [Electrical Research Inst., Cuernavaca (Mexico). Information Systems Dept.

1996-11-01T23:59:59.000Z

382

Overview of the DOE Advanced Power Electronics and Electric Motor...  

Energy Savers [EERE]

electronics manufacturing plant in the US - Packaging innovations utilized by US OEM fuel cell vehicle * Advanced DCDC Converter - - Developed innovative packaging topologies...

383

California: Advanced 'Drop-In' Biofuels Power the Navy's Green...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvania Fueling the Navy's Great Green Fleet with Advanced Biofuels Cellana, Inc.'s Kona Demonstration Facility is working...

384

Advancing Next-Generation Energy in Indian Country (Fact Sheet)  

SciTech Connect (OSTI)

This fact provides information on the Strategic Technical Assistance Response Team (START) Program, a U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) initiative to provide technical expertise to support the development of next-generation energy projects in Indian Country.

Not Available

2012-08-01T23:59:59.000Z

385

Next Generation Power Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Next Generation Power Systems Inc Next Generation Power Systems Inc Jump to: navigation, search Name Next Generation Power Systems Inc. Place Pipestone, Minnesota Zip 56164 Sector Services, Wind energy Product NextGen is a full-service company that provides site analysis, maintenance, and installation services for small-scale wind turbines and PV systems. Coordinates 43.99413°, -96.317104° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.99413,"lon":-96.317104,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

386

Spin-on-doping for output power improvement of silicon nanowire array based thermoelectric power generators  

SciTech Connect (OSTI)

The output power of a silicon nanowire array (NWA)-bulk thermoelectric power generator (TEG) with Cu contacts is improved by spin-on-doping (SOD). The Si NWAs used in this work are fabricated via metal assisted chemical etching (MACE) of 0.01–0.02 ? cm resistivity n- and p-type bulk, converting ?4% of the bulk thickness into NWs. The MACE process is adapted to ensure crystalline NWs. Current-voltage and Seebeck voltage-temperature measurements show that while SOD mainly influences the contact resistance in bulk, it influences both contact resistance and power factor in NWA-bulk based TEGs. According to our experiments, using Si NWAs in combination with SOD increases the output power by an order of 3 under the same heating power due to an increased power factor, decreased thermal conductivity of the NWA and reduced Si-Cu contact resistance.

Xu, B., E-mail: bin.xu09@imperial.ac.uk; Fobelets, K. [Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, SW7 2BT London (United Kingdom)

2014-06-07T23:59:59.000Z

387

SLAC Next-Generation High Availability Power Supply  

SciTech Connect (OSTI)

SLAC recently commissioned forty high availability (HA) magnet power supplies for Japan's ATF2 project. SLAC is now developing a next-generation N+1 modular power supply with even better availability and versatility. The goal is to have unipolar and bipolar output capability. It has novel topology and components to achieve very low output voltage to drive superconducting magnets. A redundant, embedded, digital controller in each module provides increased bandwidth for use in beam-based alignment, and orbit correction systems. The controllers have independent inputs for connection to two external control nodes. Under fault conditions, they sense failures and isolate the modules. Power supply speed mitigates the effects of fault transients and obviates subsequent magnet standardization. Hot swap capability promises higher availability and other exciting benefits for future, more complex, accelerators, and eventually the International Linear Collider project.

Bellomo, P.; MacNair, D.; /SLAC; ,

2010-06-11T23:59:59.000Z

388

Advanced Thermal Interface Materials (TIMs) for Power Electronics (Presentation)  

SciTech Connect (OSTI)

This presentation describes our progress in the area of thermal interface materials for power electronics applications.

Narumanchi, S.

2009-05-01T23:59:59.000Z

389

STATEMENT OF CONSIDERATIONS REQUEST BY ALSTOM POWER, INC. FOR AN ADVANCE WAIVER OF DOMESTIC  

Broader source: Energy.gov (indexed) [DOE]

ALSTOM POWER, INC. FOR AN ADVANCE WAIVER OF DOMESTIC ALSTOM POWER, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE~FC26-G7NT43095, W(A)-GS-G44, CH·1457 The Petitioner, Alstom Power, Inc., was awarded this cooperative agreement for the performance of work entitled, "Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping." The purpose of the cooperative agreement is to develop computational process models and a process control dynamic simulator suitable for use in investigation, development, and prototype implementation of advanced sensing and control systems for the chemical looping power plant. The overall project goal is to develop advanced multivariable optimizing controls integrated early into the process

390

Impacts of dynamic reactive power compensation devices on the performance of wind power generators  

Science Journals Connector (OSTI)

This paper investigates the main impacts of dynamic reactive power compensation devices on the performance of induction machine-based wind power generators. The dynamic reactive power compensation devices analysed are the SVC (Static Var Compensator) and the DSTATCOM (Distributed Static Synchronous Compensator). The usage of these devices as a power factor regulator or a voltage regulator is investigated. The technical factors analysed are small-signal voltage stability, transient stability and interactions with the anti-islanding protection system. The analyses are carried out by using a wind farm composed of 30 units of 1 MW induction generators. Such wind farm is connected to a 60 Hz, 33 kV distribution system. The results are a useful guideline to evaluate which control strategy and device are suitable for a determined application as well as to understand the dynamic interactions that can occur.

Walmir Freitas; Mauricio B.C. Salles; Jose C.M. Vieira; Andre Morelato; Luiz Carlos Pereira Da Silva; Vivaldo Fernando Da Costa

2005-01-01T23:59:59.000Z

391

Impact of wind power on generation economy and emission from coal based thermal power plant  

Science Journals Connector (OSTI)

The major chunk of power generation is based on coal fueled thermal power plant. Due to increasing demand of power there will be future crises of coal reservoirs and its costing. Apart from this, coal based thermal power plant is the main source of environmental emissions like carbon dioxides (CO2), sulfur dioxides (SO2) and oxides of nitrogen (NOx) which not only degrades the air quality but also is responsible for global warming, acid rain etc. This paper proposes a combined working of Doubly Fed Induction Generator (DFIG) with coal based Synchronous Generator (SG) in the MATLAB environment. STATCOM is suggested at common coupling point to maintain voltage stability and also maintain the system in synchronism. Analysis have been made for environmental emissions, coal requirement and system economy for both the cases, when the total load supplied by only SG and with the combination. Emission analysis have been also made with the application of washed coal in SG. With the impact of DFIG energy generation from SG have been reduces which proportionally affects on coal requirement, generation cost and environmental emissions. Application of washed coal improves the performance of SG and also reduces the environmental emissions.

K.B. Porate; K.L. Thakre; G.L. Bodhe

2013-01-01T23:59:59.000Z

392

REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF CBS CORPORATION, FOR AN  

Broader source: Energy.gov (indexed) [DOE]

COOPERATIVE COOPERATIVE AGREEMENT NO. DE-FC21-95MC32267; DOE WAIVER DOCKET W(A)-96-002 [ORO-620] Westinghouse Power Generation, a former division of CBS Corporation (hereinafter referred to as "the Participant"), has made a timely request for an advance waiver of worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Cooperative Agreement No. DE-FC21-95MC32267. The goal of this project is to continue development of the advance turbine system (ATS) technology and address the key barrier issues to its commercialization. In particular, the Participant will demonstrate (at an appropriate scale) the technology readiness of parts and subsystems critical to its gas-fired ATS. The work is sponsored by the Office of Fossil Energy. This cooperative agreement is Phase 3 of DOE's ATS

393

Power Generation Loading Optimization using a Multi-Objective Constraint-Handling Method via  

E-Print Network [OSTI]

results of the power generation loading optimization based on a coal-fired power plant demonstrates algorithm in solving significant industrial problems. I. INTRODUCTION Most power generation plants have.e., heat rate/NOx vs. load, for a given plant condition. There are two objectives for the power generation

Li, Xiaodong

394

Computer controlled MHD power consolidation and pulse generation system  

SciTech Connect (OSTI)

The major goal of this research project is to establish the feasibility of a power conversion technology which will permit the direct synthesis of computer programmable pulse power. Feasibility has been established in this project by demonstration of direct synthesis of commercial frequency power by means of computer control. The power input to the conversion system is assumed to be a Faraday connected MHD generator which may be viewed as a multi-terminal dc source and is simulated for the purpose of this demonstration by a set of dc power supplies. This consolidation/inversion (CI), process will be referred to subsequently as Pulse Amplitude Synthesis and Control (PASC). A secondary goal is to deliver a controller subsystem consisting of a computer, software, and computer interface board which can serve as one of the building blocks for a possible phase II prototype system. This report period work summarizes the accomplishments and covers the high points of the two year project. 6 refs., 41 figs.

Johnson, R.; Marcotte, K.; Donnelly, M.

1990-01-01T23:59:59.000Z

395

Review of recent advances of radioisotope power systems  

Science Journals Connector (OSTI)

Radioisotope power systems have demonstrated numerous advantages over other types of power supplies for long-lived, unattended applications in space and in remote terrestrial locations. Many especially challenging power applications can be satisfied by proper selection, design, and integration of the radioisotope heat source and the power conversion technologies that are now available or that can be developed. This paper provides a brief review of the factors influencing selection of radioisotopes and design of power systems, and discusses the current state of practice and future programmatic and technical challenges to continued use of radioisotope power systems in space.

Robert G. Lange; Wade P. Carroll

2008-01-01T23:59:59.000Z

396

Wireless multimedia sensor and actor networks for the next generation power grid  

Science Journals Connector (OSTI)

Electrical power grid is undergoing a major renovation, to meet the power quality and power availability demands of the 21st century. The new power grid, which is also called as the smart grid, aims to integrate the recent technological advancements ... Keywords: Electrical power grid, Smart grid, Wireless multimedia sensor and actor network

Melike Erol-Kantarci; Hussein T. Mouftah

2011-06-01T23:59:59.000Z

397

Blue Ruthenium Dimer Catalysis for Hydrogen Generation | Advanced Photon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A High-Pressure Nano-imaging Breakthrough A High-Pressure Nano-imaging Breakthrough Protein Structure Could Lead to Better Treatments for HIV, Early Aging The Superpower behind Iron Oxyfluoride Battery Electrodes Watching a Protein as it Functions Shedding Light on Chemistry with a Biological Twist Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Blue Ruthenium Dimer Catalysis for Hydrogen Generation APRIL 15, 2013 Bookmark and Share Key intermediates in the water oxidation catalytic cycle of the blue dimer characterized by x-ray spectroscopy. Optimization of the reactivity toward water (purple arrow) and oxidation of the resulting peroxo-intermediate (blue arrow) are needed for improved catalytic activity.

398

Recent advances in nuclear powered electric propulsion for space exploration  

Science Journals Connector (OSTI)

Nuclear and radioisotope powered electric thrusters are being developed as primary in space propulsion systems for potential future robotic and piloted space missions. Possible applications for high-power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent US high-power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high-power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems.

R. Joseph Cassady; Robert H. Frisbee; James H. Gilland; Michael G. Houts; Michael R. LaPointe; Colleen M. Maresse-Reading; Steven R. Oleson; James E. Polk; Derrek Russell; Anita Sengupta

2008-01-01T23:59:59.000Z

399

Photovoltaic solar system connected to the electric power grid operating as active power generator and reactive power compensator  

SciTech Connect (OSTI)

In the case of photovoltaic (PV) systems acting as distributed generation (DG) systems, the DC energy that is produced is fed to the grid through the power-conditioning unit (inverter). The majority of contemporary inverters used in DG systems are current source inverters (CSI) operating at unity power factor. If, however, we assume that voltage source inverters (VSI) can replace CSIs, we can generate reactive power proportionally to the remaining unused capacity at any given time. According to the theory of instantaneous power, the inverter reactive power can be regulated by changing the amplitude of its output voltage. In addition, the inverter active power can be adjusted by modifying the phase angle of its output voltage. Based on such theory, both the active power supply and the reactive power compensation (RPC) can be carried out simultaneously. When the insolation is weak or the PV modules are inoperative at night, the RPC feature of a PV system can still be used to improve the inverter utilisation factor. Some MATLAB simulation results are included here to show the feasibility of the method. (author)

Albuquerque, Fabio L.; Moraes, Adelio J.; Guimaraes, Geraldo C.; Sanhueza, Sergio M.R.; Vaz, Alexandre R. [Universidade Federal de Uberlandia, Uberlandia-MG, CEP 38400-902 (Brazil)

2010-07-15T23:59:59.000Z

400

Intelligent Power Management of a Hybrid Fuel Cell/Energy Storage Distributed Generator  

Science Journals Connector (OSTI)

This book chapter addresses the intelligent power management of a hybrid ( fuel cell/energy storage( distributed generator connected to a power grid. It presents...

Amin Hajizadeh; Ali Feliachi; Masoud Aliakbar Golkar

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Development of an HTS hydroelectric power generator for the hirschaid power station  

Science Journals Connector (OSTI)

This paper describes the development and manufacture of a 1.7MW, 5.25kV, 28pole, 214rpm hydroelectric power generator consisting of superconducting HTS field coils and a conventional stator. The generator is to be installed at a hydro power station in Hirschaid, Germany and is intended to be a technology demonstrator for the practical application of superconducting technology for sustainable and renewable power generation. The generator is intended to replace and uprate an existing conventional generator and will be connected directly to the German grid. The HTS field winding uses Bi-2223 tape conductor cooled to about 30K using high pressure helium gas which is transferred from static cryocoolers to the rotor via a bespoke rotating coupling. The coils are insulated with multi-layer insulation and positioned over laminated iron rotor poles which are at room temperature. The rotor is enclosed within a vacuum chamber and the complete assembly rotates at 214rpm. The challenges have been significant but have allowed Converteam to develop key technology building blocks which can be applied to future HTS related projects. The design challenges, electromagnetic, mechanical and thermal tests and results are presented and discussed together with applied solutions.

Ruben Fair; Clive Lewis; Joseph Eugene; Martin Ingles

2010-01-01T23:59:59.000Z

402

Advanced Combustion | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion Advanced Combustion Combustion engines drive a large percentage of our nation's transportation vehicles and power generation and manufacturing facilities. Today's...

403

Evaluation of renewable energy development in power generation in Finland  

Science Journals Connector (OSTI)

Renewable energy resources have historically played an important role for heat/electricity generation in Finland. Although diffusion costs of renewable energy utilization are higher than fossil fuels and nuclear power plants other policy aspects and operation costs of renewables cover this gap particularly in high dependent countries to fossil fuels. The current paper discusses the role of renewable portfolio in the Finland's energy action plan during 2011–2020. A system dynamics model is constructed to evaluate different costs of renewable energy utilization by 2020. Results show that total costs of new capacities of renewable energy systems as well as operation and maintenance costs of current systems bring 7% saving compared to total costs of new natural gas power plants (as a sample for second scenario) in Finland.

Alireza Aslani; Petri Helo; Marja Naaranoja

2013-01-01T23:59:59.000Z

404

Application of membrane technology to power generation waters  

SciTech Connect (OSTI)

Three membrane technlogies (reverse osmosis, ultrafiltration, and electrodialysis) for wastewater treatment and reuse at electric generating power plants were examined. Recirculating condenser water, ash sluice water, coal pile drainage, boiler blowdown and makeup treatment wastes, chemical cleaning wastes, wet SO/sub 2/ scrubber wastes, and miscellaneous wastes were studied. In addition, membrane separation of toxic substances in wastewater was also addressed. Waste characteristics, applicable regulations, feasible membrane processes, and cost information were analyzed for each waste stream. A users' guide to reverse osmosis was developed and is provided in an appendix.

Tang, T.L.D.; Chu, T.J.; Boroughs, R.D.

1980-03-01T23:59:59.000Z

405

Gravitational wave generation in power-law inflationary models  

E-Print Network [OSTI]

We investigate the generation of gravitational waves in power-law inflationary models. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients. We show that, by looking at the interval of frequencies between 10^(-5) and 10^5 Hz and also at the GHz range, important information can be obtained, both about the inflationary period itself and about the thermalization regime between the end of inflation and the beginning of the radiation-dominated era. We thus deem the development of gravitational wave detectors, covering the MHz/GHz range of frequencies, to be an important task for the future.

Paulo M. Sá; Alfredo B. Henriques

2008-06-06T23:59:59.000Z

406

Method and apparatus for automated, modular, biomass power generation  

DOE Patents [OSTI]

Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

Diebold, James P. (Lakewood, CO); Lilley, Arthur (Finleyville, PA); Browne, Kingsbury III (Golden, CO); Walt, Robb Ray (Aurora, CO); Duncan, Dustin (Littleton, CO); Walker, Michael (Longmont, CO); Steele, John (Aurora, CO); Fields, Michael (Arvada, CO); Smith, Trevor (Lakewood, CO)

2011-03-22T23:59:59.000Z

407

Method and apparatus for automated, modular, biomass power generation  

DOE Patents [OSTI]

Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

Diebold, James P; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael; Smith, Trevor

2013-11-05T23:59:59.000Z

408

STATEMENT OF CONSIDERATIONS REQUEST BY SIEMENS WESTINGHOUSE POWER CORPORATION FOR AN ADVANCE  

Broader source: Energy.gov (indexed) [DOE]

SIEMENS WESTINGHOUSE POWER CORPORATION FOR AN ADVANCE SIEMENS WESTINGHOUSE POWER CORPORATION FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT No. DE-FC26-01NT41232 W(A)-02-020, CH-1103 The Petitioner, Siemens Westinghouse Power Corporation (Siemens), was awarded this cooperative agreement for the performance of work entitled, "On-Line Thermal Barrier Coating Monitor for Real-Time Failure Protection and Life Maximization." The purpose of the cooperative agreement is to develop and demonstrate an on-line thermal barrier coatingi (TBC) monitor for critical engine components, row 1 turbine blades and vanes. This on-line TBC monitor represents an important advancement toward achieving the program goals of improved reliability availability and maintainability (RAM) of existing and advanced gas turbine power plants by

409

DOE Announces Up to $5 Million to Support the Next Generation of Advanced  

Broader source: Energy.gov (indexed) [DOE]

Up to $5 Million to Support the Next Generation of Up to $5 Million to Support the Next Generation of Advanced Automotive Designers and Engineers DOE Announces Up to $5 Million to Support the Next Generation of Advanced Automotive Designers and Engineers February 16, 2011 - 12:00am Addthis WASHINGTON, DC - Energy Secretary Steven Chu today announced up to $5 million in funding to support Graduate Automotive Technology Education (GATE) Centers of Excellence. The GATE Centers will focus on educating a future workforce of automotive engineering professionals who will gain experience in developing and commercializing advanced automotive technologies. Today's announcement supports the Administration's goal of increasing American economic competitiveness by focusing on science, technology, engineering, and math (STEM) education to support job growth

410

GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012  

SciTech Connect (OSTI)

Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

Curran, Scott [ORNL; Theiss, Timothy J [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

411

Advanced Small Free?Piston Stirling Convertors for Space Power Applications  

Science Journals Connector (OSTI)

This paper reports on the current status of an advanced 35 We free?piston Stirling convertor currently being developed under NASA SBIR Phase II funding. Also described is a further advanced and higher performance ?80 watt free?piston convertor being developed by Sunpower and Boeing/Rocketdyne for NASA under NRA funding. Exceptional overall convertor (engine plus linear alternator) thermodynamic performance (greater than 50% of Carnot) with specific powers around 100 We /kg appear reasonable at these low power levels.

J. Gary Wood; Neill Lane

2004-01-01T23:59:59.000Z

412

Method and system for advancement of a borehole using a high power laser  

DOE Patents [OSTI]

There is provided a system, apparatus and methods for the laser drilling of a borehole in the earth. There is further provided with in the systems a means for delivering high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates, a laser bottom hole assembly, and fluid directing techniques and assemblies for removing the displaced material from the borehole.

Moxley, Joel F.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Zediker, Mark S.

2014-09-09T23:59:59.000Z

413

Air Cooling Technology for Advanced Power Electronics and Electric...  

Broader source: Energy.gov (indexed) [DOE]

OF AIR COOLING FOR USE WITH AUTOMOTIVE POWER ELECTRONICS Desikan Bharathan, Kenneth Kelly National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado, 80401...

414

An advanced model for the prediction of the total burnup-dependent self-powered rhodium detector response  

SciTech Connect (OSTI)

This paper presents an advanced method to generate the burnup dependent total response of a rhodium self-powered detector operating in a pressurized water reactor environment. Full use is made of advanced nodal neutronic and coupled electron-photon transport techniques. The method accounts for (1) the detailed energy and spatial dependence of the neutron activation of each detector segment in a three-dimensional representation, (2) the generation of electrons caused by both neutron and gamma interactions in all the geometrical regions of the detector, and (3) the transport of the electrons within the detector to provide an observable current. All components of the detector signal are directly calculated - the method does not require the use of any empirical data, such as detector sensitivities. Intermediate results, such as beta escape fractions, were compared to measured data, and the overall technique was extensively benchmarked against operating data from three reactors.

Ober, T.G. [Entergy Operations, Inc., Jackson, MS (United States); Malloy, J.W. [Tetra Engineering Group, Simsbury, CT (United States)

1995-12-31T23:59:59.000Z

415

Tracking new coal-fired power plants: coal's resurgence in electric power generation  

SciTech Connect (OSTI)

This information package is intended to provide an overview of 'Coal's resurgence in electric power generation' by examining proposed new coal-fired power plants that are under consideration in the USA. The results contained in this package are derived from information that is available from various tracking organizations and news groups. Although comprehensive, this information is not intended to represent every possible plant under consideration but is intended to illustrate the large potential that exists for new coal-fired power plants. It should be noted that many of the proposed plants are likely not to be built. For example, out of a total portfolio (gas, coal, etc.) of 500 GW of newly planned power plant capacity announced in 2001, 91 GW have been already been scrapped or delayed. 25 refs.

NONE

2007-05-01T23:59:59.000Z

416

The Prospects for Closed Cycle M.P.D. Power Generation  

Science Journals Connector (OSTI)

...P.D. Power Generation B. C. Lindley...cycles (direct nuclear, indirect nuclear...on combustion or nuclear energy, to the...restrictions. Nuclear reactors to provide temperatures...p.d. power generation is mainly in progress...

1967-01-01T23:59:59.000Z

417

Cost–Performance Analysis and Optimization of Fuel-Burning Thermoelectric Power Generators  

Science Journals Connector (OSTI)

Energy cost analysis and optimization of thermoelectric (TE) power generators burning fossil fuel show a lower initial cost ... The produced heat generates electric power. Unlike waste heat recovery systems, the ...

Kazuaki Yazawa; Ali Shakouri

2013-07-01T23:59:59.000Z

418

Thermodynamic and Energy Efficiency Analysis of Power Generation from Natural Salinity Gradients by Pressure Retarded Osmosis  

Science Journals Connector (OSTI)

The Gibbs free energy of mixing dissipated when fresh river water flows into the sea can be harnessed for sustainable power generation. Pressure retarded osmosis (PRO) is one of the methods proposed to generate power from natural salinity gradients. In ...

Ngai Yin Yip; Menachem Elimelech

2012-04-02T23:59:59.000Z

419

High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation  

Science Journals Connector (OSTI)

High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation ... These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solns., such as thermolytic salts. ... saline brines because of the higher power d. ...

Jun Gao; Wei Guo; Dan Feng; Huanting Wang; Dongyuan Zhao; Lei Jiang

2014-08-19T23:59:59.000Z

420

Electric Power Generation from Co-Produced and Other Oil Field...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electric Power Generation from Co-Produced and Other Oil Field Fluids Electric Power Generation from Co-Produced and Other Oil Field Fluids Co-produced and low-temperature...

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

REQUEST BY SIEMENS WESTINGHOUSE POWER CORPORATION FOR AN ADVANCE...  

Broader source: Energy.gov (indexed) [DOE]

This system is expected to exhibit electrical generating efficiency approaching 72% using natural gas fuel. The work is sponsored by the Office of Fossil Energy. The dollar amount...

422

Geothermal, an alternate energy source for power generation  

SciTech Connect (OSTI)

The economic development of nations depends on an escalating use of energy sources. With each passing year the dependence increases, reaching a point where the world will require, in the next six years, a volume of energetics equal to that consumed during the last hundred years. Statistics show that in 1982 about 70% of the world's energy requirements were supplied by oil, natural gas and coal. The remaining 30% came from other sources such as nuclear energy, hydroelectricity, and geothermal. In Mexico the situation is more extreme. For the same year (1982) 85% of the total energy consumed was supplied through the use of hydrocarbons, and only 15% through power generated by the other sources of electricity. Of the 15%, 65% used hydrocarbons somewhere in the power generation system. Geothermal is an energy source that can help solve the problem, particularly in Mexico, because the geological and structural characteristics of Mexico make it one of the countries in the world with a tremendous geothermal potential. The potential of geothermal energy for supplying part of Mexico's needs is discussed.

Espinosa, H.A.

1985-02-01T23:59:59.000Z

423

EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory  

Broader source: Energy.gov [DOE]

This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.

424

A Game Strategy for Power Flow Control of Distributed Generators in Smart Grids  

Science Journals Connector (OSTI)

We consider the distributed power control problem of distributed generators(DGs) in smart grid. In order...

Jianliang Zhang; Donglian Qi; Guoyue Zhang…

2014-01-01T23:59:59.000Z

425

Electric Power Generation from Low-Temperature Geothermal Resources  

Open Energy Info (EERE)

Low-Temperature Geothermal Resources Low-Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Low-Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The team of university and industry engineers, scientists, and project developers will evaluate the power capacity, efficiency, and economics of five commercially available ORC engines in collaboration with the equipment manufacturers. The geothermal ORC system will be installed at an oil field operated by Continental Resources, Inc. in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be operated and monitored for two years to develop engineering and economic models for geothermal ORC energy production. Data and experience acquired can be used to facilitate the installation of similar geothermal ORC systems in other oil and gas settings.

426

Modelling fly ash generation for UK power station coals  

SciTech Connect (OSTI)

An in-depth characterization has been made of three UK bituminous coals and the combustion products from these coals when burned at a power station and on a range of experimental combustion facilities. The coals were chosen to represent the range of ash compositions and slagging propensities found at UK power stations. CCSEM analysis of the pulverized coals has been performed to provide quantitative data on the size and chemical composition of individual mineral occurrences, and to determine the nature of the mineral-mineral and mineral-organic associations in the pulverized fuel. In a similar way the size and chemical composition of individual fly ash particle has been determined. The mineral-mineral association information has been used to predict the effects of mineral coalescence, the dominant mineral transformation process for UK power station coals. The CCSEM information correctly identifies the types of mineral-mineral association and hence the predicted effects of coalescence. The limitations of the information are inherent in the analysis of a cross-section, but useful information for the modelling of ash generation may still be obtained.

Wigley, F.; Williamson, J. [Imperial Coll., London (United Kingdom). Dept. of Materials

1996-12-31T23:59:59.000Z

427

Subsystem Interaction Analysis in Power Distribution Systems of Next Generation Airlifters  

E-Print Network [OSTI]

1 Subsystem Interaction Analysis in Power Distribution Systems of Next Generation Airlifters Sriram power distribution system of a next generation transport aircraft is addressed. Detailed analysis with the analysis of subsystem integration in power distribution systems of next generation transport aircraft

Lindner, Douglas K.

428

Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation  

E-Print Network [OSTI]

Stirling Engines for Low-Temperature Solar-Thermal- Electric Power Generation Artin Der Minassians-Temperature Solar-Thermal-Electric Power Generation by Artin Der Minassians Karshenasi (Amirkabir University-Temperature Solar-Thermal-Electric Power Generation Copyright c 2007 by Artin Der Minassians #12;1 Abstract Stirling

Sanders, Seth

429

Electric Power Generation Systems | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Data Baseline Studies Quality Guidelines (QGESS) About Energy Analysis Coal gasification-based power plants Coal combustion-based power plants Natural gas-fueled power...

430

Advanced Sensor Diagnostics in Nuclear Power Plant Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensor Diagnostics in Nuclear Power Plant Applications Sensor Diagnostics in Nuclear Power Plant Applications R.B. Vilim Argonne National Laboratory Sensor degradation occurs routinely during nuclear power plant operation and can contribute to reduced power production and less efficient plant operation. Mechanisms include drift of sensor electronics and mechanical components, fouling and erosion of flow meter orifice plates, and general degradation of thermocouples. One solution to this problem is the use of higher quality instrumentation and of physical redundancy. This, however, increases plant cost and does not address the degradation problem in a fundamental way. An alternative approach is to use signal processing algorithms to detect a degraded sensor and to construct a replacement value using an

431

A Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission, and Consumption  

E-Print Network [OSTI]

the economics of power production. For example, new gas-fired combined cycle power plants are more effi- cientA Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission the behavior of the various decision-makers, who operate in a decentralized manner and include power generators

Nagurney, Anna

432

Design, fabrication, and certification of advanced modular PV power systems. Final technical progress report  

SciTech Connect (OSTI)

Solar Electric Specialties Company (SES) has completed a two and a half year effort under the auspices of the US Department of Energy (DOE) PVMaT (Photovoltaic Manufacturing Technology) project. Under Phase 4A1 of the project for Product Driven System and Component Technology, the SES contract ``Design, Fabrication and Certification of Advanced Modular PV Power Systems`` had the goal to reduce installed system life cycle costs through development of certified (Underwriters Laboratories or other listing) and standardized prototype products for two of the product lines, MAPPS{trademark} (Modular Autonomous PV Power Supply) and Photogensets{trademark}. MAPPS are small DC systems consisting of Photovoltaic modules, batteries and a charge controller and producing up to about a thousand watt-hours per day. Photogensets are stand-alone AC systems incorporating a generator as backup for the PV in addition to a DC-AC inverter and battery charger. The program tasks for the two-year contract consisted of designing and fabricating prototypes of both a MAPPS and a Photogenset to meet agency listing requirements using modular concepts that would support development of families of products, submitting the prototypes for listing, and performing functionality testing at Sandia and NREL. Both prototypes were candidates for UL (Underwriters Laboratories) listing. The MAPPS was also a candidate for FM (Factory Mutual) approval for hazardous (incendiary gases) locations.

Lambarski, T.; Minyard, G. [Solar Electric Specialties Co., Willits, CA (United States)

1998-10-01T23:59:59.000Z

433

Hubei Shenzhou New Energy Power Generation Stock Co Ltd | Open Energy  

Open Energy Info (EERE)

Hubei Shenzhou New Energy Power Generation Stock Co Ltd Hubei Shenzhou New Energy Power Generation Stock Co Ltd Jump to: navigation, search Name Hubei Shenzhou New Energy Power Generation Stock Co Ltd Place Hubei Province, China Sector Biomass Product Hubei-based biomass power project developer. References Hubei Shenzhou New Energy Power Generation Stock Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Hubei Shenzhou New Energy Power Generation Stock Co Ltd is a company located in Hubei Province, China . References ↑ "Hubei Shenzhou New Energy Power Generation Stock Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Hubei_Shenzhou_New_Energy_Power_Generation_Stock_Co_Ltd&oldid=346655

434

Projects Aimed at Advancing State-of-the-Art Carbon Capture from Coal Power  

Broader source: Energy.gov (indexed) [DOE]

Projects Aimed at Advancing State-of-the-Art Carbon Capture from Projects Aimed at Advancing State-of-the-Art Carbon Capture from Coal Power Plants Selected for Further Development Projects Aimed at Advancing State-of-the-Art Carbon Capture from Coal Power Plants Selected for Further Development August 15, 2011 - 1:00pm Addthis Washington, DC - Four projects aimed at reducing the energy and cost penalties of advanced carbon capture systems applied to power plants have been selected for further development by the U.S. Department of Energy's Office of Fossil Energy (FE). Valued at approximately $67 million (including $15 million in non-federal cost sharing) over four years, the overall goal of the research is to develop carbon dioxide (CO2) capture and separation technologies that can achieve at least 90 percent CO2 removal at no more than a 35 percent

435

DOE Selects Nine New University Coal Research Projects to Advance Coal-Based Power  

Broader source: Energy.gov (indexed) [DOE]

Selects Nine New University Coal Research Projects to Advance Coal-Based Power Selects Nine New University Coal Research Projects to Advance Coal-Based Power Systems Nine new projects selected by the U.S. Department of Energy (DOE) under the University Coal Research program will seek long-term solutions for the clean and efficient use of our nation's abundant coal resources. The announcement today of the selections marks the 34 th round of the Department's longest-running coal program, which began in 1979. This research continues DOE efforts to improve the understanding of the chemical and physical processes governing coal conversion and utilization, and support the technological development of the advanced coal power systems of the future. These advanced systems include ultra-clean

436

Coal-fired high performance power generating system. Quarterly progress report, April 1--June 30, 1993  

SciTech Connect (OSTI)

This report covers work carried out under Task 2, Concept Definition and Analysis, Task 3, Preliminary R&D and Task 4, Commercial Generating Plant Design, under Contract AC22-92PC91155, ``Engineering Development of a Coal Fired High Performance Power Generation System`` between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of: >47% thermal efficiency; NO{sub x}, SO{sub x} and Particulates {le}25% NSPS; cost {ge}65% of heat input; all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW{sub e} combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. A survey of currently available high temperature alloys has been completed and some of their high temperature properties are shown for comparison. Several of the most promising candidates will be selected for testing to determine corrosion resistance and high temperature strength. The corrosion resistance testing of candidate refractory coatings is continuing and some of the recent results are presented. This effort will provide important design information that will ultimately establish the operating ranges of the HITAF.

Not Available

1993-11-01T23:59:59.000Z

437

Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D Annual Progress Report  

Broader source: Energy.gov [DOE]

The Advanced Power Electronics and Electric Machinery subprogram within the DOE Vehicle Technologies Office provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric machinery technologies that will leapfrog current on-the-road technologies.

438

Electric Arc Locator in Photovoltaic Power Systems Using Advanced Signal Processing Techniques  

E-Print Network [OSTI]

in detecting the partial discharges associated with the production of an electric arc in a high voltage power in fault detection and localization. In [1] we have shown that electric arc (or partial dischargeElectric Arc Locator in Photovoltaic Power Systems Using Advanced Signal Processing Techniques

Paris-Sud XI, Université de

439

Project Profile: Advanced Nitrate Salt Central Receiver Power Plant  

Broader source: Energy.gov [DOE]

Abengoa, under the Baseload CSP FOA, will demonstrate a 100-megawatt electrical (MWe) central receiver plant using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator.

440

REQUEST BY BALLARD POWER SYSTEMS CORPORATION FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN  

Broader source: Energy.gov (indexed) [DOE]

BALLARD POWER SYSTEMS CORPORATION FOR AN BALLARD POWER SYSTEMS CORPORATION FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER UT- BATTELLE, LLC SUBCONTRACT NO. 4000029752 UNDER PRIME CONTRACT NO. DE-AC05-00OR22725; DOE WAIVER DOCKET W(A)- 04-055 [ORO-790] Ballard Power Systems Corporation (Ballard) has made a timely request for an advance waiver of worldwide rights in Subject Inventions made in the course of or under UT- Battelle, LLC Subcontract No. 4000029752, entitled, "Research and Development of Fuel Cell & Advanced Vehicle Power Electronics and Machinery Applications" under UT-Battelle Prime Contract No. DE-AC05-00OR22725. The scope of work involves designing, developing, testing and delivering 4 prototype high voltage to 14V dc-to-dc

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

STATEMENT OF CONSIDERATIONS 'REQUEST BY GENERAL ELECTRIC POWER SYSTEMS, FOR AN ADVANCE WAIVER  

Broader source: Energy.gov (indexed) [DOE]

'REQUEST BY GENERAL ELECTRIC POWER SYSTEMS, FOR AN ADVANCE WAIVER 'REQUEST BY GENERAL ELECTRIC POWER SYSTEMS, FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE. COOPERATIVE AGREEMENT NO. DE-FC26-03NT41448; W(A)-03-043, CH1164 The Petit;oner, General Electric Power Systems (GEPS), was awarded this cooperative agreement for the performance of work entitled, "Enabling and Information Technology to Increase RAM for Advanced Power Plants" The purpose of the cooperative agreement is to develop, validate and accelerate the commercial use of enabling technologies for coal/Integratec Gasification Combined Cycle (IGCC) powerplant condition assessment and condition based maintenance. The purpose of condition assessment is the real-time, automatic extraction of useful information from operating

442

High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August, 2000 - July 2001  

SciTech Connect (OSTI)

OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August 2000 - July 2001. Currently no large scale, cost-effective, environmentally attractive hydrogen production process is available for commercialization nor has such a process been identified. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Carbon dioxide emissions from fossil fuel combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. The benefits of this work will include the generation of a low-polluting transportable energy feedstock in an efficient method that has little or no implication for greenhouse gas emissions from a primary energy source whose availability and sources are domestically controlled. This will help to ensure energy for a future transportation/energy infrastructure that is not influenced/controlled by foreign governments. This report describes work accomplished during the second year (Phase 2) of a three year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first year (Phase 1) was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water, in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most, three) for further detailed consideration. Phase 1 met its goals and did select one process, the sulfur-iodine process, for investigation in Phases 2 and 3. The combined goals of Phases 2 and 3 were to select the advanced nuclear reactor best suited to driving the selected thermochemical process and to define the selected reactor and process to the point that capital costs, operating costs and the resultant cost of hydrogen can be estimated. During original contract negotiation, it was necessary to reduce work scope to meet funding limits. As a result, the reactor interface and process will not be iterated to the point that only hydrogen is produced. Rather, hydrogen and electricity will be co-generated and the hydrogen cost will be stated as a function of the electricity sales price.

Brown, L.C.

2002-11-01T23:59:59.000Z

443

SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION  

SciTech Connect (OSTI)

This report summarizes the work performed by Honeywell during the July 2001 to September 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. An internal program kickoff was held at Honeywell in Torrance, CA. The program structure was outlined and the overall technical approach for the program was presented to the team members. Detail program schedules were developed and detailed objectives were defined. Initial work has begun on the system design and pressurized SOFC operation.

Unknown

2002-03-01T23:59:59.000Z

444

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect (OSTI)

This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet} Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed

Nguyen Minh

2002-03-31T23:59:59.000Z

445

Permit compliance monitoring for the power generation industry  

SciTech Connect (OSTI)

The Clean Air Act Amendments (CAAA) of 1990 authorized EPA to develop regulations requiring facilities to monitor the adequacy of emission control equipment and plant operations. Furthermore, under the CAAA, EPA is required to issue regulations to require owners and operators of large industrial facilities to enhance air pollution monitoring and certify compliance with air pollution regulations. The fossil-fueled power generation industry has been targeted with the promulgation of the Acid Rain Program regulations of 40 CFR 72, and the Continuous Emissions Monitoring requirements of 40 CFR 75. The Part 75 regulations, with a few exceptions, establish requirements for monitoring, recordkeeping, and reporting of sulfur dioxide, nitrogen oxides, and carbon dioxide emissions, volumetric flow, and opacity data from affected units under the Acid Rain Program. Depending upon the type of unit and location, other applicable emission limitations may apply for particulate emissions (both total and PM-10), carbon monoxide, volatile organic compounds and sulfuric acid mist.

Macak, J.J. III [Mostardi-Platt Associates, Inc., Elmhurst, IL (United States); Platt, T.B. [Commonwealth Edison Company, Waukegan, IL (United States); Miller, S.B. [Commonwealth Edison Company, Chicago, IL (United States)

1996-12-31T23:59:59.000Z

446

Fuel cell power plants in a distributed generator application  

SciTech Connect (OSTI)

ONSI`s (a subsidiary of International Fuel Cells Corporation) world wide fleet of 200-kW PC25{trademark} phosphoric acid fuel cell power plants which began operation early in 1992 has shown excellent performance and reliability in over 1 million hours of operation. This experience has verified the clean, quiet, reliable operation of the PC25 and confirmed its application as a distributed generator. Continuing product development efforts have resulted in a one third reduction of weight and volume as well as improved installation and operating characteristics for the PC25 C model. Delivery of this unit began in 1995. International Fuel Cells (IFC) continues its efforts to improve product design and manufacturing processes. This progress has been sustained at a compounded rate of 10 percent per year since the late 1980`s. These improvements will permit further reductions in the initial cost of the power plant and place increased emphasis on market development as the pacing item in achieving business benefits from the PC25 fuel cell. Derivative product opportunities are evolving with maturation of the technologies in a commercial environment. The recent announcement of Praxair, Inc., and IFC introducing a non-cryogenic hydrogen supply system utilizing IFC`s steam reformer is an example. 11 figs.

Smith, M.J. [International Fuel Cells Corp., South Windsor, CT (United States)

1996-12-31T23:59:59.000Z

447

DOE`s high performance power systems program: Development of advanced coal-fired combined-cycle systems  

SciTech Connect (OSTI)

Coal currently provides more than one third of the world`s electricity and more than one half of the US`s electricity. However, for coal to be the fuel of choice in the future, highly efficient, environmentally acceptable, and economically competitive, coal-fired power plants are needed. The US Department of Energy, Federal Energy Technology Center, under its High Performance Power Systems (HIPPS) Program, has two contracts in place, one with Foster Wheeler Development Corporation and one with United Technologies Research Center, to develop advanced power generation systems. Based on an indirectly fired cycle, HIPPS uses a combined cycle for power generation at efficiencies of 47--50% (HHV) with superior environmental performance (1/10 of New Source Performance Standards) and a lower cost-of-electricity (10% reduction relative to current coal-fired plants). HIPPS, scheduled to be ready for commercialization by the year 2005, could provide a solution to the anticipated worldwide demand for clean, efficient electricity generation. In this paper, the two HIPPS designs are reviewed and on-going research is discussed.

Ruth, L.; Plasynski, S.; Shaffer, F. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center; Ramezan, M. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1997-09-01T23:59:59.000Z

448

Coal-fired high performance power generating system. Quarterly progress report, July 1, 1993--September 30, 1993  

SciTech Connect (OSTI)

This report covers work carried out under Task 3, Preliminary Research and Development, and Task 4, Commercial Generating Plant Design, under contract DE-AC22-92PC91155, {open_quotes}Engineering Development of a Coal Fired High Performance Power Generation System{close_quotes} between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of >47% thermal efficiency; NO{sub x}, SO{sub x}, and particulates {le} 25% NSPS; cost {ge} 65% of heat input; and all solid wastes benign. The report discusses progress in cycle analysis, chemical reactor modeling, ash deposition rate calculations for HITAF (high temperature advanced furnace) convective air heater, air heater materials, and deposit initiation and growth on ceramic substrates.

Not Available

1993-12-31T23:59:59.000Z

449

Steam Power Stations for Electricity and Heat Generation  

Science Journals Connector (OSTI)

Power plants produce electricity, process heat or district heating, according to their task (Stultz and Kitto 1992). Electric power is the only product of a condensation power plant and the main product of a p...

Dr. Hartmut Spliethoff

2010-01-01T23:59:59.000Z

450

Stochastic Co-optimization for Hydro-Electric Power Generation  

E-Print Network [OSTI]

in three hydroelectric power plants and is currently constructing a fourth, earns income from power sales and maintain stable towns close to the river. We both get the benefits of improved hydroelectric power

451

Performance and emission characteristics of natural gas combined cycle power generation system with steam injection and oxyfuel combustion.  

E-Print Network [OSTI]

??Natural gas combined cycle power generation systems are gaining popularity due to their high power generation efficiency and reduced emission. In the present work, combined… (more)

Varia, Nitin

2014-01-01T23:59:59.000Z

452

PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.  

SciTech Connect (OSTI)

This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

Robinett, Rush D., III; Kukolich, Keith (Opal RT Technologies, Montreal, Quebec, Canada); Wilson, David Gerald; Schenkman, Benjamin L.

2010-06-01T23:59:59.000Z

453

Most Viewed Documents for Power Generation and Distribution:...  

Office of Scientific and Technical Information (OSTI)

Methods for Power Distribution Systems: Final Report Tom McDermott (2010) 34 Industrial Power Factor Analysis Guidebook. Electrotek Concepts. (1995) 29 Recovery of Water from...

454

Energy Datapalooza: Unleashing the Power of Open Data to Advance our Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Datapalooza: Unleashing the Power of Open Data to Advance Energy Datapalooza: Unleashing the Power of Open Data to Advance our Energy Future Energy Datapalooza: Unleashing the Power of Open Data to Advance our Energy Future October 22, 2012 - 12:11pm Addthis Missed the Energy Datapalooza on October 1st? Check out this wrap-up video. | Video by Kimberly Wade Secretary Chu Secretary Chu Former Secretary of Energy Todd Park U.S. Chief Technology Officer and Assistant to the President Nancy Sutley Chair, White House Council on Environmental Quality How can I participate? Watch the Energy Datapalooza live at whitehouse.gov/live. Editor's note: This article has been cross-posted from WhiteHouse.gov and updated with the Energy Datapalooza wrap-up video. Imagine it is a scorching hot summer day, and your smart phone beeps, asking if you'd like it to raise your home thermostat a degree or two to

455

Energy Datapalooza: Unleashing the Power of Open Data to Advance our Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Datapalooza: Unleashing the Power of Open Data to Advance Energy Datapalooza: Unleashing the Power of Open Data to Advance our Energy Future Energy Datapalooza: Unleashing the Power of Open Data to Advance our Energy Future October 22, 2012 - 12:11pm Addthis Missed the Energy Datapalooza on October 1st? Check out this wrap-up video. | Video by Kimberly Wade Secretary Chu Secretary Chu Former Secretary of Energy Todd Park U.S. Chief Technology Officer and Assistant to the President Nancy Sutley Chair, White House Council on Environmental Quality How can I participate? Watch the Energy Datapalooza live at whitehouse.gov/live. Editor's note: This article has been cross-posted from WhiteHouse.gov and updated with the Energy Datapalooza wrap-up video. Imagine it is a scorching hot summer day, and your smart phone beeps, asking if you'd like it to raise your home thermostat a degree or two to

456

DOE Selects Projects to Advance Technologies for the Co-Production of Power  

Broader source: Energy.gov (indexed) [DOE]

Advance Technologies for the Co-Production Advance Technologies for the Co-Production of Power and Hydrogen, Fuels or Chemicals from Coal-Biomass Feedstocks DOE Selects Projects to Advance Technologies for the Co-Production of Power and Hydrogen, Fuels or Chemicals from Coal-Biomass Feedstocks August 18, 2010 - 1:00pm Addthis Washington, DC - Eight projects that will focus on gasification of coal/biomass to produce synthetic gas (syngas) have been selected for further development by the U.S. Department of Energy (DOE). The total value of the projects is approximately $8.2 million, with $6.4 million of DOE funding and $1.8 million of non-Federal cost sharing. Syngas is a mixture of predominantly carbon monoxide and hydrogen which can subsequently be converted either to power, fuels, or chemicals. The

457

Time series power flow analysis for distribution connected PV generation.  

SciTech Connect (OSTI)

Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J. [Georgia Institute of Technology, Atlanta, GA; Smith, Jeff [Electric Power Research Institute, Knoxville, TN; Dugan, Roger [Electric Power Research Institute, Knoxville, TN

2013-01-01T23:59:59.000Z

458

Sustainable solar thermal power generation (STPG) technologies in Indian context  

SciTech Connect (OSTI)

India is a fast developing country. Some of the factors like population growth, industrialization, liberalization in economic policies, green revolution and awareness toward the environment, are increasing the electricity demand rapidly. As per the 14th Power Survey Report, an energy deficit of (+) 9% and peak demand deficit of (+) 18% have been estimated. Keeping in view the liberalization in economic policies, this deficit may be higher by the year 2000 AD. An estimation indicates that India is blessed with solar energy to the tune of 5 x 10{sup 15} kWh/yr. Being clean and inexhaustible source of energy, it can be used for large-scale power generation in the country. Keeping in view the present state-of-art technologies for STPG in MW range, best possible efforts are required to be made by all the concerned, to develop sustainable STPG technology of the future, specially for tropical regions. Standardization of vital equipment is an important aspect. There are a few required criteria like simple and robust technology, its transfer and adaptation in tropical climate conditions; high plant load factor without fossil-fired backup; availability of plant during evening peak and night hours; least use of fragile components, and capacity optimization for MW plants as per solar irradiance and environmental factors. In this paper, efforts have been made to compare the different STPG technologies. On the basis, of literature surveyed and studies carried out by the author, it may be stated that Central Receiver System technologies using molten salt and volumetric air receiver, along with molten salt and ceramic thermal storage respectively seems to be suitable and comparable in Indian context. Performance of SOLAR-TWO and PHOEBUS plants may be decisive.

Sharma, R.S. [Ministry of Non-Conventional Energy Sources, New Delhi (India). Solar Energy Centre

1996-12-31T23:59:59.000Z

459

REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF...  

Broader source: Energy.gov (indexed) [DOE]

the Contractor. Also indicative of the Contractor's continued advancement of combustion turbine technology, the Contractor has an extensive patent portfolio (see the list of...

460

Middle East fuel supply & gas exports for power generation  

SciTech Connect (OSTI)

The Middle East countries that border on, or are near, the Persian Gulf hold over 65% of the world`s estimated proven crude oil reserves and 32% of the world`s estimated proven natural gas reserves. In fact, approximately 5% of the world`s total proven gas reserves are located in Qatar`s offshore North Field. This large natural gas/condensate field is currently under development to supply three LNG export projects, as well as a sub-sea pipeline proposal to export gas to Pakistan. The Middle East will continue to be a major source of crude oil and oil products to world petroleum markets, including fuel for existing and future base load, intermediate cycling and peaking electric generation plants. In addition, as the Persian Gulf countries turn their attention to exploiting their natural gas resources, the fast-growing need for electricity in the Asia-Pacific and east Africa areas offers a potential market for both pipeline and LNG export opportunities to fuel high efficiency, gas-fired combustion turbine power plants. Mr. Mitchell`s portion of this paper will discuss the background, status and timing of several Middle Eastern gas export projects that have been proposed. These large gas export projects are difficult and costly to develop and finance. Consequently, any IPP developers that are considering gas-fired projects which require Mid-East LNG as a fuel source, should understand the numerous sources and timing to securing project debt, loan terms and conditions, and, restrictions/credit rating issues associated with securing financing for these gas export projects. Mr. Newendorp`s section of the paper will cover the financing aspects of these projects, providing IPP developers with additional considerations in selecting the primary fuel supply for an Asian-Pacific or east African electric generation project.

Mitchell, G.K. [Merrimack Energy Co., LTD, Lowell, MA (United States); Newendorp, T. [Taylor-DeJongh, Inc., Washington, DC (United States)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Impact of Wind Generation Variability on Voltage Profile of Radial Power Systems  

Science Journals Connector (OSTI)

This paper provides the results of a study conducted to assess the impacts of the "wind generation variability" on the voltage profile in a small-scale radial power system. The power network has been modeled using one of the well-known simulation programs ... Keywords: Wind Generation, Voltage Profile, Power Grids, Voltage Impacts, Minimum Singular Value, SSV index

M. O. Alruwaili; M. Y. Vaziri; S. Vadhva; S. Vaziri

2013-04-01T23:59:59.000Z

462

Optimal Placement of the Wind Generators in the Medium Voltage Power Grid  

Science Journals Connector (OSTI)

The minimization of power losses in the medium voltage (MV) grid requires adjustment of network of power sources. This problem is particularly important for renewable energy sources, for example for the farms of wind generators. Their placement and nominal ... Keywords: medium voltage power grid, wind generators, genetic algorithms, parallel processing

Andrzej Jordan; Ryszard Szczebiot; Carsten Maple; Slawomir Cieslik

2011-04-01T23:59:59.000Z

463

Modelling and Simulation of a Single Phase Grid Connected Using Photovoltaic and Battery Based Power Generation  

Science Journals Connector (OSTI)

Microgrid is a part of the power distribution system which uses renewable energy based of power generation connected to the grid system. Multi energy power generation is composed of renewable energy systems including photovoltaic, wind turbine, energy ... Keywords: Battery Storage, Inverter, Microgrid, Photovoltaic, Matlab/Simulink.

Alias Khamis; Azah Mohamed; Hussain Shareef; Afida Ayob; Mohd Shahrieel Mohd Aras

2013-11-01T23:59:59.000Z

464

The Prospects for Closed Cycle M.P.D. Power Generation  

Science Journals Connector (OSTI)

...P.D. Power Generation B. C. Lindley...indirect fired) which could...commercial power stations...the working gas plasma, emphasis...employing certain gases as the working...an indirect fired heat exchanger...p.d. power generation is mainly...

1967-01-01T23:59:59.000Z

465

A Brief History of Generative Models for Power Law and Lognormal Distributions  

E-Print Network [OSTI]

A Brief History of Generative Models for Power Law and Lognormal Distributions Michael Mitzenmacher generative models that lead to these distributions. One #12;nding is that lognormal and power law of an underlying generative model which suggested that #12;le sizes were better modeled by a lognormal distribution

Mitzenmacher, Michael

466

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

advanced coal-wind hybrid combined cycle power plant naturalwhen the wind generation drops, the power plant needs toa CSP plant, a wind plant produces power during all hours of

Phadke, Amol

2008-01-01T23:59:59.000Z

467

8.01 - Generating Electrical Power from Ocean Resources  

Science Journals Connector (OSTI)

Abstract Ocean energy resources derived from wind, waves, tidal or marine currents can be utilized and converted to large scale sustainable electrical power. Conversion technologies are easily adaptable and can be integrated within the current utility infrastructure. However, ocean energy has many forms - tides, surface waves, ocean circulation, salinity, and thermal gradients. The focus of this chapter is dedicated to two of these, namely waves and tidal energy. The first are the result of wind-driven waves derived ultimately from solar energy and the latter represents those found in tidal or marine currents, driven by gravitational effects. This chapter also gives an analysis of the current state of art of generating electricity from wave and tidal currents (termed ocean energy). Section 8.01.1 provides an overview of ocean wave and marine current energy conversion with more emphasis on the latter; Sections 8.01.2, 8.01.3, 8.01.4, and 8.01.5 address respectively the history of wave energy, wave resource assessment, wave device development, and air turbines; and Section 8.01.6 gives a review of the economics of ocean energy as applied to wave and tidal energy conversion technologies.

A.S. Bahaj

2012-01-01T23:59:59.000Z

468

Performance Diagnosis using Optical Torque Sensor for Selection of a Steam Supply Plant among Advanced Combined Cycle Power Plants  

Science Journals Connector (OSTI)

A newly developed optical torque sensor was applied to select a steam supply plant among advanced combined cycle, i.e. ACC, power plants of...

Shuichi Umezawa

2007-01-01T23:59:59.000Z

469

A modeling and control approach to advanced nuclear power plants with gas turbines  

Science Journals Connector (OSTI)

Abstract Advanced nuclear power plants are currently being proposed with a number of various designs. However, there is a lack of modeling and control strategies to deal with load following operations. This research investigates a possible modeling approach and load following control strategy for gas turbine nuclear power plants in order to provide an assessment way to the concept designs. A load frequency control strategy and average temperature control mechanism are studied to get load following nuclear power plants. The suitability of the control strategies and concept designs are assessed through linear stability analysis methods. Numerical results are presented on an advanced molten salt reactor concept as an example nuclear power plant system to demonstrate the validity and effectiveness of the proposed modeling and load following control strategies.

Günyaz Ablay

2013-01-01T23:59:59.000Z

470

Datang Jilin Resourceful New Energy Power Generation Co Ltd formerly known  

Open Energy Info (EERE)

Resourceful New Energy Power Generation Co Ltd formerly known Resourceful New Energy Power Generation Co Ltd formerly known as Roaring 40s and Datan Jump to: navigation, search Name Datang Jilin Resourceful New Energy Power Generation Co Ltd (formerly known as Roaring 40s and Datan Place Changchun, Jilin Province, China Sector Wind energy Product 49:51 JV between Roaring 40s and Datang Jilin Power Generation Co Ltd to build the 50 megawatt Shuangliao wind farm in Chinaâ€(tm)s Jilin province. References Datang Jilin Resourceful New Energy Power Generation Co Ltd (formerly known as Roaring 40s and Datan[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Datang Jilin Resourceful New Energy Power Generation Co Ltd (formerly known

471

Investigation on Control Issues in Power Converters for Advanced Micro-Grid Operations  

Science Journals Connector (OSTI)

This paper investigates a novel design concept, in which a hybrid power interface system (HPIS) is constructed to work smartly in various micro-grid (MG) operations. Some distributed generation (...

Tsao-Tsung Ma

2014-01-01T23:59:59.000Z

472

Qualification issues associated with the use of advanced instrumentation and control systems hardware in nuclear power plants  

SciTech Connect (OSTI)

The instrumentation and control (I&C) systems in advanced reactors will make extensive use of digital controls, microprocessors, multiplexing, and Tiber-optic transmission. Elements of these advances in I&C have been implemented on some current operating plants. However, the widespread use of the above technologies, as well as the use of artificial intelligence with minimum reliance on human operator control of reactors, highlights the need to develop standards for qualifying I&C used in the next generation of nuclear power plants. As a first step in this direction, the protection system I&C for present-day plants was compared to that proposed for advanced light water reactors (ALWRs). An evaluation template was developed by assembling a configuration of a safety channel instrument string for a generic ALWR, then comparing the impact of environmental stressors on that string to their effect on an equivalent instrument string from an existing light water reactor. The template was then used to address reliability issues for microprocessor-based protection systems. Standards (or lack thereof) for the qualification of microprocessor-based safety I&C systems were also identified. This approach addresses in part issues raised in Nuclear Regulatory Commission policy document SECY-91-292. which recognizes that advanced I&C systems for the nuclear industry are ``being developed without consensus standards, as the technology available for design is ahead of the technology that is well understood through experience and supported by application standards.``

Korsah, K. [Oak Ridge National Lab., TN (United States); Antonescu, C. [Nuclear Regulatory Commission, Rockville, MD (United States). Office of Nuclear Regulatory Research

1993-10-01T23:59:59.000Z

473

Environmental performance of power generation system in China based on LCA  

Science Journals Connector (OSTI)

In this study LCA (life cycle assessment) is used as a tool for the assessment of energy consumption and associated impacts generated from utilization of energy in various power generation systems in China. The details follow the methodology outlined in ISO14040. The scope of this research includes energy production energy transportation and energy utilization. The function unit of life cycle inventory is 1 kJ electricity power. Most of the inventory data have been collected from Yearbook of China. Compared to fuel?fired power generation system hydropower and nuclear power are more environment?friendly according to life cycle inventory analysis results so increasing the proportion of hydropower and nuclear power in the power industry has a significant improvement effect on the development of China’s power industry. The life cycle environmental impact of integrated power generation level in 2010 will be 13.8% lower than in 1999 according to National energy policy of China.

Xing Su; Xu Zhang; Yuan Yuan

2010-01-01T23:59:59.000Z

474

Current status of waste to power generation in Japan and resulting reduction of carbon dioxide emissions  

Science Journals Connector (OSTI)

We discuss the current status of waste to power generation (WPG) in Japan and various scenarios involving indirect reduction of carbon dioxide emissions by WPG. The number of WPG facilities ... power plants. If t...

Masaki Takaoka; Nobuo Takeda; Naruo Yamagata…

2011-10-01T23:59:59.000Z

475

Optimal Placement of Wind Generators in Medium Voltage Power Grids -- Investigations of Genetic Algorithm  

Science Journals Connector (OSTI)

The paper presents investigations of a genetic algorithm for computations of power losses in the MV power grid. In this case, the vector of start population PO0 and mutation likelihood was investigated. Diagrams of power losses in the grid dependent ... Keywords: genetic algorithm, wind generators, power grid, parallel processing, MPI

Andrzej Jordan; Carsten Maple; Ryszard Szczebiot; Lukasz Swierczewski

2011-04-01T23:59:59.000Z

476

SHORT TERM PREDICTIONS FOR THE POWER OUTPUT OF ENSEMBLES OF WIND TURBINES AND PV-GENERATORS  

E-Print Network [OSTI]

SHORT TERM PREDICTIONS FOR THE POWER OUTPUT OF ENSEMBLES OF WIND TURBINES AND PV-GENERATORS Hans. For the conventional power park, the power production of the wind turbines presents a fluctuating 'negative load PRODUCTION OF WIND TURBINES For the forecast of the power production of wind turbines two approaches may

Heinemann, Detlev

477

Utilization of renewably generated power in the chemical process industry  

Science Journals Connector (OSTI)

The chemical process industry, mainly the production of organic and inorganic ... On the contrary, the dependency of electricity supply in Germany on volatile wind and solar power increases. To use this power eff...

Julia Riese; Marcus Grünewald; Stefan Lier

2014-08-01T23:59:59.000Z

478

Innovation Framework for Generating Electricity from Wind Power  

Science Journals Connector (OSTI)

During this phase, wind power was characterized by continuing rapid increase in the capacity and technological differentiation of turbines, the scale of the wind farms and the beginnings of offshore wind power.

Prof. Dr. Elke Bruns; Dr. Dörte Ohlhorst…

2011-01-01T23:59:59.000Z

479

Reduction in subsidy for solar power as distributed electricity generation in Indian future competitive power market  

Science Journals Connector (OSTI)

Developed countries have seen renewable energy as a key tool for emission reduction as well as reducing reliance on oil gas and coal.Renewable energy sources (RESs) and technologies have potential to provide solutions to the longstanding energy problems being faced by the developing countries. In the future competitive electricity market for India it becomes very much important to give special consideration for development of RESs due to economic environmental and other social problems related with conventional generations.Solar energy can be an important part of India's plan not only to add new capacity but also to increase energy security and lead the massive market for renewable energy. The major problem with solar powergeneration (SPG) is high cost of renewable generation. The Indian government is providing a lot of subsidy in order to encourage renewable energygenerations. This paper presents an approach for reduction in subsidy of SPG used as distributed generator in competitive power market. The proposed approach has been validated with IEEE 14-bus and IEEE 30-bus systems.

Naveen Kumar Sharma; Yog Raj Sood

2012-01-01T23:59:59.000Z

480

Possible Locations for Gas-Fired Power Generation in Southern Germany  

Science Journals Connector (OSTI)

Gas-fired power generation has not only grown continuously in Europe, ... . Significant transport capacities in a high pressure gas grid are required to guarantee stable generation of gas-fired electricity. The p...

Joachim Müller-Kirchenbauer…

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.