Powered by Deep Web Technologies
Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity 2012 DOE Hydrogen...

2

DOE and Sweden Sign MOU to Advance Market Integration of Plug-in Hybrid  

Broader source: Energy.gov (indexed) [DOE]

Sweden Sign MOU to Advance Market Integration of Plug-in Sweden Sign MOU to Advance Market Integration of Plug-in Hybrid Vehicles DOE and Sweden Sign MOU to Advance Market Integration of Plug-in Hybrid Vehicles July 7, 2008 - 2:15pm Addthis GOTLAND, SWEDEN - U.S. Department of Energy's (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Director General of the Swedish Energy Agency, Tomas Kåberger today signed a memorandum of understanding (MOU) to collaboratively work on accelerating consumer acceptance and commercialization of plug-in hybrid vehicles. The MOU outlines a one year, $1 million cost-sharing arrangement that will be equally funded by DOE and the Swedish Energy Agency. "Today's announcement furthers the historic energy cooperation commitment between the United States and Sweden as we work together to advance the

3

Plug-in Hybrid Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plug-in Hybrid Links Plug-in Hybrid Links Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov Web site. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Plug-in Hybrid Vehicles and Manufacturers Chevrolet Volt Official site for the Chevrolet Volt Cadillac ELR Official site for the Cadillac ELR (arriving early 2014) Ford C-MAX Energi Plug-in Hybrid Official site for the C-MAX Energi Plug-in Hybrid Ford Fusion Energi Plug-in Hybrid Official site for the Fusion Energi Plug-in Hybrid Honda Accord Plug-in Official site for the Honda Accord Plug-in Hybrid Toyota Prius Plug-in Official site for the Toyota Prius Plug-in Hybrid Plug-in-Related Information and Tools

4

Project Information Form Project Title Advanced Energy Management Strategy Development for Plug-in Hybrid  

E-Print Network [OSTI]

,365 Total Project Cost $58,365 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates April 1, 2014Project Information Form Project Title Advanced Energy Management Strategy Development for Plug ­ September 30, 2015 Brief Description of Research Project Plug-in hybrid vehicles (PHEVs) have great

California at Davis, University of

5

Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

Not Available

2011-10-01T23:59:59.000Z

6

Plug-In Hybrid Electric Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Batteries * Batteries * Downloadable Dynanometer Database (D3) * Modeling * Prototypes * Testing * Assessment PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Argonne Leads DOE's Effort to Evaluate Plug-in Hybrid Technology aprf testing Argonne's Advanced Powertrain Research Facility (APRF) enables researchers to conduct vehicle benchmarking and testing activities that provide data critical to the development and commercialization of next-generation vehicles such as PHEVs. Argonne's Research Argonne National Laboratory is the U.S. Department of Energy's lead national laboratory for the simulation, validation and laboratory evaluation of plug-in hybrid electric vehicles and the advanced

7

How Plug-in Hybrids Save Money  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How Plug-in Hybrids Save Money How Plug-in Hybrids Save Money Plug-in hybrid recharging Plug-in hybrids reduce fuel costs by Using high-capacity batteries that allow them to operate on electricity from the outlet for significant distances-electricity typically costs less than half as much as gasoline Using a larger electric motor that typically allows the vehicle to use electricity at higher speeds than regular hybrids Using regenerative braking to recover energy typically wasted when you apply the brakes Plug-in hybrid designs differ, and your driving habits, especially the distance you drive between re-charging, can have a big effect on your fuel bill. My Plug-in Hybrid Calculator estimates gasoline and electricity costs for any available plug-in hybrid using your driving habits and fuel costs.

8

NREL: Vehicle Systems Analysis - Plug-In Hybrid Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles NREL's vehicle systems analysts work to advance the technology of plug-in hybrid electric vehicles (PHEVs), also known as grid-connected or grid-charged hybrids. Technology Targets and Metrics Analysis We use our Technical Targets Tool to determine pathways for maximizing the potential national impact of plug-in hybrid electric vehicles. This assessment includes consideration of how consumers will value the new vehicle technology based on attributes such as: Acceleration Fuel economy and consumption Cargo capacity Cost. We use the resulting competitiveness index to predict the vehicle's market penetration rate. Then, we can create a total national benefits picture after adding in other factors such as: Existing fleet turnover

9

Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

rravt068vssmiyasato2011o .pdf More Documents & Publications SCAQMD:Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid Electric...

10

Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Hybrid Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

11

Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Hybrid Plug-In Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids

12

Plug-In Hybrid Electric Vehicles - Prototypes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Prototypes Prototypes A PHEV prototype being prepared for testing. A plug-in electric vehicle (PHEV) prototype is prepared for testing at Argonne National Laboratory. What is a PHEV? A plug-in hybrid electric vehicle, or PHEV, is similar to today's hybrid electric vehicles on the market today, but with a larger battery that is charged both by the vehicle's gasoline engine and from plugging into a standard 110 V electrical outlet for a few hours each day. PHEVs and HEVs both use battery-powered motors and gasoline-powered engines for high fuel efficiency, but PHEVs can further reduce fuel usage by employing electrical energy captured through daily charging. Prototype as Rolling Test Bed As part of Argonne's multifaceted PHEV research program, Argonne researchers have constructed a PHEV prototype that serves as a rolling test

13

NREL: Transportation Research - Electric and Plug-In Hybrid Electric...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Electric and Plug-In Hybrid Electric Vehicles Work EVs use batteries to store the electric energy that powers the motor. EV...

14

Plug-In Hybrid Electric Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. This is the first review of what the impacts would be of very high market penetrations of PHEVs. Plug-In Hybrid Electric Vehicles More Documents & Publications

15

Hybrid and Plug-In Electric Vehicles (Brochure)  

SciTech Connect (OSTI)

Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

Not Available

2014-05-01T23:59:59.000Z

16

Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

and Peer Evaluation More Documents & Publications Clean Cities Recovery Act: Vehicle & Infrastructure Deployment Overview of the DOE Advanced Combustion Engine R&D Plug-In...

17

Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet  

SciTech Connect (OSTI)

The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GMs Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.

No, author

2013-09-29T23:59:59.000Z

18

Secretary Chu Announces up to $10 Million to Support Plug-In Hybrid  

Broader source: Energy.gov (indexed) [DOE]

0 Million to Support Plug-In Hybrid 0 Million to Support Plug-In Hybrid Electric School Buses Secretary Chu Announces up to $10 Million to Support Plug-In Hybrid Electric School Buses April 17, 2009 - 12:00am Addthis WASHINGTON, DC -- As part of the Department of Energy's commitment to advancing the next generation of electric vehicles in the United States, Energy Secretary Steven Chu today announced the selection of a new demonstration and testing project to develop a plug-in hybrid electric vehicle (PHEV) school bus to be used in fleets across the country. Navistar Corporation (Fort Wayne, IN) has been selected by the Department of Energy (DOE) for negotiation of a cost-shared award of up to $10 million to develop, test, and deploy an electric hybrid school bus. PHEVs will play an important role in achieving America's energy independence by

19

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

237253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

20

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEVs. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Microsoft Word - Plug-in Hybrids.doc  

Broader source: Energy.gov (indexed) [DOE]

Released on the Potential of Plug- Released on the Potential of Plug- In Hybrid Electric Vehicles JANUARY 2007 A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. This is the first review of what the impacts would be of very high market penetrations of PHEVs. Researchers also found that in the Midwest and East there is sufficient

22

DOE to Provide up to $14 Million to Develop Advanced Batteries for Plug-in  

Broader source: Energy.gov (indexed) [DOE]

to Provide up to $14 Million to Develop Advanced Batteries for to Provide up to $14 Million to Develop Advanced Batteries for Plug-in Hybrid Electric Vehicles DOE to Provide up to $14 Million to Develop Advanced Batteries for Plug-in Hybrid Electric Vehicles April 5, 2007 - 12:17pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it will provide up to $14 million in funding for a $28 million cost-shared solicitation by the United States Advanced Battery Consortium (USABC), for plug-in hybrid electric vehicle (PHEV) battery development. This research aims to find solutions to improving battery performance so vehicles can deliver up to 40 miles of electric range without recharging. This would include most roundtrip daily commutes. "President Bush is committed to developing alternative fuels and

23

Argonne Transportation - Plug-in Hybrid Electric Vehicle Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plug-in Hybrid Electric Vehicle Research Capabilities at Argonne National Laboratory and Idaho National Laboratory Plug-in Hybrid Electric Vehicle Research Capabilities at Argonne National Laboratory and Idaho National Laboratory Prius testing by Argonne researchers. The U.S. Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FCVT) Program is actively evaluating plug-in hybrid electric vehicle (PHEV) technology and researching the most critical technical barriers to commercializing PHEVs. Argonne National Laboratory, working together with Idaho National Laboratory, leads DOE's efforts to evaluate PHEVs and PHEV technology with the nation’s best vehicle technology evaluation tools and expertise. These two national laboratories are Centers for Excellence that combine state-of-the-art facilities; world-class expertise; long-term collaborative relationships with other DOE national laboratories, industry, and academia;

24

Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases...  

Energy Savers [EERE]

2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost Fact 595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings...

25

Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

6: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History Fact 796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales...

26

Emissions and Fuel Consumption Test Results from a Plug-In Hybrid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus Emissions and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus 2010 DOE Vehicle...

27

Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hybrid and Plug-In Hybrid and Plug-In Electric Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles

28

Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Hybrid and Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on AddThis.com...

29

Development and Deployment of Generation 3 Plug-In Hybrid Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Deployment of Generation 3 Plug-In Hybrid Electric School Buses Development and Deployment of Generation 3 Plug-In Hybrid Electric School Buses 2011 DOE Hydrogen and Fuel Cells...

30

A STOCHASTIC OPTIMAL CONTROL APPROACH FOR POWER MANAGEMENT IN PLUG-IN HYBRID ELECTRIC VEHICLES  

E-Print Network [OSTI]

A STOCHASTIC OPTIMAL CONTROL APPROACH FOR POWER MANAGEMENT IN PLUG-IN HYBRID ELECTRIC VEHICLES.e., the engine and electric machines) in a plug-in hybrid electric vehicle (PHEV). Existing studies focus mostly. INTRODUCTION This paper examines plug-in hybrid electric vehicles (PHEVs), i.e., automobiles that can extract

Krstic, Miroslav

31

Dueco Plug-In Hybrid Engines  

SciTech Connect (OSTI)

Dueco, a final stage manufacture of utility trucks, was awarded a congressionally directed cost shared contract to develop, test, validate, and deploy several PHEV utility trucks. Odyne will be the primary subcontractor responsible for all aspects of the hybrid system including its design and installation on a truck chassis. Key objectives in this program include developing a better understanding of the storage device and system capability; improve aspects of the existing design, optimization of system and power train components, and prototype evaluation. This two year project will culminate in the delivery of at least five vehicles for field evaluation.

Phillip Eidler

2011-09-30T23:59:59.000Z

32

Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Availability of Hybrid Availability of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

33

Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Deployment of Hybrid Deployment of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

34

Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Batteries for Hybrid Batteries for Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

35

Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emissions from Hybrid Emissions from Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

36

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Broader source: Energy.gov [DOE]

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

37

Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Maintenance and Safety Maintenance and Safety of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on AddThis.com...

38

Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electricity Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

39

Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Los Angeles Saves With Los Angeles Saves With Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on AddThis.com...

40

Study Released on the Potential of Plug-In Hybrid Electric Vehicles |  

Broader source: Energy.gov (indexed) [DOE]

Study Released on the Potential of Plug-In Hybrid Electric Vehicles Study Released on the Potential of Plug-In Hybrid Electric Vehicles Study Released on the Potential of Plug-In Hybrid Electric Vehicles January 19, 2007 - 10:44am Addthis Study Released on the Potential of Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. This is the first review of what the impacts

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Study Released on the Potential of Plug-In Hybrid Electric Vehicles |  

Broader source: Energy.gov (indexed) [DOE]

Study Released on the Potential of Plug-In Hybrid Electric Vehicles Study Released on the Potential of Plug-In Hybrid Electric Vehicles Study Released on the Potential of Plug-In Hybrid Electric Vehicles January 19, 2007 - 10:44am Addthis Study Released on the Potential of Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. This is the first review of what the impacts

42

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Digg

43

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-in Electric Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Digg

44

Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel and Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Digg Find More places to share Alternative Fuels Data Center: Alternative

45

Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electricity Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Delicious Rank Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Digg

46

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1:  

Broader source: Energy.gov (indexed) [DOE]

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions In the most comprehensive environmental assessment of electric transportation to date, the Electric Power Research Institute (EPRI) and the Natural Resources Defense Council (NRDC) are examining the greenhouse gas emissions and air quality impacts of plug-in hybrid electric vehicles (PHEV). Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions More Documents & Publications Asia/ITS Vehicle Electrification is Key to Reducing Petroleum Dependency and Greenhouse Gas Emission Plug-In Hybrid Electric Vehicles

47

Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles Hui Zhang1 , Leon M -- The application of SiC devices (as battery interface, motor controller, etc.) in a hybrid electric vehicle (HEV, vehicle simulation software). Power loss models of a SiC inverter are incorporated into PSAT powertrain

Tolbert, Leon M.

48

Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains  

E-Print Network [OSTI]

that could be powered entirely by electricity using plug- in vehicles. Thus, plug-in vehicles have assessment Plug-in hybrid electric vehicles a b s t r a c t We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas

Michalek, Jeremy J.

49

Minimum Cost Path Problem for Plug-in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Feb 4, 2014 ... Abstract: We introduce a practically important and theoretically challenging problem: finding the minimum cost path for plug-in hybrid electric...

Okan Arslan

2014-02-04T23:59:59.000Z

50

NREL: Fleet Test and Evaluation - Electric and Plug-In Hybrid Electric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric and Plug-In Hybrid Electric Drive Systems Electric and Plug-In Hybrid Electric Drive Systems NREL's Fleet Test and Evaluation Team conducts performance evaluations of electric and plug-in hybrid electric drive systems in medium-duty trucks operated by fleets. Photo of medium-duty truck with the words "All Electric Vehicle" and "Plug-in" written on its side. NREL evaluates the performance of electric and plug-in hybrid electric vehicles in fleet operation. All-electric vehicles (EVs) use batteries to store the electric energy that powers the motor. EV batteries are charged by plugging the vehicle into an electric power source. Plug-in hybrid electric vehicles (PHEVs) are powered by an internal combustion engine that can run on conventional or alternative fuels and an electric motor that uses energy stored in batteries. The vehicle can be

51

Fun Fact Friday: Plug-in Hybrid Edition | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fun Fact Friday: Plug-in Hybrid Edition Fun Fact Friday: Plug-in Hybrid Edition Fun Fact Friday: Plug-in Hybrid Edition September 27, 2013 - 11:50am Addthis Plug-in electric vehicles, such as the Chevrolet Volt, run on electricity for short trips but use gasoline for longer trips. | Department of Energy photo Plug-in electric vehicles, such as the Chevrolet Volt, run on electricity for short trips but use gasoline for longer trips. | Department of Energy photo Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy Today we are introducing a new weekly feature on EERE Blog that highlights-you guessed it-fun facts about clean energy. For our inaugural edition, we are spotlighting plug-in hybrid electric vehicles (PHEVs). With the ability to use their internal combustion engine after

52

Fun Fact Friday: Plug-in Hybrid Edition | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Plug-in Hybrid Edition Plug-in Hybrid Edition Fun Fact Friday: Plug-in Hybrid Edition September 27, 2013 - 11:50am Addthis Plug-in electric vehicles, such as the Chevrolet Volt, run on electricity for short trips but use gasoline for longer trips. | Department of Energy photo Plug-in electric vehicles, such as the Chevrolet Volt, run on electricity for short trips but use gasoline for longer trips. | Department of Energy photo Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Today we are introducing a new weekly feature on EERE Blog that highlights-you guessed it-fun facts about clean energy. For our inaugural edition, we are spotlighting plug-in hybrid electric vehicles (PHEVs). With the ability to use their internal combustion engine after

53

Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

North Carolina Airport North Carolina Airport Advances With Plug-In Electric Buses to someone by E-mail Share Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Facebook Tweet about Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Twitter Bookmark Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Google Bookmark Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Delicious Rank Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Digg Find More places to share Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on AddThis.com...

54

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Impact on Fuel Efficiency Technologies Impact on Fuel Efficiency One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle (PHEV) R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. Overall fuel efficiency is affected by component technologies from a component sizing and efficiency aspect. To properly define component requirements, several technologies for each of the main components (energy storage, engine and electric machines) are being compared at Argonne using PSAT. Per the R&D plan, several Li-ion battery materials are being modeled to evaluate their impacts on fuel efficiency and vehicle mass. Different Power to Energy ratios are being considered to understand the relative impact of power and energy.

55

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Powertrain Configuration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impact of Powertrain Configuration on Fuel Efficiency To evaluate the fuel efficiency potential of plug-in hybrid electric vehicles, it is necessary to compare the advantages and drawbacks of several powertrain configurations, ranging from power split to parallel and series. PSAT offers the unique ability to simulate and compare hundreds of powertrain configurations. The goal of the effort is to define the most promising configurations depending on the particular usage. Component sizes, fuel efficiency and cost will be used to make appropriate decisions. The configurations currently being considered include, but are not limited to: Pre-transmission parallel HEV Post-transmission parallel HEV Power split HEV (including THS II and GM 2 Mode) Series The figure below shows an example comparison of three powertrain configurations (parallel, series and power split).

56

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Control Strategy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Control Strategy Assessment of PHEVs Control Strategy Assessment of PHEVs A generic global optimization algorithm for plug-in hybrid electric vehicle (PHEV) powertrain flows has been developed based on the Bellman optimality principle. Optimization results are used to isolate control patterns, both dependent and independent of the cycle characteristics, in order to develop real-time control strategies in Simulink/Stateflow. These controllers are then implemented in PSAT to validate their performances. Heuristic optimization algorithms (such as DIRECT or genetic algorithms) are then used to tune the parameters of the real-time controller implemented in PSAT. The control strategy development process is described below. PHEV control strategy development process diagram Control Strategy Development Process

57

An agent-based model to study market penetration of plug-in hybrid electric vehicles  

E-Print Network [OSTI]

An agent-based model to study market penetration of plug-in hybrid electric vehicles Margaret J 2011 Available online 29 April 2011 Keywords: Plug-in hybrid electric vehicles Market penetration Agent-based models. A recent joint report by the Electric Power Research Institute (EPRI) and the Natural Resources

Vermont, University of

58

DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects |  

Broader source: Energy.gov (indexed) [DOE]

0 Million for Plug-in Hybrid Electric Vehicle 0 Million for Plug-in Hybrid Electric Vehicle Projects DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects June 12, 2008 - 1:30pm Addthis Adds Plug-in Hybrid Vehicle to Department's Fleet WASHINGTON - U.S. Department of Energy (DOE) Assistant Secretary of Energy Efficiency and Renewable Energy Andy Karsner today announced up to $30 million in funding over three years for three cost-shared Plug-in Hybrid Electric Vehicles (PHEVs) demonstration and development projects. The selected projects will accelerate the development of PHEVs capable of traveling up to 40 miles without recharging, which includes most daily roundtrip commutes and satisfies 70 percent of the average daily travel in the U. S. The projects will also address critical barriers to achieving

59

Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: November 2, 5: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost to someone by E-mail Share Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost on Facebook Tweet about Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost on Twitter Bookmark Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost on Google Bookmark Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost on Delicious Rank Vehicle Technologies Office: Fact #595: November 2, 2009

60

Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles  

Broader source: Energy.gov [DOE]

The Toyota Prius hybrid-electric vehicle (HEV) was first released in the U.S. market in January 2000 and 324 were sold in the first month. The Chevrolet Volt, a hybrid-electric plug-in, and the...

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Requirement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Requirement Definition for PHEVs Requirement Definition for PHEVs One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. PSAT has been used to design and evaluate a series of PHEVs to define the requirements of different components, focusing on the energy storage system's power and energy. Several vehicle classes (including midsize car, crossover SUV and midsize SUV) and All Electric Range (AER from 10 to 40 miles) were considered. The preliminary simulations were performed at Argonne using a pre-transmission parallel hybrid configuration with an energy storage system sized to run the Urban Dynanometer Driving Schedule (UDDS) in electric mode. Additional powertrain configurations and sizing algorithm are currently being considered. Trade-off studies are being performed as ways to achieve some level of performance while easing requirements on one area or another. As shown in the figure below, the FreedomCAR Energy Storage Technical Team selected a short term and a long term All Electric Range (AER) goals based on several vehicle simulations.

62

Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology | Open  

Open Energy Info (EERE)

Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Focus Area: Electricity Topics: Policy Impacts Website: www.nrel.gov/vehiclesandfuels/vsa/pdfs/40485.pdf Equivalent URI: cleanenergysolutions.org/content/cost-benefit-analysis-plug-hybrid-ele Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Fuel Efficiency Standards This paper presents a comparison of the costs and benefits of plug-in hybrid electric vehicles (PHEVs) relative to hybrid electric and conventional vehicles. A detailed simulation model is used to predict

63

An Optimization Model for Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

The necessity for environmentally conscious vehicle designs in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change have induced significant investment towards enhancing the propulsion portfolio with new technologies. More recently, plug-in hybrid electric vehicles (PHEVs) have held great intuitive appeal and have attracted considerable attention. PHEVs have the potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the commercial transportation sector. They are especially appealing in situations where daily commuting is within a small amount of miles with excessive stop-and-go driving. The research effort outlined in this paper aims to investigate the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium-duty PHEV. An optimization framework is developed and applied to two different parallel powertrain configurations, e.g., pre-transmission and post-transmission, to derive the optimal design with respect to motor/generator and battery size. A comparison between the conventional and PHEV configurations with equivalent size and performance under the same driving conditions is conducted, thus allowing an assessment of the fuel economy and GHG emissions potential improvement. The post-transmission parallel configuration yields higher fuel economy and less GHG emissions compared to pre-transmission configuration partly attributable to the enhanced regenerative braking efficiency.

Malikopoulos, Andreas [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2011-01-01T23:59:59.000Z

64

2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

2-29678 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results Tyler Gray Jeffrey Wishart Matthew Shirk July 2013 The Idaho National Laboratory is a U.S....

65

Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History  

Broader source: Energy.gov [DOE]

Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) have been available in the U.S. in limited numbers for many years. The introduction of the Nissan Leaf and Chevrolet Volt at the...

66

Comparing Hybrid and Plug-in Electric Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles June 6, 2013 - 11:02am Addthis A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? If you're shopping for a new hybrid car this summer, FuelEconomy.gov's side-by-side comparisons can help you pick the right one. I love to look at new cars! Even though I'm not interested at buying one, I love looking at all the cool features. Back-up cameras and GPSes! Music, playlists, touchpads and phones! There are so many cool things

67

Comparing Hybrid and Plug-in Electric Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles June 6, 2013 - 11:02am Addthis A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? If you're shopping for a new hybrid car this summer, FuelEconomy.gov's side-by-side comparisons can help you pick the right one. I love to look at new cars! Even though I'm not interested at buying one, I love looking at all the cool features. Back-up cameras and GPSes! Music, playlists, touchpads and phones! There are so many cool things

68

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hybrid and plug-in electric vehicles Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three cat- egories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use. Hybrid Electric Vehicles HEVs are powered by an internal combus- tion engine or other propulsion source that runs on conventional or alternative fuel and an electric motor that uses energy stored in a battery. The extra power provided by the electric motor allows for a smaller engine, resulting in better fuel

69

Dynamic competition between plug-in hybrid and hydrogen fuel cell vehicles for personal transportation  

Science Journals Connector (OSTI)

This article addresses the issue of the diffusion of hydrogen cars in the market, particularly the competition with electric cars for the replacement of conventional vehicles. Using the multi-technological competition model developed by Le Bas and Baron-Sylvesters (Diffusion technologique non binaire et schma pidmiologique. Une reconsidration. Economie Applique 1995; tome XLVIII(3):71101), it is shown that the early deployment of plug-in hybrid vehiclesthe only electric technology which can compete with fuel cell cars in the multipurpose vehicle fieldrisks closing the market for hydrogen in the future. Moreover, the advent of the hydrogen vehicle depends on the rapid advancements in fuel cell technologies, as well as on the existence of an infrastructure with a sufficient coverage.

Nuno Bento

2010-01-01T23:59:59.000Z

70

Prospects for plug-in hybrid electric vehicles in the United States and Japan: A general equilibrium analysis  

E-Print Network [OSTI]

Prospects for plug-in hybrid electric vehicles in the United States and Japan: A general-in hybrid electric vehicles Environmental policy Emissions a b s t r a c t The plug-in hybrid electric vehicle (PHEV) may offer a potential near term, low-carbon alternative to today's gasoline- and diesel-powered

71

Energy management of power-split plug-in hybrid electric vehicles based on simulated annealing and Pontryagin's minimum principle  

E-Print Network [OSTI]

Energy management of power-split plug-in hybrid electric vehicles based on simulated annealing management method is proposed for a power-split plug-in hybrid electric vehicle (PHEV). Through analyzing and hybrid driving mode. During the pure electric driving mode, the vehicle is only powered by the battery

Mi, Chunting "Chris"

72

Learn More About the Fuel Economy Label for Plug-in Hybrid Electric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plug-in Hybrid Electric Vehicles Plug-in Hybrid Electric Vehicles Learn More About the New Label Plug-in Hybrid Fuel Economy Label Vehicle Technology & Fuel Comparing Fuel Economy to Other Vehicles You Save/Spend More over 5 Years Compared to Average Vehicle Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating QR Code fueleconomy.gov Driving Range Charge Time 1. Vehicle Technology & Fuel The upper right corner of the label will display text and a related icon to identify it as a vehicle that can be powered by both gasoline and electricity. You will see different text and icons on the labels for other vehicles: Gasoline Vehicle Diesel Vehicle Compressed Natural Gas Vehicle Hydrogen Fuel Cell Vehicle Flexible-Fuel Vehicle: Gasoline-Ethanol (E85)

73

Federal Tax Credits for Plug-in Hybrids Purchased in or after 2010  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Federal Tax Credits for Plug-in Hybrids Federal Tax Credits for Plug-in Hybrids Photo of cash and keys Federal Tax Credit Up To $7,500! Plug-in hybrid-electric vehicles (PHEVs) purchased in or after 2010 may be eligible for a federal income tax credit of up to $7,500. The credit amount will vary based on the capacity of the battery used to fuel the vehicle. Small neighborhood electric vehicles do not qualify for this credit, but they may qualify for another credit. Vehicle Make & Model Full Credit Phase Out No Credit 50% 25% BMW Jan. 1, 2010, to Present TBD TBD TBD 2014 BMW i3 Sedan w/ Range Extender 2014 i3 Sedan w/ Range Extender $7,500 -- -- -- Fisker Jan. 1, 2010, to Present TBD TBD TBD Fisker Karma 2012 Fisker Karma Sedan $7,500 -- -- -- Ford Motor Co. Jan. 1, 2010, to Present TBD TBD TBD

74

Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles | Open  

Open Energy Info (EERE)

Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Agency/Company /Organization: International Energy Agency Focus Area: Vehicles Topics: Potentials & Scenarios Resource Type: Reports, Journal Articles, & Tools Website: www.iea.org/papers/2011/EV_PHEV_Roadmap.pdf The primary role of this EV/PHEV Roadmap is to help establish a vision for technology deployment; set approximate, feasible targets; and identify steps required to get there. It also outlines the role for different stakeholders and how they can work together to reach common objectives, and the role for government policy to support the process. References

75

Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide Greenhouse Gas Emissions  

Broader source: Energy.gov (indexed) [DOE]

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions 1015325 Final Report, July 2007 Each of the ... scenarios showed significant Greenhouse Gas reductions due to PHEV fleet penetration ... ... PHEVs adoption results in significant reduction in the consumption of petroleum fuels. ' ' DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING

76

Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets  

SciTech Connect (OSTI)

This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

Short, W.; Denholm, P.

2006-04-01T23:59:59.000Z

77

OR Forum---Modeling the Impacts of Electricity Tariffs on Plug-In Hybrid Electric Vehicle Charging, Costs, and Emissions  

Science Journals Connector (OSTI)

Plug-in hybrid electric vehicles (PHEVs) have been touted as a transportation technology with lower fuel costs and emissions impacts than other vehicle types. Most analyses of PHEVs assume that the power system operator can either directly or indirectly ... Keywords: environment, plug-in hybrid electric vehicles, pricing

Ramteen Sioshansi

2012-05-01T23:59:59.000Z

78

The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse Gas  

E-Print Network [OSTI]

The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse reliance on fossil fuels. Plug-In Hybrid Electric Vehicles (PHEVs) and wind power represent two practical Electric Vehicles for Greenhouse Gas Mitigation in Canada by Brett Kerrigan B.Eng., Carleton University

Victoria, University of

79

IMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS  

E-Print Network [OSTI]

IMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS National Laboratory(a) ABSTRACT The U.S. electric power infrastructure is a strategic national asset with the emerging plug-in hybrid electric vehicle (PHEV) technology to meet the majority of the daily energy needs

80

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...  

Broader source: Energy.gov (indexed) [DOE]

vehicle into an electric power source. Although electricity production may contribute to air pollution, the U.S. Environmental Protection Agency (EPA) considers EVs Hybrid and...

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Prospects for Plug-in Hybrid Electric Vehicles in the United States: A General Equilibrium Analysis  

E-Print Network [OSTI]

for internal combustion engine (ICE)-only vehicles. Engineering cost estimates for the PHEV, as well Engineering ABSTRACT The plug-in hybrid electric vehicle (PHEV) could significantly contribute to reductions, depending on the cost-competitiveness of the vehicle, the relative cost of refined fuels and electricity

82

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles  

E-Print Network [OSTI]

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles Solutions on an original electric drive [1]-[3] dedicated to the vehicle traction and configurable as a battery charger concerning the electrical machine control. This paper deals with the control of this drive [1], focusing

Paris-Sud XI, Université de

83

Plug-in Hybrid Electric Vehicle On-Road Emissions Characterization and Demonstration Study  

E-Print Network [OSTI]

On-road emissions and operating data were collected from a plug-in hybrid electric vehicle (PHEV) over the course of 6months spanning August 2007 through January 2008 providing the first comprehensive on-road evaluation of the PHEV drivetrain...

Hohl, Carrie

2012-12-31T23:59:59.000Z

84

Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Influences That Will Likely Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles By Dan Santini Argonne National Laboratory dsantini@anl.gov Clean Cities Coordinators' Webinar Sept. 16, 2010 Vehicle fuel use regulation/policy measures differ. Which should measure plug-in success?  Corporate average fuel economy (CAFE) ratings do not represent real world fuel use. However, the range ratings of EVs and PHEVs are based on CAFE tests.  "Window sticker" information on vehicle fuel use predicts more gasoline and electricity use than CAFE ratings. - The GREET model (basis of GHG saving estimates) is based on real world fuel use

85

Environmental and Energy Implications of Plug-In Hybrid-Electric Vehicles  

Science Journals Connector (OSTI)

Environmental and Energy Implications of Plug-In Hybrid-Electric Vehicles ... PHEVs are similar to conventional hybrids (HEVs), but with a larger battery typically providing an all-electric range of some 3060 km (2040 miles) and, crucially, the means to charge the battery from an ordinary electric outlet. ... The U.S. electrical infrastructure is divided into regions under the supervision of the North American Electric Reliability Council (NERC) (14). ...

Craig H. Stephan; John Sullivan

2008-01-16T23:59:59.000Z

86

Life Cycle Assessment of Greenhouse Gas Emissions from Plug-in Hybrid Vehicles: Implications for Policy  

Science Journals Connector (OSTI)

Electricity generation infrastructure is long-lived, and technology decisions within the next decade about electricity supplies in the power sector will affect the potential for large GHG emissions reductions with PHEVs for several decades. ... Life cycle GHG emissions (g CO2-eq/km) of conventional vehicles (CVs), hybrid electric vehicles (HEVs), and plug-in hybrids (PHEVs) with all-electric ranges of 30, 60, or 90 km. ...

Constantine Samaras; Kyle Meisterling

2008-04-05T23:59:59.000Z

87

Power Conditioning for Plug-In Hybrid Electric Vehicles  

E-Print Network [OSTI]

Plugin Hybrid Electric Vehicles (PHEVs) propel from the electric energy stored in the batteries and gasoline stored in the fuel tank. PHEVs and Electric Vehicles (EVs) connect to external sources to charge the batteries. Moreover, PHEVs can supply...

Farhangi, Babak

2014-07-25T23:59:59.000Z

88

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network [OSTI]

Assessment of Plug-in Hybrid Vehicles on Electric Utilities and Regional US Power Grids, Part 1: Technical

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

89

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network [OSTI]

automobile manufacturers are currently introducing electricautomobile mass market. EDVs come in the form of plug-in hybrid electric

Greer, Mark R

2012-01-01T23:59:59.000Z

90

Edmund G. Brown, Jr. PLUG-IN HYBRID ELECTRIC VEHICLE  

E-Print Network [OSTI]

· Environmentally Preferred Advanced Generation · Industrial/Agricultural/Water End Use Energy Efficiency of Water and Power; MercedesBenz; Natural Resources Defense Council; Nissan; Pacific Gas and Electric Co are focused on the following RD&D program areas: · Buildings End-Use Energy Efficiency · Energy

91

Fuel Economy of the 2014 Toyota Prius Plug-in Hybrid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Toyota Prius Plug-in Hybrid Toyota Prius Plug-in Hybrid Search for Other Vehicles View the Mobile Version of This Page Compare Side-by-Side 4 cyl, 1.8 L Automatic (variable gear ratios) Regular Gas and Electricity EPA Fuel Economy Miles per Gallon Personalize Regular Gas 50 Combined 51 City 49 Highway Elec+Reg. Gas 95 Combined 29 kw-hrs/100 miles *Miles per Gallon Equivalent - 1 gallon of gasoline=33.7 kw-hr Unofficial MPG Estimates Shared by Vehicle Owners My MPG Owner MPG Estimates are not yet available for this vehicle. How can I Share My MPG? Vehicle Specification Data EPA Size Class Additional Information Midsize Cars Drive Front-Wheel Drive Gas Guzzler no Turbocharger no Supercharger no Passenger Volume 94ft3 (Hatchback) Luggage Volume 22ft3 (Hatchback) Engine Descriptor Additional Information PHEV

92

Economics of Plug-In Hybrid Electric Vehicles (released in AEO2009)  

Reports and Publications (EIA)

Plug-In hybrid electric vehicles (PHEVs) have gained significant attention in recent years, as concerns about energy, environmental, and economic securityincluding rising gasoline prices have prompted efforts to improve vehicle fuel economy and reduce petroleum consumption in the transportation sector. PHEVs are particularly well suited to meet these objectives, because they have the potential to reduce petroleum consumption both through fuel economy gains and by substituting electric power for gasoline use.

2009-01-01T23:59:59.000Z

93

Effects of Plug-In Hybrid Electric Vehicles on Ozone Concentrations in Colorado  

Science Journals Connector (OSTI)

Effects of Plug-In Hybrid Electric Vehicles on Ozone Concentrations in Colorado ... Changes in PM10 and PM2.5 concentrations in Colorado (and most areas of the western U.S. outside California) were negligible. ... The biogenic, area, and mobile source inventories were provided by the National Park Service (17) based on an updated version of the Western Regional Air Partnership (WRAP) inventories from 2002 used for the Rocky Mountain Atmospheric Nitrogen and Sulfur (RoMANS) study. ...

Gregory L. Brinkman; Paul Denholm; Michael P. Hannigan; Jana B. Milford

2010-07-15T23:59:59.000Z

94

A Vehicle Systems Approach to Evaluate Plug-in Hybrid Battery Cold Start, Life and Cost Issues  

E-Print Network [OSTI]

The batteries used in plug-in hybrid electric vehicles (PHEVs) need to overcome significant technical challenges in order for PHEVs to become economically viable and have a large market penetration. The internship at Argonne National Laboratory (ANL...

Shidore, Neeraj Shripad

2012-07-16T23:59:59.000Z

95

Prospects for Plug-in Hybrid Electric Vehicles in the United States and Japan: A General Equilibrium Analysis  

E-Print Network [OSTI]

The plug-in hybrid electric vehicle (PHEV) may offer a potential near term, low carbon alternative to today's gasoline- and diesel-powered vehicles. A representative vehicle technology that runs on electricity in addition ...

Reilly, John M.

96

Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost  

Broader source: Energy.gov [DOE]

The recently released results of a 2008 survey on plug-in hybrid vehicles (PHEVs) show that 42% of respondents said there was some chance that they would buy a PHEV sometime in the future....

97

Implications of Driving Patterns on Well-to-Wheel Performance of Plug-in Hybrid Electric Vehicles  

Science Journals Connector (OSTI)

Implications of Driving Patterns on Well-to-Wheel Performance of Plug-in Hybrid Electric Vehicles ... We do not consider other life cycle stages of the vehicles (e.g., manufacturing and end-of-life) or energy supply infrastructure (e.g., facility construction, maintenance, decommissioning, and labor). ... Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids. ...

Leon Raykin; Heather L. MacLean; Matthew J. Roorda

2012-05-08T23:59:59.000Z

98

Brookings-Google Plug-in Hybrid Summit, Washington, DC, July 2008 Version date: September 7, 2008  

E-Print Network [OSTI]

spectrum that stretches from fossil fuel-powered conventional vehicles (CVs) through hybrid electric-in Hybrid Electric Vehicles Daniel M. Kammen,* , Derek M. Lemoine , Samuel M. Arons and Holmes Hummel Energy.642.1640; fax: 510.642.1085; Email: kammen@berkeley.edu Executive Summary Plug-in hybrid electric vehicles

Kammen, Daniel M.

99

Within-day recharge of plug-in hybrid electric vehicles: Energy impact of public charging infrastructure  

Science Journals Connector (OSTI)

This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only.

Jing Dong; Zhenhong Lin

2012-01-01T23:59:59.000Z

100

Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure  

SciTech Connect (OSTI)

This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only.

Dong, Jing [ORNL; Lin, Zhenhong [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and...

102

Mainstream consumers driving plug-in battery-electric and plug-in hybrid electric cars: A qualitative analysis of responses and evaluations  

Science Journals Connector (OSTI)

Plug-in electric vehicles can potentially emit substantially lower CO2 emissions than internal combustion engine vehicles, and so have the potential to reduce transport emissions without curtailing personal car use. Assessing the potential uptake of these new categories of vehicles requires an understanding of likely consumer responses. Previous in-depth explorations of appraisals and evaluations of electric vehicles have tended to focus on early adopters, who may not represent mainstream consumers. This paper reports a qualitative analysis of responses to electric cars, based on semi-structured interviews conducted with 40 UK non-commercial drivers (20 males, 20 females; age 2470years) at the end of a seven-day period of using a battery electric car (20 participants) or a plug-in hybrid car (20 participants). Six core categories of response were identified: (1) cost minimisation; (2) vehicle confidence; (3) vehicle adaptation demands; (4) environmental beliefs; (5) impression management; and, underpinning all other categories, (6) the perception of electric cars generally as work in progress products. Results highlight potential barriers to the uptake of current-generation (2010) plug-in electric cars by mainstream consumers. These include the prioritization of personal mobility needs over environmental benefits, concerns over the social desirability of electric vehicle use, and the expectation that rapid technological and infrastructural developments will make current models obsolete. Implications for the potential uptake of future electric vehicles are discussed.

Ella Graham-Rowe; Benjamin Gardner; Charles Abraham; Stephen Skippon; Helga Dittmar; Rebecca Hutchins; Jenny Stannard

2012-01-01T23:59:59.000Z

103

Minimum Cost Path Problem for Plug-in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Modeling grid-connected hybrid electric vehicles using advisor, in: Applications and Advances, 2001. The Sixteenth Annual Battery Con- ference on, IEEE. pp.

2014-07-22T23:59:59.000Z

104

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption  

E-Print Network [OSTI]

backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are neededCost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure online 22 October 2012 Keywords: Plug-in hybrid electric vehicle Charging infrastructure Battery size a b

Michalek, Jeremy J.

105

Self-learning control system for plug-in hybrid vehicles  

DOE Patents [OSTI]

A system is provided to instruct a plug-in hybrid electric vehicle how optimally to use electric propulsion from a rechargeable energy storage device to reach an electric recharging station, while maintaining as high a state of charge (SOC) as desired along the route prior to arriving at the recharging station at a minimum SOC. The system can include the step of calculating a straight-line distance and/or actual distance between an orientation point and the determined instant present location to determine when to initiate optimally a charge depleting phase. The system can limit extended driving on a deeply discharged rechargeable energy storage device and reduce the number of deep discharge cycles for the rechargeable energy storage device, thereby improving the effective lifetime of the rechargeable energy storage device. This "Just-in-Time strategy can be initiated automatically without operator input to accommodate the unsophisticated operator and without needing a navigation system/GPS input.

DeVault, Robert C [Knoxville, TN

2010-12-14T23:59:59.000Z

106

Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce operational and capacity expansion costs for electric  

E-Print Network [OSTI]

expansion Plug-in hybrid electric vehicles Controlled charging Wind power integration a b s t r a c vehicles (BEVs), create additional electricity demand, resulting in additional air emissions from powerEstimating the potential of controlled plug-in hybrid electric vehicle charging to reduce

Michalek, Jeremy J.

107

Evaluation of the Effects of Thermal Management on Battery Life in Plug-in Hybrid Electric Vehicles Tugce Yuksel  

E-Print Network [OSTI]

Evaluation of the Effects of Thermal Management on Battery Life in Plug-in Hybrid Electric Vehicles a simulation model that aims to evaluate the effect of thermal management on battery life. The model consists of two sub- models: a thermal model and a battery degradation model. The temperature rise in the battery

Michalek, Jeremy J.

108

U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEVs. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

Jon P. Christophersen

2014-09-01T23:59:59.000Z

109

Computer Aided Design Tool for Electric, Hybrid Electric and Plug-in Hybrid Electric Vehicles  

E-Print Network [OSTI]

This research is focused on designing a new generation of CAD tools that could help a hybrid vehicle designer with the design process to come up with better vehicle configurations. The conventional design process for any type of hybrid...

Eskandari Halvaii, Ali

2012-07-16T23:59:59.000Z

110

Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids.  

SciTech Connect (OSTI)

Using the 'total energy cycle' methodology, we compare U.S. near term (to {approx}2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO{sub x}), fine particulate (PM2.5) and sulfur oxides (SO{sub x}) values are presented. We also isolate the PHEV emissions contribution from varying kWh storage capability of battery packs in HEVs and PHEVs from {approx}16 to 64 km of charge depleting distance. Sensitivity analysis is conducted with respect to the effect of replacing the battery once during the vehicle's life. The paper includes one appendix that examines several recent studies of interactions of PHEVs with patterns of electric generation and one that provides definitions, acronyms, and fuel consumption estimation steps.

Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.; Energy Systems

2008-01-01T23:59:59.000Z

111

Learn More About the Fuel Economy Label for Plug-in Hybrid Electric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Híbridos Eléctricos Enchufables Híbridos Eléctricos Enchufables Aprenda más acerca del Nuevo Engomado Plug-in Hybrid Fuel Economy Label Vehicle Technology & Fuel Comparing Fuel Economy to Other Vehicles You Save/Spend More over 5 Years Compared to Average Vehicle Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating QR Code fueleconomy.gov Driving Range Charge Time 1. Tecnología y Combustible para Vehículos La esquina superior derecha del engomado muestra el texto y el ícono que identifica que el vehículo puede utilizar gasolina y electricidad. Usted verá otro texto e íconos diferentes en los engomados de otros vehículos; Vehículo de Gasolina Vehículo de Diesel Vehículo de Gas Natural Comprimido Vehículo de Célula de Combustible

112

An agent-based model to study market penetration of plug-in hybrid electric vehicles  

Science Journals Connector (OSTI)

A spatially explicit agent-based vehicle consumer choice model is developed to explore sensitivities and nonlinear interactions between various potential influences on plug-in hybrid vehicle (PHEV) market penetration. The model accounts for spatial and social effects (including threshold effects, homophily, and conformity) and media influences. Preliminary simulations demonstrate how such a model could be used to identify nonlinear interactions among potential leverage points, inform policies affecting PHEV market penetration, and help identify future data collection necessary to more accurately model the system. We examine sensitivity of the model to gasoline prices, to accuracy in estimation of fuel costs, to agent willingness to adopt the PHEV technology, to PHEV purchase price and rebates, to PHEV battery range, and to heuristic values related to gasoline usage. Our simulations indicate that PHEV market penetration could be enhanced significantly by providing consumers with ready estimates of expected lifetime fuel costs associated with different vehicles (e.g., on vehicle stickers), and that increases in gasoline prices could nonlinearly magnify the impact on fleet efficiency. We also infer that a potential synergy from a gasoline tax with proceeds is used to fund research into longer-range lower-cost PHEV batteries.

Margaret J. Eppstein; David K. Grover; Jeffrey S. Marshall; Donna M. Rizzo

2011-01-01T23:59:59.000Z

113

Evaluating the Impact of Plug-in Hybrid Electric Vehicles on Regional Electricity Supplies  

SciTech Connect (OSTI)

Plug-in Hybrid Electric Vehicles (PHEVs) have the potential to increase the use of electricity to fuel the U.S. transportation needs. The effect of this additional demand on the electric system will depend on the amount and timing of the vehicles' periodic recharging on the grid. We used the ORCED (Oak Ridge Competitive Electricity Dispatch) model to evaluate the impact of PHEVs on the Virginia-Carolinas (VACAR) electric grid in 2018. An inventory of one million PHEVs was used and charging was begun in early evening and later at night for comparison. Different connection power levels of 1.4 kW, 2 kW, and 6 kW were used. The results include the impact on capacity requirements, fuel types, generation technologies, and emissions. Cost information such as added cost of generation and cost savings versus use of gasoline were calculated. Preliminary results of the expansion of the study to all regions of the country are also presented. The results show distinct differences in fuels and generating technologies when charging times are changed. At low specific power and late in the evening, coal was the major fuel used, while charging more heavily during peak times led to more use of combustion turbines and combined cycle plants.

Hadley, Stanton W [ORNL

2007-01-01T23:59:59.000Z

114

Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Costs and Emissions Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory K. Parks, P. Denholm, and T. Markel Technical Report NREL/TP-640-41410 May 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory K. Parks, P. Denholm, and T. Markel Prepared under Task No. WR61.2001 Technical Report NREL/TP-640-41410 May 2007 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle

115

Advancing Plug In Hybrid Technology and Flex Fuel Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss063bazzi2012...

116

Advancing Plug In Hybrid Technology and Flex Fuel Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss063bazzi2011...

117

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

the automobile market, Plug- In Hybrid Electric Vehicles (electric vehicles. Because of these factors, the automobileELECTRICONLY Figure 5.5c Temporal Trip Distribution Source Energy Profiles Conclusions and Future Research Commercial PHEV release in the automobile

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

118

10 Kammen and others/p. 1 Cost-Effectiveness of Greenhouse Gas Emission Reductions from Plug-in Hybrid Electric Vehicles  

E-Print Network [OSTI]

that stretches from fossil fuel­powered conventional vehicles (CVs) through hybrid electric vehicles 1-in Hybrid Electric Vehicles Daniel M. Kammen1 , Samuel M. Arons, Derek M. Lemoine and Holmes Hummel Cars per year.2 Plug-in hybrid electric vehicles could alter these trends. On a vehicle technology spectrum

Kammen, Daniel M.

119

eVMTeVMT Analysis of OnAnalysis of OnRoad Data fromRoad Data from PlugPlugIn Hybrid Electric andIn Hybrid Electric and  

E-Print Network [OSTI]

eVMTeVMT Analysis of OnAnalysis of OnRoad Data fromRoad Data from PlugPlugIn Hybrid Electric andIn Hybrid Electric and gov PlugPlug In Hybrid Electric andIn Hybrid Electric and AllAllElectric Vehicles Electric Vehicles www.inl.g October 2, 2014 Richard "Barney" Carlson w INL/MIS-14-32984 y Shawn Salisbury

California at Davis, University of

120

Shifting primary energy source and NOx emission location with plug-in hybrid vehicles  

Science Journals Connector (OSTI)

Plug-in hybrid vehicles (PHEVs) present an interesting technological opportunity for using non-fossil primary energy in light duty passenger vehicles, with the associated potential for reducing air pollutant and greenhouse gas emissions, to the extent that the electric power grid is fed by non-fossil sources. This perspective, accompanying the article by Thompson et al (2011) in this issue, will touch on two other studies that are directly related: the Argonne study (Elgowainy et al 2010) and a PhD thesis from Utrecht (van Vliet 2010). Thompson et al (2011) have examined air quality effects in a case where the grid is predominantly fossil fed. They estimate a reduction of 7.42 tons/day of NOx from motor vehicles as a result of substituting electric VMTs for 20% of the light duty gasoline vehicle miles traveled. To estimate the impact of this reduction on air quality they also consider the increases in NOx emissions due to the increased load on electricity generating units. The NOx emission increases are estimated as 4.0, 5.5 and 6.3 tons for the Convenience, Battery and Night charging scenarios respectively. The net reductions are thus in the 1.13.4 tons/day range. The air quality modelling results presented show that the air quality impact from a ground-level ozone perspective is favorable overall, and while the effect is stronger in some localities, the difference between the three scenarios is small. This is quite significant and suggests that localization of the NOx emissions to point sources has a more pronounced effect than the absolute reductions achieved. Furthermore it demonstrates that localization of NOx emissions to electricity generating units by using PHEVs in vehicle traffic has beneficial effects for air quality not only by minimizing direct human exposure to motor vehicle emissions, but also due to reduced exposure to secondary pollutants (i.e. ozone). In an electric power grid with a smaller share of fossil fired generating units, the beneficial effects would be more pronounced. In such a case, it would also be possible to realize reductions in greenhouse gas emissions. The significance of the electric power generation mix for plug-in hybrid vehicles and battery electric vehicles is a key aspect of Argonne National Laboratories' well-to-wheel study which focuses on petroleum use and greenhouse gas emissions (Elgowainy et al 2010). The study evaluates possible reductions in petroleum use and GHG emissions in the electric power systems in four major regions of the United States as well as the US average generation mix, using Argonne's GREET life-cycle analysis model. Two PHEV designs are investigated through a Powertrain System Analysis Toolkit (PSAT) model: the power-split configuration (e.g. the current Toyota Prius model with Hymotion conversion), and a future series configuration where the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle. Since the petroleum share is small in the electricity generation mix for most regions in the United States, it is possible to achieve significant reductions in petroleum use by PHEVs. However, GHG reduction is another story. In one of the cases in the study, PHEVs in the charge depleting mode and recharging from a mix with a large share of coal generation (e.g., Illinois marginal mix) produce GHG emissions comparable to those of baseline gasoline internal combustion engine vehicles (with a range from ?15% to +10%) but significantly higher than those of gasoline hybrid electric vehicles (with a range from +20% to +60%). In what is called the unconstrained charging scenario where investments in new generation capacity with high efficiency and low carbon intensity are envisaged, it becomes possible to achieve significant reductions in both petroleum use and GHG emissions. In a PhD dissertation at Utrecht University, van Vliet (2010) presents a comprehensive analysis of alternatives to gasoline and diesel by looking at various fuel and vehicle technologies. Three chapters are of particular interest from the

Deniz Karman

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory  

SciTech Connect (OSTI)

The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

Parks, K.; Denholm, P.; Markel, T.

2007-05-01T23:59:59.000Z

122

Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles trav

Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

2010-06-14T23:59:59.000Z

123

Advancing Transportation Through Vehicle Electrification - PHEV...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Meeting arravt067vssbazzi2012o.pdf More Documents & Publications Advancing Transportation Through Vehicle Electrification - PHEV Advancing Plug In Hybrid Technology and...

124

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad Elgowainy and Michael Wang Center for Transportation Research Argonne National Laboratory LDV Workshop July26, 2010 2 2 2 Team Members 2  ANL's Energy Systems (ES) Division  Michael Wang (team leader)  Dan Santini  Anant Vyas  Amgad Elgowainy  Jeongwoo Han  Aymeric Rousseau  ANL's Decision and Information Sciences (DIS) Division:  Guenter Conzelmann  Leslie Poch  Vladimir Koritarov  Matt Mahalik  Thomas Veselka  Audun Botterud  Jianhui Wang  Jason Wang 3 3 3 Scope of Argonne's PHEV WTW Analysis: Vehicle Powertrain Systems and Fuel Pathways 3  Vehicle powertrain systems:  Conventional international combustion engine vehicles (ICEVs)

125

Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power.  

SciTech Connect (OSTI)

This paper uses a new unit commitment model which can simulate the interactions among plug-in hybrid electric vehicles (PHEVs), wind power, and demand response (DR). Four PHEV charging scenarios are simulated for the Illinois power system: (1) unconstrained charging, (2) 3-hour delayed constrained charging, (3) smart charging, and (4) smart charging with DR. The PHEV charging is assumed to be optimally controlled by the system operator in the latter two scenarios, along with load shifting and shaving enabled by DR programs. The simulation results show that optimally dispatching the PHEV charging load can significantly reduce the total operating cost of the system. With DR programs in place, the operating cost can be further reduced.

Wang, J.; Liu, C.; Ton, D.; Zhou, Y.; Kim, J.; Vyas, A. (Decision and Information Sciences); ( ES); (ED); (Kyungwon Univ.)

2011-07-01T23:59:59.000Z

126

How green are electric vehicles? It is thought plug-in hybrids and other electric vehicles are more environmental friendly and  

E-Print Network [OSTI]

How green are electric vehicles? It is thought plug-in hybrids and other electric vehicles are more environmental friendly and produce less pollution. Examining other aspects of electric vehicles besides tailpipe emissions may show they are not so green. In order to determine how environmentally friendly electric

Toohey, Darin W.

127

Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction  

Broader source: Energy.gov [DOE]

The first hybrid electric vehicle was introduced in December 1999 and for the next 45 months (through August 2003) there were a total of 95,778 hybrid vehicles sold. The first mass-marketed plug-in...

128

Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction  

SciTech Connect (OSTI)

Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

Malikopoulos, Andreas [ORNL

2013-01-01T23:59:59.000Z

129

A rule-based energy management strategy for plug-in hybrid electric vehicle (PHEV)  

Science Journals Connector (OSTI)

Hybrid Electric Vehicles (HEV) combine the power from an electric motor with that from an internal combustion engine to propel the vehicle. The HEV electric motor is typically powered by a battery pack through power electronics. The HEV battery is recharged ...

Harpreetsingh Banvait; Sohel Anwar; Yaobin Chen

2009-06-01T23:59:59.000Z

130

ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect (OSTI)

A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a manner that has not been done before. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and collection of dust in conventional baghouses. The AHPC is currently being tested at the 2.7-MW scale at the Big Stone power station.

Stanley Miller; Rich Gebert; William Swanson

1999-11-01T23:59:59.000Z

131

Assessing Energy Impact of Plug-In Hybrid Electric Vehicles: Significance of Daily Distance Variation over Time and Among Drivers  

SciTech Connect (OSTI)

Accurate assessment of the impact of plug-in hybrid electric vehicles (PHEVs) on petroleum and electricity consumption is a necessary step toward effective policies. Variations in daily vehicle miles traveled (VMT) over time and among drivers affect PHEV energy impact, but the significance is not well understood. This paper uses a graphical illustration, a mathematical derivation, and an empirical study to examine the cause and significance of such an effect. The first two methods reveal that ignoring daily variation in VMT always causes underestimation of petroleum consumption and overestimation of electricity consumption by PHEVs; both biases increase as the assumed PHEV charge-depleting (CD) range moves closer to the average daily VMT. The empirical analysis based on national travel survey data shows that the assumption of uniform daily VMT over time and among drivers causes nearly 68% underestimation of expected petroleum use and nearly 48% overestimation of expected electricity use by PHEVs with a 40-mi CD range (PHEV40s). Also for PHEV40s, consideration of daily variation in VMT over time but not among drivers similar to the way the utility factor curve is derived in SAE Standard SAE J2841 causes underestimation of expected petroleum use by more than 24% and overestimation of expected electricity use by about 17%. Underestimation of petroleum use and overestimation of electricity use increase with larger-battery PHEVs.

Lin, Zhenhong [ORNL; Greene, David L [ORNL

2012-01-01T23:59:59.000Z

132

Optimal economy-based battery degradation management dynamics for fuel-cell plug-in hybrid electric vehicles  

Science Journals Connector (OSTI)

Abstract This work analyses the economical dynamics of an optimized battery degradation management strategy intended for plug-in hybrid electric vehicles (PHEVs) with consideration given to low-cost technologies, such as lead-acid batteries. The optimal management algorithm described herein is based on discrete dynamic programming theory (DDP) and was designed for the purpose of PHEV battery degradation management; its operation relies on simulation models using data obtained experimentally on a physical PHEV platform. These tools are first used to define an optimal management strategy according to the economical weights of PHEV battery degradation and the secondary energy carriers spent to manage its deleterious effects. We then conduct a sensitivity study of the proposed optimization process to the fluctuating economic parameters associated with the fuel and energy costs involved in the degradation management process. Results demonstrate the influence of each parameter on the process's response, including daily total operating costs and expected battery lifetime, as well as establish boundaries for useful application of the method; in addition, they provide a case for the relevance of inexpensive battery technologies, such as lead-acid batteries, for economy-centric PHEV applications where battery degradation is a major concern.

Franois Martel; Sousso Kelouwani; Yves Dub; Kodjo Agbossou

2015-01-01T23:59:59.000Z

133

Adaptive three-phase power-flow solutions for smart grids with plug-in hybrid electric vehicles  

Science Journals Connector (OSTI)

Abstract This paper introduces an adaptive three-phase power flow method for smart grids with plug-in hybrid electric vehicles (PHEVs). The proposed method is developed based on the loop frame of reference. The operations of smart grids are inherently unbalanced because of the incomplete three-phase feeder arrangements, nonsymmetrical conductor spacing of three-phase underground cables and overhead lines, unbalanced loads, and a variety of distributed energy resources (DERs). Therefore, the proposed method was developed based on the actual phase (abc) frame, rather than the sequence-component frame. To adapt the network topologies of smart grids, two solution strategies are used, one for radial smart grids and the other for non-radial smart grids. To demonstrate the validity and capability of the proposed algorithm, four IEEE feeder systems and an actual Taiwan Power Company (Taipower) distribution system are used as benchmarks for comparison purposes. The test results show that the proposed method is accurate, efficient, and adaptable, and it therefore has good potential for smart grid energy management system (EMS) applications.

Nien-Che Yang; Wei-Chih Tseng

2015-01-01T23:59:59.000Z

134

Sliding mode-based DTC-SVM control of permanent magnet synchronous motors for plug-in electric and hybrid vehicles  

Science Journals Connector (OSTI)

This paper presents a sliding mode controller design for a permanent magnet synchronous motor used in an integrated powertrain for plug-in electric and hybrid vehicles. In order to adapt to complicated driving environment and improve the robustness of the system, a sliding mode-based torque controller is developed. At the same time, a sliding mode speed controller is also proposed to meet the need of gear shift of the integrated powertrain. The stability and robustness of the proposed controllers are analysed. Computer simulations are performed to verify the effectiveness of the proposed control system. The simulation results illustrate that fast response and small ripples are achieved using the proposed control scheme. It is also shown that the control system is robust against load variations, measurement errors and parameter uncertainty. In addition, the transition during shift is smooth. Therefore, the proposed control scheme is suitable for control of the propulsion motor for plug-in electric and hybrid vehicles.

Hong Fu; Yaobin Chen; Guangyu Tian; Quanshi Chen

2011-01-01T23:59:59.000Z

135

Advanced Hybrid Water Heater using Electrochemical Compressor...  

Energy Savers [EERE]

Advanced Hybrid Water Heater using Electrochemical Compressor Advanced Hybrid Water Heater using Electrochemical Compressor Xergy is using its Electro Chemical Compression (ECC)...

136

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

Phadke, Amol

2008-01-01T23:59:59.000Z

137

Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction Dataset  

Broader source: Energy.gov [DOE]

Excel file with dataset for Fact #843: Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction

138

Power system operation risk analysis considering charging load self-management of plug-in hybrid electric vehicles  

Science Journals Connector (OSTI)

Abstract Many jurisdictions around the world are supporting the adoption of electric vehicles through incentives and the deployment of a charging infrastructure to reduce greenhouse gas emissions. Plug-in hybrid electric vehicles (PHEVs), with offer mature technology and stable performance, are expected to gain an increasingly larger share of the consumer market. The aggregated effect on power grid due to large-scale penetration of \\{PHEVs\\} needs to be analyzed. Nighttime-charging which typically characterizes \\{PHEVs\\} is helpful in filling the nocturnal load valley, but random charging of large PHEV fleets at night may result in new load peaks and valleys. Active response strategy is a potentially effective solution to mitigate the additional risks brought by the integration of PHEVs. This paper proposes a power system operation risk analysis framework in which charging load self-management is used to control system operation risk. We describe an interactive mechanism between the system and \\{PHEVs\\} in conjunction with a smart charging model is to simulate the time series power consumption of PHEVs. The charging load is managed with adjusting the state transition boundaries and without violating the users desired charging constraints. The load curtailment caused by voltage or power flow violation after outages is determined by controlling charging power. At the same time, the system risk is maintained under an acceptable level through charging load self-management. The proposed method is implemented using the Roy Billinton Test System (RBTS) and several PHEV penetration levels are examined. The results show that charging load self-management can effectively balance the extra risk introduced by integration of \\{PHEVs\\} during the charging horizon.

Zhe Liu; Dan Wang; Hongjie Jia; Ned Djilali

2014-01-01T23:59:59.000Z

139

Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers  

SciTech Connect (OSTI)

To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle. Assuming no battery subsidy, the empirical results suggest that: 1) the optimal PHEV electric range approximates two thirds of one s typical daily driving distance in the near term, defined as $450/kWh battery delivered price and $4/gallon gasoline price. 2) PHEVs are not ready to directly compete with HEVs at today s situation, defined by the $600/kWh battery delivered price and the $3-$4/gallon gasoline price, but can do so in the near term. 3) PHEV10s will be favored by the market over longer-range PHEVs in the near term, but longer-range PHEVs can dominate the PHEV market if gasoline prices reach as high as $5-$6 per gallon and/or battery delivered prices reach as low as $150-$300/kWh. 4) PHEVs can become much more attractive against HEVs in the near term if the electric range can be extended by only 10% with multiple charges per day, possible with improved charging infrastructure or adapted charging behavior. 5) the impact of a $100/kWh decrease in battery delivered prices on the competiveness of PHEVs against HEVs can be offset by about $1.25/gallon decrease in gasoline prices, or about 7/kWh increase in electricity prices. This also means that the impact of a $1/gallon decrease in gasoline prices can be offset by about 5/kWh decrease in electricity prices.

Lin, Zhenhong [ORNL

2012-01-01T23:59:59.000Z

140

NREL: Continuum Magazine - Maximizing the Benefits of Plug-in Electric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maximizing the Benefits of Plug-in Electric Vehicles Maximizing the Benefits of Plug-in Electric Vehicles Issue 4 Print Version Share this resource Maximizing the Benefits of Plug-in Electric Vehicles Advancing electric vehicle charging options and grid readiness reduces oil consumption and vehicle emissions. A photo of two electric vehicles in a research facility. Enlarge image Electric vehicle charging stations in NREL's parking garage. Photo by Dennis Schroder, NREL Plug-in electric vehicles (PEVs)-including all-electric vehicles and plug-in hybrid electric vehicles-offer the opportunity to reduce oil consumption and vehicle emissions by drawing on power from the utility grid. When the grid uses electricity generated from clean, domestic energy sources, the emerging PEV infrastructure will increasingly maximize

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption  

Science Journals Connector (OSTI)

Federal electric vehicle (EV) policies in the United States currently include vehicle purchase subsidies linked to EV battery capacity and subsidies for installing charging stations. We assess the cost-effectiveness of increased battery capacity vs. nondomestic charging infrastructure installation for plug-in hybrid electric vehicles as alternate methods to reduce gasoline consumption for cars, trucks, and \\{SUVs\\} in the US. We find across a wide range of scenarios that the least-cost solution is for more drivers to switch to low-capacity plug-in hybrid electric vehicles (short electric range with gasoline backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are needed per vehicle, nondomestic charging infrastructure installation is substantially more expensive than increased battery capacity per gallon saved, and both approaches have higher costs than US oil premium estimates. Cost effectiveness of all subsidies are lower under a binding fuel economy standard. Comparison of results to the structure of current federal subsidies shows that policy is not aligned with fuel savings potential, and we discuss issues and alternatives.

Scott B. Peterson; Jeremy J. Michalek

2013-01-01T23:59:59.000Z

142

Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.  

SciTech Connect (OSTI)

Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

2009-03-31T23:59:59.000Z

143

Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries  

Broader source: Energy.gov [DOE]

With their immense potential for increasing the country's energy, economic, and environmental security, plug-in electric vehicles (PEVs, including plug-in hybrid electric and all-electric) will...

144

Hybrid and Advanced Air Cooling | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hybrid and Advanced Air Cooling Hybrid and Advanced Air Cooling Hybrid and Advanced Air Cooling presentation at the April 2013 peer review meeting held in Denver, Colorado....

145

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basics Basics Plug-in electric vehicles (PEVs), which include both plug-in hybrid electric vehicles and all-electric vehicles, use electricity as either their primary fuel or to improve efficiency. Commonly Used PEV Terms All-electric vehicle (AEV) - A vehicle with plug-in capability; driving energy comes entirely from its battery. Plug-in hybrid electric vehicle (PHEV) - A vehicle with plug-in capability; driving energy can come from either its battery or a liquid fuel like gasoline, diesel, or biofuels. Plug-in electric vehicle (PEV) - Any vehicle with plug-in capability. This includes AEVs and PHEVs. Hybrid electric vehicle (HEV) - A vehicle that has an electric drive system and battery but does not have plug-in capability; driving energy comes only from liquid fuel.

146

Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits  

Science Journals Connector (OSTI)

...cell, and plug-in hybrid electric vehicles. Electric and Hybrid Vehicles: Power Sources...Sustainability, Infrastructure and the Market, ed...Assessment of Plug-in Hybrid Electric Vehicles...and vehicle-to-grid services. Environ...

Jeremy J. Michalek; Mikhail Chester; Paulina Jaramillo; Constantine Samaras; Ching-Shin Norman Shiau; Lester B. Lave

2011-01-01T23:59:59.000Z

147

Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits  

Science Journals Connector (OSTI)

...and plug-in hybrid electric vehicles. Electric and Hybrid Vehicles: Power...Sustainability, Infrastructure and the Market...of Plug-in Hybrid Electric Vehicles...vehicle-to-grid services. Environ...Department of Energy (2010) The...

Jeremy J. Michalek; Mikhail Chester; Paulina Jaramillo; Constantine Samaras; Ching-Shin Norman Shiau; Lester B. Lave

2011-01-01T23:59:59.000Z

148

DOE to Provide up to $14 Million to Develop Advanced Batteries...  

Office of Environmental Management (EM)

to Provide Nearly 20 Million to Further Development of Advanced Batteries for Plug-in Hybrid Electric Vehicles DOE Announces 17 Million to Promote Greater Automobile Efficiency...

149

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network [OSTI]

Environmental Benefits of Electric Vehicles Integration onof using plug-in hybrid electric vehicle battery packs forN ATIONAL L ABORATORY Plug-in Electric Vehicle Interactions

Momber, Ilan

2010-01-01T23:59:59.000Z

150

Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle Initiatives to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Plug-In Electric Vehicle Initiatives All solicitation documents that include the purchase of passenger

151

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

IGCC PC advanced coal-wind hybrid combined cycle power plantnatural gas combined cycle gas turbine power plant carboncrude gasification combined cycle power plant with carbon

Phadke, Amol

2008-01-01T23:59:59.000Z

152

Fact #823: June 2, 2014 Hybrid Vehicles use more Battery Packs but Plug-in Vehicles use More Battery Capacity  

Broader source: Energy.gov [DOE]

Of the battery packs used for electrified vehicle powertrains in model year 2013, the greatest number went into conventional hybrid vehicles which use battery packs that average about 1.3 kilowatt...

153

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

154

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

155

Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles  

Broader source: Energy.gov [DOE]

Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

156

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

157

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

158

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

159

Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth...  

Broader source: Energy.gov (indexed) [DOE]

- VW Jetta TSI: Advanced engine and powertrain evaluation - Sonata: P2 hybrid architecture versus power-split type systems - Volt: Evaluation of first OEM EREV plug-in hybrid...

160

Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil  

Science Journals Connector (OSTI)

Several studies have proposed different tools for analyzing the integration of variable renewable energy into power grids. This study applies an optimization tool to model the expansion of the electric power system in northeastern Brazil, enabling the most efficient dispatch of the variable output of the wind farms that will be built in the region over the next 20 years. The expected combined expansion of wind generation with conventional inflexible generation facilities, such as nuclear plants and run-of-the-river hydropower plants, poses risks of future mismatch between supply and demand in northeastern Brazil. Therefore, this article evaluates the possibility of using a fleet of plug-in hybrid electric vehicles (PHEVs) to regularize possible energy imbalances. Findings indicate that a dedicated fleet of 500 thousand \\{PHEVs\\} in 2015, and a further 1.5 million in 2030, could be recharged overnight to take advantage of the surplus power generated by wind farms. To avoid the initial costs of smart grids, this article suggests, as a first step, the use of a governmental PHEV fleet that allows fleet managers to control battery charging times. Finally, the study demonstrates the advantages of optimizing simultaneously the power and transport sectors to test the strategy suggested here.

Bruno Soares M.C. Borba; Alexandre Szklo; Roberto Schaeffer

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Advanced, Energy-Efficient Hybrid Membrane System for Industrial...  

Broader source: Energy.gov (indexed) [DOE]

Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse hybridmembranesystemsfa...

162

Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

163

A Preliminary Investigation into the Mitigation of Plug-in Hybrid Electric Vehicle Tailpipe Emissions Through Supervisory Control Methods Part 2: Experimental Evaluation of Emissions Reduction Methodologies  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicle (PHEV) technologies have the potential for considerable petroleum consumption reductions, possibly at the expense of increased tailpipe emissions due to multiple 'cold' start events and improper use of the engine for PHEV specific operation. PHEVs operate predominantly as electric vehicles (EVs) with intermittent assist from the engine during high power demands. As a consequence, the engine can be subjected to multiple cold start events. These cold start events may have a significant impact on the tailpipe emissions due to degraded catalyst performance and starting the engine under less than ideal conditions. On current hybrid electric vehicles (HEVs), the first cold start of the engine dictates whether or not the vehicle will pass federal emissions tests. PHEV operation compounds this problem due to infrequent, multiple engine cold starts. A continuation of previous analytical work, this research, experimentally verifies a vehicle supervisory control system for a pre-transmission parallel PHEV powertrain architecture. Energy management strategies are evaluated and implemented in a virtual environment for preliminary assessment of petroleum displacement benefits and rudimentary drivability issues. This baseline vehicle supervisory control strategy, developed as a result of this assessment, is implemented and tested on actual hardware in a controlled laboratory environment over a baseline test cycle. Engine cold start events are aggressively addressed in the development of this control system, which leads to enhanced pre-warming and energy-based engine warming algorithms that provide substantial reductions in tailpipe emissions over the baseline supervisory control strategy. The flexibility of the PHEV powertrain allows for decreased emissions during any engine starting event through powertrain 'torque shaping' algorithms. The results of the research show that PHEVs do have the potential for substantial reductions in fuel consumption. Tailpipe emissions from a PHEV test platform have been reduced to acceptable levels through the development and refinement of vehicle supervisory control methods only. Impacts on fuel consumption were minimal for the emissions reduction techniques implemented.

Smith, David E [ORNL] [ORNL; Lohse-Busch, Henning [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); Irick, David Kim [ORNL] [ORNL

2010-01-01T23:59:59.000Z

164

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

advanced coal-wind hybrid combined cycle power plant naturalwhen the wind generation drops, the power plant needs toa CSP plant, a wind plant produces power during all hours of

Phadke, Amol

2008-01-01T23:59:59.000Z

165

Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

UC Davis Pioneers UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on AddThis.com...

166

A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

Onar, Omer C [ORNL] [ORNL

2011-01-01T23:59:59.000Z

167

Plug In Partners | Open Energy Information  

Open Energy Info (EERE)

Plug-In Partners Plug-In Partners Place Austin, Texas Zip 78704 Sector Vehicles Product Focused on promotion of flexible-fuel Plug-in Hybrid Electric Vehicles (PHEV). Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

168

Plug-In Electric Vehicle Handbook for Consumers  

E-Print Network [OSTI]

to compete with-- and complement--the ubiquitous ICE technology. First, advances in electric-drive all- electric driving ranges. Advanced technologies have also created a new breed of EVs that donPlug-In Electric Vehicle Handbook for Consumers #12;Plug-In Electric Vehicle Handbook for Consumers

169

Advanced, Energy-Efficient Hybrid Membrane System for Industrial...  

Energy Savers [EERE]

MANUFACTURING OFFICE Advanced, Energy- Efficient Hybrid Membrane System for Industrial Water Reuse New Hybrid Membrane System Utilizes Industrial Waste Heat to Power Water...

170

Advanced Methods Approach to Hybrid Powertrain Systems Optimization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Methods Approach to Hybrid Powertrain Systems Optimization of a Transit Bus Application Advanced Methods Approach to Hybrid Powertrain Systems Optimization of a Transit Bus...

171

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Infrastructure Evaluation to someone by E-mail Infrastructure Evaluation to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on AddThis.com... More in this section... Federal State Advanced Search

172

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle (PEV) Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Plug-In Electric Vehicle (PEV) Tax Credit

173

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle (PEV) Rebate - PECO to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Plug-In Electric Vehicle (PEV) Rebate - PECO

174

NETL: Control Technology: Advanced Hybrid Particulate Collector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Hybrid Particulate Collector Advanced Hybrid Particulate Collector Under DOE-NETL sponsorship, the University of North Dakota, Energy and Environmental Research Center (UND-EERC) has developed a new concept in particulate control, called an advanced hybrid particulate collector (AHPC). In addition to DOE and the EERC, the project team includes W.L. Gore & Associates, Inc., Allied Environmental Technologies, Inc., and the Otter Tail Power Company. The AHPC utilizes both electrostatic collection and filtration in a unique geometric configuration that achieves ultrahigh particle collection with much less collection area than conventional particulate control devices. The primary technologies for state-of-the-art particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). A major limitation of ESPs is that the fractional penetration of 0.1- to 1.0-µm particles is typically at least an order of magnitude greater than for 10-µm particles, so a situation exists where the particles that are of greatest health concern are collected with the lowest efficiency. Fabric filters are currently considered to be the best available control technology for fine particles, but emissions are dependent on ash properties and typically increase if the air-to-cloth (A/C) ratio is increased. In addition, many fabrics cannot withstand the rigors of high-SO2 flue gases, which are typical for bituminous fuels. Fabric filters may also have problems with bag cleanability and high pressure drop, which has resulted in conservatively designed, large, costly baghouses.

175

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-in Electric Plug-in Electric Vehicle (PEV) Information Disclosure to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on AddThis.com... More in this section... Federal State Advanced Search

176

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate - APS to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

177

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle (PEV) Demonstration Grants to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

178

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle (PEV) Parking Regulation to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

179

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-in Electric Plug-in Electric Vehicle (PEV) Parking Requirement to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

180

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network [OSTI]

7: Simulation results for the batteries alone kW kW Batteryor even lithium-ion batteries. This is another advantagewith the air-electrode batteries. Table 6: Simulation

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

182

Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

183

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

by adding additional batteries to the design, allowing theincreases. Advanced Batteries for Electric-Drive Vehicles (generally require larger batteries with correspondingly

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

184

Life Cycle Environmental Assessment of Lithium-Ion and Nickel Metal Hydride Batteries for Plug-In Hybrid and Battery Electric Vehicles  

Science Journals Connector (OSTI)

Infrastructure and transport requirements, though often generic, were always included. ... vehicles (PHEV), which use electricity from the grid to power a portion of travel, could play a role in reducing greenhouse gas (GHG) emissions from the transport sector; however, meaningful GHG emissions redns. ... storage systems in renewable energy plants, as well as power systems for sustainable vehicles, such as hybrid and elec. ...

Guillaume Majeau-Bettez; Troy R. Hawkins; Anders Hammer Strmman

2011-04-20T23:59:59.000Z

185

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Definition to someone by E-mail Definition to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Plug-In Electric Vehicle (PEV) Definition A PEV is defined as a vehicle that:

186

Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks,  

Broader source: Energy.gov (indexed) [DOE]

Bodman Showcases Advanced Clean Diesel and Hybrid Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses May 10, 2005 - 12:45pm Addthis Says Energy Bill Essential to Develop Clean Diesel Technology WASHINGTON, D.C. - Highlighting the promise of alternative fuel trucks and buses, Secretary of Energy Samuel W. Bodman today opened an exhibition of energy-efficient, clean diesel and advanced hybrid commercial vehicles at a press conference in Washington, D.C. Secretary Bodman also underscored the need to pass an energy bill that encourages the use of renewable fuels and new technologies to provide the United States with greater energy independence. "Industry and government are working hand-in-hand to develop technologies

187

Advanced Coal Wind Hybrid: Economic Analysis  

SciTech Connect (OSTI)

Growing concern over climate change is prompting new thinking about the technologies used to generate electricity. In the future, it is possible that new government policies on greenhouse gas emissions may favor electric generation technology options that release zero or low levels of carbon emissions. The Western U.S. has abundant wind and coal resources. In a world with carbon constraints, the future of coal for new electrical generation is likely to depend on the development and successful application of new clean coal technologies with near zero carbon emissions. This scoping study explores the economic and technical feasibility of combining wind farms with advanced coal generation facilities and operating them as a single generation complex in the Western US. The key questions examined are whether an advanced coal-wind hybrid (ACWH) facility provides sufficient advantages through improvements to the utilization of transmission lines and the capability to firm up variable wind generation for delivery to load centers to compete effectively with other supply-side alternatives in terms of project economics and emissions footprint. The study was conducted by an Analysis Team that consists of staff from the Lawrence Berkeley National Laboratory (LBNL), National Energy Technology Laboratory (NETL), National Renewable Energy Laboratory (NREL), and Western Interstate Energy Board (WIEB). We conducted a screening level analysis of the economic competitiveness and technical feasibility of ACWH generation options located in Wyoming that would supply electricity to load centers in California, Arizona or Nevada. Figure ES-1 is a simple stylized representation of the configuration of the ACWH options. The ACWH consists of a 3,000 MW coal gasification combined cycle power plant equipped with carbon capture and sequestration (G+CC+CCS plant), a fuel production or syngas storage facility, and a 1,500 MW wind plant. The ACWH project is connected to load centers by a 3,000 MW transmission line. In the G+CC+CCS plant, coal is gasified into syngas and CO{sub 2} (which is captured). The syngas is burned in the combined cycle plant to produce electricity. The ACWH facility is operated in such a way that the transmission line is always utilized at its full capacity by backing down the combined cycle (CC) power generation units to accommodate wind generation. Operating the ACWH facility in this manner results in a constant power delivery of 3,000 MW to the load centers, in effect firming-up the wind generation at the project site.

Phadke, Amol; Goldman, Charles; Larson, Doug; Carr, Tom; Rath, Larry; Balash, Peter; Yih-Huei, Wan

2008-11-28T23:59:59.000Z

188

Advancing Next-Generation Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- brid, plug-in hybrid, battery electric, and alternative fuel vehicles, Argonne provides transportation research critical to advancing the development of next-generation vehicles. Central to this effort is the Lab's Advanced Powertrain Research Facility (APRF), an integrated four-wheel drive chassis dynamometer and component test facility.

189

A Life-Cycle Approach To Technology, Infrastructure, And Climate Policy Decision Making: Transitioning To Plug-In  

E-Print Network [OSTI]

A Life-Cycle Approach To Technology, Infrastructure, And Climate Policy Decision Making: Transitioning To Plug-In Hybrid Electric Vehicles And Low-Carbon Electricity A Dissertation Submitted in partial) and energy security (petroleum displacement) benefits. Plug-in hybrid electric vehicles (PHEVs), which use

190

Green Power: Make Your Plug-in Vehicle Even Greener  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Green Power: Make Your Plug-in Vehicle Even Greener Green Power: Make Your Plug-in Vehicle Even Greener Your plug-in hybrid or all-electric vehicle can help reduce oil dependence. It can also reduce emissions of greenhouse gases (GHGs) that lead to climate change if the electricity you use is produced by renewable energy. Even if most of the electricity in your area is generated by coal or other fossil fuels, you may be able to purchase green power for your vehicle. What Is Green Power? Green Power is electricity generated wholly or in part from renewable energy sources, such as wind and solar power, geothermal, hydropower, and various forms of biomass. The actual electricity delivered to your outlet may not be green, but your purchase of green power ensures that the power company generates that amount of power from renewable energy or purchases it from another provider

191

Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction - Dataset Fact 843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a...

192

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

SCE to someone by E-mail SCE to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on AddThis.com... More in this section... Federal State Advanced Search

193

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Charging Requirements to someone by E-mail Charging Requirements to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

194

Fuel Economy of Hybrids, Diesels, and Alternative Fuel Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel Vehicles Hybrids, Diesels, and Alternative Fuel Vehicles Search by Vehicle Type 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 Select Vehicle Type Diesel Electric Ethanol-Gasoline Hybrid Plug-in Hybrid Natural Gas Bifuel Natural Gas Bifuel Propane Go More Search Options Browse New Cars Hybrid Vehicles Plug-in Hybrid Vehicles Battery Electric Vehicles Diesel Vehicles Flex-Fuel Vehicles CNG Vehicles Related Information How Hybrid Vehicles Work How Fuel Cell Vehicles Work MotorWeek Videos Compare Hybrids Compare Diesels Extreme MPG Tax Incentive Information Center Alternative Fuel Station Locator Alternative Fuel and Advanced Vehicle Data Center | Share I want to... Compare Side-by-Side

195

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

G+CC+CCS IGCC+CCS FT HVAC HVDC IGCC PC advanced coal-windthan the Base Case (HVDC Only Transmission) Sensitivity toused in the FEAST model. HVDC transmission lines have lower

Phadke, Amol

2008-01-01T23:59:59.000Z

196

Hybrid approach to failure prediction for advanced computing systems |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid approach to failure prediction for advanced computing systems Hybrid approach to failure prediction for advanced computing systems January 8, 2014 Tweet EmailPrint "Fault tolerance is no longer an option but a necessity," states Franck Cappello, project manager of research on resilience at the extreme scale at Argonne National Laboratory. "And the ability to reliably predict failures can significantly reduce the overhead of fault-tolerance strategies and the recovery cost." In a special issue article in the International Journal of High Performance Computing Applications, Cappello and his colleagues at Argonne and the University of Illinois at Urbana-Champaign (UIUC) discuss issues in failure prediction and present a new hybrid approach to overcome the limitations of current models. One popular way of building prediction models is to analyze log files,

197

E-Print Network 3.0 - advanced hybrid nuclear Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced hybrid nuclear Page: << < 1 2 3 4 5 > >> 1 Nuclear Chemical EngineeringNuclear...

198

Plug in America | Open Energy Information  

Open Energy Info (EERE)

by cleaner, cheaper, domestic electricity to reduce our nation's dependence on petroleum and improve the global environment. References: Plug-in America1 This article is a...

199

Analysis of advanced solar hybrid desiccant cooling systems for buildings  

SciTech Connect (OSTI)

This report describes an assessment of the energy savings possible from developing hybrid desiccant/vapor-compression air conditioning systems. Recent advances in dehumidifier design for solar desiccant cooling systems have resulted in a dehumidifier with a low pressure drop and high efficiency in heat and mass transfer. A recent study on hybrid desiccant/vapor compression systems showed a 30%-80% savings in resource energy when compared with the best conventional systems with vapor compression. A system consisting of a dehumidifier with vapor compression subsystems in series was found to be the simplest and best overall performer.

Schlepp, D.; Schultz, K.

1984-10-01T23:59:59.000Z

200

Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits  

Science Journals Connector (OSTI)

...Committee on Assessment of Resource Needs for Fuel Cell and Hydrogen Technol-ogies and National Research Council...com-parison of series hybrid, plug-in hybrid, fuel cell and regular cars. J Power Sources 195:6570 ZZQQhy6585. 38...

Jeremy J. Michalek; Mikhail Chester; Paulina Jaramillo; Constantine Samaras; Ching-Shin Norman Shiau; Lester B. Lave

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

DOE to Provide Nearly $20 Million to Further Development of Advanced  

Broader source: Energy.gov (indexed) [DOE]

20 Million to Further Development of 20 Million to Further Development of Advanced Batteries for Plug-in Hybrid Electric Vehicles DOE to Provide Nearly $20 Million to Further Development of Advanced Batteries for Plug-in Hybrid Electric Vehicles September 25, 2007 - 2:49pm Addthis ANN ARBOR, MI - U.S. Department of Energy (DOE) Assistant Secretary for Electricity Delivery and Energy Reliability Kevin M. Kolevar today announced DOE will invest nearly $20 million in plug-in hybrid vehicle (PHEV) research. Five projects have been selected for negotiation of awards under DOE's collaboration with the United States Advanced Battery Consortium (USABC) for $17.2 million in DOE funding for PHEV battery development projects and; DOE will provide nearly $2 million to the University of Michigan (U-M) to spearhead a study exploring the future of

202

Plug-In Electric Vehicle Handbook for Fleet Managers  

E-Print Network [OSTI]

Plug-In Electric Vehicle Handbook for Fleet Managers #12;Plug-In Electric Vehicle Handbook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Choosing Electric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Photo from Infrastructure Successfully deploying plug-in electric vehicles (PEVs) and charging infrastructure requires

203

Plug-In Demo Charges up Clean Cities Coalitions | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions January 27, 2011 - 4:07pm Addthis Dennis A. Smith Director, National Clean Cities The closest most people get to a vehicle before it is offered to the general public is seeing it on TV or at an auto show. But five fortunate Clean Cities coordinators were able to test Toyota's plug-in hybrid electric vehicle (PHEV) as part of the demonstration project for the PHEV Prius, which is expected to be released in 2012. Clean Cities is an initiative in the Department's Vehicle Technologies Program that is focused on reducing petroleum use in transportation - which makes this demonstration a perfect fit. A PHEV Prius can run for up to 13 miles on all-electric power before

204

Plug-In Demo Charges up Clean Cities Coalitions | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions January 27, 2011 - 4:07pm Addthis Dennis A. Smith Director, National Clean Cities The closest most people get to a vehicle before it is offered to the general public is seeing it on TV or at an auto show. But five fortunate Clean Cities coordinators were able to test Toyota's plug-in hybrid electric vehicle (PHEV) as part of the demonstration project for the PHEV Prius, which is expected to be released in 2012. Clean Cities is an initiative in the Department's Vehicle Technologies Program that is focused on reducing petroleum use in transportation - which makes this demonstration a perfect fit. A PHEV Prius can run for up to 13 miles on all-electric power before

205

EV Everywhere: Innovative Battery Research Powering Up Plug-In...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles January 24, 2014 -...

206

Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure  

Broader source: Energy.gov (indexed) [DOE]

Ready for Electric Drive: the Plug-In Vehicle and Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop August 18, 2010 - 5:30pm Addthis Matt Rogers Matt Rogers McKinsey & Company Blogs have been abuzz on electric vehicles and advanced batteries recently, and likely in no small part due to some of the programs that are kicking into high gear at the Department of Energy right now. On July 22, we hosted a Plug-In Vehicle & Infrastructure Workshop that brought together nearly 200 attendees and 600 web participants to discuss near-term actions to accelerate deployment of electric-drive vehicles. The program demonstrated how federal leadership can speed up preparation for vehicles expected in showrooms at the end of this year. This leadership complements the Obama

207

Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse  

Broader source: Energy.gov [DOE]

Demonstrate an advanced water treatment and reuse process in a single hybrid system that combines forward osmosis with membrane distillation to achieve greater efficiency and increased water reuse.

208

Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits  

Science Journals Connector (OSTI)

...of life-cycle air emissions and oil consumption from conventional vehicles, hybrid-electric...efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in...average car vs. $0.004mi for an electric car on an average driving time and location...

Jeremy J. Michalek; Mikhail Chester; Paulina Jaramillo; Constantine Samaras; Ching-Shin Norman Shiau; Lester B. Lave

2011-01-01T23:59:59.000Z

209

Fact #822: May 26, 2014 Battery Capacity Varies Widely for Plug-In Vehicles  

Broader source: Energy.gov [DOE]

Battery-electric vehicles have capacities ranging from 12 kilowatt-hours (kWh) in the Scion iQ EV to 85 kWh in the Tesla Model S. Plug-in hybrid-electric vehicles typically have smaller battery...

210

NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010  

ScienceCinema (OSTI)

We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

None

2013-05-29T23:59:59.000Z

211

NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010  

SciTech Connect (OSTI)

We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

None

2010-01-01T23:59:59.000Z

212

AVTA: Reports on Plug-in Electric Vehicle Readiness at 3 DOD Facilities  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports analyze data and survey results on readiness for the use of plug-in electric vehicles on the Naval Air Station Jacksonville, Naval Station Mayport, and Joint Base Lewis McChord, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

213

Knoxville Area Transit: Propane Hybrid ElectricTrolleys; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

website and in print publications. website and in print publications. TESTING ADVANCED VEHICLES KNOXVILLE AREA TRANSIT ◆ PROPANE HYBRID ELECTRIC TROLLEYS Knoxville Area Transit PROPANE HYBRID ELECTRIC TROLLEYS NREL/PIX 13795 KNOXVILLE AREA TRANSIT (KAT) is recognized nationally for its exceptional service to the City of Knoxville, Tennessee. KAT received the American Public Transportation Associa- tion's prestigious Outstanding Achievement Award in 2004.

214

NREL's Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles  

E-Print Network [OSTI]

NREL's Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles, and plug-in hybrids. But before more Americans switch to electric-drive vehicles, automakers need batteries to the safety and performance of electric-drive batteries. The innovative Isothermal Battery Calorimeters (IBCs

215

Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine  

E-Print Network [OSTI]

Geothermal 2.5 Wind 0.22 Solar 0.02 Coal 110 Natural Gas 107 Residential 50 Vehicle 39 Freight 40 Air 129.30am Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine electric drive Plug in Hybrid Electric Vehicle (P-HEVs), long range electric vehi cle (EV) and sm art grid

Levi, Anthony F. J.

216

Energy Storage System Considerations for Grid-Charged Hybrid Electric Vehicles (Presentation)  

SciTech Connect (OSTI)

Provides an overview of a study regarding energy storage system considerations for a plug-in hybrid electric vehicle.

Markel, T.; Simpson, A.

2005-09-01T23:59:59.000Z

217

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle (PEV) Infrastructure Information Resource to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on

218

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-in Electric Plug-in Electric Vehicle (PEV) Infrastructure Promotion to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on AddThis.com... More in this section... Federal

219

Plug-In Electric Vehicle Handbook for Electrical  

E-Print Network [OSTI]

Plug-In Electric Vehicle Handbook for Electrical Contractors #12;Plug-In Electric Vehicle Handbook for Electrical Contractors2 Table of Contents Introduction . . . . . . . 9 EVSE Training for Electrical Contractors . . . . . . . . . . . . . . . . 18

220

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle (PEV) Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on AddThis.com... More in this section...

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Toyota Prius Plug-in 2013 Ford C-Max Hybrid 2013 Ford C-Max Energi 2013 Ford Fusion Energi 2014 VW Jetta Hybrid 2013 FLEET TEST VEHICLES 2 Honda CR-Z HEV 2...

222

Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Events Events Printable Version Share this resource Send a link to Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop to someone by E-mail Share Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on Facebook Tweet about Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on Twitter Bookmark Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on Google Bookmark Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on Delicious Rank Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on Digg Find More places to share Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on AddThis.com... Conferences & Workshops

223

Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck  

E-Print Network [OSTI]

diesel engine, an electric motor, a Lithium-Ion battery, and an Eaton automated manual transmission03TB-45 Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck and vehicle test results for a medium-duty hybrid electric truck are reported in this paper. The design

Grizzle, Jessy W.

224

www.steps.ucdavis.edu Selling Plug-in Vehicles: Lessons from the  

E-Print Network [OSTI]

Research Analyst, PH&EV Research Center Dr. Tom Turrentine ­ Director, Plug-in Hybrid & EV Research Center key retail-level challenges #12;3 The study is led by the UC Davis PH&EV Center · Under a grant from sales and leases of ZEVs." (p. 15) #12;5 Automaker-dealer relations have a long history · The preferred

California at Davis, University of

225

STATEMENT OF CONSIDERATIONS REQUEST BY HYBRID POWER GENERATION SYSTEMS, LLC, FOR AN ADVANCE  

Broader source: Energy.gov (indexed) [DOE]

AN ADVANCE AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-01NT40779; W(A)-03-015, CH-1142 The Petitioner, Hybrid Power Generation Systems, LLC, a wholly owned subsidiary of General Electric Company (GE HPGS), was awarded this cooperative agreement for the performance of work entitled, "Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation". The purpose of the cooperative agreement is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The proposed hybrid system is based on planar SOFC and turbogenerator power technologies. The focus of this work is to test a sub-scale SOFC and turbocharger hybrid

226

Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computational Approaches Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping Background The United States Department of Energy (DOE) National Energy Technology Laboratory (NETL) develops affordable and clean energy from coal and other fossil fuels to secure a sustainable energy economy. To further this mission, NETL funds research and development of advanced control technologies, including chemical looping (CL)

227

Advancement of cotton (Gossypium) radiation hybrid mapping tools  

E-Print Network [OSTI]

The assembly of a robust structural genomics system requires the development and integration of multiple types of genome maps. This research focused on the development of a relatively new means of plant genome mapping, radiation hybrid mapping...

Todd, Steven Michael

2009-05-15T23:59:59.000Z

228

Plug-In Electric Vehicle Handbook for Consumers (Brochure), Clean...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

. Instead, the battery supplies electricity to the electric motor . Photo from Margaret Smith, DOEPIX 18215 Plug-In Electric Vehicle Handbook for Consumers 5 Factors That Affect...

229

Advanced Technology Vehicle Lab Benchmarking - Level 1  

Broader source: Energy.gov (indexed) [DOE]

* Hybrid Electric (HEV) * Plug-in HEV (PHEV) * Battery Electric (BEV or EV) * Fuel Cell Vehicle Alternative fuels * Hydrogen * Ethanol, Butanol * Diesel (Bio,...

230

Advanced Vehicle Testing Activity: Light-Duty Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Light-Duty Light-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Light-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Light-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Light-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Light-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Alternative Fuel Vehicles Plug-in Hybrid Electric Vehicles Hybrid Electric Vehicles Micro Hybrid Vehicles ARRA Vehicle and Infrastructure Projects EVSE Testing Energy Storage Testing Hydrogen Internal Combustion Engine Vehicles Other ICE

231

Indianapolis Public Transportation Corporation. Advanced Technology Vehicles in Service: Diesel Hybrid Electric Buses (Fact Sheet).  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Web site and in print publications. Web site and in print publications. TESTING ADVANCED VEHICLES INDIANAPOLIS PUBLIC TRANSPORTATION ◆ DIESEL HYBRID ELECTRIC BUSES Indianapolis Public Transportation DIESEL HYBRID ELECTRIC BUSES NREL/PIX 13504, 13505, 13583 THE INDIANAPOLIS PUBLIC TRANSPORTATION CORPORATION (INDYGO) provides transit service in the Indianapolis Metropolitan area, using 226 vehicles to serve 28 fixed and demand response routes. IndyGo vehicles

232

Hybrid & electric vehicle technology and its market feasibility ; Hybrid and electric vehicle technology and its market feasibility ; HEV technology and its market feasibility ; PHEV technology and its market feasibility ; EV technology and its market feasibility .  

E-Print Network [OSTI]

??In this thesis, Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV) technology and their sales forecasts are discussed. First, the (more)

Jeon, Sang Yeob

2010-01-01T23:59:59.000Z

233

US Energy Secretary Chu Announces $528 Million Loan for Advanced Vehicle  

Broader source: Energy.gov (indexed) [DOE]

528 Million Loan for Advanced 528 Million Loan for Advanced Vehicle Technology for Fisker Automotive US Energy Secretary Chu Announces $528 Million Loan for Advanced Vehicle Technology for Fisker Automotive September 22, 2009 - 12:00am Addthis Washington, DC - Energy Secretary Steven Chu today announced a $528.7 million conditional loan for Fisker Automotive for the development of two lines of plug-in hybrids that will save hundreds of millions gallons of gasoline and offset millions of tons of greenhouse gas emissions by 2016. The project will result in approximately 5,000 jobs created or saved for domestic parts suppliers and thousands more to manufacture a plug-in hybrid in the U.S. "This investment will create thousands of new American jobs and is another critical step in making sure we are positioned to compete for the clean

234

Status of advanced light-duty transportation technologies in the US  

Science Journals Connector (OSTI)

The need to reduce oil consumption and greenhouse gases is driving a fundamental change toward more efficient, advanced vehicles, and fuels in the transportation sector. The paper reviews the current status of light duty vehicles in the US and discusses policies to improve fuel efficiency, advanced electric drives, and sustainable cellulosic biofuels. The paper describes the cost, technical, infrastructure, and market barriers for alternative technologies, i.e., advanced biofuels and light-duty vehicles, including diesel vehicles, natural-gas vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and fuel-cell electric vehicles. The paper also presents R&D targets and technology validation programs of the US government.

David Andress; Sujit Das; Fred Joseck; T. Dean Nguyen

2012-01-01T23:59:59.000Z

235

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

a PHEV has both an electric motor and a heat engineusuallyusing the battery and electric motor to increase the ef?passes energy to the electric motor (discharges) as needed

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

236

Light Duty Plug-in Hybrid Vehicle Systems Analysis  

Broader source: Energy.gov (indexed) [DOE]

Bennion, Aaron Brooker, Jeff Gonder, and Matt Thornton National Renewable Energy Laboratory 2009 DOE Vehicle Technologies Annual Merit Review May 19 th , 2009 Project ID:...

237

Are batteries ready for plug-in hybrid buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

238

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel- metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

239

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

240

Energy Programs | Advanced Storage Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Storage Systems Advanced Storage Systems Tapping Into Fuel Cells and Batteries Page 1 of 2 Imagine being able to drive a forty-mile round-trip commute every day without ever going near a gas pump. As the United States moves towards an energy economy with reduced dependence on foreign oil and fewer carbon emissions, development of alternative fuel sources and transmission of the energy they provide is only part of the equation. An increase in energy generated from intermittent renewable sources and the growing need for mobile energy will require new, efficient means of storing it, and technological advancements will be necessary to support the nation's future energy storage needs. A change toward alternative transportation - hydrogen fuel-cell vehicles, hybrid electric vehicles, plug-in hybrid-electric vehicles and electric

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fact #752: November 5, 2012 Western Europe Plug-in Car Sales...  

Broader source: Energy.gov (indexed) [DOE]

chart). France accounted for 22.3% of Western European plug-in car sales, followed by Germany at 17.3%. Plug-in Car Market Share, 2012* (Plug-in Sales as a Share of Total Car...

242

STATEMENT OF CONSIDERATIONS REQUEST BY HYBRID POWER GENERATION SYSTEMS, LLC FOR AN ADVANCE  

Broader source: Energy.gov (indexed) [DOE]

JRN 19 2006 15:31 FR IPL DOE CH 630 252 2779 TO AGCP-HQ P.02/03 JRN 19 2006 15:31 FR IPL DOE CH 630 252 2779 TO AGCP-HQ P.02/03 * * STATEMENT OF CONSIDERATIONS REQUEST BY HYBRID POWER GENERATION SYSTEMS, LLC FOR AN ADVANCE WAIVER OF PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC36-04G014351 ENTITLED "HIGH PERFORMANCE FLEXIBLE REVERSIBLE SOLID OXIDE FUEL CELL"; W(A)-04-080; CH-1259 As set out in the attached waiver petition and in subsequent discussions with DOE patent counsel, Hybrid Power Generation Systems, LLC (Hybrid Power), a wholly owned subsidiary of General Electric Company (GE), has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above-identified cooperative agreement by its employees and its subcontractors' employees, regardless of tier, except

243

Honey, Did You Plug in the Prius? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Honey, Did You Plug in the Prius? Honey, Did You Plug in the Prius? Honey, Did You Plug in the Prius? July 7, 2009 - 5:07pm Addthis Francis X. Vogel Executive Director and Coordinator of the Wisconsin Clean Cities coalition An unexpected snowfall in late March prompted me to take my two daughters, Paloma and Ava, for a memorable afternoon of sledding and hot chocolate. However, before leaving home, I unplugged a cord from the standard 110-volt wall socket in my garage and did likewise from the port on the back of my 2007 Toyota Prius. I rolled up the cord, placed it in my trunk, and smoothly drove off. Nestled in my vehicle's spare tire well, a 200-pound lithium-ion battery pack allowed me to go up to 30 miles on electric power before recharging. Yes, I'm fortunate to be one of the only private owners of a plug-in

244

Honey, Did You Plug in the Prius? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Honey, Did You Plug in the Prius? Honey, Did You Plug in the Prius? Honey, Did You Plug in the Prius? July 7, 2009 - 5:07pm Addthis Francis X. Vogel Executive Director and Coordinator of the Wisconsin Clean Cities coalition An unexpected snowfall in late March prompted me to take my two daughters, Paloma and Ava, for a memorable afternoon of sledding and hot chocolate. However, before leaving home, I unplugged a cord from the standard 110-volt wall socket in my garage and did likewise from the port on the back of my 2007 Toyota Prius. I rolled up the cord, placed it in my trunk, and smoothly drove off. Nestled in my vehicle's spare tire well, a 200-pound lithium-ion battery pack allowed me to go up to 30 miles on electric power before recharging. Yes, I'm fortunate to be one of the only private owners of a plug-in

245

Plug-in electric vehicle introduction in the EU  

E-Print Network [OSTI]

Plug-in electric vehicles (PEVs) could significantly reduce gasoline consumption and greenhouse gas (GHG) emissions in the EU's transport sector. However, PEV well-towheel (WTW) emissions depend on improvements in vehicle ...

Sisternes, Fernando J. de $q (Fernando Jos Sisternes Jimnez)

2010-01-01T23:59:59.000Z

246

Promote Plug-In Electric Vehicles and Workplace Charging Infrastructure  

Broader source: Energy.gov [DOE]

Drivers of conventional vehicles often learn about plug-in electric vehicles (PEVs) and charging infrastructure from PEV-driving employees and from employers who support workplace charging. Use the...

247

Vehicle Technologies Office: 2011 Advanced Power Electronics...  

Energy Savers [EERE]

2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters...

248

Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)  

SciTech Connect (OSTI)

This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

2014-06-01T23:59:59.000Z

249

Supervisory Power Management Control Algorithms for Hybrid Electric Vehicles: A Survey  

SciTech Connect (OSTI)

The growing necessity for environmentally benign hybrid propulsion systems has led to the development of advanced power management control algorithms to maximize fuel economy and minimize pollutant emissions. This paper surveys the control algorithms for hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs) that have been reported in the literature to date. The exposition ranges from parallel, series, and power split HEVs and PHEVs and includes a classification of the algorithms in terms of their implementation and the chronological order of their appearance. Remaining challenges and potential future research directions are also discussed.

Malikopoulos, Andreas [ORNL

2014-01-01T23:59:59.000Z

250

STATEMENT OF CONSIDERATIONS REQUEST BY GENERAL MOTORS CORPORATION FOR AN ADVANCE WAIVER OF  

Broader source: Energy.gov (indexed) [DOE]

FC26-08NT04386, W(A)-Q9-Q03 CH·1467 FC26-08NT04386, W(A)-Q9-Q03 CH·1467 The Petitioner, General Motors Corporation (GM) was awarded this cooperative agreement for the performance of work entitled, "Development of Production-Intent Hybrid Vehicle using' Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet." The purpose of the cooperative agreement is to speed development of one of the first commercially available, Original Equipment Manufacturer (OEM}-produced plug-in hybrid vehicles (PHEV). The project will develop, fully integrate, and validate the plug-in specific systems and controls by using GM's Global Vehicle Development Process (GVDP) for production vehicles. Additional details describing the scope and purpose of this cooperative agreement are provided in response to

251

New York City Transit Drives Hybrid Electric Buses into the Future; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

DEPARTMENT OF ENERGY HYBRID DEPARTMENT OF ENERGY HYBRID ELECTRIC TRANSIT BUS EVALUATIONS The role of AVTA is to bridge the gap between R&D and commercial availability of advanced vehicle technologies that reduce U.S. petroleum use while improving air quality. AVTA supports the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program in moving these technologies from R&D to market deployment by examining market factors

252

DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY  

SciTech Connect (OSTI)

The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

Tom Hrdlicka; William Swanson

2005-12-01T23:59:59.000Z

253

Energy Secretary Moniz Unveils More Than $55 Million to Advance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to make plug-in electric vehicles as affordable to own and operate as today's gasoline-powered vehicles by 2022. "Energy Department investments in advanced vehicle technologies...

254

Idaho National Laboratory Testing of Advanced Technology Vehicles  

Broader source: Energy.gov (indexed) [DOE]

Timeline The Advanced Vehicle Testing Activity (AVTA) is an annually funded DOE activity Barriers Barriers addressed * High risk to develop and purchase plug-in...

255

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on AddThis.com...

256

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Digg Find More places to share Alternative Fuels Data Center: Plug-In

257

Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Qualified Plug-In Qualified Plug-In Electric Drive Motor Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on AddThis.com... More in this section...

258

Ford Plug-In Project: Bringing PHEVs to Market | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Ford Plug-In Project: Bringing PHEVs to Market Ford Plug-In Project: Bringing PHEVs to Market 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit...

259

Ford Plug-In Project: Bringing PHEVs to Market | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Ford Plug-In Project: Bringing PHEVs to Market Ford Plug-In Project: Bringing PHEVs to Market 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and...

260

Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle Charging Rate Incentive - NV Energy to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on AddThis.com...

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-in Electric Plug-in Electric Vehicle (PEV) Charging Regulation Exemption to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on AddThis.com...

262

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-in Electric Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on

263

Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Provision for Plug-In Provision for Plug-In Electric Vehicle (PEV) Charging Incentives to someone by E-mail Share Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Facebook Tweet about Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Twitter Bookmark Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Google Bookmark Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Delicious Rank Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Digg Find More places to share Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on AddThis.com...

264

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Digg Find More places to share Alternative Fuels Data Center: Plug-In

265

Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on AddThis.com...

266

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Digg Find More places to share Alternative Fuels Data Center: Plug-In

267

Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Access to Plug-In Access to Plug-In Electric Vehicle (PEV) Registration Records to someone by E-mail Share Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Facebook Tweet about Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Twitter Bookmark Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Google Bookmark Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Delicious Rank Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Digg Find More places to share Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on AddThis.com...

268

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-in Electric Plug-in Electric Vehicle (PEV) Promotion and Coordination to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on AddThis.com... More in this section...

269

Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits  

E-Print Network [OSTI]

potential of plug-in vehicles remains small compared to ownership cost. As such, to offer a socially efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles mustValuation of plug-in vehicle life-cycle air emissions and oil displacement benefits Jeremy J

Michalek, Jeremy J.

270

Hybrid and Advanced Air Cooling Geothermal Lab Call Project | Open Energy  

Open Energy Info (EERE)

and Advanced Air Cooling Geothermal Lab Call Project and Advanced Air Cooling Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Hybrid and Advanced Air Cooling Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Air-Cooling Project Description Many geothermal power plants in the U.S. are air-cooled because of water limitations. NREL has worked with industry to explore various strategies for boosting the performance of air coolers in hot weather. Computer modeling and experimental measurements have been done on the use of evaporative media upstream of the air-cooled condensers at the Mammoth Lakes Power Plant. NREL has also analyzed the use of an air-cooled condenser in series with (i.e., upstream of) a water-cooled condenser and found that this can be beneficial for power cycles requiring desuperheating of the turbine exhaust vapor. Recently, the conventional power industry has developed an interest in operating water- and air-cooled condensers in parallel. This arrangement allows a small water cooler to reduce the heat transfer duty on the air cooler on hot summer days thereby allowing the condensing working fluid to make a much closer approach to the air dry bulb temperature.

271

Alternative Fuels Data Center: Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hybrid Electric Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids Plug-In Hybrids All-Electric Vehicles Hybrid Electric Vehicles

272

Definition: Plug-in Electric Vehicle Charging Station | Open Energy  

Open Energy Info (EERE)

Plug-in Electric Vehicle Charging Station Plug-in Electric Vehicle Charging Station Jump to: navigation, search Dictionary.png Plug-in Electric Vehicle Charging Station A device or station that provides power to charge the batteries of an electric vehicle. These chargers are classified according to output voltage and the rate at which they can charge a battery. Level 1 charging is the slowest, and can be done through most wall outlets at 120 volts and 15 amps AC. Level 2 charging is faster, and is done at less than or equal to 240 volts and 60 amps AC, with a power output of less than or equal to 14.4 kW. Level 3 charging is fastest, and can be done with power output of greater than 14.4 kW. Level 1 and 2 charging can be done at home with the proper equipment, and Level 2 and 3 charging can be done at fixed public charging

273

Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fisher Coachworks Fisher Coachworks Develops Plug-In Electric Bus in Michigan to someone by E-mail Share Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Facebook Tweet about Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Twitter Bookmark Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Google Bookmark Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Delicious Rank Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Digg Find More places to share Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on AddThis.com...

274

Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Authorization for Authorization for Plug-In Electric Vehicle Charging Rate Incentives to someone by E-mail Share Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Facebook Tweet about Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Twitter Bookmark Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Google Bookmark Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Delicious Rank Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Digg Find More places to share Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on

275

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Digg

276

Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Oregon Leads the Oregon Leads the Charge for Plug-In Vehicles and Infrastructure to someone by E-mail Share Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Facebook Tweet about Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Twitter Bookmark Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Google Bookmark Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Delicious Rank Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Digg Find More places to share Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on AddThis.com...

277

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-in Electric Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Digg

278

Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Commercial Plug-In Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power to someone by E-mail Share Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power on Facebook Tweet about Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power on Twitter Bookmark Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power on Google Bookmark Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power on Delicious Rank Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power on Digg Find More places to share Alternative Fuels Data Center: Commercial

279

Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Developing Developing Infrastructure to Charge Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on AddThis.com...

280

Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Los Angeles' Sets the Los Angeles' Sets the Stage for Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on AddThis.com... April 18, 2011

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Digg

282

Advanced photovoltaic/hydro hybrid renewable energy system for remote areas  

Science Journals Connector (OSTI)

This paper presents modeling and simulation of the advanced photovoltaic (PV)/hydro based Hybrid Renewable Energy System (HRES) to electrify such isolated/remote areas where grid accessibility is not possible. For 7.5?kW hydro generation system a Self Excited Induction Generator (SEIG) with improved technique is used to optimize the utilization of hydro power. To achieve this aim an uncontrolled bridge rectifier coupled with Hydro side Voltage Source Inverter is implemented for the SEIG based advanced hydro system. The PV system is configured by PV array battery DC/DC converter maximum power point tracking controller and PV side Voltage Source Inverter. A Constant Current Control scheme is developed in this paper to control active and reactive power flow and to synchronize hydro and PV systems. The proposed system uses fewer controlled switches hence complexity of control has been reduced and system has higher efficiency and lower switching losses. The performance analysis of the HRES has been done to authenticate the existence of the system using the MATLAB software and results demonstrate that power quality of the proposed system is better and HRES is able to put into services.

2014-01-01T23:59:59.000Z

283

Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report  

SciTech Connect (OSTI)

This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

NONE

1998-12-01T23:59:59.000Z

284

NREL: Vehicles and Fuels Research - NREL to Showcase Two Advanced Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Showcase Two Advanced Vehicles at Estes Park Coolest Car Show on to Showcase Two Advanced Vehicles at Estes Park Coolest Car Show on July 4 July 1, 2013 The National Renewable Energy Laboratory (NREL) will showcase two advanced Toyota vehicles -- a Highlander fuel cell hybrid vehicle (FCHV-adv) and a plug-in Prius hybrid electric vehicle -- at The Coolest Car Show in Colorado in Estes Park on July 4. Representatives from NREL will be on hand to answer questions about the vehicles on display and provide information and educational literature about alternative fuels and advanced vehicles. "We like to reach out to the community and provide information on alternative vehicle technologies and this is a great event to do that with all of the vehicle enthusiasts," said NREL's Melanie Caton. The car show, which is hosted by Estes Park Museum Friends and Foundation,

285

Compact Fluorescent Plug-In Ballast-in-a-Socket  

SciTech Connect (OSTI)

The primary goal of this program was to develop a ballast system for plug-in CFLs (compact fluorescent lamps) that will directly replace standard metal shell, medium base incandescent lampholders (such as Levition No. 6098) for use with portable lamp fixtures, such as floor, table and desk lamps. A secondary goal was to identify a plug-in CFL that is optimized for use with this ballast. This Plug-in CFL Ballastin-a-Socket system will allow fixture manufacturers to easily manufacture CFL-based high-efficacy portable fixtures that provide residential and commercial consumers with attractive, cost-effective, and energy-efficient fixtures for use wherever portable incandescent fixtures are used today. The advantages of this proposed system over existing CFL solutions are that the fixtures can only be used with high-efficacy CFLs, and they will be more attractive and will have lower life-cycle costs than screw-in or adapter-based CFL retrofit solutions. These features should greatly increase the penetration of CFL's into the North American market. Our work has shown that using integrated circuits it is quite feasible to produce a lamp-fixture ballast of a size comparable to the current Edison-screw 3-way incandescent fixtures. As for price points for BIAS-based fixtures, end-users polled by the Lighting Research Institute at RPI indicated that they would pay as much as an additional $10 for a lamp containing such a ballast. The ballast has been optimized to run with a 26 W amalgam triple biax lamp in the base-down position, yet can accept non-amalgam versions of the lamp. With a few part alterations, the ballast can be produced to support 32 W lamps as well. The ballast uses GE's existing L-Comp[1] power topology in the circuit so that the integrated circuit design would be a design that could possibly be used by other CFL and EFL products with minor modifications. This gives added value by reducing cost and size of not only the BIAS, but also possibly other integral CFL and future dimmable integral and plug-in versions of the EFL products.

Rebecca Voelker

2001-12-21T23:59:59.000Z

286

CONCEPTUAL DESIGN AND ECONOMICS OF THE ADVANCED CO2 HYBRID POWER CYCLE  

SciTech Connect (OSTI)

Research has been conducted under United States Department of Energy Contract DEFC26-02NT41621 to analyze the feasibility of a new type of coal-fired plant for electric power generation. This new type of plant, called the Advanced CO{sub 2} Hybrid Power Plant, offers the promise of efficiencies nearing 36 percent, while concentrating CO{sub 2} for 100% sequestration. Other pollutants, such as SO{sub 2} and NOx, are sequestered along with the CO{sub 2} yielding a zero emissions coal plant. The CO{sub 2} Hybrid is a gas turbine-steam turbine combined cycle plant that uses CO{sub 2} as its working fluid to facilitate carbon sequestration. The key components of the plant are a cryogenic air separation unit (ASU), a pressurized circulating fluidized bed gasifier, a CO{sub 2} powered gas turbine, a circulating fluidized bed boiler, and a super-critical pressure steam turbine. The gasifier generates a syngas that fuels the gas turbine and a char residue that, together with coal, fuels a CFB boiler to power the supercritical pressure steam turbine. Both the gasifier and the CFB boiler use a mix of ASU oxygen and recycled boiler flue gas as their oxidant. The resulting CFB boiler flue gas is essentially a mixture of oxygen, carbon dioxide and water. Cooling the CFB flue gas to 80 deg. F condenses most of the moisture and leaves a CO{sub 2} rich stream containing 3%v oxygen. Approximately 30% of this flue gas stream is further cooled, dried, and compressed for pipeline transport to the sequestration site (the small amount of oxygen in this stream is released and recycled to the system when the CO{sub 2} is condensed after final compression and cooling). The remaining 70% of the flue gas stream is mixed with oxygen from the ASU and is ducted to the gas turbine compressor inlet. As a result, the gas turbine compresses a mixture of carbon dioxide (ca. 64%v) and oxygen (ca. 32.5%v) rather than air. This carbon dioxide rich mixture then becomes the gas turbine working fluid and also becomes the oxidant in the gasification and combustion processes. As a result, the plant provides CO{sub 2} for sequestration without the performance and economic penalties associated with water gas shifting and separating CO{sub 2} from gas streams containing nitrogen. The cost estimate of the reference plant (the Foster Wheeler combustion hybrid) was based on a detailed prior study of a nominal 300 MWe demonstration plant with a 6F turbine. Therefore, the reference plant capital costs were found to be 30% higher than an estimate for a 425 MW fully commercial IGCC with an H class turbine (1438 $/kW vs. 1111 $/kW). Consequently, the capital cost of the CO{sub 2} hybrid plant was found to be 25% higher than that of the IGCC with pre-combustion CO{sub 2} removal (1892 $/kW vs. 1510 $/kW), and the levelized cost of electricity (COE) was found to be 20% higher (7.53 c/kWh vs. 6.26 c/kWh). Although the final costs for the CO{sub 2} hybrid are higher, the study confirms that the relative change in cost (or mitigation cost) will be lower. The conceptual design of the plant and its performance and cost, including losses due to CO{sub 2} sequestration, is reported. Comparison with other proposed power plant CO{sub 2} removal techniques reported by a December 2000 EPRI report is shown. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2004-12-01T23:59:59.000Z

287

246 Int. J. Electric and Hybrid Vehicles, Vol. 3, No. 3, 2011 Copyright 2011 Inderscience Enterprises Ltd.  

E-Print Network [OSTI]

@ieee.org *Corresponding author Abstract: This paper studies the power management of a plug-in hybrid electric vehicle vehicles and plug-in hybrid electric vehicles. #12;Power management of PHEV using quadratic programming 247. Pure battery powered electric vehicle (EV) is considered as the future because it does not rely

Mi, Chunting "Chris"

288

Charging Your Plug-in Electric Vehicle at Home | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home May 13, 2013 - 3:45pm Addthis Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute.

289

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

in Electric in Electric Vehicle (PEV) Charging Regulation Exemption to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on AddThis.com...

290

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emissions Inspection Exemption to someone by E-mail Emissions Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on AddThis.com... More in this section...

291

Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

in Public to someone by E-mail in Public to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Google Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Delicious Rank Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Digg Find More places to share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development Charging at Home Charging in Public

292

Charging Your Plug-in Electric Vehicle at Home | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home May 13, 2013 - 3:45pm Addthis Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute.

293

U-225: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control  

Broader source: Energy.gov (indexed) [DOE]

5: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX 5: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control Vulnerabilities U-225: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control Vulnerabilities August 1, 2012 - 5:37am Addthis PROBLEM: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control Vulnerabilities PLATFORM: Citrix Access Gateway 9.x ABSTRACT: Two vulnerabilities in Citrix Access Gateway Plug-in for Windows can be exploited by malicious people to compromise a user's system. reference LINKS: Citrix Knowledge Center Secunia Advisory SA45299 Secunia Research Secunia Research CVE-2011-2592 CVE-2011-2593 IMPACT ASSESSMENT: High Discussion: Research has discovered two vulnerabilities in Citrix Access Gateway Plug-in for Windows, which can be exploited by malicious people to

294

Clean Cities Coalitions Charge Up Plug-In Electric Vehicles | Department of  

Broader source: Energy.gov (indexed) [DOE]

Clean Cities Coalitions Charge Up Plug-In Electric Vehicles Clean Cities Coalitions Charge Up Plug-In Electric Vehicles Clean Cities Coalitions Charge Up Plug-In Electric Vehicles May 9, 2013 - 4:22pm Addthis Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Clean Cities coalitions all across the country are using local knowledge to help their communities get ready for plug-in electric vehicles

295

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

In Electric In Electric Vehicle (PEV) Charging Signage and Parking Regulations to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on

296

Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Local Government Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements to someone by E-mail Share Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements on Facebook Tweet about Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements on Twitter Bookmark Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements on Google Bookmark Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements on Delicious Rank Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements on Digg Find More places to share Alternative Fuels Data Center: Local

297

Alternative Fuels Data Center: Electricity Provider and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electricity Provider Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations to someone by E-mail Share Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Facebook Tweet about Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Twitter Bookmark Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Google Bookmark Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Delicious Rank Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Digg Find More places to share Alternative Fuels Data Center: Electricity

298

Clean Cities Coalitions Charge Up Plug-In Electric Vehicles | Department of  

Broader source: Energy.gov (indexed) [DOE]

Cities Coalitions Charge Up Plug-In Electric Vehicles Cities Coalitions Charge Up Plug-In Electric Vehicles Clean Cities Coalitions Charge Up Plug-In Electric Vehicles May 9, 2013 - 4:22pm Addthis Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Clean Cities coalitions all across the country are using local knowledge to help their communities get ready for plug-in electric vehicles

299

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

LADWP to someone by E-mail LADWP to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on AddThis.com... More in this section... Federal State

300

Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

at Home to someone by E-mail at Home to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Google Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Delicious Rank Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Digg Find More places to share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development Charging at Home Charging in Public Vehicles

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Cost Analysis of Plug-In Hybred Electric Vehicles Using GPS-Based Longitudinal Travel Data  

SciTech Connect (OSTI)

Using spatial, longitudinal travel data of 415 vehicles over 3 18 months in the Seattle metropolitan area, this paper estimates the operating costs of plug-in hybrid electric vehicles (PHEVs) of various electric ranges (10, 20, 30, and 40 miles) for 3, 5, and 10 years of payback period, considering different charging infrastructure deployment levels and gasoline prices. Some key findings were made. (1) PHEVs could help save around 60% or 40% in energy costs, compared with conventional gasoline vehicles (CGVs) or hybrid electric vehicles (HEVs), respectively. However, for motorists whose daily vehicle miles traveled (DVMT) is significant, HEVs may be even a better choice than PHEV40s, particularly in areas that lack a public charging infrastructure. (2) The incremental battery cost of large-battery PHEVs is difficult to justify based on the incremental savings of PHEVs operating costs unless a subsidy is offered for largebattery PHEVs. (3) When the price of gasoline increases from $4/gallon to $5/gallon, the number of drivers who benefit from a larger battery increases significantly. (4) Although quick chargers can reduce charging time, they contribute little to energy cost savings for PHEVs, as opposed to Level-II chargers.

Wu, Xing [Lamar University] [Lamar University; Dong, Jing [Iowa State University] [Iowa State University; Lin, Zhenhong [ORNL] [ORNL

2014-01-01T23:59:59.000Z

302

E-Print Network 3.0 - advanced hybrid vehicle Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Saving Cash Toyota Supra HV-R Hybrid Race Car Trends: GM Natural Gas Vehicles See All Search Honda... Vehicles Search Our Inventory of Quality Used Hybrids, Research & more...

303

Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office (VTO) is working to lower the cost and increase the convenience of electric drive vehicles, which include hybrid and plug-in electric vehicles. These vehicles use...

304

RECENT ADVANCES IN THE DEVELOPMENT OF THE HYBRID SULFUR PROCESS FOR HYDROGEN PRODUCTION  

SciTech Connect (OSTI)

Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In the HyS Process, sulfur dioxide is oxidized in the presence of water at the electrolyzer anode to produce sulfuric acid and protons. The protons are transported through a cation-exchange membrane electrolyte to the cathode and are reduced to form hydrogen. In the second stage of the process, the sulfuric acid by-product from the electrolyzer is thermally decomposed at high temperature to produce sulfur dioxide and oxygen. The two gases are separated and the sulfur dioxide recycled to the electrolyzer for oxidation. The Savannah River National Laboratory (SRNL) has been exploring a fuel-cell design concept for the SDE using an anolyte feed comprised of concentrated sulfuric acid saturated with sulfur dioxide. The advantages of this design concept include high electrochemical efficiency and small footprint compared to a parallel-plate electrolyzer design. This paper will provide a summary of recent advances in the development of the SDE for the HyS process.

Hobbs, D.

2010-07-22T23:59:59.000Z

305

A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives  

SciTech Connect (OSTI)

The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

None, None

2012-01-31T23:59:59.000Z

306

International Conference on Advanced Materials: Cancun 2001 Design Considerations for a Hybrid AmorphousDesign Considerations for a Hybrid Amorphous  

E-Print Network [OSTI]

. Rocheleau Hawaii Natural Energy Institute School for Ocean and Earth Science and Technology University ­ Introduction and design advantages ­ Application of integrated model to hybrid photoelectrodes ­ Model System I and system losses for water-splitting. Efficiency ·Solar to hydrogen efficiency: ·D.O.E. goal of 10% at AM 1

307

EV Everywhere: Americas Plug-In Electric Vehicle Market Charges Forward  

Office of Energy Efficiency and Renewable Energy (EERE)

Find out how the Energy Department, partnering with industry and national laboratories, is helping make plug-in electric vehicles more affordable and convenient for American families.

308

Plug-In Electric Vehicle R&D on High Energy Materials  

Broader source: Energy.gov (indexed) [DOE]

Plug-In Electric Vehicle R&D on High Energy Materials Presented by John Vaughey Principal Investigator: Dennis Dees Chemical Sciences and Engineering Division Argonne National...

309

EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles  

Broader source: Energy.gov [DOE]

Find out how the Energy Department's Vehicles Technologies Office is helping reduce the cost of plug-in electric vehicles through research and development of electric drive technologies.

310

Strength and stability of microbial plugs in porous media  

SciTech Connect (OSTI)

Mobility reduction induced by the growth and metabolism of bacteria in high-permeability layers of heterogeneous reservoirs is an economically attractive technique to improve sweep efficiency. This paper describes an experimental study conducted in sandpacks using an injected bacterium to investigate the strength and stability of microbial plugs in porous media. Successful convective transport of bacteria is important for achieving sufficient initial bacteria distribution. The chemotactic and diffusive fluxes are probably not significant even under static conditions. Mobility reduction depends upon the initial cell concentrations and increase in cell mass. For single or multiple static or dynamic growth techniques, permeability reduction was approximately 70% of the original permeability. The stability of these microbial plugs to increases in pressure gradient and changes in cell physiology in a nutrient-depleted environment needs to be improved.

Sarkar, A.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Sharma, M.M.; Georgiou, G. [Univ. of Texas, Austin, TX (United States)

1995-12-31T23:59:59.000Z

311

State-of-Health Aware Optimal Control of Plug-in Electric Vehicles  

E-Print Network [OSTI]

), which utilize electric motors for propulsion, differ from fossil fuel powered vehiclesState-of-Health Aware Optimal Control of Plug-in Electric Vehicles Yanzhi Wang, Siyu Yue, USA {yanzhiwa, siyuyue, pedram}@usc.edu Abstract--Plug-in electric vehicles (PEVs) are key new energy

Pedram, Massoud

312

Clean Cities Now, Vol. 15, No. 1, April 2011: Plugging In, Cities are planning for electric vehicle infrastructure (Brochure), Energy Efficiency & Renewable Energy (EERE)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 April 2011 Clean Cities TV to Broadcast Coalition Successes Keeping Trash from Going to Waste with Renewable Natural Gas Renewable Fuels in New Jersey Raleigh, NC Los Angeles, CA Houston, TX Oregon Cities are planning for electric vehicle infrastructure Plugging In Dear Readers, In preparation for the widespread adoption of all-electric and plug-in hybrid electric vehicles, city officials, utility companies, and local leaders are working together to speed up permitting processes for installing home charging equipment. To help cities navigate this new territory, Clean Cities devel- oped case studies detailing the experiences of four electric vehicle pacesetters-the state of Oregon, Houston, Los Angeles, and Raleigh, North Carolina-that are leading the charge. Our feature article on

313

AVTA: Ford Escape PHEV Advanced Research Vehicle 2010 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a plug-in hybrid electric Ford Escape Advanced Research Vehicle, an experimental model not currently for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

314

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

and Natural Gas Infrastructure Charging Rate Reduction - and Natural Gas Infrastructure Charging Rate Reduction - SDG&E to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Digg

315

Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: October 29, 1: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China to someone by E-mail Share Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Facebook Tweet about Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Twitter Bookmark Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Google Bookmark Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Delicious Rank Vehicle Technologies Office: Fact #751: October 29, 2012

316

Hybrid Vehicle Technology - Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

317

Overview of the Batteries for Advanced Transportation Technologies...  

Broader source: Energy.gov (indexed) [DOE]

in support of the DOEEERE FreedomCAR and Vehicle Technologies Program to develop batteries for vehicular applications (EV, HEV, and Plug-in hybrid) * Presently, the focus is...

318

Hybrid: Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar OVERVIEW Hybrid-electric vehicles combine the benefits of gasoline engines and electric motors to provide improved fuel economy. The engine provides most of the vehicle's power, and the electric motor provides additional power when needed, such as for accelerating and passing. This allows a smaller, more-efficient engine to be used. The electric power for the motor is generated from regenerative braking and from the gasoline engine, so hybrids don't have to be "plugged in" to an electrical outlet to recharge. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection.

319

Hybrid: Overview  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar OVERVIEW Hybrid-electric vehicles combine the benefits of gasoline engines and electric motors to provide improved fuel economy. The engine provides most of the vehicle's power, and the electric motor provides additional power when needed, such as for accelerating and passing. This allows a smaller, more-efficient engine to be used. The electric power for the motor is generated from regenerative braking and from the gasoline engine, so hybrids don't have to be "plugged in" to an electrical outlet to recharge. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection.

320

Hybrid Electric Vehicle Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Hybrid Electric Vehicle Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

322

New York: EERE-Supported Catalyst Licensed for Use in Fuel Cell Hybrid Advanced Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE-funding directly resulted in a cost-effective commercial electrocatalyst product for fuel cells that is now being manufactured with plans to be used in hybrid vehicles.

323

Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer  

Open Energy Info (EERE)

Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model Jump to: navigation, search Tool Summary Name: Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model Agency/Company /Organization: Oak Ridge National Laboratory OpenEI Keyword(s): EERE tool, Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model, MA3T Project U.S. consumer demand for plug-in hybrid electric vehicles (PHEV) in competition among various light-duty vehicle technologies for hundreds of market segments based and multiple regions. For more information, contact the ORNL Energy and Transportation Science Division at http://www.ornl.gov/sci/ees/etsd/contactus.shtml References Retrieved from

324

Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Although internal combustion engines have been used Although internal combustion engines have been used for more than a century, significant improvements in energy efficiency and emissions reduction are still possible. In fact, boosting the efficiency of internal combustion engines is one of the most promising and cost-effective approaches to increasing vehicle fuel economy over the next 30 years. The United States can cut its transportation fuel use 20%-40% through commercialization of advanced engines-resulting in greater economic, environmental, and energy security. Using these engines in hybrid and plug-in hybrid electric vehicles will enable even greater fuel savings benefits. The Advanced Combustion Engine R&D subprogram of the U.S. Department of Energy's Vehicle Technologies Program (VTP) is improving the fuel economy of

325

Electricity Grid: Impacts of Plug-In Electric Vehicle Charging  

E-Print Network [OSTI]

mail: ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-by either gasoline or electricity, but unlike hybrids, PHEVsto use very low-carbon electricity resources, such as

Yang, Christopher; McCarthy, Ryan

2009-01-01T23:59:59.000Z

326

V-184: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking  

Broader source: Energy.gov (indexed) [DOE]

4: Google Chrome Flash Plug-in Lets Remote Users Conduct 4: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking Attacks V-184: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking Attacks June 24, 2013 - 12:56am Addthis PROBLEM: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking Attacks PLATFORM: Google Chrome prior to 27.0.1453.116 ABSTRACT: A vulnerability was reported in Google Chrome. REFERENCE LINKS: Stable Channel Update SecurityTracker Alert ID: 1028694 CVE-2013-2866 IMPACT ASSESSMENT: Medium DISCUSSION: A remote user can create specially crafted Flash content that, when loaded by the target user, will display the Flash settings in a transparent manner, which may allow the remote user to cause the target user to modify their Flash settings. This may allow the remote user to obtain potentially

327

EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles  

Broader source: Energy.gov [DOE]

Find out how the Energy Department, in partnership with industry and national laboratories, is helping to improve the efficiency and affordability of plug-in electric vehicles through battery research.

328

Fact #788: July 15, 2013 State and Private Consumer Incentives for Plug-In Vehicles  

Broader source: Energy.gov [DOE]

Many states offer their own consumer incentives for plug-in vehicles, such as HOV lane exemptions and tax credits/rebates, as shown in the table below. In some states there are also private...

329

Fact #789: July 22, 2013 Comparison of State Incentives for Plug-In Electric Vehicle Purchases  

Broader source: Energy.gov [DOE]

In addition to a Federal government tax credit up to $7,500, consumers who purchase plug-in electric vehicles (PEVs) may also receive state government incentives which are different for each state....

330

Advanced 3D electromagnetic and particle-in-cell modeling on structured/unstructured hybrid grids  

SciTech Connect (OSTI)

New techniques have been recently developed that allow unstructured, free meshes to be embedded into standard 3-dimensional, rectilinear, finite-difference time-domain grids. The resulting hybrid-grid modeling capability allows the higher resolution and fidelity of modeling afforded by free meshes to be combined with the simplicity and efficiency of rectilinear techniques. Integration of these new methods into the full-featured, general-purpose QUICKSILVER electromagnetic, Particle-In-Cell (PIC) code provides new modeling capability for a wide variety of electromagnetic and plasma physics problems. To completely exploit the integration of this technology into QUICKSILVER for applications requiring the self-consistent treatment of charged particles, this project has extended existing PIC methods for operation on these hybrid unstructured/rectilinear meshes. Several technical issues had to be addressed in order to accomplish this goal, including the location of particles on the unstructured mesh, adequate conservation of charge, and the proper handling of particles in the transition region between structured and unstructured portions of the hybrid grid.

Seidel, D.B.; Pasik, M.F.; Kiefer, M.L.; Riley, D.J.; Turner, C.D.

1998-01-01T23:59:59.000Z

331

Vehicle Technologies Office: Advanced Battery Development, System Analysis, and Testing  

Broader source: Energy.gov [DOE]

To develop better lithium-ion (Li-ion) batteries for plug-in electric vehicles, researchers must integrate the advances made in exploratory battery materials and applied battery research into full...

332

Well-To-Wheels Energy and Greenhouse Gas Analysis of Plug-In Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

ii This page intentionally left blank. iii CONTENTS ACKNOWLEDGMENTS ........................................................................................................ xi NOTATION .............................................................................................................................. xiii EXECUTIVE SUMMARY ...................................................................................................... 1 ES.1 CD Operation of Gasoline PHEVs and BEVs ......................................................... 2 ES.1.1 Petroleum Displacement ............................................................................. 2 ES.1.2 GHG Emissions .......................................................................................... 3

333

Federal Tax Credits for Plug-in Hybrids Purchased in or after 2010  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reembolsos de Impuestos Federales para Reembolsos de Impuestos Federales para Híbridos Enchufables Foto de Efectivo y Llaves ¡Reembolso de Impuesto Federal de hasta $7,500! Los vehículos eléctricos-híbridos enchufables (PHEVs –por sus siglas en inglés) comprados en o después del 2010 pueden ser elegibles para un reembolso de impuesto sobre la renta federal de hasta 7,500 dólares. La cantidad varía de acuerdo con la capacidad de la batería usada para abastecer de combustible al vehículo. Algunos vehículos eléctricos pequeños no tienen derecho a este reembolso, pero pueden tener derecho a otro reembolso. Marca y Modelo del Vehículo Reembolso Total Desfase Progresivo Sin reembolso 50% 25% BMW Ene. 1, 2010 a la fecha Se determinará Se determinará Se determinará 2014 BMW i3 Sedan w/ Range Extender 2014 i3 Sedan w/ Range Extender $7,500

334

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network [OSTI]

are significant trade-offs between energy and power with allof the energy density/power capability trade- offs inherentis the inherent trade-off between energy density and power

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

335

High-Power Electrochemical Storage Devices and Plug-in Hybrid Electric Vehicle Battery Development  

Broader source: Energy.gov [DOE]

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

336

Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

337

Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

338

SCAQMD:Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

339

Fact #856 January 19, 2015 Plug-in and Hybrid Cars Receive High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

classification does not include pickups, vans, or sport-utility vehicles. Fact 856 Dataset Supporting Information Share of Survey Respondents Who WOULD Buy Their Car Again 1-3...

340

Development and Deployment of Generation 3 Plug-In Hybrid Electric School Buses  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Optimal Control of Plug-In Hybrid Electric Vehicles with Market ...  

E-Print Network [OSTI]

is transformed into other forms of energy, such as original potential energy of the ..... The overall energy conversion coefficient, e.g., ?u?d, is around 0.6-0.8.

2014-01-13T23:59:59.000Z

342

Potential impacts of plug-in hybrid electric vehicles on regional power generation  

SciTech Connect (OSTI)

Simulations predict that the introduction of PHEVs could impact demand peaks, reduce reserve margins, and increase prices. The type of power generation used to recharge the PHEVs and associated emissions will depend upon the region and the timing of the recharge. (author)

Hadley, Stanton W.; Tsvetkova, Alexandra A.

2009-12-15T23:59:59.000Z

343

Fact #562: March 16, 2009 Carbon Reduction of Plug-in Hybrid...  

Energy Savers [EERE]

typical U.S. grid. Even when PHEV10s are charged using power generated completely from coal, carbon emissions are about 25% less than those of a conventional vehicle. The use of...

344

Hybrid and Plug-In Electric Vehicle Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

into an electric power source. Although most U.S. electricity production contributes to air pollution, the U.S. Environmental Protection Agency categorizes all-electric vehicles...

345

Plug-in Hybrid Electric Vehicles: A Viable Option for Sweden?.  

E-Print Network [OSTI]

??Transportation accounts for around one third of CO2 emissions in Sweden. Personal cars in Sweden have one of the highest average fuel demands per km (more)

Ramirez, Angel

2007-01-01T23:59:59.000Z

346

Fact #562: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric Vehicles  

Broader source: Energy.gov [DOE]

Estimates from the GREET model (see Argonne National Laboratory's information on GREET) show that passenger car PHEV10s produce about 29% fewer carbon emissions than a conventional vehicle, when...

347

Fact #798: September 23, 2013 Plug-in Hybrid Vehicle Driving...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a limited amount of all-electric driving range that is drawn from a plug and uses a gasoline engine to provide additional range when the battery is depleted. The automakers have...

348

Fact #685: July 25, 2011 Reasons for Buying a Plug-in Hybrid...  

Energy Savers [EERE]

on foreign oil. A desire to buy American and the vehicle's extended range by using gasoline tied for second. Environmental concerns were fifth on the list of reasons to purchase...

349

High-Power Electrochemical Storage Devices and Plug-in Hybrid...  

Broader source: Energy.gov (indexed) [DOE]

EV) 3 CPI-LG Chem Mixed Mn-Oxide Cathodes (High Power) 4 JCS (Johnson Controls - Saft) Mixed Metal-Oxide Cathodes (High Power) 5 EnerDel Li-Titanate Anodes (High Power) PHEV...

350

Q&A: Plugging In with a Power Lineman | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Q&A: Plugging In with a Power Lineman Q&A: Plugging In with a Power Lineman Q&A: Plugging In with a Power Lineman October 18, 2012 - 4:17pm Addthis To commemorate what BPA considers a 75-year partnership with the Columbia River, which is the cornerstone of BPA's relationship with the people and utilities of the Northwest, BPA releases the second video of a series detailing its history. You can see the rest of the series on BPA's 75th Anniversary YouTube channel. Teresa Waugh Public Affairs Specialist, Bonneville Power Administration What does a power lineman do? Linemen work on the complex electrical systems that power our homes and businesses. They climb poles to perform maintenance and work to restore downed power lines after storms. This Q&A and video are part of a series produced by the Bonneville Power

351

JASPER: An Eclipse Plug-In to Facilitate Software Maintenance Tasks  

E-Print Network [OSTI]

JASPER: An Eclipse Plug-In to Facilitate Software Maintenance Tasks Michael J. Coblenz Computer, and code frag- ments. JASPER is a new system that allows users to collect rele- vant artifacts that JASPER will significantly reduce time spent on redundant navigations. In addition, JASPER will facili

Myers, Brad A.

352

The Canadian Plug-in Electric Vehicle Survey (CPEVS 2013): Anticipating Purchase, Use, and Grid Interactions  

E-Print Network [OSTI]

electric vehicles (PHEVs) that can be powered by grid electricity for an initial distance, say 60 km, but are otherwise powered by gasoline until the battery is recharged (e.g. the Chevrolet Volt) and Electric vehiclesThe Canadian Plug-in Electric Vehicle Survey (CPEVS 2013): Anticipating Purchase, Use, and Grid

353

EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug-in Electric Vehicles  

Broader source: Energy.gov [DOE]

Learn about the Clean Energy Grand Challenge to have the U.S. become the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years.

354

GSA Doubles the Federal Hybrid Fleet, DOE Takes the Lead in Updating to  

Broader source: Energy.gov (indexed) [DOE]

GSA Doubles the Federal Hybrid Fleet, DOE Takes the Lead in GSA Doubles the Federal Hybrid Fleet, DOE Takes the Lead in Updating to Hybrids GSA Doubles the Federal Hybrid Fleet, DOE Takes the Lead in Updating to Hybrids March 31, 2010 - 12:00am Addthis WASHINGTON - President Obama announced today that the Federal Government will lead by example in replacing older cars in the federal fleet with fuel efficient hybrids and plug-in hybrid electric vehicles, reducing our dependence on foreign oil as well as cutting carbon dioxide and other pollution. The U.S. General Services Administration will double the federal hybrid fleet this year and has committed to purchasing approximately 100 plug-in hybrid vehicles in 2011. These steps are part of a broad effort to implement the Executive Order signed by President Obama in October which

355

Hybrids Plus | Open Energy Information  

Open Energy Info (EERE)

Hybrids Plus Hybrids Plus Jump to: navigation, search Name Hybrids Plus Address 3245 Prarie Ave Place Boulder, Colorado Zip 80301 Sector Vehicles Product Plug in Electric Hybrid Vehicle conversions, chargers, battery systems Website http://www.eetrex.com/ Coordinates 40.022143°, -105.250981° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.022143,"lon":-105.250981,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

356

The "Other" Energy in Buildings: Wireless Power Metering of Plug-in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The "Other" Energy in Buildings: Wireless Power Metering of Plug-in The "Other" Energy in Buildings: Wireless Power Metering of Plug-in Devices in Building 90 and Homes Speaker(s): Steven Lanzisera Date: June 17, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner Miscellaneous and electronic devices consume about one-third of the primary energy used in U.S. buildings, and their energy use is increasing faster than other end-uses. Although these devices have been studied for 30 years, they are not as well understood as the other end-uses due to their great variety and difficulty in collecting representative energy data for them. This talk describes a method for collecting device-level energy use data for these devices using a relatively low-cost wireless mesh networking technology. Over 600 meters were deployed across B90 and three homes to

357

Summary Report: Clean Cities Plug-In Electric Vehicle Community Readiness Partners Discussion Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2101 Wilson Blvd., Suite 550 | Arlington, VA 22201 | 703-516-4146 | www.C2ES.org 2101 Wilson Blvd., Suite 550 | Arlington, VA 22201 | 703-516-4146 | www.C2ES.org MAY 7, 2012 4:30 PM - 6:00 PM LOS ANGELES, CA SUMMARY REPORT: CLEAN CITIES PLUG-IN ELECTRIC VEHICLE COMMUNITY READINESS PARTNERS DISCUSSION GROUP By: Nick Nigro, Center for Climate and Energy Solutions An opportunity to discuss challenges and share best practices regarding efforts to prepare your community/region for plug-in electric vehicles and charging infrastructure deployment Center for Climate and Energy Solutions 2 Table of Contents Table of Contents 2 About this Report 3 Disclaimer 3 Acknowledgements 3 Session Overview 4 Vehicle Demand and Availability 4 Law and Regulatory Environment 5 Public EVSE Signage 5 ADA Compliance 7 Multi-unit Dwellings 7

358

Thermodynamic analysis of energy conversion and transfer in hybrid system consisting of wind turbine and advanced adiabatic compressed air energy storage  

Science Journals Connector (OSTI)

Abstract A simulation model consisting of wind speed, wind turbine and AA-CAES (advanced adiabatic compressed air energy storage) system is developed in this paper, and thermodynamic analysis on energy conversion and transfer in hybrid system is carried out. The impacts of stable wind speed and unstable wind speed on the hybrid system are analyzed and compared from the viewpoint of energy conversion and system efficiency. Besides, energy conversion relationship between wind turbine and AA-CAES system is investigated on the basis of process analysis. The results show that there are several different forms of energy in hybrid system, which have distinct conversion relationship. As to wind turbine, power coefficient determines wind energy utilization efficiency, and in AA-CAES system, it is compressor efficiency that mainly affects energy conversion efficiencies of other components. The strength and fluctuation of wind speed have a direct impact on energy conversion efficiencies of components of hybrid system, and within proper wind speed scope, the maximum of system efficiency could be expected.

Yuan Zhang; Ke Yang; Xuemei Li; Jianzhong Xu

2014-01-01T23:59:59.000Z

359

Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plug-In Electric Vehicle Handbook Plug-In Electric Vehicle Handbook for Public Charging Station Hosts Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Benefits and Costs of Hosting a Charging Station . . . . . . . . . . . 9 Charging Station Locations and Hosts . . . . . . . . . . . . . . . . . 12 Ownership and Payment Models . . . . . . 14 Installing and Maintaining Charging Stations . . . . . . . . . . . . . . . . . . . 15 Electrifying the Future . . . . . . . . . . . . . . 19 Clean Cities Helps Establish PEV Charging Stations Establishing plug-in electric vehicle (PEV) charging stations requires unique knowledge and skills . If you need help, contact your local Clean Cities coordinator . Clean Cities is the U .S . Department of Energy's flagship alterna- tive-transportation

360

A Novel Quantum Particle Swarm Optimization for Power Grid with Plug-In Electric Vehicles in Shanghai  

Science Journals Connector (OSTI)

This paper studies the plug-in electric vehicles charging/discharging mode under the intelligent power grid in Shanghai with the objective of minimizing ... vehicles charging/discharging optimization model is bui...

Jinwei Gu; Manzhan Gu; Quansheng Shi

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Follow-up on the Department of Energy's Implementation of the Advanced Batteries and Hybrid Components Program Funded under the American Recovery and Reinvestment Act, OAS-RA-L-12-05  

Broader source: Energy.gov (indexed) [DOE]

Follow-up on the Department of Follow-up on the Department of Energy's Implementation of the Advanced Batteries and Hybrid Components Program Funded under the American Recovery and Reinvestment Act OAS-RA-L-12-05 July 2012 Department of Energy Washington, DC 20585 July 10, 2012 MEMORANDUM FOR THE DIRECTOR, NATIONAL ENERGY TECHNOLOGY LABORATORY FROM: Joanne Hill, Director Central Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Follow-up on the Department of Energy's Implementation of the Advanced Batteries and Hybrid Components Program Funded under the American Recovery and Reinvestment Act" BACKGROUND Under the American Recovery and Reinvestment Act of 2009, the Department of Energy's Advanced Batteries and Hybrid Components Program (Advanced Batteries Program) received

362

Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle...  

Energy Savers [EERE]

hybrid vehicles and all-electric vehicles. Hybrid Electric Vehicles derive all of their energy from gasoline and cannot be plugged into any outlet. Fact 843 Dataset Supporting...

363

Categorical Exclusion Determination Form Program or Field Office: Advanced Research Projects Agency -  

Broader source: Energy.gov (indexed) [DOE]

nergy nergy Categorical Exclusion Determination Form Program or Field Office: Advanced Research Projects Agency - Energy Project Title: (0471-1544) Sheetak Inc. - Thermoelectric Reactors for Efficient Automotive Thermal Storage Location: *- Multiple States - New York, Pennsylvania, Texas Proposed Action or Project Description: American Recovery and Reinvestment Act: D Funding will support development of a novel system of thermoelectric reactors for efficient automotive thermal energy storage (TREATS) in electric vehicle and plug-in hybrid electric vehicle Heating, Ventilation, and Cooling (HVAC) systems. Proposed work consists of indoor laboratory-based research and development, including (1) experimentation and analysis to assess the mechanics and dynamics of thermoelectric reactors, (2) design, fabrication, testing, and analysis of hot and cold reactors, (3) design, fabrication, testing, and

364

Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

Elgowainy, Mr. Amgad [Argonne National Laboratory (ANL); Rousseau, Mr. Aymeric [Argonne National Laboratory (ANL); Wang, Mr. Michael [Argonne National Laboratory (ANL); Ruth, Mr. Mark [National Renewable Energy Laboratory (NREL); Andress, Mr. David [David Andress & Associates, Inc.; Ward, Jacob [U.S. Department of Energy; Joseck, Fred [U.S. Department of Energy; Nguyen, Tien [U.S. Department of Energy; Das, Sujit [ORNL

2013-01-01T23:59:59.000Z

365

Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks  

SciTech Connect (OSTI)

The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

2008-12-31T23:59:59.000Z

366

Advanced Accessory Power Supply Topologies  

SciTech Connect (OSTI)

This Cooperative Research and Development Agreement (CRADA) began December 8, 2000 and ended September 30, 2009. The total funding provided by the Participant (General Motors Advanced Technology Vehicles [GM]) during the course of the CRADA totaled $1.2M enabling the Contractor (UT-Battelle, LLC [Oak Ridge National Laboratory, a.k.a. ORNL]) to contribute significantly to the joint project. The initial task was to work with GM on the feasibility of developing their conceptual approach of modifying major components of the existing traction inverter/drive to develop low cost, robust, accessory power. Two alternate methods for implementation were suggested by ORNL and both were proven successful through simulations and then extensive testing of prototypes designed and fabricated during the project. This validated the GM overall concept. Moreover, three joint U.S. patents were issued and subsequently licensed by GM. After successfully fulfilling the initial objective, the direction and duration of the CRADA was modified and GM provided funding for two additional tasks. The first new task was to provide the basic development for implementing a cascaded inverter technology into hybrid vehicles (including plug-in hybrid, fuel cell, and electric). The second new task was to continue the basic development for implementing inverter and converter topologies and new technology assessments for hybrid vehicle applications. Additionally, this task was to address the use of high temperature components in drive systems. Under this CRADA, ORNL conducted further research based on GMs idea of using the motor magnetic core and windings to produce bidirectional accessory power supply that is nongalvanically coupled to the terminals of the high voltage dc-link battery of hybrid vehicles. In order not to interfere with the motors torque, ORNL suggested to use the zero-sequence, highfrequency harmonics carried by the main fundamental motor current for producing the accessory power. Two studies were conducted at ORNL. One was to put an additional winding in the motor slots to magnetically link with the high frequency of the controllable zero-sequence stator currents that do not produce any zero-sequence harmonic torques. The second approach was to utilize the corners of the square stator punching for the high-frequency transformers of the dc/dc inverter. Both approaches were successful. This CRADA validated the feasibility of GMs desire to use the motors magnetic core and windings to produce bidirectional accessory power supply. Three joint U.S. patents with GM were issued to ORNL and GM by the U.S. Patent Office for the research results produced by this CRADA.

Marlino, L.D.

2010-06-15T23:59:59.000Z

367

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

4 demonstration of a plug-in diesel-electric HUMVEE by thediesel max output (kW) continuous/Me- kW type efficiency electric

Williams, Brett D

2010-01-01T23:59:59.000Z

368

Electric Vehicle Preparedness Task 3: Detailed Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Joint Base Lewis McChord  

SciTech Connect (OSTI)

This report provides an assessment of charging infrastructure required to support the suggested plug-in electric vehicle replacements at Joint Base Lewis McChord.

Steve Schey; Jim Francfort

2014-10-01T23:59:59.000Z

369

Project Sponsors: California Air Resources Board ADVANCED POWER & ENERGY  

E-Print Network [OSTI]

renewable wind energy into the electricity grid and deploying PHEVs simultaneously can have significant future grid mix and transportation scenarios · Delineate the impacts of Plug-In Hybrid Electric Vehicles renewable wind energy penetrations and PHEV penetrations. The outcome of each scenario consists of spatially

Mease, Kenneth D.

370

Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Public Charging Public Charging Station Hosts Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Benefits and Costs of Hosting a Charging Station . . . . . . . . . . . 9 Charging Station Locations and Hosts . . . . . . . . . . . . . . . . . 12 Ownership and Payment Models . . . . . . 14 Installing and Maintaining Charging Stations . . . . . . . . . . . . . . . . . . . 15 Electrifying the Future . . . . . . . . . . . . . . 19 Clean Cities Helps Establish PEV Charging Stations Establishing plug-in electric vehicle (PEV) charging stations requires unique knowledge and skills . If you need help, contact your local Clean Cities coordinator . Clean Cities is the U .S . Department of Energy's flagship alterna- tive-transportation deployment initiative . It is supported

371

Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7951 7951 April 2010 Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation Preprint T. Markel To be presented at the MIT Energy Initiative Transportation Electrification Symposium Cambridge, Massachusetts April 8, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

372

Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

951 951 April 2010 Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation Preprint T. Markel To be presented at the MIT Energy Initiative Transportation Electrification Symposium Cambridge, Massachusetts April 8, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

373

A Queueing Based Scheduling Approach to Plug-In Electric Vehicle Dispatch in Distribution Systems  

E-Print Network [OSTI]

Large-scale integration of plug-in electric vehicles (PEV) in power systems can cause severe issues to the existing distribution system, such as branch congestions and significant voltage drops. As a consequence, smart charging strategies are crucial for the secure and reliable operation of the power system. This paper tries to achieve high penetration level of PEVs with the existing distribution system infrastructure by proposing a smart charging algorithm that can optimally utilize the distribution system capacity. Specifically, the paper proposes a max-weight PEV dispatch algorithm to control the PEV charging rates, subject to power system physical limits. The proposed max-weight PEV dispatch algorithm is proved to be throughput optimal under very mild assumptions on the stochastic dynamics in the system. This suggests that the costly distribution system infrastructure upgrade can be avoided, or failing that, at least successfully deferred. The proposed PEV dispatch algorithm is particularly attractive in ...

Li, Qiao; Ilic, Marija D

2012-01-01T23:59:59.000Z

374

A New Integrated Onboard Charger and Accessory Power Converter for Plug-in Electric Vehicles  

SciTech Connect (OSTI)

In this paper, a new approach is presented for integrating the function of onboard battery charging into the traction drive system and accessory dc-dc converter of a plug-in electric vehicle (PEV). The idea is to utilize the segmented traction drive system of a PEV as the frond converter of the charging circuit and the transformer and high voltage converter of the 14 V accessory dc-dc converter to form a galvanically isolated onboard charger. Moreover, a control method is presented for suppressing the battery current ripple component of twice the grid frequency with the reduced dc bus capacitor in the segmented inverter. The resultant integrated charger has lower cost, weight, and volume than a standalone charger due to a substantially reduced component count. The proposed integrated charger topology was verified by modeling and experimental results on a 5.8 kW charger prototype.

Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

2014-01-01T23:59:59.000Z

375

Plug-in electric vehicles as dispersed energy storage interactions with a smart office building  

Science Journals Connector (OSTI)

Renewable energy resources (RESs) with plug-in electric vehicles (PEVs) are being gradually accepted by society for their low carbon emission merits. However reverse power from the RES will result in the grid node's voltage rise and cause protection malfunction. As large amount of PEVs plug in the grid their overall charging power tends to be uncertain due to their complex charging behavior. At the same time if the renewable energy is integrated into the same grid the gird will face a great technological challenge. In this paper a smart building energy management system (SBEMS) is proposed to mitigate negative impact of RES and PEVs to power grid and optimize the operation of the building. The proposed SBEMS is also capable with PEVs system integration photovoltaic (PV) power forecasting optimization algorithm implementation and environmental evaluation criteria. Since PV's output is sensitive to the meteorology a 1-day-ahead power forecasting model is needed and presented. The economic system of PEVs is particularly complex because it needs optimization across multiple time steps and is strongly influenced by tariff structures. Furthermore the optimization problem to minimize the total building operational cost including PEVs charging cost is formulated while satisfying the supply and demand balance and complicated operating constraints of every energy supply equipment and devices. The simulation results have shown that the SBEMS can effectively reduce the PEVs charging cost building operation cost and the environment punishment fee. It is also important for the SBEMS to be responsible for the power grid operational indices. So the trade-off between economic consideration and load factor should be made. It is verified that the SBEMS is beneficial to the PEVs owners building operator environment and grid.

Qian Dai; Shanxu Duan; Tao Cai; Changsong Chen

2013-01-01T23:59:59.000Z

376

Vehicle Technologies Office: Hybrid and Vehicle Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

377

Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China  

Broader source: Energy.gov [DOE]

In 2011, plug-in car sales in the U.S. were 0.28% of the U.S. car market, and grew to 0.44% of the U.S. car market in the first eight months of 2012. Western Europe has also increased their plug-in...

378

Price-Based Distributed Control for Networked Plug-in Electric Vehicles Bahman Gharesifard Tamer Basar Alejandro D. Dominguez-Garcia  

E-Print Network [OSTI]

Price-Based Distributed Control for Networked Plug-in Electric Vehicles Bahman Gharesifard Tamer the charging and discharging processes of plug-in electric vehicles (PEVs) via pricing strategies. Our. In the retail market layer, the aggregator offers some price for the energy that PEVs may provide; the objective

Liberzon, Daniel

380

HYBRID ELECTRIC VEHICLE OWNERSHIP AND FUEL ECONOMY ACROSS TEXAS: AN APPLICATION OF SPATIAL MODELS  

E-Print Network [OSTI]

and environmental policies (Koo et al. 2012). While EV sales (including both HEVs and PEVs) have risen considerably significant. If households registering more fuel- efficient vehicles, including hybrid EVs, are also more inclined to purchase plug-in EVs, these #12;findings can assist in spatial planning of charging

Kockelman, Kara M.

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Fact #856 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for Owner Satisfaction  

Broader source: Energy.gov [DOE]

The annual owner-satisfaction survey from Consumer Reports in 2014 covered 350,000 vehicles from one to three years old. They asked subscribers if they would purchase the same vehicle again knowing...

382

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network [OSTI]

a PHEV has both an electric motor and a heat engineusuallythe vehicle only by an electric motor using electricity fromand forth with the electric motor to maximize efficiency.

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

383

Vehicle Technologies Office Merit Review 2014: SCAQMD: Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation  

Broader source: Energy.gov [DOE]

Presentation given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

384

VEHICLE-INFRASTRUCTURE INTEGRATION (VII) ENABLED PLUG-IN HYBRID ELECTRIC VEHICLES (PHEVS) FOR TRAFFIC AND ENERGY MANAGEMENT.  

E-Print Network [OSTI]

??Vehicle Infrastructure Integration (VII) program (also known as IntelliDrive) has proven the potential to improve transportation conditions by enabling the communication between vehicles and infrastructure, (more)

Kang, Xueying

2009-01-01T23:59:59.000Z

385

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network [OSTI]

battery and electric motor to increase the efficiency of thebattery and electric motor to increase the efficiency of theand electric motor are used to improve the efficiency of the

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

386

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network [OSTI]

with the electric motor to maximize efficiency. 3 Pure EVsbattery and electric motor to increase the efficiency of thebattery and electric motor to increase the efficiency of the

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

387

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network [OSTI]

times between trips to gasoline stations. For some people,the reduction in trips to gasoline stations was more than asome people identify gasoline stations as dangerous or dirty

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

388

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network [OSTI]

chemistries. In summary, electric-drive interest groups,the present and future of electric-drive vehicles, including24 -vii- 1.0 Introduction Electric-drive continues to pique

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

389

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

Broader source: Energy.gov [DOE]

Presented at the U.S. Department of EnergyLight Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

390

Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

Broader source: Energy.gov [DOE]

This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging PHEVs, as well as the powertrain technology and fuel sources for PHEVs.

391

Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles  

Fuel Cell Technologies Publication and Product Library (EERE)

This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies

392

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network [OSTI]

sources. So where are our electric automobiles? The answeron what is an electric automobile. We have seen variations

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

393

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network [OSTI]

safety and cost. Third, Li-Ion battery designs are betterattributes of one type of Li-Ion battery cannot necessarilycapabilities. In any case, Li-Ion battery technologies hold

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

394

Emissions Impacts and Benefits of Plug-In Hybrid Electric Vehicles and Vehicle-to-Grid Services  

Science Journals Connector (OSTI)

In addition to using a cleaner source of fuel, PHEVs may further increase the efficiency of electric generators and reduce overall emissions by providing two vehicle-to-grid (V2G) services (6, 7): energy storage and ancillary services (AS). ... This also demonstrates the importance of detailed emissions impact studies for other power systems: ERCOT is a unique power system in that it has a great deal of natural gas and wind generation, and the emissions impacts of PHEVs may be different in other power systems. ...

Ramteen Sioshansi; Paul Denholm

2009-01-22T23:59:59.000Z

395

Technical Challenges of Plug-In Hybrid Electric Vehicles and Impacts to the U.S. Power System - PNNL-  

Broader source: Energy.gov (indexed) [DOE]

Regional Assessment of Energy Storage Systems Regional Assessment of Energy Storage Systems for the Northwest Power Pool Collaboration with the Bonneville Power Administration Michael Kintner-Meyer, Ph.D. . Contact: email: Michael.Kintner-Meyer@pnl.gov phone: 509.375.4306 Program Review Energy Storage Systems Program (ESS) Washington, DC November 2, 2010 Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Pacific Northwest National Laboratories Goal and Motivation to Collaborate with BPA Goal: Explore the following questions Explore how much energy storage does the nation need? What kind of storage? Where to place it? Motivation for collaboration with BPA BPA initiated analysis toward storage strategy PNNL needed detailed data What questions do we address? What are the likely balancing requirements for the NWPP in a 14.4 GW wind scenario

396

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network [OSTI]

Li-Ion (Johnston Controls SaftJCS). Whereas EPRIs analysisLi-Ion (Johnston Controls SaftJCS). To understand Figure 3,Co 0.1 Al 0.05 )O 2 JCI-Saft 3 Pilot 1 nickel, (Graphite)

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

397

On-line Decentralized Charging of Plug-In Electric Vehicles in Power Systems  

E-Print Network [OSTI]

Plug-in electric vehicles (PEV) are gaining increasing popularity in recent years, due to the growing societal awareness of reducing greenhouse gas (GHG) emissions and the dependence on foreign oil or petroleum. Large-scale implementation of PEVs in the power system currently faces many challenges. One particular concern is that the PEV charging can potentially cause significant impact on the existing power distribution system, due to the increase in peak load. As such, this work tries to mitigate the PEV charging impact by proposing a decentralized smart PEV charging algorithm to minimize the distribution system load variance, so that a 'flat' total load profile can be obtained. The charging algorithm is on-line, in that it controls the PEV charging processes in each time slot based entirely on the current power system state. Thus, compared to other forecast based smart charging approaches in the literature, the charging algorithm is robust against various uncertainties in the power system, such as random PE...

Li, Qiao; Negi, Rohit; Franchetti, Franz; Ilic, Marija D

2011-01-01T23:59:59.000Z

398

How Hybrids Work  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How Hybrids Work How Hybrids Work Diagram of full hybrid vehicle components, including (1) an internal combustion engine, (2) an electric motor, (3) a generator, (4) a power split device, and (5) a high-capacity battery. Flash Animation: How Hybrids Work (Requires Flash 6.0 or higher) HTML Version: How Hybrids Work Hybrid-electric vehicles (HEVs) combine the benefits of gasoline engines and electric motors and can be configured to obtain different objectives, such as improved fuel economy, increased power, or additional auxiliary power for electronic devices and power tools. Some of the advanced technologies typically used by hybrids include Regenerative Braking. The electric motor applies resistance to the drivetrain causing the wheels to slow down. In return, the energy from the

399

Preliminary investigation of the effects of lower hybrid power on asymmetric behaviors in the scrape-off layer in experimental advanced superconducting tokamak  

SciTech Connect (OSTI)

The striations in front of the lower hybrid (LH) launcher have been observed during LH injection by a visible video camera in the Experimental Advanced Superconducting Tokamak. Edge density at the top of the LH launcher tends to be much larger in reversed magnetic field (B{sub t}) than that in the normal B{sub t}. To study the mechanisms of the observations, the diffusive-convective model is employed. Simulations show that the LH power makes the density in scrape-off layer asymmetric in poloidal direction with five density peaks. The locations of the striations are approximately in agreement with the locations of the density peaks in different directions of B{sub t}. Higher LH power strengths the asymmetry of the density and leads to a bad coupling which is in conflict with the experimental results showing a good coupling with a higher power. Furthermore, an ionization term is introduced into this model and the increase of edge density with LH power can be qualitatively explained. The simulations also show that the density peaks in front of the waveguides become clearer when taking into account gas puffing.

Zhang, L.; Ding, B. J., E-mail: bjding@ipp.ac.cn; Li, M. H.; Liu, F. K.; Shan, J. F.; Wei, W.; Li, Y. C.; Yang, J. H.; Wu, Z. G.; Liu, L.; Wang, M.; Zhao, L. M.; Ma, W. D.; Xiu, H. D.; Wang, X. J.; Jia, H.; Yang, Y.; Cheng, M.; Wu, D. J.; Xu, L. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)] [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); and others

2014-02-15T23:59:59.000Z

400

Hybrid Neural Systems Stefan Wermter  

E-Print Network [OSTI]

Hybrid Neural Systems Stefan Wermter Ron Sun Springer, Heidelberg, New York January 2000 #12; Preface The aim of this book is to present a broad spectrum of current research in hybrid neural systems, and advance the state of the art in neural networks and arti#12;cial intelligence. Hybrid neural systems

Varela, Carlos

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Do You Drive a Hybrid Electric Vehicle? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Do You Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? Do You Drive a Hybrid Electric Vehicle? July 9, 2009 - 1:34am Addthis In Tuesday's entry, Francis X. Vogel from the Wisconsin Clean Cities coalition told us about his plug-in hybrid electric vehicle (PHEV). He's one of the lucky few in the United States to drive one of these vehicles because factory-made PHEV's are not yet available to the public. Regular hybrid electric vehicles, however, are widely available and seem to be more and more common on the roads. Do you drive a hybrid electric vehicle? Please share your experience with it in the comments. Each Thursday, you have the chance to share your thoughts on a topic related to energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments.

402

Secretary Chu Announces up to $10 Million to Support Plug-In...  

Energy Savers [EERE]

Wayne, IN) has been selected by the Department of Energy (DOE) for negotiation of a cost-shared award of up to 10 million to develop, test, and deploy an electric hybrid...

403

Expanded North Carolina Lithium Facility Opens, Boosting U.S...  

Broader source: Energy.gov (indexed) [DOE]

plug-in hybrids and other advanced clean energy technologies grows worldwide, rare earth elements and other critical materials, including lithium, are facing increasing global...

404

Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program  

SciTech Connect (OSTI)

The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plugin hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create webbased learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, fouryear colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and coordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit webbased learning resource and Google spinoff.

Caille, Gary

2013-12-13T23:59:59.000Z

405

Photo illustration by George Lange, with Michael Miller (Plug) Popular Mechanics Impact of PlugImpact of Plug--in Hybrids on thein Hybrids on the  

E-Print Network [OSTI]

barriers (high entry cost) High discount factors and risk aversion 14 Barriers to new alternative fueled held constant Energy requirement ~ 0.26-0.46 watts/mile (0.3 midsize) Energy efficiency improvement -5% per year Battery size 10 KWh Battery type Lithium-Ion T&D and conversion efficiency losses ~20

406

Sliding force measurements on the LHC RF contact Plug In Modules at 15 K and in UHV  

E-Print Network [OSTI]

Some sliding RF contacts mounted in the Plug In Modules in the LHC interconnects failed during a thermal cycle between 4.2 K and room temperature. Gold-coated copperberyllium RF fingers buckled during the warm up of the machine, indicating that one or more parameters during operation (e.g. the friction coefficient under vacuum) could be different from what was used in the calculations. This report describes the measurement of the longitudinal forces acting on the sliding RF fingers at operating vacuum and temperatures.

Artoos, K; Renaglia, T

2008-01-01T23:59:59.000Z

407

Plug-In Electric Vehicle Handbook for Workplace Charging Hosts (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Workplace Workplace Charging Hosts Plug-In Electric Vehicle Handbook for Workplace Charging Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Benefits of Workplace Charging . . . . . . . . . . . . . . . . . . . . . . 8 Evaluating and Planning for Workplace Charging . . . . . . . 9 Workplace Charging Management and Policy Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Workplace Charging Installation . . . . . . . . . . . . . . . . . . . . . . 16 Electrifying Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Clean Cities Helps Establish Charging Infrastructure The U .S . Department of Energy's Clean Cities program supports local actions to reduce petroleum use in transportation . Nearly 100 Clean Cities coalitions across the country work

408

Advanced High Efficiency Clean Diesel Combustion with Low Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion...

409

Hybrid Membrane System for Industrial Water Reuse  

Broader source: Energy.gov [DOE]

Demonstrate an advanced water treatment and reuse process in a single hybrid system that combines forward osmosis with membrane distillation to achieve greater efficiency and increased water reuse.

410

Hybrid Electric Vehicle Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

411

EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition  

E-Print Network [OSTI]

and regional resolution the likely grid impacts of defensible penetration scenario in the US for the 2030 impacts of generating electricity, which then in turn has electric rate impacts to rate payers are the impacts of a plausible penetration of plug- in hybrid electric vehicles (PHEVs) on the electricity

412

The Effect of Monetary Incentives on Sales of Advanced Clean Cars  

E-Print Network [OSTI]

-scale commercialization of zero emission vehicles-- both hydrogen fuel cell vehicles (FCVs) and plug-in electric vehiclesThe Effect of Monetary Incentives on Sales of Advanced Clean Cars in the United States: Summary a transformation of the transportation sector to vehicles and fuels that have low-to-zero lifecycle emissions

California at Davis, University of

413

Hybrid Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Energy Integrated energy systems could improve fossil resource utilization, reduce greenhouse gas emissions and stabilize renewable energy contributions. These hybrid...

414

Using existing network infrastructure to estimate building occupancy and control plugged-in devices in user workspaces  

Science Journals Connector (OSTI)

Buildings are a major consumer of energy. We believe that energy can be saved with the notion of implicit occupancy sensing where existing IT infrastructure can be used to replace and/or supplement explicit dedicated sensors to determine building occupancy and drive building operation. Implicit sensing has the promise to be both lower in cost than explicit sensing based on PIR and ultrasound sensors and to offer additional useful data about the occupants of a building. Our implicit sensing methods are largely based on monitoring IP and MAC addresses in Wi-Fi access points and in routers, and then correlating these addresses to the occupancy of a floor, area, or room of a building. We experimentally evaluate the feasibility of this dual-use of IT infrastructure. We demonstrate an application of implicit sensing to sense the pending occupancy of a user workspace and automatically control the plugged-in devices in the workspace.

Ken Christensen; Ryan Melfi; Bruce Nordman; Ben Rosenblum; Raul Viera

2014-01-01T23:59:59.000Z

415

Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fleet Managers Fleet Managers Plug-In Electric Vehicle Handbook for Fleets 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the ac- curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and

416

Plug-In Electric Vehicle Handbook for Consumers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Consumers Consumers Plug-In Electric Vehicle Handbook for Consumers 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the ac- curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and

417

E-Print Network 3.0 - auriculiformis interspecific hybrid Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

auriculiformis interspecific hybrid Search Powered by Explorit Topic List Advanced Search Sample search results for: auriculiformis interspecific hybrid Page: << < 1 2 3 4 5 > >> 1...

418

Vehicle Technologies Office: Advanced Combustion Engines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Combustion Advanced Combustion Engines to someone by E-mail Share Vehicle Technologies Office: Advanced Combustion Engines on Facebook Tweet about Vehicle Technologies Office: Advanced Combustion Engines on Twitter Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Google Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Delicious Rank Vehicle Technologies Office: Advanced Combustion Engines on Digg Find More places to share Vehicle Technologies Office: Advanced Combustion Engines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Combustion Engines Emission Control Waste Heat Recovery Fuels & Lubricants Materials Technologies Advanced Combustion Engines

419

Hybrid Models  

Science Journals Connector (OSTI)

Up to this point, we have been discussing systems of equations involving continuous variables. In this chapter, we will discuss hybrid system behavior. Hybrid behavior involves not just continuous variables and e...

Michael Tiller Ph.D.

2001-01-01T23:59:59.000Z

420

E-Print Network 3.0 - affine hybrid systems Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hybrid systems Search Powered by Explorit Topic List Advanced Search Sample search results for: affine hybrid systems Page: << < 1 2 3 4 5 > >> 1 Affine Hybrid Systems Aaron D....

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Speakers: Eric M. Lightner, U.S. Department of Energy William...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

we see as a future activity that clearly is advancing quickly. And then the whole area of green energy electric vehicles, hybrid type of vehicles, especially the plug in hybrids,...

422

Design and Assessment of a Battery-Supercapacitor Hybrid Energy Storage System for Remote Area Wind Power Systems.  

E-Print Network [OSTI]

??Recent advances in innovative energy storage devices such as supercapacitors have made battery-supercapacitor hybrid energy storage systems technically attractive. However the field of hybrid energy (more)

Gee, A

2012-01-01T23:59:59.000Z

423

Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

424

Hybrid Vehicle Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Links Hybrid Links Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov Web site. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Hybrid Vehicles and Manufacturers Acura ILX Hybrid Audi Q5 Hybrid BMW ActiveHybrid 3 ActiveHybrid 5 ActiveHybrid 7 Buick LaCrosse eAssist* Regal eAssist* Chevrolet Malibu Eco* Impala eAssist* Ford Fusion Hybrid Honda Accord Hybrid Civic Hybrid Honda CR-Z Honda Insight Hyundai Sonata Hybrid Infiniti M Hybrid Q50 Hybrid Q50 S Hybrid QX60 Hybrid Kia Optima Hybrid Lexus CT 200h Lexus ES 300h GS 450h LS 600h L RX 450h Lincoln MKZ Hybrid Mercedes-Benz Mercedes E400 Hybrid Nissan Pathfinder Hybrid Porsche Cayenne S Hybrid Subaru XV Crosstrek Hybrid Toyota Avalon Hybrid

425

Hybride Montagesysteme  

Science Journals Connector (OSTI)

Hybride Montagesysteme sind Einrichtungen zur Montage von Baugruppen und/oder Produkten, in denen Automatikstationen mit Handarbeitspltzen kombiniert sind. Sie liegen hinsichtlich Stckzahl, Variantenvielfalt...

Edwin Lotter

2006-01-01T23:59:59.000Z

426

Hybride Montagesysteme  

Science Journals Connector (OSTI)

Hybride Montagesysteme sind Einrichtungen zur Montage von Baugruppen und/oder Produkten, in denen Automatikstationen mit Handarbeitspltzen kombiniert sind. Sie liegen hinsichtlich Stckzahl, Variantenvielfalt...

Edwin Lotter

2012-01-01T23:59:59.000Z

427

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network [OSTI]

An overview. Electric Power Systems Research 79(4), 511-520.research has shown that EDVs offer a number of potential complementarities to the conventional system of electric power

Greer, Mark R

2012-01-01T23:59:59.000Z

428

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

PHEV impact on wind energy market (Short et al. , 2006) andVehicles in California Energy Markets, TransportationElectric Vehicles on Wind Energy Markets, National Renewable

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

429

Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size  

Broader source: Energy.gov [DOE]

Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

430

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

Vehicle (BEV) with an electric motor capable of supplyingmode operation uses the electric motor to run during low-PHEV x can be run on the electric motor only for the first x

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

431

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

of light-duty vehicles in Xcel Energy service territory inVehicle Charging in the Xcel Energy Colorado Service

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

432

Plug-in Hybrid Powertrain Modeling Scott J. Moura, Hosam K. Fathy, Duncan S. Callaway, Jeffrey L. Stein Slide 1 of 15  

E-Print Network [OSTI]

) decreases the cost per gallon of gasoline equivalent. Chevrolet Volt Concept Car at 2007 NAIAS Source with "blending"? Problem Statement Develop a control-oriented model of sufficient fidelity and minimal complexity

Krstic, Miroslav

433

Economic Assessment and Impacts Assessment of Plug-In Hybrid Vehicles on Electric Utilities And Regional U.S. Power Grids  

SciTech Connect (OSTI)

Part 2 provides an economic assessment of the impacts of PHEV adoption on vehicle owners and on electric utilities. The paper finds favorable impacts on LCC to vehicle owners, and average costs of power for both types of utilities.

Scott, Michael J.; Kintner-Meyer, Michael CW; Elliott, Douglas B.; Warwick, William M.

2007-01-31T23:59:59.000Z

434

Economic Assessment And Impacts Assessment Of Plug-In Hybrid Vehicles On Electric Utilities And Regional U.S. Power Grids  

SciTech Connect (OSTI)

Part 2 provides an economic assessment of the impacts of PHEV adoption on vehicle owners and on electric utilities. The paper finds favorable impacts on LCC to vehicle owners, and average costs of power for both types of utilities.

Scott, Michael J.; Kintner-Meyer, Michael CW; Elliott, Douglas B.; Warwick, William M.

2007-01-22T23:59:59.000Z

435

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network [OSTI]

battery chemistry for future HEVs (including PHEVs) is currently Li-ion.its battery pack, but it used lead-acid rather than Li-ion

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

436

Knoxville Area Transit: Propane Hybrid Electric Trolleys  

SciTech Connect (OSTI)

A 2-page fact sheet summarizing the evaluation done by the U.S. Department of Energy's Advanced Vehicle Testing Activity on the Knoxville Area Transit's use of propane hybrid electric trolleys.

Not Available

2005-04-01T23:59:59.000Z

437

Ford Escape Advanced Research Vehicle Report Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Research Vehicle Advanced Research Vehicle Report Notes 1 "Overall AC electrical energy consumption (AC Wh/mi)" is based on AC electricity consumed during charging events which began during the reporting period and distance driven during all trips in the reporting period. 2 "Overall DC electrical energy consumption (DC Wh/mi)" is based on net DC electricity discharged from or charged to the plug-in battery pack and distance driven during all trips in the reporting period. DC Wh/mi may not be comparable to AC Wh/mi if AC electricity charged prior to the reporting period was discharged during driving within the reporting period, or if AC electricity charged during the reporting period was not discharged during driving within the reporting period.

438

Hybrid Fuel Cell Technology Overview  

SciTech Connect (OSTI)

For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

None available

2001-05-31T23:59:59.000Z

439

NREL: Advanced Power Electronics - Research and Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Development Research and Development The Advanced Power Electronics activity focuses on the electric drive system for hybrid electric and fuel cell vehicles. At NREL, we research and develop electronic components and systems that will overcome major technical barriers to commercialization of hybrid, advanced internal combustion, and fuel cell vehicle technologies. Researchers focus on developing advanced power electronics and electric machinery technologies that improve reliability, efficiency, and ruggedness, and dramatically decrease systems costs for advanced vehicles. To accomplish this, the power electronics team investigates cooling and heating of advanced vehicles by looking at the thermal management of motor controllers, inverters, and traction motors with one- and two-phase cooling

440

North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.ncsc.ncsu.edu | 7/26/13 Advancing Clean Energy for a Sustainable Economy  

E-Print Network [OSTI]

vehicle? Driving a plug-in electric vehicle (PEV) improves air quality. PEVs produce zero tailpipe.ncsc.ncsu.edu | 7/26/13 Advancing Clean Energy for a Sustainable Economy Clean Transportation Program | 919 or solar is used to recharge. PEVs are also less expensive to drive, costing $0.50-1.00 per gallon

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Awards To Advanced Vehicle Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Awards To Advanced Vehicle Development Awards To Advanced Vehicle Development Awards To Advanced Vehicle Development September 8, 2011 - 11:30am Addthis Awards To Advanced Vehicle Development Projects to support community planning for plug-in electric vehicles and charging infrastructure will receive $8.5 million through DOE's Clean Cities initiative to facilitate local public-private partnerships that will develop EV deployment strategies. The funding recipients range from communities with extensive EV planning experience to those that are eager to begin, but have not previously had the resources to do so. These one-year projects will help communities address their specific needs, which include updating permitting processes, revising codes, training municipal personnel, promoting public awareness, or developing incentives, and each

442

Awards To Advanced Vehicle Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Awards To Advanced Vehicle Development Awards To Advanced Vehicle Development Awards To Advanced Vehicle Development September 8, 2011 - 11:30am Addthis Awards To Advanced Vehicle Development Projects to support community planning for plug-in electric vehicles and charging infrastructure will receive $8.5 million through DOE's Clean Cities initiative to facilitate local public-private partnerships that will develop EV deployment strategies. The funding recipients range from communities with extensive EV planning experience to those that are eager to begin, but have not previously had the resources to do so. These one-year projects will help communities address their specific needs, which include updating permitting processes, revising codes, training municipal personnel, promoting public awareness, or developing incentives, and each

443

DOE Hydrogen Analysis Repository: Advanced Vehicle Simulator (ADVISOR)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Vehicle Simulator (ADVISOR) Advanced Vehicle Simulator (ADVISOR) Project Summary Full Title: Advanced Vehicle Simulator (ADVISOR) Project ID: 108 Principal Investigator: Matthew Thornton Brief Description: ADVISOR is used to simulate and analyze conventional, advanced, light, and heavy vehicles, including hybrid electric and fuel cell vehicles. Keywords: Hybrid electric vehicles (HEV); vehicle characteristics; vehicle performance; fuel consumption Purpose ADVISOR was designed as an analysis tool to assist the DOE in developing and understanding hybrid electric vehicles through the Hybrid Vehice Propulsion Systems contracts with Ford, GM, and DaimlerChrysler. Performer Principal Investigator: Matthew Thornton Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd.

444

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

such as synthetic crude gasification combined cycle powerstand-alone integrated gasification combined cycle powertransmission integrated gasification, combined cycle power

Phadke, Amol

2008-01-01T23:59:59.000Z

445

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

the United States from LNG and Coal. DOE/NETL-2006/1227,per MJ and those for imported LNG are about 11 grams of CO2gas, which in the US is imported LNG that has substantially

Phadke, Amol

2008-01-01T23:59:59.000Z

446

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

turbine power plant carbon capture and storage combustionGas Combined Cycle with Carbon Capture and Sequestration Wecycle power plant with carbon capture and sequestration used

Phadke, Amol

2008-01-01T23:59:59.000Z

447

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

Figure 12. Effect of Wind Integration and Resource Adequacy62 Table E-2. Estimates of Wind IntegrationAugust. Utility Wind Integration Group (UWIG), 2006.

Phadke, Amol

2008-01-01T23:59:59.000Z

448

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

at http://web.mit.edu/coal/ NETL, 2007a. The Cost andbaseline_studies.html NETL, 2007b. Increasing Security andRole for Coal with Biomass. DOE/NETL- 1298, National Energy

Phadke, Amol

2008-01-01T23:59:59.000Z

449

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

application of new clean coal technologies with near zeroapplication of new clean coal technologies with near zero

Phadke, Amol

2008-01-01T23:59:59.000Z

450

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

32 Figure 13. Effect of EOR Revenues on Levelized Cost of52 Table D-4. Oil Price and EOR54 Table D-5. Carbon Transport Cost and Net EOR

Phadke, Amol

2008-01-01T23:59:59.000Z

451

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/this operational mode, the gasifiers and other parts of the

Phadke, Amol

2008-01-01T23:59:59.000Z

452

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

52 Table D-4. Oil Price and EORAlthough the current oil price is below $60/bbl, the currentestimated the levelized oil price during 2015-45, based on

Phadke, Amol

2008-01-01T23:59:59.000Z

453

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

Coal Prices..AEO 2007 forecast for coal prices for PRB coal. Transmissionregimes. Sensitivity to Coal Prices Figure 9 is similar to

Phadke, Amol

2008-01-01T23:59:59.000Z

454

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

or Syncrude Production Syngas Production storage Benchmark22 Table 6. Extra Costs of Fuel Production or SyngasAdditional Cost of Fuel Production or Syngas Storage in ACWH

Phadke, Amol

2008-01-01T23:59:59.000Z

455

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

gas production can offset some of the capture, transport, and storage costs.Production or Storage Costs ACWH Additional Cost ($ Million) Syncrude Synthetic Natural Gas (

Phadke, Amol

2008-01-01T23:59:59.000Z

456

Vehicle Technologies Office: Materials for Hybrid and Electric Drive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Hybrid and for Hybrid and Electric Drive Systems to someone by E-mail Share Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Facebook Tweet about Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Twitter Bookmark Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Google Bookmark Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Delicious Rank Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Digg Find More places to share Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

457

E-Print Network 3.0 - auslegung von hybrid- Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hybrid- Search Powered by Explorit Topic List Advanced Search Sample search results for: auslegung von hybrid- Page: << < 1 2 3 4 5 > >> 1 Termin Aktion Anfang April Versand der...

458

E-Print Network 3.0 - antimicrobial hybrid peptide Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hybrid peptide Search Powered by Explorit Topic List Advanced Search Sample search results for: antimicrobial hybrid peptide Page: << < 1 2 3 4 5 > >> 1 Pore formation by the MG-H2...

459

Vehicle Technologies Office: Electric Drive Technologies  

Broader source: Energy.gov [DOE]

Advanced power electronics and electric motors (APEEM) that make up vehicles' electric drive system are essential to hybrid and plug-in electric vehicles. As such, improvements in these...

460

Let's keep timetables realistic in moving toward a low-carbon electricity future  

SciTech Connect (OSTI)

The paper discusses technology transformation (energy efficiency, renewables, carbon capture and storage, advanced coal technologies, new nuclear energy, plug-in hybrid electric vehicles), economic analysis, and economic safeguards when moving towards a low-carbon electricity future.

Shea, Q.

2008-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Hybrid Mesons  

E-Print Network [OSTI]

The SU(3)_flavor constituent quark model has been quite successful to explain the properties as well as the observed spectrum of mesons with pseudoscalar and vector quantum numbers. Many radial and orbital excitations of quark-antiquark systems predicted by the model, however, have not yet been observed experimentally or assigned unambiguously. In addition, a much richer spectrum of mesons is expected from QCD, in which quarks interact which each other through the exchange of colored self-interacting gluons. Owing to this particular structure of QCD, configurations are allowed in which an excited gluonic field contributes to the quantum numbers J^{PC} of the meson. States with a valence color-octet qqbar' pair neutralized in color by an excited gluon field are termed hybrids. The observation of such states, however, is difficult because they will mix with ordinary qqbar' states with the same quantum numbers, merely augmenting the observed spectrum for a given J^{PC}. Since the gluonic field may carry quantum numbers other than 0^{++}, however, this can give rise to states with "exotic" quantum numbers J^{PC}=0^{--}, 0^{+-}, 1^{-+}, 2^{+-},... The lowest-lying hybrid multiplet is expected to contain a state with exotic quantum numbers J^{PC}=1^{-+}. The identification of such a state is considered a "smoking gun" for the observation of non-qqbar mesons. The search for hybrid states has been a central goal of hadron spectroscopy in the last 20 years. Ongoing and upcoming high-statistics experiments are expected to shed new light on the existence of such states in nature. In this paper, theoretical predictions for masses and decay modes as well as recent experimental evidence for hybrid meson states and future experimental directions are discussed.

Bernhard Ketzer

2012-08-25T23:59:59.000Z

462

hybrid electric vehicle and lithium polymer nev testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

P1.2 - Hybrid Electric Vehicle and Lithium Polymer NEV Testing P1.2 - Hybrid Electric Vehicle and Lithium Polymer NEV Testing James Edward Francfort Advanced Vehicle Testing Activity Idaho National Laboratory P.O. Box 1625, Idaho Falls, ID. 83415-3830 james.francfort@inl.gov Abstract: The U.S. Department of Energy's Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery. Keywords: hybrid; neighborhood; electric; battery; fuel;

463

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 24, NO. 11, NOVEMBER 2009 2625 Hybrid Digital Adaptive Control for Fast Transient  

E-Print Network [OSTI]

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 24, NO. 11, NOVEMBER 2009 2625 Hybrid Digital Adaptive, IEEE, and Dragan Maksimovi´c, Senior Member, IEEE Abstract--This paper presents a hybrid digital advanced control concepts, such as hybrid control [1]. Hybrid controllers, which include switching among

464

Special Collections, General Collections, and Hybrid Conservation Laboratories  

E-Print Network [OSTI]

repairs, others limit themselves to full special-collections treatments and advanced bookbinding work, while still others might incorporate both general collections and special collections workflows in the same hybrid space. In this chapter...

Baker, Whitney

2012-01-01T23:59:59.000Z

465

The Ohio Advanced Transportation Partnership (OATP)  

Broader source: Energy.gov (indexed) [DOE]

* Plug-In electric vehicle charging stations 30% complete * Clean Energy 4 natural gas fueling stations 50% complete * Zanesville Energy renewable natural gas station 100%...

466

F1 Hybrid  

Science Journals Connector (OSTI)

Abstract An F1 hybrid consists of crosses between populations, breeds, or cultivars between or within species. This meaning is often used in plant and animal breeding, where hybrids are commonly produced and chosen (artificially selected) because they have desirable characteristics. This flow of genetic material between populations is often called hybridization. Mostly, F1 hybrids between diverse parentages give great vigor than hybrids between parents of same ancestry.

N.U. Khan

2013-01-01T23:59:59.000Z

467

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

468

AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus testing results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes testing results of the Idaho National Laboratory's demonstration hybrid shuttle bus.

469

2011 Hyundai Sonata Hybrid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hyundai Sonata Hybrid Hyundai Sonata Hybrid Test cell location 2WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle architecture P2 HEV Vehicle Dynamometer Input Document date 8/7/2013 Advanced Powertrain Research Facility Test weight [lb] Target A [lb] 3750 26.8 Target B [lb/mph] Target C [lb/mph^2] 0.15 0.0145 Revision number 3 Notes: Test Fuel Information Fuel type EPA Tier II EEE Gasoline Fuel density [g/ml] Fuel Net HV [BTU/lbm] 0.742 18202 T e s t I D [ # ] C y c l e C o l d s t a r t ( C S t ) H o t s t a r t [ H S t ] D a t e T e s t C e l l T e m p [ C ] T e s t C e l l R H [ % ] T e s t C e l l B a r o [ i n / H g ] V e h i c l e c o o l i n g f a n s p e e d : S p e e d M a t c h [ S M ] o r c o n s t a n t s p e e d [ C S ] S o l a r L a m p s [ W / m 2 ] V e i c l e C l i m a t e C o n t r o l s e t t i n g s H o o d P o s i t i o n [ U p ] o r [ C l o s e d ] W i n d o w P o s i t i o n [ C l o s e d ] o r [ D o w n ] C y c l e D i s t a n c e [ m i ] C

470

Advanced fuel chemistry for advanced engines.  

SciTech Connect (OSTI)

Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

2009-09-01T23:59:59.000Z

471

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

2002. EPRI, "Advanced Batteries for Electric-Drive Vehicles:12 2.2.2.1 PHEV uncertainties: Batteries andwith big propulsion batteries. However, recent activities (

Williams, Brett D

2010-01-01T23:59:59.000Z

472

Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report  

SciTech Connect (OSTI)

The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fueling infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations, and regenerative braking for battery charging. It uses a 19.3 kW Ballard PEM fuel cell, will store 12.6 kg of hydrogen at 350 Bar, and includes a 60 kWh battery storage system. The objectives of the project included the following: (a) To advance commercialization of hydrogen-powered transit buses and supporting infrastructure; (b) To provide public outreach and education by showcasing the operation of a 22-foot fuel cell hybrid shuttle bus and Texas first hydrogen fueling infrastructure; and (c) To showcase operation of zero-emissions vehicle for potential transit applications. As mentioned above, the project successfully demonstrated an early vehicle technology, the Ebus plug-in hybrid fuel cell bus, and that success has led to the acquisition of a more advanced vehicle that can take advantage of the same fueling infrastructure. Needed hydrogen station improvements have been identified that will enhance the capabilities of the fueling infrastructure to serve the new bus and to meet the transit agency needs. Over the course of this project, public officials, local government staff, and transit operators were engaged in outreach and education activities that acquainted them with the real world operation of a fuel cell bus and fueling infrastructure. Transit staff members in the Dallas/Ft. Worth region were invited to a workshop in Arlington, Texas at the North Central Texas Council of Governments to participate in a workshop on hydrogen and fuel cells, and to see the fuel cell bus in operation. The bus was trucked to the meeting for this purpose so that participants could see and ride the bus. Austin area transit staff members visited the fueling site in Austin to be briefed on the bus and to participate in a fueling demonstration. This led to further meetings to determine how a fuel cell bus and fueling station could be deployed at Capital Metro Transit. Target urban regions that expressed additional interest during the project in response to the outreach meetings and showcase events include San Antonio and Austin, Texas. In summary, the project objectives wer

Hitchcock, David

2012-06-29T23:59:59.000Z

473

EERE SBIR Case Study: Improving Hybrid Poplars as a Renewable Source of Ethanol Fuel  

Broader source: Energy.gov (indexed) [DOE]

GreenWood Resources to advance GreenWood Resources to advance scientific understanding of the ways chemical traits are inherited in hybrid poplars and the extent of variations in characteristics such as lignin content and forms of lignin-enabling the best traits to be developed and significantly advancing the potential of hybrid poplars to provide a substantial, renewable source of ethanol fuel. GreenWood Resources (Portland,

474

Mesoscale hybrid calibration artifact  

DOE Patents [OSTI]

A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

Tran, Hy D. (Albuquerque, NM); Claudet, Andre A. (Albuquerque, NM); Oliver, Andrew D. (Waltham, MA)

2010-09-07T23:59:59.000Z

475

Advanced HD Engine Systems and Emissions Control Modeling and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Meeting vss089daw2012p.pdf More Documents & Publications Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System Simulations Advanced LD Engine Systems...

476

NREL: Vehicles and Fuels Research - Advanced Power Electronics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Search More Search Options Site Map The electric drive system is the technology foundation for hybrid electric and fuel cell vehicles. That's why NREL's Advanced Power Electronics project supports and promotes the design, development, and demonstration of power electronic components and systems that will overcome major technical barriers to the commercialization of hybrid, advanced internal combustion, and fuel cell vehicle technologies. In support of DOE's Vehicle Technologies Office, our researchers focus on developing advanced power electronics and electric machinery technologies that improve reliability, efficiency, and ruggedness, and dramatically decrease systems costs for advanced vehicles. Key components for these vehicles include the motor controller, DC to DC converters, and inverters

477

Hybrid armature projectile  

DOE Patents [OSTI]

A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasma blowby.

Hawke, R.S.; Asay, J.R.; Hall, C.A.; Konrad, C.H.; Sauve, G.L.; Shahinpoor, M.; Susoeff, A.R.

1993-03-02T23:59:59.000Z

478

Hybrid armature projectile  

DOE Patents [OSTI]

A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.

Hawke, Ronald S. (Livermore, CA); Asay, James R. (Los Lunas, NM); Hall, Clint A. (Albuquerque, NM); Konrad, Carl H. (Albuquerque, NM); Sauve, Gerald L. (Berthoud, CO); Shahinpoor, Mohsen (Albuquerque, NM); Susoeff, Allan R. (Pleasanton, CA)

1993-01-01T23:59:59.000Z

479

A hybrid systems model to simulate cyber interdependencies between critical infrastructures  

Science Journals Connector (OSTI)

Critical infrastructures (CI) depend on communications and information technology infrastructure (CITI) for many of their key functionalities, which is known as cyber interdependency. In this paper, we presented a cyber interdependency simulation technique that is based on the idea that overall performance of a CI network is determined by the behaviour of its components at multiple time scales. Accordingly, for cyber interdependency simulation, we decomposed CI network into two time scales; regular CI events are captured in large time-steps and data communication network events are captured in smaller time-steps. Two different simulators are used for each of these partitions and results from both simulations are synchronised appropriately. A real life example is presented to demonstrate the accuracy and usefulness of our approach. The hybrid simulation model gives significant flexibility to plug-in domain specific models into the critical infrastructure simulator for accurate and efficient solution.

Hafiz Abdur Rahman; José R. Martí; K.D. Srivastava

2011-01-01T23:59:59.000Z

480

Advanced Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Advanced Materials Advanced Materials Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And Membrane Express Licensing Analysis Of Macromolecule, Liggands And Macromolecule-Lingand Complexes Express Licensing Carbon Microtubes Express Licensing Chemical Synthesis Of Chiral Conducting Polymers Express Licensing Forming Adherent Coatings Using Plasma Processing Express Licensing Hydrogen Scavengers Express Licensing Laser Welding Of Fused Quartz Express Licensing Multiple Feed Powder Splitter Negotiable Licensing Boron-10 Neutron Detectors for Helium-3 Replacement Negotiable Licensing Insensitive Extrudable Explosive Negotiable Licensing Durable Fuel Cell Membrane Electrode Assembly (MEA) Express Licensing Method of Synthesis of Proton Conducting Materials

Note: This page contains sample records for the topic "advanced plug-in hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Anco Advance | Open Energy Information  

Open Energy Info (EERE)

Anco Advance Anco Advance Jump to: navigation, search Name Anco Advance Place Longmont, Colorado Zip 80503 Sector Renewable Energy Product Focused on the delivery and operation of profitable renewable waste to energy plants. Coordinates 40.16394°, -105.100504° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.16394,"lon":-105.100504,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

482

2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energys Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Matthew Shirk; Tyler Gray; Jeffrey Wishart

2014-09-01T23:59:59.000Z

483

Towards a Hybrid Dynamic Logic for Hybrid Dynamic Systems1  

E-Print Network [OSTI]

HyLo 2006 Towards a Hybrid Dynamic Logic for Hybrid Dynamic Systems1 Andr´e Platzer2 Carnegie platzer@informatik.uni-oldenburg.de Abstract We introduce a hybrid variant of a dynamic logic for this extended hybrid dynamic logic. With the addition of satisfaction operators, this hybrid logic provides

Platzer, André

484

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Home Group Members Accelerator Magnets Insertion Devices Facilities Presentations & Publications Internal Magnetic Devices Group The primary mission of the Magnetic Devices (MD) Group is to design, build, and maintain Insertion Devices (IDs) that are reliable and transparent to the electron beam at the Advanced Photon Source (APS). The majority of IDs at the APS are conventional planar hybrid undulators, but an essential part of the mission is to develop novel IDs, such as short-period superconducting undulators and long-period electromagnetic undulators. The capabilities of APS IDs are matched to users' experimental needs. The mission also includes magnetic tuning of the IDs to ensure their near-ideal performance as x-ray sources and calculations to predict the radiation

485

Science Highlights 2007 | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Semiconductors for Hardier Electronics and Optoelectronics? Hybrid Semiconductors for Hardier Electronics and Optoelectronics? Hybrid Semiconductors for Hardier Electronics and Optoelectronics? December 21, 2007 New research at the Advanced Photon Source has shed light on a semiconducting material with zero thermal expansion, and may play a role in the design of future generations of electronics and optoelectronics that can withstand a wide range of temperatures. Unveiling the Molecular Structure of the Target of Many Drugs Unveiling the Molecular Structure of the Target of Many Drugs December 3, 2007 More than 40 years after beta blockers were first used clinically, scientists using a beamline at the Advanced Photon Source finally got a close-up look at the drug's molecular target - the ß2-adrenergic receptor - research that promises to speed the discovery

486

New & Upcoming Hybrid Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New & Upcoming Hybrids New & Upcoming Hybrids 2014 Model Year Vehicle EPA MPG Estimates Price (MSRP) Chevrolet Impala eAssist Large Car Chevrolet Impala eAssist Chart: City, 25; Highway, 35; Combined, 29 NA Infiniti Q50 Hybrid Compact Car Infiniti Q50 Hybrid Chart: City, 29; Highway, 36; Combined, 31 $43,950 Infiniti Q50 Hybrid AWD Compact Car Infiniti Q50 Hybrid AWD Chart: City, 28; Highway, 35; Combined, 30 $45,750 Infiniti Q50S Hybrid Compact Car Infiniti Q50S Hybrid Chart: City, 28; Highway, 34; Combined, 30 $46,350 Infiniti Q50S Hybrid AWD Compact Car Infiniti Q50S Hybrid AWD Chart: City, 27; Highway, 31; Combined, 28 $48,150 Infiniti QX60 Hybrid AWD Standard SUV Infiniti QX60 Hybrid AWD Chart: City, 25; Highway, 28; Combined, 26 NA Infiniti QX60 Hybrid FWD

487

Corn Hybrids for Texas.  

E-Print Network [OSTI]

Stephenville ,J* 5.K'rbyvilb I0.Cbrkdb 15.Tanpk 2ODetiion 25.Wllothe TEXAS AGRICULTURAL EXPERIMENT STATION R. D. LEWIS. DIRECTOR, COLLEGE STATION, TEXAS DIGEST The Texas corn acreage planted to hybrids increased from less than 1 percent of the total acrea....1 in 1941 to 74.5 percent in 1953. Most of the present acreage is devoted to the newer, better-adaptt hybrids-Texas 26, 28 and 30. These new hybrids usually outyield the older Texas hybrids h!. least 10 percent. Corn is one of the most important...

Rogers, J. S.; McAfee, T. E.

1954-01-01T23:59:59.000Z

488

ABAA - 6th International Conference on Advanced Lithium Batteries for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goals Goals Environmental pollution and the looming energy crisis have been attracting significant concerns worldwide. Much of the criticism has been directed to the consumption of fossil fuels and the greenhouse gases emitted by automobiles, which consume almost 45% of all fossil fuels produced. The huge amount of carbon dioxide emitted by automobiles is also highly blamed for global warming. Recently, there has been a worldwide active effort to develop hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV) to effectively reduce the consumption of fossil fuels in the transportation sector. Among the available battery technologies, lithium-ion batteries have the highest capacity density and energy density, and are promising candidates for energy storage devices for HEV and PHEV with improved energy efficiency. However, the key technological barriers that hinder commercial use of lithium-ion batteries for HEV and PHEV are their high cost, not enough calendar and cycle life, limited low temperature performance during cold cranking, and intrinsic abuse tolerance.

489

Rotordynamic evaluation of a roughened-land hybrid bearing  

E-Print Network [OSTI]

in 0. 123 in 0. 177 in 30. 9% 990 3. Test Facility Description All the experiments were conducted in the Turbomachinery Laboratory at Texas A&M University, using the Hybrid-Bearing Test Facility funded by Rocketdyne, NASA, and the Texas Advanced... in 0. 123 in 0. 177 in 30. 9% 990 3. Test Facility Description All the experiments were conducted in the Turbomachinery Laboratory at Texas A&M University, using the Hybrid-Bearing Test Facility funded by Rocketdyne, NASA, and the Texas Advanced...

Fayolle, Patrice Gerard

2012-06-07T23:59:59.000Z

490

Advanced Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Systems: Advanced Systems: high Performance fenestration systems Research areas: Research activities to improve the performance of windows and other fenestration products must address window systems issues as well as Glazing Materials research. LBNL activities in the area of Advanced Systems include research at both the product level and the building envelope and building systems levels. Highly insulating windows - using non structural center layers Lower cost solutions to more insulating three layer glazing systems, with the potential to turn windows in U.S. heating dominated residential applications into net-energy gainers. Highly Insulating Window Frames In collaboration with the Norwegian University of Science and Technology, we are researching the potentials for highly insulating window frames. Our initial work examines European frames with reported U-factors under 0.15 Btu/hr-ft2-F. Future research aims to analyze these designs, verify these performance levels and ensure that procedures used to calculate frame performance are accurate.

491

DOE Announces Webinars on Alternative Fuel Online Tools and Resources, Plug-In Electric Vehicle Standards and Market Development, and More  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts.

492

Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part II. Degradation mechanism under 2 C cycle aging  

SciTech Connect (OSTI)

Degradation phenomena and inference of their underlying mechanisms during 2 C cycle aging in a cell design comprising {l_brace}LiMn1/3Ni1/3Co1/3O2 + LiMn2O4{r_brace} composite positive electrode are studied and reported in this work. We describe how aging phenomena in the cells were studied and incremental capacity analysis applied to infer cell degradation mechanisms in the cycle aging process. Two stages of degradation were observed in the life cycle under this aging regime. In the first stage, we conclude that loss of lithium inventory was the cause of capacity fade. As a result of such parasitic loss, the cell further suffered from loss of active materials in the second stage, in which the positive electrode kinetics was hampered and the capacity loss accelerated.

Matthieu Dubarry; Cyril Truchot; Bor Yann Liaw; Kevin Gering; Sergiy Sazhin; David Jamison; Christopher Michelbacher

2011-12-01T23:59:59.000Z

493

Argonne TTRDC - TransForum v10n1 - ARPA-E Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARPA-E Awards $6 Million to Two Argonne Projects ARPA-E Awards $6 Million to Two Argonne Projects Argonne's through the road plug-in hybrid electric vehicle Argonne's Through-the-Road plug-in hybrid electric vehicle As part of the Department of Energy's (DOE's) Advanced Research Projects Agency-Energy (ARPA-E) funding, Argonne National Laboratory will be part of a new $4 million collaborative project that seeks to lower the cost, extend the all-electricrange and speed the adoption of plug-in hybrids and electric vehicles. In this case, lowering the cost of plug-ins and electric vehicles means lowering the cost of high-energy density lithium-ion batteries. To further this effort, ARPA-E is providing funding for a joint effort between Argonne and Envia Systems. According to the ARPA-E project description, "Envia Systems (Hayward,

494

Argonne TTRDC - D3 (Downloadable Dynamometer Database) - 2013 Toyota Prius  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Toyota Prius Plug-In Hybrid Toyota Prius Plug-In Hybrid 2013 Toyota Prius front view 2013 Toyota Prius rear view Front View - 2013 Toyota Prius Rear View - 2013 Toyota Prius The model year 2013 Toyota Prius PHV is the first production iteration of Toyota's hybrid system to be produced as a plug in electric vehicle, with a 4.4kWh lithium-ion battery. This vehicle includes a 1.8L Atkinson-cycle engine, two electric machines (one motor, one generator) with a power-split device used to control the blended allocation of energy between the two power paths. The 2013 Toyota Prius PHV was evaluated as part of the Advanced Vehicles Technology Evaluation (AVTE) under the funding and guidance of the U.S. Department of Energy (DOE). Key Technology Third generation power-split configuration with plug-in capability

495

Advanced Light Source Beam Position Monitor  

E-Print Network [OSTI]

2 Diagram of storage ring BPM button test set. The 290 ohmmodules. Fig. 6 Drawing of BPM modules and bin. The chassis7 Basic signal flow between BPM plug-in modules. Throughout

Hinkson, J.

2011-01-01T23:59:59.000Z

496

Vehicle Technologies Office: Advanced Battery Development, System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

learn how batteries are used in plug-in electric vehicles, visit the Alternative Fuels Data Center's page on batteries. Through the USABC, VTO supports a variety of research,...

497

Formula Hybrid International Competition  

E-Print Network [OSTI]

Jack Ratta Media Center Acceleration Runs NASCAR Oval - Main Straight Tech. Inspection North Garage:00 4:00 5:00 6:00 7:00 8:00 9:00 Design Finals Group Photo NASCAR Oval - Main Straight Barbeque Hosted of the hybrid gasoline engine, there are more components to a hybrid drivetrain, including the electric motor

Carver, Jeffrey C.

498

Hybrid Quantum Cloning Machine  

E-Print Network [OSTI]

In this work, we introduce a special kind of quantum cloning machine called Hybrid quantum cloning machine. The introduced Hybrid quantum cloning machine or transformation is nothing but a combination of pre-existing quantum cloning transformations. In this sense it creates its own identity in the field of quantum cloners. Hybrid quantum cloning machine can be of two types: (i) State dependent and (ii) State independent or Universal. We study here the above two types of Hybrid quantum cloning machines. Later we will show that the state dependent hybrid quantum-cloning machine can be applied on only four input states. We will also find in this paper another asymmetric universal quantum cloning machine constructed from the combination of optimal universal B-H quantum cloning machine and universal anti-cloning machine. The fidelities of the two outputs are different and their values lie in the neighborhood of ${5/6} $

Satyabrata Adhikari; A. K. Pati; Indranil Chakrabarty; B. S. Choudhury

2007-05-04T23:59:59.000Z

499

Hybrid Baryons in QCD  

SciTech Connect (OSTI)

We present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbers $N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$ and $\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $J^{P}=1^{+}$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.

Jozef J. Dudek, Robert G. Edwards

2012-03-01T23:59:59.000Z

500

2009 Minerals Yearbook U.S. Department of the Interior  

E-Print Network [OSTI]

for the development and production of two lines of lithium-ion battery powered plug-in hybrid electric vehicles (U for electric-drive vehicles and battery recycling. The grants represent the largest single investment in advanced battery technology for hybrid and electric-drive vehicles ever made, and lithium-ion battery