Powered by Deep Web Technologies
Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Advanced Manufacturing Office: Better Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Plants on Twitter Bookmark Advanced Manufacturing Office: Better Plants on Google Bookmark Advanced Manufacturing Office: Better Plants on Delicious Rank Advanced...

2

Advanced nuclear plant control complex  

DOE Patents (OSTI)

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

3

Advanced Manufacturing Office: Better Plants  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Better Buildings, Better Plants Program Partners are demonstrating their commitment to energy savings by signing a voluntary pledge to reduce energy intensity by 25% over ten...

4

Secretary Chu Visits Advanced Battery Plant in Michigan, Announces...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Visits Advanced Battery Plant in Michigan, Announces New Army Partnership Secretary Chu Visits Advanced Battery Plant in Michigan, Announces New Army Partnership July 18, 2011 -...

5

ADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING  

E-Print Network (OSTI)

The components of a modern Advanced Boiling Water Reactor (ABWR) nuclear power plant are modeled in this thesis) is a single-cycle, forced circulation, light-water nuclear reactor designed by the General Electric Company better control of the nuclear reaction in the fuel core. 2.1 Modifications to the BWR [1] · The reactor

Mitchell, John E.

6

Value Operating Flexibility in Advanced Coal Plants  

Science Conference Proceedings (OSTI)

This report describes a preliminary study of the potential value of the operating flexibility available from advanced coal plant designs and carbon capture and storage (CCS) systems. Assessing value requires new analytical approaches capable of examining plant outputs (e.g., syngas, air products, electricity, emissions) in the context of varying power market conditions and significant climate policy and fuel price uncertainties. Accounting for flexibility options in capacity planning may create opportuni...

2009-12-22T23:59:59.000Z

7

Plant maintenance and advanced reactors, 2005  

SciTech Connect

The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: First U.S. EPRs in 2015, by Ray Ganthner, Framatome ANP; Pursuing several opportunities, by William E. (Ed) Cummins, Westinghouse Electric Company; Vigorous plans to develop advanced reactors, by Yuliang Sun, Tsinghua University, China; Multiple designs, small and large, by Kumiaki Moriya, Hitachi Ltd., Japan; Sealed and embedded for safety and security, by Handa Norihiko, Toshiba Corporation, Japan; Scheduled online in 2010, by Johan Slabber, PMBR (Pty) Ltd., South Africa; Multi-application reactors, by Nikolay G. Kodochigov, OKBM, Russia; Six projects under budget and on schedule, by David F. Togerson, AECL, Canada; Creating a positive image, by Scott Peterson, Nuclear Energy Institute (NEI); Advanced plans for nuclear power's renaissance, by John Cleveland, International Atomic Energy Agency, Austria; and, Plant profile: last five outages in less than 20 days, by Beth Rapczynski, Exelon Nuclear.

Agnihotri, Newal (ed.)

2005-09-15T23:59:59.000Z

8

Secretary Chu Visits Advanced Battery Plant in Michigan, Announces...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Secretary Chu Visits Advanced Battery Plant in Michigan, Announces New Army Partnership Secretary Chu Visits Advanced...

9

Advanced Power Plant Development and Analyses Methodologies  

DOE Green Energy (OSTI)

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

G.S. Samuelsen; A.D. Rao

2006-02-06T23:59:59.000Z

10

Advanced Power Plant Development and Analysis Methodologies  

DOE Green Energy (OSTI)

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

2006-06-30T23:59:59.000Z

11

Steam Conservation and Boiler Plant Efficiency Advancements  

E-Print Network (OSTI)

This paper examines several cost-effective steam conservation and boiler plant efficiency advancements that were implemented during a recently completed central steam boiler plant replacement project at a very large semiconductor manufacturing complex. The measures include: 1) Reheating of dehumidified cleanroom make-up air with heat extracted during precooling. 2) Preheating of deionization feedwater with refrigerant heat of condensation. 3) Preheating of boiler combustion air with heat extracted from boiler flue gas. 4) Preheating of boiler feedwater with heat extracted from gas turbine exhaust. 5) Variable speed operation of boiler feedwater pumps and forced-draft fans. 6) Preheating of boiler make-up water with heat extracted from boiler surface blow-down. The first two advancements (steam conservation measures) reduced the amount of steam produced by about 25% and saved about $1,010,000/yr by using recovered waste heat rather than steam-derived heat at selected heating loads. The last four advancements (boiler plant efficiency measures) reduced the unit cost of steam produced by about 13% and saved about $293,500/yr by reducing natural gas and electricity usage at the steam boiler plant. The combined result was a 35% reduction in annual steam costs (fuel and power).

Fiorino, D. P.

2000-04-01T23:59:59.000Z

12

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect

The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

2008-03-01T23:59:59.000Z

13

Plant maintenance and advanced reactors, 2007  

Science Conference Proceedings (OSTI)

The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: A new day for energy in America; Committed to success more than ever, by Andy White, GE--Hitachi Nuclear Energy; Competitive technology for decades, by Steve Tritch, Westinghouse Electric Company; Pioneers of positive community relationship, by Exelon Nuclear; A robust design for 60-years, by Ray Ganthner, Areva; Aiming at no evacuation plants, by Kumiaki Moriya, Hitachi-GE Nuclear Energy, Ltd.; and, Desalination and hydrogen economy, by Dr. I. Khamis, International Atomic Energy Agency. Industry innovation articles in this issue are: Reactor vessel closure head project, by Jeff LeClair, Prairie Island Nuclear Generating Plant; and Submersible remote-operated vehicle, by Michael S. Rose, Entergy's Fitzpatrick Nuclear Station.

Agnihotri, Newal (ed.)

2007-09-15T23:59:59.000Z

14

Plant maintenance and advanced reactors issue, 2008  

Science Conference Proceedings (OSTI)

The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Technologies of national importance, by Tsutomu Ohkubo, Japan Atomic Energy Agency, Japan; Modeling and simulation advances brighten future nuclear power, by Hussein Khalil, Argonne National Laboratory, Energy and desalination projects, by Ratan Kumar Sinha, Bhabha Atomic Research Centre, India; A plant with simplified design, by John Higgins, GE Hitachi Nuclear Energy; A forward thinking design, by Ray Ganthner, AREVA; A passively safe design, by Ed Cummins, Westinghouse Electric Company; A market-ready design, by Ken Petrunik, Atomic Energy of Canada Limited, Canada; Generation IV Advanced Nuclear Energy Systems, by Jacques Bouchard, French Commissariat a l'Energie Atomique, France, and Ralph Bennett, Idaho National Laboratory; Innovative reactor designs, a report by IAEA, Vienna, Austria; Guidance for new vendors, by John Nakoski, U.S. Nuclear Regulatory Commission; Road map for future energy, by John Cleveland, International Atomic Energy Agency, Vienna, Austria; and, Vermont's largest source of electricity, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovation article is titled Intelligent monitoring technology, by Chris Demars, Exelon Nuclear.

Agnihotri, Newal (ed.)

2009-09-15T23:59:59.000Z

15

Advanced Gasifier Pilot Plant Concept Definition  

DOE Green Energy (OSTI)

This report presents results from definition of a preferred commercial-scale advanced gasifier configuration and concept definition for a gasification pilot plant incorporating those preferred technologies. The preferred commercial gasifier configuration was established based on Cost Of Electricity estimates for an IGCC. Based on the gasifier configuration trade study results, a compact plug flow gasifier, with a dry solids pump, rapid-mix injector, CMC liner insert and partial quench system was selected as the preferred configuration. Preliminary systems analysis results indicate that this configuration could provide cost of product savings for electricity and hydrogen ranging from 15%-20% relative to existing gasifier technologies. This cost of product improvement draws upon the efficiency of the dry feed, rapid mix injector technology, low capital cost compact gasifier, and >99% gasifier availability due to long life injector and gasifier liner, with short replacement time. A pilot plant concept incorporating the technologies associated with the preferred configuration was defined, along with cost and schedule estimates for design, installation, and test operations. It was estimated that a 16,300 kg/day (18 TPD) pilot plant gasifier incorporating the advanced gasification technology and demonstrating 1,000 hours of hot-fire operation could be accomplished over a period of 33 months with a budget of $25.6 M.

Steve Fusselman; Alan Darby; Fred Widman

2005-08-31T23:59:59.000Z

16

Advanced Power Plant Modeling with Applications to an Advanced Boiling Water  

E-Print Network (OSTI)

wave fronts. However, in most power plant transient performance models, there are few heat exchangersAdvanced Power Plant Modeling with Applications to an Advanced Boiling Water Reactor and a Heat Introduction This paper presents two advanced modeling methods, and two applications, for power plant

Mitchell, John E.

17

Plant maintenance and advanced reactors issue, 2004  

SciTech Connect

The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Optimism about the future of nuclear power, by Ruth G. Shaw, Duke Power Company; Licensed in three countries, by GE Energy; Enhancing public acceptance, by Westinghouse Electric Company; Standardized MOV program, by Ted Neckowicz, Exelon; Inservice testing, by Steven Unikewicz, U.S. Nuclear Regulatory Commission; Asian network for education, Fatimah Mohd Amin, Malaysian Institute for Nuclear Technology Research; and, Cooling water intake optimization, by Jeffrey M. Jones and Bert Mayer, P.E., Framatome ANP.

Agnihotri, Newal (ed.)

2004-09-15T23:59:59.000Z

18

Advanced nuclear plant control room complex  

DOE Patents (OSTI)

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

19

NETL: News Release - Advanced Coal Dryer Boosts Power Plant Performanc...  

NLE Websites -- All DOE Office Websites (Extended Search)

Release Date: May 24, 2006 Advanced Coal Dryer Boosts Power Plant Performance Latest Project in President's Clean Coal Power Initiative Begins Operations in North Dakota...

20

Optical Gas Sensors for Advanced Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

Presentation Title, Optical Gas Sensors for Advanced Coal-Fired Power Plants. Author(s), Paul Ohodnicki, Congjun Wang, Douglas Kauffman, Kristi Kauffman, ...

Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced Control Demonstration on a Combined Cycle Plant  

Science Conference Proceedings (OSTI)

Southern Company, Electricit de France (EDF), and EPRI have undertaken a project to demonstrate the applicability of advanced control techniques on a combined-cycle heat recovery steam generator (HRSG). This report describes progress on the project during 2005 including model identification, the advanced controller design, controller program development, and controller testing in a simulation environment. A combined-cycle plant was selected as the host plant because many combined-cycle plants have chang...

2006-03-31T23:59:59.000Z

22

Saft America Advanced Batteries Plant Celebrates Grand Opening in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saft America Advanced Batteries Plant Celebrates Grand Opening in Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville September 16, 2011 - 12:30pm Addthis Department of Energy Investment Helps Support Job Creation, U.S. Economic Competitiveness and Advanced Vehicle Industry WASHINGTON, D.C. - Today, Secretary Steven Chu joined with Saft America to announce the grand opening of the company's Jacksonville, Florida, factory, which will produce advanced lithium-ion batteries to power electric vehicles and other applications. Saft America estimates it will create nearly 280 permanent jobs at the factory, and the city of Jacksonville expects an additional 800 indirect jobs to be created within its community. The project has created or preserved an estimated 300

23

DOE Advances Innovative CCS Polygeneration Plant Through NEPA Process |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advances Innovative CCS Polygeneration Plant Through NEPA Advances Innovative CCS Polygeneration Plant Through NEPA Process DOE Advances Innovative CCS Polygeneration Plant Through NEPA Process July 9, 2012 - 1:00pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) and the California Energy Commission (CEC) are working together to advance an innovative carbon capture and storage (CCS) plant simultaneously through the federal National Environmental Policy Act (NEPA) review and a complementary California Energy Quality Act process. As part of the NEPA process, DOE and CEC will hold a public meeting on July 12, 2012, at the Elk Hills Elementary School at 501 Kern St. in Tupman, Calif., at 5 p.m PDT. This will be an opportunity for the public to offer their comments and view the project site in Elk Hills, Kern County, Calif.

24

Advanced genetic tools for plant biotechnology  

NLE Websites -- All DOE Office Websites (Extended Search)

marker genes from transgenic plants. BMC Biotechnol. 13, 36 (2013). 107. Akbudak, M. A. & Srivastava, V. Improved FLP recombinase, FLPe, efficiently removes marker gene from...

25

CoalFleet Guideline for Advanced Pulverized Coal Power Plants  

Science Conference Proceedings (OSTI)

The CoalFleet Guideline for Advanced Pulverized Coal Power Plants provides an overview of state-of-the art and emerging technologies for pulverized coal-fired generating units along with lessons learned for current plants worldwide. The Guideline aims to facilitate the timely deployment of reliable, next-generation generating units that incorporate: Higher steam conditions for higher efficiency and reduced generation of pollutants Advanced environmental controls for reduced emissions and environmental im...

2007-03-30T23:59:59.000Z

26

Advanced Cooling Options for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Alternative power plant cooling systems exist that offer significant opportunity for reducing the amount of water used in power plant cooling. These systems include direct dry cooling using air-cooled condensers, indirect dry cooling using air-cooled heat exchangers paired with water-cooled surface condensers, and a variety of hybrid systems incorporating both dry and wet cooling elements. The water savings afforded by the use of these systems, however, comes at a price in the form of more expensive ...

2013-11-27T23:59:59.000Z

27

Software Framework for Advanced Power Plant Simulations  

SciTech Connect

This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. These include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.

John Widmann; Sorin Munteanu; Aseem Jain; Pankaj Gupta; Mark Moales; Erik Ferguson; Lewis Collins; David Sloan; Woodrow Fiveland; Yi-dong Lang; Larry Biegler; Michael Locke; Simon Lingard; Jay Yun

2010-08-01T23:59:59.000Z

28

Gasification CFD Modeling for Advanced Power Plant Simulations  

Science Conference Proceedings (OSTI)

In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

Zitney, S.E.; Guenther, C.P.

2005-09-01T23:59:59.000Z

29

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

in the Metal Fabrication Industry. 18 th National Industrial40-51. Pharmaceutical Industry Association of Puerto Rico (on Energy Efficiency in Industry. American Council for an

Galitsky, Christina

2008-01-01T23:59:59.000Z

30

Advanced binary geothermal power plants: Limits of performance  

SciTech Connect

The Heat Cycle Research Program is investigating potential improvements to power cycles utilizing moderate temperature geothermal resources to produce electrical power. Investigations have specifically examined Rankine cycle binary power systems. Binary Rankine cycles are more efficient than the flash steam cycles at moderate resource temperature, achieving a higher net brine effectiveness. At resource conditions similar to those at the Heber binary plant, it has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating in a supercritical Rankine cycle gave improved performance over Rankine cycles with the pure working fluids executing single or dual boiling cycles or supercritical cycles. Recently, other types of cycles have been proposed for binary geothermal service. This report explores the feasible limits on efficiency of a plant given practical limits on equipment performance and discusses the methods used in these advanced concept plants to achieve the maximum possible efficiency. (Here feasible is intended to mean reasonably achievable and not cost-effective.) No direct economic analysis has been made because of the sensitivity of economic results to site specific input. The limit of performance of three advanced plants were considered in this report. The performance predictions were taken from the developers of each concept. The advanced plants considered appear to be approaching the feasible limit of performance. Ultimately, the plant designer must weigh the advantages and disadvantages of the the different cycles to find the best plant for a given service. In addition, this report presents a standard of comparison of the work which has been done in the Heat Cycle Research Program and in the industrial sector by Exergy, Inc. and Polythermal Technologies. 18 refs., 16 figs., 1 tab.

Bliem, C.J.; Mines, G.L.

1991-01-01T23:59:59.000Z

31

Cost-Effective Industrial Boiler Plant Efficiency Advancements  

E-Print Network (OSTI)

Natural gas and electricity are expensive to the extent that annual fuel and power costs can approach the initial cost of an industrial boiler plant. Within this context, this paper examines several cost-effective efficiency advancements that were implemented during a recently completed boiler plant replacement project at a large semiconductor manufacturing complex. The "new" boiler plant began service in November, 1996 and consists of four 75,000 lb/hr water-tube boilers burning natural gas and producing 210 psig saturated steam for heating and humidification. Efficiency advancements include: 1) Reheating of cleanroom make-up air with heat extracted during precooling. 2) Preheating of combustion air with heat extracted from boiler flue gas. 3) Preheating of boiler feedwater with heat extracted from the exhaust of a nearby gas turbine. 4) Variable speed operation of boiler feedwater pumps and forced-draft fans. 5) Preheating of boiler make-up water with heat extracted from boiler blow-down. These efficiency advancements should prove of interest to industrial energy users faced with replacement of aging, inefficient boiler plants, rising fuel and power prices, and increasing pressures to reduce operating costs in order to enhance competitiveness.

Fiorino, D. P.

1997-04-01T23:59:59.000Z

32

Advanced binary geothermal power plants: Limits of performance  

SciTech Connect

The Heat Cycle Research Program is currently investigating the potential improvements to power cycles utilizing moderate temperature geothermal resources to produce electrical power. Investigations have specifically examined Rankine cycle binary power systems. Binary Rankine cycles are more efficient than the flash steam cycles at moderate resource temperatures, achieving a higher net brine effectiveness. At resource conditions similar to those at the Heber binary plant, it has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating with a supercritical Rankine cycle gave improved performance over Rankine cycles with the pure working fluids executing single boiling cycles. Recently, in addition to the supercritical Rankine Cycle, other types of cycles have been proposed for binary geothermal service. This paper explores the limits on efficiency of a feasibility plant and discusses the methods used in these advanced concept plants to achieve the maximum possible efficiency. The advanced plants considered appear to be approaching the feasible limit of performance so that the designer must weigh all considerations to find the best plant for a given service. 16 refs., 12 figs.

Bliem, C.J.; Mines, G.L.

1990-01-01T23:59:59.000Z

33

Advance plant severe accident/thermal hydraulic issues for ACRS  

DOE Green Energy (OSTI)

The ACRS has been reviewing various advance plant designs for certification. The most active reviews have been for the ABWR, AP600, and System 80+. We have completed the reviews for ABWR and System 80+ and are presently concentrating on AP600. The ACRS gave essentially unqualified certification approval for the two completed reviews, yet,,during the process of review a number of issues arose and the plant designs changed somewhat to accommodate some of the ACRS concerns. In this talk, I will describe some of the severe accident and thermal hydraulic related issues we discussed in our reviews.

Kress, T.S.

1994-09-01T23:59:59.000Z

34

Advanced fission and fossil plant economics-implications for fusion  

Science Conference Proceedings (OSTI)

In order for fusion energy to be a viable option for electric power generation, it must either directly compete with future alternatives or serve as a reasonable backup if the alternatives become unacceptable. This paper discusses projected costs for the most likely competitors with fusion power for baseload electric capacity and what these costs imply for fusion economics. The competitors examined include advanced nuclear fission and advanced fossil-fired plants. The projected costs and their basis are discussed. The estimates for these technologies are compared with cost estimates for magnetic and inertial confinement fusion plants. The conclusion of the analysis is that fusion faces formidable economic competition. Although the cost level for fusion appears greater than that for fission or fossil, the costs are not so high as to preclude fusion`s potential competitiveness.

Delene, J.G.

1994-09-01T23:59:59.000Z

35

Advanced Coal Power Plant Model (ACCPM) Version 1.1  

Science Conference Proceedings (OSTI)

With the purchase of a license for the appropriate SimTech IPSEpro modules and library, users can quickly generate performance and capital cost estimates of new, advanced coal power plants. The application allows users to screen integrated gasification combined cycle (IGCC) technologies prior to engaging in more extensive studies of their preferred choice. Such screening activities generally require sophisticated software and qualified staff to run the models, which takes time and significant investment....

2011-03-08T23:59:59.000Z

36

CoalFleet Guideline for Advanced Pulverized Coal Power Plants  

Science Conference Proceedings (OSTI)

This report provides an overview of state-of-the-art and emerging technologies for pulverized coal (PC) fired generating units along with lessons learned from current plants worldwide. The report also facilitates the timely deployment of reliable, next-generation units that incorporate: Higher steam conditions for improved efficiency and reduced pollutants and CO2 Advanced environmental controls for reduced emissions and environmental impacts Techniques for CO2 capture, or for future retrofit of CO2 capt...

2007-09-30T23:59:59.000Z

37

CoalFleet Guideline for Advanced Pulverized Coal Power Plants  

Science Conference Proceedings (OSTI)

This report provides an overview of state-of-the-art and emerging technologies for pulverized coal (PC) fired generating units along with lessons learned from current plants worldwide. The report is designed to facilitate the timely deployment of reliable, next-generation units that incorporate higher steam conditions that improve efficiency and thereby decrease fuel consumption, CO2 emissions, and other environmental impacts; advanced environmental controls that reduce emissions and discharges of solid ...

2008-03-31T23:59:59.000Z

38

CoalFleet Guideline for Advanced Pulverized Coal Power Plants  

Science Conference Proceedings (OSTI)

This report provides an overview of state-of-the-art and emerging technologies for pulverized coal (PC-) fired generating units along with lessons learned from current plants worldwide. The report is designed to facilitate the timely deployment of reliable, next-generation units that incorporate higher steam conditions that improve efficiency and thereby decrease fuel consumption, CO2 emissions, and other environmental impacts; advanced environmental controls that reduce emissions and discharges of solid...

2010-09-30T23:59:59.000Z

39

Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants  

SciTech Connect

OAK-B135 Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants

O' Connell, J. Michael

2002-01-01T23:59:59.000Z

40

AN ADVANCED SODIUM-GRAPHITE REACTOR NUCLEAR POWER PLANT  

SciTech Connect

An advanced sodium-cooled, graphite-moderated nuclear power plant is described which utilizes high-pressure, high-temperature steam to generate electricity at a high thermal efficiency. Steam is generated at 2400 psig, superheated to 1050 deg F and, after partial expansion in the turbine, reheated to 1000 deg F. Net thermal efficiency of the plant is 42.3%. In a plant sized to produce a net electrical output of 256 Mw, the estimated cost is 8232/kw. Estimated cost of power generation is 6.7 mills/kwh. In a similar plant with a net electrical output of 530 Mw, the estimated power generating cost is 5.4 mills/ kwh. Most of the components of the plant are within the capability of current technology. The major exception is the fuel material, uranium carbide. Preliminary results of the development work now in progress indicate that uranium carbide would be an excellent fuel for high-temperature reactors, but temperature and burnup limitation have yet to be firmly established. Additional development work is also required on the steam generators. These are the single-barrier type similar to those which will be used in the Enrico Fernri Fast Breeder Reactor plant but produce steam at higher pressure and temperature. Questions also remain regarding the use of nitrogen as a cover gas over sodium at 1200 deg F and compatibility of the materials used in the primary neutron shield. All of these questions are currently under investigation. (auth)

Churchill, J.R.; Renard, J.

1960-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.  

SciTech Connect

This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

2006-12-11T23:59:59.000Z

42

Paducah and Portsmouth Sites Advance Operations at DUF6 Plants | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Portsmouth Sites Advance Operations at DUF6 Plants and Portsmouth Sites Advance Operations at DUF6 Plants Paducah and Portsmouth Sites Advance Operations at DUF6 Plants November 1, 2011 - 12:00pm Addthis First cylinder enters plant. First cylinder enters plant. Paducah and Portsmouth Sites Advance Operations at DUF6 Plants First cylinder enters plant. Paducah and Portsmouth Sites Advance Operations at DUF6 Plants Paducah and Portsmouth - Babcock & Wilcox Conversion Services (BWCS) began work at the Paducah and Portsmouth sites in March with the goal of making two depleted uranium hexafluoride (DUF6) conversion plants fully operational. The DOE site operations contactor achieved that goal at 3:43 p.m. Sept. 30 when all seven conversion lines at the plants were designated fully operational. "Our next goal is to bring all seven lines to steady state commercial

43

Next Step to Drought-Resistant Plants? | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

A Boring Material "Stretched" Could Lead to an Electronics Revolution A Boring Material "Stretched" Could Lead to an Electronics Revolution At the Crossroads of Chromosomes Unveiling the Structure of Adenovirus Making Silicon Melt in Reverse In or Out: Setting a Trap for Radioactive Iodine Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Next Step to Drought-Resistant Plants? SEPTEMBER 30, 2010 Bookmark and Share Photo by Tim McCabe. Copyright USDA National Resources Conservation Service, http://www.earthgauge.net/kids-january/do Environmentally-friendly sprays that help plants survive drought and other stresses in harsh environments could result from findings based on research carried out at the U.S. Department of Energy's Advanced Photon Source (APS)

44

Indicator system for advanced nuclear plant control complex  

DOE Patents (OSTI)

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

45

Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants  

E-Print Network (OSTI)

Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants ANL-AFCI-168 of Nuclear Reactor and Chemical Separation Plants ANL-AFCI-168 by G. Palmiotti, J. Cahalan, P. Pfeiffer, T;2 ANL-AFCI-168 Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants G

Anitescu, Mihai

46

Defining the needs for gas centrifuge enrichment plants advanced safeguards  

Science Conference Proceedings (OSTI)

Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using nondestructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared UF{sub 6} containers used in the process of enrichment at GCEPs. In verifying declared LEU production, the inspectors also take samples for off-site destructive assay (DA) which provide accurate data, with 0.1% to 0.5% measurement uncertainty, on the enrichment of the UF{sub 6} feed, tails, and product. However, taking samples of UF{sub 6} for off-site analysis is a much more labor and resource intensive exercise for the operator and inspector. Furthermore, the operator must ship the samples off-site to the IAEA laboratory which delays the timeliness of results and interruptions to the continuity of knowledge (CofK) of the samples during their storage and transit. This paper contains an analysis of possible improvements in unattended and attended NDA systems such as process monitoring and possible on-site analysis of DA samples that could reduce the uncertainty of the inspector's measurements and provide more effective and efficient IAEA GCEPs safeguards. We also introduce examples advanced safeguards systems that could be assembled for unattended operation.

Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Ianakiev, Kiril [Los Alamos National Laboratory; Marlowe, Johnna B [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

47

Advanced Condenser Boosts Geothermal Power Plant Output (Fact ...  

... Indonesia, and Turkey. Promising greater efficiency and reduced costs ADCC technology holds great promise for geothermal power plants seeking ...

48

Thermal-Fluid Characterizations of ZnO and SiC Nanofluids for Advanced Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Technical Paper / Special Issue on the 2008 International Congress on Advances in Nuclear Power Plants / Thermal Hydraulics

In Cheol Bang; Ji Hyun Kim

49

Review: A review of advanced techniques for detecting plant diseases  

Science Conference Proceedings (OSTI)

Diseases in plants cause major production and economic losses in agricultural industry worldwide. Monitoring of health and detection of diseases in plants and trees is critical for sustainable agriculture. To the best of our knowledge, there is no sensor ... Keywords: GC-MS, Imaging techniques, Plant diseases, Spectroscopy, Volatile profiling

Sindhuja Sankaran; Ashish Mishra; Reza Ehsani; Cristina Davis

2010-06-01T23:59:59.000Z

50

Haynes 282 for Advanced USC Power Plant Components  

Science Conference Proceedings (OSTI)

Cast Alloys for Advanced Ultra Supercritical Steam Turbines · Castability of 718Plus® Alloy for Structural Gas Turbine Engine Components · Casting Superalloys ...

51

Secretary Chu Visits Advanced Battery Plant in Michigan, Announces New Army  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Battery Plant in Michigan, Announces Advanced Battery Plant in Michigan, Announces New Army Partnership Secretary Chu Visits Advanced Battery Plant in Michigan, Announces New Army Partnership July 18, 2011 - 1:09pm Addthis Secretary Chu speaks at the A123 Systems lithium-ion battery manufacturing plant in Romulus, Michigan, while employees look on. | Photo Courtesy of Damien LaVera, Energy Department Secretary Chu speaks at the A123 Systems lithium-ion battery manufacturing plant in Romulus, Michigan, while employees look on. | Photo Courtesy of Damien LaVera, Energy Department Lindsey Geisler Lindsey Geisler Public Affairs Specialist, Office of Public Affairs What are the key facts? Thirty new manufacturing plants across the country for electric vehicle batteries and components - including A123 in Michigan - were

52

Comparison of intergrated coal gasification combined cycle power plants with current and advanced gas turbines  

Science Conference Proceedings (OSTI)

Two recent conceptual design studies examined ''grass roots'' integrated gasification-combined cycle (IGCC) plants for the Albany Station site of Niagara Mohawk Power Corporation. One of these studies was based on the Texaco Gasifier and the other was developed around the British Gas Co.-Lurgi slagging gasifier. Both gasifiers were operated in the ''oxygen-blown'' mode, producing medium Btu fuel gas. The studies also evaluated plant performance with both current and advanced gas turbines. Coalto-busbar efficiencies of approximately 35 percent were calculated for Texaco IGCC plants using current technology gas turbines. Efficiencies of approximately 39 percent were obtained for the same plant when using advanced technology gas turbines.

Banda, B.M.; Evans, T.F.; McCone, A.I.; Westisik, J.H.

1984-08-01T23:59:59.000Z

53

Saft America Advanced Batteries Plant Celebrates Grand Opening...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 16, 2011 - 12:30pm Addthis Department of Energy Investment Helps Support Job Creation, U.S. Economic Competitiveness and Advanced Vehicle Industry WASHINGTON, D.C....

54

Advanced Sensor Diagnostics in Nuclear Power Plant Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensor Diagnostics in Nuclear Power Plant Applications Sensor Diagnostics in Nuclear Power Plant Applications R.B. Vilim Argonne National Laboratory Sensor degradation occurs routinely during nuclear power plant operation and can contribute to reduced power production and less efficient plant operation. Mechanisms include drift of sensor electronics and mechanical components, fouling and erosion of flow meter orifice plates, and general degradation of thermocouples. One solution to this problem is the use of higher quality instrumentation and of physical redundancy. This, however, increases plant cost and does not address the degradation problem in a fundamental way. An alternative approach is to use signal processing algorithms to detect a degraded sensor and to construct a replacement value using an

55

Microstructure and Creep Strength of Welds in Advanced Ferritic Power Plant Steels  

E-Print Network (OSTI)

Microstructure and Creep Strength of Welds in Advanced Ferritic Power Plant Steels Fujio ABE) power plant at 650 o C (923 K).1 Critical issues for the development of ferritic steels for 650 o C USC carried out at 650o C (923 K) for up to about 104 h. The creep crack growth tests were also carried out

Cambridge, University of

56

Technical Guidance for Achieving Higher Levels of Electromagnetic Compatibility for Advanced Nuclear Power Plants  

Science Conference Proceedings (OSTI)

This report presents guidance for enhancing electromagnetic compatibility (EMC) for advanced nuclear power plants (NPPs). Included is a summary of EMC challenges facing these plants and the threats that utilities, equipment designers, and plant designers must be aware of. The following requested areas are covered: 1) programmatically addressing EMC through the development of an EMC protection system, 2) minimizing the use of exclusion zones through the demonstration of electromagnetic energy (EM) calcula...

2010-12-22T23:59:59.000Z

57

SunShot Initiative: Advanced Nitrate Salt Central Receiver Power Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Nitrate Salt Central Receiver Power Plant Advanced Nitrate Salt Central Receiver Power Plant Abengoa logo Photo of two lit towers surrounded by much smaller blue flat plates that are mounted on the ground. Commercial central receiver plant designs Abengoa, under the Baseload CSP FOA, will demonstrate a 100-megawatt electrical (MWe) central receiver plant using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator. Approach The plan is to operate the plant at full load for 6,400 hours each year using only solar energy. Abengoa is working to create a team of suppliers capable of deploying a commercially ready nitrate salt central receiver technology that can be competitive in the current power marketplace. Innovation Abengoa is developing a new molten-salt power tower technology with a surround heliostat field. Key components include:

58

Plants' Rapid Response System Revealed | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Rewriting the Organofluorine Playbook Rewriting the Organofluorine Playbook Computer-Designed Proteins to Disarm a Variety of Flu Viruses Driving Membrane Curvature Unlocking the Nanoscale Secrets of Bird-Feather Colors An Unlikely Route to Ferroelectricity Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Plants' Rapid Response System Revealed JULY 6, 2012 Bookmark and Share Images of several related proteins made at synchrotrons in the U.S. and France have allowed scientists at Washington University in St. Louis and the European Molecular Biology Laboratory in Grenoble, France, to solve the structure of a key piece of the biochemical machinery that allows plants to control the concentrations of circulating hormones. WUSTL graduate student

59

Performance and risks of advanced pulverized-coal plants  

SciTech Connect

This article is based on an in-depth report of the same title published by the IEA Clean Coal Centre, CCC/135 (see Coal Abstracts entry Sep 2008 00535). It discusses the commercial, developmental and future status of pulverized fuel power plants including subcritical supercritical and ultra supercritical systems of pulverized coal combustion, the most widely used technology in coal-fired power generation. 1 fig., 1 tab.

Nalbandian, H. [IEA Clean Coal Centre, London (United Kingdom)

2009-07-01T23:59:59.000Z

60

The advanced PFB process: Pilot plant results and design studies  

SciTech Connect

The plant being developed is a hybrid of two technologies; it incorporates the partial gasification of coal in a vessel called the carbonizer and the combustion of the resultant char residue in a circulating pressurized fluidized bed combustor (CPFBC). In this plant, coal is fed to a pressurized carbonizer that produces a low-Btu fuel gas and char. After passing through a cyclone and a ceramic barrier filter to remove gas-entrained particulates, the fuel gas is burned in a topping combustor to produce the energy required to drive a gas turbine. The gas turbine drives a generator and a compressor that feeds air to the carbonizer, a CPFBC, and a fluidized bed heat exchanger (FBHE). The carbonizer char is burned in the CPFBC with high excess air. The vitiated air from the CPFBC supports combustion of the fuel gas in the gas turbine topping combustor. Steam generated in a heat-recovery steam generator (HRSG) downstream of the gas turbine and in the FBHE associated with the CPFBC drives the steam turbine generator that furnishes the balance of electric power delivered by the plant. The low-Btu gas is produced in the carbonizer by pyrolysis/mild devolatilization of coal in a fluidized bed reactor. Because this unit operates at temperatures much lower than gasifiers currently under development, it also produces a char residue. Left untreated, the fuel gas will contain hydrogen sulfide and sulfur-containing tar/light oil vapors; therefore, lime-based sorbents are injected into the carbonizer to catalytically enhance tar cracking and to capture sulfur as calcium sulfide. Sulfur is captured in situ, and the raw fuel gas is fired hot. Thus the expensive, complex, fuel gas heat exchangers and the chemical or sulfur-capturing bed cleanup systems that are part of the coal gasification combined-cycle plants now being developed are eliminated.

Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Domeracki, W. [Westinghouse Power Generation Business Group, Orlando, FL (United States); Horazak, D. [Gilbert/Commonwealth, Green Hills, PA (United States); Newby, R. [Westinghouse Science and Technology Center, Pittsburgh, PA (United States); Rehmat, A. [Institute of Gas Technology, Chicago IL (United States)

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Plant Engineering: Advanced Nuclear Plant Cable System Design and Installation Concepts to Assure Longevity  

Science Conference Proceedings (OSTI)

Although the electrical cable systems for existing nuclear power plants have functioned well for up to 40 years, the desired service life for new plants is 60 or more years. Experience with existing plants indicates that relatively small changes during the design and construction of nuclear plants will lead to longer cable system lives and greater ease of testing and assessment of cables to verify their remaining service life. This report describes those changes and provides recommendations for their imp...

2012-04-16T23:59:59.000Z

62

ARIES-AT: AN ADVANCED TOKAMAK, ADVANCED TECHNOLOGY FUSION POWER PLANT  

E-Print Network (OSTI)

) Innovative SiC blankets that lead to a high thermal cycle efficiency of ~60%; and (3) Advanced manufacturing. Institution involved in ARIES-AT study, in addition to UC San Diego, are 1) Argonne National Lab., 2) Boeing and (using 99% flux surface from free-boundary equilibria instead of 95% flux surfaces). In addition

California at San Diego, University of

63

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

During this quarter work was continued on characterizing the stability of layered composite membranes under a variety of conditions. Membrane permeation was tested up to 100 hours at constant pressure, temperature, and flow rates. In addition, design parameters were completed for a scale-up hydrogen separation demonstration unit. Evaluation of microstructure and effect of hydrogen exposure on BCY/Ni cermet mechanical properties was initiated. The fabrication of new cermets containing high permeability metals is reported and progress in the preparation of sulfur resistant catalysts is discussed. Finally, a report entitled ''Criteria for Incorporating Eltron's Hydrogen Separation Membranes into Vision 21 IGCC Systems and FutureGen Plants'' was completed.

Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; Jim Fisher; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangla; Clive Brereton; Warren Wolfs; James Lockhart

2005-01-28T23:59:59.000Z

64

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

During this quarter, work was focused on characterizing the stability of layered composite membranes in a one hundred percent permeate environment. Permeation data was also collected on cermets as a function of thickness. A thin film deposition procedure was used to deposit dense thin BCY/Ni onto a tubular porous support. Thin film tubes were then tested for permeation at ambient pressure. Process flow diagrams were prepared for inclusion of hydrogen separation membranes into IGCC power plants under varying conditions. Finally, membrane promoted alkane dehydrogenation experiments were performed.

Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Clive Brereton; Warren Wolfs; James Lockhart

2004-10-21T23:59:59.000Z

65

Improving Text and Document-Based Operations For Advanced Nuclear Plants  

Science Conference Proceedings (OSTI)

An important industry goal for Advanced Nuclear Plants (ANPs) is to ensure they are equipped with a modern, full scope, integrated Information Management System (IMS). As part of this overall goal, there is a need to identify ANP activities that could readily and greatly benefit from the application of existing and emerging IMS technologies. The objective of this project is to identify and prioritize work in such areas for ANPs based on current plant operations and maintenance (O&M) activities. Activitie...

2000-05-22T23:59:59.000Z

66

Management of the Licensed Bases of Advanced Nuclear Plants: Proof of Approach  

Science Conference Proceedings (OSTI)

Prospective Advanced Nuclear Plant (ANP) owners must have high confidence that the integrity of the licensed bases (LB) of a plant will be effectively maintained over its lifecycle. Currently, licensing engineers use text retrieval systems, database managers, and checklists to access, update, and maintain vast and disparate licensing information libraries. This project adopted and demonstrated a "twin-engine" approach that integrates a program from the emerging class of concept searching tools with a mod...

2000-08-28T23:59:59.000Z

67

Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants  

DOE Green Energy (OSTI)

The objective of this project was to develop an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. A family of hydrogen separation membranes was developed including single phase mixed conducting ceramics, ceramic/ceramic composites, cermet membranes, cermet membranes containing a hydrogen permeable metal, and intermediate temperature composite layered membranes. Each membrane type had different operating parameters, advantages, and disadvantages that were documented over the course of the project. Research on these membranes progressed from ceramics to cermets to intermediate temperature composite layered membranes. During this progression performance was increased from 0.01 mL x min{sup -1} x cm{sup -2} up to 423 mL x min{sup -1} x cm{sup -2}. Eltron and team membranes not only developed each membrane type, but also membrane surface catalysis and impurity tolerance, creation of thin film membranes, alternative applications such as membrane promoted alkane dehydrogenation, demonstration of scale-up testing, and complete engineering documentation including process and mechanical considerations necessary for inclusion of Eltron membranes in a full scale integrated gasification combined cycle power plant. The results of this project directly led to a new $15 million program funded by the Department of Energy. This new project will focus exclusively on scale-up of this technology as part of the FutureGen initiative.

Carl R. Evenson; Shane E. Roark

2006-03-31T23:59:59.000Z

68

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. Membranes testing during this reporting period were greater than 1 mm thick and had the general perovskite composition AB{sub 1-x}B'{sub x}O{sub 3-{delta}}, where 0.05 {<=} x {<=} 0.3. These materials demonstrated hydrogen separation rates between 1 and 2 mL/min/cm{sup 2}, which represents roughly 20% of the target goal for membranes of this thickness. The sintered membranes were greater than 95% dense, but the phase purity decreased with increasing dopant concentration. The quantity of dopant incorporated into the perovskite phase was roughly constant, with excess dopant forming an additional phase. Composite materials with distinct ceramic and metallic phases, and thin film perovskites (100 {micro}m) also were successfully prepared, but have not yet been tested for hydrogen transport. Finally, porous platinum was identified as a excellent catalyst for evaluation of membrane materials, however, lower cost nickel catalyst systems are being developed.

Shane E. Roark; Tony F. Sammells; Adam Calihman; Andy Girard; Pamela M. Van Calcar; Richard Mackay; Tom Barton; Sara Rolfe

2001-01-30T23:59:59.000Z

69

Study of Pu consumption in Advanced Light Water Reactors. Evaluation of GE Advanced Boiling Water Reactor plants  

SciTech Connect

Timely disposal of the weapons plutonium is of paramount importance to permanently safeguarding this material. GE`s 1300 MWe Advanced Boiling Water Reactor (ABWR) has been designed to utilize fill] core loading of mixed uranium-plutonium oxide fuel. Because of its large core size, a single ABWR reactor is capable of disposing 100 metric tons of plutonium within 15 years of project inception in the spiking mode. The same amount of material could be disposed of in 25 years after the start of the project as spent fuel, again using a single reactor, while operating at 75 percent capacity factor. In either case, the design permits reuse of the stored spent fuel assemblies for electrical energy generation for the remaining life of the plant for another 40 years. Up to 40 percent of the initial plutonium can also be completely destroyed using ABWRS, without reprocessing, either by utilizing six ABWRs over 25 years or by expanding the disposition time to 60 years, the design life of the plants and using two ABWRS. More complete destruction would require the development and testing of a plutonium-base fuel with a non-fertile matrix for an ABWR or use of an Advanced Liquid Metal Reactor (ALMR). The ABWR, in addition, is fully capable of meeting the tritium target production goals with already developed target technology.

Not Available

1993-05-13T23:59:59.000Z

70

Proceedings of the 2006 international congress on advances in nuclear power plants - ICAPP'06  

SciTech Connect

Following the highly successful ICAPP'05 meeting held in Seoul Korea, the 2006 International Congress on Advances in Nuclear Power Plants brought together international experts of the nuclear industry involved in the operation, development, building, regulation and research related to Nuclear Power Plants. The program covers the full spectrum of Nuclear Power Plant issues from design, deployment and construction of plants to research and development of future designs and advanced systems. The program covers lessons learned from power, research and demonstration reactors from over 50 years of experience with operation and maintenance, structures, materials, technical specifications, human factors, system design and reliability. The program by technical track deals with: - 1. Water-Cooled Reactor Programs and Issues Evolutionary designs, innovative, passive, light and heavy water cooled reactors; issues related to meeting medium term utility needs; design and regulatory issues; business, political and economic challenges; infrastructure limitations and improved construction techniques including modularization. - 2. High Temperature Gas Cooled Reactors Design and development issues, components and materials, safety, reliability, economics, demonstration plants and environmental issues, fuel design and reliability, power conversion technology, hydrogen production and other industrial uses; advanced thermal and fast reactors. - 3. Long Term Reactor Programs and Strategies Reactor technology with enhanced fuel cycle features for improved resource utilization, waste characteristics, and power conversion capabilities. Potential reactor designs with longer development times such as, super critical water reactors, liquid metal reactors, gaseous and liquid fuel reactors, Gen IV, INPRO, EUR and other programs. - 4. Operation, Performance and Reliability Management Training, O and M costs, life cycle management, risk based maintenance, operational experiences, performance and reliability improvements, outage optimization, human factors, plant staffing, outage reduction features, major component reliability, repair and replacement, in-service inspection, and codes and standards. - 5. Plant Safety Assessment and Regulatory Issues Transient and accident performance including LOCA and non-LOCA, severe accident analysis, impact of risk informed changes, accident management, assessment and management of aging, degradation and damage, life extension lessons from plant operations, probabilistic safety assessment, plant safety analysis, reliability engineering, operating and future plants. - 6. Thermal Hydraulic Analysis and Testing Phenomena identification and ranking, computer code scaling applicability and uncertainty, containment thermal hydraulics, component and integral system tests, improved code development and qualification, single and two phase flow; advanced computational thermal hydraulic methods. - 7. Core and Fuel Cycle Concepts and Experiments Core physics, advances in computational reactor analysis, in-core fuel management, mixed-oxide fuel, thorium fuel cycle, low moderation cores, high conversion reactor designs, particle and pebble bed fuel design, testing and reliability; fuel cycle waste minimization, recycle, storage and disposal. - 8. Materials and Structural Issues Fuel, core, RPV and internals structures, advanced materials issues and fracture mechanics, concrete and steel containments, space structures, analysis, design and monitoring for seismic, dynamic and extreme accidents; irradiation issues and materials for new plants. - 9. Nuclear Energy and Sustainability including Hydrogen, Desalination and Other Applications Environmental impact of nuclear and alternative systems, spent fuel dispositions and transmutation systems, fully integrated fuel cycle and symbiotic nuclear power systems, application of advanced designs to non-power applications such as the production of hydrogen, sea water desalination, heating and other co-generation applications. - 10. Near Term Issues (New) Applies to plants that have a significa

NONE

2006-07-01T23:59:59.000Z

71

Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants  

SciTech Connect

This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant.

1992-06-01T23:59:59.000Z

72

Effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs  

DOE Green Energy (OSTI)

This study determines the performance and cost of four 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States. The solar plants are conceptualized to begin commercial operation in the year 2000. It is assumed that major subsystem performance will have improved substantially as compared to that of pilot plants currently operating or under construction. The net average annual system efficiency is therefore roughly twice that of current solar thermal electric power plant designs. Similarly, capital costs reflecting goals based on high-volume mass production that are considered to be appropriate for the year 2000 have been used. These costs, which are approximately an order of magnitude below the costs of current experimental projects, are believed to be achievable as a result of the anticipated sizeable solar penetration into the energy market in the 1990 to 2000 timeframe. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrators comprise the advanced collector concepts studied. All concepts exhibit their best performance when sited in regional areas such as the sunbelt where the annual insolation is high. The regional variation in solar plant performance has been assessed in relation to the expected rise in the future cost of residential and commercial electricity in the same regions. A discussion of the regional insolation data base, a description of the solar systems performance and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades are given.

Latta, A.F.; Bowyer, J.M.; Fujita, T.; Richter, P.H.

1980-02-01T23:59:59.000Z

73

Advanced Reactor Licensing: Experience with Digital I&C Technology in Evolutionary Plants  

Science Conference Proceedings (OSTI)

This report presents the findings from a study of experience with digital instrumentation and controls (I&C) technology in evolutionary nuclear power plants. In particular, this study evaluated regulatory approaches employed by the international nuclear power community for licensing advanced l&C systems and identified lessons learned. The report (1) gives an overview of the modern l&C technologies employed at numerous evolutionary nuclear power plants, (2) identifies performance experience derived from those applications, (3) discusses regulatory processes employed and issues that have arisen, (4) captures lessons learned from performance and regulatory experience, (5) suggests anticipated issues that may arise from international near-term deployment of reactor concepts, and (6) offers conclusions and recommendations for potential activities to support advanced reactor licensing in the United States.

Wood, RT

2004-09-27T23:59:59.000Z

74

CoalFleet Guideline for Advanced Pulverized Coal Power Plants: Version 6  

Science Conference Proceedings (OSTI)

This report provides an overview of state-of-the-art and emerging technologies for pulverized coal (PC) fired generating units along with lessons learned from current plants worldwide. The report is designed to facilitate the timely deployment of reliable, next-generation units that incorporate higher steam conditions that improve efficiency and thereby decrease fuel consumption, CO2 emissions, and other environmental impacts; advanced environmental controls that reduce emissions and discharges of solid ...

2009-09-30T23:59:59.000Z

75

CoalFleet Guideline for Advanced Pulverized Coal Power Plants: Version 5  

Science Conference Proceedings (OSTI)

This report provides an overview of state-of-the-art and emerging technologies for pulverized coal (PC) fired generating units along with lessons learned from current plants worldwide. The report is designed to facilitate timely deployment of reliable, next-generation units that incorporate higher steam conditions that improve efficiency and, thereby, decrease fuel consumption, CO2 emissions, and other environmental impacts; advanced environmental controls that reduce emissions and discharges of solid an...

2009-03-25T23:59:59.000Z

76

CoalFleet Guideline for Advanced Pulverized Coal Power Plants: Verison 4  

Science Conference Proceedings (OSTI)

This report provides an overview of state-of-the-art and emerging technologies for pulverized coal (PC) fired generating units along with lessons learned from current plants worldwide. The report is designed to facilitate the timely deployment of reliable, next-generation units that incorporate higher steam conditions that improve efficiency and thereby decrease fuel consumption, CO2 emissions, and other environmental impacts; advanced environmental controls that reduce emissions and discharges of solid ...

2008-09-30T23:59:59.000Z

77

Hot gas cleanup and gas turbine aspects of an advanced PFBC power plant  

SciTech Connect

The overall objective of the second-generation PFBC development program is to advance this concept to a commercial status. Three major objectives of the current Phase 2 program activities are to: Separately test key components of the second-generation PFBC power plant at sub-scale to ascertain their performance characteristics, Revise the commercial plant performance and economic predictions where necessary, Prepare for a 1.6 MWe equivalent Phase 3 integrated subsystem test of the key components. The key components of the plant, with respect to development risk, are the carbonizer, the circulating PFBC unit, the ceramic barrier filter, and the topping combustor. This paper reports on the development and testing of one key component -- the ceramic barrier filter for the carbonizer fuel gas. The objective of the Phase 2 carbonizer ceramic barrier filter testing has been to confirm filter performance and operability in the carbonizer fuel gas environment.

Robertson, A. (Foster Wheeler Development Corp., Livingston, NJ (United States)); Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Bruck, G.J.; Smeltzer, E.E. (Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center)

1992-01-01T23:59:59.000Z

78

Advanced thermal-energy-storage concept definition study for solar Brayton power plants  

DOE Green Energy (OSTI)

The design and operating criteria to be used in the Advanced Thermal Energy Storage Study are described. The storage system operating requirements and design standards are outlined and the corresponding power plant interface requirements are given. Each of the three alternative high temperature thermal energy storage systems (phase change, thermochemical, and sensible heat) is described. The approach and criteria to be used in developing energy cost numbers are described, and the systems requirements data and the requirements perturbations to be used in the trade studies are summarized. All of the requirements data to be used are compiled. (LEW)

Not Available

1976-08-01T23:59:59.000Z

79

Improving energy efficiency in a pharmaceutical manufacturing environment -- production facility  

E-Print Network (OSTI)

The manufacturing plant of a pharmaceutical company in Singapore had low energy efficiency in both its office buildings and production facilities. Heating, Ventilation and Air-Conditioning (HVAC) system was identified to ...

Zhang, Endong, M. Eng. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

80

Advanced virtual energy simulation training and research: IGCC with CO2 capture power plant  

SciTech Connect

In this presentation, we highlight the deployment of a real-time dynamic simulator of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture at the Department of Energy's (DOE) National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTARTM) Center. The Center was established as part of the DOE's accelerating initiative to advance new clean coal technology for power generation. IGCC systems are an attractive technology option, generating low-cost electricity by converting coal and/or other fuels into a clean synthesis gas mixture in a process that is efficient and environmentally superior to conventional power plants. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Fueled with coal, petroleum coke, and/or biomass, the gasification island of the simulated IGCC plant consists of two oxygen-blown, downward-fired, entrained-flow, slagging gasifiers with radiant syngas coolers and two-stage sour shift reactors, followed by a dual-stage acid gas removal process for CO{sub 2} capture. The combined cycle island consists of two F-class gas turbines, steam turbine, and a heat recovery steam generator with three-pressure levels. The dynamic simulator can be used for normal base-load operation, as well as plant start-up and shut down. The real-time dynamic simulator also responds satisfactorily to process disturbances, feedstock blending and switchovers, fluctuations in ambient conditions, and power demand load shedding. In addition, the full-scope simulator handles a wide range of abnormal situations, including equipment malfunctions and failures, together with changes initiated through actions from plant field operators. By providing a comprehensive IGCC operator training system, the AVESTAR Center is poised to develop a workforce well-prepared to operate and control commercial-scale gasification-based power plants capable of 90% pre-combustion CO{sub 2} capture and compression, as well as low sulfur, mercury, and NOx emissions. With additional support from the NETL-Regional University Alliance (NETL-RUA), the Center will educate and train engineering students and researchers by providing hands-on 'learning by operating' experience The AVESTAR Center also offers unique collaborative R&D opportunities in high-fidelity dynamic modeling, advanced process control, real-time optimization, and virtual plant simulation. Objectives and goals are aimed at safe and effective management of power generation systems for optimal efficiency, while protecting the environment. To add another dimension of realism to the AVESTAR experience, NETL will introduce an immersive training system with innovative three-dimensional virtual reality technology. Wearing a stereoscopic headset or eyewear, trainees will enter an interactive virtual environment that will allow them to move freely throughout the simulated 3-D facility to study and learn various aspects of IGCC plant operation, control, and safety. Such combined operator and immersive training systems go beyond traditional simulation and include more realistic scenarios, improved communication, and collaboration among co-workers.

Zitney, S.; Liese, E.; Mahapatra, P.; Bhattacharyya, D.; Provost, G.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Electrospinning for pharmaceutical applications  

E-Print Network (OSTI)

The pharmaceutical industry is currently shifting from batch to continuous manufacturing, and for downstream processes, this shift can reduce costs and improve quality provided the new unit operations are chosen properly. ...

Brettmann, Blair Kathryn

2012-01-01T23:59:59.000Z

82

Study of Pu consumption in advanced light water reactors: Evaluation of GE advanced boiling water reactor plants - compilation of Phase 1B task reports  

SciTech Connect

This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.

NONE

1993-09-15T23:59:59.000Z

83

Assessment of modular construction for safety-related structures at advanced nuclear power plants  

SciTech Connect

Modular construction techniques have been successfully used in a number of industries, both domestically and internationally. Recently, the use of structural modules has been proposed for advanced nuclear power plants. The objective in utilizing modular construction is to reduce the construction schedule, reduce construction costs, and improve the quality of construction. This report documents the results of a program which evaluated the proposed use of modular construction for safety-related structures in advanced nuclear power plant designs. The program included review of current modular construction technology, development of licensing review criteria for modular construction, and initial validation of currently available analytical techniques applied to concrete-filled steel structural modules. The program was conducted in three phases. The objective of the first phase was to identify the technical issues and the need for further study in order to support NRC licensing review activities. The two key findings were the need for supplementary review criteria to augment the Standard Review Plan and the need for verified design/analysis methodology for unique types of modules, such as the concrete-filled steel module. In the second phase of this program, Modular Construction Review Criteria were developed to provide guidance for licensing reviews. In the third phase, an analysis effort was conducted to determine if currently available finite element analysis techniques can be used to predict the response of concrete-filled steel modules.

Braverman, J.; Morante, R.; Hofmayer, C.

1997-03-01T23:59:59.000Z

84

The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor  

SciTech Connect

The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In addition, the purpose and differences between the two experiments will be compared and the irradiation results to date on the first experiment will be presented.

S. Blaine Grover

2009-09-01T23:59:59.000Z

85

PRISM; The plant design concept for the U. S. advanced liquid metal reactor program  

SciTech Connect

The US program for development of an advanced liquid metal reactor (ALMR) is proceeding into a new phase of focused design development. This new phase started at the beginning of 1989; its objective is to complete the conceptual design of the US ALMR, with supporting key feature tests, sufficiently to enter a more detailed design phase and subsequent construction of a prototype reactor plant. A project goal is to demonstrate by actual performance of the reactor its passive, inherent safety features and thereby provide the technical basis for certification of the design by the Nuclear Regulatory Commission (NRC). This paper reports on the PRISM (power reactor inherently safe module) reactor concept which in combination with the IFR (integral fast reactor) metal fuel cycle being developed by Argonne National Laboratory, was selected by DOE in 1988 as the reference design for the US ALMR program.

Berglund, R.C.; Tippets, F.E. (GE Nuclear Energy, Advance Nuclear Technology, San Jose, CA (US))

1989-01-01T23:59:59.000Z

86

Advancing the Deployment of Utility-Scale Photovoltaic Plants in the Northeast  

DOE Green Energy (OSTI)

As one of the premier research laboratories operated by the Department of Energy, Brookhaven National Laboratory (BNL) is pursuing an energy research agenda that focuses on renewable energy systems and will help to secure the nation's energy security. A key element of the BNL research is the advancement of grid-connected utility-scale solar photovoltaic (PV) plants, particularly in the northeastern part of the country where BNL is located. While a great deal of information has been generated regarding solar PV systems located in mostly sunny, hot, arid climates of the southwest US, very little data is available to characterize the performance of these systems in the cool, humid, frequently overcast climates experienced in the northeastern portion of the country. Recognizing that there is both a need and a market for solar PV generation in the northeast, BNL is pursuing research that will advance the deployment of this important renewable energy resource. BNL's research will leverage access to unique time-resolved data sets from the 37MWp solar array recently developed on its campus. In addition, BNL is developing a separate 1MWp solar research array on its campus that will allow field testing of new PV system technologies, including solar modules and balance of plant equipment, such as inverters, energy storage devices, and control platforms. These research capabilities will form the cornerstone of the new Northeast Solar Energy Research Center (NSERC) being developed at BNL. In this paper, an overview of BNL's energy research agenda is given, along with a description of the 37MWp solar array and the NSERC.

Lofaro R.; Villaran, M; Colli, A.

2012-06-03T23:59:59.000Z

87

DOE/EA-1498: Advanced Coal Utilization Byproduct Beneficiation Processing Plant Ghent Power Station, Carroll County, Kentucky (01/05)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1498 EA-1498 Advanced Coal Utilization Byproduct Beneficiation Processing Plant Ghent Power Station, Carroll County, Kentucky Final Environmental Assessment January 2005 Note: No comments were received during the public comment period from September 25 to October 25, 2004. Therefore, no changes to the Draft Environmental Assessment were necessary. National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The proposed Federal action is to provide funding, through a cooperative agreement with the University of Kentucky Research Foundation (UKRF), Center for Applied Energy Research (CAER), for the design, construction, and operation of an advanced coal ash beneficiation processing plant at Kentucky Utilities (KU) Ghent Power Station in Carroll County, Kentucky.

88

Gas centrifuge enrichment plants inspection frequency and remote monitoring issues for advanced safeguards implementation  

SciTech Connect

Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low enriched uranium (LEU) production, detect undeclared LEU production and detect high enriched uranium (BEU) production with adequate probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared cylinders of uranium hexafluoride that are used in the process of enrichment at GCEPs. This paper contains an analysis of how possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive analysis (DA) of samples could reduce the uncertainty of the inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We have also studied a few advanced safeguards systems that could be assembled for unattended operation and the level of performance needed from these systems to provide more effective safeguards. The analysis also considers how short notice random inspections, unannounced inspections (UIs), and the concept of information-driven inspections can affect probability of detection of the diversion of nuclear material when coupled to new GCEPs safeguards regimes augmented with unattended systems. We also explore the effects of system failures and operator tampering on meeting safeguards goals for quantity and timeliness and the measures needed to recover from such failures and anomalies.

Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Ianakiev, Kiril D [Los Alamos National Laboratory; Reimold, Benjamin A [Los Alamos National Laboratory; Ward, Steven L [Los Alamos National Laboratory; Howell, John [GLASGOW UNIV.

2010-09-13T23:59:59.000Z

89

Analysis of the effectiveness of gas centrifuge enrichment plants advanced safeguards  

SciTech Connect

Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched uranium (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and 235U enrichment of declared UF6 containers used in the process of enrichment at GCEPs. This paper contains an analysis of possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive assay (DA) of samples that could reduce the uncertainty of the inspector's measurements. These improvements could reduce the difference between the operator's and inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We also explore how a few advanced safeguards systems could be assembled for unattended operation. The analysis will focus on how unannounced inspections (UIs), and the concept of information-driven inspections (IDS) can affect probability of detection of the diversion of nuclear materials when coupled to new GCEPs safeguards regimes augmented with unattended systems.

Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Swinjoe, Martyn T [Los Alamos National Laboratory; Ianakiev, Kiril D [Los Alamos National Laboratory; Marlow, Johnna B [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

90

Advanced regulatory control and coordinated plant-wide control strategies for IGCC targeted towards improving power ramp-rates  

Science Conference Proceedings (OSTI)

As part of ongoing R&D activities at the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training & Research (AVESTAR™) Center, this paper highlights strategies for enhancing low-level regulatory control and system-wide coordinated control strategies implemented in a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with carbon capture. The underlying IGCC plant dynamic model contains 20 major process areas, each of which is tightly integrated with the rest of the power plant, making individual functionally-independent processes prone to routine disturbances. Single-loop feedback control although adequate to meet the primary control objective for most processes, does not take into account in advance the effect of these disturbances, making the entire power plant undergo large offshoots and/or oscillations before the feedback action has an opportunity to impact control performance. In this paper, controller enhancements ranging from retuning feedback control loops, multiplicative feed-forward control and other control techniques such as split-range control, feedback trim and dynamic compensation, applicable on various subsections of the integrated IGCC plant, have been highlighted and improvements in control responses have been given. Compared to using classical feedback-based control structure, the enhanced IGCC regulatory control architecture reduces plant settling time and peak offshoots, achieves faster disturbance rejection, and promotes higher power ramp-rates. In addition, improvements in IGCC coordinated plant-wide control strategies for “Gasifier-Lead”, “GT-Lead” and “Plantwide” operation modes have been proposed and their responses compared. The paper is concluded with a brief discussion on the potential IGCC controller improvements resulting from using advanced process control, including model predictive control (MPC), as a supervisory control layer.

Mahapatra, P.; Zitney, S.

2012-01-01T23:59:59.000Z

91

Mirror Advanced Reactor Study (MARS). Final report. Volume 1-B. Commercial fusion electric plant  

SciTech Connect

Volume 1-B contains the following chapters: (1) blanket and reflector; (2) central cell shield; (3) central cell structure; (4) heat transport and energy conversion; (5) tritium systems; (6) cryogenics; (7) maintenance; (8) safety; (9) radioactivity, activation, and waste disposal; (10) instrumentation and control; (11) balance of plant; (12) plant startup and operation; (13) plant availability; (14) plant construction; and (15) economic analysis.

Donohue, M.L.; Price, M.E. (eds.)

1984-07-01T23:59:59.000Z

92

Synthesizing Pharmaceuticals Using Containerless Processing  

AV AIL ABLE FOR L ICENSING A technique for creating faster-dissolving medicines The Invention A process by which amorphous and nanophase pharmaceutical compounds can ...

93

SiC/SiC Composite for an Advanced Fusion Power Plant Blanket A. R. Raffray1  

E-Print Network (OSTI)

SiC/SiC Composite for an Advanced Fusion Power Plant Blanket A. R. Raffray1 , L. El-Guebaly2 , D. K of an exploratory study of blanket concepts based on SiC/SiC structure and LiPb breeder. An assessment, and constraints relating to the SiC/SiC properties are discussed. INTRODUCTION The use of SiC/SiC composite

Najmabadi, Farrokh

94

An Advanced Computational Approach to System Modeling of Tokamak Power Plants  

Science Conference Proceedings (OSTI)

Power Plants, Demo, and Next Steps / Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2)

Zoran Dragojlovic; Charles Kessel; Rene Raffray; Farrokh Najmabadi; Lester Waganer; Laila El-Guebaly; Leslie Bromberg

95

Advanced Nuclear Technology: Equipment Reliability for New Nuclear Plants: Industry Recommendations for Design  

Science Conference Proceedings (OSTI)

The initial and continued good operating performance of the current build of new nuclear plants is critical to the rebirth of the nuclear option in many countries. Good initial and continued performance is vital to the companies making the large investments required for new nuclear plants. One of the foundations of good performance is a sound process for establishing and sustaining plant equipment reliability (ER).

2010-08-26T23:59:59.000Z

96

Evaluation of Cascaded Humidified Advanced Turbine (CHAT) Power Plant Options for TVA  

Science Conference Proceedings (OSTI)

Novel CHAT plants offer very high efficiency with superior cycling load capabilities. They integrate with gasification for significantly reduced capital cost.

1997-01-03T23:59:59.000Z

97

PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS  

SciTech Connect

The overall objective of the project was to develop advanced innovative mercury control technologies to reduce mercury emissions by 50%-90% in flue gases typically found in North Dakota lignite-fired power plants at costs from one-half to three-quarters of current estimated costs. Power plants firing North Dakota lignite produce flue gases that contain >85% elemental mercury, which is difficult to collect. The specific objectives were focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in electrostatic precipitators (ESPs) and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The approach to developing Hg control technologies for North Dakota lignites involved examining the feasibility of the following technologies: Hg capture upstream of an ESP using sorbent enhancement, Hg oxidation and control using dry scrubbers, enhanced oxidation at a full-scale power plant using tire-derived fuel and oxidizing catalysts, and testing of Hg control technologies in the Advanced Hybrid{trademark} filter.

Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Michael J. Holmes; Jason D. Laumb; Jill M. Mackenzie; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang

2005-02-01T23:59:59.000Z

98

Impact of Advanced Turbine Systems on coal-based power plants  

DOE Green Energy (OSTI)

The advanced power-generation products currently under development in our program show great promise for ultimate commercial use. Four of these products are referred to in this paper: Integrated Gasification Combined Cycle (IGCC), Pressurized Fluidized Bed Combustion (PFBC), Externally Fired Combined Cycle (EFCC), and Integrated Gasification Fuel Cell (IGFC). Three of these products, IGCC, PFBC, and EFCC, rely on advanced gas turbines as a key enabling technology and the foundation for efficiencies in the range of 52 to 55 percent. DOE is funding the development of advanced gas turbines in the newly instituted Advanced Turbine Systems (ATS) Program, one of DOE`s highest priority natural gas initiatives. The turbines, which will have natural gas efficiencies of 60 percent, are being evaluated for coal gas compatibility as part of that program.

Bechtel, T.F.

1993-12-31T23:59:59.000Z

99

Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation  

Science Conference Proceedings (OSTI)

When power production at The Geysers geothermal power complex began to falter, the National Renewable Energy Laboratory (NREL) stepped in, developing advanced condensing technology that dramatically boosted production efficiency - and making a major contribution to the effective use of geothermal power. NREL developed advanced direct-contact condenser (ADCC) technology to condense spent steam more effectively, improving power production efficiency in Unit 11 by 5%.

Not Available

2010-12-01T23:59:59.000Z

100

Advanced Nuclear Technology: Supplier Quality Management for New Nuclear Plant Construction Projects  

Science Conference Proceedings (OSTI)

This report provides guidance for new nuclear power plant construction projects on supplier quality-related risks associated with the procurement of materials, equipment, and services intended for use in a safety-related plant application. This guidance takes an in-depth look into the procurement-related challenges that new construction projects face and at measures for overcoming these challenges. A methodology is provided for identifying, managing, evaluating, and mitigating quality-related risks ...

2013-06-26T23:59:59.000Z

Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 4. Commercial and pilot plant cost data. Final report  

DOE Green Energy (OSTI)

This volume of the advanced central receiver final report presents the cost data using the cost breakdown structure identified in the preliminary specification. Cost summaries are presented in the following sections for the 100-MWe and 281-MWe commercial plant and a 10-MWe pilot plant. Cost substantiation data for this volume are presented in the appendices. Other cost summary data include Nth plant data for the 100-MWe and 281-MWe commercial plants, and a summary for the alternative concept air-rock storage system. The main description of the plant costing technique occurs as part of Section II for the 100-MWe baseline concept.

Not Available

1979-03-01T23:59:59.000Z

102

Advanced design and economic considerations for commercial geothermal power plants at Heber and Niland, California. Final report  

DOE Green Energy (OSTI)

Two separate studies, involving advanced design and economic considerations for commercial geothermal power plants using liquid-dominated hydrothermal resources, are presented. In the first study, the effects on design, capital cost, and bus bar electric energy production cost caused by an anticipated decline in available geothermal fluid temperature over the lifetime of power plants are described. A two-stage, flashed-steam energy conversion process was used for the conceptual design of the power plants, which operate from the moderate-temperature, low-salinity reservoir at Heber, California. Plants with net capacities of 50, 100, and 200 MWe (net) were investigated. The results show that it is important to include provision for geothermal fluid temperature decline in the design of power plants to prevent loss of electric energy production capability and to reduce bus bar electric energy costs. In the second study, the technical, economic, and environmental effects of adding regeneration to a 50 MWe (net) power plant employing the multistage-flash/binary process are described. Regeneration is potentially attractive because it recovers waste heat from the turbine exhaust and uses it in the power cycle. However, the pressure drop caused by the introduction of the regenerator decreases the turbine expansion and thus decreases system performance. An innovative approach was taken in the design of the regenerator, which minimized the expected performance degradation of the turbine. The result was that the performance, capital cost, and bus bar electric energy production cost are nearly the same for the processes with and without regeneration. On the other hand, the addition of regeneration has the environmental benefits of substantially reducing heat rejection to the atmosphere and cooling tower makeup and blowdown water requirements. It also increases the temperature of the brine returned to the field for reinjection.

Not Available

1977-10-01T23:59:59.000Z

103

Synthesizing Pharmaceuticals Using Containerless Processing  

Scientists at Argonne National Laboratory have created a process by which amorphous and nanophase pharmaceutical compounds can be synthesized without the use of a container, thus avoiding potential contamination. The process involves acoustic ...

104

Techno-economic projections for advanced small solar thermal electric power plants to years 1990--2000  

DOE Green Energy (OSTI)

Advanced technologies applicable to solar thermal electric power systems in the 1990--2000 time-frame are delineated for power applications that fulfill a wide spectrum of small power needs with primary emphasis on power ratings <10 MWe. Techno-economic projections of power system characteristics (energy and capital costs as a function of capacity factor) are made based on development of identified promising technologies. The key characteristic of advanced technology systems is an efficient low-cost solar energy collection while achieving high temperatures for efficient energy conversion. Two-axis tracking systems such as the central receiver or power tower concept and distributed parabolic dish receivers possess this characteristic. For these two basic concepts, advanced technologies including, e.g., conversion systems such as Stirling engines, Brayton/Rankine combined cycles and storage/transport concepts encompassing liquid metals, and reversible-reaction chemical systems are considered. In addition to techno-economic aspects, technologies are also judged in terms of factors such as developmental risk, relative reliability, and probability of success. Improvements accruing to projected advanced technology systems are measured with respect to current (or pre-1985) steam-Rankine systems, as represented by the central receiver pilot plant being constructed near Barstow, California. These improvements, for both central receivers and parabolic dish systems, indicate that pursuit of advanced technology across a broad front can result in post-1985 solar thermal systems having the potential of approaching the goal of competitiveness with conventional power systems; i.e., capital costs of $600 kWe and energy costs of 50 mills/kWe-hr (1977 dollars).

Fujita, T.; Manvi, R.; Roschke, E.J.; El Gabalawi, N.; Herrera, G.; Kuo, T.J.; Chen, K.H.

1978-11-15T23:59:59.000Z

105

Advanced Power Ultra-Uprates of Existing Plants (APPU) Final Scientific/Technical Report  

SciTech Connect

This project assessed the feasibility of a Power Ultra-Uprate on an existing nuclear plant. The study determined the technical and design limitations of the current components, both inside and outside the containment. Based on the identified plant bottlenecks, the design changes for major pieces of equipment required to meet the Power Ultra-Uprate throughput were determined. Costs for modified pieces of equipment and for change-out and disposal of the replaced equipment were evaluated. These costs were then used to develop capital, fuel and operating and maintenance cost estimates for the Power Ultra-Uprate plant. The cost evaluation indicates that the largest cost components are the replacement of power (during the outage required for the uprate) and the new fuel loading. Based on these results, the study concluded that, for a ?standard? 4-loop plant, the proposed Power Ultra-Uprate is technically feasible. However, the power uprate is likely to be more expensive than the cost (per Kw electric installed) of a new plant when large capacity uprates are considered (>25%). Nevertheless, the concept of the Power Ultra-Uprate may be an attractive option for specific nuclear power plants where a large margin exists in the steam and power conversion system or where medium power increases (~600 MWe) are needed. The results of the study suggest that development efforts on fuel technologies for current nuclear power plants should be oriented towards improving the fuel performance (fretting-wear, corrosion, uranium load, manufacturing, safety) required to achieve higher burnup rather focusing on potential increases in the fuel thermal output.

Rubiolo, Pablo R.; Conway, Lawarence E.; Oriani, Luca; Lahoda, Edward J.; DeSilva, Greg (Westinghouse Science and Technology Department); Hu, Min H.; Hartz, Josh; Bachrach, Uriel; Smith, Larry; Dudek, Daniel F. (Westinghouse Nuclear Services Division); Toman, Gary J, (Electric Power Research Institute); Feng, Dandong; Hejzlar, Pavel; Kazimi, Mujid S. (Massachusetts Institute of Technology)

2006-03-31T23:59:59.000Z

106

NETL: Advanced NOx Emissions Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Advanced NOx Emissions Control Innovations for Existing Plants Advanced NOx Emissions Control Adv....

107

Proceedings of the 2012 International Congress on Advances in National Power Plants - ICAPP '12  

Science Conference Proceedings (OSTI)

ICAPP '12 provides a forum for leaders of the nuclear industry to exchange information, present results from their work, review the state of the industry, and discuss future directions and needs for the deployment of new nuclear power plant systems around the world. These proceedings gather 326 papers covering the following topics: 1. Water-Cooled Reactor Programs; 2. High Temperature Gas Cooled Reactors; 3. LMFR and Innovative Reactor Programs; 4. Operation, Performance and Reliability Management; 5. Plant Safety Assessment and Regulatory Issues; 6. Reactor Physics and Analysis; 7. Thermal Hydraulics Analysis and Testing; 8. Fuel Cycle and Waste Management; 9. Materials and Structural Issues; 10. Nuclear Energy and Global Environment; 11. Deployment and Cross-Cutting Issues; 12. Plant Licensing and International Regulatory Issues.

NONE

2012-07-01T23:59:59.000Z

108

Advanced shape context for plant species identification using leaf image retrieval  

Science Conference Proceedings (OSTI)

This paper presents a novel method for leaf species identification combining local and shape-based features. Our approach extends the shape context model in two ways. First of all, two different sets of points are distinguished when computing the shape ... Keywords: image retrieval, plant species identification, shape context

Sofiene Mouine; Itheri Yahiaoui; Anne Verroust-Blondet

2012-06-01T23:59:59.000Z

109

Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants  

SciTech Connect

OAK-B135 This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

Camillo A. DiNunzio Framatome ANP DE& S; Dr. Abhinav Gupta Assistant Professor NCSU; Dr. Michael Golay Professor MIT Dr. Vincent Luk Sandia National Laboratories; Rich Turk Westinghouse Electric Company Nuclear Systems; Charles Morrow, Sandia National Laboratories; Geum-Taek Jin, Korea Power Engineering Company Inc.

2002-11-30T23:59:59.000Z

110

Advanced Multi-Product Coal Utilization By-Product Processing Plant  

SciTech Connect

The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes an investigation of the secondary classification characteristics of the ash feedstock excavated from the lower ash pond at Ghent Station.

John Groppo; Thomas Robl

2006-09-30T23:59:59.000Z

111

Advanced Light Water Reactor Utility Requirements Document, Volume 2, Revision 8: ALWR Evolutionary Plant  

Science Conference Proceedings (OSTI)

EPRI's ALWR Program has been an industry-wide effort to establish the technical foundation for design of the advanced light water reactor (ALWR). This program included participation and sponsorship of several international utility companies and close cooperation with the U.S. Department of Energy. The cornerstone of the ALWR Program is a set of utility design requirements, which are contained in the ALWR Utility Requirements Document. The purpose of this document is to present a clear, complete statement...

1999-03-30T23:59:59.000Z

112

Advanced Light Water Reactor Utility Requirements Document, Volume 3, Revision 8: ALWR Passive Plant  

Science Conference Proceedings (OSTI)

EPRI's ALWR Program has been an industry-wide effort to establish the technical foundation for design of the advanced light water reactor (ALWR). This program included participation and sponsorship of several international utility companies and close cooperation with the U.S. Department of Energy. The cornerstone of the ALWR Program is a set of utility design requirements, which are contained in the ALWR Utility Requirements Document. The purpose of this document is to present a clear, complete statement...

1999-03-30T23:59:59.000Z

113

ADVANCED MULTI-PRODUCT COAL UTILIZATION BY-PRODUCT PROCESSING PLANT  

SciTech Connect

The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. The ash produced by the plant was found to be highly variable as the plant consumes high and low sulfur bituminous coal, in Units 1 and 2 and a mixture of subbituminous and bituminous coal in Units 3 and 4. The ash produced reflected this consisting of an iron-rich ({approx}24%, Fe{sub 2}O{sub 3}), aluminum rich ({approx}29% Al{sub 2}O{sub 3}) and high calcium (6%-7%, CaO) ash, respectively. The LOI of the ash typically was in the range of 5.5% to 6.5%, but individual samples ranged from 1% to almost 9%. The lower pond at Ghent is a substantial body, covering more than 100 acres, with a volume that exceeds 200 million cubic feet. The sedimentation, stratigraphy and resource assessment of the in place ash was investigated with vibracoring and three-dimensional, computer-modeling techniques. Thirteen cores to depths reaching nearly 40 feet, were retrieved, logged in the field and transported to the lab for a series of analyses for particle size, loss on ignition, petrography, x-ray diffraction, and x-ray fluorescence. Collected data were processed using ArcViewGIS, Rockware, and Microsoft Excel to create three-dimensional, layered iso-grade maps, as well as stratigraphic columns and profiles, and reserve estimations. The ash in the pond was projected to exceed 7 million tons and contain over 1.5 million tons of coarse carbon, and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. The size, quality and consistency of the ponded material suggests that it is the better feedstock for the beneficiation plant.

Robert Jewell; Thomas Robl; John Groppo

2005-03-01T23:59:59.000Z

114

Systems Analyses of Advanced Brayton Cycles For High Efficiency Zero Emission Plants  

Science Conference Proceedings (OSTI)

Table 1 shows that the systems efficiency, coal (HHV) to power, is 35%. Table 2 summarizes the auxiliary power consumption within the plant. Thermoflex was used to simulate the power block and Aspen Plus the balance of plant. The overall block flow diagram is presented in Figure A1.3-1 and the key unit process flow diagrams are shown in subsequent figures. Stream data are given in Table A1.3-1. Equipment function specifications are provided in Tables A1.3-2 through 17. The overall plant scheme consists of a cryogenic air separation unit supplying 95% purity O{sub 2} to GE type high pressure (HP) total quench gasifiers. The raw gas after scrubbing is treated in a sour shift unit to react the CO with H{sub 2}O to form H{sub 2} and CO{sub 2}. The gas is further treated to remove Hg in a sulfided activated carbon bed. The syngas is desulfurized and decarbonized in a Selexol acid gas removal unit and the decarbonized syngas after humidification and preheat is fired in GE 7H type steam cooled gas turbines. Intermediate pressure (IP) N{sub 2} from the ASU is also supplied to the combustors of the gas turbines as additional diluent for NOx control. A portion of the air required by the ASU is extracted from the gas turbines. The plant consists of the following major process units: (1) Air Separation Unit (ASU); (2) Gasification Unit; (3) CO Shift/Low Temperature Gas Cooling (LTGC) Unit; (4) Acid Gas Removal Unit (AGR) Unit; (5) Fuel Gas Humidification Unit; (6) Carbon Dioxide Compression/Dehydration Unit; (7) Claus Sulfur Recovery/Tail Gas Treating Unit (SRU/TGTU); and (8) Power Block.

A. D. Rao; J. Francuz; H. Liao; A. Verma; G. S. Samuelsen

2006-11-01T23:59:59.000Z

115

Advanced Oxidation Techniques for Soils Containing Manufactured Gas Plant (MGP) Hydrocarbons  

Science Conference Proceedings (OSTI)

This report presents the results of a bench-scale experimental study using a combination of chemical oxidation and electrotreatment of PAH contaminated soils from former Manufactured Gas Plant (MGP) sites. Electroosmotic movement of water and movement of charged surfactant micelles due to the electro-gradient were used to introduce persulfate oxidant into the contaminated soil matrix. Results showed that greater than 80% removal of the PAHs were obtained in 20 days of treatment time. Experiments with aqu...

2006-03-30T23:59:59.000Z

116

Advanced Technologies for Groundwater Monitoring and Remediation at Nuclear Power Plants  

Science Conference Proceedings (OSTI)

As part of the industry Groundwater Protection Initiative, EPRI has been investigating groundwater monitoring and remediation technologies that have potential for implementation at nuclear power plant sites. This report explores groundwater monitoring and remediation technologies under development or implemented at other industrial and U.S. Department of Energy sites, for both radionuclide and non-radionuclide contaminants. The report documents the potential for development of these technologies for impl...

2008-12-03T23:59:59.000Z

117

Investigation of Advanced Power Plants and Multiple Use Applications for Single Occupancy Vehicles  

SciTech Connect

Modeling of advanced and conventional drivetrains in a single occupancy vehicle has been undertaken utilizing numerical modeling. The vehicle modeling code Advisor, developed at the National Renewable Energy Laboratory, has shown that high efficiency, low power output hybrid vehicle drivetrains can almost double the economy relative to conventional powertrains. Experimental verification of the high efficiency potential of a free piston based electrical generator at 2 kilowatts output has been accomplished. For the purpose of introducing this class of transportation, however, the low cost and robust construction of the conventional drivetrain may be the logical first choice.

Peter Van Blarigan

2002-01-01T23:59:59.000Z

118

Advanced Outage and Control Center: Strategies for Nuclear Plant Outage Work Status Capabilities  

Science Conference Proceedings (OSTI)

The research effort is a part of the Light Water Reactor Sustainability (LWRS) Program. LWRS is a research and development program sponsored by the Department of Energy, performed in close collaboration with industry to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. The LWRS Program serves to help the US nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The Outage Control Center (OCC) Pilot Project was directed at carrying out the applied research for development and pilot of technology designed to enhance safe outage and maintenance operations, improve human performance and reliability, increase overall operational efficiency, and improve plant status control. Plant outage management is a high priority concern for the nuclear industry from cost and safety perspectives. Unfortunately, many of the underlying technologies supporting outage control are the same as those used in the 1980’s. They depend heavily upon large teams of staff, multiple work and coordination locations, and manual administrative actions that require large amounts of paper. Previous work in human reliability analysis suggests that many repetitive tasks, including paper work tasks, may have a failure rate of 1.0E-3 or higher (Gertman, 1996). With between 10,000 and 45,000 subtasks being performed during an outage (Gomes, 1996), the opportunity for human error of some consequence is a realistic concern. Although a number of factors exist that can make these errors recoverable, reducing and effectively coordinating the sheer number of tasks to be performed, particularly those that are error prone, has the potential to enhance outage efficiency and safety. Additionally, outage management requires precise coordination of work groups that do not always share similar objectives. Outage managers are concerned with schedule and cost, union workers are concerned with performing work that is commensurate with their trade, and support functions (safety, quality assurance, and radiological controls, etc.) are concerned with performing the work within the plants controls and procedures. Approaches to outage management should be designed to increase the active participation of work groups and managers in making decisions that closed the gap between competing objectives and the potential for error and process inefficiency.

Gregory Weatherby

2012-05-01T23:59:59.000Z

119

Advanced Light Water Reactor Plants System 80+{trademark} Design Certification Program. Annual progress report, October 1, 1992--September 30, 1993  

SciTech Connect

The purpose of this report is to provide a status of the progress that was made towards Design Certification of System 80+{trademark} during the US government`s 1993 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW{sub t} (1350 MWe) Pressurized Water Reactor (PWR). The design consists of an essentially complete plant. It is based on evolutionary improvements to the Standardized System 80 nuclear steam supply system in operation at Palo Verde Units 1, 2, and 3, and the Duke Power Company P-81 balance-of-plant (BOP) that was designed and partially constructed at the Cherokee plant site. The System 80/P-81 original design has been substantially enhanced to increase conformance with the EPRI ALWR Utility Requirements Document (URD). Some design enhancements incorporated in the System 80+ design are included in the four units currently under construction in the Republic of Korea. These units form the basis of the Korean standardization program. The full System 80+ standard design has been offered to the Republic of China, in response to their recent bid specification. The ABB-CE Standard Safety Analysis Report (CESSAR-DC) was submitted to the NRC and a Draft Safety Evaluation Report was issued by the NRC in October 1992. CESSAR-DC contains the technical basis for compliance with the EPRI URD for simplified emergency planning. The Nuclear Steam Supply System (NSSS) is the standard ABB-Combustion Engineering two-loop arrangement with two steam generators, two hot legs and four cold legs each with a reactor coolant pump. The System 80+ standard plant includes a sperical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual containment.

Not Available

1993-12-31T23:59:59.000Z

120

Advanced power systems featuring a closely coupled catalytic gasification carbonate fuel cell plant  

DOE Green Energy (OSTI)

Pursuing the key national goal of clean and efficient uulization of the abundant domestic coal resources for power generation, a study was conducted with DOE/METC support to evaluate the potential of integrated gasification/carbonate fuel cell power generation systems. By closely coupling the fuel cell with the operation of a catalytic gasifier, the advantages of both the catalytic gasification and the high efficiency fuel cell complement each other, resulting in a power plant system with unsurpassed efficiencies approaching 55% (HHV). Low temperature catalytic gasification producing a high methane fuel gas offers the potential for high gas efficiencies by operating with minimal or no combustion. Heat required for gasification is provided by combination of recycle from the fuel cell and exothermic methanation and shift reactions. Air can be supplemented if required. In combination with internally reforming carbonate fuel cells, low temperature catalytic gasification can achieve very attractive system efficiencies while producing extremely low emissions compared to conventional plants utilizing coal. Three system configurations based on recoverable and disposable gasification catalysts were studied. Experimental tests were conducted to evaluate these gasification catalysts. The recoverable catalyst studied was potassium carbonate, and the disposable catalysts were calcium in the form of limestone and iron in the form of taconite. Reactivities of limestone and iron were lower than that of potassium, but were improved by using the catalyst in solution form. Promising results were obtained in the system evaluations as well as the experimental testing of the gasification catalysts. To realize the potential of these high efficiency power plant systems more effort is required to develop catalytic gasification systems and their integration with carbonate fuel cells.

Steinfeld, G.; Wilson, W.G.

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Advanced power systems featuring a closely coupled catalytic gasification carbonate fuel cell plant  

DOE Green Energy (OSTI)

Pursuing the key national goal of clean and efficient uulization of the abundant domestic coal resources for power generation, a study was conducted with DOE/METC support to evaluate the potential of integrated gasification/carbonate fuel cell power generation systems. By closely coupling the fuel cell with the operation of a catalytic gasifier, the advantages of both the catalytic gasification and the high efficiency fuel cell complement each other, resulting in a power plant system with unsurpassed efficiencies approaching 55% (HHV). Low temperature catalytic gasification producing a high methane fuel gas offers the potential for high gas efficiencies by operating with minimal or no combustion. Heat required for gasification is provided by combination of recycle from the fuel cell and exothermic methanation and shift reactions. Air can be supplemented if required. In combination with internally reforming carbonate fuel cells, low temperature catalytic gasification can achieve very attractive system efficiencies while producing extremely low emissions compared to conventional plants utilizing coal. Three system configurations based on recoverable and disposable gasification catalysts were studied. Experimental tests were conducted to evaluate these gasification catalysts. The recoverable catalyst studied was potassium carbonate, and the disposable catalysts were calcium in the form of limestone and iron in the form of taconite. Reactivities of limestone and iron were lower than that of potassium, but were improved by using the catalyst in solution form. Promising results were obtained in the system evaluations as well as the experimental testing of the gasification catalysts. To realize the potential of these high efficiency power plant systems more effort is required to develop catalytic gasification systems and their integration with carbonate fuel cells.

Steinfeld, G.; Wilson, W.G.

1993-01-01T23:59:59.000Z

122

Advanced Gas Turbine Guidelines: Rotating Blade Temperature Measurement System (BTMS)--Supplement No. 1: Durability Surveillance at Florida Power & Light Company's Martin Plant  

Science Conference Proceedings (OSTI)

The blade scans performed by EPRI's Blade Temperature Measurement System (BTMS) represent an important source of blade metal temperature data. These advanced gas turbine guidelines describe the design, installation, and operation of the BTMS in a utility power plant operating General Electric MS7221FA advanced gas turbines. The guidelines include an analysis of blade temperature scans as well as a summary of lessons learned under baseload operating conditions.

1999-04-26T23:59:59.000Z

123

Assessment of instrumentation needs for advanced coal power plant applications: Final report  

DOE Green Energy (OSTI)

The purpose of this study was to identify contaminants, identify instrumentation needs, assess available instrumentation and identify instruments that should be developed for controlling and monitoring gas streams encountered in the following power plants: Integrated Gasification Combined Cycle, Pressurized Fluidized Bed Combustion, and Gasification Molten Carbonate Fuel Cell. Emphasis was placed on hot gas cleanup system gas stream analysis, and included process control, research and environmental monitoring needs. Commercial process analyzers, typical of those currently used for process control purposes, were reviewed for the purpose of indicating commercial status. No instrument selection guidelines were found which were capable of replacing user interaction with the process analyzer vendors. This study leads to the following conclusions: available process analyzers for coal-derived gas cleanup applications satisfy current power system process control and regulatory requirements, but they are troublesome to maintain; commercial gas conditioning systems and in situ analyzers continue to be unavailable for hot gas cleanup applications; many research-oriented gas stream characterization and toxicity assessment needs can not be met by commercially available process analyzers; and greater emphasis should be placed on instrumentation and control system planning for future power plant applications. Analyzers for specific compounds are not recommended other than those needed for current process control purposes. Instead, some generally useful on-line laser-based and inductively coupled plasma methods are recommended for further development because of their potential for use in present hot gas cleanup research and future optimization, component protection and regulation compliance activities. 48 refs., 21 figs., 26 tabs.

Nelson, E.T.; Fischer, W.H.; Lipka, J.V.; Rutkowski, M.D.; Zaharchuk, R.

1987-10-01T23:59:59.000Z

124

Advanced Multi-Product Coal Utilization By-Product Processing Plant  

Science Conference Proceedings (OSTI)

The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes an investigation of the secondary classification characteristics of the ash feedstock excavated from the lower ash pond at Ghent Station. The market study for the products of the processing plant (Subtask 1.6), conducted by Cemex, is reported herein. The study incorporated simplifying assumptions and focused only on pozzolan and ultra fine fly ash (UFFA). It found that the market for pozzolan in the Ghent area was oversupplied, with resultant poor pricing structure. Reachable export markets for the Ghent pozzolan market were mostly locally served with the exception of Florida. It was concluded that a beneficiated material for that market may be at a long term disadvantage. The market for the UFFA was more complex as this material would compete with other beneficiated ash and potential metakaolin and silica fume as well. The study concluded that this market represented about 100,000 tons of sales per year and, although lucrative, represented a widely dispersed niche market.

Andrew Jackura; John Groppo; Thomas Robl

2006-12-31T23:59:59.000Z

125

Commercial-Scale Performance Predictions for High-Temperature Electrolysis Plants Coupled to Three Advanced Reactor Types  

DOE Green Energy (OSTI)

This report presents results of system analyses that have been developed to assess the hydrogen production performance of commercial-scale high-temperature electrolysis (HTE) plants driven by three different advanced reactor – power-cycle combinations: a high-temperature helium cooled reactor coupled to a direct Brayton power cycle, a supercritical CO2-cooled reactor coupled to a direct recompression cycle, and a sodium-cooled fast reactor coupled to a Rankine cycle. The system analyses were performed using UniSim software. The work described in this report represents a refinement of previous analyses in that the process flow diagrams include realistic representations of the three advanced reactors directly coupled to the power cycles and integrated with the high-temperature electrolysis process loops. In addition, this report includes parametric studies in which the performance of each HTE concept is determined over a wide range of operating conditions. Results of the study indicate that overall thermal-to- hydrogen production efficiencies (based on the low heating value of the produced hydrogen) in the 45 - 50% range can be achieved at reasonable production rates with the high-temperature helium cooled reactor concept, 42 - 44% with the supercritical CO2-cooled reactor and about 33 - 34% with the sodium-cooled reactor.

M. G. McKellar; J. E. O'Brien; J. S. Herring

2007-09-01T23:59:59.000Z

126

International Pharmaceutical Abstracts (IPA) What is International Pharmaceutical Abstracts?  

E-Print Network (OSTI)

topic into the search box. #12;2 2. Click on Search to continue. 3. Enter terms to describe another in your search results. "Or" broadens your search by letting you search for related terms or synonyms. #12-related health topics. Searching International Pharmaceutical Abstracts The example below illustrates a step

Saskatchewan, University of

127

Advanced Multi-Product Coal Utilization By-Product Processing Plant  

SciTech Connect

The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. Phase 1 was completed successfully, but the project did not continue on to Phase 2 due to withdrawal of CEMEX from the project. Attempts at replacing CEMEX were not successful. Problematic to the continuation of the project was its location in the Ohio Valley which is oversupplied and has low prices for fly ash and the change in CEMEX priorities due to merger and acquisitions. Thus, CAER concurred with the DOE to conclude the project at the end of Budget Period 1, March 31, 2007.

Thomas Robl; John Groppo

2007-03-31T23:59:59.000Z

128

Advanced Multi-Product Coal Utilization By-Product Processing Plant  

SciTech Connect

The overall objective of this project is to design, construct, and operate an ash beneficiation facility that will generate several products from coal combustion ash stored in a utility ash pond. The site selected is LG&E's Ghent Station located in Carroll County, Kentucky. The specific site under consideration is the lower ash pond at Ghent, a closed landfill encompassing over 100 acres. Coring activities revealed that the pond contains over 7 million tons of ash, including over 1.5 million tons of coarse carbon and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. These potential products are primarily concentrated in the lower end of the pond adjacent to the outlet. A representative bulk sample was excavated for conducting laboratory-scale process testing while a composite 150 ton sample was also excavated for demonstration-scale testing at the Ghent site. A mobile demonstration plant with a design feed rate of 2.5 tph was constructed and hauled to the Ghent site to evaluate unit processes (i.e. primary classification, froth flotation, spiral concentration, secondary classification, etc.) on a continuous basis to determine appropriate scale-up data. Unit processes were configured into four different flowsheets and operated at a feed rate of 2.5 tph to verify continuous operating performance and generate bulk (1 to 2 tons) products for product testing. Cementitious products were evaluated for performance in mortar and concrete as well as cement manufacture process addition. All relevant data from the four flowsheets was compiled to compare product yields and quality while preliminary flowsheet designs were generated to determine throughputs, equipment size specifications and capital cost summaries. A detailed market study was completed to evaluate the potential markets for cementitious products. Results of the study revealed that the Ghent local fly ash market is currently oversupplied by more than 500,000 tpy and distant markets (i.e. Florida) are oversupplied as well. While the total US demand for ultrafine pozzolan is currently equal to demand, there is no reason to expect a significant increase in demand. Despite the technical merits identified in the pilot plant work with regard to beneficiating the entire pond ash stream, market developments in the Ohio River Valley area during 2006-2007 were not conducive to demonstrating the project at the scale proposed in the Cooperative Agreement. As a result, Cemex withdrew from the project in 2006 citing unfavorable local market conditions in the foreseeable future at the demonstration site. During the Budget Period 1 extensions provided by the DOE, CAER has contacted several other companies, including cement producers and ash marketing concerns for private cost share. Based on the prevailing demand-supply situation, these companies had expressed interest only in limited product lines, rather than the entire ash beneficiation product stream. Although CAER had generated interest in the technology, a financial commitment to proceed to Budget Period 2 could not be obtained from private companies. Furthermore, the prospects of any decisions being reached within a reasonable time frame were dim. Thus, CAER concurred with the DOE to conclude the project at the end of Budget Period 1, March 31, 2007. The activities presented in this report were carried out during the Cooperative Agreement period 08 November 2004 through 31 March 2007.

Thomas Robl; John Groppo

2009-06-30T23:59:59.000Z

129

Evaluation of the applicability of existing nuclear power plant regulatory requirements in the U.S. to advanced small modular reactors.  

SciTech Connect

The current wave of small modular reactor (SMR) designs all have the goal of reducing the cost of management and operations. By optimizing the system, the goal is to make these power plants safer, cheaper to operate and maintain, and more secure. In particular, the reduction in plant staffing can result in significant cost savings. The introduction of advanced reactor designs and increased use of advanced automation technologies in existing nuclear power plants will likely change the roles, responsibilities, composition, and size of the crews required to control plant operations. Similarly, certain security staffing requirements for traditional operational nuclear power plants may not be appropriate or necessary for SMRs due to the simpler, safer and more automated design characteristics of SMRs. As a first step in a process to identify where regulatory requirements may be met with reduced staffing and therefore lower cost, this report identifies the regulatory requirements and associated guidance utilized in the licensing of existing reactors. The potential applicability of these regulations to advanced SMR designs is identified taking into account the unique features of these types of reactors.

LaChance, Jeffrey L.; Wheeler, Timothy A.; Farnum, Cathy Ottinger; Middleton, Bobby D.; Jordan, Sabina Erteza; Duran, Felicia Angelica; Baum, Gregory A.

2013-05-01T23:59:59.000Z

130

Advanced Multi-Product Coal Utilization By-Product Processing Plant  

Science Conference Proceedings (OSTI)

The overall objective of this project is to design, construct, and operate an ash beneficiation facility that will generate several products from coal combustion ash stored in a utility ash pond. The site selected is LG&E's Ghent Station located in Carroll County, Kentucky. The specific site under consideration is the lower ash pond at Ghent, a closed landfill encompassing over 100 acres. Coring activities revealed that the pond contains over 7 million tons of ash, including over 1.5 million tons of coarse carbon and 1.8 million tons of fine (ash market is currently oversupplied by more than 500,000 tpy and distant markets (i.e. Florida) are oversupplied as well. While the total US demand for ultrafine pozzolan is currently equal to demand, there is no reason to expect a significant increase in demand. Despite the technical merits identified in the pilot plant work with regard to beneficiating the entire pond ash stream, market developments in the Ohio River Valley area during 2006-2007 were not conducive to demonstrating the project at the scale proposed in the Cooperative Agreement. As a result, Cemex withdrew from the project in 2006 citing unfavorable local market conditions in the foreseeable future at the demonstration site. During the Budget Period 1 extensions provided by the DOE, CAER has contacted several other companies, including cement producers and ash marketing concerns for private cost share. Based on the prevailing demand-supply situation, these companies had expressed interest only in limited product lines, rather than the entire ash beneficiation product stream. Although CAER had generated interest in the technology, a financial commitment to proceed to Budget Period 2 could not be obtained from private companies. Furthermore, the prospects of any decisions being reached within a reasonable time frame were dim. Thus, CAER concurred with the DOE to conclude the project at the end of Budget Period 1, March 31, 2007. The activities presented in this report were carried out during the Cooperative Agreement period 08 November 2004 through 31 March 2007.

Thomas Robl; John Groppo

2009-06-30T23:59:59.000Z

131

Advanced light water reactor plants system 80+{trademark} design certification program. Annual progress report, October 1, 1993--September 30, 1994  

SciTech Connect

The purpose of this report is to provide a status of the progress that was made towards Design Certification of System 80{sup +}{trademark} during the U.S. government`s 1994 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW (1350 MWe) Pressurized Water Reactor (PWR). The design covers an essentially complete plant. It is based on EPRI ALWR Utility Requirements Document (URD) improvements to the Standardized System 80 Nuclear Steam Supply System (NSSS) in operation at Palo Verde Units 1, 2 and 3. The NSSS is a traditional two-loop arrangement with two steam generators, two hot legs and four cold legs, each with a reactor coolant pump. The System 80+ standard design houses the NSSS in a spherical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual barrier to radioactivity release. Other major features include an all-digital, human-factors-engineered control room, an alternate electrical AC power source, an In-Containment Refueling Water Storage Tank (IRWST), and plant arrangements providing complete separation of redundant trains in safety systems. Some design enhancements incorporated in the System 80+ design are included in the four units currently under construction in the Republic of Korea. These units and the System 80+ design form the basis of the Korean standardization program. The Nuclear Island portion of the System 80+ standard design has also been offered to the Republic of China, in response to their bid specification for an ALWR. The ABB-CE Standard Safety Analysis Report (CESSAR-DC) was docketed by the Nuclear Regulatory Commission (NRC) in May 1991 and a Draft Safety Evaluation Report (DSER) was issued in October 1992.

Not Available

1995-01-01T23:59:59.000Z

132

Advanced techniques for safety analysis applied to the gas turbine control system of ICARO co-generative plant  

E-Print Network (OSTI)

The paper describes two complementary and integrable approaches, a probabilistic one and a deterministic one, based on classic and advanced modelling techniques for safety analysis of complex computer based systems. The probabilistic approach is based on classical and innovative probabilistic analysis methods. The deterministic approach is based on formal verification methods. Such approaches are applied to the gas turbine control system of ICARO co generative plant, in operation at ENEA CR Casaccia. The main difference between the two approaches, behind the underlining different theories, is that the probabilistic one addresses the control system by itself, as the set of sensors, processing units and actuators, while the deterministic one also includes the behaviour of the equipment under control which interacts with the control system. The final aim of the research, documented in this paper, is to explore an innovative method which put the probabilistic and deterministic approaches in a strong relation to overcome the drawbacks of their isolated, selective and fragmented use which can lead to inconsistencies in the evaluation results. 1.

Ro Bologna; Ester Ciancamerla; Piero Incalcaterra; Michele Minichino; Andrea Bobbio; Università Del Piemonte Orientale; Enrico Tronci

2001-01-01T23:59:59.000Z

133

Optical fiber evanescent wave adsorption sensors for high-temperature gas sensing in advanced coal-fired power plants  

Science Conference Proceedings (OSTI)

Modern advanced energy systems such as coal-fired power plants, gasifiers, or similar infrastructure present some of the most challenging harsh environments for sensors. The power industry would benefit from new, ultra-high temperature devices capable of surviving in hot and corrosive environments for embedded sensing at the highest value locations. For these applications, we are currently exploring optical fiber evanescent wave absorption spectroscopy (EWAS) based sensors consisting of high temperature core materials integrated with novel high temperature gas sensitive cladding materials. Mathematical simulations can be used to assist in sensor development efforts, and we describe a simulation code that assumes a single thick cladding layer with gas sensitive optical constants. Recent work has demonstrated that Au nanoparticle-incorporated metal oxides show a potentially useful response for high temperature optical gas sensing applications through the sensitivity of the localized surface plasmon resonance absorption peak to ambient atmospheric conditions. Hence, the simulation code has been applied to understand how such a response can be exploited in an optical fiber based EWAS sensor configuration. We demonstrate that interrogation can be used to optimize the sensing response in such materials.

Buric, M.; Ohodnicky, P.; Duy, J.

2012-01-01T23:59:59.000Z

134

Design of the Next Generation Nuclear Plant Graphite Creep Experiments for Irradiation in the Advanced Test Reactor  

SciTech Connect

The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain seven separate stacks of graphite specimens. Six of the specimen stacks will have half of their graphite specimens under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will be organized into pairs with a different compressive load being applied to the top half of each pair of specimen stacks. The seventh stack will not have a compressive load on the graphite specimens during irradiation. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of the experiment. The final design phase for the first experiment was completed in September 2008, and the fabrication and assembly of the experiment test train as well as installation and testing of the control and support systems that will monitor and control the experiment during irradiation are being completed in early calendar 2009. The first experiment is scheduled to be ready for insertion in the ATR by April 30, 2009. This paper will discuss the design of the experiment including the test train and the temperature and compressive load monitoring, control, and data collection systems.

S. Blaine Grover

2009-05-01T23:59:59.000Z

135

The Relationship Between Pharmaceutical Companies and Physicians  

E-Print Network (OSTI)

10.Pharmaceutical Companies’ Gifts to Doctors Scrutinized byand require that the companies publicly disclose payments toelusive pharmaceuti- cal companies. Perhaps, in the end, it

Aggarwal, Khushbu

2010-01-01T23:59:59.000Z

136

Advanced Nuclear Technology: Equipment Reliability for New Nuclear Plant Projects: Industry Recommendations for Storage, Construction, and Testing  

Science Conference Proceedings (OSTI)

The initial and continued good operating performance of the current build of new nuclear plants is critical to the rebirth of the nuclear option in many countries and vital to the companies making the large investments required for new nuclear plants. One of the foundations of good performance is a sound process for establishing and sustaining plant equipment reliability (ER).

2010-08-26T23:59:59.000Z

137

The Impact of Advanced Wastewater Treatment Technologies and Wastewater Strength on the Energy Consumption of Large Wastewater Treatment Plants.  

E-Print Network (OSTI)

??Wastewater treatment is an energy intensive process often requiring the use of advanced treatment technologies. Stricter effluent standards have resulted in an increase in the… (more)

Newell, Timothy Stephen

2012-01-01T23:59:59.000Z

138

NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapter 1, project number 669  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume 1, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

Not Available

1994-08-01T23:59:59.000Z

139

NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

Not Available

1994-08-01T23:59:59.000Z

140

Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants  

SciTech Connect

The objective of this siting study work is to support DOE in evaluating integrated advanced nuclear plant and ISFSI deployment options in the future. This study looks at several nuclear power plant growth scenarios that consider the locations of existing and planned commercial nuclear power plants integrated with the establishment of consolidated interim spent fuel storage installations (ISFSIs). This research project is aimed at providing methodologies, information, and insights that inform the process for determining and optimizing candidate areas for new advanced nuclear power generation plants and consolidated ISFSIs to meet projected US electric power demands for the future.

Mays, Gary T [ORNL; Belles, Randy [ORNL; Cetiner, Mustafa Sacit [ORNL; Howard, Rob L [ORNL; Liu, Cheng [ORNL; Mueller, Don [ORNL; Omitaomu, Olufemi A [ORNL; Peterson, Steven K [ORNL; Scaglione, John M [ORNL

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Conceptual design of electrical balance of plant for advanced battery energy storage facility. Annual report, March 1979. [20-MW, 100 MWh  

SciTech Connect

Large-scale efforts are in progress to develop advanced batteries for utility energy storage systems. Realization of the full benefits available from those systems requires development, not only of the batteries themselves, but also the ac/dc power converter, the bulk power interconnecting equipment, and the peripheral electric balance of plant equipment that integrate the battery/converter into a properly controlled and protected energy system. This study addresses these overall system aspects; although tailored to a 20-MW, 100-MWh lithium/sulfide battery system, the technology and concepts are applicable to any battery energy storage system. 42 figures, 14 tables. (RWR)

1980-01-01T23:59:59.000Z

142

Virtually simulating the next generation of clean energy technologies: NETL's AVESTAR Center is dedicated to the safe, reliable and efficient operation of advanced energy plants with carbon capture  

SciTech Connect

Imagine using a real-time virtual simulator to learn to fly a space shuttle or rebuild your car's transmission without touching a piece of equipment or getting your hands dirty. Now, apply this concept to learning how to operate and control a state-of-the-art, electricity-producing power plant capable of carbon dioxide (CO{sub 2}) capture. That's what the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTAR) Center (www.netl.doe.gov/avestar) is designed to do. Established as part of the Department of Energy's (DOE) initiative to advance new clean energy technology for power generation, the AVESTAR Center focuses primarily on providing simulation-based training for process engineers and energy plant operators, starting with the deployment of a first-of-a-kind operator training simulator for an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Based on Invensys Operations Management's SimSci-Esscor DYNSIM software, the high-fidelity dynamic simulator provides realistic training on IGCC plant operations, including normal and faulted operations, as well as plant start-up, shutdown and power demand load changes. The highly flexible simulator also allows for testing of different types of fuel sources, such as petcoke and biomass, as well as co-firing fuel mixtures. The IGCC dynamic simulator is available at AVESTAR's two locations, NETL (Figure 1) and West Virginia University's National Research Center for Coal and Energy (www.nrcce.wvu.edu), both in Morgantown, W.Va. By offering a comprehensive IGCC training program, AVESTAR aims to develop a workforce well prepared to operate, control and manage commercial-scale gasification-based power plants with CO{sub 2} capture. The facility and simulator at West Virginia University promotes NETL's outreach mission by offering hands-on simulator training and education to researchers and university students.

Zitney, S.

2012-01-01T23:59:59.000Z

143

Continuous blending of dry pharmaceutical powders  

E-Print Network (OSTI)

Conventional batch blending of pharmaceutical powders coupled with long quality analysis times increases the production cycle time leading to strained cash flows. Also, scale-up issues faced in process development causes ...

Pernenkil, Lakshman

2008-01-01T23:59:59.000Z

144

Cost benefits from applying advanced heat rejection concepts to a wet/dry-cooled binary geothermal plant  

SciTech Connect

Optimized ammonia heat rejection system designs were carried out for three water allocations equivalent to 9, 20, and 31% of that of a 100% wet-cooled plant. The Holt/Procon design of a 50-MWe binary geothermal plant for the Heber site was used as a design basis. The optimization process took into account the penalties for replacement power, gas turbine capital, and lost capacity due to increased heat rejection temperature, as well as added base plant capacity and fuel to provide fan and pump power to the heat rejection system. Descriptions of the three plant designs are presented. For comparison, a wet tower loop was costed out for a 100% wet-cooled plant using the parameters of the Holt/Procon design. Wet/dry cooling was found to increase the cost of electricity by 28% above that of a 100% wet-cooled plant for all three of the water allocations studied (9, 20, and 31%). The application selected for a preconceptual evaluation of the BCT (binary cooling tower) system was the use of agricultural waste water from the New River, located in California's Imperial Valley, to cool a 50-MWe binary geothermal plant. Technical and cost evaluations at the preconceptual level indicated that performance estimates provided by Tower Systems Incorporated (TSI) were reasonable and that TSI's tower cost, although 2 to 19% lower than PNL estimates, was also reasonable. Electrical cost comparisonswere made among the BCT system, a conventional 100% wet system, and a 9% wet/dry ammonia system, all using agricultural waste water with solar pond disposal. The BCT system cost the least, yielding a cost of electricity only 13% above that of a conventional wet system using high quality water and 14% less than either the conventional 100% wet or the 9% wet/dry ammonia system.

Faletti, D.W.

1981-03-01T23:59:59.000Z

145

Cost benefits from applying advanced heat rejection concepts to a wet/dry-cooled binary geothermal plant  

DOE Green Energy (OSTI)

Optimized ammonia heat rejection system designs were carried out for three water allocations equivalent to 9, 20, and 31% of that of a 100% wet-cooled plant. The Holt/Procon design of a 50-MWe binary geothermal plant for the Heber site was used as a design basis. The optimization process took into account the penalties for replacement power, gas turbine capital, and lost capacity due to increased heat rejection temperature, as well as added base plant capacity and fuel to provide fan and pump power to the heat rejection system. Descriptions of the three plant designs are presented. For comparison, a wet tower loop was costed out for a 100% wet-cooled plant using the parameters of the Holt/Procon design. Wet/dry cooling was found to increase the cost of electricity by 28% above that of a 100% wet-cooled plant for all three of the water allocations studied (9, 20, and 31%). The application selected for a preconceptual evaluation of the BCT (binary cooling tower) system was the use of agricultural waste water from the New River, located in California's Imperial Valley, to cool a 50-MWe binary geothermal plant. Technical and cost evaluations at the preconceptual level indicated that performance estimates provided by Tower Systems Incorporated (TSI) were reasonable and that TSI's tower cost, although 2 to 19% lower than PNL estimates, was also reasonable. Electrical cost comparisonswere made among the BCT system, a conventional 100% wet system, and a 9% wet/dry ammonia system, all using agricultural waste water with solar pond disposal. The BCT system cost the least, yielding a cost of electricity only 13% above that of a conventional wet system using high quality water and 14% less than either the conventional 100% wet or the 9% wet/dry ammonia system.

Faletti, D.W.

1981-03-01T23:59:59.000Z

146

Advances in Energy Efficiency, Capital Cost, and Installation Schedules for Large Capacity Cooling Applications Using a Packaged Chiller Plant Approach  

E-Print Network (OSTI)

Cooling equipment, whether used to meet air-conditioning or process cooling loads, represents a large consumer of energy. Even more to the point, cooling loads and the associated cooling equipment energy consumption tend to be at maximum levels during periods of high ambient air temperatures. It is precisely at those times that the general demand for energy is at its peak and therefore the price or value of energy is also at its highest level. Cooling loads often drive the peak electric power demand of energy users and thus affect not only the level of consumption of high cost energy, but also affect the peak power demand. Together, the energy and demand costs equate to very high unit costs for operating cooling equipment. Accordingly, it is of interest to minimize cooling energy use and costs by maximizing the energy efficiency of cooling equipment installations. A relatively new approach has been developed and is being increasingly used to maximize chiller plant efficiency. The approach involves the use of a standardized, pre-engineered, shop-fabricated approach to entire chiller plant installations. Compared to the traditional, piece-meal approach to chiller plants that utilize individual component specification, procurement and installation, the "packaged" or modular chiller plant approach often delivers substantially improved energy efficiencies. Also, the packaged plant approach achieves further benefits for large cooling system owners and operators. These additional benefits include: 1) dramatic reductions in unit capital costs of installed chiller plant capacity on a dollar per ton basis, 2) marked improvements in total procurement and installation schedules, 3) significantly smaller space requirements, and 4) enhanced control over total system quality and performance. The capacities and performance characteristics of available chiller plant modules are described, including both electric and non-electric chiller technologies. Examples are presented to illustrate the typical sizes and locations of actual installations as well as the growth and extent of the use of this technology to-date. Case studies document the energy efficiency improvements, cost reductions in both operating and capital costs, and improvements in schedule and space utilization, of the packaged chiller plant approach relative to the traditional chiller plant approach.

Pierson, T. L.; Andrepont, J. S.

2003-05-01T23:59:59.000Z

147

Advanced thermal-energy-storage concept-definition study for solar Brayton power plants. Final technical report, Volume I  

DOE Green Energy (OSTI)

The detailed results are presented of a technical and economic assessment of phase change and thermochemical energy storage systems in a solar power plant employing a high temperature Brayton cycle thermal engine with helium as the heat transport fluid. The assessment included an examination of the storage system operation, efficiency, power plant interaction, design, materials, safety, maintenance, environmental impact, system life, and economics. These considerations are implemented in the conceptual design of three baseline storage systems and their components for use in a solar power plant module of 50 megawatt electrical power output. Rationale is provided to support the configuration, operation and material choices. A preliminary assessment of the technology development and experimental test program requirements are also included. The report is contained in four separate volumes. This volume is the technical report.

Not Available

1976-01-01T23:59:59.000Z

148

MHD advanced power train. Phase 1, Final report: Volume 3, Power train system description and specification for 200MWe Plant  

DOE Green Energy (OSTI)

This System Design Description and Specification provides the basis for the design of the magnetohydrodynamic (MHD) Power Train (PT) for a nominal 200 MWe early commercial tiHD/Steam Power Plant. This document has been developed under Task 2, Conceptual Design, of Contract DE-AC22-83PC60575 and is to be used by the project as the controlling and coordinating documentation during future design efforts. Modification and revision of this specification will occur as the design matures, and tiie-Westinghouse MHD Project Manager will be the focal point for maintaining this document and issuing periodic revisions. This document is intended to delineate the power train and-power train components requirements and assumptions that properly reflect the MHD/Steam Power Plant in the PT design. The parameters discussed in this document have been established through system calculations as well as through constraints set by technology and by limitations on materials, cost, physical processes associated with MHD, and the expected operating data for the plant. The specifications listed in this document have precedence over all referenced documents. Where this specification appears to conflict with the requirements of a reference document, such conflicts should be brought to the attention of the Westinghouse MHD Project Manager for resolution.

Jones, A.R.

1985-08-01T23:59:59.000Z

149

Interim report Assessment of Baseline and Advanced Hydrogen Production Plants Case 1-1 Baseline Steam Methane Reforming (SMR) Hydrogen Plant With CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 CAPTURE READY COAL POWER PLANTS DOE/NETL-2007/1301 Final Report April 2008 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States

150

Treatability of emerging contaminants in wastewater treatment plants during wet weather flows.  

E-Print Network (OSTI)

??Municipal wastewater treatment plants have traditionally been designed to treat conventional pollutants found in sanitary wastewaters. However, many synthetic pollutants, such as pharmaceuticals and personal… (more)

Goodson, Kenya L.

2013-01-01T23:59:59.000Z

151

Cooling Requirements and Water Use Impacts of Advanced Coal-fired Power Plants with CO2 Capture and Storage  

Science Conference Proceedings (OSTI)

In addition to the large cost impact that comes with including CO2 capture in coal power plants, the consumption of water also increases. The increase in water consumption could represent a significant barrier to the implementation of CO2 capture. Although it is assumed that technology improvements might reduce the cost and power consumption of future CO2 capture systems, it might not be feasible to implement CO2 capture if additional water is not available at a site. In addition, because many regions of...

2011-12-20T23:59:59.000Z

152

Advanced Pipe Replacement Procedure for a Defective CRDM Housing Nozzle Enables Continued Normal Operation of a Nuclear Power Plant  

SciTech Connect

During the 2003 outage at the Ringhals Nuclear Plant in Sweden, a leak was found in the vicinity of a Control Rod Drive Mechanism (CRDM) housing nozzle at Unit 1. Based on the ALARA principle for radioactive contamination, a unique repair process was developed. The repair system includes utilization of custom, remotely controlled GTAW-robots, a CNC cutting and finishing machine, snake-arm robots and NDE equipment. The success of the repair solution was based on performing the machining and welding operations from the inside of the SCRAM pipe through the CRDM housing since accessibility from the outside was extremely limited. Before the actual pipe replacement procedure was performed, comprehensive training programs were conducted. Training was followed by certification of equipment, staff and procedures during qualification tests in a full scale mock-up of the housing nozzle. Due to the ingenuity of the overall repair solution and training programs, the actual pipe replacement procedure was completed in less than half the anticipated time. As a result of the successful pipe replacement, the nuclear power plant was returned to normal operation. (authors)

Gilmore, Geoff; Becker, Andrew [Climax Portable Machine Tools, Inc., 2712 East Second Street, Newberg, OR 97132 (United States)

2006-07-01T23:59:59.000Z

153

Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal resources-the steam and water that lie below the earth's surface-have the Geothermal resources-the steam and water that lie below the earth's surface-have the potential to supply vast amounts of clean energy. But continuing to produce geothermal power efficiently and inexpensively can require innovative adjustments to the technology used to process it. Located in the Mayacamas Mountains of northern California, The Geysers is the world's larg- est geothermal complex. Encompassing 45 square miles along the Sonoma and Lake County border, the complex harnesses natural steam reservoirs to create clean renewable energy that accounts for one-fifth of the green power produced in California. In the late 1990s, the pressure of geothermal steam at The Geysers was falling, reducing the output of its power plants. NREL teamed with Pacific

154

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

IGCC PC advanced coal-wind hybrid combined cycle power plantnatural gas combined cycle gas turbine power plant carboncrude gasification combined cycle power plant with carbon

Phadke, Amol

2008-01-01T23:59:59.000Z

155

Improving Energy Efficiency in Pharmaceutical ManufacturingOperations -- Part I: Motors, Drives and Compressed Air Systems  

Science Conference Proceedings (OSTI)

In Part I of this two-part series, we focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Pharmaceutical manufacturing plants in the U.S. spend nearly $1 billion each year for the fuel and electricity they need to keep their facilities running (Figure 1, below). That total that can increase dramatically when fuel supplies tighten and oil prices rise, as they did last year. Improving energy efficiency should be a strategic goal for any plant manager or manufacturing professional working in the drug industry today. Not only can energy efficiency reduce overall manufacturing costs, it usually reduces environmental emissions, establishing a strong foundation for a corporate greenhouse-gas-management program. For most pharmaceutical manufacturing plants, Heating, Ventilation and Air Conditioning (HVAC) is typically the largest consumer of energy, as shown in Table 1 below. This two-part series will examine energy use within pharmaceutical facilities, summarize best practices and examine potential savings and return on investment. In this first article, we will focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Part 2, to be published in May, will focus on overall HVAC systems, building management and boilers.

Galitsky, Christina; Chang, Sheng-chien; Worrell, Ernst; Masanet,Eric

2006-04-01T23:59:59.000Z

156

Advanced Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Systems Advanced Combustion Background Conventional coal-fired power plants utilize steam turbines to generate electricity, which operate at efficiencies of 35-37 percent. Operation at higher temperatures and pressures can lead to higher efficiencies, resulting in reduced fuel consumption and lower greenhouse gas emissions. Higher efficiency also reduces CO2 production for the same amount of energy produced, thereby facilitating a reduction in greenhouse gas emissions. When combined, oxy-combustion comes with an efficiency hit, so it will actually increase the amount of CO2 to be captured. But without so much N2 in the flue gas, it will be easier and perhaps more efficient to capture, utilize and sequester. NETL's Advanced Combustion Project and members of the NETL-Regional University

157

Biochemistry is the study of chemical reactions within a living cell with applications ranging from pharmaceuticals to biofuels. We study the molecules that make up life! Our major aligns well with  

E-Print Network (OSTI)

from pharmaceuticals to biofuels. We study the molecules that make up life! Our major aligns well and climate change (biofuels/plant biotechnology). Career opportunities with the Bachelor of Science degree

Logan, David

158

Overview | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

APS Overview: APS Overview: Introduction APS Systems Map LINAC Booster Synchrotron Storage Ring Insertion Devices Experiment Hall LOMs & Beamlines Overview of the APS The Advanced Photon Source (APS) at the U.S. Department of Energy's Argonne National Laboratory provides this nation's (in fact, this hemisphere's) brightest storage ring-generated x-ray beams for research in almost all scientific disciplines. Photo: Aerial Photo of APS Aerial photo of the Advanced Photon Source These x-rays allow scientists to pursue new knowledge about the structure and function of materials in the center of the Earth and in outer space, and all points in between. The knowledge gained from this research can impact the evolution of combustion engines and microcircuits, aid in the development of new pharmaceuticals, and pioneer nanotechnologies whose

160

Advanced Reactor Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Reactor Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research, development and deployment (RD&D) activities through its Next Generation Nuclear Plant (NGNP), Advanced Reactor Concepts (ARC), and Advanced Small Modular Reactor (aSMR) programs to promote safety, technical, economical, and environmental advancements of innovative Generation IV nuclear energy technologies. The Office of Nuclear Energy (NE) will pursue these advancements through RD&D activities at the Department of Energy (DOE) national laboratories and U.S. universities, as well as through collaboration with industry and international partners. These activities will focus on advancing scientific

Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Inventory management in a pharmaceutical company : minimizing discard practices.  

E-Print Network (OSTI)

??Pharmaceutical company SPM has over 400 cases of inventory discards over the past five years which constitute a significant operating cost. Due to the complexity… (more)

Wang, Xiaojun, M. Eng. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

162

Application of a Heat Integrated Post-combustion CO2 Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plant Award Number: DE-FE0007395 DOE Project Manager: José D. Figueroa  

NLE Websites -- All DOE Office Websites (Extended Search)

a Heat Integrated Post- a Heat Integrated Post- combustion CO 2 Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plant University of Kentucky Research Foundation Partnered with U.S. Department of Energy NETL Louisville Gas & Electric and Kentucky Utilities Electric Power Research Institute (with WorleyParsons) Hitachi Power Systems America Smith Management Group July 9, 2013 Goals and Objectives * Objectives 1) To demonstrate a heat-integrated post-combustion CO 2 capture system with an advanced solvent; 2) To collect information/data on material corrosion and identify appropriate materials of construction for a 550 MWe commercial-scale carbon capture plant.  To gather data on solvent degradation kinetics, water management, system dynamic control as well as other information during the long-term

163

Reprogramming alkaloid biosynthesis in Catharanthus roseus : synthetic biology in plants  

E-Print Network (OSTI)

The medicinal plant Madagascar periwinkle (Catharanthus roseus) produces over 130 monoterpene indole alkaloid (MIA) natural products. Many of these compounds have pharmaceutical value, such as the anticancer agents vinblastine ...

Runguphan, Weerawat

2011-01-01T23:59:59.000Z

164

SiC/SiC Composite for an Advanced Fusion Power Plant Blanket A. R. Raffray', L. El-Guebaly', D. K. Sze3,M. Billone3, I. Sviatoslavsky', E. Mogahed', F. Najmabadi',  

E-Print Network (OSTI)

SiC/SiC Composite for an Advanced Fusion Power Plant Blanket A. R. Raffray', L. El-Guebaly', D. K of an exploratory study of blanket concepts based on SiC/SiC structure and LiPb breeder. An assessment, and constraints relating to the SiC/SiC properties are discussed. INTRODUCTION The use of SiC/SiC composite

Raffray, A. René

165

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Availability Technology Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And...

166

Advanced Research Robert R. Romanosky  

E-Print Network (OSTI)

in advanced ultra supercritical (USC) coal-fired power plants. The advanced materials developed in this project are essential for construction of coal-fired boilers with advanced steam cycles involving much higher temperatures and pressures than those presently used in conventional pulverized coal (PC) power

167

The Chemical and Pharmaceutical Industry Susan Brench (1984)  

E-Print Network (OSTI)

The Chemical and Pharmaceutical Industry Susan Brench (1984) If you have any questions, or would like to ask for some careers advice about working in the Chemical Manufacturing industry from Susan:alumnae@murrayedwards.cam.ac.uk The products and services of the chemical and pharmaceutical industry deliver clean water, vital medicines

Goldschmidt, Christina

168

A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants  

Science Conference Proceedings (OSTI)

Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica/silicate are two common potential cycle-limiting minerals for using impaired waters. For produced waters, barium sulfate and calcium sulfate are two additional potential cycle-limiting minerals. For reclaimed municipal wastewater effluents, calcium phosphate scaling can be an issue, especially in the co-presence of high silica. Computational assessment, using a vast amount of Nalco's field data from coal fired power plants, showed that the limited use and reuse of impaired waters is due to the formation of deposit caused by the presence of iron, high hardness, high silica and high alkalinity in the water. Appropriate and cost-effective inhibitors were identified and developed - LL99B0 for calcite and gypsum inhibition and TX-15060 for silica inhibition. Nalco's existing dispersants HSP-1 and HSP-2 has excellent efficacy for dispersing Fe and Mn. ED and EDI were bench-scale tested by the CRADA partner Argonne National Laboratory for hardness, alkalinity and silica removal from synthetic make-up water and then cycled cooling water. Both systems showed low power consumption and 98-99% salt removal, however, the EDI system required 25-30% less power for silica removal. For Phase 2, the EDI system's performance was optimized and the length of time between clean-in-place (CIP) increased by varying the wafer composition and membrane configuration. The enhanced EDI system could remove 88% of the hardness and 99% of the alkalinity with a processing flux of 19.2 gal/hr/m{sup 2} and a power consumption of 0.54 kWh/100 gal water. Bench tests to screen alternative silica/silicate scale inhibitor chemistries have begun. The silica/silicate control approaches using chemical inhibitors include inhibition of silicic acid polymerization and dispersion of silica/silicate crystals. Tests were conducted with an initial silica concentration of 290-300 mg/L as SiO{sub 2} at pH 7 and room temperature. A proprietary new chemistry was found to be promising, compared with a current commercial product commonly used for silica/silicate control. Additional pilot cooling tower testing confirmed

Jasbir Gill

2010-08-30T23:59:59.000Z

169

A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants  

SciTech Connect

Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica/silicate are two common potential cycle-limiting minerals for using impaired waters. For produced waters, barium sulfate and calcium sulfate are two additional potential cycle-limiting minerals. For reclaimed municipal wastewater effluents, calcium phosphate scaling can be an issue, especially in the co-presence of high silica. Computational assessment, using a vast amount of Nalco's field data from coal fired power plants, showed that the limited use and reuse of impaired waters is due to the formation of deposit caused by the presence of iron, high hardness, high silica and high alkalinity in the water. Appropriate and cost-effective inhibitors were identified and developed - LL99B0 for calcite and gypsum inhibition and TX-15060 for silica inhibition. Nalco's existing dispersants HSP-1 and HSP-2 has excellent efficacy for dispersing Fe and Mn. ED and EDI were bench-scale tested by the CRADA partner Argonne National Laboratory for hardness, alkalinity and silica removal from synthetic make-up water and then cycled cooling water. Both systems showed low power consumption and 98-99% salt removal, however, the EDI system required 25-30% less power for silica removal. For Phase 2, the EDI system's performance was optimized and the length of time between clean-in-place (CIP) increased by varying the wafer composition and membrane configuration. The enhanced EDI system could remove 88% of the hardness and 99% of the alkalinity with a processing flux of 19.2 gal/hr/m{sup 2} and a power consumption of 0.54 kWh/100 gal water. Bench tests to screen alternative silica/silicate scale inhibitor chemistries have begun. The silica/silicate control approaches using chemical inhibitors include inhibition of silicic acid polymerization and dispersion of silica/silicate crystals. Tests were conducted with an initial silica concentration of 290-300 mg/L as SiO{sub 2} at pH 7 and room temperature. A proprietary new chemistry was found to be promising, compared with a current commercial product commonly used for silica/silicate control. Additional pilot cooling tower testing confirmed

Jasbir Gill

2010-08-30T23:59:59.000Z

170

Toward Direct Biosynthesis of Drop-in Ready Biofuels in Plants: Rapid Screening and Functional Genomic Characterization of Plant-derived Advanced Biofuels and Implications for Coproduction in Lignocellulosic Feedstocks.  

E-Print Network (OSTI)

??Advanced biofuels that are “drop-in” ready, completely fungible with petroleum fuels, and require minimal infrastructure to process a finished fuel could provide transportation fuels in… (more)

Joyce, Blake Lee

2013-01-01T23:59:59.000Z

171

State of Knowledge for Advanced Austenitics  

Science Conference Proceedings (OSTI)

Advanced austenitic alloys are beginning to replace traditional steels and stainless steels in supercritical and ultrasupercritical steam power plants as plant steam temperatures increase to meet demands for increased plant efficiency. This report covers the limited experience with these alloys and collects important information on material properties, oxidation, corrosion, weldability, fabrication, materials selection, and research needs for advanced austenitics.

2009-12-23T23:59:59.000Z

172

Source Characterization and Pretreatment Evaluation of Pharmaceuticals and Personal Care Products in Healthcare Facility Wastewater  

E-Print Network (OSTI)

Healthcare facility wastewaters are a potentially important and under characterized source of pharmaceuticals and personal care products to the environment. In this study the composition and magnitude of pharmaceuticals and personal care products (PPCPs) released into a single municipality’s wastewater system from a hospital, a nursing care facility, an assisted living facility and an independent living facility are presented for 54 pharmaceuticals, 8 hormones and 31 Alkylphenol ethoxylates (APEOs). Chemical oxidation using molecular ozone and advanced oxidation processes (AOPs) (UV-hydrogen peroxide, Fenton’s Reagent, and Photo – Fenton’s Reagent) were screened and evaluated as potential treatment technologies for removal of APEOs in water and wastewater. In this research, APEOs were found to be dominant PPCP class out of 94 individual analytes measured, accounting for more than 65% of the total mass loading observed leaving the healthcare facility wastewater. Seventy one out of the total measured PPCPs were detected in wastewater from at least one of the facilities. Healthcare facility wastewater are the source of PPCPs to the environment; however, their contribution to the total magnitude of PPCPs in municipal wastewater and the surrounding environment will be determined by the relative flow contribution of wastewater released from the facility to the municipal sewer network. Molecular ozone and advanced oxidation processes were observed to remove APEOs from analyzed water matrices; however, understanding the product formation during the oxidation process is important before concluding a suitable treatment process. Molecular ozone reacted selectively with the double bond in the APEO while AOPs reaction was non selective oxidation. During the AOPs, OH· formation rate and scavenging rate constant of wastewater was found to be the factors governing the oxidation process. Thus, the research carried out informs a risk management decisions concerning the prevalence of PPCPs in the wastewater and use of oxidation systems as a treatment technologies for removal of PPCPs.

Nagarnaik, Pranav Mukund

2011-05-01T23:59:59.000Z

173

Advanced Fuels Synthesis  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Fuels Synthesis Advanced Fuels Synthesis Coal and Coal/Biomass to Liquids Advanced Fuels Synthesis The Advanced Fuels Synthesis Key Technology is focused on catalyst and reactor optimization for producing liquid hydrocarbon fuels from coal/biomass mixtures, supports the development and demonstration of advanced separation technologies, and sponsors research on novel technologies to convert coal/biomass to liquid fuels. Active projects within the program portfolio include the following: Fischer-Tropsch fuels synthesis Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer Tropsch Catalyst Small Scale Pilot Plant for the Gasification of Coal and Coal/Biomass Blends and Conversion of Derived Syngas to Liquid Fuels Via Fischer-Tropsch Synthesis Coal Fuels Alliance: Design and Construction of Early Lead Mini Fischer-Tropsch Refinery

174

SunShot Initiative: Advanced Nitrate Salt Central Receiver Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Nitrate Salt Central Receiver Power Plant to someone by E-mail Share SunShot Initiative: Advanced Nitrate Salt Central Receiver Power Plant on Facebook Tweet about SunShot...

175

Advanced Pulverizer Control: Design and Testbed Implementation  

Science Conference Proceedings (OSTI)

Coal pulverizers play an important role in all aspects of power plant performance, including availability, efficiency, and responsiveness. In relationship to dynamic response, pulverizer control often limits a plant's maximum load rate-of-change. EPRI has been investigating the use of advanced multivariable control techniques on several plant subsystems and in this project is developing an advanced pulverizer control system. The ultimate goal is to design, implement, and test an advanced control system o...

2004-03-22T23:59:59.000Z

176

Engineering and Economic Analysis of a 1300°F (704°C) Series Advanced Ultra-Supercritical Demonstration Plant with Natural Gas Equivalency Post-Combustion Capture  

Science Conference Proceedings (OSTI)

The strategy for lowering the cost of CO2 capture from coal-based power plants includes increasing generating efficiency. The most effective way to reduce CO2 is simply to make less of it, and generating units with higher efficiencies require less coal for each MW of output—thereby producing less CO2. Each 1% increase in efficiency decreases CO2 by approximately 2.5%. For pulverized coal (PC) plants, this means progressing to ultra-supercritical ...

2013-04-30T23:59:59.000Z

177

Crystallization process development and spherical agglomerates for pharmaceutical processing applications  

E-Print Network (OSTI)

The control of crystallization steps is essential in the production of many materials in the pharmaceutical, materials, and chemical industries. Additionally, due to increasing costs of research and development, reductions ...

Quon, Justin (Justin Louis)

2013-01-01T23:59:59.000Z

178

The business case for continuous manufacturing of pharmaceuticals  

E-Print Network (OSTI)

Manufacturing in the pharmaceutical industry is presently characterized as a batch production system, which has existed in its current form for decades. This structure is the result of historical regulatory policy as well ...

Wilburn, Kristopher Ray

2010-01-01T23:59:59.000Z

179

Analysis of global channel costs for the pharmaceutical industry  

E-Print Network (OSTI)

The pharmaceutical industry creates products which often have more than one supply chain channel, defined as a route through the supply chain network from sourcing to the end market. Each channel's specific cost characteristics ...

Rimling, Eric C. (Eric Christopher)

2009-01-01T23:59:59.000Z

180

Three essays on the development and diffusion of pharmaceutical innovations  

E-Print Network (OSTI)

The thesis comprises three essays on various aspects of the development and diffusion of pharmaceutical innovations, woven together by the idea that the production of clinical knowl- edge influences organizational design, ...

Azoulay, Pierre

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Study of polymeric film bonding for pharmaceutical applications  

E-Print Network (OSTI)

Currently employed batch manufacturing processes for tablet-making in the pharmaceutical industry are estimated to cause the loss of as much as 25% of revenues due to batch rejection, rework and investigations. An alternate ...

Cardell, Alyse (Alyse Christine)

2011-01-01T23:59:59.000Z

182

Business models for information commons in the pharmaceutical industry  

E-Print Network (OSTI)

The pharmaceutical industry needs new modes of innovation. The industry's innovation system - based on massive investments in R&D protected by intellectual property rights - has worked well for many years, providing ...

Bharadwaj, Ragu

2009-01-01T23:59:59.000Z

183

Computer-aided rational solvent selection for pharmaceutical crystallization  

E-Print Network (OSTI)

Solvents play an important role in crystallization, a commonly used separation and purification technique in the pharmaceutical, chemical and food industries. They affect crystal properties such as particle size distribution, ...

Chen, Jie, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

184

Exploration of parameters for the continuous blending of pharmaceutical powders  

E-Print Network (OSTI)

The transition from traditional batch blending to continuous blending is an opportunity for the pharmaceutical industry to reduce costs and improve quality control. This operational shift necessitates a deeper understanding ...

Lin, Ben Chien Pang

2011-01-01T23:59:59.000Z

185

Inventory management in a pharmaceutical company : minimizing discard practices  

E-Print Network (OSTI)

Pharmaceutical company SPM has over 400 cases of inventory discards over the past five years which constitute a significant operating cost. Due to the complexity and randomness of each case, the root causes that result in ...

Wang, Xiaojun, M. Eng. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

186

Improving energy efficiency in a pharmaceutical manufacturing environment -- office building  

E-Print Network (OSTI)

Reducing energy consumption without compromising the quality of products in a pharmaceutical manufacturing environment and maintaining the comfort of employees is of critical important in maintaining the financial viability ...

Li, Wu, M. Eng Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

187

Pharmaceutical Companies and Patient Care – The Mixed Effects Model  

E-Print Network (OSTI)

Times. The New York Times Company, 7 Mar. 2012. Web. 14 Mar.Pharmaceutical Companies and Patient Care – The MixedDoctor Is Paid By Drug Companies. ” Health Affairs 30.12 (

Gururangan, Kapil

2012-01-01T23:59:59.000Z

188

Technology Challenges & Opportunities in the Biotechnology, Pharmaceutical & Medical Device Industries  

Science Conference Proceedings (OSTI)

Realization of the projected benefits of biotechnology involves a variety of challenges and portends many opportunities.ï¾ ï¾ This article focuses on technology challenges as seen by executives in the biotechnology, pharmaceutical, and medical device ...

Martha S. Farley; William B. Rouse

2000-04-01T23:59:59.000Z

189

Hydroxyalkyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals  

DOE Patents (OSTI)

This research discloses a compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical comprises a functionalized hydroxyalkyl phosphine ligand and a metal combined with the ligand. 16 figs.

Katti, K.V.; Singh, P.R.; Reddy, V.S.; Katti, K.K.; Volkert, W.A.; Ketring, A.R.

1999-03-02T23:59:59.000Z

190

Framework for the determination of yield limits In pharmaceutical operations  

E-Print Network (OSTI)

The manufacturing production of active pharmaceutical ingredients often involve a series of processing stages in which yield limits are prescribed to ensure that the target yield has been achieved for a batch and that the ...

Liow, Yuh Han John

2010-01-01T23:59:59.000Z

191

Managing maintenance costs of pharmaceutical research and development  

E-Print Network (OSTI)

Drug Discovery is a race to be the first to patent a drug that meets a significant medical need in the world. Many pharmaceutical companies are now using automation extensively to improve consistency and aid personnel in ...

Butts, Jared (Jared C.)

2009-01-01T23:59:59.000Z

192

Study of Pu consumption in light water reactors: Evaluation of GE advanced boiling water reactor plants, compilation of Phase 1C task reports  

Science Conference Proceedings (OSTI)

This report summarizes the evaluations conducted during Phase 1C of the Pu Disposition Study have provided further results which reinforce the conclusions reached during Phase 1A & 1B: These conclusions clearly establish the benefits of the fission option and the use of the ABWR as a reliable, proven, well-defined and cost-effective means available to disposition the weapons Pu. This project could be implemented in the near-term at a cost and on a schedule being validated by reactor plants currently under construction in Japan and by cost and schedule history and validated plans for MOX plants in Europe. Evaluations conducted during this phase have established that (1) the MOX fuel is licensable based on existing criteria for new fuel with limited lead fuel rod testing, (2) that the applicable requirements for transport, handling and repository storage can be met, and (3) that all the applicable safeguards criteria can be met.

Not Available

1994-01-15T23:59:59.000Z

193

Avoid advanced control project mistakes  

Science Conference Proceedings (OSTI)

On-line process optimization is worth working for but without robust advanced controls it will never happen. In this paper, the author evaluates how well advanced controls worked in five refineries. Having spent money on such projects, the refineries faced a situation in which there was no measurable improvement in overall plant performance. These refineries are owned by different companies, yet they share a pattern of mistakes in administrating advanced controls. Highlighting these mistakes shows ways to improve the organization of advanced control technology, to avoid obvious pitfalls.

Friedman, Y.Z. (Petrocontrol, Madison, NJ (United States))

1992-10-01T23:59:59.000Z

194

Development of an Optimum Tracer Set for Apportioning Emissions of Individual Power Plants Using Highly Time-Resolved Measurements and Advanced Receptor Modeling  

SciTech Connect

In previous studies, 11 elements (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn) were determined in 30-minute aerosol samples collected with the University of Maryland Semicontinuous Elements in Aerosol Sampler (SEAS; Kidwell and Ondov, 2001, 2004; SEAS-II) in several locations in which air quality is influenced by emissions from coal- or oil-fired power plants. At this time resolution, plumes from stationary high temperature combustion sources are readily detected as large excursions in ambient concentrations of elements emitted by these sources (Pancras et al. ). Moreover, the time-series data contain intrinsic information on the lateral diffusion of the plume (e.g., {sigma}{sub y}), which Park et al. (2005 and 2006) have exploited in their Pseudo-Deterministic Receptor Model (PDRM), to calculate emission rates of SO{sub 2} and 11 elements (mentioned above) from four individual coal- and oil-fired power plants in the Tampa Bay area. In the current project, we proposed that the resolving power of source apportionment methods might be improved by expanding the set of maker species and that there exist some optimum set of marker species that could be used. The ultimate goal was to determine the utility of using additional elements to better identify and isolate contributions of individual power plants to ambient levels of PM and its constituents. And, having achieved better resolution, achieve, also, better emission rate estimates. In this study, we optimized sample preparation and instrumental protocols for simultaneous analysis of 28 elements in dilute slurry samples collected with the SEAS with a new state-of-the-art Thermo-Systems, Inc., X-series II, Inductively Coupled Plasma Mass Spectroscopy (ICP-MS), and reanalyzed the samples previously collected in Tampa during the modeling period studied by Park et al. (2005) in which emission rates from four coal- and oil-fired power plants affected air quality at the sampling site. In the original model, Park et al. (2005), included 6 sources. Herein, we reassessed the number of contributing sources in light of the new data. A comprehensive list of sources was prepared and both our Gaussian Plume model and PMF were used to identify and predict the relative strengths of source contributions at the receptor sites. Additionally, PDRM was modified to apply National Inventory Emissions, Toxic Release Inventory, and Chemical Mass Balance source profile data to further constrain solutions. Both the original Tampa data set (SO{sub 2} plus 11 elements) and the new expanded data set (SO{sub 2} plus 23 elements) were used to resolve the contributions of particle constituents and PM to sources using Positive Matrix Factorization (PMF) and PDRM.

John Ondov; Gregory Beachley

2007-07-05T23:59:59.000Z

195

Advanced Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Gasification Carbon feedstock gasification is a promising pathway for high-efficiency, low-pollutant power generation and chemical production. The inability, however, to...

196

Advanced Ceramics  

Science Conference Proceedings (OSTI)

Table 3   Raw materials for advanced structural and magnetic (ferrite) ceramics...conductivity Wear resistance Oxygen sensors, fuel cells (potential), high-temperature

197

Advanced Manufacturing  

Science Conference Proceedings (OSTI)

... new metrologically-based methods for industry as well ... for Advanced Catalyst Development and Durability ... Electron-Beam Irradiation of Solar Cells. ...

2013-07-29T23:59:59.000Z

198

Design of a small-scale continuous linear motion pharmaceutical filtration module  

E-Print Network (OSTI)

A new small-scale continuous linear motion pharmaceutical filtration prototype was designed, fabricated, and tested. The goal of this unit is to filter an Active Pharmaceutical Ingredient (API) from a mixture of API ...

Wong, Katherine Wing-Shan

2010-01-01T23:59:59.000Z

199

Layer bonding of solvent-cast thin films for pharmaceutical solid dosage forms  

E-Print Network (OSTI)

In the pharmaceutical industry, the conventional tablet manufacturing process, a batch-based process based on solid powder handling, presents challenges such as inhomogeneous blending between Active Pharmaceutical Ingredients ...

Kim, Won, S.M. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

200

Simulation modeling to predict drug pipeline throughput in early pharmaceutical R&D  

E-Print Network (OSTI)

With high costs and growing concern about research and development (R&D) productivity, the pharmaceutical industry is under pressure to efficiently allocate R&D funds. Nonetheless, pharmaceutical R&D involves considerable ...

Heyman, Jeffrey B. (Jeffrey Brian)

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Theoretical and experimental investigation of particle interactions in pharmaceutical powder blending  

E-Print Network (OSTI)

In pharmaceutical manufacturing practices, blending of active pharmaceutical ingredient (API) with excipients is a crucial step in that homogeneity of active ingredient after blending is a key issue for the quality assurance ...

Pu, Yu, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

202

Next Generation Safeguards Initiative: Analysis of Probability of Detection of Plausible Diversion Scenarios at Gas Centrifuge Enrichment Plants Using Advanced Safeguards  

Science Conference Proceedings (OSTI)

Over the last decade, efforts by the safeguards community, including inspectorates, governments, operators and owners of centrifuge facilities, have given rise to new possibilities for safeguards approaches in enrichment plants. Many of these efforts have involved development of new instrumentation to measure uranium mass and uranium-235 enrichment and inspection schemes using unannounced and random site inspections. We have chosen select diversion scenarios and put together a reasonable system of safeguards equipment and safeguards approaches and analyzed the effectiveness and efficiency of the proposed safeguards approach by predicting the probability of detection of diversion in the chosen safeguards approaches. We analyzed the effect of redundancy in instrumentation, cross verification of operator instrumentation by inspector instrumentation, and the effects of failures or anomalous readings on verification data. Armed with these esults we were able to quantify the technical cost benefit of the addition of certain instrument suites and show the promise of these new systems.

Hase, Kevin R. [Los Alamos National Laboratory; Hawkins Erpenbeck, Heather [Los Alamos National Laboratory; Boyer, Brian D. [Los Alamos National Laboratory

2012-07-10T23:59:59.000Z

203

NETL: Advanced Research - Successes  

NLE Websites -- All DOE Office Websites (Extended Search)

Successes Successes Advanced Research Successes Sensors & Controls "...Optical grade single-crystal sapphire optical fiber waveguides are especially attractive for fabricating sensors for the harsh high-temperature, corrosive environments found in gasifiers." Read More... "Industry adoption of CCADS will open the door to a new generation of more efficient, ultra-low emission turbines in advanced energy systems" Read More... Bioprocessing " Successful development and commercial application of this environmentally safe bacterial toxin will allow power plants to reduce or eliminate the use of chlorination, reducing the risk of harmful effects on aquatic ecosystems." Advanced Materials " This project will benefit gasification technology development and deployment by improving materials to contain and monitor gasification processes." Read More...

204

Advanced Manufacturing Office: Motor Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Systems to Motor Systems to someone by E-mail Share Advanced Manufacturing Office: Motor Systems on Facebook Tweet about Advanced Manufacturing Office: Motor Systems on Twitter Bookmark Advanced Manufacturing Office: Motor Systems on Google Bookmark Advanced Manufacturing Office: Motor Systems on Delicious Rank Advanced Manufacturing Office: Motor Systems on Digg Find More places to share Advanced Manufacturing Office: Motor Systems on AddThis.com... Quick Links Energy Resource Center Technical Publications by Energy System Energy-Efficient Technologies Incentives & Resources by Zip Code Better Plants Superior Energy Performance Contacts Motor Systems Photo of Man Checking Motor Performance Motor-driven equipment accounts for 54% of manufacturing electricity use. Dramatic energy and cost savings can be achieved in motor systems by

205

Multifunctional ligand for use as a diagnostic or therapeutic pharmaceutical  

DOE Patents (OSTI)

A compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical are revealed. The ligand comprises either a phosphorous or germanium core and at least two hydrazine groups forming a ligand for bonding to a metal extending from the phosphorous or germanium core.

Katti, K.V.; Volkert, W.A.; Ketring, A.R.; Singh, P.R.

1996-05-14T23:59:59.000Z

206

Bog Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Bog Plants Bog Plants Nature Bulletin No. 385-A June 6, 1970 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation BOG PLANTS Fifty years ago there were probably more different kinds of plants within a 50 mile radius from the Loop than anywhere else in the Temperate Zone. Industrial, commercial and residential developments, plus drainage and fires have erased the habitats where many of the more uncommon kinds flourished, including almost all of the tamarack swamps and quaking bogs. These bogs were a heritage from the last glacier. Its front had advanced in a great curve, from 10 to 20 miles beyond what is now the shoreline of Lake Michigan, before the climate changed and it began to melt back. Apparently the retreat was so rapid that huge blocks of ice were left behind, surrounded by the outwash of boulders, gravel and ground-up rock called "drift". These undrained depressions; became lakes. Sphagnum moss invaded many of them and eventually the thick floating mats of it supported a variety of bog-loving plants including certain shrubs, tamarack, and a small species of birch. Such lakes became bogs.

207

Advanced PFBC transient analysis  

SciTech Connect

Transient modeling and analysis of advanced Pressurized Fluidized Bed Combustion (PFBC) systems is a research area that is currently under investigation by the US Department of Energy`s Federal Energy Technology Center (FETC). The object of the effort is to identify key operating parameters that affect plant performance and then quantify the basic response of major sub-systems to changes in operating conditions. PC-TRAX{trademark}, a commercially available dynamic software program, was chosen and applied in this modeling and analysis effort. This paper describes the development of a series of TRAX-based transient models of advanced PFBC power plants. These power plants burn coal or other suitable fuel in a PFBC, and the high temperature flue gas supports low-Btu fuel gas or natural gas combustion in a gas turbine topping combustor. When it is utilized, the low-Btu fuel gas is produced in a bubbling bed carbonizer. High temperature, high pressure combustion products exiting the topping combustor are expanded in a modified gas turbine to generate electrical power. Waste heat from the system is used to raise and superheat steam for a reheat steam turbine bottoming cycle that generates additional electrical power. Basic control/instrumentation models were developed and modeled in PC-TRAX and used to investigate off-design plant performance. System performance for various transient conditions and control philosophies was studied.

White, J.S. [Parsons Power Group, Inc., Reading, PA (United States); Bonk, D.L. [USDOE Federal Energy Technology Center, Morgantown, WV (United States)

1997-05-01T23:59:59.000Z

208

Advanced PFBC transient analysis  

SciTech Connect

Transient modeling and analysis of Advanced Pressurized Fluidized Bed Combustion (PFBC) systems is a research area that is currently under investigative study by the United States Department of Energy`s Morgantown Energy Technology Center (METC). The object of the effort is to identify key operating parameters affecting plant performance and then quantify the basic response of major sub-systems to changes in operating conditions. PC-TRAX, a commercially available dynamic software program, was chosen and applied in this modeling and analysis effort. This paper summarizes and describes the development of a series of TRAX-based transient models of Advanced PFBC power plants. These power plants generate a high temperature flue gas by burning coal or other suitable fuel in a PFBC. The high temperature flue gas supports low-Btu fuel gas or natural gas combustion in a gas turbine topping combustor. When utilized, low-Btu fuel gas is produced in a bubbling bed carbonizer. High temperature, high pressure combustion products exiting the topping combustor are expanded in a modified gas turbine to generate electrical power. Waste heat from the system is used to generate and superheat steam for a reheat steam turbine bottoming cycle that generates additional electrical power. Basic control/instrumentation models were developed and modeled in PC-TRAX and used to investigate off-design plant performance. System performance for various transient conditions and control philosophies was studied.

White, J.S. [Parsons Power Group, Inc., Reading, PA (United States); Bonk, D.L.; Rogers, L. [USDOE Morgantown Energy Technology Center, WV (United States)

1996-12-31T23:59:59.000Z

209

Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 2, Book 1. Commercial plant conceptual design. Final report  

DOE Green Energy (OSTI)

The conceptual design of the 100-MW solar tower focus commercial power plant is described in detail. Sodium is pumped up to the top of a tall tower where the receiver is located. The sodium is heated in the receiver and then flows down the tower, through a pressure reducing device, and thence into a large, hot storage tank which is located at ground level and whose size is made to meet a specific thermal energy storage capacity requirement. From this tank, the sodium is pumped by a separate pump, through a system of sodium-to-water steam generators. The steam generator system consists of a separate superheater and reheater operating in parallel and an evaporator unit operating in series with the other two units. The sodium flowing from the evaporator unit is piped to a cold storage tank. From the cold storage tank, sodium is then pumped up to the tip of the tower to complete the cycle. The steam generated in the steam generators is fed to a conventional off-the-shelf, high-efficiency turbine. The steam loop operates in a conventional rankine cycle with the steam generators serving the same purpose as a conventional boiler and water being fed to the evaporator with conventional feedwater pumps. The pressure reducing device (a standard drag valve, for example) serves to mitigate the pressure caused by the static head of sodium and thus allows the large tanks to operate at ambient pressure conditions. (WHK)

Not Available

1979-03-01T23:59:59.000Z

210

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Advanced Materials Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And Membrane Express Licensing Analysis Of Macromolecule, Liggands And Macromolecule-Lingand Complexes Express Licensing Carbon Microtubes Express Licensing Chemical Synthesis Of Chiral Conducting Polymers Express Licensing Forming Adherent Coatings Using Plasma Processing Express Licensing Hydrogen Scavengers Express Licensing Laser Welding Of Fused Quartz Express Licensing Multiple Feed Powder Splitter Negotiable Licensing Boron-10 Neutron Detectors for Helium-3 Replacement Negotiable Licensing Insensitive Extrudable Explosive Negotiable Licensing Durable Fuel Cell Membrane Electrode Assembly (MEA) Express Licensing Method of Synthesis of Proton Conducting Materials

211

NETL: Advanced Research - Computation Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Energy Sciences > APECS Computational Energy Sciences > APECS Advanced Research Computational Energy Sciences APECS APECS Virtual Plant APECS (Advanced Process Engineering Co-Simulator) is the first simulation software to combine the disciplines of process simulation and computational fluid dynamics (CFD). This unique combination makes it possible for engineers to create "virtual plants" and to follow complex thermal and fluid flow phenomena from unit to unit across the plant. Advanced visualization software tools aid in analysis and optimization of the entire plant's performance. This tool can significantly reduce the cost of power plant design and optimization with an emphasis on multiphase flows critical to advanced power cycles. A government-industry-university collaboration (including DOE, NETL, Ansys/

212

Advanced Ceramics  

Science Conference Proceedings (OSTI)

Table 2   Classification of advanced ceramics...solid electrolytes, piezoelectrics, dielectrics, superconductors Optical Low absorption coefficient Lamps, windows, fiber optics, infrared optics Nuclear Irradiation resistance, high absorption coefficient,

213

Advanced Manufacturing Office: Solicitations  

NLE Websites -- All DOE Office Websites (Extended Search)

Solicitations on Twitter Bookmark Advanced Manufacturing Office: Solicitations on Google Bookmark Advanced Manufacturing Office: Solicitations on Delicious Rank Advanced...

214

Advanced Manufacturing Office: Webcasts  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Webcasts on Twitter Bookmark Advanced Manufacturing Office: Webcasts on Google Bookmark Advanced Manufacturing Office: Webcasts on Delicious Rank Advanced...

215

Advanced Manufacturing Office: Subscribe  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Subscribe on Twitter Bookmark Advanced Manufacturing Office: Subscribe on Google Bookmark Advanced Manufacturing Office: Subscribe on Delicious Rank Advanced...

216

Advanced Manufacturing Office: Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Workshops on Twitter Bookmark Advanced Manufacturing Office: Workshops on Google Bookmark Advanced Manufacturing Office: Workshops on Delicious Rank Advanced...

217

Advanced Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Systems: Advanced Systems: high Performance fenestration systems Research areas: Research activities to improve the performance of windows and other fenestration products must address window systems issues as well as Glazing Materials research. LBNL activities in the area of Advanced Systems include research at both the product level and the building envelope and building systems levels. Highly insulating windows - using non structural center layers Lower cost solutions to more insulating three layer glazing systems, with the potential to turn windows in U.S. heating dominated residential applications into net-energy gainers. Highly Insulating Window Frames In collaboration with the Norwegian University of Science and Technology, we are researching the potentials for highly insulating window frames. Our initial work examines European frames with reported U-factors under 0.15 Btu/hr-ft2-F. Future research aims to analyze these designs, verify these performance levels and ensure that procedures used to calculate frame performance are accurate.

218

Comparison of the High-Temperature Steam Oxidation Kinetics of Advanced Cladding Materials  

Science Conference Proceedings (OSTI)

Technical Paper / Special Issue on the 2008 International Congress on Advances in Nuclear Power Plants / Materials for Nuclear Systems

M. Grosse

219

Advanced Heat Resistant Austenitic Stainless Steel and Composite ...  

Science Conference Proceedings (OSTI)

... plants: newly developed advanced heat resistant austenitic stainless steels for A-USC boilers and so called composite tubes for the IGCC gasification process.

220

IEP - Water-Energy Interface: Advanced Water Treatment and Detection...  

NLE Websites -- All DOE Office Websites (Extended Search)

systems used to control nitrogen oxide emissions can appear in a power plant's wastewater streams. Research is needed for advanced technologies to detect and remove mercury,...

Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

WEDNESDAY: Deputy Secretary Poneman to Speak at Nissan Advanced...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Vehicle Battery Plant Secretary Chu Announces Closing of 1.4 Billion Loan to Nissan Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers...

222

WEDNESDAY: Deputy Secretary Poneman to Speak at Nissan Advanced...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Vehicle Battery Plant Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers Secretary Chu Announces Closing of 1.4 Billion Loan to Nissan...

223

United States and Italy Sign Agreements to Advance Developments...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

nuclear power plants and improved cooperation on advanced nuclear energy systems and fuel cycle technologies in both countries. The U.S.-Italy Joint Declaration Concerning...

224

Advanced simulations of building energy and control systems with...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Development Contact Us Department Contacts Media Contacts Advanced simulations of building energy and control systems with an example of chilled water plant modeling Title...

225

Design Principle and Strengthening of Advanced Austenitic Heat ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Unprecedented austenitic heat resistant steels strengthened by ... for application to tubes and pipes of advanced thermal power plants (A-USC).

226

Advanced Virtual Energy Simulation Training And Research (AVESTAR...  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifier Optimization and Plant Supporting Systems Advanced Virtual Energy Simulation Training And Research (AVESTAR(tm)) Facility NETL Office of Research and Development Project...

227

Advanced Research Robert R. Romanosky  

E-Print Network (OSTI)

Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4132 heino.beckert@netl.doe.gov Coal advanced, cost-effective mercury control technologies for coal-fired power plants. Anticipating new Federal (ORNL) have investigated bioleaching of mercury (Hg) from coal by using iron and sulfur

228

Advanced Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Manufacturing Advanced Manufacturing Advanced Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency - promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which

229

Third International Conference on Improved Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

This international conference reviewed advances in materials, components, and designs for coal-fired power plants. Also showcased were results from the EPRI improved power plant project, similar collaborative European projects, and new power plants in Japan. The proceedings' 54 papers contribute to an improved international understanding of advanced coal-fired power plant technology.

1992-09-01T23:59:59.000Z

230

Advanced Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications Advanced Search Most publications by Environmental Energy Technologies Division authors are searchable from this page, including peer-reviewed publications, book chapters, conference proceedings and LBNL reports. Filter Advanced Search Publications list This publications database is an ongoing project, and not all Division publications are represented here yet. For additional help see the bottom of this page. Documents Found: 4418 Title Keyword LBNL Number Author - Any - Abadie, Marc O Abbey, Chad Abdolrazaghi, Mohamad Aberg, Annika Abhyankar, Nikit Abraham, Marvin M Abshire, James B Abushakra, Bass Acevedo-Ruiz, Manuel Aceves, Salvador Ache, Hans J Ackerly, David D Ackerman, Andrew S Adamkiewicz, Gary Adams, J W Adams, Carl Adamson, Bo Addy, Nathan Addy, Susan E Aden, Nathaniel T Adesola, Bunmi Adhikari,

231

Oxidation of advanced steam turbine alloys  

SciTech Connect

Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

2006-03-01T23:59:59.000Z

232

New Steels for Advanced Power Plants 2  

Science Conference Proceedings (OSTI)

Two new steels -- P-92 and P-122, each tested up to 620 degrees Celsius and American Society of Mechanical Engineers (ASME) code-approved for use in heavy-section boiler components -- were installed in an ultra supercritical (USC) boiler in Denmark and tested to failure in a high-temperature/high-pressure test cell in Japan.

2001-10-29T23:59:59.000Z

233

Advanced Manufacturing Office: Better Plants Program Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

has been recognized by the American Chemistry Council. Eaton Corporation NAICS 335, Electrical Equipment, Appliance, and Component Manufacturing Eck Industries NAICS 331, Primary...

234

Advanced Combustion  

Science Conference Proceedings (OSTI)

The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

Holcomb, Gordon R. [NETL

2013-03-11T23:59:59.000Z

235

Design of hot extrusion molding device for the continuous production of pharmaceutical tablets  

E-Print Network (OSTI)

Currently, pharmaceutical tablets are manufactured in large batch operations that have inefficiencies associated with the stopping, re-configuration and testing between batches. Continuous manufacturing has the potential ...

Zampierollo, Giorgio (Giorgio Romano)

2010-01-01T23:59:59.000Z

236

The production planning and inventory management of intermediate products for a pharmaceutical company.  

E-Print Network (OSTI)

??TCG is a multinational pharmaceutical company. As part of its drive to stay lean and competitive, TCG hopes to effectively maximize its capital assets by… (more)

Kok, Yixiong

2007-01-01T23:59:59.000Z

237

Lipids in NanotechnologyChapter 7 Applications of Nanotechnology in Pharmaceutical Development  

Science Conference Proceedings (OSTI)

Lipids in Nanotechnology Chapter 7 Applications of Nanotechnology in Pharmaceutical Development Food Science Health Nutrition Biochemistry Processing eChapters Food Science & Technology Health - Nutrition - Biochemistry Processing 6

238

FIA-13-0021 - In the Matter of Caldera Pharmaceuticals, Inc....  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Appellant, Caldera Pharmaceuticals, Inc., contested the adequacy of OIR's search for responsive documents pertaining to its FOIA request. The OHA reviewed the OIR's...

239

Advanced Nuclear Technology Advanced Light Water Reactor Utility Requirements Document, Revision 12  

Science Conference Proceedings (OSTI)

The utility requirement document (URD) is an industry-developed technical foundation for the design of advanced light water reactors (ALWRs). It was created with the objective of providing a comprehensive set of plant functional requirements that are considered important to utilities considering the construction of a nuclear plant and in ensuring successful deployment and operation of the plant. The scope of the URD is broad, addressing the entire plant (including the nuclear steam supply system, ...

2013-12-16T23:59:59.000Z

240

NETL: Advanced Research - Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Materials > Chrome Oxide Refractory High Performance Materials > Chrome Oxide Refractory Advanced Research High Performance Materials Chrome Oxide Refractory One notable NETL success is the development of a chrome oxide refractory material capable of working in slagging gasifier conditions. In this project, researchers first determined that one of the major failure mechanisms for chrome oxide refractories exposed to the intense heat and corrosive environment was spalling, or the chipping or flaking of refractory material from an exposed face. They used this information to formulate a high-chrome oxide refractory composition that resists spalling, resulting in a refractory with a longer service life in the gasifier. Inside an ultrasupercritical (USC) pulverized coal power plant, materials are exposed to temperatures up to 760°C and pressures up to 5,000 psi. Operating a USC system can improve power plant efficiency up to 47% and reduce emissions. However, finding boiler and turbine materials that can hold up under extreme conditions requires new high-temperature metal alloys and ceramic coatings, as well as computational modeling research to optimize the processing of these materials. Advanced Research Materials Development program successes in this area include the following:

Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NETL: Innovations for Existing Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovations for Existing Plants Innovations for Existing Plants Coal and Power Systems Innovations for Existing Plants (IEP) Previous Next Chemical Looping Summary Chemical Looping Summary (July 2013) This summary provides a technical description of this advanced technology, describes its advantages, examines the R&D areas of need, and summarizes DOE's R&D efforts. DOE/NETL Advanced CO2 Capture R&D Program: Technology Update DOE/NETL Advanced CO2 Capture R&D Program: Technology Update (June 2013) This comprehensive handbook provides an update on DOE/NETL R&D efforts on advanced CO2 capture technologies for coal-based power systems. CO2 Capture Technology Meeting Presentations NETL CO2 Capture Technology Meeting Presentations (July 2013) This meeting highlighted DOE/NETL RD&D efforts to develop advanced pre-, post-, and oxy-combustion CO2 capture technologies.

242

Advanced Planar Solid Oxide Fuel Cell Development  

Science Conference Proceedings (OSTI)

Advanced fuel cells have many potential utility applications including new multi-megawatt central power plants, repowering existing plants, and dispersed generation. A newly designed 25 kW planar solid oxide fuel cell (SOFC) system offers simplicity of construction, low cost manufacturing, efficient recovery of by product heat, and straight-forward system integration.

1997-01-01T23:59:59.000Z

243

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect

Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

Gregory Gaul

2004-04-21T23:59:59.000Z

244

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

245

Advanced Energy Storage Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Energy Storage Publications Reports: Advanced Technology Development Program For Lithium-Ion Batteries: Gen 2 Performance Evaluation Final Report Advanced Technology...

246

Advanced Manufacturing Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Office: News on Twitter Bookmark Advanced Manufacturing Office: News on Google Bookmark Advanced Manufacturing Office: News on Delicious Rank Advanced Manufacturing...

247

Advanced Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Ductility EnhancEmEnt of molybDEnum Ductility EnhancEmEnt of molybDEnum PhasE by nano-sizED oxiDE DisPErsions Description Using computational modeling techniques, this research aims to develop predictive capabilities to facilitate the design and optimization of molybdenum (Mo), chromium (Cr), and other high-temperature structural materials to enable these materials to withstand the harsh environments of advanced power generation systems, such as gasification-based systems. These types of materials are essential to the development of highly efficient, clean energy technologies such as low-emission power systems that use coal or other fossil fuels.

248

Advanced Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Super HigH-TemperaTure alloyS and Super HigH-TemperaTure alloyS and CompoSiTeS From nb-W-Cr SySTemS Description The U.S. Department of Energy's Office of Fossil Energy (DOE-FE) has awarded a three-year grant to the University of Texas at El Paso (UTEP) and Argonne National Laboratory (ANL) to jointly explore the high-temperature properties of alloys composed of niobium (Nb), tungsten (W), and chromium (Cr). The grant is administered by the Advanced Research (AR) program of the National

249

Mission Advancing  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Accomplishments NETL Accomplishments - the lab 2 Mission Advancing energy options to fuel our economy, strengthen our security, and improve our environment. Renewed Prosperity Through Technological Innovation - Letter from the Director NETL: the ENERGY lab 4 6 3 Contents Technology Transfer Patents and Commercialization Sharing Our Expertise Noteworthy Publications 60 62 63 64 66 Environment, Economy, & Supply Carbon Capture and Storage Partnerships Work to Reduce Atmospheric CO 2 Demand-Side Efficiencies New NETL Facility Showcases Green Technologies Environment & Economy Materials Mercury Membranes NETL Education Program Produces Significant Achievement Monitoring Water Economy & Supply NETL's Natural Gas Prediction Tool Aids Hurricane Recovery Energy Infrastructure

250

Advanced Nuclear Reactors | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Nuclear Advanced Nuclear Reactors Advanced Nuclear Reactors Turbulent Flow of Coolant in an Advanced Nuclear Reactor Visualizing Coolant Flow in Sodium Reactor Subassemblies Sodium-cooled Fast Reactor (SFR) Coolant Flow At the heart of a nuclear power plant is the reactor. The fuel assembly is placed inside a reactor vessel where all the nuclear reactions occur to produce the heat and steam used for power generation. Nonetheless, an entire power plant consists of many other support components and key structures like coolant pipes; pumps and tanks including their surrounding steel framing; and concrete containment and support structures. The Reactors Product Line within NEAMS is concerned with modeling the reactor vessel as well as those components of a complete power plant that

251

BioTurku: "Newly" innovative? The rise of bio-pharmaceuticals and the  

E-Print Network (OSTI)

BioTurku: "Newly" innovative? The rise of bio-pharmaceuticals and the biotech concentration in southwest Finland Smita Srinivas and Kimmo Viljamaa MIT-IPC-03-004 September 2003 #12;BioTurku: "Newly" innovative? The rise of bio-pharmaceuticals and the biotech concentration in southwest Finland Smita Srinivas

252

Raspberry derived mesoporous carbon-tubules and fixed-bed adsorption of pharmaceutical drugs  

E-Print Network (OSTI)

Raspberry derived mesoporous carbon-tubules and fixed-bed adsorption of pharmaceutical drugs Shashi 210023, China c Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12 Department, University of Florida, Gainesville, FL 32611-0290, USA 1. Introduction Pharmaceutical drugs (PD

Ma, Lena

253

Fate of a representative pharmaceutical in the environment  

E-Print Network (OSTI)

The purpose of this research was to determine the fate of amoxicillin in the City of Lubbock’s Water Reclamation Plant and to determine the antibiotic resistance patterns in the plant. Amoxicillin was detected in the influent of the plant during one month of the study, but amoxicillin was not detected at any other plant flow streams. The antibiotic resistance patterns of the LWRP varied monthly; heterotrophic bacteria were resistant to most of the antibiotics investigated during the nine month study.

Morse, Audra; Jackson, Andrew

2003-05-01T23:59:59.000Z

254

No magic show: Real-world levitation to inspire better pharmaceuticals |  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne scientist Chris Benmore demonstrates his acoustic levitator, which could help to improve the efficiency and quality of pharmaceutical development. (Photo by Dan Harris) Argonne scientist Chris Benmore demonstrates his acoustic levitator, which could help to improve the efficiency and quality of pharmaceutical development. (Photo by Dan Harris) Argonne scientist Chris Benmore demonstrates his acoustic levitator, which could help to improve the efficiency and quality of pharmaceutical development. (Photo by Dan Harris) No magic show: Real-world levitation to inspire better pharmaceuticals By Jared Sagoff * September 12, 2012 Tweet EmailPrint It's not a magic trick and it's not sleight of hand - scientists really are using levitation to improve the drug development process, eventually yielding more effective pharmaceuticals with fewer side effects. Scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have discovered a way to use sound waves to levitate individual

255

Advanced Research  

NLE Websites -- All DOE Office Websites (Extended Search)

05/2007 05/2007 NitrogeN evolutioN aNd CorrosioN MeChaNisMs With oxyCoMbustioN of Coal Description Under a grant from the University Coal Research (UCR) program, Brigham Young University (BYU) is leading a three-year research effort to investigate the physical processes that several common types of coal undergo during oxy-fuel combustion. Specifically, research addresses the mixture of gases emitted from burning, particularly such pollutants as nitrogen oxides (NO X ) and carbon dioxide (CO 2 ), and the potential for corrosion at the various stages of combustion. The UCR program is administered by the Advanced Research Program at the National Energy Technology Laboratory (NETL), under the U.S. Department of Energy's Office of

256

Plant design: Integrating Plant and Equipment Models  

Science Conference Proceedings (OSTI)

Like power plant engineers, process plant engineers must design generating units to operate efficiently, cleanly, and profitably despite fluctuating costs for raw materials and fuels. To do so, they increasingly create virtual plants to enable evaluation of design concepts without the expense of building pilot-scale or demonstration facilities. Existing computational models describe an entire plant either as a network of simplified equipment models or as a single, very detailed equipment model. The Advanced Process Engineering Co-Simulator (APECS) project (Figure 5) sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) seeks to bridge the gap between models by integrating plant modeling and equipment modeling software. The goal of the effort is to provide greater insight into the performance of proposed plant designs. The software integration was done using the process-industry standard CAPE-OPEN (Computer Aided Process Engineering–Open), or CO interface. Several demonstration cases based on operating power plants confirm the viability of this co-simulation approach.

Sloan, David (Alstrom Power); Fiveland, Woody (Alstrom Power); Zitney, S.E.; Osawe, Maxwell (Ansys, Inc.)

2007-08-01T23:59:59.000Z

257

Advanced Telemetry Data Capturing  

SciTech Connect

This project developed a new generation or advanced data capturing process specifically designed for use in future telemetry test systems at the Kansas City Plant (KCP). Although similar data capturing processes are performed both commercially and at other DOE weapon facilities, the equipment used is not specifically designed to perform acceptance testing requirements unique to the KCP. Commercially available equipment, despite very high cost (up to $125,000), is deficient in reliability and long-term maintainability necessary in test systems at this facility. There are no commercial sources for some requirements, specifically Terminal Data Analyzer (TDA) data processing. Although other custom processes have been developed to satisfy these test requirements, these designs have become difficult to maintain and upgrade.

Paschke, G.A.

2000-05-16T23:59:59.000Z

258

Materials for Ultra-Supercritical Steam Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

for Advanced Ultra-Supercritical for Advanced Ultra-Supercritical Steam Power Plants Background The first ultra-supercritical (USC) steam plants in the U.S. were designed, constructed, and operated in the late 1950s. The higher operating temperatures and pressures in USC plants were designed to increase the efficiency of steam plants. However, materials performance problems forced the reduction of steam temperatures in these plants, and discouraged further developmental efforts on low heat-rate units.

259

Anco Advance | Open Energy Information  

Open Energy Info (EERE)

Anco Advance Anco Advance Jump to: navigation, search Name Anco Advance Place Longmont, Colorado Zip 80503 Sector Renewable Energy Product Focused on the delivery and operation of profitable renewable waste to energy plants. Coordinates 40.16394°, -105.100504° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.16394,"lon":-105.100504,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Better Tools for Better Plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Tools for Better Plants Better Tools for Better Plants Andre de Fontaine Bill Orthwein, CEM Advanced Manufacturing Office, Office of Energy Efficiency and Renewable Energy U.S. Department of Energy November 15, 2011 2 | Advanced Manufacturing Office eere.energy.gov Today * New opportunities - AMO Overview - Better Buildings, Better Plants Program - Better Buildings, Better Plants Challenge * New and revised tool suite - Energy Management Toolkit - Updated system assessment tools - Tool-related training 3 | Advanced Manufacturing Office eere.energy.gov Manufacturing Matters * 11% of U.S. GDP * 12 million U.S. jobs * 60% of U.S. engineering and science jobs % Manufacturing Job Growth or Loss 31.8% of all manufacturing jobs lost from 2000-2011 Jobs 31% of all 2010 U.S. total energy consumption

Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advanced Hydrogen Turbine Development  

DOE Green Energy (OSTI)

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

262

Science & Research Highlights | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Highlights Archives: 2013 | 2012 | 2011 | 2010 Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Science and Research Highlights Animatedly Suspended X-ray Observations Animatedly Suspended X-ray Observations December 16, 2013 Researchers using the U.S. Department of Energy's Advanced Photon Source have probed the behavior of colloidal systems in which microscopic particles stay suspended in a fluid indefinitely. Their findings could have applications in new synthetic materials such as paints, coatings and adhesives, foodstuffs, pharmaceutical formulations, and cosmetics. The Fate of Bioavailable Iron in Antarctic Coastal Seas The Fate of Bioavailable Iron in Antarctic Coastal Seas

263

Climate VISION: Events - Advanced Clean Coal Workshop  

Office of Scientific and Technical Information (OSTI)

Advanced Clean Coal Workshop Advanced Clean Coal Workshop Objective: Industry and government discussion of key issues and policy options related to deploying clean coal power plants in the marketplace. The following documents are available for download as Adobe PDF documents. Download Acrobat Reader AGENDA July 29, 2004 EEI Conference Center 701 Pennsylvania Avenue, N.W., Washington, DC 8:15 Welcome from Host Thomas Kuhn, President, EEI Opening (Context & Goals) & Introduction Larisa Dobriansky, DOE Kyle McSlarrow, Deputy Secretary, DOE James E. Rogers, Chairman, Cinergy 8:45 Framing the Risks and Challenges for Commercial Clean Coal Plants Results of Risk Framework Analysis, David Berg, DOE (PDF 267 KB) Cost Comparison of IGCC and Advanced Clean Coal Plants, Stu Dalton, EPRI (PDF 684 KB)

264

Update; Sodium advanced fast reactor (SAFR) concept  

SciTech Connect

This paper reports on the sodium advanced fast reactor (SAFR) concept developed by the team of Rockwell International, Combustion Engineering, and Bechtel during the 3-year period extending from January 1985 to December 1987 as one element in the U.S. Department of Energy's Advanced Liquid Metal Reactor Program. In January 1988, the team was expanded to include Duke Engineering and Services, Inc., and the concept development was extended under DOE's Program for Improvement in Advanced Modular LMR Design. The SAFR plant concept employs a 450-MWe pool-type liquid metal cooled reactor as its basic module. The reactor assembly module is a standardized shop-fabricated unit that can be shipped to the plant site by barge for installation. Shop fabrication minimizes nuclear-grade field fabrication and reduces the plant construction schedule. Reactor modules can be used individually or in multiples at a given site to supply the needed generating capacity.

Oldenkamp, R.D.; Brunings, J.E. (Rockwell International Corp., Canoga Park, CA (USA)); Guenther, E. (Combustion Engineering, Windsor, CT (US)); Hren, R. (Bechtel National Inc., San Francisco, CA (US))

1988-01-01T23:59:59.000Z

265

NETL: Mercury Emissions Control Technologies - Advanced Utility  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Utility Mercury-Sorbent Field Testing Program Advanced Utility Mercury-Sorbent Field Testing Program Sorbent Technologies Corporation, will test an advanced halgenated activated carbon to determine the mercury removal performance and relative costs of sorbent injection for advanced sorbent materials in large-scale field trials of a variety of combinations of coal-type and utility plant-configuration. These include one site (Detroit Edison's St. Clair Station) with a cold-side ESP using subbituminous coal, or blend of subbituminous and bituminous coal, and one site (Duke Energy's Buck Plant) with a hot-side ESP which burns a bituminous coal. Related Papers and Publications: Semi-Annual Technical Progress Report for the period April 1 - October 31, 2004 [PDF-2275KB] Semi-Annual Technical Progress Report for the period of October 2003 - March 2004 [PDF-1108KB]

266

II.AdvancedTcl Advanced Tcl  

E-Print Network (OSTI)

119 P A R T II.AdvancedTcl II Advanced Tcl Part II describes advanced programming techniques that support sophisticated applications. The Tcl interfaces remain simple, so you can quickly construct pow- erful applications. Chapter 10 describes eval, which lets you create Tcl programs on the fly

Chen, Yuanzhu Peter

267

Oxidation of alloys for advanced steam turbines  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, M.

2005-01-01T23:59:59.000Z

268

Development of Advanced Massive Heterogeneous Sensor Networks  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Massive Heterogeneous Sensor Networks Research Team * Doug McCorkle * Kris Bryden * Mark Bryden Ames Laboratory U of Maryland * Ashwani Gupta * Miao Yu Power Plant Challenges * Conflicting goals of reliable low cost energy and climate change mitigation * Large investment in current infrastructure * Little implementation of information technologies Sensors ... * will be "free" * will be small (lick 'n stick) * will be smart * will be ubiquitous Low cost improvements in sensing for control and condition monitoring can result in big improvements in cost and carbon emissions * "... develop the understandings, algorithms, and control strategies needed to utilize large-scale, high- density sensor networks in advanced power plants." * Develop techniques for the

269

FIA-13-0021 - In the Matter of Caldera Pharmaceuticals, Inc. | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 - In the Matter of Caldera Pharmaceuticals, Inc. 1 - In the Matter of Caldera Pharmaceuticals, Inc. FIA-13-0021 - In the Matter of Caldera Pharmaceuticals, Inc. On April 10, 2013, the Office of Hearings and Appeals (OHA) issued a decision denying an appeal (Appeal) from a Freedom of Information Act (FOIA) determination issued by the Department of Energy's Office of Information Resources (OIR), concluding that it could not locate any responsive documents. The Appellant, Caldera Pharmaceuticals, Inc., contested the adequacy of OIR's search for responsive documents pertaining to its FOIA request. The OHA reviewed the OIR's description of its search methodology, and determined that an adequate search for documents was conducted and that no responsive documents existed. Therefore, the OHA denied the Appeal.

270

Production and characterization of carbamazepine nanocrystals by electrospraying for continuous pharmaceutical manufacturing  

E-Print Network (OSTI)

In this paper, an electrospray technique followed by annealing at high temperatures was developed to produce nanocrystals of carbamazepine (CBZ), a poorly water-soluble drug, for continuous pharmaceutical manufacturing ...

Wang, Mao

271

What is the value of logistics for a large pharmaceutical firm?  

E-Print Network (OSTI)

Understanding business needs arising out of both, external and internal environments, is an essential first step in determining the value of logistics in a large pharmaceutical firm. In this research, we have used a variety ...

Tiwari, Prasoon, M. Eng. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

272

Improving energy efficiency in a pharmaceutical manufacturing environment : analysis of EUI and cooling load  

E-Print Network (OSTI)

Reducing energy consumption without compromising the quality of products and the comfort of occupants is important in maintaining the competence of a pharmaceutical company. An energy management tool is developed to monitor ...

Liu, Haoyu

2009-01-01T23:59:59.000Z

273

Cross-country study on the promotion of new pharmaceutical products  

E-Print Network (OSTI)

Detailers are one of the most powerful components of pharmaceutical marketing. Drug manufactures spend a lion's share of their marketing budgets on their detailers, and with direct-to-consumer (DTC) marketing coming under ...

Kundu, Jayeeta

2006-01-01T23:59:59.000Z

274

Lorentz-force actuated needle-free injection for intratympanic pharmaceutical delivery  

E-Print Network (OSTI)

Delivery of pharmaceuticals to the inner ear via injection through the tympanic membrane is a method of local drug delivery that provides a non-invasive, outpatient procedure to treat many of the disorders and diseases ...

Cloutier, Alison (Alison Marie)

2013-01-01T23:59:59.000Z

275

The production planning and inventory management of intermediate products for a pharmaceutical company  

E-Print Network (OSTI)

TCG is a multinational pharmaceutical company. As part of its drive to stay lean and competitive, TCG hopes to effectively maximize its capital assets by reducing warehouse inventory. This thesis aims to reduce the inventory ...

Kok, Yixiong

2007-01-01T23:59:59.000Z

276

The production planning and inventory management of finished goods for a pharmaceutical company  

E-Print Network (OSTI)

This thesis is the result of a three month internship at TCG Pharmaceuticals, Singapore. With the worldwide initiative of lean in TCG, it has implemented the TCG Production System which finds its roots in the famous Toyota ...

Gupta, Sumit, M. Eng. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

277

The development of a thin-film rollforming process for pharmaceutical continuous manufacturing  

E-Print Network (OSTI)

In this thesis, a continuous rollforming process for the folding of thin-films was proposed and studied as a key step in the continuous manufacturing of pharmaceutical tablets. HPMC and PEG based polymeric thin-films were ...

Slaughter, Ryan (Ryan R.)

2013-01-01T23:59:59.000Z

278

Optimal handling of Highly Active Pharmaceutical Ingredients during milling and blending operations  

E-Print Network (OSTI)

This thesis investigates best practices for Highly Active Pharmaceutical Ingredient (HAPI) milling and blending. We utilize a qualitative analysis centering on a benchmarking study and quantitative analyses using a ...

Setty, Prashant (Prashant Neelappanavara)

2013-01-01T23:59:59.000Z

279

Inventory strategies for patented and generic products for a pharmaceutical supply chain  

E-Print Network (OSTI)

This thesis presents a model to determine safety stock considering the distinct planning parameters for a pharmaceutical company. Traditional parameters such as forecast accuracy, service level requirements and average ...

Krishnamurthy, Prashanth, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

280

Technological learning and the evolution of the Indian pharmaceutical and biopharmaceutical sectors  

E-Print Network (OSTI)

The Indian pharmaceutical and biopharmaceutical sectors have been characterised by three features considered analogous to technological stagnation: low R&D investments, "copying" on-patent drugs (legal in India if a novel ...

Srinivas, Smita

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Alternative and Advanced Fuels  

Energy.gov (U.S. Department of Energy (DOE))

There are a variety of alternative and advanced fuels available, which are used to fuel alternative and advanced vehicles. Learn more about:

282

Help - Advanced Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Search The advanced search form will help you create a more specific search in the Publications database. First, specify your search criteria. You can search by author,...

283

Advanced Light Water Reactor utility requirements document  

SciTech Connect

The ALWR Requirements Document is a primary work product of the EPRI Program. This document is an extensive compilation of the utility requirements for design, construction and performance of advanced light water reactor power plants for the 1990s and beyond. The Requirements Document's primary emphasis is on resolution of significant problems experienced at existing nuclear power plants. It is intended to be used with companion documents, such as utility procurement specifications, which would cover the remaining detailed technical requirements applicable to new plant projects. The ALWR Requirements Document consists of several major parts. This volume is Part I, The Executive Summary. It is intended to serve as a concise, management level synopsis of advanced light water reactors including design objectives and philosophy, overall configuration and features and the steps necessary to proceed from the conceptual design stage to a completed, functioning power plant.

1986-06-01T23:59:59.000Z

284

(USC) Power Plant Development and High Temperature Materials ...  

Science Conference Proceedings (OSTI)

For further improvement of thermal efficiency and decreasing CO2 emission China intents to develop the advanced USC power plant with the ...

285

NETL: News Release - Abraham Announces Pollution-Free Power Plant...  

NLE Websites -- All DOE Office Websites (Extended Search)

February 27, 2003 Abraham Announces Pollution-Free Power Plant of the Future 1 Billion 'Living Prototype' to Showcase Cutting-Edge Technologies to Advance President's Climate...

286

The Gasifier Optimization and Plant Supporting Systems area focuses...  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifier Optimization and Plant Supporting Systems area focuses on the development of technologies and models to improve the performance of advanced gasifiers. Specifically,...

287

Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Pilot Plant and Hydrogen ICE Vehicle Testing Jim Francfort (INEEL) Don Karner (ETA) 2004 Fuel Cell Seminar - San Antonio Session 5B - Hydrogen DOE - Advanced Vehicle Testing...

288

Plant Operational Status - Pantex Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Status Plant Operational Status Page Content Operational Status Shift 1 - Day The Pantex Plant is open for normal operations. All personnel are to report for duty according to...

289

Advanced Materials in MML  

Science Conference Proceedings (OSTI)

... Advanced Materials Characterization. Fusion Wall Development Research by Neutron Depth Profiling. < Previous 1 2 3 Next ». ...

2012-06-12T23:59:59.000Z

290

Performance and safety design of the advanced liquid metal reactor  

SciTech Connect

The Advanced Liquid Metal Reactor (ALMR) program led by General Electric is developing, under U.S. Department of Energy sponsorship, a conceptual design for an advanced sodium-cooled liquid metal reactor plant. This design is intended to improve the already excellent level of plant safety achieved by the nuclear power industry while at the same time providing significant reductions in plant construction and operating costs. In this paper, the plant design and performance are reviewed, with emphasis on the ALMR's unique passive design safety features and its capability to utilize as fuel the actinides in LWR spent fuel.

Berglund, R.C.; Magee, P.M.; Boardman, C.E.; Gyorey, G.L. (General Electric Co., San Jose, CA (United States). Advanced Nuclear Technology)

1991-01-01T23:59:59.000Z

291

New Materials for 750°C Boilers in Advanced Ultra-supercritical  

Science Conference Proceedings (OSTI)

Presentation Title, New Materials for 750°C Boilers in Advanced Ultra- supercritical (A-USC) Power Plants. Author(s), Yuefeng Gu, Z ZHONG, Y Yuan, Z Shi.

292

NETL: CCPI - Advanced Multi-Product Coal Utilization By-Product...  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-Product Coal Utilization By-Product Processing Plant - Project Brief PDF-78KB University of Kentucky Research Foundation, Ghent, Kentucky PROJECT FACT SHEET Advanced...

293

DOE Signs Advanced Enrichment Technology License and Facility Lease |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Enrichment Technology License and Facility Lease Advanced Enrichment Technology License and Facility Lease DOE Signs Advanced Enrichment Technology License and Facility Lease December 8, 2006 - 9:34am Addthis Announces Agreements with USEC Enabling Deployment of Advanced Domestic Technology for Uranium Enrichment WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today announced the signing of a lease agreement with the United States Enrichment Corporation, Inc. (USEC) for their use of the Department's gas centrifuge enrichment plant (GCEP) facilities in Piketon, OH for their American Centrifuge Plant. The Department of Energy (DOE) also granted a non-exclusive patent license to USEC for use of DOE's centrifuge technology for uranium enrichment at the plant, which will initiate the first successful deployment of advanced domestic enrichment technology in the

294

ADVANCED ONCE-THROUGH STEAM GENERATOR FOR SODIUM APPLICATION  

SciTech Connect

Preliminary design calculations were performed for a once-through type steam generator and reheater for advanced sodium power plants in the 300-Mwe range. Parameters and performance data are presented. (D.L.C.)

Terpe, G.R.

1960-09-19T23:59:59.000Z

295

Interim report Assessment of Baseline and Advanced Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cycle Cases The IGCC design cases analyzed in this report are based on the power production from dual advanced F-class combined cycle gas turbines. The plants are nominally...

296

Advanced control and information systems `97  

Science Conference Proceedings (OSTI)

Data are presented on advanced control and information systems, describing specific application, control strategy, economics, commercial installations, and licensor. Uses include alkylation, amine treating, catalytic reforming, cryogenic separation, catalytic cracking, hydrocracking, hydrogen production, LNG separation, lube oils, olefins, plant scheduling, polymers, refineries, steam reforming, and utilities.

NONE

1997-09-01T23:59:59.000Z

297

INSIGHTS INTO THE ROLE OF THE OPERATOR IN ADVANCED REACTORS.  

SciTech Connect

NUCLEAR POWER PLANT PERSONNEL PLAY A VITAL ROLE IN THE PRODUCTIVE, EFFICIENT, AND SAFE GENERATION OF ELECTRIC POWER, WHETHER FOR CONVENTIONAL LIGHT WATER REACTORS OR NEW ADVANCED REACTORS. IT IS WIDELY RECOGNIZED THAT HUMAN ACTIONS THAT DEPART FROM OR FAIL TO ACHIEVE WHAT SHOULD BE DONE CAN BE IMPORTANT CONTRIBUTORS TO THE RISK ASSOCIATED WITH THE OPERATION OF NUCLEAR POWER PLANTS. ADVANCED REACTORS ARE EXPECTED TO PRESENT A CONCEPT OF OPERATI...

PERSENSKY, J.; LEWIS, P.; O' HARA, J.

2005-11-13T23:59:59.000Z

298

Snakes and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Snakes and Plants Snakes and Plants Name: kathy Location: N/A Country: N/A Date: N/A Question: We live in the southern most tip of Illinois,on horseshoe lake. I would like to know what time of the year do snakes come out and when do they go back in? Also is there any plants to plant to keep them away? Replies: What kind of snakes, in what kind of habitat? All snakes in Illinois hibernate in winter, but their habits differ by species. I'm not sure of the range of dates for southern Illinois, but they start to come out of hibernation in northern Illinois around the end of March or in April, depending on the weather. Advance of spring is usually about 3 weeks earlier in southern Illinois than northern, so i guess snake emergence would be about that much advanced as well. They will come out when there are warm sunny days to get them warmed up, and nights are not so cold that they will be harmed. Fall entry into hibernation is roughly parallel, snakes will often bask in the sun on sunny fall days before going into hibernation, again in no. Ill usually in October but widely varying.

299

Advanced Production Planning Models  

SciTech Connect

>This report describes the innovative modeling approach developed as a result of a 3-year Laboratory Directed Research and Development project. The overall goal of this project was to provide an effective suite of solvers for advanced production planning at facilities in the nuclear weapons complex (NWC). We focused our development activities on problems related to operations at the DOE's Pantex Plant. These types of scheduling problems appear in many contexts other than Pantex--both within the NWC (e.g., Neutron Generators) and in other commercial manufacturing settings. We successfully developed an innovative and effective solution strategy for these types of problems. We have tested this approach on actual data from Pantex, and from Org. 14000 (Neutron Generator production). This report focuses on the mathematical representation of the modeling approach and presents three representative studies using Pantex data. Results associated with the Neutron Generator facility will be published in a subsequent SAND report. The approach to task-based scheduling described here represents a significant addition to the literature for large-scale, realistic scheduling problems in a variety of production settings.

JONES,DEAN A.; LAWTON,CRAIG R.; KJELDGAARD,EDWIN A.; WRIGHT,STEPHEN TROY; TURNQUIST,MARK A.; NOZICK,LINDA K.; LIST,GEORGE F.

2000-12-01T23:59:59.000Z

300

The effects of vendor and quality control variability in the procurement of raw materials in a bio-pharmaceutical company  

E-Print Network (OSTI)

Pharmaceutical companies have traditionally placed little emphasis on supply chain efficiencies and operations costs. With the changing landscape of expiring intellectual property rights and increased market segmentation, ...

Wheeler, Jake T

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

How Advanced Batteries Are Energizing the Economy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Advanced Batteries Are Energizing the Economy How Advanced Batteries Are Energizing the Economy How Advanced Batteries Are Energizing the Economy August 11, 2011 - 7:15pm Addthis Thanks in part to a $300 million grant through the Recovery Act, Johnson Controls has been able to retool a shuttered plant in Holland, Michigan to produce high-tech advanced batteries. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Creates quality manufacturing jobs Positions America as a leader in the advanced battery industry Earlier today, President Obama visited Johnson Controls in Holland, Michigan to highlight how this once shuttered factory is helping rev up the advanced battery industry in the United States. This long dormant plant was revived by a $300 million Recovery Act grant which allowed Johnson Controls

302

NETL: Gasification Systems - Advanced Virtual Energy Simulation Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Virtual Energy Simulation Training And Research (AVESTAR(tm)) Facility Advanced Virtual Energy Simulation Training And Research (AVESTAR(tm)) Facility Project No: Adv Gas-FY131415 Task 6 Developed as a part of NETL's initiative to advance new clean coal technology, the Advanced Virtual Energy Simulation Training And Research (AVESTARTM) Center is focused on training engineers and energy plant operators in the efficient, productive, and safe operation of highly efficient power generation systems that also protect the environment. Comprehensive dynamic simulator-based instruction better prepares operators and engineers to manage advanced energy plants according to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. Advanced Virtual Energy Simulation Training and Research Center - AVESTAR

303

Next Generation Geothermal Power Plants  

SciTech Connect

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a giv

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

304

Next Generation Geothermal Power Plants  

DOE Green Energy (OSTI)

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

305

Nuclear fusion advances  

Science Conference Proceedings (OSTI)

The last decade has seen advances in the shaping and confinement of plasmas, and in approaches to noninductive current drive. Here, the author presents an overview of nuclear fusion advances between 1983-93 examining: fusion milestones; plasma shaping; ...

W. Sweet

1994-02-01T23:59:59.000Z

306

AdvAnced  

NLE Websites -- All DOE Office Websites (Extended Search)

AdvAnced test reActor At the InL advanced Unlike large, commercial power reactors, ATR is a low- temperature, low-pressure reactor. A nuclear reactor is basically an elaborate tool...

307

ADVANCED DATA SECURITY  

Science Conference Proceedings (OSTI)

ADVANCED DATA SECURITY. NVLAP Lab Code: 200968-0. Address and Contact Information: 1933 O'Toole Avenue San ...

2013-11-08T23:59:59.000Z

308

Fatigue of Advanced Materials  

Science Conference Proceedings (OSTI)

Oct 19, 2011... isolate the internal components from the external environment while ... overall thermal efficiency of advanced internal combustion engines ...

309

Advancement of Electrochromic Windows  

E-Print Network (OSTI)

advanced spectrally selective low-e double-pane windows and the same type of daylighting control system

2006-01-01T23:59:59.000Z

310

Advanced High Frequency Devices  

Science Conference Proceedings (OSTI)

... External agencies, including the Defense Advanced Research Projects Agency (DARPA) and the Office of Naval Research (ONR), have ...

2010-10-05T23:59:59.000Z

311

Supporting Advanced Communications Networks  

Science Conference Proceedings (OSTI)

... it will rely on revolutionary advances in network architecture. ... telemedicine), sensor and control networks (eg, Smart Grid, environmental monitoring ...

2012-02-13T23:59:59.000Z

312

Simulated coal gas MCFC power plant system verification  

DOE Green Energy (OSTI)

The following tasks are included in this project: Commercialization; Power plant development; Manufacturing facilities development; Test facility development; Stack research; and Advanced research and technology development. This report briefly describes the subtasks still to be completed: Power plant system test with reformed natural gas; Upgrading of existing, US government-owned, test facilities; and Advanced MCFC component research.

NONE

1998-02-01T23:59:59.000Z

313

ADVANCES IN UNDERSTANDING HYDROBIOGEOCHEMICAL PROCESSES IMPORTANT IN SOIL PROTECTION  

E-Print Network (OSTI)

ADVANCES IN UNDERSTANDING HYDROBIOGEOCHEMICAL PROCESSES IMPORTANT IN SOIL PROTECTION Donald L. Sparks S. Hallock du Pont Chair of Plant and Soil Sciences Department of Plant and Soil Sciences in soil protection and will delineate frontiers for the present decade and beyond. Frontiers

Sparks, Donald L.

314

Cast Alloys for Advanced Ultra Supercritical Steam Turbines  

Science Conference Proceedings (OSTI)

Develop advanced coal-based power systems capable of 45–50 % efficiency at cost of electricity in an IGCC-based plant • cost of electricity for pulverized coal boilers Demonstrate coal-based energy plants that offer near-zero emissions (including CO2) with multiproduct production

G. R. Holcomb, P. D. Jablonski, and P. Wang

2010-10-01T23:59:59.000Z

315

Development requirements for an advanced gas turbine system  

Science Conference Proceedings (OSTI)

In cooperation with US Department of Energy`s Morgantown Energy Technology Center, a Westinghouse-led team is working on the second part of an 8-year, Advanced Turbine Systems Program to develop the technology required to provide a significant increase in natural gas-fired combined cycle power generation plant efficiency. This paper reports on the Westinghouse program to develop an innovative natural gas-fired advanced turbine cycle, which, in combination with increased firing temperature, use of advanced materials, increased component efficiencies, and reduced cooling air usage, has the potential of achieving a lower heating value plant efficiency in excess of 60%.

Bannister, R.L.; Cheruvu, N.S.; Little, D.A.; McQuiggan, G. [Westinghouse Electric Corp., Orlando, FL (United States)

1995-10-01T23:59:59.000Z

316

Session: CSP Advanced Systems -- Advanced Overview (Presentation)  

DOE Green Energy (OSTI)

The project description is: (1) it supports crosscutting activities, e.g. advanced optical materials, that aren't tied to a single CSP technology and (2) it supports the 'incubation' of new concepts in preliminary stages of investigation.

Mehos, M.

2008-04-01T23:59:59.000Z

317

Third-World Copycats to Emerging Multinationals: Institutional Changes and Organizational Transformation in the Indian Pharmaceutical Industry  

Science Conference Proceedings (OSTI)

This article investigates how Indian pharmaceutical firms, facing discontinuous institutional changes in their domestic environment due to economic liberalization and intellectual property reforms, have undertaken organizational transformation. Internationalization ... Keywords: business groups, economic liberalization, emerging economies, emerging multinationals, globalization, pharmaceutical industry, resource internationalization

Raveendra Chittoor; MB Sarkar; Sougata Ray; Preet S. Aulakh

2009-01-01T23:59:59.000Z

318

Advanced Manufacturing Office: Pump Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Pump Systems on Twitter Bookmark Advanced Manufacturing Office: Pump Systems on Google Bookmark Advanced Manufacturing Office: Pump Systems on Delicious Rank Advanced...

319

Proceedings: EPRI Manufactured Gas Plants 2003 Forum  

SciTech Connect

The EPRI Manufactured Gas Plants 2003 Forum covered a range of topics related to remediation and management of former manufactured gas plant (MGP) sites, with emphasis on technological advances and current issues associated with site cleanup. In specific, the forum covered MGP coal-tar delineation, soil and groundwater remediation technologies, improvements in air monitoring, and ecological risk characterization/risk management tools.

None

2004-02-01T23:59:59.000Z

320

Composition and production rate of pharmaceutical and chemical waste from Xanthi General Hospital in Greece  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer We studied pharmaceutical and chemical waste production in a Greek hospital. Black-Right-Pointing-Pointer Pharmaceutical waste comprised 3.9% w/w of total hazardous medical waste. Black-Right-Pointing-Pointer Unit production rate for total pharmaceutical waste was 12.4 {+-} 3.90 g/patient/d. Black-Right-Pointing-Pointer Chemical waste comprised 1.8% w/w of total hazardous medical waste. Black-Right-Pointing-Pointer Unit production rate for total chemical waste was 5.8 {+-} 2.2 g/patient/d. - Abstract: The objective of this work was to determine the composition and production rates of pharmaceutical and chemical waste produced by Xanthi General Hospital in Greece (XGH). This information is important to design and cost management systems for pharmaceutical and chemical waste, for safety and health considerations and for assessing environmental impact. A total of 233 kg pharmaceutical and 110 kg chemical waste was collected, manually separated and weighed over a period of five working weeks. The total production of pharmaceutical waste comprised 3.9% w/w of the total hazardous medical waste produced by the hospital. Total pharmaceutical waste was classified in three categories, vial waste comprising 51.1%, syringe waste with 11.4% and intravenous therapy (IV) waste with 37.5% w/w of the total. Vial pharmaceutical waste only was further classified in six major categories: antibiotics, digestive system drugs, analgesics, hormones, circulatory system drugs and 'other'. Production data below are presented as average (standard deviation in parenthesis). The unit production rates for total pharmaceutical waste for the hospital were 12.4 (3.90) g/patient/d and 24.6 (7.48) g/bed/d. The respective unit production rates were: (1) for vial waste 6.4 (1.6) g/patient/d and 13 (2.6) g/bed/d, (2) for syringe waste 1.4 (0.4) g/patient/d and 2.8 (0.8) g/bed/d and (3) for IV waste 4.6 (3.0) g/patient/d and 9.2 (5.9) g/bed/d. Total chemical waste was classified in four categories, chemical reagents comprising 18.2%, solvents with 52.3%, dyes and tracers with 18.2% and solid waste with 11.4% w/w of the total. The total production of chemical waste comprised 1.8% w/w of the total hazardous medical waste produced by the hospital. Thus, the sum of pharmaceutical and chemical waste was 5.7% w/w of the total hazardous medical waste produced by the hospital. The unit production rates for total chemical waste for the hospital were 5.8 (2.2) g/patient/d and 1.1 (0.4) g/exam/d. The respective unit production rates were: (1) for reagents 1.7 (2.4) g/patient/d and 0.3 (0.4) g/examination/d, (2) for solvents 248 (127) g/patient/d and 192 (101) g/examination/d, (3) for dyes and tracers 4.7 (1.4) g/patient/d and 2.5 (0.9) g/examination/d and (4) for solid waste 54 (28) g/patient/d and 42 (22) g/examination/d.

Voudrias, Evangelos, E-mail: voudrias@env.duth.gr [Department of Environmental Engineering, Democritus University of Thrace, GR-671 00 Xanthi (Greece); Goudakou, Lambrini; Kermenidou, Marianthi; Softa, Aikaterini [Department of Environmental Engineering, Democritus University of Thrace, GR-671 00 Xanthi (Greece)

2012-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Solargenix Energy Advanced Parabolic Trough Development  

SciTech Connect

The Solargenix Advanced Trough Development Project was initiated in the Year 2000 with the support of the DOE CSP Program and, more recently, with the added support of the Nevada Southwest Energy Partnership. Parabolic trough plants are the most mature solar power technology, but no large-scale plants have been built in over a decade. Given this lengthy lull in deployment, our first Project objective was development of improved trough technology for near-term deployment, closely patterned after the best of the prior-generation troughs. The second objective is to develop further improvements in next-generation trough technology that will lead to even larger reductions in the cost of the delivered energy. To date, this Project has successfully developed an advanced trough, which is being deployed on a 1-MW plant in Arizona and will soon be deployed in a 64-MW plant in Nevada. This advanced trough offers a 10% increase in performance and over an 20% decrease in cost, relative to prior-generation troughs.

Gee, R. C.; Hale, M. J.

2005-11-01T23:59:59.000Z

322

Advanced Geothermal Turbodrill  

DOE Green Energy (OSTI)

Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

W. C. Maurer

2000-05-01T23:59:59.000Z

323

On-Line Monitoring Plant Performance Applications at Bruce Power  

Science Conference Proceedings (OSTI)

On-line monitoring (OLM) and advanced pattern recognition (APR) capabilities have advanced significantly over the past few years. Many utilities now have basic or advanced applications available within plants and across generating fleets. However, the effective use and integration of these capabilities into established plant reliability processes are still minimal. This OLM applications pilot project was implemented in April 2011 at the Bruce Power Nuclear Generating facility in Tiverton, Ontario, Canada...

2012-01-23T23:59:59.000Z

324

Fusion Engineering and Design 80 (2006) 2562 Physics basis for the advanced tokamak fusion  

E-Print Network (OSTI)

2005 Abstract The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-axis. Transport projections are presented using the drift-wave based GLF23 model. The approach to power.V. All rights reserved. Keywords: Reactor studies; Fusion power plant; Advanced tokamak; Physics basis 1

325

Frozen plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Frozen plants Frozen plants Name: janicehu Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Why do some plants freeze and others do not? Replies: The main reason some plants freeze and others do not is that some plants do not have much water in them. Pine tree leaves have little water and are therefore difficult to freeze. Another reason is that some plants make chemicals to put into their fluids that reduce the freezing temperature. Salts and oils are some. The polyunsaturated fats found in many plants freeze at a lower temperature than the saturated fats found in many animals. Therefore plant fats are liquid (oils) at room temperature, and animal fats are solid. Plants could not use so many saturated fats as warm blooded animals do or they would freeze up solid at higher temperatures. I know little of plants but many animals can make ethylene glycol to keep themselves from freezing. Ethylene glycol is the active ingredient in car anti-freeze

326

Advanced Sensors and Instrumentation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sensors and Instrumentation Sensors and Instrumentation Advanced Sensors and Instrumentation The ASI subprogram plans to develop the scientific basis for sensors and supporting infrastructure technology that will address crosscutting technology gaps relating to measurements at existing and advanced nuclear power plants as well as within their fuel cycles. The focus of the program is on the following technical challenges and objectives: Identify needed physical measurement accuracy of nuclear system process parameters and minimize uncertainty. Identify and conduct research into monitoring and control technologies, including human factors, to achieve control of new nuclear energy processes, and new methodologies for monitoring to achieve high reliability and availability. Integrate control of multiple processes, potential reductions in

327

Deputy Secretary Poneman Attends Ground Breaking at Tennessee Advanced  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Attends Ground Breaking at Tennessee Attends Ground Breaking at Tennessee Advanced Vehicle Battery Plant Deputy Secretary Poneman Attends Ground Breaking at Tennessee Advanced Vehicle Battery Plant May 26, 2010 - 12:00am Addthis Smyrna, TN - Today, U.S. Deputy Secretary of Energy Daniel Poneman participated in the groundbreaking ceremony for Nissan North America's advanced battery manufacturing facility in Smyrna, Tennessee. This past January the Department closed a $1.4 billion loan with Nissan North America to retool the Smyrna factory to build advanced electric automobiles and an advanced battery manufacturing facility. "I'm excited about the future we have begun to build here today -- a future where America's workers have good jobs, making clean cars that will reduce our dependence on oil and help us transition to a clean energy economy,"

328

Deputy Secretary Poneman Attends Ground Breaking at Tennessee Advanced  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Poneman Attends Ground Breaking at Tennessee Poneman Attends Ground Breaking at Tennessee Advanced Vehicle Battery Plant Deputy Secretary Poneman Attends Ground Breaking at Tennessee Advanced Vehicle Battery Plant May 26, 2010 - 12:00am Addthis Smyrna, TN - Today, U.S. Deputy Secretary of Energy Daniel Poneman participated in the groundbreaking ceremony for Nissan North America's advanced battery manufacturing facility in Smyrna, Tennessee. This past January the Department closed a $1.4 billion loan with Nissan North America to retool the Smyrna factory to build advanced electric automobiles and an advanced battery manufacturing facility. "I'm excited about the future we have begun to build here today -- a future where America's workers have good jobs, making clean cars that will reduce our dependence on oil and help us transition to a clean energy economy,"

329

Healthcare - Advanced Technologies for Proteomics, Data ...  

Science Conference Proceedings (OSTI)

... as well as enable cost-effective manufacturing of biofuels, plastics and ... compliance with therapy; 5) new and better targets for pharmaceutical and ...

2011-03-01T23:59:59.000Z

330

Carnivorous Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Carnivorous Plants Carnivorous Plants Nature Bulletin No. 597-A March 27, 1976 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation CARNIVOROUS PLANTS Plants, generally, are eaten by insects or furnish other food for them. But there are a few families of strange plants that, instead, "eat" insects and other small animals. About 500 species are distributed over the world, from the arctic to the tropics. Most of them have peculiar leaves that not only attract insects but are equipped to trap and kill their victims. Even more remarkable is the fact that some have glands which secrete a digestive juice that softens and decomposes the animal until it is absorbed by the plant in much the same way as your stomach digests food.

331

Unified methodology of neural analysis in decision support systems built for pharmaceutical technology  

Science Conference Proceedings (OSTI)

The objective of this study was to create universal methodology of artificial neural networks (ANNs) application in construction of decision support systems designed for various dosage forms. Two different dosage forms (solid dispersions and microemulsions) ... Keywords: Artificial neural networks, Decision support systems, Microemulsions, Pharmaceutical technology, Solid dispersions, Unified methodology

Aleksander Mendyk; Renata Jachowicz

2007-05-01T23:59:59.000Z

332

Hydroxymethyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals and method of making same  

DOE Patents (OSTI)

A compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical comprises at least one functionalized hydroxyalkyl phosphine donor group and one or more sulfur or nitrogen donor and a metal combined with the ligand. 21 figs.

Katti, K.V.; Karra, S.R.; Berning, D.E.; Smith, C.J.; Volkert, W.A.; Ketring, A.R.

1999-01-05T23:59:59.000Z

333

Hydroxyalkyl phosphine gold complexes for use as diagnostic and therapeutic pharmaceuticals and method of making same  

DOE Patents (OSTI)

A complex and method for making a diagnostic or therapeutic pharmaceutical includes a ligand comprising at least one hydroxyalkyl phosphine donor group bound to a gold atom to form a gold-ligand complex that is stable in aqueous solutions containing oxygen, serum and other body fluids. 20 figs.

Katti, K.V.; Berning, D.E.; Volkert, W.A.; Ketring, A.R.

1998-12-01T23:59:59.000Z

334

CO2 Capture Membrane Process for Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Capture Membrane Process for Power Plant Flue Gas Background The U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Program is performing research to develop advanced technologies focusing on carbon dioxide (CO 2 ) emissions control for existing pulverized coal-fired plants. This new focus on post-combustion and oxy-combustion CO 2 emissions control technology, CO 2 compression, and beneficial reuse is in response to the priority for advanced

335

Advanced Manufacturing Office: Technical Assistance  

NLE Websites -- All DOE Office Websites (Extended Search)

Assistance on Twitter Bookmark Advanced Manufacturing Office: Technical Assistance on Google Bookmark Advanced Manufacturing Office: Technical Assistance on Delicious Rank...

336

Advanced Manufacturing Office: Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Advanced Manufacturing Office: Financial Opportunities on Google Bookmark Advanced Manufacturing Office: Financial Opportunities on Delicious Rank...

337

Advanced Concepts Breakout Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop Workshop Advanced Concepts Working Group Facilitator: John J. Petrovic Scribe: Sherry Marin Advanced Storage Techniques/ Approaches in Priority Order 1. Crystalline Nanoporous Materials (15) 2. Polymer Microspheres (12) Self-Assembled Nanocomposites (12) 3. Advanced Hydrides (11) Metals - Organic (11) 4. BN Nanotubes (5) Hydrogenated Amorphous Carbon (5) 5. Mesoporous materials (4) Bulk Amorphous Materials (BAMs) (4) 6. Iron Hydrolysis (3) 7. Nanosize powders (2) 8. Metallic Hydrogen (1) Hydride Alcoholysis (1) Overarching R&D Questions for All Advanced Materials * Maximum storage capacity - theoretical model * Energy balance / life cycle analysis * Hydrogen absorption / desorption kinetics * Preliminary cost analysis - potential for low cost, high

338

Institute for Advanced Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Institute for Advanced Studies Institute for Advanced Studies Institute for Advanced Studies NMC leverages the strengths of three research universities to build joint programs, develop strategic partnerships, provide common organization and facilities. Contact Leader TBD LANL Program Administrator Pam Hundley (505) 663-5453 Email Building regional partnerships in education, leveraging strengths of three research universities The Institute for Advanced Studies (IAS) works with the three New Mexico research universities (University of New Mexico, New Mexico Tech, and New Mexico State University) to develop research and educational collaborations and partnerships. To facilitate interactions between the universities and LANL, the three New Mexico schools established the New Mexico Consortium (NMC), a nonprofit

339

Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Directionally Solidified Materials Using high-temperature optical floating zone furnace to produce monocrystalline molybdenum alloy micro-pillars Home | Science & Discovery | Advanced Materials Advanced Materials | Advanced Materials SHARE ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of advanced materials for energy generation, storage, and use. We have core strengths in three main areas: materials synthesis, characterization, and theory. In other words, we discover and make new materials, we study their structure,

340

Advanced Research Materials Program  

NLE Websites -- All DOE Office Websites (Extended Search)

materials requirements for all fossil energy systems, including materials for advanced power generation and coal fuels technologies. Examples of these technologies include coal...

Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Project: Advanced Fire Detection  

Science Conference Proceedings (OSTI)

... residential fire deaths through development of measurement ... Beyond advances in sensing technologies, a key ... data will be used to develop and test ...

2013-05-30T23:59:59.000Z

342

advance meeting brochure  

Science Conference Proceedings (OSTI)

May 23, 1999 ... Ponte Vedra Beach, Florida, USA. ADVANCE PROGRAM ..... but she has two enclosed glass-sided decks, an out- side balcony and the ...

343

Brochures | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Podcasts Image Gallery external site Video Library Syndicated Feeds (RSS) The Advanced Photon Source: Lighting the Way to a Better Tomorrow aps brochure The APS helps...

344

Divisions | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Chart Argonne Research Divisions APS Research Divisions In May 2002, The Advanced Photon Source was reorganized into three divisions: the Accelerator Systems Division...

345

Advanced Mixing Models  

Propose mixing indicators. Turbulence kinetic energy ... (Turbulence intensity observed at Point 8 in Tank B & C) Advanced Mixing Models. Computational Sciences. 13.

346

Advancement in Battery Materials  

Science Conference Proceedings (OSTI)

Oct 18, 2010 ... Advanced Electrochemical Storage for Renewable Integration and Utility Applications: Zhenguo "Gary" Yang1; Dawon Choi1; Gordon Graff1; ...

347

OpenADR Advances  

NLE Websites -- All DOE Office Websites (Extended Search)

Volume 54 Issue 11 Date Published 112012 Keywords communication and standards, openadr, smart grid Abstract An important goal for the advancement of smart grid deployments is to...

348

DOE Advanced Protection Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Task 3 - Advanced Protection - Evaluate measures - 2009 - Design, model Irvine Smart Grid Demo protection system - 2010 6 Copyright 2010, Southern California Edison Task 1 -...

349

NETL: Advanced Research - Computation Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Energy Sciences Computational Energy Sciences Advanced Research Computational Energy Sciences Virtual Plant Simulating the complex processes occurring inside a coal gasifier, or across an entire chemical or power plant, is an incredible tool made possible by today's supercomputers and advanced simulation software. The Computational Energy Sciences (CES) Focus Area provides such tools to the Fossil Energy program at NETL. The goal is to help scientists and engineers to better understand the fundamental steps in a complex process so they can optimize the design of the equipment needed to run it. Not only is this less costly than performing a long series of experiments under varying conditions to try to isolate important variables, but it also provides more information than such experiments can provide. Of course, the data is

350

Advanced Process Engineering Co-simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 AdvAnced Process engineering co-simulAtion Description The National Energy Technology Laboratory (NETL) and its R&D collaboration partners are developing the Advanced Process Engineering Co-Simulator (APECS) as an innovative software tool that combines process simulation with high-fidelity equipment models based on computational fluid dynamics (CFD). Winner of a 2004 R&D 100 Award and a 2007 Federal Laboratory Consortium (FLC) Excellence in Technology Transfer Award, this powerful co-simulation technology, for the first time, provides the necessary level of detail and accuracy essential for engineers to analyze and optimize the coupled fluid flow, heat and mass transfer, and chemical reactions that drive overall plant performance. Combined with advanced visualization and high-performance computing,

351

Advanced Materials for Ultra Supercritical Boiler Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Road Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4721 robert.romanosky@netl.doe.gov Patricia a. Rawls Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-5882 patricia.rawls@netl.doe.gov Robert M. Purgert Prime Contractor and Administrator Energy Industries of Ohio 6100 Oak Tree Boulevard, Suite 200 Independence, OH 44131-6914 216-643-2952 purgert@msn.com AdvAnced MAteriAls for UltrA sUpercriticAl Boiler systeMs Description A consortium led by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) has conducted the first phase of a multiyear program to develop materials technology for use in advanced ultra supercritical (USC) coal-fired power plants. The advanced materials developed in this project are essential for construction of

352

Materials challenges in advanced coal conversion technologies  

SciTech Connect

Coal is a critical component in the international energy portfolio, used extensively for electricity generation. Coal is also readily converted to liquid fuels and/or hydrogen for the transportation industry. However, energy extracted from coal comes at a large environmental price: coal combustion can produce large quantities of ash and CO{sub 2}, as well as other pollutants. Advanced technologies can increase the efficiencies and decrease the emissions associated with burning coal and provide an opportunity for CO{sub 2} capture and sequestration. However, these advanced technologies increase the severity of plant operating conditions and thus require improved materials that can stand up to the harsh operating environments. The materials challenges offered by advanced coal conversion technologies must be solved in order to make burning coal an economically and environmentally sound choice for producing energy.

Powem, C.A.; Morreale, B.D. [National Energy Technology Laboratory, Albany, OR (United States)

2008-04-15T23:59:59.000Z

353

Kansas Advanced Semiconductor Project  

SciTech Connect

KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

2007-09-21T23:59:59.000Z

354

NETL: Innovations for Existing Plants - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Shelf Reference Shelf Innovations for Existing Plants Reference Shelf Program Overview Overview Publications: IEP, Recent Accomplishments Report - [PDF-1.3MB] (Oct 2007) IEP Roadmap & Program Plan [PDF-1.2MB] (May 2006) DOE/NETL'S Innovations for Existing Plants R&D Program [PDF-42KB] (Feb 2005) Improving the Environmental Performance of Today's Coal-Fired Power Plants This paper provides an overview of the Innovations for Existing Plants (IEP) Program, managed by the DOE National Energy Technology Laboratory. IEP develops advanced low-cost environmental control technologies for the existing fleet of coal-fired power plants, specifically focusing on the development of advanced mercury, NOx, PM, and acid gas emission control technology. Research is also directed at the characterization and beneficial use of coal utilization byproducts as well as at emerging electric-utility and water issues.

355

ADVANCED STEAM GENERATORS  

SciTech Connect

Concerns about climate change have encouraged significant interest in concepts for ultra-low or ''zero''-emissions power generation systems. In some proposed concepts, nitrogen is removed from the combustion air and replaced with another diluent such as carbon dioxide or steam. In this way, formation of nitrogen oxides is prevented, and the exhaust stream can be separated into concentrated CO{sub 2} and steam or water streams. The concentrated CO{sub 2} stream could then serve as input to a CO{sub 2} sequestration process or utilized in some other way. Some of these concepts are illustrated in Figure 1. This project is an investigation of one approach to ''zero'' emission power generation. Oxy-fuel combustion is used with steam as diluent in a power cycle proposed by Clean Energy Systems, Inc. (CES) [1,2]. In oxy-fuel combustion, air separation is used to produce nearly pure oxygen for combustion. In this particular concept, the combustion temperatures are moderated by steam as a diluent. An advantage of this technique is that water in the product stream can be condensed with relative ease, leaving a pure CO{sub 2} stream suitable for sequestration. Because most of the atmospheric nitrogen has been separated from the oxidant, the potential to form any NOx pollutant is very small. Trace quantities of any minor pollutants species that do form are captured with the CO{sub 2} or can be readily removed from the condensate. The result is a nearly zero-emission power plant. A sketch of the turbine system proposed by CES is shown in Figure 2. NETL is working with CES to develop a reheat combustor for this application. The reheat combustion application is unusual even among oxy-fuel combustion applications. Most often, oxy-fuel combustion is carried out with the intent of producing very high temperatures for heat transfer to a product. In the reheat case, incoming steam is mixed with the oxygen and natural gas fuel to control the temperature of the output stream to about 1480 K. A potential concern is the possibility of quenching non-equilibrium levels of CO or unburned fuel in the mixing process. Inadequate residence times in the combustor and/or slow kinetics could possibly result in unacceptably high emissions. Thus, the reheat combustor design must balance the need for minimal excess oxygen with the need to oxidize the CO. This paper will describe the progress made to date in the design, fabrication, and simulation of a reheat combustor for an advanced steam generator system, and discuss planned experimental testing to be conducted in conjunction with NASA Glenn Research Center-Plumb Brook Station.

Richards, Geo. A.; Casleton, Kent H.; Lewis, Robie E.; Rogers, William A. (U.S. DOE National Energy Technology Laboratory); Woike, Mark R.; Willis; Brian P. (NASA Glenn Research Center)

2001-11-06T23:59:59.000Z

356

Advanced Windows Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior of Advanced Windows Test Facility Exterior of Advanced Windows Test Facility Advanced Windows Test Facility This multi-room laboratory's purpose is to test the performance and properties of advanced windows and window systems such as electrochromic windows, and automatically controlled shutters and blinds. The lab simulates real-world office spaces. Embedded instrumentation throughout the lab records solar gains and losses for specified time periods, weather conditions, energy use, and human comfort indicators. Electrochromic glazings promise to be a major advance in energy-efficient window technology, helping to achieve the goal of transforming windows and skylights from an energy liability in buildings to an energy source. The glazing can be reversibly switched from a clear to a transparent, colored

357

Seven Projects Aimed at Advancing Coal Research Selected for DOE's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seven Projects Aimed at Advancing Coal Research Selected for DOE's Seven Projects Aimed at Advancing Coal Research Selected for DOE's University Coal Research Program Seven Projects Aimed at Advancing Coal Research Selected for DOE's University Coal Research Program May 13, 2010 - 1:00pm Addthis Washington, DC -- Seven projects aimed at advancing coal research and development while providing research exposure to a new generation of scientists and engineers have been selected to participate in the U.S. Department of Energy's (DOE) University Coal Research (UCR) program. The projects aim to improve the basic understanding of the chemical and physical processes that govern coal conversion and utilization, by-product utilization, and technological development for advanced energy systems. These advanced systems -- efficient, ultra-clean energy plants -- are

358

ALMR plant design and performance  

SciTech Connect

The advanced liquid-metal reactor (ALMR) plant, sponsored by the US Department of Energy and being developed by a General Electric Company lead industrial team, features simple and reliable safety systems, seismic isolation, passive decay heat removal, passive reactivity control, and substantial margins to structural and fuel damage limits during potential accident situations. These features will result in significant gains for public safety and protection of the owner's investment. Standardized modular construction and extensive factory fabrication will result in a plant design that is economically competitive. The reference commercial ALMR plant utilizes nine reactor modules arranged in three identical 480-MW(electric) power blocks for an overall plant net electrical rating of 1440 MW(electric). Each power block features three identical reactor modules, each with its own steam generator, that jointly supply power to a single turbine generator.

Kwant, W.; Boardman, C.E.; Dayal, Y.; Magee, P.M. (GE Nuclear Energy, San Jose, CA (United States))

1992-01-01T23:59:59.000Z

359

DOE's Advanced Turbine Systems Program  

Science Conference Proceedings (OSTI)

This paper discusses the Advanced Turbine Systems (ATS) Program, which is necessary to achieve METC's vision for future IGCC systems. This major new program is a cooperative effort in which DOE's Office of Fossil Energy (FE) and Office of Conservation and Renewable Energy (CE) are joining forces with the private sector to develop ultra-high efficiency gas turbine systems. A goal of this Program is to have a utility-size gas turbine with a 60 percent efficiency (lower heating value basis (LHV)) ready for commercialization by the year 2002. (While this paper focuses on utility-size turbines which are the primary interest of this audience, an ultra-high efficiency, industrial-size gas turbine will also be developed in the ATS Program with a comparable improvement in efficiency.) Natural gas is the target fuel of the Program, a recognition by DOE that natural gas will play a significant role in supplying future power generation needs in the US. However, to insure that the US has fuel supply options, ATS designs will be adaptable to coal and biomass fuels. Therefore, the ATS Program will directly benefit IGCC and other advanced coal based power generation systems. Cost and efficiency improvements in the turbine system as well as in the gasification and gas stream cleanup plant sections will enable IGCC to reach a cost target of $1,000--$1,280/kW and an efficiency goal of 52 percent (higher heating value basis (HHV)) in the post-2000 market.

Bechtel, T.F.; Bajura, R.A.; Salvador, L.A.

1993-01-01T23:59:59.000Z

360

IEP - Advanced NOx Emissions Control: Regulatory Drivers  

NLE Websites -- All DOE Office Websites (Extended Search)

IEP - Advanced NOx Emissions Control Regulatory Drivers Regulatory Drivers for Existing Coal-Fired Power Plants Regulatory and legislative requirements have predominantly driven the need to develop NOx control technologies for existing coal-fired power plants. The first driver was the Title IV acid rain program, established through the 1990 Clean Air Act Amendments (CAAA). This program included a two-phase strategy to reduce NOx emissions from coal-fired power plants – Phase I started January 1, 1996 and Phase II started January 1, 2000. The Title IV NOx program was implemented through unit-specific NOx emission rate limits ranging from 0.40 to 0.86 lb/MMBtu depending on the type of boiler/burner configuration and based on application of LNB technology.

Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Plenary lecture II: real-time NIR monitoring of a pharmaceutical blending process through multivariate analysis-derived models  

Science Conference Proceedings (OSTI)

The Quality by Design (QbD) guideline of the USA Food & Drug Administration (FDA) and of the International Conference on Harmonisation (ICH) became lately the major driver of pharmaceutical processes optimization. The majority of these processes are ...

Nicolas Abatzoglou

2008-05-01T23:59:59.000Z

362

Impact of the Massachusetts Pharmaceutical and Medical Device Manufacturer Code of Conduct on medical device physician-industry collaboration  

E-Print Network (OSTI)

The Massachusetts Pharmaceutical and Medical Device Manufacturer Code of Conduct (PCOC) or 105 CMR 970.000 was enacted by the Massachusetts state legislature and adopted by the Department of Public Health (DPH) in July ...

Wolf, Daniel W. (Daniel William)

2010-01-01T23:59:59.000Z

363

An Integrated Framework for Gas Turbine Based Power Plant Operational Modeling and Optimization .  

E-Print Network (OSTI)

??The deregulation of the electric power market introduced a strong element of competition. Power plant operators strive to develop advanced operational strategies to maximize the… (more)

Zhao, Yongjun

2005-01-01T23:59:59.000Z

364

Diffuse Scattering as an Aid to the Understanding of Polymorphism in Pharmaceuticals  

Science Conference Proceedings (OSTI)

Polymorphism occurs when the same molecular compound can crystallize in more than one distinct crystal structure. Its study is a field of great interest and activity. This is largely driven by its importance in the pharmaceutical industry, but polymorphism is also an issue in the pigments, dyes, and explosives industries. The polymorph formed by a compound generally exerts a strong influence on its solid-state properties. The polymorphic form of a drug molecule may affect the ease of manufacture and processing, shelf life, and most significantly the rate of uptake of the molecule by the human body. They can even vary in toxicity; one polymorph may be safe, while a second may be toxic. In this review of recently published work, we show how diffuse scattering experiments coupled with Monte Carlo (MC) computer modeling can aid in the understanding of polymorphism. Examples of the two common pharmaceuticals, benzocaine and aspirin, both of which are bimorphic, at ambient temperatures, are discussed.

Welberry, T.R.; Chan, E.J.; Goossens, D.J.; Heerdegen, A.P. (ANU)

2012-04-30T23:59:59.000Z

365

Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(RISMC) Advanced Test (RISMC) Advanced Test Reactor Demonstration Case Study Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for

366

NETL: News Release - Ten Projects Selected by DOE to Advance  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2010 7, 2010 Ten Projects Selected by DOE to Advance State-of-the-Art Carbon Capture from Coal Power Plants Washington, D.C. -Ten projects aimed at developing advanced technologies for capturing carbon dioxide (CO2) from coal combustion have been selected by the U.S. Department of Energy (DOE) under its Innovations for Existing Plants (IEP) Program. Valued at approximately $67 million ($15 million in non-federal cost sharing) over three years, the projects are focused on reducing the "energy and efficiency penalties" associated with applying currently available carbon capture and storage (CCS) technologies to existing and new power plants. CO2 power plant capture systems currently require large amounts of energy for their operation, resulting in decreased efficiency and reduced net power output when compared to plants without CCS technology. These "penalties" can add as much as 80 percent to the cost of electricity for a new pulverized coal plant and about 35 percent to the cost of electricity for a new advanced gasification plant. The overall goal of research conducted by DOE's Office of Fossil Energy (FE) and managed by FE's National Energy Technology Laboratory (NETL) is to improve efficiencies and reduce these costs to less than 30 percent and 10 percent, respectively.

367

DOE Simulator Training to Brazil's Petrobas Advances Goal of Deploying  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Simulator Training to Brazil's Petrobas Advances Goal of DOE Simulator Training to Brazil's Petrobas Advances Goal of Deploying Clean Coal Technology at Home and Abroad DOE Simulator Training to Brazil's Petrobas Advances Goal of Deploying Clean Coal Technology at Home and Abroad September 25, 2012 - 1:00pm Addthis Washington, DC - A recently-completed comprehensive Department of Energy (DOE) training initiative using an innovative high-fidelity combined-cycle dynamic simulator has provided employees of a Brazilian multi-national company the opportunity to learn to operate and control the near-zero-emission power plants critical to a cleaner energy future. The 8-day course for power plant operators from Petrobras used a simulator from the National Energy Technology Laboratory (NETL)-sponsored AVESTAR™ (Advanced Virtual Energy Simulation Training and Research) Center.

368

Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.  

SciTech Connect

Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg equivalents. AMS provides an sensitive, accurate and precise method of measuring drug compounds in biological matrices.

Keck, B D; Ognibene, T; Vogel, J S

2010-02-05T23:59:59.000Z

369

MWM-Array Sensors for In Situ Monitoring of High-Temperature Components in Power Plants  

E-Print Network (OSTI)

Utilization of America's substantial coal reserves for energy production has become a national priority. Advanced coal-fired power plants offer an environmentally friendly means to achieve that goal. These power plants, ...

Sheiretov, Yanko

370

Productivity Improvement for Fossil Steam Power Plants, 2008  

Science Conference Proceedings (OSTI)

EPRI's Productivity Improvement Handbook for Fossil Steam Plants (1006315), now in its third edition, has included many descriptions of advanced techniques and products successfully applied and tested. Many of these have been described in the other EPRI publications: Productivity Improvement for Fossil Steam Power Plants 2005: 100 Hundred Case Studies (1012098), Productivity Improvement for Fossil Steam Power Plants, 2006, (1014598), and Productivity Improvement for Fossil Steam Power Plants, 2007 (10154...

2008-12-24T23:59:59.000Z

371

Productivity Improvement for Fossil Steam Power Plants, 2010  

Science Conference Proceedings (OSTI)

The Productivity Improvement Handbook for Fossil Steam Plants (1006315), now in its third edition, has included many descriptions of advanced techniques and products, successfully applied and tested. Many of these have been described in the 2005 publication Productivity Improvement for Fossil Steam Plants 2005: 100 Hundred Case Studies (1012098), Productivity Improvement for Fosiil Steam Power Plants 2006, (101459), Productivity Improvement for Fossil Steam Power Plants 2007 (1015445), Productivity Impro...

2011-01-31T23:59:59.000Z

372

Productivity Improvement for Fossil Steam Power Plants: Industry Case Studies  

Science Conference Proceedings (OSTI)

The "Productivity Improvement Handbook for Fossil Steam Plants," now in its third edition, has included many descriptions of successfully applied advanced techniques and products. In the last few years, an increasingly diverse set of plant case studies have been described in some detail on the website of the Productivity Improvement User Group. This report assembles more than sixty of these case studies on subjects spanning the power plant from the boiler and the steam turbine, through plant auxiliaries ...

2003-11-17T23:59:59.000Z

373

NETL: Advanced Research  

NLE Websites -- All DOE Office Websites (Extended Search)

AR AR Coal and Power Systems Advanced Research 12.11.13: Request for Information entitled "Novel Crosscutting Research and Development to Support Advanced Energy Systems". Application due date is January 15, 2014. The RFI and/or instructions can be found on the FedConnect site at FedConnect. Achieving Successes in High Performance Materials, Coal Utilization Sciences, Sensors & Controls Innovations, Computational Energy Sciences, Cooperative Research and Development, and sponsoring Education Initiatives. The Advanced Research (AR) program within NETL's Office of Coal and Power Systems fosters the development of innovative, cost-effective technologies for improving the efficiency and environmental performance of advanced coal and power systems. In addition, AR bridges the gap between fundamental

374

Advanced Chlorophyll Fluorometer  

To advance miniaturization of the AquaSentinel environmental monitoring technology, ORNL and the University of Tennessee researchers developed a microfluidics-based pulse amplitude modulation (PAM) chlorophyll fluorometer—the first of its ...

375

Advancement of Electrochromic Windows  

E-Print Network (OSTI)

Research Energy Systems Integration Advancement ofintegration issues related to using EC windows within a whole building energy efficient systemenergy- savings benefit with EC-daylighting-HVAC integration (assuming a conventional VAV system

2006-01-01T23:59:59.000Z

376

Advanced Cathode Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Research 1 HFCIT Program Kick-off Meeting, Arlington, VA, February 13-14, 2007 Program Kick-off Meeting Arlington, Virginia, February 13-14, 2007 Advanced Cathode...

377

Search Asia Advanced Search  

E-Print Network (OSTI)

Asia Times Search Asia Times Advanced Search Southeast Asia Malaysia tackles illegal logging:52:14 AM Search #12;Asia Times illegal logging," he said, adding that nine Malaysians had been arrested

378

Search Asia Advanced Search  

E-Print Network (OSTI)

Asia Times Search Asia Times Advanced Search Southeast Asia Indonesia looks to curb log smuggling.html (1 of 2)9/4/2007 12:59:34 PM Search #12;Asia Times No material from Asia Times Online may

379

About | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

the APS Welcome to the Advanced Photon Source Here you will find an introduction and tour of the facility, as well as information about the organizations and opportunities at...

380

Nanostructured Materials for Advanced  

E-Print Network (OSTI)

of electric vehicles (EVs) and hybrid electric vehicles (HEVs). High energy and high power densitiesT Nanostructured Materials for Advanced Li-Ion Rechargeable Batteries THE RECENT INCREASE IN demand

Cao, Guozhong

Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Advanced Distribution Monitoring  

Science Conference Proceedings (OSTI)

Advanced Distribution Automation (ADA) is a concept for a fully controllable and flexible distribution system that will facilitate the exchange of electrical energy AND information between participants and system components. Advances in the monitoring of system parameters like voltages, currents and breaker/switch positions as well as environmental variables like temperature and wind speed will be required in order to fully implement ADA. This report presents background information on distribution monito...

2005-12-05T23:59:59.000Z

382

Advanced drilling systems study  

DOE Green Energy (OSTI)

This work was initiated as part of the National Advanced Drilling and Excavation Technologies (NADET) Program. It is being performed through joint finding from the Department of Energy Geothermal Division and the Natural Gas Technology Branch, Morgantown Energy Technology Center. Interest in advanced drilling systems is high. The Geothermal Division of the Department of Energy has initiated a multi-year effort in the development of advanced drilling systems; the National Research Council completed a study of drilling and excavation technologies last year; and the MIT Energy Laboratory recently submitted a proposal for a national initiative in advanced drilling and excavation research. The primary reasons for this interest are financial. Worldwide expenditures on oil and gas drilling approach $75 billion per year. Also, drilling and well completion account for 25% to 50% of the cost of producing electricity from geothermal energy. There is incentive to search for methods to reduce the cost of drilling. Work on ideas to improve or replace rotary drilling technology dates back at least to the 1930`s. There was a significant amount of work in this area in the 1960`s and 1970`s; and there has been some continued effort through the 1980`s. Undoubtedly there are concepts for advanced drilling systems that have yet to be studied; however, it is almost certain that new efforts to initiate work on advanced drilling systems will build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems provide the basis for the current study of advanced drilling.

Pierce, K.G. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants, San Diego, CA (United States)

1995-03-01T23:59:59.000Z

383

Technical review of Westinghouse`s Advanced Turbine Systems Program  

DOE Green Energy (OSTI)

US DOE`s ATS program has the goals of increased efficiency of natural gas-fired power generation plants, decreased cost of electricity, and a decrease in harmful emissions. The Westinghouse ATS plant is based on an advanced gas turbine design combined with an advanced steam turbine and a high efficiency generator. Objectives of the ATS Program Phase 2 are to select the ATS cycle and to develop technologies required to achieve ATS Program goals: combustion, cooling, aerodynamics, leakage control, coatings, materials. This paper describes progress on each.

Diakunchak, I.S.; Bannister, R.L.

1995-12-31T23:59:59.000Z

384

ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report  

SciTech Connect

Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

Albrecht H. Mayer

2000-07-15T23:59:59.000Z

385

ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report  

SciTech Connect

Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

Albrecht H. Mayer

2000-07-15T23:59:59.000Z

386

Medicinal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Medicinal Plants Medicinal Plants Nature Bulletin No. 187 April 11, 1981 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation MEDICINAL PLANTS In springtime, many years ago, grandma made her family drink gallons of tea made by boiling roots of the sassafras. That was supposed to thin and purify the blood. Children were sent out to gather dandelion, curly dock, wild mustard, pokeberry and other greens as soon as they appeared -- not only because they added welcome variety to the diet of bread, meat, potatoes and gravy, but because some of them were also laxatives. For a bad "cold on the lungs," she slapped a mustard plaster on the patient's back, and on his chest she put a square of red flannel soaked in goose grease. For whooping cough she used a syrup of red clover blossoms. She made cough medicine from the bloodroot plant, and a tea from the compass plant of the prairies was also used for fevers and coughs. She made a pleasant tea from the blossoms of the linden or basswood tree. For stomach aches she used tea from any of several aromatic herbs such as catnip, fennel, yarrow, peppermint, spearmint, sweetflag, wild ginger, bergamot and splice bush.

387

Advanced coal-fueled gas turbine systems  

SciTech Connect

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

388

Advance Electronics | Open Energy Information  

Open Energy Info (EERE)

Advance Electronics Jump to: navigation, search Name Advance Electronics Place United Kingdom Zip LL14 3YR Product Develop and deliver power conditioners, transient suppressors,...

389

Advanced Vehicle Technologies Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Vehicle Technologies Awards Advanced Vehicle Technologies Awards Microsoft Word - VTP 175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 AdvancedVehiclesTechn...

390

CS4353 Course Outline Advanced Graphics ?  

E-Print Network (OSTI)

• Introduce advanced interactive computer graphics concepts • Introduce advanced architecture of computer graphics devices • Introduce advanced mathematical representation of graphic images • Develop advanced graphics programming skills

Instructor John; E. Howl

2009-01-01T23:59:59.000Z

391

Proceedings: 1989 Fossil Power Plant construction conference  

SciTech Connect

EPRI's First International Conference on Fossil Plant Construction was held in Cincinnati, Ohio on August 29--31, 1989. The Conference was attended by approximately 140 people representing 35 utilities, many US architect engineering companies, equipment suppliers and independent power producers. The conference covered world wide developments in fossil plant construction. Included in these proceedings are papers from the following sessions: The Challenge of Demands for New Capacity and Construction; Recent Plant Construction Experience; Construction Experience for New Technologies; Cogeneration Project Experience; Regulatory Requirements for Fossil Plant Construction; Planning, Development and Design; Modular Construction Techniques; Applications of Advanced Computer Technologies; International and Domestic Construction Advances; Management Challenges of Fossil Projects; and Retrofit and Repowering Construction Experience. Individual projects are processed separately for the data bases.

Armor, A.F.; Divakaruni, S.M. (eds.)

1991-07-01T23:59:59.000Z

392

Prospects for the development of advanced reactors  

SciTech Connect

Energy supply is an important prerequisite for further socio-economic development, especially in developing countries where the per capita energy use is only a very small fraction of that in industrialized countries. Nuclear energy is an essentially unlimited energy resource with the potential to provide this energy in the form of electricity, district heat and process heat under environmentally acceptable conditions. However, this potential will be realized only if nuclear power plants can meet the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide a tremendous amount of experience has been accumulated during development, licensing, construction and operation of nuclear power reactors. The experience forms a sound basis for further improvements. Nuclear programmes in many countries are addressing the development of advanced reactors which are intended to have better economics, higher reliability and improved safety in order to overcome the current concerns of nuclear power. Advanced reactors now being developed could help to meet the demand for new plants in developed and developing countries, not only for electricity generation, but also for district heating, desalination and for process heat. The IAEA, as the only global international governmental organization dealing with nuclear power, promotes international information exchange and international co-operation between all countries with their own advanced nuclear power programmes and offers assistance to countries with an interest in exploratory or research programmes.

Semenov, B.A.; Kupitz, J.; Cleveland, J. [International Atomic Energy Agency Vienna (Austria). Dept. of Nuclear Energy and Safety

1992-12-31T23:59:59.000Z

393

Promises of advanced technology realized at Martin  

SciTech Connect

The 2,488-MW Martin station is a gas/oil-fired facility that embodies today`s demand for flexible operations, technological advances, and reduced production costs. Martin station first rose up from the Everglades in the early 1980s, with the construction of two 814-MW oil-fired steam plants, Units 1 and 2. Natural-gas-firing capability was added to the balanced-draft, natural-circulation boilers in 1986, increasing the station`s fuel flexibility. Martin then leaped into the headlines in the early 1990s when it added combined-cycle (CC) Units 3 and 4. With this 860-MW expansion, FP and L boldly became the fleet leader for the advanced, 2350F-class 7FA gas turbines. Further pushing he technology envelope, the CC includes a three-pressure reheat steam system that raises net plant efficiency for Units 3 and 4 to 54%, on a lower-heating-value (LHV) basis. Incorporating the reheat cycle required significant redesign of the gas-turbine/heat-recovery steam generator (HRSG) train, in order to maintain a rapid startup capability without exceeding metallurgical limits. Perhaps even more important than the technological achievements, Martin stands out from the crowd for its people power, which ensured that the promises of advanced technology actually came to fruition. This station`s aggressive, empowered O and M team shows that you can pioneer technology, reduce operating costs, and deliver high availability--all at the same time.

Swanekamp, R.

1996-09-01T23:59:59.000Z

394

An Update on Advanced Battery Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Update on Advanced Battery Manufacturing An Update on Advanced Battery Manufacturing An Update on Advanced Battery Manufacturing October 16, 2012 - 9:41am Addthis Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs What are the key facts? The advanced battery market is expanding dramatically in the U.S. and around the world -- from $5 billion in 2010 to nearly $50 billion in 2020, an average annual growth rate of roughly 25 percent. The Department of Energy, with strong bipartisan support, awarded $2 billion in grants to 29 companies to build or retool 45 manufacturing facilities spread across 20 states to build advanced batteries, engines, drive trains and other key components for electric vehicles. More than 30 of these plants are already in operation, employing thousands of American workers, and our grants were matched dollar for

395

DOE - Office of Legacy Management -- Westinghouse Advanced Reactors Div  

Office of Legacy Management (LM)

Advanced Reactors Div Advanced Reactors Div Plutonium and Advanced Fuel Labs - PA 10 FUSRAP Considered Sites Site: WESTINGHOUSE ADVANCED REACTORS DIV., PLUTONIUM FUEL LABORATORIES, AND THE ADVANCED FUEL LAB (PA.10 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Cheswick , Pennsylvania PA.10-1 Evaluation Year: Circa 1987 PA.10-1 PA.10-4 Site Operations: 1960s and 1970s - Produced light water and fast breeder reactor fuels on a development and pilot plant scale. Closed in 1979. PA.10-2 PA.10-3 Site Disposition: Eliminated - Decommissioned and decontaminated under another Federal program. Release condition confirmed by radiological surveys. PA.10-1 PA.10-2 PA.10-3 PA.10-4 PA.10-5 Radioactive Materials Handled: Yes

396

Modern Control System Design for Hydro-power Plant.  

E-Print Network (OSTI)

??This thesis addresses dynamic model and advance controller design for entire Hydro-power plant. Although hydro-power has the best payback ratio and the highest efficiency in… (more)

Ding, Xibei

2011-01-01T23:59:59.000Z

397

Mapping complexity sources in nuclear power plant domains  

E-Print Network (OSTI)

Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their effects on human reliability is critical for ensuring safe performance of both operators and the entire system. New ...

Sasangohar, Farzan

398

PINON PINE: An advanced IGCC demonstration  

SciTech Connect

The Pinon Pine Power Project is a second generation integrated gasification combined cycle (IGCC) power plant, located at Sierra Pacific Power Company`s (SPPC) Tracy Station, 17 miles east of Reno, Nevada. The project is being partially funded under the Department of Energy`s (DOE`s) Clean Coal Technology Program (CCT). SPPC intends to operate the plant in base-load mode to supply approximately 100 megawatts electric (MWe) to the transmission grid. This plant will be the first full-scale integration of several advanced technologies: an air-blown KRW gasifier; full-stream hot gas desulfurization using a transport reactor system with a zinc-based sorbent; full-stream, high-temperature ceramic filters for particulate removal; the General Electric Model MS6001FA (617A) Gas Turbine Engine/generator, and a 950 pound per square inch absolute (psia), 950{degrees}F steam turbine generator. This paper reviews the overall configuration and integration of the gasification and power islands components, which yield the plant`s high efficiency. Current status of the project is addressed.

Freier, M.D.; Jewell, D.M. [Morgantown Energy Technology Center, WV (United States); Motter, J.W. [Sierra Pacific Power Co., Reno, NV (United States)

1996-04-01T23:59:59.000Z

399

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

environmental, and renewable energy projects in the state ofof renewable energy production facilities in the state.and Renewable Energy, Washington, D.C. http://www.oit.doe.gov/bestpractices/ United States

Galitsky, Christina

2008-01-01T23:59:59.000Z

400

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

load factor, running time, local energy costs, and availableto significant energy cost savings over time (U.S. EPA/DOEcosts and to increase predictable earnings, especially in times of high energy

Galitsky, Christina

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Steam Distribution..5.8) Heat and Steam Distribution (5.10) Formulation,5.9) Heat and Steam Distribution (5.10) Cogeneration (5.11)

Galitsky, Christina

2008-01-01T23:59:59.000Z

402

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Characterization: Gas Turbines. Arlington, VA. February.is higher than that of a gas turbine-based CHP system (74%,electrical efficiency of a gas turbine-based CHP system is

Galitsky, Christina

2008-01-01T23:59:59.000Z

403

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

steam recovery. When a steam trap purges condensate from amaintenance Condensate return Boiler replacement Steam trap

Galitsky, Christina

2008-01-01T23:59:59.000Z

404

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

and power (so-called trigeneration; see Section 5.11). 5.9installation of cogeneration/trigeneration systems (see alsoAppendix C). Trigeneration. Furthermore, new CHP systems

Galitsky, Christina

2008-01-01T23:59:59.000Z

405

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

to be less than 1.5 years (IAC 2003). Absorption chillers.Absorption chillers use heat to provide cooling, instead ofmechanical energy. In absorption chillers, refrigerant vapor

Galitsky, Christina

2008-01-01T23:59:59.000Z

406

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Optimization of operating parameters Monitoring of refrigerant contamination Waste heat recovery Absorption chillers

Galitsky, Christina

2008-01-01T23:59:59.000Z

407

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Agency and Department of Energy (U.S. EPA/DOE). (2000). AnAgency and Department of Energy (U.S. EPA/DOE). (2002a).Agency and Department of Energy (U.S. EPA/DOE). (2003). Best

Galitsky, Christina

2008-01-01T23:59:59.000Z

408

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

22 nd National Industrial Energy Technology Conference18 th National Industrial Energy Technology Conferenceof Demonstrated Energy Technologies (CADDET). (1993).

Galitsky, Christina

2008-01-01T23:59:59.000Z

409

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

EPA). (2004). ENERGY STAR Building Upgrade Manual. Office ofThe U.S. EPA’s ENERGY STAR Building Upgrade Manual (U.S. EPAthe U.S. EPA’s ENERGY STAR Building Upgrade Manual (U.S. EPA

Galitsky, Christina

2008-01-01T23:59:59.000Z

410

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

A Sourcebook on Daylighting Systems and Components. Paris:Saving Energy with Daylighting Systems. Maxi Brochure 14.an efficient daylighting system may provide evenly dispersed

Galitsky, Christina

2008-01-01T23:59:59.000Z

411

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Demonstration of Energy Savings of Cool Roofs. LawrenceRivers. (1997). Capturing Energy Savings with Steam Traps.CADDET). (1997b). Energy Savings with New Industrial Paint

Galitsky, Christina

2008-01-01T23:59:59.000Z

412

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

a significant source of wasted energy. A typical industrialair handling systems, energy can be wasted when cooled make-amounts of energy can be wasted in a refrigeration system.

Galitsky, Christina

2008-01-01T23:59:59.000Z

413

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

with New Industrial Paint Drying and Baking Oven. Case studyovens, heaters, and heat exchangers. Target Group: Any industrial

Galitsky, Christina

2008-01-01T23:59:59.000Z

414

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Free Electricity from Steam Turbine-Generators: A System-Characterization: Steam Turbines. Arlington, VA. March.scale CHP systems use steam turbines. Switching to natural

Galitsky, Christina

2008-01-01T23:59:59.000Z

415

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

V. (1994). Understand Steam Generator Performance. ChemicalElectricity from Steam Turbine-Generators: A System- Levelgenerator, which re-vaporizes the refrigerant using waste heat (e.g. , from steam)

Galitsky, Christina

2008-01-01T23:59:59.000Z

416

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

and M. Kushler. (1997). Energy Efficiency in Automotive andSummer Study on Energy Efficiency in Industry. AmericanCalifornia Institute of Energy Efficiency ( CIEE). (2000b).

Galitsky, Christina

2008-01-01T23:59:59.000Z

417

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Lom and Associates. (1998). Energy Guide: Energy Efficiencya cost-effective manner. This Energy Guide discusses energyThe information in this Energy Guide is intended to help

Galitsky, Christina

2008-01-01T23:59:59.000Z

418

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

pressure than required wastes energy and can also result inthe filter, which wastes system energy. By inspecting andThis practice wastes substantial energy and should never be

Galitsky, Christina

2008-01-01T23:59:59.000Z

419

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

and M. Kushler. (1997). Energy Efficiency in Automotive and22 nd National Industrial Energy Technology ConferenceJr. and G. P. Looby. (1996). Energy Conservation and Waste

Galitsky, Christina

2008-01-01T23:59:59.000Z

420

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

17 5.1 Energy Management Systems and5.12) 5.1 Energy Management Systems and Programs Improvingpromote superior energy management systems, energy managers

Galitsky, Christina

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

development of renewable energy production facilities in theProduction at a Food Processing Facility. Office of Industrial Technologies, Energy Efficiency and Renewable

Galitsky, Christina

2008-01-01T23:59:59.000Z

422

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

chemicals for its cooling tower water. Solar air heating.have been discussed in Section 5.2. Cooling towers. In manyrequirements can be met by cooling towers in lieu of water

Galitsky, Christina

2008-01-01T23:59:59.000Z

423

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

heat recovery wheels, heat pipes, and run-around loops. For2003). The efficiency of heat pipes is in the 45-65% range (Controls Properly sized pipe diameters Heat recovery Natural

Galitsky, Christina

2008-01-01T23:59:59.000Z

424

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

stage of the absorption process, a water-ammonia solution iswater, which absorbs the ammonia again, closing the cycle. AbsorptionAbsorption cooling systems take advantage of the fact that ammonia is extremely soluble in cold water

Galitsky, Christina

2008-01-01T23:59:59.000Z

425

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

tons (U.S. DOE 2003). Absorption cooling and refrigerationthe cogeneration process. Absorption cooling systems takechillers. Absorption chillers use heat to provide cooling,

Galitsky, Christina

2008-01-01T23:59:59.000Z

426

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Program Assessment Matrix Energy Management Programthe ENERGY STAR Energy Program Assessment Matrix provided inEnergy Management Program Assessment Matrix..

Galitsky, Christina

2008-01-01T23:59:59.000Z

427

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

and wind shielding. Building insulation. Adding insulationguidelines for building insulation, for example, California’for improving building insulation. Low-emittance windows can

Galitsky, Christina

2008-01-01T23:59:59.000Z

428

Plant monitoring techniques and second generation designs  

SciTech Connect

Chemical and instrumental monitoring techniques suitable for geothermal use are described in a manner to relate them to plant operational problems and downtime avoidance. The use of these techniques permits the detection of scaling, the onset of scaling, corrosion loss, current corrosion rates and incipient heat exchanger failure. Conceptual advances are noted which simplify the research techniques to approaches that should be usable even in some low-capital well-head type power plants. 10 refs., 8 figs.

Kindle, C.H.; Shannon, D.W.; Robertus, R.J.; Pierce, D.D.; Sullivan, R.G.

1985-03-01T23:59:59.000Z

429

Multisystem Data Integration in Fossil Power Plants  

Science Conference Proceedings (OSTI)

A modern power plant has numerous measurements, control signals, and other data that are used for process control, state indication, plant information, and equipment health monitoring. Much of these data are available in the control system and its associated process historian, but other data can reside in auxiliary systems, such as programmable logic controllers, unconnected (local) instruments, and computerized systems used for combustion monitoring, advanced process control, emissions control, ...

2013-11-27T23:59:59.000Z

430

Poisonous Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants Plants Nature Bulletin No. 276 October 1, 1983 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation POISONOUS PLANTS In the autumn of 1818, Nancy Hanks Lincoln died of milk sickness and left her son, Abe, motherless before he was ten years old. Since colonial times, in most of the eastern half of the United States, that dreaded disease has been a hazard in summer and fall, wherever cattle graze in woodlands or along wooded stream banks. In the 1920s it was finally traced to white snakeroot -- an erect branched plant, usually about 3 feet tall, with a slender round stem, sharply-toothed nettle-like leaves and, in late summer, several small heads of tiny white flowers. Cows eating small amounts over a long period develop a disease called "trembles", and their milk may bring death to nursing calves or milk sickness to humans. When larger amounts are eaten the cow, herself, may die.

431

Systems Analyses of Advanced Brayton Cycles  

Science Conference Proceedings (OSTI)

The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study how alternative process schemes and power cycles might be used and integrated to achieve higher systems efficiency. To achieve these design results, the total systems approach is taken requiring creative integration of the various process units within the plant. Advanced gas turbine based cycles for Integrated gasification Combined cycle (IGCC) applications are identified by a screening analysis and the more promising cycles recommended for detailed systems analysis. In the case of the IGFC task, the main objective is met by developing a steady-state simulation of the entire plant and then using dynamic simulations of the hybrid Solid Oxide Fuel Cell (SOFC)/Gas Turbine sub-system to investigate the turbo-machinery performance. From these investigations the desired performance characteristics and a basis for design of turbo-machinery for use in a fuel cell gas turbine power block is developed.

A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

2008-09-30T23:59:59.000Z

432

Genomic Aspects of Research Involving Polyploid Plants  

Science Conference Proceedings (OSTI)

Almost all extant plant species have spontaneously doubled their genomes at least once in their evolutionary histories, resulting in polyploidy which provided a rich genomic resource for evolutionary processes. Moreover, superior polyploid clones have been created during the process of crop domestication. Polyploid plants generated by evolutionary processes and/or crop domestication have been the intentional or serendipitous focus of research dealing with the dynamics and consequences of genome evolution. One of the new trends in genomics research is to create synthetic polyploid plants which provide materials for studying the initial genomic changes/responses immediately after polyploid formation. Polyploid plants are also used in functional genomics research to study gene expression in a complex genomic background. In this review, we summarize the recent progress in genomics research involving ancient, young, and synthetic polyploid plants, with a focus on genome size evolution, genomics diversity, genomic rearrangement, genetic and epigenetic changes in duplicated genes, gene discovery, and comparative genomics. Implications on plant sciences including evolution, functional genomics, and plant breeding are presented. It is anticipated that polyploids will be a regular subject of genomics research in the foreseeable future as the rapid advances in DNA sequencing technology create unprecedented opportunities for discovering and monitoring genomic and transcriptomic changes in polyploid plants. The fast accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.

Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Tschaplinski, Timothy J [ORNL; Wullschleger, Stan D [ORNL; Tuskan, Gerald A [ORNL

2011-01-01T23:59:59.000Z

433

Geothermal: Advanced Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Search Advanced Search Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links You may need to turn on Javascript in your browser to use the Find Subject and Find Author features. Sort By: Relevance Publication Date System Entry Date Document Type Title Research Org Sponsoring Org OSTI Identifier Report Number DOE Contract Number Ascending Descending Enter search criteria into as few or as many fields as desired. Search In For Term(s) (Place phrase in "double quotes") All Fields: Bibliographic Data: Full Text: Creator/Author Select : Title: Subject Select : Identifier Numbers: Journal Info.: Conference Info.: Patent Info.: Research Org.: Sponsoring Org.:

434

NIST's Advanced Technology Program  

NLE Websites -- All DOE Office Websites (Extended Search)

NIST's Advanced NIST's Advanced Technology Program NIST's Advanced Technology Program DOE Workshop on Hydrogen Separation and Purification Technologies Arlington, VA, Sept. 8-9, 2004 Jason Huang 301-975-4197 National Institute of Standards and Technology 100 Bureau Drive Stop 4730 Gaithersburg, MD 20899-4730 http://www.atp.nist.gov National Institute of Standards and Technology * Technology Administration * U.S. Department of Commerce ATP is part of NIST Helping America Measure Up NIST Mission ATP is part of NIST NIST Mission: Strengthen the U.S. economy and improve the quality of life by working with industry to develop and apply technology, measurements, and standards. * * * * * * 3,000 employees $771 million annual budget 2,000 field agents 1,800 guest researchers $2.2 billion co-funding of

435

Advanced Hydride Laboratory  

DOE Green Energy (OSTI)

Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

Motyka, T.

1989-01-01T23:59:59.000Z

436

Advanced fuel chemistry for advanced engines.  

SciTech Connect

Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

2009-09-01T23:59:59.000Z

437

Third international congress of plant molecular biology: Molecular biology of plant growth and development  

Science Conference Proceedings (OSTI)

The Congress was held October 6-11, 1991 in Tucson with approximately 3000 scientists attending and over 300 oral presentations and 1800 posters. Plant molecular biology is one of the most rapidly developing areas of the biological sciences. Recent advances in the ability to isolate genes, to study their expression, and to create transgenic plants have had a major impact on our understanding of the many fundamental plant processes. In addition, new approaches have been created to improve plants for agricultural purposes. This is a book of presentation and posters from the conference.

Hallick, R.B. [ed.

1995-02-01T23:59:59.000Z

438

Advanced Containment System  

SciTech Connect

An advanced containment system for containing buried waste and associated leachate. The advanced containment system comprises a plurality of casing sections with each casing section interlocked to an adjacent casing section. Each casing section includes a complementary interlocking structure that interlocks with the complementary interlocking structure on an adjacent casing section. A barrier filler substantially fills the casing sections and may substantially fill the spaces of the complementary interlocking structure to form a substantially impermeable barrier. Some of the casing sections may include sensors so that the casing sections and the zone of interest may be remotely monitored after the casing sections are emplaced in the ground.

Kostelnik, Kevin M. (Idaho Falls, ID); Kawamura, Hideki (Tokyo, JP); Richardson, John G. (Idaho Falls, ID); Noda, Masaru (Tokyo, JP)

2005-02-08T23:59:59.000Z

439

Advanced Monitoring systems initiative  

SciTech Connect

The Advanced Monitoring Systems Initiative (AMSI) actively searches for promising technologies and aggressively moves them from the research bench into DOE/NNSA end-user applications. There is a large unfulfilled need for an active element that reaches out to identify and recruit emerging sensor technologies into the test and evaluation function. Sensor research is ubiquitous, with the seeds of many novel concepts originating in the university systems, but at present these novel concepts do not move quickly and efficiently into real test environments. AMSI is a widely recognized, self-sustaining ''business'' accelerating the selection, development, testing, evaluation, and deployment of advanced monitoring systems and components.

R.J. Venedam; E.O. Hohman; C.F. Lohrstorfer; S.J. Weeks; J.B. Jones; W.J. Haas

2004-09-30T23:59:59.000Z

440

Advanced Simulation and Computing  

National Nuclear Security Administration (NNSA)

NA-ASC-117R-09-Vol.1-Rev.0 NA-ASC-117R-09-Vol.1-Rev.0 Advanced Simulation and Computing PROGRAM PLAN FY09 October 2008 ASC Focal Point Robert Meisner, Director DOE/NNSA NA-121.2 202-586-0908 Program Plan Focal Point for NA-121.2 Njema Frazier DOE/NNSA NA-121.2 202-586-5789 A Publication of the Office of Advanced Simulation & Computing, NNSA Defense Programs i Contents Executive Summary ----------------------------------------------------------------------------------------------- 1 I. Introduction -------------------------------------------------------------------------------------------------------- 2 Realizing the Vision ------------------------------------------------------------------------------------------------- 2 The Future of the Nuclear Weapons Complex ---------------------------------------------------------------- 2

Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Saft America Advanced Batteries Plant Celebrates Grand Opening...  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 and provided an additional 95.5 million in cost share to build the new 235,000 square foot battery factory capable of manufacturing high quantities of lithium-ion cells,...

442

Advances in noise analysis for nuclear plant surveillance and diagnostics  

SciTech Connect

An automated surveillance and baseline noise signature acquisition system is being demonstrated at Sequoyah-1. A nonperturbing method is also being developed for monitoring the subcritical reactivity during initial core loading in LWRs, in fuel storage and processing facilities, and during postaccident recovery operations such as Three Mile Island-2. (DLC)

Fry, N.; Clapp, N.E. Jr.; Sides, W.H. Jr.; Mihalczo, J.T.; King, W.T.

1980-01-01T23:59:59.000Z

443

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUELS PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc. and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This report presents hydrogen permeation data during long term tests and tests at high pressure in addition to progress with cermet, ceramic/ceramic, and thin film membranes.

Shane E. Roark; Anthony F. Sammells; Richard Mackay; Stewart Schesnack; Scott Morrison; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-07-31T23:59:59.000Z

444

Advanced combustion technologies for gas turbine power plants  

DOE Green Energy (OSTI)

Objectives are to develop actuators for enhancing the mixing between gas streams, increase combustion stability, and develop hgih-temperature materials for actuators and sensors in combustors. Turbulent kinetic energy maps of an excited jet with co-flow in a cavity with a partially closed exhaust end are given with and without a longitudinal or a transverse acoustic field. Dielectric constants and piezoelectric coefficients were determined for Sr{sub 2}(Nb{sub x}Ta{sub 1-x}){sub 2}O{sub 7} ceramics.

Vandsburger, U. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mechanical Engineering; Roe, L.A. [Arkansas Univ., Fayetteville, AR (United States). Dept. of Mechanical Engineering; Desu, S.B. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

1995-12-31T23:59:59.000Z

445

Solar-thermal hybridization of Advanced Zero Emissions Power Plants  

E-Print Network (OSTI)

Carbon Dioxide emissions from power production are believed to have significant contributions to the greenhouse effect and global warming. Alternative energy resources, such as solar radiation, may help abate emissions but ...

El Khaja, Ragheb Mohamad Fawaz

2012-01-01T23:59:59.000Z

446

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc., and team members CoorsTek, McDermott Technology, inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; R.D. Carneim; P.F. Becher; C-H. Hsueh; Aaron L. Wagner; Jon P. Wagner

2002-04-30T23:59:59.000Z

447

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

During this quarter, work was focused on testing layered composite membranes under varying feed stream flow rates at high pressure. By optimizing conditions, H{sub 2} permeation rates in excess of 400 mL {center_dot} min{sup -1} {center_dot} cm{sup -2} at 440 C were measured. Membrane stability was characterized by repeated thermal and pressure cycling. The effect of cermet grain size on permeation was determined. Finally, progress is summarized on thin film cermet fabrication, catalyst development, and H{sub 2} separation unit scale up.

Carl R. Evenson; Anthony F. Sammells; Richard Mackay; Scott R. Morrison; Sara L. Rolfe; Richard Blair; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Jon P. Wagner; Clive Brereton; Warren Wolfs

2004-04-26T23:59:59.000Z

448

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

During this quarter long term and high pressure hydrogen separation experiments were performed on Eltron's composite layered membranes. Membranes were tested at 400 C and a 300 psig feed stream with 40% hydrogen for up to 400 continuous hours. In addition membranes were tested up to 1000 psig as demonstration of the ability for this technology to meet DOE goals. Progress was made in the development of new hydrogen separation cermets containing high permeability metals. A sulfur tolerant catalyst deposition technique was optimized and engineering work on mechanical and process & control reports was continued.

Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; Adam E. Calihman; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangla; Clive Brereton; Warren Wolfs; James Lockhart

2005-04-30T23:59:59.000Z

449

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

During this quarter, work was focused on testing layered composite membranes under varying feed stream flow rates at high pressure. By optimizing conditions, H{sub 2} permeation rates as high as 423 mL {center_dot} min{sup -1} {center_dot} cm{sup -2} at 440 C were measured. Membrane stability was investigated by comparison to composite alloy membranes. Permeation of alloyed membranes showed a strong dependence on the alloying element. Impedance analysis was used to investigate bulk and grain boundary conductivity in cermets. Thin film cermet deposition procedures were developed, hydrogen dissociation catalysts were evaluated, and hydrogen separation unit scale-up issues were addressed.

Carl R. Evenson; Anthony F. Sammells; Richard Mackay; Richard Treglio; Sara L. Rolfe; Richard Blair; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Jon P. Wagner; Clive Brereton; Warren Wolfs

2004-07-26T23:59:59.000Z

450

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, mixed proton/electron conductivity and hydrogen transport was measured as a function of metal phase content for a range of ceramic/metal (cermet) compositions. It was found that optimum performance occurred at 44 wt.% metal content for all compositions tested. Although each cermet appeared to have a continuous metal phase, it is believed that hydrogen transport increased with increasing metal content partially due to beneficial surface catalyst characteristics resulting from the metal phase. Beyond 44 wt.% there was a reduction in hydrogen transport most likely due to dilution of the proton conducting ceramic phase. Hydrogen separation rates for 1-mm thick cermet membranes were in excess of 0.1 mL/min/cm{sup 2}, which corresponded to ambipolar conductivities between 1 x 10{sup -3} and 8 x 10{sup -3} S/cm. Similar results were obtained for multiphase ceramic membranes comprised of a proton-conducting perovskite and electron conducting metal oxide. These multi-phase ceramic membranes showed only a slight improvement in hydrogen transport upon addition of a metal phase. The highest hydrogen separation rates observed this quarter were for a cermet membrane containing a hydrogen transport metal. A 1-mm thick membrane of this material achieved a hydrogen separation rate of 0.3 mL/min/cm{sup 2} at only 700 C, which increased to 0.6 mL/min/cm{sup 2} at 950 C.

Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Alexandra Z. LaGuardia; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

2001-10-30T23:59:59.000Z

451

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Over the past 12 months, this project has focused on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. The ceramic/ceramic composites demonstrate the lowest hydrogen permeation rates, with a maximum of approximately 0.1 mL/min/cm{sup 2} for 0.5-mm thick membranes at 800 to 950 C. Under equivalent conditions, cermets achieve a hydrogen permeation rate near 1 mL/min/cm{sup 2}, and the metal phase also improves structural stability and surface catalysis for hydrogen dissociation. Furthermore, if metals with high hydrogen permeability are used in cermets, permeation rates near 4 mL/min/cm{sup 2} are achievable with relatively thick membranes. Layered composite membranes have by far the highest permeation rates with a maximum flux in excess of 200 mL {center_dot} min{sup -1} {center_dot} cm{sup -2}. Moreover, these permeation rates were achieved at a total pressure differential across the membrane of 450 psi. Based on these results, effort during the next year will focus on this category of membranes. This report contains long-term hydrogen permeation data over eight-months of continuous operation, and permeation results as a function of operating conditions at high pressure for layered composite membranes. Additional progress with cermet and thin film membranes also is presented.

Shane E. Roark; Anthony F. Sammells; Richard Mackay; Stewart R. Schesnack; Scott R. Morrison; Thomas F. Barton; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-10-30T23:59:59.000Z

452

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc., and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying composite membrane composition and microstructure to maximize hydrogen permeation without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, a composite metal membrane based on an inexpensive hydrogen permeable metal achieved permeation rates in excess of 25 mL/min/cm{sup 2}. Preliminary attempts to incorporate this metal into a cermet were successful, and a thick cermet membrane (0.83 mm) with 40 vol.% metal phase achieved a permeation rate of nearly 0.4 mL/min/cm{sup 2}. Increasing the metal phase content and decreasing membrane thickness should significantly increase permeation, while maintaining the benefits derived from cermets. Two-phase ceramic/ceramic composite membranes had low hydrogen permeability, likely due to interdiffusion of constituents between the phases. However, these materials did demonstrate high resistance to corrosion, and might be good candidates for other composite membranes. Temperature-programmed reduction measurements indicated that model cermet materials absorbed 2.5 times as much hydrogen than the pure ceramic analogs. This characteristic, in addition to higher electron conductivity, likely explains the relatively high permeation for these cermets. Incorporation of catalysts with ceramics and cermets increased hydrogen uptake by 800 to more than 900%. Finally, new high-pressure seals were developed for cermet membranes that maintained a pressure differential of 250 psi. This result indicated that the approach for high-pressure seal development could be adapted for a range of compositions. Other items discussed in this report include mechanical testing, new proton conducting ceramics, supported thin films, and alkane to olefin conversion.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart R. Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-01-30T23:59:59.000Z

453

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

The objective of this project is to develop an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites with hydrogen permeable alloys. The primary technical challenge in achieving the goals of this project will be to optimize membrane composition to enable practical hydrogen separation rates and chemical stability. Other key aspects of this developing technology include catalysis, ceramic processing methods, and separation unit design operating under high pressure. To achieve these technical goals, Eltron Research Inc. has organized a consortium consisting of CoorsTek, Sued Chemie, Inc. (SCI), Argonne National Laboratory (ANL), and NORAM. Hydrogen permeation rates in excess of 50 mL {center_dot} min{sup -1} {center_dot} cm{sup 2} at {approx}440 C were routinely achieved under less than optimal experimental conditions using a range of membrane compositions. Factors that limit the maximum permeation attainable were determined to be mass transport resistance of H{sub 2} to and from the membrane surface, as well as surface contamination. Mass transport resistance was partially overcome by increasing the feed and sweep gas flow rates to greater than five liters per minute. Under these experimental conditions, H2 permeation rates in excess of 350 mL {center_dot} min{sup -1} {center_dot} cm{sup 2} at {approx}440 C were attained. These results are presented in this report, in addition to progress with cermets, thin film fabrication, catalyst development, and H{sub 2} separation unit scale up.

Shane E. Roark; Anthony F. Sammells; Richard Mackay; Scott R. Morrison; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephen; Frank E. Anderson; Shandra Ratnasamy; Jon P. Wagner; Clive Brereton

2004-01-30T23:59:59.000Z

454

Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants  

DOE Green Energy (OSTI)

Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this final quarter of the no cost extension several planar membranes of a cermet composition referred to as EC101 containing a high permeability metal and a ceramic phase were prepared and permeability testing was performed.

Carl R. Evenson; Richard N. Kleiner; James E. Stephan; Frank E. Anderson

2006-04-30T23:59:59.000Z

455

Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants  

DOE Green Energy (OSTI)

During this quarter of the no cost extension a cermet composition referred to as EC101 containing a high permeability metal and a ceramic phase was prepared for sealing and permeability testing. Several different types of seals were developed and tested. In addition membrane surface stability was characterized.

Carl R. Evenson; Richard N. Kleiner; James E. Stephan; Frank E. Anderson

2006-01-31T23:59:59.000Z

456

Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants  

DOE Green Energy (OSTI)

During this quarter composite layered membrane size was scaled-up and tested for permeation performance. Sintering conditions were optimized for a new cermet containing a high permeability metal and seals were developed to allow permeability testing. Theoretical calculations were performed to determine potential sulfur tolerant hydrogen dissociation catalysts. Finally, work was finalized on mechanical and process & control documentation for a hydrogen separation unit.

Carl R. Evenson; Harold A. Wright; Adam E. Calihman; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangala; Clive Brereton; Warren Wolfs; James Lockhart

2005-10-31T23:59:59.000Z

457

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

During this quarter catalyst stability studies were performed on Eltron's composite layered membranes. In addition, permeation experiments were performed to determine the effect of crystallographic orientation on membrane performance. Sintering conditions were optimized for preparation of new cermets containing high permeability metals. Theoretical calculations were performed to determine potential sulfur tolerant catalysts. Finally, work was continued on mechanical and process & control documentation for a hydrogen separation unit.

Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; Adam E. Calihman; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangala; Clive Brereton; Warren Wolfs; James Lockhart

2005-07-29T23:59:59.000Z

458

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc. and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (i) mixed conducting ceramic/ceramic composites, (ii) mixed conducting ceramic/metal (cermet) composites, (iii) cermets with hydrogen permeable metals, and (iv) hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This report describes resent results for long-term hydrogen permeation and chemical stability measurements, new mixed conducting cermets, progress in cermet, thin film, and thin-walled tube fabrication, hydrogen absorption measurements for selected compositions, and membrane facilitated alkane to olefin conversion.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-04-30T23:59:59.000Z

459

Microstructural studies of advanced austenitic steels  

Science Conference Proceedings (OSTI)

This report presents the first complete microstructural and analytical electron microscopy study of Alloy AX5, one of a series of advanced austenitic steels developed by Maziasz and co-workers at Oak Ridge National Laboratory, for their potential application as reheater and superheater materials in power plants that will reach the end of their design lives in the 1990's. The advanced steels are modified with carbide forming elements such as titanium, niobium and vanadium. When combined with optimized thermo-mechanical treatments, the advanced steels exhibit significantly improved creep rupture properties compared to commercially available 316 stainless steels, 17--14 Cu--Mo and 800 H steels. The importance of microstructure in controlling these improvements has been demonstrated for selected alloys, using stress relaxation testing as an accelerated test method. The microstructural features responsible for the improved creep strengths have been identified by studying the thermal aging kinetics of one of the 16Ni--14Cr advanced steels, Alloy AX5, in both the solution annealed and the solution annealed plus cold worked conditions. Time-temperature-precipitation diagrams have been developed for the temperature range 600 C to 900 C and for times from 1 h to 3000 h. 226 refs., 88 figs., 10 tabs.

Todd, J. A.; Ren, Jyh-Ching [University of Southern California, Los Angeles, CA (USA). Dept. of Materials Science

1989-11-15T23:59:59.000Z

460

Advanced Cell Development and Degradation Studies  

SciTech Connect

The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. From 2003 – 2009, this work was sponsored by the DOE Nuclear Hydrogen Initiative (NHI). Starting in 2010, the HTE research program has been sponsored by the Next Generation Nuclear Plant (NGNP) program. HTSE research priorities in FY10 are centered on understanding and reducing cell and stack performance degradation to an acceptable level to advance the technology readiness level of HTSE and to justify further large-scale demonstration activities. This report provides a summary of our FY10 experimental program, which has been focused on advanced cell and stack development and degradation studies. Advanced cell and stack development activities are under way at five technology partners: MSRI, Versa Power, Ceramatec, NASA Glenn, and St. Gobain. Performance evaluation of the advanced technology cells and stacks has been performed by the technology partners, by MIT and the University of Connecticut and at the INL HTE Laboratory. Summaries of these development activities and test results are presented.

J. E. O' Brien; C. M. Stoots; J. S. Herring; R. C. O' Brien; K. G. Condie; M. Sohal; G. K. Housley; J. J. Hartvigsen; D. Larsen; G. Tao; B. Yildiz; V. Sharma; P. Singh; N. Petigny; T. L. Cable

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced plant pharmaceuticals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS  

Science Conference Proceedings (OSTI)

OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability.

WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

2002-04-01T23:59:59.000Z

462

"Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"  

DOE Green Energy (OSTI)

ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

2008-06-12T23:59:59.000Z

463

Utility Advanced Turbine Systems program (ATS) technical readiness testing and pre-commercial demonstration. Annual report, October 30, 1995--September 30, 1996  

DOE Green Energy (OSTI)

Progress is reported on an advanced turbine engine design. The design features a closed loop cooling system. Activities for power plant design were initiated.

NONE

1998-12-31T23:59:59.000Z

464

Advanced Turbine Systems scoping and feasibility studies  

DOE Green Energy (OSTI)

The objective of the Advanced Turbine Systems (ATS) study was to investigate innovative natural gas fired cycle developments to determine the feasibility of achieving 60% (LHV) efficiency within a 10-year time frame. The potential ATS was to be environmentally superior, cost competitive and adaptable to coal-derived fuels. The National Energy Strategy (NES) calls for a balanced program of greater energy efficiency, use of alternative fuels, and the environmentally responsible development of all US energy resources> Consistent with the NES, a Department of Energy (DOE) program has been created to develop Advanced Turbine Systems. The objective of this 10-year program is to develop natural gas fired base load power plants that will have cycle efficiencies greater than 60% (LHV), be environmentally superior to current technology, and also be cost competitive.

Bannister, R.L.; Little, D.A.; Wiant, B.C. (Westinghouse Electric Corp., Orlando, FL (United States)); Archer, D.H. (Carnegie-Mellon Univ., Pittsburgh, PA (United States))

1993-01-01T23:59:59.000Z

465

Recent advances in centrifugal contactors design  

SciTech Connect

Advances in thedesign of the Argonne centrifugal contactor for solvent extaction are being realized as these contactors are built, tested, and used to implement the TRUEX process for the cleanup of nuclear waste liquids. These advances include (1) using off-the-shelf, face-mounted motors, (2) modifying the contractor so that relatively volatile solvents can be used, (3) adding a high-level liquid detector that can be used to alert the plant operator of process upsets, (4) providing secondary feed ports, (5) optimizing support frame design, (6) maintaining a linear design with external interstage lines so the stages can be allocated as needed for extraction, scrub, strip, and solvent cleanup operations, and (7) developing features that facilitate contractor operation in remote facilities. 11 refs., 8 figs.

Leonard, R.A.

1987-10-01T23:59:59.000Z