Sample records for advanced photon source

  1. Advanced Photon Source Upgrade Project

    ScienceCinema (OSTI)

    Mitchell, John; Gibson, Murray; Young, Linda; Joachimiak, Andrzej

    2013-04-19T23:59:59.000Z

    Upgrade to Advanced Photon Source announced by Department Of Energy. Read more: http://go.usa.gov/ivZ

  2. Video Library | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Brochure Annual Reports Posters Podcasts Image Gallery external site Video Library Syndicated Feeds (RSS) Now Playing: The Advanced Photon Source More videos: Building...

  3. Video Library | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Brochure Annual Reports Posters Podcasts Image Gallery external site Video Library Syndicated Feeds (RSS) Featured Videos: Introduction to the Advanced Photon Source...

  4. Video Library | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video Library Related Links: APS Colloquium APS Podcasts APS Today More videos: Introduction to the APS Physics of the Blues Now Playing: Building the Advanced Photon Source This...

  5. Publications | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research at the APS. It is the official source for listing APS-related journal articles, conference proceedings and papers, dissertations, books, book chapters, technical reports,...

  6. Accelerator Operations and Physics - Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Accelerator Operations & Physics Advance Photon Source A U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences national...

  7. Science Highlights 2007 | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by researchers using the Argonne Advanced Photon Source. Tailoring the Properties of Magnetic Nanostructures Tailoring the Properties of Magnetic Nanostructures May 23, 2007...

  8. APS News 2009 | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studied at the APS June 24, 2009 Archaeologists studying trade artifacts from ancient Egypt at the U.S. Department of Energy's Advanced Photon Source at Argonne National...

  9. Science Highlights 2012 | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Argonne Advanced Photon Source and two other U.S. Department of Energy Office of Science synchrotron light sources. Their breakthrough results pave the way for development of...

  10. Science Highlights 2013 | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from experiments carried out using x-rays from two U.S. Department of Energy Office of Science light sources including the Advanced Photon Source at Argonne National Laboratory...

  11. Transportation Beamline at the Advanced Photon Source | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Beamline at the Advanced Photon Source Argonne's dedicated transportation research beamline at Argonne's Advanced Photon Source (APS) allows researchers to use the...

  12. Advanced Photon Source Upgrade Project - Energy

    ScienceCinema (OSTI)

    Gibson, Murray; Chamberlain, Jeff; Young, Linda

    2013-04-19T23:59:59.000Z

    An upgrade to the Advanced Photon Source (announced by DOE - http://go.usa.gov/ivZ) will help scientists better understand complex environments such as in catalytic reactions.

  13. Advanced Photon Source Upgrade Project - Materials

    ScienceCinema (OSTI)

    Gibbson, Murray;

    2013-04-19T23:59:59.000Z

    An upgrade to Advanced Photon Source announced by DOE - http://go.usa.gov/ivZ -- will help scientists break through bottlenecks in materials design in order to develop materials with desirable functions.

  14. Science Highlights 2009 | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of geologists and geophysicists using the U.S. Department of Energy's Advanced Photon Source has shed light on a fluid transfer in the middle continental crust, a phenomenon...

  15. The Advanced Photon Source main control room

    SciTech Connect (OSTI)

    Pasky, S.

    1998-07-01T23:59:59.000Z

    The Advanced Photon Source at Argonne National Laboratory is a third-generation light source built in the 1990s. Like the machine itself, the Main Control Room (MCR) employs design concepts based on today`s requirements. The discussion will center on ideas used in the design of the MCR, the comfort of personnel using the design, and safety concerns integrated into the control room layout.

  16. Advanced Photon Source Upgrade Project Preliminary Design Report Advanced Photon Source Upgrade Project

    E-Print Network [OSTI]

    Kemner, Ken

    .......................................................................................................1­8 1.3.3 Work Breakdown Structure Upgrade Project · Preliminary Design Report The Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory

  17. advanced photon source: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSR Microbunching Zhirong Huang and Kwang302 Advanced Photon Source Derivation: KJK Application: ZRH Based on ZRH & KJK Main References SSY (Saldin, Schneidmiller,...

  18. Chemical and Materials Science (XSD) | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Home Advanced Photon Source About Us Useful Links Chemical and Materials Science (X-ray Science Division) The CMS group has operational responsibility for...

  19. APS Engineering Support Division (AES) | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Engineering Support Division (AES) The APS Engineering Support Division provides reliable operations and technical support to the Advanced Photon Source user community. AES...

  20. Renewal of the Advanced Photon Source.

    SciTech Connect (OSTI)

    Gibson, J. M.

    2008-12-31T23:59:59.000Z

    To ensure that state-of-the-art hard x-ray tools are available for US scientists and engineers who are solving key problems in energy, environment, technology development and human health, the nation's unique high-energy x-ray source needs a major renewal of its capabilities. The Advanced Photon Source renewal program responds to key scientific needs driven by our user community. The renewal encompasses many innovations in beamlines and accelerator capabilities, each of which will transform our tools and allow new problems to be solved. In particular the APS renewal dramatically expands two compelling avenues for research. Through x-ray imaging, we can illuminate complex hierarchical structures from the molecular level to the macroscopic level, and study how they change in time and in response to stimuli. Images will facilitate understanding how proteins fit together to make living organisms, contribute to development of lighter, higher-strength alloys for fuel-efficient transportation and advance the use of biomass for alternative fuels. Hard x-rays are also especially suited to the study of real materials, under realistic conditions and in real-time. The advances proposed in this area would help develop more efficient catalysts, enhance green manufacturing, point the way to artificial light-harvesting inspired by biology and help us develop more efficient lighting. The scope of the renewal of our {approx}$1.5B facility is estimated to be {approx}$350M over five years. It is vital that the investment begin as soon as possible. The renewed APS would complement other national investments such as the National Synchrotron Light Source-II and would keep the U.S. internationally competitive.

  1. Science Highlights 2008 | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Source, have found a window into the process of water drop coalescence, employing ultrafast pulses of full-spectrum, high-intensity x-rays to capture with unprecedented...

  2. Science at the Speed of Light: Advanced Photon Source

    ScienceCinema (OSTI)

    Murray Gibson

    2010-01-08T23:59:59.000Z

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest x-ray beams in the Western Hemisphere, and the research carried out by scientists using those x-rays.

  3. Industry and the APS | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    important applications, including advances in manufacturing, information technology, nanotechnology, pharmaceuticals, biomedicine, oil and gas, transportation, agriculture,...

  4. Conferences and Workshops | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory, Argonne, IL May 17-21 Conference on Advanced Phase Measurement Methods in Optics and Imaging, with Special Sessions for X-ray Methods Monte Verita, Locarno,...

  5. Investigations of Magnetic Overlayers at the Advanced Photon Source

    SciTech Connect (OSTI)

    Tobin, J G; Yu, S; Butterfield, M T

    2009-06-26T23:59:59.000Z

    Magnetic overlayers of Fe and Co have been investigated with X-ray Magnetic Circular Dichroism in X-ray Absorption Spectroscopy (XMCD-ABS) and Photoelectron Spectroscopy (PES), including Spin-Resolved Photoelectron Spectroscopy (SRPES), at Beamline 4 at the Advanced Photon Source (APS). Particular emphasis was placed upon the interrogation of the 2p levels of the Fe.

  6. Status of the Advanced Photon Source (APS) linear accelerator

    SciTech Connect (OSTI)

    White, M.; Berg, W.; Fuja, R.; Grelick, A.; Mavrogenes, G.; Nassiri, A.; Russell, T.; Wesolowski, W.

    1993-08-01T23:59:59.000Z

    A 2856-MHz S-band, 450-MeV electron/positron linear accelerator is the first part of the injector for the Advanced Photon Source (APS) 7-GeV storage ring. Construction of the APS linac is currently nearing completion, and commissioning will begin in July 1993. The linac and its current status are discussed in this paper.

  7. Sixth users meeting for the Advanced Photon Source: Proceedings

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    Scientists and engineers from universities, industry, and national laboratories came to review the status of the facility and to look ahead to the types of forefront science that will be possible when the APS is completed. The presentations at the meeting included an overview of the project, advances in synchrotron radiation applications, and technical developments at the APS. The actions taken at the 1994 Business Meeting of the Advanced Photon Source Users Organization are also documented here.

  8. Abstracts of papers presented at SRI '95 Status of the Advanced Photon Source at Argonne National

    E-Print Network [OSTI]

    Abstracts of papers presented at SRI '95 Status of the Advanced Photon Source at Argonne National Laboratory David E. Moncton Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 Presented on 18 October 1995 The Advanced Photon Source at Argonne National Laboratory is a third

  9. Quadrupole magnet for the APS (Advanced Photon Source) storage ring

    SciTech Connect (OSTI)

    Thompson, K.M.; Kim, S.H.; Lari, R.J.; Turner, L.R. (Argonne National Lab., IL (USA); Vector Fields Ltd., Aurora, IL (USA); Argonne National Lab., IL (USA))

    1989-01-01T23:59:59.000Z

    An asymmetric core geometry has been selected for the quadrupole magnets in the storage ring of the Advanced Photon Source (APS) in order to accommodate the vacuum chamber and photon beam pipes. The requirements of the position beam make it necessary that the magnet be able to produce a field gradient of 20-T/m with high accuracy. The design for this magnet has been fully developed in preparation for the construction of a prototype. Some unique features included in the design are described. Design choices are being validated by extensive magnetic-field calculations in both two and three dimensions. The results of these calculations are presented. 6 refs., 4 figs., 5 tabs.

  10. Measurements of nonlinear harmonic generation at the Advanced Photon Source's SASE FEL

    E-Print Network [OSTI]

    2002-01-01T23:59:59.000Z

    the Advanced Photon Source's SASE FEL* S.G. Biedron* , R.J.Visible to Infrared SASE FEL) experiment at B N L [19]. II.

  11. Status and design of the Advanced Photon Source control system

    SciTech Connect (OSTI)

    McDowell, W.; Knott, M.; Lenkszus, F.; Kraimer, M.; Arnold, N.; Daly, R.

    1993-01-01T23:59:59.000Z

    This paper presents the current status of the Advanced Photon Source (APS) control system. It will discuss the design decisions which led us to use industrial standards and collaborations with other laboratories to develop the APS control system. The system uses high performance graphic workstations and the X-windows Graphical User Interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities.

  12. Status and design of the Advanced Photon Source control system

    SciTech Connect (OSTI)

    McDowell, W.; Knott, M.; Lenkszus, F.; Kraimer, M.; Arnold, N.; Daly, R.

    1993-06-01T23:59:59.000Z

    This paper presents the current status of the Advanced Photon Source (APS) control system. It will discuss the design decisions which led us to use industrial standards and collaborations with other laboratories to develop the APS control system. The system uses high performance graphic workstations and the X-windows Graphical User Interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities.

  13. EA-0389: Proposed 7-GeV Advanced Photon Source, Argonne, Illinois

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal for construction and operation of a 6- to 7-GeV synchrotron radiation source known as the 7-GeV Advanced Photon Source at DOE's Argonne...

  14. Control system for insertion devices at the advanced photon source

    SciTech Connect (OSTI)

    Makarov, O.A.; Den Hartog, P.; Moog, E.R.; Smith, M.L. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois60439-4800 (United States)

    1997-07-01T23:59:59.000Z

    Eighteen insertion devices (IDs) are installed at the Advanced Photon Source (APS), and three more are scheduled for installation by the end of this year. A distributed control system for insertion devices at the APS storage ring was created with the Experimental Physics and Industrial Control System (EPICS). The basic components of this system are operator interfaces (OPIs), input output controllers (IOCs), and a local area network that allows the OPI and IOC to communicate. The IOC operates under the VxWorks OS with an EPICS database and a sequencer. The sequencer runs an ID control program written in State Notation Language. The OPI is built with the EPICS tool MEDM and provides display screens with input and output fields and buttons for gap control of the IDs. Global commands like {open_quotes}open all IDs{close_quotes} are C-shell scripts invoked from the display menu. The algorithms for control and protection of the ID and ID vacuum chamber and the accuracy of gap control are discussed. {copyright} {ital 1997 American Institute of Physics.}

  15. Control system for insertion devices at the Advanced Photon Source

    SciTech Connect (OSTI)

    Makarov, O.A.; Den Hartog, P.; Moog, E.R.; Smith, M.L. [Argonne National Lab., IL (United States). Advanced Photon Source

    1997-09-01T23:59:59.000Z

    Eighteen insertion devices (IDs) are installed at the Advanced Photon Source (APS), and three more are scheduled for installation by the end of this year. A distributed control system for insertion devices at the APS storage ring was created with the Experimental Physics and Industrial Control System (EPICS). The basic components of this system are operator interfaces (OPIs), input output controllers (IOCs), and a local area network that allows the OPI and IOC to communicate. The IOC operates under the VxWorks OS with an EPICS database and a sequencer. The sequencer runs an ID control program written in State Notation Language. The OPI is built with the EPICS tool MEDM and provides display screens with input and output fields and buttons for gap control of the IDs. Global commands like ``open all IDs`` are C-shell scripts invoked from the display menu. The algorithms for control and protection of the ID and ID vacuum chamber and the accuracy of gap control are discussed.

  16. Control system for insertion devices at the advanced photon source

    SciTech Connect (OSTI)

    Makarov, Oleg A.; Den Hartog, Patric; Moog, Elizabeth R.; Smith, Martin L. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439-4800 (United States)

    1997-07-01T23:59:59.000Z

    Eighteen insertion devices (IDs) are installed at the Advanced Photon Source (APS), and three more are scheduled for installation by the end of this year. A distributed control system for insertion devices at the APS storage ring was created with the Experimental Physics and Industrial Control System (EPICS). The basic components of this system are operator interfaces (OPIs), input output controllers (IOCs), and a local area network that allows the OPI and IOC to communicate. The IOC operates under the VxWorks OS with an EPICS database and a sequencer. The sequencer runs an ID control program written in State Notation Language. The OPI is built with the EPICS tool MEDM and provides display screens with input and output fields and buttons for gap control of the IDs. Global commands like 'open all IDs' are C-shell scripts invoked from the display menu. The algorithms for control and protection of the ID and ID vacuum chamber and the accuracy of gap control are discussed.

  17. Bunch cleaning strategies and experiments at the Advanced Photon Source.

    SciTech Connect (OSTI)

    Sereno, N. S.

    1999-04-15T23:59:59.000Z

    The Advanced Photon Source (APS) design incorporated a positron accumulator ring (PAR) as part of the injector chain. In order to increase reliability and accommodate other uses of the injector, APS will run with electrons, eliminating the need for the PAR, provided another method of eliminating rf bucket pollution in the APS is found. Satellite bunches captured from an up to 30-ns-long beam from the linac need to be removed in the injector synchrotron and storage ring. The bunch cleaning method considered here relies on driving a stripline kicker with an amplitude modulated (AM) carrier signal where the carrier is at a revolution harmonic sideband corresponding to the vertical tune. The envelope waveform is phased so that all bunches except a single target bunch (eventually to be injected into the storage ring) are resonated vertically into a scraper. The kicker is designed with a large enough shunt impedance to remove satellite bunches from the injection energy of 0.4 GeV up to 1 GeV. Satellite bunch removal in the storage ring relies on the single bunch current tune shift resulting from the machine impedance. Small bunches remaining after initial preparation in the synchrotron may be removed by driving the beam vertically into a scraper using a stripline kicker operating at a sideband corresponding to the vertical tune for small current bunches. In this paper both design specifications and bunch purity measurements are reported for both the injector synchrotron and storage ring.

  18. Experiments with radioactive samples at the Advanced Photon Source.

    SciTech Connect (OSTI)

    Veluri, V. R.; Justus, A.; Glagola, B.; Rauchas, A.; Vacca, J.

    2000-11-01T23:59:59.000Z

    The Advanced Photon Source (APS) at Argonne National Laboratory is a national synchrotron-radiation light source research facility. The 7 GeV electron Storage Ring is currently delivering intense high brilliance x-ray beams to a total of 34 beamlines with over 120 experiment stations to members of the international scientific community to carry out forefront basic and applied research in several scientific disciplines. Researchers come to the APS either as members of Collaborative Access Teams (CATs) or as Independent Investigators (IIs). Collaborative Access Teams comprise large number of investigators from universities, industry, and research laboratories with common research objectives. These teams are responsible for the design, construction, finding, and operation of beamlines. They are the owners of their experimental enclosures (''hutches'') designed and built to meet their specific research needs. Fig. 1 gives a plan view of the location of the Collaborative Access Teams by Sector and Discipline. In the past two years, over 2000 individual experiments were conducted at the APS facility. Of these, about 60 experiments involved the use of radioactive samples, which is less than 3% of the total. However, there is an increase in demand for experiment stations to accommodate the use of radioactive samples in different physical forms embedded in various matrices with activity levels ranging from trace amounts of naturally occurring radionuclides to MBq (mCi) quantities including transuranics. This paper discusses in some detail the steps in the safety review process for experiments involving radioactive samples and how ALARA philosophy is invoked at each step and implemented.

  19. Proceedings of the fourth users meeting for the advanced photon source

    SciTech Connect (OSTI)

    Not Available

    1992-02-01T23:59:59.000Z

    The Fourth Users Meeting for the Advanced Photon Source (APS) was held on May 7--8, 1991 at Argonne National Laboratory. Scientists and engineers from universities, industry, and national laboratories came to review the status of the facility and to look ahead to the types of forefront science that will be possible when the APS is completed. The presentations at the meeting included an overview of the project; critical issues for APS operation; advances in synchrotron radiation applications; users perspectives, and funding perspectives. The actions taken at the 1991 Business Meeting of the Advanced Photon Source Users Organization are also documented.

  20. KJK /10/18-19/01 / MUTAC Review Advanced Photon Source Kwang-Je Kim

    E-Print Network [OSTI]

    KJK /10/18-19/01 / MUTAC Review Advanced Photon Source Kwang-Je Kim University of Chicago and Argonne National Laboratory MUTAC Review Lawrence Berkeley National Laboratory October 18-19, 2001 #12;KJK · KJK & CXW · Papers: - Formulas for transverse ionization cooling in SFC PRL 85(4) 700, 2000 (KJK & CXW

  1. Design, construction, and procurement methodology of magnets for the 7-GeV Advanced Photon Source

    SciTech Connect (OSTI)

    Gorski, A.; Argyrakis, J.; Biggs, J. [and others

    1995-06-01T23:59:59.000Z

    All major magnets of the Advanced Photon Source (APS) have now been measured and installed in the facility. This paper describes the mechanical design, construction, and procurement philosophy and methodology, and lessons learned from the construction and procurement of more than 1500 magnets for the APS storage ring, injector synchrotron ring, and positron accumulator ring.

  2. 7-GeV Advanced Photon Source Conceptual Design Report

    SciTech Connect (OSTI)

    Not Available

    1987-04-01T23:59:59.000Z

    During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV.

  3. Proceedings of the third users meeting for the Advanced Photon Source

    SciTech Connect (OSTI)

    Not Available

    1990-06-01T23:59:59.000Z

    The Third Users Meetings for the Advanced Photon Source, held on October 12--13, 1989, at Argonne National Laboratory, brought together scientists and engineers from industry, universities, and national laboratories to review the status of the facility and make plans for its use. The presentations documented in these proceedings include overviews of the project status and the user access policy; updates on several fundamental research efforts that make use of synchrotron radiation; reports on insertion-device R D and beam line design activities; cost and manpower estimates for beam line construction; and a panel discussion on strategies for developing and managing Collaborative Access Teams. The actions taken at the 1989 Business Meeting of the Advanced Photon Source Users Organization are also documented.

  4. One-way data transfer for PLC to VME status reporting at the Advanced Photon Source

    SciTech Connect (OSTI)

    Stein, S.J.

    1993-11-01T23:59:59.000Z

    The Personnel Safety System for the experimental beamlines at the Advanced Photon Source will use a large number of Allen Bradley Programmable Logic Controllers (PLC) to replace conventional relay logic. PLCs allow for the design of a very advanced safety system that can handle a large number of I/O points. Certain situations Require monitoring of the safety system from various locations around the storage ring via EPICS OPI (operator interface)consoles. This presentation covers the method of choice for transferring data from the Personnel Safety System into an EPICS database. Specifics on PLC ladder design, EPICS database design, and hardware selection are also discussed.

  5. EA-1455: Enhanced Operations of the Advanced Photon Source at Argonne National Laboratory-East, Argonne, Illinois

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to continue and enhance operation of the Advanced photon Source, including modifications, upgrades, and new facilities, at the U.S....

  6. Advanced Photon Source experimental beamline Safety Assessment Document: Addendum to the Advanced Photon Source Accelerator Systems Safety Assessment Document (APS-3.2.2.1.0)

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    This Safety Assessment Document (SAD) addresses commissioning and operation of the experimental beamlines at the Advanced Photon Source (APS). Purpose of this document is to identify and describe the hazards associated with commissioning and operation of these beamlines and to document the measures taken to minimize these hazards and mitigate the hazard consequences. The potential hazards associated with the commissioning and operation of the APS facility have been identified and analyzed. Physical and administrative controls mitigate identified hazards. No hazard exists in this facility that has not been previously encountered and successfully mitigated in other accelerator and synchrotron radiation research facilities. This document is an updated version of the APS Preliminary Safety Analysis Report (PSAR). During the review of the PSAR in February 1990, the APS was determined to be a Low Hazard Facility. On June 14, 1993, the Acting Director of the Office of Energy Research endorsed the designation of the APS as a Low Hazard Facility, and this Safety Assessment Document supports that designation.

  7. Proceedings of the second users meeting for the Advanced Photon Source

    SciTech Connect (OSTI)

    Not Available

    1988-11-01T23:59:59.000Z

    The second national users meeting for the Advanced Photon Source (APS) at Argonne National Laboratory -- held March 9--10, 1988, at Argonne -- brought scientists and engineers from industry, universities, and national laboratories together to review the status of the facility and expectations for its use. Presented papers and status reports in these proceedings include the current status of the APS with respect to accelerator systems, experimental facilities, and conventional facilities; scientific papers on frontiers in synchrotron applications summaries of reports on workshops held by users in certain topical groups; reports in research and development activities in support of the APS at other synchrotron facilities; and noted from a discussion of APS user access policy. In addition, actions taken by the APS Users Organization and its Executive Committee are documented in this report.

  8. Mirror mounts designed for the Advanced Photon Source SRI-CAT

    SciTech Connect (OSTI)

    Shu, D.; Benson, C.; Chang, J. [and others

    1997-09-01T23:59:59.000Z

    Use of a mirror for beamlines at third-generation synchrotron radiation facilities, such as the Advanced Photon Source (APS) at Argonne National laboratory, has many advantages. A mirror as a first optical component provides significant reduction in the beam peak heat flux and total power on the downstream monochromator and simplifies the bremsstrahlung shielding design for the beamline transport. It also allows one to have a system for multibeamline branching and switching. More generally, a mirror is used for beam focusing and/or low-pass filtering. Six different mirror mounts have been designed for the SRI-CAT beamlines. Four of them are designed as water-cooled mirrors for white or pink beam use, and the other two are for monochromatic beam use. Mirror mount designs, including vacuum vessel structure and precision supporting stages, are presented in this paper.

  9. Annex to 7-GeV Advanced Photon Source Conceptual Design Report

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    The Annex to the 7-GeV Advanced Photon Source Conceptual Design Report updates the Conceptual Design Report of 1987 (CDR-87) to include the results of further optimization and changes of the design during the past year. The design changes can be summarized as affecting three areas: the accelerator system, conventional facilities, and experimental systems. Most of the changes in the accelerator system result from inclusion of a positron accumulator ring (PAR), which was added at the suggestion of the 1987 DOE Review Committee, to speed up the filling rate of the storage ring. The addition of the PAR necessitates many minor changes in the linac system, the injector synchrotron, and the low-energy beam transport lines. 63 figs., 18 tabs.

  10. Proceedings of the first users meeting for the Advanced Photon Source

    SciTech Connect (OSTI)

    Not Available

    1988-02-01T23:59:59.000Z

    The first national users meeting for the Advanced Photon Source (APS) at Argonne National Laboratory - held November 13-14, 1986, at Argonne - brought together scientists and engineers from industry, universities, and national laboratories to exchange information on the design of the facility and expectations for its use. Presented papers and potential participating research team (PRT) plans are documented in these proceedings. Topics covered include the current status of the project, an overview of the APS conceptual design, scientific opportunities offered by the facility for synchrotron-radiation-related research, current proposals and funding mechanisms for beam lines, and user policies. A number of participants representing universities and private industry discussed plans for the possible formation of PRTs to build and use beam lines at the APS site. The meeting also provided an opportunity for potential users to organize their efforts to support and guide the facility's development.

  11. Canted Undulator Upgrade for GeoSoilEnviroCARS Sector 13 at the Advanced Photon Source

    SciTech Connect (OSTI)

    Sutton, Stephen

    2013-02-02T23:59:59.000Z

    Support for the beamline component of the canted undulator upgrade of Sector 13 (GeoSoilEnviroCARS; managed and operated by the University of Chicago) at the Advanced Photon Source (APS; Argonne National Laboratory) was received from three agencies (equally divided): NASA-SRLIDAP (now LARS), NSF-EAR-IF (ARRA) and DOE-Single Investigator Small Group (SISGR). The associated accelerator components (undulators, canted front end) were provided by the APS using DOE-ARRA funding. The intellectual merit of the research enabled by the upgrade lies in advancing our knowledge of the composition, structure and properties of earth materials; the processes they control; and the processes that produce them. The upgrade will facilitate scientific advances in the following areas: high pressure mineral physics and chemistry, non-crystalline and nano-crystalline materials at high pressure, chemistry of hydrothermal fluids, reactions at mineral-water interfaces, biogeochemistry, oxidation states of magmas, flow dynamics of fluids and solids, and cosmochemistry. The upgrade, allowing the microprobe to operate 100% of the time and the high pressure and surface scattering and spectroscopy instruments to receive beam time increases, will facilitate much more efficient use of the substantial investment in these instruments. The broad scientific community will benefit by the increase in the number of scientists who conduct cutting-edge research at GSECARS. The user program in stations 13ID-C (interface scattering) and 13ID-D (laser heated diamond anvil cell and large volume press) recommenced in June 2012. The operation of the 13ID-E microprobe station began in the Fall 2012 cycle (Oct.-Dec 2012). The upgraded canted beamlines double the amount of undulator beam time at Sector 13 and provide new capabilities including extended operations of the X-ray microprobe down to the sulfur K edge and enhanced brightness at high energy. The availability of the upgraded beamlines will advance the research being conducted at Sector 13.

  12. Environmental assessment of the proposed 7-GeV Advanced Photon Source

    SciTech Connect (OSTI)

    Not Available

    1990-02-01T23:59:59.000Z

    The potential environmental impacts of construction and operation of a 6- to 7-GeV synchrotron radiation source known as the 7-GeV Advanced Photon Source at Argonne National Laboratory were evaluated. Key elements considered include on- and off-site radiological effects; socioeconomic effects; and impacts to aquatic and terrestrial flora and fauna, wetlands, water and air quality, cultural resources, and threatened or endangered species. Also incorporated are the effects of decisions made as a result of the preliminary design (Title I) being prepared. Mitigation plans to further reduce impacts are being developed. These plans include coordination with the US Army Corps of Engineers (COE) and other responsible agencies to mitigate potential impacts to wetlands. This mitigation includes providing habitat of comparable ecological value to assure no net loss of wetlands. These mitigation actions would be permitted and monitored by COE. A data recovery plan to protect cultural resources has been developed and approved, pursuant to a Programmatic Agreement among the US Department of Energy, the Advisory Council on Historic Preservation, and the Illinois State Historic Preservation Office. Applications for National Emission Standard for Hazardous Air Pollutants (NESHAP) and air emissions permits have been submitted to the US Environmental Protection Agency (EPA) and the Illinois Environmental Protection Agency (IEPA), respectively. 71 refs., 10 figs., 11 tabs.

  13. Phase loop bandwidth measurements on the advanced photon source 352 MHz rf systems

    SciTech Connect (OSTI)

    Horan, D.; Nassiri, A.; Schwartz, C.

    1997-08-01T23:59:59.000Z

    Phase loop bandwidth tests were performed on the Advanced Photon Source storage ring 352-MHz rf systems. These measurements were made using the HP3563A Control Systems Analyzer, with the rf systems running at 30 kilowatts into each of the storage ring cavities, without stored beam. An electronic phase shifter was used to inject approximately 14 degrees of stimulated phase shift into the low-level rf system, which produced measureable response voltage in the feedback loops without upsetting normal rf system operation. With the PID (proportional-integral-differential) amplifier settings at the values used during accelerator operation, the measurement data revealed that the 3-dB response for the cavity sum and klystron power-phase loops is approximately 7 kHz and 45 kHz, respectively, with the cavities the primary bandwidth-limiting factor in the cavity-sum loop. Data were taken at various PID settings until the loops became unstable. Crosstalk between the two phase loops was measured.

  14. Kwang-Je Kim, 7/3/02 Advanced Photon Source Analysis of CSR

    E-Print Network [OSTI]

    also be solved by iteration: · Iterative solution is well-suited for studying chicane compressors Photon Source Chicane Compressor Bunching at c: b(k(s3),s3) = b0(k(s3),s3) Then the last term dominate

  15. The role of plasma evolution and photon transport in optimizing future advanced lithography sources

    E-Print Network [OSTI]

    Harilal, S. S.

    , and reduced contamination and damage to the optical mirror collection system from plasma debris and energetic particles. The ideal target is to generate a source of maximum EUV radiation output and collection in the 13 and plasma, ioniza- tion, plasma radiation, and details of photon transport in these media. We studied

  16. Standards and the design of the Advanced Photon Source control system

    SciTech Connect (OSTI)

    McDowell, W.P.; Knott, M.J.; Lenkszus, F.R.; Kraimer, M.R.; Daly, R.T.; Arnold, N.D.; Anderson, M.D.; Anderson, J.B.; Zieman, R.C.; Cha, Ben-Chin K.; Vong, F.C.; Nawrocki, G.J.; Gunderson, G.R.; Karonis, N.T.; Winans, J.R.

    1991-12-01T23:59:59.000Z

    The Advanced Photon Source (APS), now under construction at Argonne National Laboratory is a 7 GeV positron storage ring dedicated to research facilities using synchrotron radiation. This ring, along with its injection accelerators is to be controlled and monitored with a single, flexible, and expandable control system. In the conceptual stage the control system design group faced the challenges that face all control system designers: to force the machine designers to quantify and codify the system requirements, to protect the investment in hardware and software from rapid obsolescence, and to find methods of quickly incorporating new generations of equipment and replace of obsolete equipment without disrupting the exiting system. To solve these and related problems, the APS control system group made an early resolution to use standards in the design of the system. This paper will cover the present status of the APS control system as well as discuss the design decisions which led us to use industrial standards and collaborations with other laboratories whenever possible to develop a control system. It will explain the APS control system and illustrate how the use of standards has allowed APS to design a control system whose implementation addresses these issues. The system will use high performance graphic workstations using an X-Windows Graphical User Interface at the operator interface level. It connects to VME-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities.

  17. Advanced Photon Source (APS) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1USummerNews &OfficeAdvanced Photon

  18. Photonic crystal light source

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Bur, James A. (Corrales, NM)

    2004-07-27T23:59:59.000Z

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  19. Engineered Quantum Dot Single Photon Sources

    E-Print Network [OSTI]

    Sonia Buckley; Kelley Rivoire; Jelena Vuckovic

    2012-10-03T23:59:59.000Z

    Fast, high efficiency, and low error single photon sources are required for implementation of a number of quantum information processing applications. The fastest triggered single photon sources to date have been demonstrated using epitaxially grown semiconductor quantum dots (QDs), which can be conveniently integrated with optical microcavities. Recent advances in QD technology, including demonstrations of high temperature and telecommunications wavelength single photon emission, have made QD single photon sources more practical. Here we discuss the applications of single photon sources and their various requirements, before reviewing the progress made on a quantum dot platform in meeting these requirements.

  20. Advanced Photon Source Directory | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XSD-OPT XSD-QA XSD-SPC XSD-SRS XSD-SSM XSD-TAS XSD-TRR XSD-UAS XSD-XMI PSC-PA Enter the terms you wish to search for. Search the APS Secondary Navigation About Conferences...

  1. Advanced Photon Source (APS) | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Syncrotron Light Source (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects...

  2. A High-Pressure Nano-imaging Breakthrough | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Research (P.R. China), Argonne National Laboratory, University College London (UK), and the Research Complex at Harwell (UK), found that by averaging the patterns...

  3. X-ray Diffraction and Multi-Frame Phase Contrast Imaging Diagnostics for IMPULSE at the Advanced Photon Source

    SciTech Connect (OSTI)

    Iverson, Adam [National Security Technologies, LLC; Carlson, Carl [National Security Technologies, LLC; Young, Jason [National Security Technologies, LLC; Curtis, Alden [National Security Technologies, LLC; Jensen, Brian [Los Alamos National Laboratory; Ramos, Kyle [Los Alamos National Laboratory; Yeager, John [Los Alamos National Laboratory; Montgomery, David [Los Alamos National Laboratory; Fezza, Kamel [Argonne National Laboratory

    2013-07-08T23:59:59.000Z

    The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSE experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.

  4. High-power RF testing of a 352-MHZ fast-ferrite RF cavity tuner at the Advanced Photon Source.

    SciTech Connect (OSTI)

    Horan, D.; Cherbak, E.; Accelerator Systems Division (APS)

    2006-01-01T23:59:59.000Z

    A 352-MHz fast-ferrite rf cavity tuner, manufactured by Advanced Ferrite Technology, was high-power tested on a single-cell copper rf cavity at the Advanced Photon Source. These tests measured the fast-ferrite tuner performance in terms of power handling capability, tuning bandwidth, tuning speed, stability, and rf losses. The test system comprises a single-cell copper rf cavity fitted with two identical coupling loops, one for input rf power and the other for coupling the fast-ferrite tuner to the cavity fields. The fast-ferrite tuner rf circuit consists of a cavity coupling loop, a 6-1/8-inch EIA coaxial line system with directional couplers, and an adjustable 360{sup o} mechanical phase shifter in series with the fast-ferrite tuner. A bipolar DC bias supply, controlled by a low-level rf cavity tuning loop consisting of an rf phase detector and a PID amplifier, is used to provide a variable bias current to the tuner ferrite material to maintain the test cavity at resonance. Losses in the fast-ferrite tuner are calculated from cooling water calorimetry. Test data will be presented.

  5. advanced photon radiotherapy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSR Microbunching Zhirong Huang and Kwang302 Advanced Photon Source Derivation: KJK Application: ZRH Based on ZRH & KJK Main References SSY (Saldin, Schneidmiller,...

  6. aps advanced photon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSR Microbunching Zhirong Huang and Kwang302 Advanced Photon Source Derivation: KJK Application: ZRH Based on ZRH & KJK Main References SSY (Saldin, Schneidmiller,...

  7. advanced photonic devices: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSR Microbunching Zhirong Huang and Kwang302 Advanced Photon Source Derivation: KJK Application: ZRH Based on ZRH & KJK Main References SSY (Saldin, Schneidmiller,...

  8. Design of the commissioning filter/mask/window assembly for undulator beamline front ends at the Advanced Photon Source

    SciTech Connect (OSTI)

    Shu, D.; Kuzay, T.M.

    1995-10-20T23:59:59.000Z

    A compact filter/mask/window assembly has been designed for undulator beamline commissioning activity at the Advanced Photon Source beamlines. The assembly consists of one 300-{mu}m graphite filter, one 127-{mu}m CVD diamond filter and two 250-{mu}m beryllium windows. A water-cooled Glidcop fixed mask with a 4.5-mm {times} 4.5-mm output optical aperture and a 0.96-mrad {times} 1.6-mrad beam missteering acceptance is a major part in the assembly. The CVD diamond filter which is mounted on the downstream side of the fixed mask is designed to also function as a transmitting x-ray beam position monitor. The sum signal from the latter can be used to monitor the physical condition of the graphite filter and prevent any possible chain reaction damage to the beryllium windows downstream. In this paper, the design concept as well as the detailed structural design of the commissioning window are presented. Further applications of the commissioning window commissioning window components are also discussed.

  9. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube.

  10. People | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    find APS people Argonne National Laboratory 9700 S. Cass Ave Building - (630) 252- * email 090214...

  11. Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gog, M. Daghofer, G. Jackeli, J. van den Brink, G. Khaliullin, and B. J. Kim. Large Spin-Wave Energy Gap in the Bilayer Iridate Sr3Ir2O7: Evidence for Enhanced Dipolar...

  12. Posters | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Laser Tracker Principles of the 3D Laser Tracker Qty: 1 add to cart What is Optical Tooling What is Optical Tooling Qty: 1 add to cart Aligning Big Things to Small Tolerances...

  13. Training | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne's receiving staff will refuse to accept the shipment: See the APS Safety and Training page for details on a variety of hazardous materials and special instructions from...

  14. Training | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Time ESAF Contacts Calendars User Community Scientific Access Site AccessVisit Training See also: Argonne WBT Argonne eJHQ ASDACIS Training Courses Training All core...

  15. Training | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Time ESAF Contacts Calendars User Community Scientific Access Site AccessVisit Training See also: Argonne WBT Argonne eJHQ APS Beamline Shielding ASDACIS Training Courses...

  16. Committees | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and (3) participate in strategic planning. General Administrative: Beamline Commissioning Readiness Team (BCRRT) Beamline Commissioning Team (BCT) ICMS User Group...

  17. Overview | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    points in between. The knowledge gained from this research can impact the evolution of combustion engines and microcircuits, aid in the development of new pharmaceuticals, and...

  18. Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training, Schools, Etc. (All) Seminars, Training, Schools, Etc - All May 04 Diamond Substrate Development at the Michi... 11:00 a.m. 401A1100 May 05 Small Angle Scattering...

  19. Photon Source Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoid NanosheetsStudying thePhotoinducedPhoton Source

  20. advanced neutron source: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSR Microbunching Zhirong Huang and Kwang302 Advanced Photon Source Derivation: KJK Application: ZRH Based on ZRH & KJK Main References SSY (Saldin, Schneidmiller,...

  1. advanced neutron sources: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSR Microbunching Zhirong Huang and Kwang302 Advanced Photon Source Derivation: KJK Application: ZRH Based on ZRH & KJK Main References SSY (Saldin, Schneidmiller,...

  2. Photon Source Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear AstrophysicsPayroll, TaxesSeparationsRelevant toPhotonPhoton

  3. Photon Source Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum Reserves Vision,4 Photomultiplier TubePhoton

  4. Photon Source Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoid NanosheetsStudying thePhotoinduced electronPhoton

  5. The Advanced Light Source

    SciTech Connect (OSTI)

    Jackson, A.

    1991-05-01T23:59:59.000Z

    The Advanced Light Source (ALS), a national user facility currently under construction at the Lawrence Berkeley Laboratory (LBL), is a third-generation synchrotron light source designed to produce extremely bright beams of synchrotron radiation in the energy range from a few eV to 10 keV. The design is based on a 1--1.9-GeV electron storage ring (optimized at 1.5 GeV), and utilizes special magnets, known as undulators and wigglers (collectively referred to as insertion devices), to generate the radiation. The facility is scheduled to begin operating in April 1993. In this paper we describe the progress in the design, construction, and commissioning of the accelerator systems, insertion devices, and beamlines. Companion presentations at this conference give more detail of specific components in the ALS, and describe the activities towards establishing an exciting user program. 3 figs., 2 tabs.

  6. Use of the high-energy x-ray microprobe at the Advanced Photon Source to investigate the interactions between metals and bacteria.

    SciTech Connect (OSTI)

    Kemner, K. M.; Lai, B.; Maser, J.; Schneegurt, M. A.; Cai, Z.; Ilinski, P. P.; Kulpa, C. F.; Legnini, D. G.; Nealson, K. H.; Pratt, S. T.; Rodrigues, W.; Tischler, M. L.; Yun, W.

    1999-09-30T23:59:59.000Z

    Understanding the fate of heavy-metal contaminants in the environment is of fundamental importance in the development and evaluation of effective remediation and sequestration strategies. Among the factors influencing the transport of these contaminants are their chemical separation and the chemical and physical attributes of the surrounding medium. Bacteria and the extracellular material associated with them are thought to play a key role in determining a contaminant's speciation and thus its mobility in the environment. In addition, the microenvironment at and adjacent to actively metabolizing cell surfaces can be significantly different from the bulk environment. Thus, the spatial distribution and chemical separation of contaminants and elements that are key to biological processes must be characterized at micron and submicron resolution in order to understand the microscopic physical, geological, chemical, and biological interfaces that determine a contaminant's macroscopic fate. Hard X-ray microimaging is a powerful technique for the element-specific investigation of complex environmental samples at th needed micron and submicron resolution. An important advantage of this technique results from the large penetration depth of hard X-rays in water. This advantage minimizes the requirements for sample preparation and allows the detailed study of hydrated samples. This paper presents results of studies of the spatial distribution of naturally occurring metals and a heavy-metal contaminant (Cr) in and near hydrated bacteria (Pseudomonas fluorescens) in the early stages of biofilm development, performed at the Advanced Photon Source Sector 2 X-ray microscopy beamline.

  7. Construction Schedule | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction Schedule Current Projects 27-ID and 35-ID APS Vibration Reporting Protocol Summary of Construction Equipment Tests and Activities Jan 2014 Past Projects APCF LOM438...

  8. Imaging (XSD) | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diffraction pattern from a NiTi sample in austenite phase, generated with six x-ray pulses 32-ID-B Ultrafast Diffraction Ultrafast white-beam diffraction capability has been...

  9. Storage Ring | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Electron Storage Ring The 7-GeV electrons are injected into the 1104-m-circumference storage ring, a circle of more than 1,000 electromagnets and associated equipment, located...

  10. AES Groups | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using leading-edge technology such as 3D modeling, rendering, and animation, as well as additive manufacturing using our rapid prototype machine. Mechanical Engineering and...

  11. Technical Bulletins | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A reference for work at the APS 10295 TB-22 Magnetic Measurements of the Elliptical Multipole Wiggler Prototype 3195 TB-21 Radiation Shielding of Insertion-Device Beamlines...

  12. Beamlines Directory | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anomalous dispersion Small-angle x-ray scattering Subatomic (<0.85 ) resolution Surface diffraction Surface diffraction (UHV) Time-resolved crystallography Time-resolved...

  13. ASD Groups | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASD Groups Accelerator Operations and Physics Applies integrated expertise in accelerator physics, operations techniques, safety systems, software development, and numerical...

  14. ASD Courses | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Systems Division Courses ASD 102 Tunnel Safety ASD 115 Controlled Access ASD 124 Controlled Access for Operators ASD 125 ASD Lockout Tagout...

  15. XSD Groups | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (IXN) Primary Contact: Thomas Gog Research Disciplines: Condensed Matter Physics, Geophysics, Materials Science Magnetic Materials (MM) Primary Contact: Daniel Haskel Research...

  16. Media Center | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility users; and funding agencies APS Brochure Posters Image Bank Photos and graphics relevant to the APS, downloadable in a variety of sizes from the APS Flickr site....

  17. Linear Accelerator | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photo below). Selective phasing of the electric field accelerates the electrons to 450 million volts (MeV). At 450 MeV, the electrons are relativistic: they are traveling at...

  18. APS Upgrade | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS View Larger The brightness and energy of x-ray beams are critical properties for research. Higher brightness means more x-rays can be focused onto a smaller, laser-like spot,...

  19. Transportation Resources | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Resources The following means of transportation are available for getting to Argonne. Airports Argonne is located within 25 miles of two major Chicago airports:...

  20. Booster Synchrotron | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electron volts (7 GeV) in one-half second. (By comparison, the electron beam that lights a TV screen is only 25,000 electron volts.) The electrons are now traveling at...

  1. APS News | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Physics Award to Kwang-Je Kim of ASD October 22, 2013 The 2013 U.S. Particle Accelerator School Prize for Achievement in Accelerator Physics and Technology has been...

  2. Optics (XSD) | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optics Group (X-ray Science Division) The mission of the Optics Group is to facilitate the efficient and productive use and operation of APS beamline-based research facilities. In...

  3. Organization Chart | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies. APS Engineering Support Division (AES) AES provides the engineering, mechanical, and facility services and computing infrastructure to enable the world-class...

  4. Site Map | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Welcome Visitor Information Job Openings Apply for Beam Time Machine Status | Schedule Conferences Seminars & Meetings Publications Safety and Training Construction Schedule Find...

  5. Recent Publications | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shu Xu, Scott W. Rowlinson, Kelsey C. Duggan, Surajit Banerjee, Shalley N. Kudalkar, William R. Birmingham, Kebreab Ghebreselasie, Lawrence J. Marnett, Action at a Distance:...

  6. Hazard Classes | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HC1 APS Base Low Temperatures HC2 Cryogenic Systems High Temperatures HC3.1 Electric Furnace HC3.2 Optical Furnace HC3.3 Other High Temperature Lasers HC4.2 Laser, Class 2 HC4.3a...

  7. Advanced Light Source Activity Report 2005

    E-Print Network [OSTI]

    Tamura Ed., Lori S.

    2010-01-01T23:59:59.000Z

    upgrade on the Advanced Light Source," Nucl. Instrum. Meth.n photoemission at the Advanced Light Source," Radiât. Phys.high-pressure studies at the Advanced Light Source w i t h a

  8. Light Source Notes | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Huang, K. Harkay, J. Lewellen, S.V. Milton, and V. Sajaev LS-302 Eddy-Current-Induced Multipole Field Calculations Nicholas Sereno,Suk Hong Kim LS-301 Analysis of Short-Bunch...

  9. Asymmetric Architecture for Heralded Single Photon Sources

    E-Print Network [OSTI]

    Luca Mazzarella; Francesco Ticozzi; Alexander V. Sergienko; Giuseppe Vallone; Paolo Villoresi

    2013-02-15T23:59:59.000Z

    Single photon source represent a fundamental building block for optical implementations of quantum information tasks ranging from basic tests of quantum physics to quantum communication and high-resolution quantum measurement. In this paper we investigate the performance of a multiplexed system based on asymmetric configuration of multiple heralded single photon sources. {To compare the effectiveness of different designs we introduce a single-photon source performance index that is based on the value of single photon probability required to achieve a guaranteed signal to noise ratio.} The performance and scalability comparison with both currently existing multiple-source architectures and faint laser configurations reveals an advantage the proposed scheme offers in realistic scenarios. This analysis also provides insights on the potential of using such architectures for integrated implementation.

  10. Highly Retrievable Spinwave-Photon Entanglement Source

    E-Print Network [OSTI]

    Sheng-Jun Yang; Xu-Jie Wang; Jun Li; Jun Rui; Xiao-Hui Bao; Jian-Wei Pan

    2015-05-03T23:59:59.000Z

    Entanglement between a single photon and a quantum memory forms the building blocks for quantum repeater and quantum network. Previous entanglement sources are typically with low retrieval efficiency, which limits future larger-scale applications. Here, we report a source of highly retrievable spinwave-photon entanglement. Polarization entanglement is created through interaction of a single photon with ensemble of atoms inside a low-finesse ring cavity. The cavity is engineered to be resonant for dual spinwave modes, which thus enables efficient retrieval of the spinwave qubit. An intrinsic retrieval efficiency up to 76(4)% has been observed. Such a highly retrievable atom-photon entanglement source will be very useful in future larger-scale quantum repeater and quantum network applications.

  11. Lighting affects appearance LightSource emits photons

    E-Print Network [OSTI]

    Jacobs, David

    1 Lighting affects appearance #12;2 LightSource emits photons Photons travel in a straight line). And then some reach the eye/camera. #12;3 Basic fact: Light is linear Double intensity of sources, double photons reaching eye. Turn on two lights, and photons reaching eye are same as sum of number when each

  12. Advanced Light Source control system

    SciTech Connect (OSTI)

    Magyary, S.; Chin, M.; Cork, C.; Fahmie, M.; Lancaster, H.; Molinari, P.; Ritchie, A.; Robb, A.; Timossi, C.

    1989-03-01T23:59:59.000Z

    The Advanced Light Source (ALS) is a third generation 1--2 GeV synchrotron radiation source designed to provide ports for 60 beamlines. It uses a 50 MeV electron linac and 1.5 GeV, 1 Hz, booster synchrotron for injection into a 1--2 GeV storage ring. Interesting control problems are created because of the need for dynamic closed beam orbit control to eliminate interaction between the ring tuning requirements and to minimize orbit shifts due to ground vibrations. The extremely signal sensitive nature of the experiments requires special attention to the sources of electrical noise. These requirements have led to a control system design which emphasizes connectivity at the accelerator equipment end and a large I/O bandwidth for closed loop system response. Not overlooked are user friendliness, operator response time, modeling, and expert system provisions. Portable consoles are used for local operation of machine equipment. Our solution is a massively parallel system with >120 Mbits/sec I/O bandwidth and >1500 Mips computing power. At the equipment level connections are made using over 600 powerful Intelligent Local Controllers (ILC-s) mounted in 3U size Eurocard slots using fiber-optic cables between rack locations. In the control room, personal computers control and display all machine variables at a 10 Hz rate including the scope signals which are collected though the control system. Commercially available software and industry standards are used extensively. Particular attention is paid to reliability, maintainability and upgradeability. 10 refs., 11 figs.

  13. Quantum key distribution with entangled photon sources

    E-Print Network [OSTI]

    Ma, X; Lo, H K; Ma, Xiongfeng; Fung, Chi-Hang Fred; Lo, Hoi-Kwong

    2007-01-01T23:59:59.000Z

    A parametric down-conversion (PDC) source can be used as either a triggered single photon source or an entangled photon source in quantum key distribution (QKD). The triggering PDC QKD has already been studied in the literature. On the other hand, a model and a post-processing protocol for the entanglement PDC QKD are still missing. In this paper, we fill in this important gap by proposing such a model and a post-processing protocol for the entanglement PDC QKD. Although the PDC model is proposed to study the entanglement-based QKD, we emphasize that our generic model may also be useful for other non-QKD experiments involving a PDC source. Since an entangled PDC source is a basis independent source, we apply Koashi-Preskill's security analysis to the entanglement PDC QKD. We also investigate the entanglement PDC QKD with two-way classical communications. We find that the recurrence scheme increases the key rate and Gottesman-Lo protocol helps tolerate higher channel losses. By simulating a recent 144km open-a...

  14. Quantum key distribution with entangled photon sources

    E-Print Network [OSTI]

    Xiongfeng Ma; Chi-Hang Fred Fung; Hoi-Kwong Lo

    2007-03-14T23:59:59.000Z

    A parametric down-conversion (PDC) source can be used as either a triggered single photon source or an entangled photon source in quantum key distribution (QKD). The triggering PDC QKD has already been studied in the literature. On the other hand, a model and a post-processing protocol for the entanglement PDC QKD are still missing. In this paper, we fill in this important gap by proposing such a model and a post-processing protocol for the entanglement PDC QKD. Although the PDC model is proposed to study the entanglement-based QKD, we emphasize that our generic model may also be useful for other non-QKD experiments involving a PDC source. Since an entangled PDC source is a basis independent source, we apply Koashi-Preskill's security analysis to the entanglement PDC QKD. We also investigate the entanglement PDC QKD with two-way classical communications. We find that the recurrence scheme increases the key rate and Gottesman-Lo protocol helps tolerate higher channel losses. By simulating a recent 144km open-air PDC experiment, we compare three implementations -- entanglement PDC QKD, triggering PDC QKD and coherent state QKD. The simulation result suggests that the entanglement PDC QKD can tolerate higher channel losses than the coherent state QKD. The coherent state QKD with decoy states is able to achieve highest key rate in the low and medium-loss regions. By applying Gottesman-Lo two-way post-processing protocol, the entanglement PDC QKD can tolerate up to 70dB combined channel losses (35dB for each channel) provided that the PDC source is placed in between Alice and Bob. After considering statistical fluctuations, the PDC setup can tolerate up to 53dB channel losses.

  15. Effect of Loss on Multiplexed Single-Photon Sources

    E-Print Network [OSTI]

    Damien Bonneau; Gabriel J. Mendoza; Jeremy L. O'Brien; Mark G. Thompson

    2015-04-29T23:59:59.000Z

    An on-demand single-photon source is a key requirement for scaling many optical quantum technologies. A promising approach to realize an on-demand single-photon source is to multiplex an array of heralded single-photon sources using an active optical switching network. However, the performance of multiplexed sources is degraded by photon loss in the optical components and the non-unit detection efficiency of the heralding detectors. We provide a theoretical description of a general multiplexed single-photon source with lossy components and derive expressions for the output probabilities of single-photon emission and multi-photon contamination. We apply these expressions to three specific multiplexing source architectures and consider their tradeoffs in design and performance. To assess the effect of lossy components on near- and long-term experimental goals, we simulate the multiplexed sources when used for many-photon state generation under various amounts of component loss. We find that with a multiplexed source composed of switches with ~0.2-0.4 dB loss and high efficiency number-resolving detectors, a single-photon source capable of efficiently producing 20-40 photon states with low multi-photon contamination is possible, offering the possibility of unlocking new classes of experiments and technologies.

  16. Advanced Light Source Activity Report 2002

    SciTech Connect (OSTI)

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori (Editors)

    2003-06-12T23:59:59.000Z

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  17. Advanced Light Source Activity Report 2000

    SciTech Connect (OSTI)

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-04-01T23:59:59.000Z

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

  18. Conferences and Workshops | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 Date Title Location January 23-25 European XFEL Users' Meeting 2013 Hamburg, Germany March 3-7 TMS 2013 San Antonio, TX March 12-22 American Physical Society March...

  19. Conferences and Workshops | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Date Title Location January 26-28 European XFEL Users Meeting DESY, Hamburg, Germany March 13-18 International School & Symposium on Multifunctional Molecule-based Materials...

  20. APCF Construction Schedule | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APCF Past APCF Memoranda APCF, Construction Schedule This is a tentative schedule of the daily construction at APCF. For the preliminary two to three week look ahead schedule,...

  1. APS News 2013 | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the Promotion of Science October 27, 2014 Peter Crane, Dean of the Yale School of Forestry & Environmental Studies and a long-time user of the U.S. Department of Energy's...

  2. Handling AES Emergencies | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Pager Edmund Chang 4-1888 Tom Barkalow (630) 218-9025 John Maclean 4-5259 Geoff Pile Home phone numbers FOR 911 CALLS AND ALL ACCIDENTS (WITH OR WITHOUT INJURIES), PLEASE...

  3. Fishing for Viral RNA | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. Dyba2, Jrgen Kjems3, Charles D. Schwieters1, Soenke Seifert4, Randall E. Winans4, Norman R. Watts1, Stephen J. Stahl1, Paul T. Wingfield1, R. Andrew Byrd1, Stuart F.J. Le...

  4. APS News 2008 | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capping a four-year design, development, and production effort. Looking into the Solar Wind Looking into the Solar Wind June 16, 2008 What could have been a shattering let-down...

  5. LOMs and Beamlines | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of researchers who had carried out experiments at other synchrotron facilities. One lesson learned was the need for adequate user laboratory and office space. The APS User...

  6. Science & Research Highlights | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crystals that glow different colors may be the missing ingredient for white light-emitting diode lighting that illuminates homes and offices as effectively as natural sunlight....

  7. Science Highlights 2013 | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crystals that glow different colors may be the missing ingredient for white light-emitting diode lighting that illuminates homes and offices as effectively as natural sunlight....

  8. Scientific Software Projects | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    obtain the orientation or strain information within an inhomogeneous material Grains in a polycrystalline sample MIDAS: Microstructural Imaging using Diffraction Analysis Software...

  9. Composite Battery Boost | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Se) sulfides that act as the positive electrode in a rechargeable lithium-ion (Li-ion) battery could boost the range of electric vehicles by up to five times, according to...

  10. Required Training for Users | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Required Training for Users All APS users, including APS staff, resident users, general users, etc., must complete the required "core" courses listed below before participating in...

  11. User Facility Training | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    See Also: Argonne WBT Argonne eJHQ ACIS Training APS Beamline Shielding Argonne National Laboratory User Facility Training Core Courses: These courses require your badge number and...

  12. Materials Physics and Engineering | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Techniques Sectors Directory Status and Schedule Safety and Training Divisions APS Engineering Support Division AES Groups Accelerator Systems Division ASD Groups X-ray Science...

  13. Experiment Hall & Beamline | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1104-m-circumference optical bench. The hall floor is made of 1-ft-thick poured concrete. Usual practice in poured concrete construction is the use of evenly spaced cuts in...

  14. Safety and Training | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Form Reference Material APS domain only Configuration Control Incidents and Follow-ups Facility Hazard Analysis Glove Selection | Safety Shoe Mobile LOM Shop Usage Recycling:...

  15. Safety Interlocks Group - Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Info APS Safety Page ESH Safety Manual Safety Interlocks Systems ACIS PSS FEEPS BLEPS UPS Division Links APS Organization Chart Beamlines Directory APS Engineering Support...

  16. APS News 2011 | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has enabled the discovery of a groundbreaking new drug treatment for malignant melanoma, the deadliest form of skin cancer. Paper on Fast Pharmaceuticals by APS Authors...

  17. Superconductivity with Stripes | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between stripe order, superconductivity, and lattice structure in high-Tc superconductors was manipulated in high-pressure experiments at the APS. The physics of...

  18. Science Highlights 2011 | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    large, negatively charged ions with multiple atoms, called polyoxyanions. Creating the Heart of a Planet in the Heart of a Gem Creating the Heart of a Planet in the Heart of a Gem...

  19. Imaging Ferroelectric Domains | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    along the dotted line in a), colored with the phase of the dotted line in b). When thin films of ferroelectric materials are grown on single-crystal substrates, they can...

  20. APS News 2012 | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crossroads event Wednesday, bridging the art and science of understanding Picasso. APS Lights the Way to 2012 Chemistry Nobel APS Lights the Way to 2012 Chemistry Nobel October 15,...

  1. Conferences and Workshops | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 4-6 Users Week 2009 Argonne National Laboratory, Argonne, IL May 4-8 2009 Particle Accelerator Conference (PAC09) Vancouver, BC, Canada May 6-8 High Pressure Synchrotron...

  2. APS News 2013 | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Physics Award to Kwang-Je Kim of ASD October 22, 2013 The 2013 U.S. Particle Accelerator School Prize for Achievement in Accelerator Physics and Technology has been...

  3. Argonne Site Access | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Site Access Argonne National Laboratory is a controlled-access facility. You will need a visitor's pass or a user badge to enter the Argonne campus. You must notify us of...

  4. Argonne User Facility Agreements | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne User Facility Agreements About User Agreements If you are not an Argonne National Laboratory employee, a user agreement signed by your home institution is a prerequisite...

  5. APS Map | Overview | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technical facility: the linear accelerator, the booster synchrotron, the electron storage ring, insertion devices, and the experiment hall. APS systems map Next: Linear Accelerator...

  6. APS News 2010 | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    been made a Fellow of the Optical Society "For contributions and leadership in x-ray optics, metrology, and nanofocusing optics development." George Srajer and Jin Wang Elected...

  7. How HIV Infects Cells | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model Mimics Metalloenzymes New Physics in a Copper-Iridium Compound A Key Target for Diabetes Drugs Science Highlights Archives: 2014 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007...

  8. Science Highlights 2010 | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biological functions that impact health conditions such as obesity, cancer, and diabetes. A Molecular Fossil A Molecular Fossil November 16, 2010 In today's world of...

  9. Metal Model Mimics Metalloenzymes | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Physics in a Copper-Iridium Compound A Key Target for Diabetes Drugs Molten Metal Solidifies into a New Kind of Glass Organic Polymers Show Sunny Potential A New Family of...

  10. Conferences and Workshops | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-rays in the Fourth Dimension Park Hyatt Chicagom Chicago, IL 60611 May 7-10 APSCNMEMC Users Meeting Argonne National Laboratory, Argonne, IL May 20-25 International Particle...

  11. Advances in FDTD Techniques and Applications in Photonics

    E-Print Network [OSTI]

    Taflove, Allen

    -) Radar FDTD Gfdtd bigboy Freeware / closed-source FDTD projects (3): EMP3 Field Precision EM Explorer GprMax Commercial / proprietary FDTD software vendors (27): Acceleware APLAC Apollo Photonics Applied Simulation

  12. Ultrafast sources of entangled photons for quantum information processing

    E-Print Network [OSTI]

    Kuzucu, Oktay Onur, 1980-

    2008-01-01T23:59:59.000Z

    Recent advances in quantum information processing (QIP) have enabled practical applications of quantum mechanics in various fields such as cryptography, computation, and metrology. Most of these applications use photons ...

  13. Fast quantum dot single photon source triggered at telecommunications wavelength

    E-Print Network [OSTI]

    Kelley Rivoire; Sonia Buckley; Arka Majumdar; Hyochul Kim; Pierre Petroff; Jelena Vuckovic

    2010-12-20T23:59:59.000Z

    We demonstrate a quantum dot single photon source at 900 nm triggered at 300 MHz by a continuous wave telecommunications wavelength laser followed by an electro-optic modulator. The quantum dot is excited by on-chip-generated second harmonic radiation, resonantly enhanced by a GaAs photonic crystal cavity surrounding the InAs quantum dot. Our result suggests a path toward the realization of telecommunications-wavelength-compatible quantum dot single photon sources with speeds exceeding 1 GHz.

  14. Lighting affects appearance LightSource emits photons

    E-Print Network [OSTI]

    Jacobs, David

    1 Lighting affects appearance #12;2 LightSource emits photons Photons travel in a straight line). And then some reach the eye/camera. #12;3 Reflectance Model how objects reflect light. Model light sources Algorithms for computing Shading: computing intensities within polygons Determine what light strikes what

  15. Refrigeration options for the Advanced Light Source Superbend Dipole Magnets

    SciTech Connect (OSTI)

    Green, M.A.; Hoyer, E.H.; Schlueter, R.D.; Taylor, C.E.; Zbasnik, J.; Wang, S.T.

    1999-07-09T23:59:59.000Z

    The 1.9 GeV Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL) produces photons with a critical energy of about 3.1 kev at each of its thirty-six 1.3 T gradient bending magnets. It is proposed that at three locations around the ring the conventional gradient bending magnets be replaced with superconducting bending magnets with a maximum field of 5.6 T. At the point where the photons are extracted, their critical energy will be about 12 keV. In the beam lines where the SuperBend superconducting magnets are installed, the X ray brightness at 20 keV will be increased over two orders of magnitude. This report describes three different refrigeration options for cooling the three SuperBend dipoles. The cooling options include: (1) liquid helium and liquid nitrogen cryogen cooling using stored liquids, (2) a central helium refrigerator (capacity 70 to 100 W) cooling all of the SuperBend magnets, (3) a Gifford McMahon (GM) cryocooler on each of the dipoles. This paper describes the technical and economic reasons for selecting a small GM cryocooler as the method for cooling the SuperBend dipoles on the LBNL Advanced Light Source.

  16. Characterizing heralded single-photon sources with imperfect measurement devices

    E-Print Network [OSTI]

    M. Razavi; I. Söllner; E. Bocquillon; C. Couteau; R. Laflamme; G. Weihs

    2009-09-12T23:59:59.000Z

    Any characterization of a single-photon source is not complete without specifying its second-order degree of coherence, i.e., its $g^{(2)}$ function. An accurate measurement of such coherence functions commonly requires high-precision single-photon detectors, in whose absence, only time-averaged measurements are possible. It is not clear, however, how the resulting time-averaged quantities can be used to properly characterize the source. In this paper, we investigate this issue for a heralded source of single photons that relies on continuous-wave parametric down-conversion. By accounting for major shortcomings of the source and the detectors--i.e., the multiple-photon emissions of the source, the time resolution of photodetectors, and our chosen width of coincidence window--our theory enables us to infer the true source properties from imperfect measurements. Our theoretical results are corroborated by an experimental demonstration using a PPKTP crystal pumped by a blue laser, that results in a single-photon generation rate about 1.2 millions per second per milliwatt of pump power. This work takes an important step toward the standardization of such heralded single-photon sources.

  17. Overcoming phonon-induced dephasing for indistinguishable photon sources

    E-Print Network [OSTI]

    Tom Close; Erik M. Gauger; Brendon W. Lovett

    2012-06-25T23:59:59.000Z

    Reliable single photon sources constitute the basis of schemes for quantum communication and measurement based quantum computing. Solid state single photon sources based on quantum dots are convenient and versatile but the electronic transitions that generate the photons are subject to interactions with lattice vibrations. Using a microscopic model of electron-phonon interactions and a quantum master equation, we here examine phonon-induced decoherence and assess its impact on the rate of production, and indistinguishability, of single photons emitted from an optically driven quantum dot system. We find that, above a certain threshold of desired indistinguishability, it is possible to mitigate the deleterious effects of phonons by exploiting a three-level Raman process for photon production.

  18. A semiconductor source of triggered entangled photon pairs?

    E-Print Network [OSTI]

    A. Gilchrist; K. J. Resch; A. G. White

    2006-08-08T23:59:59.000Z

    The realisation of a triggered entangled photon source will be of great importance in quantum information, including for quantum key distribution and quantum computation. We show here that: 1) the source reported in ``A semiconductor source of triggered entangled photon pairs''[1. Stevenson et al., Nature 439, 179 (2006)]} is not entangled; 2) the entanglement indicators used in Ref. 1 are inappropriate, relying on assumptions invalidated by their own data; and 3) even after simulating subtraction of the significant quantity of background noise, their source has insignificant entanglement.

  19. Advanced Neutron Source (ANS) Project progress report FY 1992

    SciTech Connect (OSTI)

    Campbell, J.H. (ed.); Selby, D.L.; Harrington.

    1993-01-01T23:59:59.000Z

    This report discusses project management, research and development, design, and safety at the Advanced Neutron Source facility.

  20. Single Photon Source Using Laser Pulses and Two-Photon Absorption

    E-Print Network [OSTI]

    B. C. Jacobs; T. B. Pittman; J. D. Franson

    2006-03-17T23:59:59.000Z

    We have previously shown that two-photon absorption (TPA) and the quantum Zeno effect can be used to make deterministic quantum logic devices from an otherwise linear optical system. Here we show that this type of quantum Zeno gate can be used with additional two-photon absorbing media and weak laser pulses to make a heralded single photon source. A source of this kind is expected to have a number of practical advantages that make it well suited for large scale quantum information processing applications.

  1. Recent advances in vacuum arc ion sources

    SciTech Connect (OSTI)

    Brown, I.G.; Anders, A.; Anders, S.; Dickinson, M.R.; MacGill, R.A.; Oks, E.M.

    1995-07-01T23:59:59.000Z

    Intense beams of metal ions can be formed from a vacuum arc ion source. Broadbeam extraction is convenient, and the time-averaged ion beam current delivered downstream can readily be in the tens of milliamperes range. The vacuum arc ion source has for these reasons found good application for metallurgical surface modification--it provides relatively simple and inexpensive access to high dose metal ion implantation. Several important source developments have been demonstrated recently, including very broad beam operation, macroparticle removal, charge state enhancement, and formation of gaseous beams. The authors have made a very broad beam source embodiment with beam formation electrodes 50 cm in diameter, producing a beam of width {approximately}35 cm for a nominal beam area of {approximately}1,000 cm{sup 2}, and a pulsed Ti beam current of about 7 A was formed at a mean ion energy of {approximately}100 keV. Separately, they`ve developed high efficiency macroparticle-removing magnetic filters and incorporated such a filter into a vacuum arc ion source so as to form macroparticle-free ion beams. Jointly with researchers at the High Current Electronics Institute at Tomsk, Russia, and the Gesellschaft fuer Schwerionenforschung at Darmstadt, Germany, they`ve developed a compact technique for increasing the charge states of ions produced in the vacuum arc plasma and thus providing a simple means of increasing the ion energy at fixed extractor voltage. Finally, operation with mixed metal and gaseous ion species has been demonstrated. Here, they briefly review the operation of vacuum marc ion sources and the typical beam and implantation parameters that can be obtained, and describe these source advances and their bearing on metal ion implantation applications.

  2. Efficient room-temperature source of polarized single photons

    DOE Patents [OSTI]

    Lukishova, Svetlana G. (Honeoye Falls, NY); Boyd, Robert W. (Rochester, NY); Stroud, Carlos R. (Rochester, NY)

    2007-08-07T23:59:59.000Z

    An efficient technique for producing deterministically polarized single photons uses liquid-crystal hosts of either monomeric or oligomeric/polymeric form to preferentially align the single emitters for maximum excitation efficiency. Deterministic molecular alignment also provides deterministically polarized output photons; using planar-aligned cholesteric liquid crystal hosts as 1-D photonic-band-gap microcavities tunable to the emitter fluorescence band to increase source efficiency, using liquid crystal technology to prevent emitter bleaching. Emitters comprise soluble dyes, inorganic nanocrystals or trivalent rare-earth chelates.

  3. Advanced Photon Source, Canadian Light Source Strengthen Ties...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influenza Virus Clever Apes on WBEZ: Breaking the Fossil Record Gerig to Chair Particle Accelerator School Board APS News Archives: 2014 | 2013 2012 | 2011 | 2010 | 2009 2008 |...

  4. ADVANCES IN MODELING OF GROUND-SOURCE HEAT

    E-Print Network [OSTI]

    ADVANCES IN MODELING OF GROUND-SOURCE HEAT PUMP SYSTEMS By ANDREW D. CHIASSON Bachelor of Applied 1999 #12;ii ADVANCES IN MODELING OF GROUND-SOURCE HEAT PUMP SYSTEMS Thesis Approved: Thesis Adviser..............................................................................................................1 1.1. Overview of Ground-Source Heat Pump Systems ..............................................1 1

  5. Advanced Variable Speed Air-Source Integrated Heat Pump 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pump 2013 Peer Review Advanced Variable Speed Air-Source Integrated Heat Pump 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's Program...

  6. Engineering integrated pure narrow-band photon sources

    E-Print Network [OSTI]

    Enrico Pomarico; Bruno Sanguinetti; Clara I. Osorio; Harald Herrmann; Rob Thew

    2011-08-29T23:59:59.000Z

    Engineering and controlling well defined states of light for quantum information applications is of increasing importance as the complexity of quantum systems grows. For example, in quantum networks high multi-photon interference visibility requires properly devised single mode sources. In this paper we propose a spontaneous parametric down conversion source based on an integrated cavity-waveguide, where single narrow-band, possibly distinct, spectral modes for the idler and the signal fields can be generated. This mode selection takes advantage of the clustering effect, due to the intrinsic dispersion of the nonlinear material. In combination with a CW laser and fast detection, our approach provides a means to engineer a source that can efficiently generate pure photons, without filtering, that is compatible with long distance quantum communication. Furthermore, it is extremely flexible and could easily be adapted to a wide variety of wavelengths and applications.

  7. A spintronic source of circularly polarized single photons

    E-Print Network [OSTI]

    Asshoff, Pablo; Kalt, Heinz; Hetterich, Michael

    2011-01-01T23:59:59.000Z

    We present a spintronic single photon source which emits circularly polarized light, where the helicity is determined by an applied magnetic field. Photons are emitted from an InGaAs quantum dot inside an electrically operated spin light-emitting diode, which comprises the diluted magnetic semiconductor ZnMnSe. The circular polarization degree of the emitted light is high, reaching 83% at an applied magnetic field of 2T and 96% at 6 T. Autocorrelation traces recorded in pulsed operation mode prove the emitted light to be antibunched. The two circular polarization states could be used for representing quantum states |0> and |1> in quantum cryptography implementations.

  8. A spintronic source of circularly polarized single photons

    E-Print Network [OSTI]

    Pablo Asshoff; Andreas Merz; Heinz Kalt; Michael Hetterich

    2011-03-06T23:59:59.000Z

    We present a spintronic single photon source which emits circularly polarized light, where the helicity is determined by an applied magnetic field. Photons are emitted from an InGaAs quantum dot inside an electrically operated spin light-emitting diode, which comprises the diluted magnetic semiconductor ZnMnSe. The circular polarization degree of the emitted light is high, reaching 83% at an applied magnetic field of 2T and 96% at 6 T. Autocorrelation traces recorded in pulsed operation mode prove the emitted light to be antibunched. The two circular polarization states could be used for representing quantum states |0> and |1> in quantum cryptography implementations.

  9. An all-silicon single-photon source by unconventional photon blockade

    E-Print Network [OSTI]

    Flayac, H; Savona, V

    2015-01-01T23:59:59.000Z

    The lack of suitable quantum emitters in silicon and silicon-based materials has prevented the realization of room temperature, compact, stable, and integrated sources of single photons in a scalable on-chip architecture, so far. Current approaches rely on exploiting the enhanced optical nonlinearity of silicon through light confinement or slow-light propagation, and are based on parametric processes that typically require substantial input energy and spatial footprint to reach a reasonable output yield. Here we propose an alternative all-silicon device that employs a different paradigm, namely the interplay between quantum interference and the third-order intrinsic nonlinearity in a system of two coupled optical cavities. This unconventional photon blockade allows to produce antibunched radiation at extremely low input powers. We demonstrate a reliable protocol to operate this mechanism under pulsed optical excitation, as required for device applications, thus implementing a true single-photon source. We fin...

  10. Advanced Neutron Source: Plant Design Requirements

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  11. Extreme environmental testing of a rugged correlated photon source

    E-Print Network [OSTI]

    Grieve, James A; Ling, Alexander

    2015-01-01T23:59:59.000Z

    Experiments in long distance quantum key distribution have motivated the development of ruggedised single photon sources, capable of producing useful correlations even when removed from the warm, nurturing environment found in most optics laboratories. As part of an ongoing pro- gramme to place such devices into low earth orbit (LEO), we have developed and built a number of rugged single photon sources based on spontaneous parametric downconversion. In order to evalu- ate device reliability, we have subjected our design to various thermal, mechanical and atmospheric stresses. Our results show that while such a device may tolerate launch into orbit, operation in orbit and casual mishandling by graduate students, it is probably unable to survive the forcible disassembly of a launch vehicle at the top of a ball of rapidly expanding and oxidising kerosene and liquid oxygen.

  12. Advanced Neutron Source radiological design criteria

    SciTech Connect (OSTI)

    Westbrook, J.L.

    1995-08-01T23:59:59.000Z

    The operation of the proposed Advanced Neutron Source (ANS) facility will present a variety of radiological protection problems. Because it is desired to design and operate the ANS according to the applicable licensing standards of the Nuclear Regulatory Commission (NRC), it must be demonstrated that the ANS radiological design basis is consistent not only with state and Department of Energy (DOE) and other usual federal regulations, but also, so far as is practicable, with NRC regulations and with recommendations of such organizations as the Institute of Nuclear Power Operations (INPO) and the Electric Power Research Institute (EPRI). Also, the ANS radiological design basis is in general to be consistent with the recommendations of authoritative professional and scientific organizations, specifically the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). As regards radiological protection, the principal goals of DOE regulations and guidance are to keep occupational doses ALARA [as low as (is) reasonably achievable], given the current state of technology, costs, and operations requirements; to control and monitor contained and released radioactivity during normal operation to keep public doses and releases to the environment ALARA; and to limit doses to workers and the public during accident conditions. Meeting these general design objectives requires that principles of dose reduction and of radioactivity control by employed in the design, operation, modification, and decommissioning of the ANS. The purpose of this document is to provide basic radiological criteria for incorporating these principles into the design of the ANS. Operations, modification, and decommissioning will be covered only as they are affected by design.

  13. Current status of the Taiwan Photon Source project

    SciTech Connect (OSTI)

    Chang, Shih-Lin [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, 30076 Taiwan (China)

    2014-03-05T23:59:59.000Z

    The progress of establishment of a high brightness and low emittance mid-energy storage ring is reported. The status of the 3 GeV Taiwan Photon Source (TPS) currently under construction will be presented. The progress on the civil construction, manufacturing of machine components, as well as the opportunity of using low emittace synchrotron source and phase I beamlines at TPS will be mentioned. The future planning of phase II beamlines and related research will be sketched. Future developments will be also briefly outlined.

  14. An all-silicon single-photon source by unconventional photon blockade

    E-Print Network [OSTI]

    H. Flayac; D. Gerace; V. Savona

    2015-03-10T23:59:59.000Z

    The lack of suitable quantum emitters in silicon and silicon-based materials has prevented the realization of room temperature, compact, stable, and integrated sources of single photons in a scalable on-chip architecture, so far. Current approaches rely on exploiting the enhanced optical nonlinearity of silicon through light confinement or slow-light propagation, and are based on parametric processes that typically require substantial input energy and spatial footprint to reach a reasonable output yield. Here we propose an alternative all-silicon device that employs a different paradigm, namely the interplay between quantum interference and the third-order intrinsic nonlinearity in a system of two coupled optical cavities. This unconventional photon blockade allows to produce antibunched radiation at extremely low input powers. We demonstrate a reliable protocol to operate this mechanism under pulsed optical excitation, as required for device applications, thus implementing a true single-photon source. We finally propose a state-of-art implementation in a standard silicon-based photonic crystal integrated circuit that outperforms existing parametric devices either in input power or footprint area.

  15. Entanglement formation and violation of Bell's inequality with a semiconductor single photon source

    E-Print Network [OSTI]

    David Fattal; Kyo Inoue; Jelena Vuckovic; Charles Santori; Glenn S. Solomon; Yoshihisa Yamamoto

    2003-05-09T23:59:59.000Z

    We report the generation of polarization-entangled photons, using a quantum dot single photon source, linear optics and photodetectors. Two photons created independently are observed to violate Bell's inequality. The density matrix describing the polarization state of the postselected photon pairs is also reconstructed, and agrees well with a simple model predicting the quality of entanglement from the known parameters of the single photon source. Our scheme provides a method to generate no more than one entangled photon pair per cycle, a feature useful to enhance quantum cryptography protocols using entangled photons.

  16. Advanced Research in Diesel Fuel Sprays Using X-rays from the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research in Diesel Fuel Sprays Using X-rays from the Advanced Photon Source Advanced Research in Diesel Fuel Sprays Using X-rays from the Advanced Photon Source 2003 DEER...

  17. Building the World's Most Advanced Light Source

    SciTech Connect (OSTI)

    None

    2012-08-03T23:59:59.000Z

    View this time-lapse video showing construction of the National Synchrotron Light Source II at Brookhaven National Laboratory. Construction is shown from 2009-2012.

  18. Nano-manipulation of diamond-based single photon sources

    E-Print Network [OSTI]

    E. Ampem-Lassen; D. A. Simpson; B. C. Gibson; S. Trpkovski; F. M. Hossain; S. T. Huntington; K. Ganesan; L. C. L. Hollenberg; S. Prawer

    2009-05-18T23:59:59.000Z

    The ability to manipulate nano-particles at the nano-scale is critical for the development of active quantum systems. This paper presents a new technique to manipulate diamond nano-crystals at the nano-scale using a scanning electron microscope, nano-manipulator and custom tapered optical fibre probes. The manipulation of a ~ 300 nm diamond crystal, containing a single nitrogen-vacancy centre, onto the endface of an optical fibre is demonstrated. The emission properties of the single photon source post manipulation are in excellent agreement with those observed on the original substrate.

  19. New results in atomic physics at the Advanced Light Source

    SciTech Connect (OSTI)

    Schlachter, A.S.

    1995-01-01T23:59:59.000Z

    The Advanced Light Source is the world's first low-energy third-generation synchrotron radiation source. It has been running reliably and exceeding design specifications since it began operation in October 1993. It is available to a wide community of researchers in many scientific fields, including atomic and molecular science and chemistry. Here, new results in atomic physics at the Advanced Light Source demonstrate the opportunities available in atomic and molecular physics at this synchrotron light source. The unprecedented brightness allows experiments with high flux, high spectral resolution, and nearly 100% linear polarization.

  20. Sandia National Laboratories: Advanced Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Solar power and other sources of renewable energy can help combat global warming but they have a draw-back: they don't produce energy as predictably as generating...

  1. Temporal Loop Multiplexing: A resource efficient scheme for multiplexed photon-pair sources

    E-Print Network [OSTI]

    Francis-Jones, Robert J A

    2015-01-01T23:59:59.000Z

    Single photons are a vital resource for photonic quantum information processing. However, even state-of-the-art single photon sources based on photon-pair generation and heralding detection have only a low probability of delivering a single photon when one is requested. We analyse a scheme that uses a switched fibre delay loop to increase the delivery probability per time bin of single photons from heralded sources. We show that, for realistic experimental parameters, combining the output of up to 15 pulses can yield a performance improvement of a factor of 10. We consider the future performance of this scheme with likely component improvements.

  2. Advances in BNL's polarized ion source development

    SciTech Connect (OSTI)

    Alessi, J.; DeVito, B.; Herschcovitch, A.; Kponou, A.; Meitzler, C.

    1988-01-01T23:59:59.000Z

    Polarized protons have been accelerated in the AGS to 22/yield/ GeV. The polarized source presently used produces 30-40 ..mu..A of /rvec char/H/sup -/ at 75-80% polarization, in 500 ..mu..s pulses, 0.5 Hz. This is three orders of magnitude lower in intensity than normal H/sup -/ operation, and higher intensities are desired. There is a program in the AGS department to develop a higher intensity source. This is a ground state atomic beam source with an atomic beam cooled to 6 K, spin selection and focusing via a superconducting solenoid (shown) or a sextupole system, and an ionizer for /rvec char/H/sup -/ production based on the charge exchange of /rvec char/H/degree/ with D/sup -/. Work is in progress on all three components, and will be described in this paper. 6 refs., 7 figs.

  3. Marketing Ground Source Heat Pump Advanced Applications that

    E-Print Network [OSTI]

    Marketing Ground Source Heat Pump Advanced Applications that Deliver Competitive Advantage Al is the fastest growing market with the available capital and need for the benefits of ground source heat pumps Heating ... and Cooling n Comfort & Indoor Air Quality n Homes have domestic hot water - DHW n Less

  4. Advanced Light Source activity report 1996/97

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    Ten years ago, the Advanced Light Source (ALS) existed as a set of drawings, calculations, and ideas. Four years ago, it stored an electron beam for the first time. Today, the ALS has moved from those ideas and beginnings to a robust, third-generation synchrotron user facility, with eighteen beam lines in use, many more in planning or construction phases, and hundreds of users from around the world. Progress from concepts to realities is continuous as the scientific program, already strong in many diverse areas, moves in new directions to meet the needs of researchers into the next century. ALS staff members who develop and maintain the infrastructure for this research are similarly unwilling to rest on their laurels. As a result, the quality of the photon beams the authors deliver, as well as the support they provide to users, continues to improve. The ALS Activity Report is designed to share the results of these efforts in an accessible form for a broad audience. The Scientific Program section, while not comprehensive, shares the breadth, variety, and interest of recent research at the ALS. (The Compendium of User Abstracts and Technical Reports provides a more comprehensive and more technical view.) The Facility Report highlights progress in operations, ongoing accelerator research and development, and beamline instrumentation efforts. Although these Activity Report sections are separate, in practice the achievements of staff and users at the ALS are inseparable. User-staff collaboration is essential as they strive to meet the needs of the user community and to continue the ALS's success as a premier research facility.

  5. advanced thermal analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jaski XFD Division Advanced Photon Source July 2005 Work sponsored by U.S. DEPARTMENT OF ENERGY---...

  6. A mathematical criterion for single photon sources used in quantum cryptography

    E-Print Network [OSTI]

    Anirban Pathak

    2007-05-11T23:59:59.000Z

    A single photon source (SPS) is very important for quantum computation. In particular, it is essential for secured quantum cryptography. But there is no perfect SPS in reality. Therefore, probabilistic SPS where probability of simultaneous emission of two, three, four and more photon is less than the emission of a single photon are used. Since classical photon always comes in bunch, the required single photon source must be nonclassical. In the well-known antibunched state the rate of simultaneous emission of two photon is less than that of single photon. But the requirement of quantum cryptography is a multiphoton version of the antibunched state or the higher order antibunched state. Recently we have reported a mathematical criterion for higher order antibunching. Here we have shown that any proposal for SPS to be used in quantum cryptography should satisfy this criterion. We have studied four wave mixing as a possible candidate of single photon source.

  7. Advanced RF power sources for linacs

    SciTech Connect (OSTI)

    Wilson, P.B.

    1996-10-01T23:59:59.000Z

    In order to maintain a reasonable over-all length at high center-of-mass energy, the main linac of an electron-positron linear collider must operate at a high accelerating gradient. For copper (non-superconducting) accelerator structures, this implies a high peak power per unit length and a high peak power per RF source, assuming a limited number of discrete sources are used. To provide this power, a number of devices are currently under active development or conceptual consideration: conventional klystrons with multi-cavity output structures, gyroklystrons, magnicons, sheet-beam klystrons, multiple-beam klystrons and amplifiers based on the FEL principle. To enhance the peak power produced by an rf source, the SLED rf pulse compression scheme is currently in use on existing linacs, and new compression methods that produce a flatter output pulse are being considered for future linear colliders. This paper covers the present status and future outlook for the more important rf power sources and pulse compression systems. It should be noted that high gradient electron linacs have applications in addition to high-energy linear colliders; they can, for example, serve as compact injectors for FEL`s and storage rings.

  8. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect (OSTI)

    Campbell, J.H. [ed.] [Oak Ridge National Lab., TN (United States); Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., (United States). Engineering Division

    1992-01-01T23:59:59.000Z

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  9. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect (OSTI)

    Campbell, J.H. (ed.) (Oak Ridge National Lab., TN (United States)); Selby, D.L.; Harrington, R.M. (Oak Ridge National Lab., TN (United States)); Thompson, P.B. (Martin Marietta Energy Systems, Inc., (United States). Engineering Division)

    1992-01-01T23:59:59.000Z

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I C Research and Development; Design; and Safety.

  10. advanced photon research: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to attend EVERY class, on time, regardless Gallo, Linda C. 85 Photon Physics and Plasma Research, WILGA 2012; EuCARD Sessions CERN Preprints Summary: Wilga Sessions on HEP...

  11. Novel advancements in nanofabrication for photonic crystal applications

    E-Print Network [OSTI]

    Cheong, Lin Lee

    2013-01-01T23:59:59.000Z

    The progress of large-area 2D- and 3D-photonic crystals (PCs) at optical and near infra-red frequencies has been limited by fabrication challenges. Periodic nanostructures must be patterned in high-index and crystalline ...

  12. Studies of advanced integrated nano-photonic devices in silicon

    E-Print Network [OSTI]

    Dahlem, Marcus

    2011-01-01T23:59:59.000Z

    Electronic-photonic integrated circuits (EPICs) are a promising technology for overcoming bandwidth and power-consumption bottlenecks of traditional integrated circuits. Silicon is a good candidate for building such devices, ...

  13. Next-Generation Photon Sources for Grand Challenges in Science and Energy

    SciTech Connect (OSTI)

    None

    2009-05-01T23:59:59.000Z

    The next generation of sustainable energy technologies will revolve around transformational new materials and chemical processes that convert energy efficiently among photons, electrons, and chemical bonds. New materials that tap sunlight, store electricity, or make fuel from splitting water or recycling carbon dioxide will need to be much smarter and more functional than today's commodity-based energy materials. To control and catalyze chemical reactions or to convert a solar photon to an electron requires coordination of multiple steps, each carried out by customized materials and interfaces with designed nanoscale structures. Such advanced materials are not found in nature the way we find fossil fuels; they must be designed and fabricated to exacting standards, using principles revealed by basic science. Success in this endeavor requires probing, and ultimately controlling, the interactions among photons, electrons, and chemical bonds on their natural length and time scales. Control science - the application of knowledge at the frontier of science to control phenomena and create new functionality - realized through the next generation of ultraviolet and X-ray photon sources, has the potential to be transformational for the life sciences and information technology, as well as for sustainable energy. Current synchrotron-based light sources have revolutionized macromolecular crystallography. The insights thus obtained are largely in the domain of static structure. The opportunity is for next generation light sources to extend these insights to the control of dynamic phenomena through ultrafast pump-probe experiments, time-resolved coherent imaging, and high-resolution spectroscopic imaging. Similarly, control of spin and charge degrees of freedom in complex functional materials has the potential not only to reveal the fundamental mechanisms of high-temperature superconductivity, but also to lay the foundation for future generations of information science. This report identifies two aspects of energy science in which next-generation ultraviolet and X-ray light sources will have the deepest and broadest impact: (1) The temporal evolution of electrons, spins, atoms, and chemical reactions, down to the femtosecond time scale. (2) Spectroscopic and structural imaging of nano objects (or nanoscale regions of inhomogeneous materials) with nanometer spatial resolution and ultimate spectral resolution. The dual advances of temporal and spatial resolution promised by fourth-generation light sources ideally match the challenges of control science. Femtosecond time resolution has opened completely new territory where atomic motion can be followed in real time and electronic excitations and decay processes can be followed over time. Coherent imaging with short-wavelength radiation will make it possible to access the nanometer length scale, where intrinsic quantum behavior becomes dominant. Performing spectroscopy on individual nanometer-scale objects rather than on conglomerates will eliminate the blurring of the energy levels induced by particle size and shape distributions and reveal the energetics of single functional units. Energy resolution limited only by the uncertainty relation is enabled by these advances. Current storage-ring-based light sources and their incremental enhancements cannot meet the need for femtosecond time resolution, nanometer spatial resolution, intrinsic energy resolution, full coherence over energy ranges up to hard X-rays, and peak brilliance required to enable the new science outlined in this report. In fact, the new, unexplored territory is so expansive that no single currently imagined light source technology can fulfill the whole potential. Both technological and economic challenges require resolution as we move forward. For example, femtosecond time resolution and high peak brilliance are required for following chemical reactions in real time, but lower peak brilliance and high repetition rate are needed to avoid radiation damage in high-resolution spatial imaging and to avoid space-charge broadenin

  14. Ultrafast electrical control of a resonantly driven single photon source

    SciTech Connect (OSTI)

    Cao, Y. [Toshiba Research Europe Limited, Cambridge Research Laboratory, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Controlled Quantum Dynamics Group, Imperial College London, London SW7 2AZ (United Kingdom); Bennett, A. J., E-mail: anthony.bennett@crl.toshiba.co.uk; Ellis, D. J. P.; Shields, A. J. [Toshiba Research Europe Limited, Cambridge Research Laboratory, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2014-08-04T23:59:59.000Z

    We demonstrate generation of a pulsed stream of electrically triggered single photons in resonance fluorescence, by applying high frequency electrical pulses to a single quantum dot in a p-i-n diode under resonant laser excitation. Single photon emission was verified, with the probability of multiple photon emission reduced to 2.8%. We show that despite the presence of charge noise in the emission spectrum of the dot, resonant excitation acts as a “filter” to generate narrow bandwidth photons.

  15. Squeezing Out the Hidden Lives of Electrons | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Nevada Las Vegas, 8Center for High Pressure Science and Technology Advanced Research (China), 9Northern Illinois University Correspondence: *yangding@aps.anl.gov This research...

  16. Advanced Light Source Activity Report 1997/1998

    SciTech Connect (OSTI)

    Greiner, Annette (ed.)

    1999-03-01T23:59:59.000Z

    This Lawrence Berkeley National Laboratory, Advanced Light Source (ALS) activity report for 1997/98 discusses the following topics: Introduction and Overview; Science Highlights; Facility Report; Special Events; ALS Advisory Panels 1997/98; ALS Staff 1997/98 and Facts and Figures for the year.

  17. Advanced light source, User`s Handbook, Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    The Advanced Light Source (ALS) is a national facility for scientific research and development located at the Lawrence Berkeley National Laboratory (LBNL) of the University of California. Its purpose is to generate beams of very bright light in the ultraviolet and soft x-ray regions of the spectrum. The facility is open to researchers from industry, universities, and government laboratories.

  18. ADVANCED LIGHT SOURCE DIVISION FY2008 SELF-ASSESSMENT REPORT

    E-Print Network [OSTI]

    Knowles, David William

    ....................................................................3 E4. Division participates in pollution prevention, energy conservation, recycling, and wasteADVANCED LIGHT SOURCE DIVISION FY2008 SELF-ASSESSMENT REPORT November 7, 2008 Prepared by to confined space, energized electrical work); waste management criteria (SAAs, waste sampling, NCARs

  19. Advanced Photon Source Upgrade —Creating a Better Quality of Life

    SciTech Connect (OSTI)

    Linda Young

    2012-11-05T23:59:59.000Z

    The upgrade will enable ultrafast X-ray pulses that could point the way to more efficient electronics and vehicles.

  20. Time-Resolved Research (XSD) | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14-ID-B is operated as a partnership between BioCARS and XSD and is specialized in ultrafast time resolved techniques such as laser pump high-flux x-ray probe in both pink...

  1. Organic Polymers Show Sunny Potential | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley National Laboratory, could open the door to research on a new class of solar energy devices. The photovoltaic devices created in a project led by Rice chemical engineer...

  2. Higher Temperature at the Earth's Core | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jennifer Jackson. Credit: Jennifer JacksonCaltech Exactly how hot is the center of the Earth? Apparently hotter than we had thought. In 2011, researchers from the California...

  3. Earth's Core Reveals an Inner Weakness | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    their results to core conditions and found that the strength of iron deep within the Earth is lower than previously thought. This weakness may explain how the crystal structure...

  4. 27-ID and 35-ID Construction Schedule | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Pentagon F 2 week look-ahead (pdf) Long Range Schedule (pdf) LOM 438 Pentagon F, Construction Schedule Dates 416 to 607 Planned construction activities, please refer to the...

  5. 27-ID and 35-ID Construction Schedule | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27-ID and 35-ID Past 27-ID and 35-ID Installation schedule for the sector 27 Control room. Receive materials on Friday March 10, 2014 Installation starts on Monday March 10, 2014...

  6. Animatedly Suspended X-ray Observations | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    panel) show similar dependency on scattering vector, which suggests that the lowest free-energy configuration in the static case also has a long lifetime. A colloidal...

  7. A New Family of Quasicrystals | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding of Superconductivity New Family of Tiny Crystals Glow Bright in LED Lights How Serotonin Receptors Can Shape Drug Effects, from LSD to Migraine Medication X-rays...

  8. Exposing Valence-Bond Model Inadequacies | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which is known to be a bit unruly even under ideal circumstances. Under ambient conditions, EuO has the same crystal structure as common table salt, sodium chloride (NaCl),...

  9. A Key Target for Diabetes Drugs | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed A Key Target for Diabetes Drugs JULY 26, 2013 Bookmark and Share The structure of the human glucagon receptor,...

  10. Watching a Protein as it Functions | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases, NIH. V.R.I.K. is the recipient of a European...

  11. Linear optics schemes for entanglement distribution with realistic single-photon sources

    E-Print Network [OSTI]

    Miko?aj Lasota; Czes?aw Radzewicz; Konrad Banaszek; Rob Thew

    2014-09-24T23:59:59.000Z

    We study the operation of linear optics schemes for entanglement distribution based on nonlocal photon subtraction when input states, produced by imperfect single-photon sources, exhibit both vacuum and multiphoton contributions. Two models for realistic photon statistics with radically different properties of the multiphoton "tail" are considered. The first model assumes occasional emission of double photons and linear attenuation, while the second one is motivated by heralded sources utilizing spontaneous parametric down-conversion. We find conditions for the photon statistics that guarantee generation of entanglement in the relevant qubit subspaces and compare it with classicality criteria. We also quantify the amount of entanglement that can be produced with imperfect single-photon sources, optimized over setup parameters, using as a measure entanglement of formation. Finally, we discuss verification of the generated entanglement by testing Bell's inequalities. The analysis is carried out for two schemes. The first one is the well-established one-photon scheme, which produces a photon in a delocalized superposition state between two nodes, each of them fed with one single photon at the input. As the second scheme, we introduce and analyze a linear-optics analog of the robust scheme based on interfering two Stokes photons emitted by atomic ensembles, which does not require phase stability between the nodes.

  12. Applications of photon-in, photon-out spectroscopy with third-generation, synchrotron-radiation sources

    SciTech Connect (OSTI)

    Lindle, D.W.; Perera, R.C.C. [eds.

    1991-12-31T23:59:59.000Z

    This report discusses the following topics: Mother nature`s finest test probe; soft x-ray emission spectroscopy with high-brightness synchrotron radiation sources; anisotropy and polarization of x-ray emission from atoms and molecules; valence-hole fluorescence from molecular photoions as a probe of shape-resonance ionization: progress and prospects; structural biophysics on third-generation synchrotron sources; ultra-soft x-ray fluorescence-yield XAFS: an in situ photon-in, photon-out spectroscopy; and x-ray microprobe: an analytical tool for imaging elemental composition and microstructure.

  13. Applications of photon-in, photon-out spectroscopy with third-generation, synchrotron-radiation sources

    SciTech Connect (OSTI)

    Lindle, D.W.; Perera, R.C.C. (eds.)

    1991-01-01T23:59:59.000Z

    This report discusses the following topics: Mother nature's finest test probe; soft x-ray emission spectroscopy with high-brightness synchrotron radiation sources; anisotropy and polarization of x-ray emission from atoms and molecules; valence-hole fluorescence from molecular photoions as a probe of shape-resonance ionization: progress and prospects; structural biophysics on third-generation synchrotron sources; ultra-soft x-ray fluorescence-yield XAFS: an in situ photon-in, photon-out spectroscopy; and x-ray microprobe: an analytical tool for imaging elemental composition and microstructure.

  14. BNL ACTIVITIES IN ADVANCED NEUTRON SOURCE DEVELOPMENT: PAST AND PRESENT

    SciTech Connect (OSTI)

    HASTINGS,J.B.; LUDEWIG,H.; MONTANEZ,P.; TODOSOW,M.; SMITH,G.C.; LARESE,J.Z.

    1998-06-14T23:59:59.000Z

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In the sections below the authors discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  15. BNL Activities in Advanced Neutron Source Development: Past and Present

    SciTech Connect (OSTI)

    Hastings, J.B.; Ludewig, H.; Montanez, P.; Todosow, M.; Smith, G.C.; Larese, J.Z.

    1998-06-14T23:59:59.000Z

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In this report we discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  16. EK 131/132 Photonics Engineering with light Photonics is used in advanced technology as well as everyday familiar objects. This 6 week freshman

    E-Print Network [OSTI]

    EK 131/132 Photonics ­ Engineering with light Photonics is used in advanced technology as well: golden rule, follower, non-inverting amplifier, inverting amplifier Optoelectronics: Band gap, Optical: Using breadboards, oscilloscope, voltmeter, function generator, using op-amps, reading C and R, Reading

  17. On-chip quantum interference between silicon photon-pair sources

    E-Print Network [OSTI]

    Joshua W. Silverstone; Damien Bonneau; Kazuya Ohira; Nob Suzuki; Haruhiko Yoshida; Norio Iizuka; Mizunori Ezaki; Chandra M. Natarajan; Michael G. Tanner; Robert H. Hadfield; Val Zwiller; Graham D. Marshall; John G. Rarity; Jeremy L. O'Brien; Mark G. Thompson

    2014-11-20T23:59:59.000Z

    Large-scale integrated quantum photonic technologies will require the on-chip integration of identical photon sources with reconfigurable waveguide circuits. Relatively complex quantum circuits have already been demonstrated, but few studies acknowledge the pressing need to integrate photon sources and waveguide circuits together on-chip. A key step towards such large-scale quantum technologies is the integration of just two individual photon sources within a waveguide circuit, and the demonstration of high-visibility quantum interference between them. Here, we report a silicon-on-insulator device combining two four-wave mixing sources, in an interferometer with a reconfigurable phase shifter. We configure the device to create and manipulate two-colour (non-degenerate) or same-colour (degenerate), path-entangled or path-unentangled photon pairs. We observe up to 100.0+/-0.4% visibility quantum interference on-chip, and up to 95+/-4% off-chip. Our device removes the need for external photon sources, provides a path to increasing the complexity of quantum photonic circuits, and is a first step towards fully-integrated quantum technologies.

  18. Direct photon emission from hadronic sources: Hydrodynamics vs. Transport theory

    E-Print Network [OSTI]

    Bjoern Baeuchle; Marcus Bleicher

    2009-03-08T23:59:59.000Z

    Direct photon emission in heavy-ion collisions is calculated within the relativistic microscopic transport model UrQMD. We compare the results from the pure transport calculation to a hybrid-model calculation, where the high-density part of the evolution is replaced by an ideal 3-dimensional fluiddynamic calculation. The effects of viscosity, present in the transport model but neglected in ideal fluid-dynamics, are examined. We study the contribution of different production channels and non-thermal collisions to the spectrum of direct photons. Detailed comparison to the measurements by the WA~98-collaboration are undertaken.

  19. Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems

    E-Print Network [OSTI]

    Grassani, Davide

    We demonstrate the generation of quantum-correlated photon pairs combined with the spectral filtering of the pump field by more than 95 dB on a single silicon chip using electrically tunable ring resonators and passive ...

  20. Inverse free electron laser accelerator for advanced light sources

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Duris, J. P.; Musumeci, P.; Li, R. K.

    2012-06-01T23:59:59.000Z

    We discuss the inverse free electron laser (IFEL) scheme as a compact high gradient accelerator solution for driving advanced light sources such as a soft x-ray free electron laser amplifier or an inverse Compton scattering based gamma-ray source. In particular, we present a series of new developments aimed at improving the design of future IFEL accelerators. These include a new procedure to optimize the choice of the undulator tapering, a new concept for prebunching which greatly improves the fraction of trapped particles and the final energy spread, and a self-consistent study of beam loading effects which leads to an energy-efficient high laser-to-beam power conversion.

  1. Advances in InGaAs/InP single-photon detector systems for quantum communication

    E-Print Network [OSTI]

    Zhang, Jun; Zbinden, Hugo; Pan, Jian-Wei

    2015-01-01T23:59:59.000Z

    Single-photon detectors (SPDs) are the most sensitive instruments for light detection. In the near-infrared range, SPDs based on III-V compound semiconductor avalanche photodiodes have been extensively used during the past two decades for diverse applications due to their advantages in practicality including small size, low cost and easy operation. In the past decade, the rapid developments and increasing demands in quantum information science have served as key drivers to improve the device performance of single-photon avalanche diodes and to invent new avalanche quenching techniques. This Review aims to introduce the technology advances of InGaAs/InP single-photon detector systems in the telecom wavelengths and the relevant quantum communication applications, and particularly to highlight recent emerging techniques such as high-frequency gating at GHz rates and free-running operation using negative-feedback avalanche diodes. Future perspectives of both the devices and quenching techniques are summarized.

  2. Advances in InGaAs/InP single-photon detector systems for quantum communication

    E-Print Network [OSTI]

    Jun Zhang; Mark A. Itzler; Hugo Zbinden; Jian-Wei Pan

    2015-05-09T23:59:59.000Z

    Single-photon detectors (SPDs) are the most sensitive instruments for light detection. In the near-infrared range, SPDs based on III-V compound semiconductor avalanche photodiodes have been extensively used during the past two decades for diverse applications due to their advantages in practicality including small size, low cost and easy operation. In the past decade, the rapid developments and increasing demands in quantum information science have served as key drivers to improve the device performance of single-photon avalanche diodes and to invent new avalanche quenching techniques. This Review aims to introduce the technology advances of InGaAs/InP single-photon detector systems in the telecom wavelengths and the relevant quantum communication applications, and particularly to highlight recent emerging techniques such as high-frequency gating at GHz rates and free-running operation using negative-feedback avalanche diodes. Future perspectives of both the devices and quenching techniques are summarized.

  3. High-Efficiency Nitride-Based Photonic Crystal Light Sources

    Broader source: Energy.gov [DOE]

    The University of California Santa Barbara (UCSB) is maximizing the efficiency of a white LED by enhancing the external quantum efficiency using photonic crystals to extract light that would normally be confined in a conventional structure. Ultimate efficiency can only be achieved by looking at the internal structure of light. To do this, UCSB is focusing on maximizing the light extraction efficiency and total light output from light engines driven by Gallium Nitride (GaN)-based LEDs. The challenge is to engineer large overlap (interaction) between modes and photonic crystals. The project is focused on achieving high extraction efficiency in LEDs, controlled directionality of emitted light, integrated design of vertical device structure, and nanoscale patterning of lateral structure.

  4. On-chip single photon sources based on quantum dots in photonic crystal structures

    E-Print Network [OSTI]

    Schwagmann, Andre

    2013-02-05T23:59:59.000Z

    of this dissertation have appeared or will appear in form of the following journal articles and contributed talks at international conferences. Articles A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields. “On... -chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide.” Applied Physics Letters 99, 261108 (2011). A. Schwagmann, S. Kalliakos, D. J. P. Ellis, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie...

  5. Ultra-fast heralded single photon source based on telecom technology

    E-Print Network [OSTI]

    Lutfi Arif Ngah; Olivier Alibart; Laurent Labonté; Virginia D'Auria; Sébastien Tanzilli

    2014-12-17T23:59:59.000Z

    The realization of an ultra-fast source of heralded single photons emitted at the wavelength of 1540 nm is reported. The presented strategy is based on state-of-the-art telecom technology, combined with off-the-shelf fiber components and waveguide non-linear stages pumped by a 10 GHz repetition rate laser. The single photons are heralded at a rate as high as 2.1 MHz with a heralding efficiency of 42%. Single photon character of the source is inferred by measuring the second-order autocorrelation function. For the highest heralding rate, a value as low as 0.023 is found. This not only proves negligible multi-photon contributions but also represents the best measured value reported to date for heralding rates in the MHz regime. These prime performances, associated with a device-like configuration, are key ingredients for both fast and secure quantum communication protocols.

  6. Quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime

    E-Print Network [OSTI]

    Guoqiang Cui; M. G. Raymer

    2006-03-21T23:59:59.000Z

    We calculate the integrated-pulse quantum efficiency of single-photon sources in the cavity quantum electrodynamics (QED) strong-coupling regime. An analytical expression for the quantum efficiency is obtained in the Weisskopf-Wigner approximation. Optimal conditions for a high quantum efficiency and a temporally localized photon emission rate are examined. We show the condition under which the earlier result of Law and Kimble [J. Mod. Opt. 44, 2067 (1997)] can be used as the first approximation to our result.

  7. Experimental filtering of two-, four-, and six-photon singlets from single PDC source

    E-Print Network [OSTI]

    Radmark, Magnus; Zukowski, Marek; Bourennane, Mohamed

    2009-01-01T23:59:59.000Z

    Invariant entangled states remain unchanged under simultaneous identical unitary transformations of all their subsystems. We experimentally generate and characterize such invariant two-, four-, and six-photon polarization entangled states. This is done only with a suitable filtering procedure of multiple emissions of entangled photon pairs from a single source, without any interferometric overlaps. We get the desired states utilizing bosonic emission enhancement due to indistinguishability. The setup is very stable, and gives high interference contrasts. Thus, the process is a very likely candidate for various photonic demonstrations of quantum information protocols.

  8. Experimental filtering of two-, four-, and six-photon singlets from single PDC source

    E-Print Network [OSTI]

    Magnus Radmark; Marcin Wiesniak; Marek Zukowski; Mohamed Bourennane

    2009-03-13T23:59:59.000Z

    Invariant entangled states remain unchanged under simultaneous identical unitary transformations of all their subsystems. We experimentally generate and characterize such invariant two-, four-, and six-photon polarization entangled states. This is done only with a suitable filtering procedure of multiple emissions of entangled photon pairs from a single source, without any interferometric overlaps. We get the desired states utilizing bosonic emission enhancement due to indistinguishability. The setup is very stable, and gives high interference contrasts. Thus, the process is a very likely candidate for various photonic demonstrations of quantum information protocols.

  9. Precision linac and laser technologies for nuclear photonics gamma-ray sources

    SciTech Connect (OSTI)

    Albert, F.; Hartemann, F. V.; Anderson, S. G.; Cross, R. R.; Gibson, D. J.; Hall, J.; Marsh, R. A.; Messerly, M.; Wu, S. S.; Siders, C. W.; Barty, C. P. J. [Lawrence Livermore National Laboratory, NIF and Photon Science, 7000 East Avenue, Livermore, California 94550 (United States)

    2012-05-15T23:59:59.000Z

    Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratory is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.

  10. Advanced Neutron Source (ANS) Project progress report, FY 1994

    SciTech Connect (OSTI)

    Campbell, J.H.; King-Jones, K.H. [eds.; Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Central Engineering Services

    1995-01-01T23:59:59.000Z

    The President`s budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met.

  11. advanced power sources: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  12. Optical-fiber source of polarization-entangled photon pairs in the 1550nm telecom band

    E-Print Network [OSTI]

    Xiaoying Li; Paul L. Voss; Jay E. Sharping; Prem Kumar

    2004-08-12T23:59:59.000Z

    We present a fiber based source of polarization-entangled photon pairs that is well suited for quantum communication applications in the 1550nm band of standard fiber-optic telecommunications. Polarization entanglement is created by pumping a nonlinear-fiber Sagnac interferometer with two time-delayed orthogonally-polarized pump pulses and subsequently removing the time distinguishability by passing the parametrically scattered signal-idler photon pairs through a piece of birefringent fiber. Coincidence detection of the signal-idler photons yields biphoton interference with visibility greater than 90%, while no interference is observed in direct detection of either the signal or the idler photons. All four Bell states can be prepared with our setup and we demonstrate violations of CHSH form of Bell's inequalities by up to 10 standard deviations of measurement uncertainty.

  13. Measurement of Coupling PDC photon sources with single-mode and multimode optical fibers

    E-Print Network [OSTI]

    Hart, Gus

    Measurement of Coupling PDC photon sources with single-mode and multimode optical fibers Stefania the coupling efficiency of parametric downconversion light (PDC) into single and multi-mode optical fibers models for the preparation and collection of either single-mode or multi-mode PDC light (defined by

  14. Advanced Neutron Source: Plant Design Requirements. Revision 4

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  15. Water cooled metal optics for the Advanced Light Source

    SciTech Connect (OSTI)

    McKinney, W.R.; Irick, S.C. [Lawrence Berkeley Lab., CA (United States); Lunt, D.L.J. [Tucson Optical Research Corp., AZ (United States)

    1991-10-28T23:59:59.000Z

    The program for providing water cooled metal optics for the Advanced Light Source at Berkeley is reviewed with respect to fabrication and metrology of the surfaces. Materials choices, surface figure and smoothness specifications, and metrology systems for measuring the plated metal surfaces are discussed. Results from prototype mirrors and grating blanks will be presented, which show exceptionally low microroughness and mid-period error. We will briefly describe out improved version of the Long Trace Profiler, and its importance to out metrology program. We have completely redesigned the mechanical, optical and computational parts of the profiler system with the cooperation of Peter Takacs of Brookhaven, Continental Optical, and Baker Manufacturing. Most important is that one of our profilers is in use at the vendor to allow testing during fabrication. Metrology from the first water cooled mirror for an ALS beamline is presented as an example. The preplating processing and grinding and polishing were done by Tucson Optical. We will show significantly better surface microroughness on electroless nickel, over large areas, than has been reported previously.

  16. advanced fingerprint analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSR Microbunching Zhirong Huang and Kwang302 Advanced Photon Source Derivation: KJK Application: ZRH Based on ZRH & KJK Main References SSY (Saldin, Schneidmiller,...

  17. advanced analysis methods: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSR Microbunching Zhirong Huang and Kwang302 Advanced Photon Source Derivation: KJK Application: ZRH Based on ZRH & KJK Main References SSY (Saldin, Schneidmiller,...

  18. advanced main control: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSR Microbunching Zhirong Huang and Kwang302 Advanced Photon Source Derivation: KJK Application: ZRH Based on ZRH & KJK Main References SSY (Saldin, Schneidmiller,...

  19. advanced analysis techniques: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSR Microbunching Zhirong Huang and Kwang302 Advanced Photon Source Derivation: KJK Application: ZRH Based on ZRH & KJK Main References SSY (Saldin, Schneidmiller,...

  20. High-Efficiency Nitride-Base Photonic Crystal Light Sources

    SciTech Connect (OSTI)

    James Speck; Evelyn Hu; Claude Weisbuch; Yong-Seok Choi; Kelly McGroddy; Gregor Koblmuller; Elison Matioli; Elizabeth Rangel; Fabian Rol; Dobri Simeonov

    2010-01-31T23:59:59.000Z

    The research activities performed in the framework of this project represent a major breakthrough in the demonstration of Photonic Crystals (PhC) as a competitive technology for LEDs with high light extraction efficiency. The goals of the project were to explore the viable approaches to manufacturability of PhC LEDS through proven standard industrial processes, establish the limits of light extraction by various concepts of PhC LEDs, and determine the possible advantages of PhC LEDs over current and forthcoming LED extraction concepts. We have developed three very different geometries for PhC light extraction in LEDs. In addition, we have demonstrated reliable methods for their in-depth analysis allowing the extraction of important parameters such as light extraction efficiency, modal extraction length, directionality, internal and external quantum efficiency. The information gained allows better understanding of the physical processes and the effect of the design parameters on the light directionality and extraction efficiency. As a result, we produced LEDs with controllable emission directionality and a state of the art extraction efficiency that goes up to 94%. Those devices are based on embedded air-gap PhC - a novel technology concept developed in the framework of this project. They rely on a simple and planar fabrication process that is very interesting for industrial implementation due to its robustness and scalability. In fact, besides the additional patterning and regrowth steps, the process is identical as that for standard industrially used p-side-up LEDs. The final devices exhibit the same good electrical characteristics and high process yield as a series of test standard LEDs obtained in comparable conditions. Finally, the technology of embedded air-gap patterns (PhC) has significant potential in other related fields such as: increasing the optical mode interaction with the active region in semiconductor lasers; increasing the coupling of the incident light into the active region of solar cells; increasing the efficiency of the phosphorous light conversion in white light LEDs etc. In addition to the technology of embedded PhC LEDs, we demonstrate a technique for improvement of the light extraction and emission directionality for existing flip-chip microcavity (thin) LEDs by introducing PhC grating into the top n-contact. Although, the performances of these devices in terms of increase of the extraction efficiency are not significantly superior compared to those obtained by other techniques like surface roughening, the use of PhC offers some significant advantages such as improved and controllable emission directionality and a process that is directly applicable to any material system. The PhC microcavity LEDs have also potential for industrial implementation as the fabrication process has only minor differences to that already used for flip-chip thin LEDs. Finally, we have demonstrated that achieving good electrical properties and high fabrication yield for these devices is straightforward.

  1. DYNAMIC STRESS FIELD OF ADVANCED KINEMATIC SOURCE J. Burjanek and J. Zahradnik

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    DYNAMIC STRESS FIELD OF ADVANCED KINEMATIC SOURCE MODELS J. Burj´anek and J. Zahradn´ik Department@karel.troja.mff.cuni.cz / fax: +420-2-21912555 Recently, advanced theoretical kinematic source models have been developed, since wave field which follows widely accepted omega-squared model. As these models are purely kine- matic

  2. Advanced Neutron Source reactor control and plant protection systems design

    SciTech Connect (OSTI)

    Anderson, J.L.; Battle, R.E.; March-Leuba, J. (Oak Ridge National Lab., TN (United States)); Khayat, M.I. (Tennessee Univ., Knoxville, TN (United States))

    1992-01-01T23:59:59.000Z

    This paper describes the reactor control and plant protection systems' conceptual design of the Advanced Neutron Source (ANS). The Plant Instrumentation, Control, and Data Systems and the Reactor Instrumentation and Control System of the ANS are planned as an integrated digital system with a hierarchical, distributed control structure of qualified redundant subsystems and a hybrid digital/analog protection system to achieve the necessary fast response for critical parameters. Data networks transfer information between systems for control, display, and recording. Protection is accomplished by the rapid insertion of negative reactivity with control rods or other reactivity mechanisms to shut down the fission process and reduce heat generation in the fuel. The shutdown system is designed for high functional reliability by use of conservative design features and a high degree of redundance and independence to guard against single failures. Two independent reactivity control systems of different design principles are provided, and each system has multiple independent rods or subsystems to provide appropriate margin for malfunctions such as stuck rods or other single failures. Each system is capable of maintaining the reactor in a cold shutdown condition independently of the functioning of the other system. A highly reliable, redundant channel control system is used not only to achieve high availability of the reactor, but also to reduce challenges to the protection system by maintaining important plant parameters within appropriate limits. The control system has a number of contingency features to maintain acceptable, off-normal conditions in spite of limited control or plant component failures thereby further reducing protection system challenges.

  3. Long distance measurement-device-independent quantum key distribution with entangled photon sources

    SciTech Connect (OSTI)

    Xu, Feihu; Qi, Bing; Liao, Zhongfa; Lo, Hoi-Kwong [Centre for Quantum Information and Quantum Control, Departments of Physics and Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4 (Canada)] [Centre for Quantum Information and Quantum Control, Departments of Physics and Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4 (Canada)

    2013-08-05T23:59:59.000Z

    We present a feasible method that can make quantum key distribution (QKD), both ultra-long-distance and immune, to all attacks in the detection system. This method is called measurement-device-independent QKD (MDI-QKD) with entangled photon sources in the middle. By proposing a model and simulating a QKD experiment, we find that MDI-QKD with one entangled photon source can tolerate 77 dB loss (367 km standard fiber) in the asymptotic limit and 60 dB loss (286 km standard fiber) in the finite-key case with state-of-the-art detectors. Our general model can also be applied to other non-QKD experiments involving entanglement and Bell state measurements.

  4. Electroluminescence from isolated defects in zinc oxide, towards electrically triggered single photon sources at room temperature

    E-Print Network [OSTI]

    Choi, Sumin; Gentle, Angus; Ton-That, Cuong; Phillips, Matthew R; Aharonovich, Igor

    2015-01-01T23:59:59.000Z

    Single photon sources are required for a wide range of applications in quantum information science, quantum cryptography and quantum communications. However, so far majority of room temperature emitters are only excited optically, which limits their proper integration into scalable devices. In this work, we overcome this limitation and present room temperature electrically triggered light emission from localized defects in zinc oxide (ZnO) nanoparticles and thin films. The devices emit at the red spectral range and show excellent rectifying behavior. The emission is stable over an extensive period of time, providing an important prerequisite for practical devices. Our results open up possibilities to build new ZnO based quantum integrated devices that incorporate solid-state single photon sources for quantum information technologies.

  5. Effects of axion-photon mixing on gamma-ray spectra from magnetized astrophysical sources

    SciTech Connect (OSTI)

    Hochmuth, Kathrin A. [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, 80805 Munich (Germany); Sigl, Guenter [APC - AstroParticules et Cosmologie, 10, rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13 (France) and Institut d'Astrophysique de Paris, UMR 7095 CNRS-Universite Pierre and Marie Curie, 98 bis boulevard Arago, F-75014 Paris (France)

    2007-12-15T23:59:59.000Z

    Astrophysical {gamma}-ray sources come in a variety of sizes and magnetizations. We deduce general conditions under which {gamma}-ray spectra from such sources would be significantly affected by axion-photon mixing. We show that, depending on strength and coherence of the magnetic field, axion couplings down to {approx}(10{sup 13}GeV){sup -1} can give rise to significant axion-photon conversions in the environment of accreting massive black holes. Resonances can occur between the axion mass term and the plasma frequency term as well as between the plasma frequency term and the vacuum Cotton-Mouton shift. Both resonances and nonresonant transitions could induce detectable features or even strong suppressions in finite energy intervals of {gamma}-ray spectra from active galactic nuclei. Such effects can occur at keV to TeV energies for couplings that are currently allowed by all experimental constraints.

  6. ESRF-type lattice design and optimization for the High Energy Photon Source

    E-Print Network [OSTI]

    Xu, Gang; Peng, Yue-Mei

    2015-01-01T23:59:59.000Z

    A new generation of storage ring-based light source, called diffraction-limited storage ring (DLSR), with emittance approaching the diffraction limit for multi-keV photons by means of multi-bend achromat lattice, has attracted worldwide and extensive studies. Among various DLSR proposals, the hybrid multi-bend achromat concept developed at ESRF predicts an effective way of minimizing the emittance and meanwhile keeping the required sextupole strengths to an achievable level. For the High Energy Photon Source planned to be built in Beijing, an ESRF-type lattice design consisting of 48 hybrid seven-bend achromats is proposed to reach emittance as low as 60 pm.rad with a circumference of about 1296 m. Sufficient dynamic aperture promising vertical on-axis injection and moderate momentum acceptance are achieved simultaneously for a promising ring performance.

  7. Identification of extragalactic sources of the highest energy EGRET photons by correlation analysis

    E-Print Network [OSTI]

    D. S. Gorbunov; P. G. Tinyakov; I. I. Tkachev; S. V. Troitsky

    2005-05-30T23:59:59.000Z

    We found significant correlations between the arrival directions of the highest energy photons (E>10 GeV) observed by EGRET and positions of the BL Lac type objects (BL Lacs). The observed correlations imply that not less than three per cent of extragalactic photons at these energies originate from BL Lacs. Some of the correlating BL Lacs have no counterparts in the EGRET source catalog, i.e. do not coincide with strong emitters of gamma-rays at lower energy. The study of correlating BL Lacs suggests that they may form a subset which is statistically different from the total BL Lac catalog; we argue that they are prominent candidates for TeV gamma-ray sources. Our results demonstrate that the analysis of positional correlations is a powerful approach indispensable in cases when low statistics limits or even prohibits the standard case-by-case identification.

  8. Extractors for LowWeight A#ne Sources Institute for Advanced Study

    E-Print Network [OSTI]

    Anderson, Richard

    to solve this problem. These are functions that are easy to invert given the en­ tire output, but very hardExtractors for Low­Weight A#ne Sources Anup Rao # Institute for Advanced Study arao . An extractor for entropy k a#ne sources is a function A#Ext : F n # {0, 1} m such that for any such source X

  9. High-quality source of fiber-coupled polarization-entangled photons at 1.56 [mu]m

    E-Print Network [OSTI]

    Stelmakh, Veronika

    2012-01-01T23:59:59.000Z

    This thesis describes the development of a high-quality source of single-mode fibercoupled polarization-entangled photon pairs based on a collinear spontaneous parametric down-conversion process in a bidirectionally pumped ...

  10. Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution

    E-Print Network [OSTI]

    Leifgen, Matthias

    We demonstrate a quantum key distribution (QKD) testbed for room temperature single photon sources based on defect centres in diamond. A BB84 protocol over a short free-space transmission line is implemented. The performance ...

  11. Recent advances in reflective optics for EUV/x-ray light sources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent advances in reflective optics for EUVx-ray light sources Wednesday, June 24, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Regina Soufli, LLNL Program...

  12. Proceedings of the 10th meeting of the international collaboration on advanced neutron sources

    SciTech Connect (OSTI)

    Hyer, D.K. (comp. and ed.)

    1989-03-01T23:59:59.000Z

    This report contains papers from the 10th meeting of the International Collaboration on Advanced Neutron Sources. Two general types of workshops are discussed, instrument and target-station. Individual papers are indexed separately elsewhere. (LSP)

  13. Advancing Methods for Determining the Source of HEU Used in Terrorist Nuclear Weapon 

    E-Print Network [OSTI]

    LaFleur, Adrienne; Charlton, William

    2007-09-17T23:59:59.000Z

    ADVANCING METHODS FOR DETERMINING THE SOURCE OF HEU USED IN A TERRORIST NUCLEAR WEAPON Major: Nuclear Engineering April 2007 Submitted to the Office of Undergraduate Research Texas A&M University In partial fulfillment... of the requirements for the designation as UNDERGRADUATE RESEARCH SCHOLAR A Senior Scholars Thesis by ADRIENNE MARIE LAFLEUR ADVANCING METHODS FOR DETERMINING THE SOURCE OF HEU USED IN A TERRORIST NUCLEAR WEAPON Approved by: Research Advisor...

  14. High-brightness single photon source from a quantum dot in a directional-emission nanocavity

    E-Print Network [OSTI]

    Mitsuru Toishi; Dirk Englund; Andrei Faraon; Jelena Vuckovic

    2009-04-08T23:59:59.000Z

    We analyze a single photon source consisting of an InAs quantum dot coupled to a directional-emission photonic crystal (PC) cavity implemented in GaAs. On resonance, the dot's lifetime is reduced by more than 10 times, to 45ps. Compared to the standard three-hole defect cavity, the perturbed PC cavity design improves the collection efficiency into an objective lens (NA=0.75) by factor 6, and improves the coupling efficiency of the collected light into a single mode fiber by factor 1.9. The emission frequency is determined by the cavity mode, which is antibunched to g(2)=0.05. The cavity design also enables efficient coupling to a higher-order cavity mode for local optical excitation of cavity-coupled quantum dots.

  15. Measurement of Coupling PDC photon sources with single-mode and multimode optical fibers

    E-Print Network [OSTI]

    Stefania Castelletto; Ivo Pietro Degiovanni; Alan Migdall; Valentina Schettini; Michael Ware

    2004-08-03T23:59:59.000Z

    We investigate the coupling efficiency of parametric downconversion light (PDC) into single and multi-mode optical fibers as a function of the pump beam diameter, crystal length and walk-off. We outline two different theoretical models for the preparation and collection of either single-mode or multi-mode PDC light (defined by, for instance, multi-mode fibers or apertures, corresponding to bucket detection). Moreover, we define the mode-matching collection efficiency, important for realizing a single-photon source based on PDC output into a well-defined single spatial mode. We also define a multimode collection efficiency that is useful for single-photon detector calibration applications.

  16. Measurement of Coupling PDC photon sources with single-mode and multimode optical fibers

    E-Print Network [OSTI]

    Castelletto, S; Migdal, A; Schettini, V; Ware, M; Castelletto, Stefania; Degiovanni, Ivo Pietro; Migdall, Alan; Schettini, Valentina; Ware, Michael

    2004-01-01T23:59:59.000Z

    We investigate the coupling efficiency of parametric downconversion light (PDC) into single and multi-mode optical fibers as a function of the pump beam diameter, crystal length and walk-off. We outline two different theoretical models for the preparation and collection of either single-mode or multi-mode PDC light (defined by, for instance, multi-mode fibers or apertures, corresponding to bucket detection). Moreover, we define the mode-matching collection efficiency, important for realizing a single-photon source based on PDC output into a well-defined single spatial mode. We also define a multimode collection efficiency that is useful for single-photon detector calibration applications.

  17. advanced light source: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    detectors. A 2.5 m diameter light source illuminated by an ultra--violet light emitting diode is calibrated with an overall uncertainty of 2.1 % at a wavelength of 365 nm....

  18. Annual meeting of the Advanced Light Source Users` Association

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    This report contains papers on the following topics: ALS Director`s Report; ALS Operations Update; Recent Results in Machine Physics; Progress in Beamline Commissioning and Overview of New Projects; The ALS Scientific Program; First Results from the SpectroMicroscopy Beamline; Soft X-ray Fluorescence Spectroscopy of Solids; Soft X-Ray Fluorescence Spectroscopy of Molecules; Microstructures and Micromachining at the ALS; High-Resolution Photoemission from Simple Atoms and Molecules; X-Ray Diffraction at the ALS; Utilizing Synchrotron Radiation in Advanced Materials Industries; Polymer Microscopy: About Balls, Rocks and Other ``Stuff``; Infrared Research and Applications; and ALS User Program.

  19. Preliminary Report on the Evaluation of an Electron-Positron Collider as a source of Monoenergetic Photons

    SciTech Connect (OSTI)

    Fast, James E.; Campbell, Luke W.

    2009-11-30T23:59:59.000Z

    Abstract Active interrogation methods are being investigated to detect shielded special nuclear material (SNM). These approaches utilize either neutron or photon beams to excite the SNM in concert with either neutron or gamma ray detectors to observe the stimulated emissions. The two primary methodologies with photon beams are photofission and nuclear resonance florescence (NRF). Photofission requires photons energies of 7-10 MeV while NRF requires photon energies around 2 MeV. For both techniques, photons that are not in the appropriate energy band, e.g. the low energy tail of a Bremsstrahlung photon beam, contribute unwanted additional radiation dose to cargo. Typically less than 10% of the photons are in the usable energy band. The additional photon production generates a commensurate amount of additional radiation dose in the source and target areas, impacting shielding requirements and/or dose to operators and equipment and at the expense of a similar increase in power consumption. Hence it is highly desirable to produce narrow energy (“monoenergetic”) photon beams with tunable energy in the range of ~2-20 MeV.

  20. Inverter for interfacing advanced energy sources to a utility grid

    DOE Patents [OSTI]

    Steigerwald, Robert L. (Scotia, NY)

    1984-01-01T23:59:59.000Z

    A transistor is operated in the PWM mode such that a hlaf sine wave of current is delivered first to one-half of a distribution transformer and then the other as determined by steering thyristors operated at the fundamental sinusoidal frequency. Power to the transistor is supplied by a dc source such as a solar array and the power is converted such that a sinusoidal current is injected into a utility at near unity power factor.

  1. Radiation Therapy Photon Beams Dose Conformation According to Dose Distribution Around Intracavitary-Applied Brachytherapy Sources

    SciTech Connect (OSTI)

    Jurkovic, Slaven [Department of Radiotherapy and Oncology, University Hospital, Rijeka (Croatia)], E-mail: slaven.jurkovic@ri.htnet.hr; Zauhar, Gordana [Department of Physics, School of Medicine, Rijeka (Croatia); Faj, Dario [Department of Radiotherapy and Oncology, University Hospital, Osijek (Croatia); Radojcic, Deni Smilovic; Svabic, Manda [Department of Radiotherapy and Oncology, University Hospital, Rijeka (Croatia)

    2010-04-01T23:59:59.000Z

    Intracavitary application of brachytherapy sources followed by external beam radiation is essential for the local treatment of carcinoma of the cervix. Due to very high doses to the central portion of the target volume delivered by brachytherapy sources, this part of the target volume must be shielded while being irradiated by photon beams. Several shielding techniques are available, from rectangular block and standard cervix wedge to more precise, customized step wedge filters. Because the calculation of a step wedge filter's shape was usually based on effective attenuation coefficient, an approach that accounts, in a more precise way, for the scattered radiation, is suggested. The method was verified under simulated clinical conditions using film dosimetry. Measured data for various compensators were compared to the numerically determined sum of the dose distribution around brachytherapy sources and one of compensated beam. Improvements in total dose distribution are demonstrated, using our method. Agreement between calculation and measurements were within 3%. Sensitivity of the method on sources displacement during treatment has also been investigated.

  2. Low Temperature Heat Source Utilization Current and Advanced Technology

    SciTech Connect (OSTI)

    Anderson, James H. Jr.; Dambly, Benjamin W.

    1992-06-01T23:59:59.000Z

    Once a geothermal heat source has been identified as having the potential for development, and its thermal, physical, and chemical characteristics have been determined, a method of utilization must be decided upon. This compendium will touch upon some of these concerns, and hopefully will provide the reader with a better understanding of technologies being developed that will be applicable to geothermal development in East Africa, as well as other parts of the world. The appendices contain detailed reports on Down-the-Well Turbo Pump, The Vapor-Turbine Cycle for Geothermal Power Generation, Heat Exchanger Design for Geothermal Power Plants, and a Feasibility Study of Combined Power and Water Desalting Plant Using Hot Geothermal Water. [DJE-2005

  3. Depleted uranium hexafluoride: The source material for advanced shielding systems

    SciTech Connect (OSTI)

    Quapp, W.J.; Lessing, P.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Cooley, C.R. [Department of Technology, Germantown, MD (United States)

    1997-02-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has a management challenge and financial liability problem in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. DOE is evaluating several options for the disposition of this UF{sub 6}, including continued storage, disposal, and recycle into a product. Based on studies conducted to date, the most feasible recycle option for the depleted uranium is shielding in low-level waste, spent nuclear fuel, or vitrified high-level waste containers. Estimates for the cost of disposal, using existing technologies, range between $3.8 and $11.3 billion depending on factors such as the disposal site and the applicability of the Resource Conservation and Recovery Act (RCRA). Advanced technologies can reduce these costs, but UF{sub 6} disposal still represents large future costs. This paper describes an application for depleted uranium in which depleted uranium hexafluoride is converted into an oxide and then into a heavy aggregate. The heavy uranium aggregate is combined with conventional concrete materials to form an ultra high density concrete, DUCRETE, weighing more than 400 lb/ft{sup 3}. DUCRETE can be used as shielding in spent nuclear fuel/high-level waste casks at a cost comparable to the lower of the disposal cost estimates. Consequently, the case can be made that DUCRETE shielded casks are an alternative to disposal. In this case, a beneficial long term solution is attained for much less than the combined cost of independently providing shielded casks and disposing of the depleted uranium. Furthermore, if disposal is avoided, the political problems associated with selection of a disposal location are also avoided. Other studies have also shown cost benefits for low level waste shielded disposal containers.

  4. Instrumentation and Beam Dynamics Study of Advanced Electron-Photon Facility in Indiana University

    SciTech Connect (OSTI)

    Luo, Tianhuan; /Indiana U.

    2011-08-01T23:59:59.000Z

    The Advanced eLectron-PHoton fAcility (ALPHA) is a compact electron accelerator under construction and being commissioned at the Indiana University Center for Exploration of Energy and Matter (CEEM). In this thesis, we have studied the refurbished Cooler Injector Synchrotron (CIS) RF cavity using both the transmission line model and SUPERFISH simulation. Both low power and high power RF measurements have been carried out to characterize the cavity. Considering the performance limit of ferrite, we have designed a new ferrite loaded, co-axial quarter wave like cavity with similar structure but a more suitable ferrite material. We have also designed a traveling wave stripline kicker for fast extraction by POISSON and Microwave Studio. The strips geometry is trimmed to maximize the uniformity of the kicking field and match the impedance of the power cables. The time response simulation shows the kicker is fast enough for machine operation. The pulsed power supply requirement has also been specified. For the beam diagnosis in the longitudinal direction, we use a wideband Wall Gap Monitor (WGM) served in CIS. With proper shielding and amplification to get good WGM signal, we have characterized the injected and extracted beam signal in single pass commissioning, and also verified the debunching effect of the ALPHA storage ring. A modulation-demodulation signal processing method is developed to measure the current and longitudinal profile of injected beam. By scanning the dipole strength in the injection line, we have reconstructed the tomography of the longitudinal phase space of the LINAC beam. In the accumulation mode, ALPHA will be operated under a low energy and high current condition, where intra beam scattering (IBS) becomes a dominant effect on the beam emittance. A self consistent simulation, including IBS effect, gas scattering and linear coupling, has been carried out to calculate the emittance of the stored beam.

  5. A Flexible Source of Non-Degenerate Entangled Photons Based on a Two-Crystal Sagnac Interferometer

    E-Print Network [OSTI]

    Terence E. Stuart; Joshua A. Slater; Felix Bussieres; Wolfgang Tittel

    2013-05-05T23:59:59.000Z

    Sources of entangled photon pairs are a key component in both fundamental tests of quantum theory and practical applications such as quantum key distribution and quantum computing. In this work, we describe and characterize a source of polarization entangled photon pairs based on two spontaneous parametric down-conversion (SPDC) crystals in a Sagnac interferometer. Our source is compact and produces high-quality entangled states in a very flexible manner. The wavelengths of the photon pairs, around 810 and 1550 nm, the phase between orthogonal components of the entangled state, and the tangle of the state are all independently adjustable. In addition to presenting basic characterization data, we present experimental violations of CHSH and Leggett inequalities, as well as an instance of the "beautiful" Bell inequality, which has not previously been tested experimentally.

  6. Which optical processes are suitable to make probabilistic single photon sources for quantum cryptography?

    E-Print Network [OSTI]

    Amit Verma; Anirban Pathak

    2009-09-02T23:59:59.000Z

    Single photon sources to be used in quantum cryptography must show higher order antibunching (HOA). HOA is reported by us in several many wave mixing processes. In the present work we have investigated the possibility of observing HOA in multiwave mixing processes in general. The generalized Hamiltonian is solved for several particular cases in Heisenberg picture and possibility of observing HOA is investigated with the help of criterion of Pathak and Garcia. Several particular cases of the generalized Hamiltonian are solved with the help of short time approximation technique and HOA is reported for pump modes of different multiwave mixing processes. It is also found that HOA can not be observed for the signal and stokes modes in of the cases studied here.

  7. Extractors for Low-Weight Affine Sources Institute for Advanced Study

    E-Print Network [OSTI]

    Anderson, Richard

    ], are functions that can be used to solve this problem. These are functions that are easy to invert given the enExtractors for Low-Weight Affine Sources Anup Rao Institute for Advanced Study arao@ias.edu January is a function AffExt : Fn {0, 1}m such that for any such source X, the distribution of AffExt(X) is close

  8. Fabrication and testing of nano-optical structures for advanced photonics and quantum information processing applications 

    E-Print Network [OSTI]

    Khan, Mughees Mahmood

    2009-05-15T23:59:59.000Z

    -based metal nanostructures offer the promise of scalable devices. This is because the small optical mode volumes of such structures give the large atom-photon coupling needed to interface solid-state quantum bits (qubits) to photons. The main focus...

  9. Infrared Spectroscopy of Laser Irradiated Dental Hard Tissues using the Advanced Light Source

    E-Print Network [OSTI]

    on the laser ablation/drilling process and may lead to a reduction in the ablation rate and efficiencyInfrared Spectroscopy of Laser Irradiated Dental Hard Tissues using the Advanced Light Source D Dental Sciences, San Francisco, CA 94143-0758, USA INTRODUCTION Infrared lasers are ideally suited

  10. A photon-pair source with controllable delay based on shaped inhomogeneous broadening of rare-earth doped solids

    E-Print Network [OSTI]

    Pavel Sekatski; Nicolas Sangouard; Nicolas Gisin; Hugues de Riedmatten; Mikael Afzelius

    2011-01-31T23:59:59.000Z

    Spontaneous Raman emission in atomic gases provides an attractive source of photon pairs with a controllable delay. We show how this technique can be implemented in solid state systems by appropriately shaping the inhomogeneous broadening. Our proposal is eminently feasible with current technology and provides a realistic solution to entangle remote rare-earth doped solids in a heralded way.

  11. Photon-pair source with controllable delay based on shaped inhomogeneous broadening of rare-earth-metal-doped solids

    SciTech Connect (OSTI)

    Sekatski, Pavel; Sangouard, Nicolas; Gisin, Nicolas; Afzelius, Mikael [Group of Applied Physics, University of Geneva, CH-1211 Geneva 4 (Switzerland); Riedmatten, Hugues de [Group of Applied Physics, University of Geneva, CH-1211 Geneva 4 (Switzerland); ICFO-Institute of Photonic Sciences, Mediterranean Technology Park, E-08860 Castelldefels (Barcelona) (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, E-08015 Barcelona (Spain)

    2011-05-15T23:59:59.000Z

    Spontaneous Raman emission in atomic gases provides an attractive source of photon pairs with a controllable delay. We show how this technique can be implemented in solid state systems by appropriately shaping the inhomogeneous broadening. Our proposal is eminently feasible with current technology and provides a realistic solution to entangle remote rare-earth-metal-doped solids in a heralded way.

  12. Various quantum nonlocality tests with a simple 2-photon entanglement source

    E-Print Network [OSTI]

    Pomarico, Enrico; Sanguinetti, Bruno; Rochdi, Anas; Gisin, Nicolas

    2011-01-01T23:59:59.000Z

    Nonlocality is a fascinating and counterintuitive aspect of Nature, revealed by the violation of a Bell inequality. The standard and easiest configuration in which Bell inequalities can be measured has been proposed by Clauser-Horne-Shimony-Holt (CHSH). However, alternative nonlocality tests can also be carried out. In particular, Bell inequalities requiring multiple measurement settings can provide deeper fundamental insights about quantum nonlocality as well as offering advantages in the presence of noise and detection inefficiency. In this article we show how these nonlocality tests can be performed using a commercially available source of entangled photon pairs. We report the violation of a series of these nonlocality tests (I3322, I4422 and chained inequalities). With the violation of the chained inequality with 4 settings per side we put an upper limit at 0.49 on the local content of the states prepared by the source (instead of 0.63 attainable with CHSH). We also quantify the amount of true randomness ...

  13. QF-064, January 2, 2009 (Rev. 9) more . . .Page 2 of 7 EMS, FUA and SAD/ASE Checklist for Photon Sources Directorate Reviews

    E-Print Network [OSTI]

    Ohta, Shigemi

    for Photon Sources Directorate Reviews (Photon Sources Directorate ES&H personnel and the Environmental Compliance Representative can assist in completing this form) Review Committee: Laboratory ESH Committee Date Sciences Directorate ESH Manager: APPLICABLE REGULATORY REQUIREMENTS: Check off any BNL Subject Areas

  14. Simulations of Liners and Test Objects for a New Atlas Advanced Radiography Source

    SciTech Connect (OSTI)

    D. V. Morgan; S. Iversen; R. A. Hilko

    2002-06-01T23:59:59.000Z

    The Advanced Radiographic Source (ARS) will improve the data significantly due to its smaller source width. Because of the enhanced ARS output, larger source-to-object distances are a reality. The harder ARS source will allow radiography of thick high-Z targets. The five different spectral simulations resulted in similar imaging detector weighted transmission. This work used a limited set of test objects and imaging detectors. Other test objects and imaging detectors could possibly change the MVp-sensitivity result. The effect of material motion blur must be considered for the ARS due to the expected smaller X-ray source size. This study supports the original 1.5-MVp value.

  15. Phase-locked indistinguishable photons with synthesized waveforms from a solid-state source

    E-Print Network [OSTI]

    Clemens Matthiesen; Martin Geller; Carsten H. H. Schulte; Claire Le Gall; Jack Hansom; Zhengyong Li; Maxime Hugues; Edmund Clarke; Mete Atatüre

    2013-03-27T23:59:59.000Z

    Resonance fluorescence in the Heitler regime provides access to single photons with coherence well beyond the Fourier transform limit of the transition, and holds the promise to circumvent environment-induced dephasing common to all solid-state systems. Here we demonstrate that the coherently generated single photons from a single self-assembled InAs quantum dot display mutual coherence with the excitation laser on a timescale exceeding 3 seconds. Exploiting this degree of mutual coherence we synthesize near-arbitrary coherent photon waveforms by shaping the excitation laser field. In contrast to post-emission filtering, our technique avoids both photon loss and degradation of the single photon nature for all synthesized waveforms. By engineering pulsed waveforms of single photons, we further demonstrate that separate photons generated coherently by the same laser field are fundamentally indistinguishable, lending themselves to creation of distant entanglement through quantum interference.

  16. Containment performance analyses for the Advanced Neutron Source Reactor at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Kim, S.H.; Taleyarkhan, R.P.; Georgevich, V.

    1992-10-01T23:59:59.000Z

    This paper discusses salient aspects of methodology, assumptions, and modeling of various features related to estimation of source terms from two conservatively scoped severe accident scenarios in the Advanced Neutron Source (ANS) reactor at the Oak Ridge National Laboratory. Various containment configurations are considered for steaming-pool-type accidents and an accident involving molten core-concrete interaction. Several design features (such as rupture disks) are examined to study containment response during postulated severe accidents. Also, thermal-hydraulic response of the containment and radionuclide transport and retention in the containment are studied. The results are described as transient variations of source terms for each scenario, which are to be used for studying off-site radiological consequences and health effects for these postulated severe accidents. Also highlighted will be a comparison of source terms estimated by two different versions of the MELCOR code.

  17. An advanced hadron facility: A combined kaon factory and cold-neutron source

    SciTech Connect (OSTI)

    Thiessen, H.A.

    1987-03-16T23:59:59.000Z

    A design concept is presented for an advanced hadron facility consisting of a combined kaon factory and second generation spallation source. Our proposed facility consists of a 1.2 GeV superconducting H/sup -/ linac to bring the LAMPF energy up to 2 GeV, a multi-ring 2 GeV compressor, a shared cold-neutron and stopped-pion neutrino source, a 60 GeV 25 ..mu..Amp 6 Hz proton synchrotron, and kaon and proton experimental areas. We discuss the considerations which led to this design concept. We summarize recent results of r and d work on components for rapid-cycling synchrotrons. Finally, we mention briefly a pion linac, which may be a good way to gain experience with superconducting cavities if advanced hadron facility funding is delayed.

  18. Efficiency and stray light measurements and calculations of diffraction gratings for the Advanced Light Source

    SciTech Connect (OSTI)

    McKinney, W.R.; Mossessian, D. (Accelerator and Fusion Research Division, Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States)); Gullikson, E. (Materials Sciences Division, Center for X-ray Optics, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States)); Heimann, P. (Accelerator and Fusion Research Division, Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States))

    1995-02-01T23:59:59.000Z

    Water-cooled gratings manufactured for spherical grating monochromators of the Advanced Light Source beamlines 7.0, 8.0, and 9.0 were measured with the laser plasma source and reflectometer in the Center for X-ray Optics at Lawrence Berkeley Laboratory. The square-wave gratings are ion milled into the polished electroless nickel surface after patterning by holographic photolithography. Absolute efficiency data are compared with exact electromagnetic theory calculation. Interorder stray light and groove depths can be estimated from the measurements.

  19. Narrow Band Source of Transform-Limited Photon Pairs via Four-Wave Mixing in a Cold Atomic Ensemble

    E-Print Network [OSTI]

    Bharath Srivathsan; Gurpreet Kaur Gulati; Chng Mei Yuen Brenda; Gleb Maslennikov; Dzmitry Matsukevich; Christian Kurtsiefer

    2013-09-18T23:59:59.000Z

    We observe narrowband pairs of time-correlated photons of wavelengths 776\\,nm and 795\\,nm from non-degenerate four-wave mixing in a laser-cooled atomic ensemble of $^{87}${Rb} using a cascade decay scheme. Coupling the photon pairs into single mode fibers, we observe an instantaneous rate of 7700 pairs per second with silicon avalanche photodetectors, and an optical bandwidth below 30\\,MHz. Detection events exhibit a strong correlation in time ($g^{(2)}(\\tau=0)\\approx5800$), and a high coupling efficiency indicated by a pair-to-single ratio of 23%. The violation of the Cauchy-Schwarz inequality by a factor of $8.4\\times10^6$ indicates a strong non-classical correlation between the generated fields, while a Hanbury--Brown--Twiss experiment in the individual photons reveals their thermal nature. The narrow bandwidth and brightness of our source makes it ideal for interacting with atomic ensembles in quantum communication protocols.

  20. An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity

    E-Print Network [OSTI]

    Matthew Pelton; Charles Santori; Jelena Vuckovic; Bingyang Zhang; Glenn S. Solomon; Jocelyn Plant; Yoshihisa Yamamoto

    2002-08-08T23:59:59.000Z

    We have demonstrated efficient production of triggered single photons by coupling a single semiconductor quantum dot to a three-dimensionally confined optical mode in a micropost microcavity. The efficiency of emitting single photons into a single-mode travelling wave is approximately 38%, which is nearly two orders of magnitude higher than for a quantum dot in bulk semiconductor material. At the same time, the probability of having more than one photon in a given pulse is reduced by a factor of seven as compared to light with Poissonian photon statistics.

  1. Focused-ion-beam overlay-patterning of three-dimensional diamond structures for advanced single-photon properties

    SciTech Connect (OSTI)

    Jiang, Qianqing; Liu, Dongqi; Liu, Gangqin; Chang, Yanchun; Li, Wuxia, E-mail: liwuxia@aphy.iphy.ac.cn, E-mail: czgu@aphy.iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Pan, Xinyu; Gu, Changzhi, E-mail: liwuxia@aphy.iphy.ac.cn, E-mail: czgu@aphy.iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China)

    2014-07-28T23:59:59.000Z

    Sources of single photons are of fundamental importance in many applications as to provide quantum states for quantum communication and quantum information processing. Color centers in diamond are prominent candidates to generate and manipulate quantum states of light, even at room temperature. However, the efficiency of photon collection of the color centers in bulk diamond is greatly reduced by refraction at the diamond/air interface. To address this issue, diamond structuring has been investigated by various methods. Among them, focused-ion-beam (FIB) direct patterning has been recognized as the most favorable technique. But it has been noted that diamond tends to present significant challenges in FIB milling, e.g., the susceptibility of forming charging related artifacts and topographical features. In this work, periodically-positioned-rings and overlay patterning with stagger-superimposed-rings were proposed to alleviate some problems encountered in FIB milling of diamond, for improved surface morphology and shape control. Cross-scale network and uniform nanostructure arrays have been achieved in single crystalline diamond substrates. High quality diamond solid immersion lens and nanopillars were sculptured with a nitrogen-vacancy center buried at the desired position. Compared with the film counterpart, an enhancement of about ten folds in single photon collection efficiency was achieved with greatly improved signal to noise ratio. All these results indicate that FIB milling through over-lay patterning could be an effective approach to fabricate diamond structures, potentially for quantum information studies.

  2. Analysis of core-concrete interaction event with flooding for the Advanced Neutron Source reactor

    SciTech Connect (OSTI)

    Kim, S.H.; Taleyarkhan, R.P.; Georgevich, V.; Navarro-Valenti, S.

    1993-11-01T23:59:59.000Z

    This paper discusses salient aspects of the methodology, assumptions, and modeling of various features related to estimation of source terms from an accident involving a molten core-concrete interaction event (with and without flooding) in the Advanced Neutron Source (ANS) reactor at the Oak Ridge National Laboratory. Various containment configurations are considered for this postulated severe accident. Several design features (such as rupture disks) are examined to study containment response during this severe accident. Also, thermal-hydraulic response of the containment and radionuclide transport and retention in the containment are studied. The results are described as transient variations of source terms, which are then used for studying off-site radiological consequences and health effects for the support of the Conceptual Safety Analysis Report for ANS. The results are also to be used to examine the effectiveness of subpile room flooding during this type of severe accident.

  3. Performance Characteristics Of An Intensity Modulated Advanced X-Ray Source (IMAXS) For Homeland Security Applications

    SciTech Connect (OSTI)

    Langeveld, Willem G. J.; Brown, Craig; Condron, Cathie; Ingle, Mike [Rapiscan Laboratories, Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States); Christensen, Phil A.; Johnson, William A.; Owen, Roger D. [HESCO/PTSE Inc., 2501 Monarch St., Alameda, CA 94501 (United States); Hernandez, Michael; Schonberg, Russell G. [XScell Corp., 2134 Old Middlefield Way, Mountain View, CA 94043 (United States); Ross, Randy [Stangenes Industries, Inc., 1052 East Meadow Circle, Palo Alto, CA 94303 (United States)

    2011-06-01T23:59:59.000Z

    X-ray cargo inspection systems for the detection and verification of threats and contraband must address stringent, competitive performance requirements. High x-ray intensity is needed to penetrate dense cargo, while low intensity is desirable to minimize the radiation footprint, i.e. the size of the controlled area, required shielding and the dose to personnel. In a collaborative effort between HESCO/PTSE Inc., XScell Corp., Stangenes Industries, Inc. and Rapiscan Laboratories, Inc., an Intensity Modulated Advanced X-ray Source (IMAXS) was designed and produced. Cargo inspection systems utilizing such a source have been projected to achieve up to 2 inches steel-equivalent greater penetration capability, while on average producing the same or smaller radiation footprint as present fixed-intensity sources. Alternatively, the design can be used to obtain the same penetration capability as with conventional sources, but reducing the radiation footprint by about a factor of three. The key idea is to anticipate the needed intensity for each x-ray pulse by evaluating signal strength in the cargo inspection system detector array for the previous pulse. The IMAXS is therefore capable of changing intensity from one pulse to the next by an electronic signal provided by electronics inside the cargo inspection system detector array, which determine the required source intensity for the next pulse. We report on the completion of a 9 MV S-band (2998 MHz) IMAXS source and comment on its performance.

  4. Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their

    E-Print Network [OSTI]

    Cummings, Mary "Missy"

    Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their effects on human reliability is critical of complexity leveraging network theory. INTRODUCTION The nuclear power industry in United States has declined

  5. ANL/APS/TB-16 ADVANCED PHOTON SOURCE ACCELERATOR ULTRAHIGH VACUUM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electron linac accelerator with the use of SLED. The SLED microwave network utilizes a dual cavity which is tuned to resonance. 10 The waveguide assemblies are made of OFHC copper...

  6. New Physics in a Copper-Iridium Compound | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Key Target for Diabetes Drugs Molten Metal Solidifies into a New Kind of Glass Organic Polymers Show Sunny Potential A New Family of Quasicrystals Cool Muscles: Storing Elastic...

  7. The Linac Injector For The ANL 7 Ge V Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quadrupole triplets are adequate to provide focusing and transport properties. Positron Production Following the DESY design, the positrons are produced in a water-cooled,...

  8. A New Material for Warm-White LEDs | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To create the new phosphor, Pan and his team combine minute quantities of europium oxide with aluminum oxide, barium oxide and graphite powders. They then heat the...

  9. Photo of the Week: Penguins, Plankton, and Argonne's Advanced Photon Source

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMakeEducationRemediationDepartment of Energy| Department

  10. Photo of the Week: Penguins, Plankton, and Argonne's Advanced Photon Source

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired)of Energy Photothe Mojave Desert | Department|

  11. Characterization of core debris/concrete interactions for the Advanced Neutron Source

    SciTech Connect (OSTI)

    Hyman, C.R.; Taleyarkhan, R.P.

    1992-02-01T23:59:59.000Z

    This report provides the results of a recent study conducted to explore the molten core/concrete interaction (MCCI) issue for the Advanced Neutron Source (ANS). The need for such a study arises from the potential threats to reactor system integrity posed by MCCI. These threats include direct attack of the concrete basemat of the containment; generation and release of large quantities of gas that can pressurize the containment; the combustion threat of these gases; and the potential generation, release, and transport of radioactive aerosols to the environment.

  12. Advanced Light Source Compendium of User Abstracts andTechnical Reports 1997

    SciTech Connect (OSTI)

    Cross, J.; Devereaux, M.K.; Dixon, D.J.; Greiner, A.; editors

    1998-07-01T23:59:59.000Z

    The Advanced Light Source (ALS), a national user facility located at Ernest Orlando Lawrence Berkeley National Laboratory of the University of California is available to researchers from academia, industry, and government laboratories. Operation of the ALS is funded by the Department of Energy's Office of Basic Energy Sciences. This Compendium contains abstracts written by users summarizing research completed or in progress during 1997, ALS technical reports describing ongoing efforts related to improvement in machine operations and research and development projects, and information on ALS beamlines planned through 1998.

  13. Compact 2D nonlinear photonic crystal source of beamlike path entangled

    E-Print Network [OSTI]

    Arie, Ady

    the generation of entangled photons with controlled spatial, spectral and polarization properties. © 2013 Optical, 4337­4341 (1995). 2. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions­4139 (1998). 12. N. Broderick, G. Ross, H. Offerhaus, D. Richardson, and D. Hanna, "Hexagonally poled lithium

  14. ambient ionization source: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with some obscuration (e.g. dlog(F Roban Hultman Kramer; Zoltn Haiman 2008-01-10 208 KJK 1018-1901 MUTAC Review Advanced Photon Source Kwang-Je Kim Plasma Physics and...

  15. Advances in the Ion Source Research and Development Program at ISIS

    SciTech Connect (OSTI)

    Faircloth, D.C.; Thomason, J.W.G.; Sidlow, R.; Whitehead, M.O. [CCLRC, RAL, ISIS, Didcot, Oxon, OX11 0QX (United Kingdom)

    2005-04-06T23:59:59.000Z

    This paper covers the advances in the ion source research and development Program at ISIS over the last 2 years. The work is a combination of theoretical finite element analysis calculations and experiments conducted on a purpose built development rig. The broad development goals are higher beam current with longer pulse length. A Finite Element Analysis (FEA) model is used here to understand the steady state and dynamic thermal behavior of the source, and to investigate the design changes necessary to offset the extra heating. Electromagnetic FEA modeling of the extraction region of the ISIS H- ion source has suggested that the present set up of extraction electrode and 90 deg. sector magnet is sub-optimal, with the result that the beam profile is asymmetric, the beam is strongly divergent in the horizontal plane and there is severe aberration in the focusing in the vertical plane. The FEA model of the beam optics has demonstrated that relatively simple changes to the system should produce a dramatic improvement in performance. The theoretical and experimental results are compared here.

  16. Measurements of the subcriticality using advanced technique of shooting source during operation of NPP reactors

    SciTech Connect (OSTI)

    Lebedev, G. V., E-mail: lgv2004@mail.ru; Petrov, V. V. [National Research Center Kurchatov Institute (Russian Federation); Bobylyov, V. T.; Butov, R. I.; Zhukov, A. M.; Sladkov, A. A. [Dukhov VNIIA (Russian Federation)

    2014-12-15T23:59:59.000Z

    According to the rules of nuclear safety, the measurements of the subcriticality of reactors should be carried out in the process of performing nuclear hazardous operations. An advanced technique of shooting source of neutrons is proposed to meet this requirement. As such a source, a pulsed neutron source (PNS) is used. In order to realize this technique, it is recommended to enable a PNS with a frequency of 1–20 Hz. The PNS is stopped after achieving a steady-state (on average) number of neutrons in the reactor volume. The change in the number of neutrons in the reactor volume is measured in time with an interval of discreteness of ?0.1 s. The results of these measurements with the application of a system of point-kinetics equations are used in order to calculate the sought subcriticality. The basic idea of the proposed technique used to measure the subcriticality is elaborated in a series of experiments on the Kvant assembly. The conditions which should be implemented in order to obtain a positive result of measurements are formulated. A block diagram of the basic version of the experimental setup is presented, whose main element is a pulsed neutron generator.

  17. Integrating advanced materials simulation techniques into an automated data analysis workflow at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Borreguero Calvo, Jose M [ORNL] [ORNL; Campbell, Stuart I [ORNL] [ORNL; Delaire, Olivier A [ORNL] [ORNL; Doucet, Mathieu [ORNL] [ORNL; Goswami, Monojoy [ORNL] [ORNL; Hagen, Mark E [ORNL] [ORNL; Lynch, Vickie E [ORNL] [ORNL; Proffen, Thomas E [ORNL] [ORNL; Ren, Shelly [ORNL] [ORNL; Savici, Andrei T [ORNL] [ORNL; Sumpter, Bobby G [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    This presentation will review developments on the integration of advanced modeling and simulation techniques into the analysis step of experimental data obtained at the Spallation Neutron Source. A workflow framework for the purpose of refining molecular mechanics force-fields against quasi-elastic neutron scattering data is presented. The workflow combines software components to submit model simulations to remote high performance computers, a message broker interface for communications between the optimizer engine and the simulation production step, and tools to convolve the simulated data with the experimental resolution. A test application shows the correction to a popular fixed-charge water model in order to account polarization effects due to the presence of solvated ions. Future enhancements to the refinement workflow are discussed. This work is funded through the DOE Center for Accelerating Materials Modeling.

  18. Oak Ridge Reservation site evaluation report for the Advanced Neutron Source

    SciTech Connect (OSTI)

    Sigmon, B.; Heitzman, A.C. Jr.; Morrissey, J. [Science Applications International Corp., Oak Ridge, TN (United States)

    1990-03-01T23:59:59.000Z

    The Advanced Neutron Source (ANS) is a research reactor that is the US Department of Energy (DOE) plans to build for initial service late in this century. The primary purpose of the ANS is to provide a useable neutron flux for scattering experiments 5 to 10 times as a high as that generated by any existing research reactor, secondary purposes include production of a variety of transuranic and other isotopes and irradiation of materials. The ANS is proposed to be located on the DOE Oak Ridge Reservation (ORR) at Oak Ridge, Tennessee, and operated by the Oak Ridge National Laboratory (ORNL). This report documents the evaluation of alternative sites on the ORR and the selection of a site for the ANS.

  19. Modeling & analysis of criticality-induced severe accidents during refueling for the Advanced Neutron Source Reactor

    SciTech Connect (OSTI)

    Georgevich, V.; Kim, S.H.; Taleyarkhan, R.P.; Jackson, S.

    1992-10-01T23:59:59.000Z

    This paper describes work done at the Oak Ridge National Laboratory (ORNL) for evaluating the potential and resulting consequences of a hypothetical criticality accident during refueling of the 330-MW Advanced Neutron Source (ANS) research reactor. The development of an analytical capability is described. Modeling and problem formulation were conducted using concepts of reactor neutronic theory for determining power level escalation, coupled with ORIGEN and MELCOR code simulations for radionuclide buildup and containment transport Gaussian plume transport modeling was done for determining off-site radiological consequences. Nuances associated with modeling this blast-type scenario are described. Analysis results for ANS containment response under a variety of postulated scenarios and containment failure modes are presented. It is demonstrated that individuals at the reactor site boundary will not receive doses beyond regulatory limits for any of the containment configurations studied.

  20. Fabrication of InAs quantum dots in AlAs/GaAs DBR pillar microcavities for single photon sources

    SciTech Connect (OSTI)

    Zhang Bingyang; Solomon, Glenn S.; Pelton, Matthew; Plant, Jocelyn; Santori, Charles; Vuckovic, Jelena; Yamamoto, Yoshihisa [Quantum Entanglement Project, ICORP, JST, Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305-4085 (United States)

    2005-04-01T23:59:59.000Z

    We report the molecular beam epitaxy growth of low-density strain-induced InAs quantum dots (QD) embedded in an AlAs/GaAs distributed Bragg reflector structure for a triggered photon source. By optimal selection of growth temperature, InAs deposited thickness and other experimental parameters, it is possible to grow low density (10/{mu}m{sup 2}) InAs quantum dots with a suitable emission wavelength for a triggered photon source. The empirical formulas for the refractive indices of AlAs and GaAs materials at high temperature over a wide wavelength range are constructed by combining high resolution x-ray diffraction, dynamic optical reflectivity, and optical reflectivity spectrum techniques. Utilizing the electron-beam lithography and electron-cyclotron-resonance plasma etching techniques, a micropost microcavity with the top diameter of 0.6 {mu}m and the post height of 4.2 {mu}m has been fabricated. Narrow, spectrally limited single QD emission embedded in a micropost microcavity is observed in the photoluminescence.

  1. Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Blasing, T.J.; Brown, R.A.; Cada, G.F.; Easterly, C.; Feldman, D.L.; Hagan, C.W.; Harrington, R.M.; Johnson, R.O.; Ketelle, R.H.; Kroodsma, R.L.; McCold, L.N.; Reich, W.J.; Scofield, P.A.; Socolof, M.L.; Taleyarkhan, R.P.; Van Dyke, J.W.

    1992-02-01T23:59:59.000Z

    The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production of medical and industrial isotopes such as {sup 252}Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2.

  2. Engineering of quantum dot photon sources via electro-elastic fields

    E-Print Network [OSTI]

    Rinaldo Trotta; Armando Rastelli

    2015-03-01T23:59:59.000Z

    The possibility to generate and manipulate non-classical light using the tools of mature semiconductor technology carries great promise for the implementation of quantum communication science. This is indeed one of the main driving forces behind ongoing research on the study of semiconductor quantum dots. Often referred to as artificial atoms, quantum dots can generate single and entangled photons on demand and, unlike their natural counterpart, can be easily integrated into well-established optoelectronic devices. However, the inherent random nature of the quantum dot growth processes results in a lack of control of their emission properties. This represents a major roadblock towards the exploitation of these quantum emitters in the foreseen applications. This chapter describes a novel class of quantum dot devices that uses the combined action of strain and electric fields to reshape the emission properties of single quantum dots. The resulting electro-elastic fields allow for control of emission and binding energies, charge states, and energy level splittings and are suitable to correct for the quantum dot structural asymmetries that usually prevent these semiconductor nanostructures from emitting polarization-entangled photons. Key experiments in this field are presented and future directions are discussed.

  3. Multiple time scale blinking in InAs quantum dot single-photon sources

    E-Print Network [OSTI]

    Marcelo Davanco; C. Stephen Hellberg; Serkan Ates; Antonio Badolato; Kartik Srinivasan

    2014-04-21T23:59:59.000Z

    We use photon correlation measurements to study blinking in single, epitaxially-grown self-assembled InAs quantum dots situated in circular Bragg grating and microdisk cavities. The normalized second-order correlation function g(2)(\\tau) is studied across eleven orders of magnitude in time, and shows signatures of blinking over timescales ranging from tens of nanoseconds to tens of milliseconds. The g(2)(\\tau) data is fit to a multi-level system rate equation model that includes multiple non-radiating (dark) states, from which radiative quantum yields significantly less than 1 are obtained. This behavior is observed even in situations for which a direct histogramming analysis of the emission time-trace data produces inconclusive results.

  4. Emission spectra and quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime

    E-Print Network [OSTI]

    Guoqiang Cui; M. G. Raymer

    2008-10-30T23:59:59.000Z

    We derive analytical formulas for the forward emission and side emission spectra of cavity-modified single-photon sources, as well as the corresponding normal-mode oscillations in the cavity quantum electrodynamics (QED) strong-coupling regime. We investigate the effects of pure dephasing, treated in the phase-diffusion model based on a Wiener-Levy process, on the emission spectra and normal-mode oscillations. We also extend our previous calculation of quantum efficiency to include the pure dephasing process. All results are obtained in the Weisskopf-Wigner approximation for an impulse-excited emitter. We find that the spectra are broadened, the depths of the normal-mode oscillations are reduced and the quantum efficiency is decreased in the presence of pure dephasing.

  5. Report of the Advanced Neutron Source (ANS) safety workshop, Knoxville, Tennessee, October 25--26, 1988

    SciTech Connect (OSTI)

    Buchanan, J.R.; Dumont, J.N.; Kendrick, C.M.; Row, T.H.; Thompson, P.B.; West, C.D.; Marchaterre, J.F.; Muhlheim, M.D.; McBee, M.R. (comp.)

    1988-12-01T23:59:59.000Z

    On October 25--26, 1988, about 60 people took part in an Advanced Neutron Source (ANS) Safety Workshop, organized in cooperation with the Oak Ridge Operations (ORO) Office of the Department of Energy (DOE) and held in Knoxville, Tennessee. After a plenary session at which ANS Project staff presented status reports on the ANS design, research and development (R and D), and safety analysis efforts, the workshop broke into three working groups, each covering a different topic: Environmental and Waste Management, Applicable Regulatory Safety Criteria and Goals, and Reactor Concepts. Each group was asked to review the Project's approach to safety-related issues and to provide guidance on future reactor safety needs or directions for the Project. With the help of able chairmen, assisted by reporters and secretarial support, the working groups were extremely successful. Draft reports from each group were prepared before the workshop closed, and the major findings of each group were presented for review and discussion by the entire workshop attendance. This report contains the final version of the group reports, incorporating the results of the overall review by all the workshop participants.

  6. Development of procedures for refurbishing x-ray optics at the Advanced Light Source

    E-Print Network [OSTI]

    Yashchuk, Valeriy V.

    2013-01-01T23:59:59.000Z

    and Setting of Bendable Optics for Diffraction- Limitedof Soft X-Rays,” Abstract to SPIE Optics and Photonics 2012,Metrology for X-Ray and EUV Optics IV (San Diego, August 12-

  7. Advanced Light Source (ALS) | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Syncrotron Light Source (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects...

  8. A Software System for Modeling and Controlling Accelerator Physics Parameters at the Advanced Light Source

    E-Print Network [OSTI]

    Schachinger, L.C.

    2011-01-01T23:59:59.000Z

    and Controlling Accelerator Physics Parameters at theLight Source for accelerator physics studies and accelerator

  9. Advances

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14Scripting for Advanced Workflows Jack

  10. Angular-divergence calculation for Experimental Advanced Superconducting Tokamak neutral beam injection ion source based on spectroscopic measurements

    SciTech Connect (OSTI)

    Chi, Yuan, E-mail: jtext@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China) [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Chundong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)] [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhuang, Ge [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)] [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-02-15T23:59:59.000Z

    Calorimetric method has been primarily applied for several experimental campaigns to determine the angular divergence of high-current ion source for the neutral beam injection system on the Experimental Advanced Superconducting Tokamak (EAST). A Doppler shift spectroscopy has been developed to provide the secondary measurement of the angular divergence to improve the divergence measurement accuracy and for real-time and non-perturbing measurement. The modified calculation model based on the W7AS neutral beam injectors is adopted to accommodate the slot-type accelerating grids used in the EAST's ion source. Preliminary spectroscopic experimental results are presented comparable to the calorimetrically determined value of theoretical calculation.

  11. The FERMI@Elettra free-electron-laser source for coherent X-ray physics: photon properties, beam transport system, and applications

    SciTech Connect (OSTI)

    Allaria, Enrico; Callegari, Carlo; Cocco, Daniele; Fawley, William M.; Kiskinova, Maya; Masciovecchio, Claudio; Parmigiani, Fulvio

    2010-04-05T23:59:59.000Z

    FERMI@Elettra is comprised of two free electron lasers (FELs) that will generate short pulses (tau ~;; 25 to 200 fs) of highly coherent radiation in the XUV and soft X-ray region. The use of external laser seeding together with a harmonic upshift scheme to obtain short wavelengths will give FERMI@Elettra the capability to produce high quality, longitudinal coherent photon pulses. This capability together with the possibilities of temporal synchronization to external lasers and control of the output photon polarization will open new experimental opportunities not possible with currently available FELs. Here we report on the predicted radiation coherence properties and important configuration details of the photon beam transport system. We discuss the several experimental stations that will be available during initial operations in 2011, and we give a scientific perspective on possible experiments that can exploit the critical parameters of this new light source.

  12. arXiv:quant-ph/0311099v217Nov2003 Coupling Efficiencies in Single Photon On-Demand Sources

    E-Print Network [OSTI]

    Hart, Gus

    , 13 rely on optical parametric downconversion (PDC), because it produces photons two at a time suppressing the probability of multi-photon generation.13 Most PDC based schemes (including ours) require that the PDC output be collected into a single spatial mode defined by an optical fiber. In order for these PDC

  13. DOE LABORATORY OPEN SOURCE SOFTWARE: ADVANCE DOE PROGRAM Approval and other oss Licensing Issues

    Broader source: Energy.gov [DOE]

    On Feb 1, 2002, DOE Patent Counsel issued an IPI-II-1-01 for "Development and Use of Open Source Software."

  14. Electrically driven photonic crystal nanocavity devices

    E-Print Network [OSTI]

    Shambat, Gary; Petykiewicz, Jan; Mayer, Marie A; Majumdar, Arka; Sarmiento, Tomas; Harris, James; Haller, Eugene E; Vuckovic, Jelena

    2012-01-01T23:59:59.000Z

    Interest in photonic crystal nanocavities is fueled by advances in device performance, particularly in the development of low-threshold laser sources. Effective electrical control of high performance photonic crystal lasers has thus far remained elusive due to the complexities associated with current injection into cavities. A fabrication procedure for electrically pumping photonic crystal membrane devices using a lateral p-i-n junction has been developed and is described in this work. We have demonstrated electrically pumped lasing in our junctions with a threshold of 181 nA at 50K - the lowest threshold ever demonstrated in an electrically pumped laser. At room temperature we find that our devices behave as single-mode light-emitting diodes (LEDs), which when directly modulated, have an ultrafast electrical response up to 10 GHz corresponding to less than 1 fJ/bit energy operation - the lowest for any optical transmitter. In addition, we have demonstrated electrical pumping of photonic crystal nanobeam LEDs...

  15. Photon Source Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum Reserves Vision,4 Photomultiplier Tube

  16. Photon Source Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum Reserves Vision,4 Photomultiplier

  17. Photon Source Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoid NanosheetsStudying thePhotoinduced

  18. Characterization of core debris/concrete interactions for the Advanced Neutron Source. ANS Severe Accident Analysis Program

    SciTech Connect (OSTI)

    Hyman, C.R.; Taleyarkhan, R.P.

    1992-02-01T23:59:59.000Z

    This report provides the results of a recent study conducted to explore the molten core/concrete interaction (MCCI) issue for the Advanced Neutron Source (ANS). The need for such a study arises from the potential threats to reactor system integrity posed by MCCI. These threats include direct attack of the concrete basemat of the containment; generation and release of large quantities of gas that can pressurize the containment; the combustion threat of these gases; and the potential generation, release, and transport of radioactive aerosols to the environment.

  19. Electronic and photonic power applications

    SciTech Connect (OSTI)

    Walko, R.J.; Ashley, C.S.; Brinker, C.J.; Reed, S.T.; Renschler, C.L. (Sandia National Labs., Albuquerque, NM (USA)); Shepodd, T.J. (Sandia National Labs., Livermore, CA (USA)); Ellefson, R.E.; Gill, J.T. (EG and G Mound Applied Technologies, Miamisburg, OH (USA)); Leonard, L.E. (USDOE, Washington, DC (USA))

    1990-01-01T23:59:59.000Z

    Efficient conversion of radioactive decay to electrical power has been the goal of a number of past research efforts. One of these was the Elgin-Kidde nuclear battery. In this concept promethium-147 was used as a beta source which was then mixed with a phosphor to produce a radioluminescent (RL) source of light. The light source was coupled to silicon photovoltaic converters to create electricity. This photoelectric approach is being revisited using tritium based solid state compounds and advanced gas concepts to produce RL light sources being disclosed at this conference. Efficient conversion of the RL light energy to electrical energy imposes certain requirements on the semiconductor converter. These requirements will be discussed. Projections of power source electrical and physical characteristics will be presented based on reasonable design parameter assumptions. The words Power Supply'' usually evoke a vision of a rotating machine or chemical battery. However, today's technology is making increasing use of photonics, where information and even power can be moved through optical fibers. Brighter volumetric RL light sources open a whole new range of photonics-based applications, while solid state tritiated compounds provide the foundation for improved mechanical adaptability and safety. 4 refs., 6 figs., 1 tab.

  20. Advanced Variable Speed Air-Source Integrated Heat Pump | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2Partners in the SpotlightEnergy Advanced

  1. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    SciTech Connect (OSTI)

    Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.; Cauchy, Charles J.

    2010-09-01T23:59:59.000Z

    The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designing a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.

  2. Effusive molecular beam-sampled Knudsen flow reactor coupled to vacuum ultraviolet single photon ionization mass spectrometry using an external free radical source

    SciTech Connect (OSTI)

    Leplat, N.; Rossi, M. J. [Laboratory of Atmospheric Chemistry (LAC), Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland)] [Laboratory of Atmospheric Chemistry (LAC), Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland)

    2013-11-15T23:59:59.000Z

    A new apparatus using vacuum ultraviolet single photon ionization mass spectrometry (VUV SPIMS) of an effusive molecular beam emanating from a Knudsen flow reactor is described. It was designed to study free radical-molecule kinetics over a significant temperature range (300–630 K). Its salient features are: (1) external free radical source, (2) counterpropagating molecular beam and diffuse VUV photon beam meeting in a crossed-beam ion source of a quadrupole mass spectrometer with perpendicular ion extraction, (3) analog detection of the photocurrent of the free radical molecular cation, and (4) possibility of detecting both free radicals and closed shell species in the same apparatus and under identical reaction conditions owing to the presence of photoelectrons generated by the photoelectric effect of the used VUV-photons. The measured thermal molecular beam-to-background ratio was 6.35 ± 0.39 for Ar and 10.86 ± 1.59 for i-C{sub 4}H{sub 10} at 300 K, a factor of 2.52 and 1.50 smaller, respectively, than predicted from basic gas-dynamic considerations. Operating parameters as well as the performance of key elements of the instrument are presented and discussed. Coupled to an external free radical source a steady-state specific exit flow of 1.6 × 10{sup 11} and 5.0 × 10{sup 11} molecule s{sup ?1} cm{sup ?3} of C{sub 2}H{sub 5}{sup •} (ethyl) and t-C{sub 4}H{sub 9}{sup •} (t-butyl) free radicals have been detected using VUV SPIMS at their molecular ion m/z 29 and 57, respectively, at 300 K.

  3. Advanced Ultrasonic Inspection Techniques for General Purpose Heat Source Fueled Clad Closure Welds

    SciTech Connect (OSTI)

    Moyer, M.W.

    2001-01-11T23:59:59.000Z

    A radioisotope thermoelectric generator is used to provide a power source for long-term deep space missions. This General Purpose Heat Source (GPHS) is fabricated using iridium clad vent sets to contain the plutonium oxide fuel pellets. Integrity of the closure weld is essential to ensure containment of the plutonium. The Oak Ridge Y-12 Plant took the lead role in developing the ultrasonic inspection for the closure weld and transferring the inspection to Los Alamos National Laboratory for use in fueled clad inspection for the Cassini mission. Initially only amplitude and time-of-flight data were recorded. However, a number of benign geometric conditions produced signals that were larger than the acceptance threshold. To identify these conditions, a B-scan inspection was developed that acquired full ultrasonic waveforms. Using a test protocol the B-scan inspection was able to identify benign conditions such as weld shield fusion and internal mismatch. Tangential radiography was used to confirm the ultrasonic results. All but two of 29 fueled clads for which ultrasonic B-scan data was evaluated appeared to have signals that could be attributed to benign geometric conditions. This report describes the ultrasonic inspection developed at Y-12 for the Cassini mission.

  4. Carbon dioxide capture and separation techniques for advanced power generation point sources

    SciTech Connect (OSTI)

    Pennline, H.W.; Luebke, D.R.; Morsi, B.I.; Heintz, Y.J.; Jones, K.L.; Ilconich, J.B.

    2006-09-01T23:59:59.000Z

    The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (postcombustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle – IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Fabrication techniques and mechanistic studies for hybrid membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic silanes incorporated into an alumina support or ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. An overview of two novel techniques is presented along with a research progress status of each technology.

  5. Limitation of decoy-state Scarani-Acin-Ribordy-Gisin quantum-key-distribution protocols with a heralded single-photon source

    SciTech Connect (OSTI)

    Zhang Shengli [Key Laboratory of Quantum Information, University of Science and Technology of China (CAS), Hefei 230026 (China); Electronic Technology Institute, Information Engineering University, Zhengzhou, Henan 450004 (China); Zou Xubo; Li Ke; Guo Guangcan [Key Laboratory of Quantum Information, University of Science and Technology of China (CAS), Hefei 230026 (China); Jin Chenhui [Electronic Technology Institute, Information Engineering University, Zhengzhou, Henan 450004 (China)

    2007-10-15T23:59:59.000Z

    For the Bennett-Brassard 1984 (BB84) quantum key distribution, longer distance and higher key generating rate is shown with a heralded single-photon source (HSPS) [Phys. Rev. A. 73, 032331 (2006)]. In this paper, the performance of the Scarani-Acin-Ribordy-Gisim (SARG) protocol utilizing the HSPS sources is considered and the numerical simulation turns out that still a significant improvement in secret key generating rate can also be observed. It is shown that the security distance for HSPS+SARG is 120 km. However, compared with the HSPS+BB84 protocols, the HSPS+SARG protocol has a lower secret key rate and a shorter distance. Thus we show the HSPS+BB84 implementation is a preferable protocol for long distance transmittance.

  6. Deterministic photon-emitter coupling in chiral photonic circuits

    E-Print Network [OSTI]

    Immo Söllner; Sahand Mahmoodian; Sofie Lindskov Hansen; Leonardo Midolo; Alisa Javadi; Gabija Kiršansk?; Tommaso Pregnolato; Haitham El-Ella; Eun Hye Lee; Jin Dong Song; Søren Stobbe; Peter Lodahl

    2015-01-12T23:59:59.000Z

    The ability to engineer photon emission and photon scattering is at the heart of modern photonics applications ranging from light harvesting, through novel compact light sources, to quantum-information processing based on single photons. Nanophotonic waveguides are particularly well suited for such applications since they confine photon propagation to a 1D geometry thereby increasing the interaction between light and matter. Adding chiral functionalities to nanophotonic waveguides lead to new opportunities enabling integrated and robust quantum-photonic devices or the observation of novel topological photonic states. In a regular waveguide, a quantum emitter radiates photons in either of two directions, and photon emission and absorption are reverse processes. This symmetry is violated in nanophotonic structures where a non-transversal local electric field implies that both photon emission and scattering may become directional. Here we experimentally demonstrate that the internal state of a quantum emitter determines the chirality of single-photon emission in a specially engineered photonic-crystal waveguide. Single-photon emission into the waveguide with a directionality of more than 90\\% is observed under conditions where practically all emitted photons are coupled to the waveguide. Such deterministic and highly directional photon emission enables on-chip optical diodes, circulators operating at the single-photon level, and deterministic quantum gates. Based on our experimental demonstration, we propose an experimentally achievable and fully scalable deterministic photon-photon CNOT gate, which so far has been missing in photonic quantum-information processing where most gates are probabilistic.

  7. An electrically driven quantum dot-in-nanowire visible single photon source operating up to 150 K

    SciTech Connect (OSTI)

    Deshpande, Saniya; Bhattacharya, Pallab [Center for Photonics and Multiscale Nanomaterials, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122 (United States)] [Center for Photonics and Multiscale Nanomaterials, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122 (United States)

    2013-12-09T23:59:59.000Z

    We demonstrate electrically pumped single photon emission up to 150 K from a single InGaN quantum dot embedded in a GaN nanowire junction diode. The InGaN dot-in-nanowire p-n junctions were grown on silicon by molecular beam epitaxy. The exciton electroluminescence from individual dot-in-nanowires is in the green spectral range (? ? 520 nm) and is detectable up to 150 K. Second order autocorrelation measurements performed at the exciton energy at an ambient temperature of 125 K show a background corrected g{sup (2)}(0) equal to 0.35, indicating dominant single photon emission. The steady state nanowire temperature under these conditions is estimated to be 150 K due to Joule heating induced by the large nanowire series resistance. Time resolved photoluminescence measurements yield an exciton radiative lifetime of 1.1 ns.

  8. Hybrid laser with CMOS photonics

    E-Print Network [OSTI]

    Chong, Johanna S

    2014-01-01T23:59:59.000Z

    In this thesis, an interesting approach for a photonic laser source is presented. By using integrated photonic resonators with an external gain medium, we are able to build a laser that offers a number of advantages including ...

  9. SOURCE?

    Energy Savers [EERE]

    Department of Energy (DOE) in partnership with Lawrence Berkeley National Laboratory (LBNL), is an open-source code package designed to be a common, low-cost, standardized tool...

  10. Photonic-powered cable assembly

    DOE Patents [OSTI]

    Sanderson, Stephen N; Appel, Titus James; Wrye, IV, Walter C

    2014-06-24T23:59:59.000Z

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  11. Photonic-powered cable assembly

    DOE Patents [OSTI]

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22T23:59:59.000Z

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  12. Advanced Neutron Source Reactor (ANSR) phenomena identification and ranking (PIR) for large break loss of coolant accidents (LBLOCA)

    SciTech Connect (OSTI)

    Ruggles, A.E. [Oak Ridge National Lab., TN (United States)]|[Tennessee Univ., Knoxville, TN (United States); Cheng, L.Y. [Brookhaven National Lab., Upton, NY (United States); Dimenna, R.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Griffith, P. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Wilson, G.E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1994-06-01T23:59:59.000Z

    A team of experts in reactor analysis conducted a phenomena identification and ranking (PIR) exercise for a large break loss-of-coolant accident (LBLOCA) in the Advanced Neutron source Reactor (ANSR). The LBLOCA transient is broken into two separate parts for the PIR exercise. The first part considers the initial depressurization of the system that follows the opening of the break. The second part of the transient includes long-term decay heat removal after the reactor is shut down and the system is depressurized. A PIR is developed for each part of the LBLOCA. The ranking results are reviewed to establish if models in the RELAP5-MOD3 thermalhydraulic code are adequate for use in ANSR LBLOCA simulations. Deficiencies in the RELAP5-MOD3 code are identified and existing data or models are recommended to improve the code for this application. Experiments were also suggested to establish models for situations judged to be beyond current knowledge. The applicability of the ANSR PIR results is reviewed for the entire set of transients important to the ANSR safety analysis.

  13. Advanced Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here Western Pages westernNext

  14. Photon-photon collisions

    SciTech Connect (OSTI)

    Brodsky, S.J.

    1988-07-01T23:59:59.000Z

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  15. Validation of multigroup neutron cross sections and calculational methods for the advanced neutron source against the FOEHN critical experiments measurements

    SciTech Connect (OSTI)

    Smith, L.A.; Gallmeier, F.X. [Oak Ridge Institute for Science and Energy, TN (United States); Gehin, J.C. [Oak Ridge National Lab., TN (United States)] [and others

    1995-05-01T23:59:59.000Z

    The FOEHN critical experiment was analyzed to validate the use of multigroup cross sections and Oak Ridge National Laboratory neutronics computer codes in the design of the Advanced Neutron Source. The ANSL-V 99-group master cross section library was used for all the calculations. Three different critical configurations were evaluated using the multigroup KENO Monte Carlo transport code, the multigroup DORT discrete ordinates transport code, and the multigroup diffusion theory code VENTURE. The simple configuration consists of only the fuel and control elements with the heavy water reflector. The intermediate configuration includes boron endplates at the upper and lower edges of the fuel element. The complex configuration includes both the boron endplates and components in the reflector. Cross sections were processed using modules from the AMPX system. Both 99-group and 20-group cross sections were created and used in two-dimensional models of the FOEHN experiment. KENO calculations were performed using both 99-group and 20-group cross sections. The DORT and VENTURE calculations were performed using 20-group cross sections. Because the simple and intermediate configurations are azimuthally symmetric, these configurations can be explicitly modeled in R-Z geometry. Since the reflector components cannot be modeled explicitly using the current versions of these codes, three reflector component homogenization schemes were developed and evaluated for the complex configuration. Power density distributions were calculated with KENO using 99-group cross sections and with DORT and VENTURE using 20-group cross sections. The average differences between the measured values and the values calculated with the different computer codes range from 2.45 to 5.74%. The maximum differences between the measured and calculated thermal flux values for the simple and intermediate configurations are {approx} 13%, while the average differences are < 8%.

  16. Description of TASHA: Thermal Analysis of Steady-State-Heat Transfer for the Advanced Neutron Source Reactor

    SciTech Connect (OSTI)

    Morris, D.G.; Chen, N.C.; Nelson, W.R.; Yoder, G.L.

    1996-10-01T23:59:59.000Z

    This document describes the code used to perform Thermal Analysis of Steady-State-Heat-Transfer for the Advanced Neutron Source (ANS) Reactor (TASHA). More specifically, the code is designed for thermal analysis of the fuel elements. The new code reflects changes to the High Flux Isotope Reactor steady-state thermal-hydraulics code. These changes were aimed at both improving the code`s predictive ability and allowing statistical thermal-hydraulic uncertainty analysis to be performed. A significant portion of the changes were aimed at improving the correlation package in the code. This involved incorporating more recent correlations for both single-phase flow and two-phase flow thermal limits, including the addition of correlations to predict the phenomenon of flow excursion. Since the code was to be used in the design of the ANS, changes were made to allow the code to predict limiting powers for a variety of thermal limits, including critical heat flux, flow excursion, incipient boiling, oxide spallation, maximum centerline temperature, and surface temperature equal to the saturation temperature. Statistical uncertainty analysis also required several changes to the code itself as well as changes to the code input format. This report describes these changes in enough detail to allow the reader to interpret code results and also to understand where the changes were made in the code programming. This report is not intended to be a stand alone report for running the code, however, and should be used in concert with the two previous reports published on the original code. Sample input and output files are also included to help accomplish these goals. In addition, a section is included that describes requirements for a new, more modem code that the project planned to develop.

  17. Reactor physics methods, models, and applications used to support the conceptual design of the Advanced Neutron Source

    SciTech Connect (OSTI)

    Gehin, J.C.; Worley, B.A.; Renier, J.P. [Oak Ridge National Lab., TN (United States); Wemple, C.A.; Jahshan, S.N.; Ryskammp, J.M. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-08-01T23:59:59.000Z

    This report summarizes the neutronics analysis performed during 1991 and 1992 in support of characterization of the conceptual design of the Advanced Neutron Source (ANS). The methods used in the analysis, parametric studies, and key results supporting the design and safety evaluations of the conceptual design are presented. The analysis approach used during the conceptual design phase followed the same approach used in early ANS evaluations: (1) a strong reliance on Monte Carlo theory for beginning-of-cycle reactor performance calculations and (2) a reliance on few-group diffusion theory for reactor fuel cycle analysis and for evaluation of reactor performance at specific time steps over the fuel cycle. The Monte Carlo analysis was carried out using the MCNP continuous-energy code, and the few- group diffusion theory calculations were performed using the VENTURE and PDQ code systems. The MCNP code was used primarily for its capability to model the reflector components in realistic geometries as well as the inherent circumvention of cross-section processing requirements and use of energy-collapsed cross sections. The MCNP code was used for evaluations of reflector component reactivity effects and of heat loads in these components. The code was also used as a benchmark comparison against the diffusion-theory estimates of key reactor parameters such as region fluxes, control rod worths, reactivity coefficients, and material worths. The VENTURE and PDQ codes were used to provide independent evaluations of burnup effects, power distributions, and small perturbation worths. The performance and safety calculations performed over the subject time period are summarized, and key results are provided. The key results include flux and power distributions over the fuel cycle, silicon production rates, fuel burnup rates, component reactivities, control rod worths, component heat loads, shutdown reactivity margins, reactivity coefficients, and isotope production rates.

  18. EUV reflectance characterization of the 94/304 ? flight secondary AIA mirror at beamline 6.3.2 of the Advanced Light Source

    SciTech Connect (OSTI)

    Soufli, R; Spiller, E; Aquila, A L; Gullikson, E M; Windt, D L

    2006-02-22T23:59:59.000Z

    The AIA secondary flight mirror, previously coated at Columbia University with Mg/SiC for the 303.8 {angstrom} channel and Mo/Y for the 93.9 {angstrom} channel was characterized by means of EUV reflectance measurements at beamline 6.3.2 of the Advanced Light Source (ALS) synchrotron at LBNL on January 10, 2006. Paul Boerner (LMSAL) also participated in these measurements.

  19. Apparatus for photon activation positron annihilation analysis

    DOE Patents [OSTI]

    Akers, Douglas W. (Idaho Falls, ID)

    2007-06-12T23:59:59.000Z

    Non-destructive testing apparatus according to one embodiment of the invention comprises a photon source. The photon source produces photons having predetermined energies and directs the photons toward a specimen being tested. The photons from the photon source result in the creation of positrons within the specimen being tested. A detector positioned adjacent the specimen being tested detects gamma rays produced by annihilation of positrons with electrons. A data processing system operatively associated with the detector produces output data indicative of a lattice characteristic of the specimen being tested.

  20. advanced sic fiber: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23 24 25 Next Page Last Page Topic Index 1 Photonic Crystal Fibers Advances in Fiber Optics Physics Websites Summary: Photonic Crystal Fibers Advances in Fiber Optics Elliott L....

  1. Study of narrowband single photon emitters in polycrystalline diamond films

    SciTech Connect (OSTI)

    Sandstrom, Russell G.; Shimoni, Olga; Martin, Aiden A.; Aharonovich, Igor, E-mail: igor.aharonovich@uts.edu.au [School of Physics and Advanced Materials, University of Technology, Sydney, P.O. Box 123, Broadway, New South Wales 2007 (Australia)

    2014-11-03T23:59:59.000Z

    Quantum information processing and integrated nanophotonics require robust generation of single photon emitters on demand. In this work, we demonstrate that diamond films grown on a silicon substrate by microwave plasma chemical vapor deposition can host bright, narrowband single photon emitters in the visible—near infra-red spectral range. The emitters possess fast lifetime (?several ns), absolute photostability, and exhibit full polarization at excitation and emission. Pulsed and continuous laser excitations confirm their quantum behaviour at room temperature, while low temperature spectroscopy is performed to investigate inhomogeneous broadening. Our results advance the knowledge of solid state single photon sources and open pathways for their practical implementation in quantum communication and quantum information processing.

  2. FY 2005 Infrared Photonics Final Report

    SciTech Connect (OSTI)

    Anheier, Norman C.; Allen, Paul J.; Ho, Nicolas; Krishnaswami, Kannan; Johnson, Bradley R.; Sundaram, S. K.; Riley, Bradley M.; Martinez, James E.; Qiao, Hong (Amy); Schultz, John F.

    2005-12-01T23:59:59.000Z

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology—all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. QCLs provide a viable infrared laser source for a new class of laser transmitters capable of meeting the performance requirements for a variety of national security sensing applications. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions. During FY 2005, PNNL’s Infrared Photonics research team made measurable progress exploiting the extraordinary optical and material properties of chalcogenide glass to develop miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. We investigated sulfur purification methods that will eventually lead to routine production of optical quality chalcogenide glass. We also discovered a glass degradation phenomenon and our investigation uncovered the underlying surface chemistry mechanism and developed mitigation actions. Key research was performed to understand and control the photomodification properties. This research was then used to demonstrate several essential infrared photonic devices, including LWIR single-mode waveguide devices and waveguide couplers. Optical metrology tools were also developed to characterize optical waveguide structures and LWIR optical components.

  3. Photon management in thermal and solar photovoltaics

    E-Print Network [OSTI]

    Hu, Lu

    2008-01-01T23:59:59.000Z

    Photovoltaics is a technology that directly converts photon energy into electrical energy. Depending on the photon source, photovoltaic systems can be categorized into two groups: solar photovoltaics (PV) and thermophotovoltaics ...

  4. Photon beam position monitor

    DOE Patents [OSTI]

    Kuzay, T.M.; Shu, D.

    1995-02-07T23:59:59.000Z

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  5. The College of Optics & Photonics 1 Industrial Affiliates Day

    E-Print Network [OSTI]

    Van Stryland, Eric

    3/7/14 1 CREOL The College of Optics & Photonics 1 Industrial Affiliates Day 2014 Symposium Advances in Optics & Photonics CREOLThe College of Optics and Photonics CREOL The College of Optics & Photonics 2 MJ Soileau V.P. for Research & Commercialization Professor of Optics, ECE & Physics Founder

  6. Analysis of containment performance and radiological consequences under severe accident conditions for the Advanced Neutron Source Reactor at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Kim, S.H.; Taleyarkhan, R.P.

    1994-01-01T23:59:59.000Z

    A severe accident study was conducted to evaluate conservatively scoped source terms and radiological consequences to support the Advanced Neutron Source (ANS) Conceptual Safety Analysis Report (CSAR). Three different types of severe accident scenarios were postulated with a view of evaluating conservatively scoped source terms. The first scenario evaluates maximum possible steaming loads and associated radionuclide transport, whereas the next scenario is geared towards evaluating conservative containment loads from releases of radionuclide vapors and aerosols with associated generation of combustible gases. The third scenario follows the prescriptions given by the 10 CFR 100 guidelines. It was included in the CSAR for demonstrating site-suitability characteristics of the ANS. Various containment configurations are considered for the study of thermal-hydraulic and radiological behaviors of the ANS containment. Severe accident mitigative design features such as the use of rupture disks were accounted for. This report describes the postulated severe accident scenarios, methodology for analysis, modeling assumptions, modeling of several severe accident phenomena, and evaluation of the resulting source term and radiological consequences.

  7. Advanced Engine Trends, Challenges and Opportunities

    Broader source: Energy.gov (indexed) [DOE]

    Petroleum (Conventional and Alternative Sources) Alternative Fuels (Ethanol, Biodiesel, CNG, LPG) Electricity (Conv. and Alternative Sources) Hydrogen Time ADVANCED...

  8. Collimator-free photon tomography

    DOE Patents [OSTI]

    Dilmanian, F. Avraham (Yaphank, NY); Barbour, Randall L. (Westbury, NY)

    1998-10-06T23:59:59.000Z

    A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image.

  9. Collimator-free photon tomography

    DOE Patents [OSTI]

    Dilmanian, F.A.; Barbour, R.L.

    1998-10-06T23:59:59.000Z

    A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image. 6 figs.

  10. Active Temporal Multiplexing of Photons

    E-Print Network [OSTI]

    Gabriel J. Mendoza; Raffaele Santagati; Jack Munns; Elizabeth Hemsley; Mateusz Piekarek; Enrique Martin-Lopez; Graham D. Marshall; Damien Bonneau; Mark G. Thompson; Jeremy L. O'Brien

    2015-03-04T23:59:59.000Z

    Quantum information science promises powerful new technologies and fundamental scientific discoveries. Photonic qubits are appealing for their low noise properties-the cost is the non-deterministic nature of many processes, including photon generation and entanglement. Active multiplexing can increase the success probability of such processes above a required threshold, and spatial multiplexing of up to four heralded photon sources shows great promise. The cost is a proliferation of hardware. Temporal multiplexing-repeated use of the same hardware components-has been proposed as an alternative and is likely to be essential to greatly reduce resource complexity and system sizes. Requirements include the precise synchronization of a system of low-loss switches, delay lines, fast photon detectors, and feed-forward. Here we demonstrate multiplexing of 8 'bins'-four temporal and two spatial-from a heralded photon source. We show enhanced photon emission statistics, observing an increase in both the triggering and heralded photon rates. Despite its current limitations due to extrinsic sources of loss, this system points the way to harnessing temporal multiplexing in quantum technologies, from single-photon sources to large-scale computation.

  11. Advanced Propulsion Technology Strategy

    Broader source: Energy.gov (indexed) [DOE]

    Alternative Sources) Hydrogen Time ADVANCED PROPULSION TECHNOLOGY STRATEGY DOWNSIZED TURBO GAS ENGINE CHEVROLET CRUZE 1.4L TURBO ECOTEC Downsized SIDI Turbo Boosting HCCI -...

  12. Lithographic measurement of EUV flare in the 0.3-NA Micro ExposureTool optic at the Advanced Light Source

    SciTech Connect (OSTI)

    Cain, Jason P.; Naulleau, Patrick; Spanos, Costas J.

    2005-01-01T23:59:59.000Z

    The level of flare present in a 0.3-NA EUV optic (the MET optic) at the Advanced Light Source at Lawrence Berkeley National Laboratory is measured using a lithographic method. Photoresist behavior at high exposure doses makes analysis difficult. Flare measurement analysis under scanning electron microscopy (SEM) and optical microscopy is compared, and optical microscopy is found to be a more reliable technique. In addition, the measured results are compared with predictions based on surface roughness measurement of the MET optical elements. When the fields in the exposure matrix are spaced far enough apart to avoid influence from surrounding fields and the data is corrected for imperfect mask contrast and aerial image proximity effects, the results match predicted values quite well. The amount of flare present in this optic ranges from 4.7% for 2 {micro}m features to 6.8% for 500 nm features.

  13. Laser Micromachining of Active and Passive Photonic Integrated Circuits

    E-Print Network [OSTI]

    Cho, Seong-Ho

    2006-06-28T23:59:59.000Z

    This thesis describes the development of advanced laser resonators and applications of laserinduced micromachining for photonic circuit fabrication. Two major advantages of laserinduced micromachining are direct patterning ...

  14. Researchers using Industrial Macromolecular Crystallography Association beamline 17-ID at the Argonne Advanced Photon Source (APS) found the points of attack of the human immunodeficiency virus (HIV)

    E-Print Network [OSTI]

    Kemner, Ken

    was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Researchers. Their work provides a clear picture of the enzyme's structure and is an impor- tant breakthrough by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. See also: APS Science

  15. advanced fiber-optic monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23 24 25 Next Page Last Page Topic Index 1 Photonic Crystal Fibers Advances in Fiber Optics Physics Websites Summary: Photonic Crystal Fibers Advances in Fiber Optics Elliott L....

  16. Photon Science for renewable energy

    E-Print Network [OSTI]

    Knowles, David William

    Photon Science for renewable energy at Light-Source Facilities of Today andTomorrow Lawrence revolution in renewable and carbon- neutral energy technologies. in these pages, we outline and illustrate is causing potentially catastrophic changes to our planet.The quest for renewable, nonpolluting sources

  17. Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the Advanced Neutron Source Reactor at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V.

    1995-09-01T23:59:59.000Z

    This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at the Oak Ridge National Laboratory (ORNL). Damage propagation is postulated to occur from thermal conduction between damaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur because of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A scoping study was conducted to learn what parameters are important for core damage propagation, and to obtain initial estimates of core melt mass for addressing recriticality and steam explosion events. The study included investigating the effects of the plate contact area, the convective heat transfer coefficient, thermal conductivity upon fuel swelling, and the initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects on damage propagation. The results provide useful insights into how various uncertain parameters affect damage propagation.

  18. Review: Semiconductor Quantum Light Sources

    E-Print Network [OSTI]

    Andrew J Shields

    2007-04-03T23:59:59.000Z

    Lasers and LEDs display a statistical distribution in the number of photons emitted in a given time interval. New applications exploiting the quantum properties of light require sources for which either individual photons, or pairs, are generated in a regulated stream. Here we review recent research on single-photon sources based on the emission of a single semiconductor quantum dot. In just a few years remarkable progress has been made in generating indistinguishable single-photons and entangled photon pairs using such structures. It suggests it may be possible to realise compact, robust, LED-like semiconductor devices for quantum light generation.

  19. Testing foundations of quantum mechanics with photons

    E-Print Network [OSTI]

    Peter Shadbolt; Jonathan C. F. Matthews; Anthony Laing; Jeremy L. O'Brien

    2015-01-15T23:59:59.000Z

    The foundational ideas of quantum mechanics continue to give rise to counterintuitive theories and physical effects that are in conflict with a classical description of Nature. Experiments with light at the single photon level have historically been at the forefront of tests of fundamental quantum theory and new developments in photonics engineering continue to enable new experiments. Here we review recent photonic experiments to test two foundational themes in quantum mechanics: wave-particle duality, central to recent complementarity and delayed-choice experiments; and Bell nonlocality where recent theoretical and technological advances have allowed all controversial loopholes to be separately addressed in different photonics experiments.

  20. Resources for Macromolecular Crystallography | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Review | Response BioSync: BioSync Home Synchrotron PDB Deposits APS Deposits by Year Resources for Macromolecular Crystallography Interactive Map beta | View Energy Ranges for all...

  1. A Further Understanding of Superconductivity | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    can be found in a class of materials that is entirely different than conventional superconductors. That discovery is the result of research by an international team of scientists...

  2. Advanced Solar Photonics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio:Ads-tec GmbHRenewableEnergy CompanyASE

  3. X-entanglement of PDC photon pairs

    E-Print Network [OSTI]

    E. Brambilla; L. Caspani; O. Jedrkiewicz; L. A. Lugiato; A. Gatti

    2008-12-18T23:59:59.000Z

    We investigate the spatio-temporal structure of the bi-photon entanglement in parametric down-conversion (PDC) and we demonstrate its non-factorable X-shaped geometry. Such a structure gives access to the ultra-broad bandwidth of PDC, and can be exploited to achieve a bi-photon temporal localization in the femtosecond range. This extreme localization is connected to our ability to resolve the photon positions in the source near-field. The non factorability opens the possibility of tailoring the temporal entanglement by acting on the spatial degrees of freedom of twin photons.

  4. X-entanglement of PDC photon pairs

    E-Print Network [OSTI]

    Brambilla, Elena; Jedrkiewicz, O; Lugiato, L A; Gatti, A

    2008-01-01T23:59:59.000Z

    We investigate the spatio-temporal structure of the bi-photon entanglement in parametric down-conversion (PDC) and we demonstrate its non-factorable X-shaped geometry. Such a structure gives access to the ultra-broad bandwidth of PDC, and can be exploited to achieve a bi-photon temporal localization in the femtosecond range. This extreme localization is connected to our ability to resolve the photon positions in the source near-field. The non factorability opens the possibility of tailoring the temporal entanglement by acting on the spatial degrees of freedom of twin photons.

  5. A review of recent advances in thermophotovoltaics

    SciTech Connect (OSTI)

    Coutts, T.J.; Wanlass, M.W.; Ward, J.S. [National Renewable Energy Lab., Golden, CO (United States); Johnson, S.

    1996-09-01T23:59:59.000Z

    Thermophotovoltaic (TPV) generation of electricity is attracting attention because of advances in materials and devices and because of a widening appreciation of the large number of applications that may be addressed using TPV-based generators. The attractions include the wide range of fuel sources and the potentially high power density outputs. The two main approaches to TPV generators are (1) broadband radiators, coupled with converters with bandgaps in the range 0.4--0.7 eV, and (2) narrow-band emitters coupled with lower-cost silicon converters. The key issues in realizing a viable TPV system are the durability, efficiency, and properties of the radiant emitter; the recuperation of sub-bandgap photons; the optimization of the converter performance; and the recuperation of waste heat.

  6. A review of recent advances in thermophotovoltaics

    SciTech Connect (OSTI)

    Coutts, T.J.; Wanlass, M.W.; Ward, J.S.; Johnson, S. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01T23:59:59.000Z

    Thermophotovoltaic (TPV) generation of electricity is attracting attention because of advances in materials and devices and because of a widening appreciation of the large number of applications that may be addressed using TPV-based generators. The attractions include the wide range of fuel sources and the potentially high power density outputs. The two main approaches to TPV generators are (1) broadband radiators, coupled with converters with bandgaps in the range 0.4-0.7 eV, and (2) narrow-band emitters coupled with lower-cost silicon converters. The key issues in realizing a viable TPV system are the durability, efficiency, and properties of the radiant emitter; the recuperation of sub-bandgap photons; the optimization of the converter performance; and the recuperation of waste heat.

  7. Identification of potential sources and source regions of fine ambient particles measured at Gosan background site in Korea using advanced hybrid receptor model combined with positive matrix factorization - article no. D22217

    SciTech Connect (OSTI)

    Han, J.S.; Moon, K.J.; Kim, Y.J. [National Institute of Environmental Research, Inchon (Republic of Korea). Dept. of Air Quality Research

    2006-11-15T23:59:59.000Z

    The size- and time-resolved measurement of particulate trace elements was made using an eight-stage Davis Rotating Unit for Monitoring sampler and synchrotron X-ray fluorescence system from 29 March to 29 May in 2002 at Gosan, Korea, which is one of the representative background sites in east Asia. A sa result, continuous 3-hour average concentrations were obtained for 19 elements including S, Si, Al, Fe, Ca, Cl, Cu, Zn, Ti, K, Mn, Pb, Ni, V, Se, As, Rb, Cr, and Br. Positive matrix factorization (PMF) method was applied to the size-resolved aerosol data sets in order to identify the possible sources and to estimate their contribution to particulate matter mass in each size range. Twelve sources were then resolved in the fine size range ( 0.07 to 1.15 {mu}m), including continental aerosol, biomass burning, coal combustion, oil heating furnace, residual oil-fired boiler, municipal incineration, nonferrous metal source, ferrous metal source, gasoline vehicle, diesel vehicle, copper smelter, and volcanic emission. A newly developed hybrid receptor model, concentration, retention time, and source emission weighted trajectory (CRSWT) was then applied to the source intensities derived from the PMF analysis by incorporating meteorological and source inventory information of the study region in order to suggest the regional information of long-range transported fine aerosol sources. The CRSWT model was able to resolve highly potential source areas and pathways for the fine ambient aerosol at the Gosan background site.

  8. Photon Calorimeter

    DOE Patents [OSTI]

    Chow, Tze-Show (Hayward, CA)

    1989-01-01T23:59:59.000Z

    A photon calorimeter (20, 40) is provided that comprises a laminar substrate (10, 22, 42) that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating (28, 48, 52), that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions (30, 50, 54) are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly.

  9. Generation and manipulation of nonclassical light using photonic crystals

    E-Print Network [OSTI]

    Jelena Vuckovic; Dirk Englund; David Fattal; Edo Waks; Yoshihisa Yamamoto

    2005-10-07T23:59:59.000Z

    Photonic crystal cavities can localize light into nanoscale volumes with high quality factors. This permits a strong interaction between light and matter, which is important for the construction of classical light sources with improved properties (e.g., low threshold lasers) and of nonclassical light sources (such as single and entangled photon sources) that are crucial pieces of hardware of quantum information processing systems. This article will review some of our recent experimental and theoretical results on the interaction between single quantum dots and photonic crystal cavity fields, and on the integration of multiple photonic crystal devices into functional circuits for quantum information processing.

  10. Laser micromachining of active and passive photonic integrated circuits

    E-Print Network [OSTI]

    Cho, Seong-Ho, 1966-

    2004-01-01T23:59:59.000Z

    This thesis describes the development of advanced laser resonators and applications of laser-induced micromachining for photonic circuit fabrication. Two major advantages of laser-induced micromachining are direct patterning ...

  11. Experimental study of photonic band gap accelerator structures

    E-Print Network [OSTI]

    Marsh, Roark A

    2009-01-01T23:59:59.000Z

    This thesis reports theoretical and experimental research on a novel accelerator concept using a photonic bandgap (PBG) structure. Major advances in higher order mode (HOM) damping are required for the next generation of ...

  12. Digital Tomosynthesis: Advanced Breast Cancer

    E-Print Network [OSTI]

    Fygenson, Deborah Kuchnir

    creating an image. · A newer process, called full field digital mammography uses digital receptors. #12Digital Tomosynthesis: Advanced Breast Cancer Imaging Technique Max Wiedmann #12;Digital Bremsstrahlung, a process in which electrons are accelerated against an anode, causing photons to be fired off

  13. Physics at high energy photon photon colliders

    SciTech Connect (OSTI)

    Chanowitz, M.S.

    1994-06-01T23:59:59.000Z

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking.

  14. A Diamond Nanowire Single Photon Antenna

    E-Print Network [OSTI]

    Tom Babinec; Birgit J. M. Hausmann; Mughees Khan; Yinan Zhang; Jero Maze; Philip R. Hemmer; Marko Loncar

    2009-10-28T23:59:59.000Z

    The development of a robust light source that emits one photon at a time is an outstanding challenge in quantum science and technology. Here, at the transition from many to single photon optical communication systems, fully quantum mechanical effects may be utilized to achieve new capabilities, most notably perfectly secure communication via quantum cryptography. Practical implementations place stringent requirements on the device properties, including stable photon generation, room temperature operation, and efficient extraction of many photons. Single photon light emitting devices based on fluorescent dye molecules, quantum dots, and carbon nanotube material systems have all been explored, but none have simultaneously demonstrated all criteria. Here, we describe the design, fabrication, and characterization of a bright source of single photons consisting of an individual Nitrogen-vacancy color center (NV center) in a diamond nanowire operating in ambient conditions. The nanowire plays a positive role in increasing the number of single photons collected from the NV center by an order of magnitude over devices based on bulk diamond crystals, and allows operation at an order of magnitude lower power levels. This result enables a new class of nanostructured diamond devices for room temperature photonic and quantum information processing applications, and will also impact fields as diverse as biological and chemical sensing, opto-mechanics, and scanning-probe microscopy.

  15. Photonics Technicians Precision Optics Technicians

    E-Print Network [OSTI]

    Van Stryland, Eric

    enrollment · Photonics Infusion: in Enabled Technologies One or two photonics courses for technician

  16. Low dimension structures and devices for new generation photonic technology

    SciTech Connect (OSTI)

    Zhang, D. H.; Tang, D. Y.; Chen, T. P. [School of Electrical and Electronic Engineering, Nanyang Technological University, 679798 (Singapore); Mei, T. [Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631 (China); Yuan, X. C. [Institute of Modern Optics, Nankai University, Tianjin 300071 (China)

    2014-05-15T23:59:59.000Z

    Low dimensional structures and devices are the key technological building blocks for new generation of electronic and photonic technology. Such structures and devices show novel properties and can be integrated into systems for wide applications in many areas, including medical, biological and military and advancement of science. In this invited talk, I will present the main results achieved in our competitive research program which aims to explore the application of the mesoscopic structures in light source, manipulation and imaging and integrate them into advanced systems. In the light source aspect, we have for the first time developed graphene mode-locked lasers which are in the process of commercialization. Nanocrystal Si embedded in dielectrics was formed by ion implantation and subsequent annealing. Si light emitting devices with external quantum efficiency of about 2.9×10{sup ?3}% for visible emission were demonstrated at room temperature and the color of emitted light can be tuned electrically from violet to white by varying the injected current. In light manipulation, loss compensation of surface plasmon polaritons (SPPs) using quantum well (QW) gain media was studied theoretically and demonstrated experimentally. The SPP propagation length was effectively elongated several times through electrical pumping. One and two microring resonators based on silicon on insulator and III-V semiconductors technologies have been successfully fabricated and they can be used as filter and switch in the photonic circuit. In imaging, both SPP and low dimension structures are investigated and resolution far beyond diffraction limit in visible range has been realized. The integration of the components in the three aspects into complicated systems is on the way.

  17. Better Randomness with Single Photons

    E-Print Network [OSTI]

    Oberreiter, Lukas

    2014-01-01T23:59:59.000Z

    Randomness is one of the most important resources in modern information science, since encryption founds upon the trust in random numbers. Since it is impossible to prove if an existing random bit string is truly random, it is relevant that they be generated in a trust worthy process. This requires specialized hardware for random numbers, for example a die or a tossed coin. But when all input parameters are known, their outcome might still be predicted. A quantum mechanical superposition allows for provably true random bit generation. In the past decade many quantum random number generators (QRNGs) were realized. A photonic implementation is described as a photon which impinges on a beam splitter, but such a protocol is rarely realized with non-classical light or anti-bunched single photons. Instead, laser sources or light emitting diodes are used. Here we analyze the difference in generating a true random bit string with a laser and with anti-bunched light. We show that a single photon source provides more r...

  18. Bremstrahlung versus Monoenergetic Photons for Photonuclear Inspection Applications

    SciTech Connect (OSTI)

    Dr. James L. Jones

    2008-06-01T23:59:59.000Z

    Bremsstrahlung sources have been utilized for various non-intrusive inspection or interrogation applications for over 100 years - with the primary focus being radiographic imaging. In the last several decades, it has become evident that photons of energy greater than 6 MeV can also provide useful photonuclear information that can extend the capabilities and information available from active inspections. These energetic inspection photons can be produced as a continuum of energies (i.e., bremsstrahlung distribution) or as a set of one or more discrete photon energies (i.e., monoenergetic distribution). This paper will discuss the photonuclear process and its energetic photon energy dependence, will discuss the photonuclear role in nuclear material detection, will present applicable photon sources along with their field deployment status, and highlight some advantages and disadvantages of bremsstrahlung and monoenergetic photons sources.

  19. Photon Source Parameters | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear AstrophysicsPayroll, TaxesSeparationsRelevant

  20. Counterintuitive temporal shape of single photons

    E-Print Network [OSTI]

    Gurpreet Kaur Gulati; Bharath Srivathsan; Brenda Chng; Alessandro Cerè; Dzmitry Matsukevich; Christian Kurtsiefer

    2014-02-24T23:59:59.000Z

    We prepare heralded single photons from a photon pair source based on non-degenerate four-wave mixing in a cold atomic ensemble via a cascade decay scheme. Their statistics shows strong antibunching with g(2)(0) < 0.03, indicating a near single photon character. In an optical homodyne experiment, we directly measure the temporal envelope of these photons and find, depending on the heralding scheme, an exponentially decaying or rising profile. The rising envelope will be useful for efficient interaction between single photons and microscopic systems like single atoms and molecules. At the same time, their observation illustrates the breakdown of a realistic interpretation of the heralding process in terms of defining an initial condition of a physical system.

  1. FY 2006 Infrared Photonics Final Report

    SciTech Connect (OSTI)

    Anheier, Norman C.; Allen, Paul J.; Bernacki, Bruce E.; Ho, Nicolas; Krishnaswami, Kannan; Qiao, Hong (Amy); Schultz, John F.

    2006-12-28T23:59:59.000Z

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics and optical fiber processing methods for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology—all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions.

  2. advanced design tools: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Source, an Office of Science User Facility Kemner, Ken 47 Computer-aided Tooling Design for Manufacturing Processes MIT - DSpace Summary: Tooling design for...

  3. The Implementation of Photon Polarization into the Mercury Transport Code

    E-Print Network [OSTI]

    Windsor, Ethan

    2014-06-04T23:59:59.000Z

    of . ............................. 33 Figure 10. U/I for the coherently scattered portion of a 5 keV photon beam with a source Stokes vector of . ............................. 33 Figure 11. V/I for the coherently scattered portion of a 5 keV photon beam... of . ................................ 34 vi Figure 13. P for the coherently scattered portion of a 5 keV photon beam with a source Stokes vector of . ................................ 35 Figure 14. ? for the coherently scattered portion of a 5 keV photon...

  4. Energy Recovery Linacs for Light Source Applications

    SciTech Connect (OSTI)

    George Neil

    2011-04-01T23:59:59.000Z

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  5. Photonic Molecules and Spectral Engineering

    E-Print Network [OSTI]

    Boriskina, Svetlana V.

    2010-01-01T23:59:59.000Z

    This chapter reviews the fundamental optical properties and applications of photonic molecules (PMs) – photonic structures formed by electromagnetic coupling of two or more optical microcavities (photonic atoms). Controllable ...

  6. Photon Science for Renewable Energy

    SciTech Connect (OSTI)

    Hussain, Zahid; Tamura, Lori; Padmore, Howard; Schoenlein, Bob; Bailey, Sue

    2010-03-31T23:59:59.000Z

    Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities - the synchrotrons of today and the next-generation light sources of tomorrow - are the scientific tools of choice for exploring the electronic and atomic structure of matter. As such, these photon-science facilities are uniquely positioned to jump-start a global revolution in renewable and carbonneutral energy technologies. In these pages, we outline and illustrate through examples from our nation's light sources possible scientific directions for addressing these profound yet urgent challenges.

  7. Nuclear photonics

    SciTech Connect (OSTI)

    Habs, D.; Guenther, M. M.; Jentschel, M.; Thirolf, P. G. [Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany); Max Planck Institut fuer Quantenoptik, D-85748 Garching (Germany); Institut Laue-Langevin, F-38042 Grenoble (Germany); Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany)

    2012-07-09T23:59:59.000Z

    With the planned new {gamma}-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 10{sup 13}{gamma}/s and a band width of {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -3}, a new era of {gamma} beams with energies up to 20MeV comes into operation, compared to the present world-leading HI{gamma}S facility at Duke University (USA) with 10{sup 8}{gamma}/s and {Delta}E{gamma}/E{gamma} Almost-Equal-To 3 Dot-Operator 10{sup -2}. In the long run even a seeded quantum FEL for {gamma} beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused {gamma} beams. Here we describe a new experiment at the {gamma} beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for {gamma} beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for {gamma} beams are being developed. Thus, we have to optimize the total system: the {gamma}-beam facility, the {gamma}-beam optics and {gamma} detectors. We can trade {gamma} intensity for band width, going down to {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -6} and address individual nuclear levels. The term 'nuclear photonics' stresses the importance of nuclear applications. We can address with {gamma}-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, {gamma} beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to {mu}m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

  8. Argonne Acoustic Levitation Video Goes Viral

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Inside the Advanced Photon Source" Inside the latest Argonne Now APS Director Stephenson Named Argonne Distinguished Fellow Advanced Photon Source, Canadian Light Source...

  9. Portable thermo-photovoltaic power source

    DOE Patents [OSTI]

    Zuppero, Anthony C. (Idaho Falls, ID); Krawetz, Barton (Idaho Falls, ID); Barklund, C. Rodger (Idaho Falls, ID); Seifert, Gary D. (Idaho Falls, ID)

    1997-01-14T23:59:59.000Z

    A miniature thermo-photovoltaic (TPV) device for generation of electrical power for use in portable electronic devices. A TPV power source is constructed to provide a heat source chemical reactor capable of using various fuels, such as liquid hydrocarbons, including but not limited to propane, LPG, butane, alcohols, oils and diesel fuels to generate a source of photons. A reflector dish guides misdirected photon energy from the photon source toward a photovoltaic array. A thin transparent protector sheet is disposed between the photon source and the array to reflect back thermal energy that cannot be converted to electricity, and protect the array from thermal damage. A microlens disposed between the protector sheet and the array further focuses the tailored band of photon energy from the photon source onto an array of photovoltaic cells, whereby the photon energy is converted to electrical power. A heat recuperator removes thermal energy from reactor chamber exhaust gases, preferably using mini- or micro-bellows to force air and fuel past the exhaust gases, and uses the energy to preheat the fuel and oxidant before it reaches the reactor, increasing system efficiency. Mini- or micro-bellows force ambient air through the system both to supply oxidant and to provide cooling. Finally, an insulator, which is preferably a super insulator, is disposed around the TPV power source to reduce fuel consumption, and to keep the TPV power source cool to the touch so it can be used in hand-held devices.

  10. Contactless heat flux control with photonic devices

    E-Print Network [OSTI]

    Ben-Abdallah, Philippe

    2015-01-01T23:59:59.000Z

    The ability to control electric currents in solids using diodes and transistors is undoubtedly at the origin of the main developments in modern electronics which have revolutionized the daily life in the second half of 20th century. Surprisingly, until the year 2000 no thermal counterpart for such a control had been proposed. Since then, based on pioneering works on the control of phononic heat currents new devices were proposed which allow for the control of heat fluxes carried by photons rather than phonons or electrons. The goal of the present paper is to summarize the main advances achieved recently in the field of thermal energy control with photons.

  11. High energy photon-photon collisions

    SciTech Connect (OSTI)

    Brodsky, S.J. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    1994-07-01T23:59:59.000Z

    The collisions of high energy photons produced at a electron-positron collider provide a comprehensive laboratory for testing QCD, electroweak interactions and extensions of the standard model. The luminosity and energy of the colliding photons produced by back-scattering laser beams is expected to be comparable to that of the primary e{sup +}e{sup {minus}} collisions. In this overview, we shall focus on tests of electroweak theory in photon-photon annihilation, particularly {gamma}{gamma} {yields} W{sup +}W{sup {minus}}, {gamma}{gamma} {yields} Higgs bosons, and higher-order loop processes, such as {gamma}{gamma} {yields} {gamma}{gamma}, Z{gamma} and ZZ. Since each photon can be resolved into a W{sup +}W{sup minus} pair, high energy photon-photon collisions can also provide a remarkably background-free laboratory for studying WW collisions and annihilation. We also review high energy {gamma}{gamma} tests of quantum chromodynamics, such as the scaling of the photon structure function, t{bar t} production, mini-jet processes, and diffractive reactions.

  12. Enhanced single-photon emission from a quantum dot in a micropost microcavity

    E-Print Network [OSTI]

    Jelena Vuckovic; David Fattal; Charles Santori; Glenn Solomon; Yoshihisa Yamamoto

    2003-07-03T23:59:59.000Z

    We demonstrate a single-photon source based on a quantum dot in a micropost microcavity that exhibits a large Purcell factor together with a small multi-photon probability. For a quantum dot on resonance with the cavity, the spontaneous emission rate is increased by a factor of five, while the probability to emit two or more photons in the same pulse is reduced to 2% compared to a Poisson-distributed source of the same intensity. In addition to the small multi-photon probability, such a strong Purcell effect is important in a single-photon source for improving the photon outcoupling efficiency and the single-photon generation rate, and for bringing the emitted photon pulses closer to the Fourier transform limit.

  13. Composite Photon Theory Versus Elementary Photon Theory

    E-Print Network [OSTI]

    Walton A. Perkins

    2015-03-02T23:59:59.000Z

    The purpose of this paper is to show that the composite photon theory measures up well against the Standard Model's elementary photon theory. This is done by comparing the two theories area by area. Although the predictions of quantum electrodynamics are in excellent agreement with experiment (as in the anomalous magnetic moment of the electron), there are some problems, such as the difficulty in describing the electromagnetic field with the four-component vector potential because the photon has only two polarization states. In most areas the two theories give similar results, so it is impossible to rule out the composite photon theory. Pryce's arguments in 1938 against a composite photon theory are shown to be invalid or irrelevant. Recently, it has been realized that in the composite theory the antiphoton does not interact with matter because it is formed of a neutrino and an antineutrino with the wrong helicity. This leads to experimental tests that can determine which theory is correct.

  14. Nonclassical effects in two-photon interference experiments: event-by-event simulations

    E-Print Network [OSTI]

    -photon interference experiments with two independent sources, like the Hanbury Brown-Twiss experiment: Interference, Hanbury Brown-Twiss experiment, Ghosh-Mandel experiment, quantum theory, discrete

  15. Photon wave function

    E-Print Network [OSTI]

    Iwo Bialynicki-Birula

    2005-08-26T23:59:59.000Z

    Photon wave function is a controversial concept. Controversies stem from the fact that photon wave functions can not have all the properties of the Schroedinger wave functions of nonrelativistic wave mechanics. Insistence on those properties that, owing to peculiarities of photon dynamics, cannot be rendered, led some physicists to the extreme opinion that the photon wave function does not exist. I reject such a fundamentalist point of view in favor of a more pragmatic approach. In my view, the photon wave function exists as long as it can be precisely defined and made useful.

  16. Biexciton Quantum Yield of Single Semiconductor Nanocrystals from Photon Statistics

    E-Print Network [OSTI]

    Bawendi, Moungi G.

    Biexciton properties strongly affect the usability of a light emitter in quantum photon sources and lasers but are difficult to measure for single fluorophores at room temperature due to luminescence intermittency and ...

  17. A high energy photon polarimeter for astrophysics

    E-Print Network [OSTI]

    Eingorn, Maxim; Vlahovic, Branislav; Wojtsekhowski, Bogdan; Urciuoli, Guido Maria; De Persio, Fulvio; Meddi, Franco

    2015-01-01T23:59:59.000Z

    A high-energy photon polarimeter for astrophysics studies in the energy range from 20 MeV to 1000 MeV is considered. The proposed concept uses a stack of silicon micro-strip detectors where they play the roles of both a converter and a tracker. The purpose of this paper is to outline the parameters of such a polarimeter and to estimate the productivity of measurements. Our study supported by a Monte Carlo simulation shows that with a one-year observation period the polarimeter will provide 5.5 % accuracy of the polarization degree for a photon energy of 100 MeV, which would be a significant advance relative to the currently explored energy range of a few MeV. The proposed polarimeter design could easily be adjusted to the specific photon energy range to maximize efficiency if needed.

  18. Resonant excitation and photon entanglement from semiconductor quantum dots

    E-Print Network [OSTI]

    Ana Predojevi?

    2015-03-01T23:59:59.000Z

    In this chapter we review the use of semiconductor quantum dots as sources of quantum light. Principally, we focus on resonant two-photon excitation, which is a method that allows for on-demand generation of photon pairs. We explore the advantages of resonant excitation and present a number of measurements that were made in this excitation regime. In particular, we cover the following topics: photon statistics, coherent manipulation of the ground-excited state superposition, and generation of time-bin entangled photon pairs.

  19. Pure single photon generation by type-I PDC with backward-wave amplification

    E-Print Network [OSTI]

    Christ, A; Mosley, P J; Silberhorn, C

    2009-01-01T23:59:59.000Z

    We explore a promising method of generating pure heralded single photons. Our approach is based on parametric downconversion in a periodically-poled waveguide. However, unlike conventional downconversion sources, the photon pairs are counter-propagating: one travels with the pump beam in the forward direction while the other is backpropagating towards the laser source. Our calculations reveal that these downconverted two-photon states carry minimal spectral correlations within each photon-pair. This approach offers the possibility to employ a new range of downconversion processes and materials like PPLN (previously considered unsuitable due to their unfavorable phasematching properties) to herald pure single photons over a broad frequency range.

  20. Pure single photon generation by type-I PDC with backward-wave amplification

    E-Print Network [OSTI]

    A. Christ; A. Eckstein; P. J. Mosley; C. Silberhorn

    2009-02-09T23:59:59.000Z

    We explore a promising method of generating pure heralded single photons. Our approach is based on parametric downconversion in a periodically-poled waveguide. However, unlike conventional downconversion sources, the photon pairs are counter-propagating: one travels with the pump beam in the forward direction while the other is backpropagating towards the laser source. Our calculations reveal that these downconverted two-photon states carry minimal spectral correlations within each photon-pair. This approach offers the possibility to employ a new range of downconversion processes and materials like PPLN (previously considered unsuitable due to their unfavorable phasematching properties) to herald pure single photons over a broad frequency range.

  1. In-plane emission of indistinguishable photons generated by an integrated quantum emitter

    SciTech Connect (OSTI)

    Kalliakos, Sokratis, E-mail: sokratis.kalliakos@crl.toshiba.co.uk; Bennett, Anthony J.; Ward, Martin B.; Ellis, David J. P.; Skiba-Szymanska, Joanna; Shields, Andrew J. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Brody, Yarden; Schwagmann, Andre [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Farrer, Ian; Griffiths, Jonathan P.; Jones, Geb A. C.; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2014-06-02T23:59:59.000Z

    We demonstrate the emission of indistinguishable photons along a semiconductor chip originating from carrier recombination in an InAs quantum dot. The emitter is integrated in the waveguiding region of a photonic crystal structure, allowing for on-chip light propagation. We perform a Hong-Ou-Mandel-type of experiment with photons collected from the exit of the waveguide, and we observe two-photon interference under continuous wave excitation. Our results pave the way for the integration of quantum emitters in advanced photonic quantum circuits.

  2. Photonics Research and Development

    SciTech Connect (OSTI)

    Pookpanratana, Sujitra; Shlayan, Neveen; Venkat, Rama; Das, Bisjwajit; Boehm, Bob; Heske, Clemens; Fraser, Donald; Moustakas, Theodore

    2010-01-15T23:59:59.000Z

    During the period August 2005 through October 2009, the UNLV Research Foundation (UNLVRF), a non-profit affiliate of the University of Nevada, Las Vegas (UNLV), in collaboration with UNLVâ??s Colleges of Science and Engineering; Boston University (BU); Oak Ridge National Laboratory (ORNL); and Sunlight Direct, LLC, has managed and conducted a diverse and comprehensive research and development program focused on light-emitting diode (LED) technologies that provide significantly improved characteristics for lighting and display applications. This final technical report provides detailed information on the nature of the tasks, the results of the research, and the deliverables. It is estimated that about five percent of the energy used in the nation is for lighting homes, buildings and streets, accounting for some 25 percent of the average homeâ??s electric bill. However, the figure is significantly higher for the commercial sector. About 60 percent of the electricity for businesses is for lighting. Thus replacement of current lighting with solid-state lighting technology has the potential to significantly reduce this nationâ??s energy consumption â?? by some estimates, possibly as high as 20%. The primary objective of this multi-year R&D project has been to develop and advance lighting technologies to improve national energy conversion efficiencies; reduce heat load; and significantly lower the cost of conventional lighting technologies. The UNLVRF and its partners have specifically focused these talents on (1) improving LED technologies; (2) optimizing hybrid solar lighting, a technology which potentially offers the benefits of blending natural with artificial lighting systems, thus improving energy efficiency; and (3) building a comprehensive academic infrastructure within UNLV which concentrates on photonics R&D. Task researchers have reported impressive progress in (1) the development of quantum dot laser emitting diodes (QDLEDs) which will ultimately improve energy efficiency and lower costs for display and lighting applications (UNLV College of Engineering); (2) advancing green LED technology based on the Indium-Gallium-Nitride system (BU), thus improving conversion efficiencies; (3) employing unique state-of-the-art X-ray, electron and optical spectroscopies with microscopic techniques to learn more about the electronic structure of materials and contacts in LED devices (UNLV College of Science); (4) establishing a UNLV Display Lighting Laboratory staffed with a specialized team of academic researchers, students and industrial partners focused on identifying and implementing engineering solutions for lighting display-related problems; and (5) conducting research, development and demonstration for HSL essential to the resolution of technological barriers to commercialization.

  3. Advanced thyristor valve project

    SciTech Connect (OSTI)

    Damsky, B.L.

    1984-01-01T23:59:59.000Z

    General Electrics's thyristor valve project incorporates the most advanced technologies available. With joint funding from the Electric Power Research Institute, commercial application of the separate light-triggered thyristor is now underway. The cesium vapor lamp source to trigger the light sensitive thyristors will reduce component complexity and cost. A unique thermal management feature relies on forced vaporization cooling with Freon-113, which equals the thermal performance of water without posing insulation reliability problems. 7 figures.

  4. Advanced Test Reactor National Scientific User Facility Partnerships

    SciTech Connect (OSTI)

    Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

    2012-03-01T23:59:59.000Z

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin-Madison; (8) Illinois Institute of Technology (IIT) Materials Research Collaborative Access Team (MRCAT) beamline at Argonne National Laboratory's Advanced Photon Source; and (9) Nanoindenter in the University of California at Berkeley (UCB) Nuclear Engineering laboratory Materials have been analyzed for ATR NSUF users at the Advanced Photon Source at the MRCAT beam, the NIST Center for Neutron Research in Gaithersburg, MD, the Los Alamos Neutron Science Center, and the SHaRE user facility at Oak Ridge National Laboratory (ORNL). Additionally, ORNL has been accepted as a partner facility to enable ATR NSUF users to access the facilities at the High Flux Isotope Reactor and related facilities.

  5. Advanced Light Source Activity Report 2005

    E-Print Network [OSTI]

    Tamura Ed., Lori S.

    2010-01-01T23:59:59.000Z

    reliable evidence of high hydrogen storage capacity at roommechanism could provide hydrogen storage capacity thatthe feasi­ bility of hydrogen storage through chemisorption

  6. Advanced Light Source Activity Report 2000

    E-Print Network [OSTI]

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-01-01T23:59:59.000Z

    begun by others at the BESSY synchrotron in Berlin, we haveproject, SMART, at the BESSY II synchrotron. In the scheme,

  7. Advanced Light Source Beam Position Monitor

    E-Print Network [OSTI]

    Hinkson, J.

    2011-01-01T23:59:59.000Z

    systems is done in C or PLM languages, generally by thetranslated BASIC code to PLM, Chris Timossi built and coded

  8. Advanced Light Source Beam Position Monitor

    E-Print Network [OSTI]

    Hinkson, J.

    2011-01-01T23:59:59.000Z

    2 Diagram of storage ring BPM button test set. The 290 ohmmodules. Fig. 6 Drawing of BPM modules and bin. The chassis7 Basic signal flow between BPM plug-in modules. Throughout

  9. LANSCE | International Collaboration on Advanced Neutron Sources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LINAC Outreach Affiliations Visiting LANSCE Facilities Isotope Production Facility Lujan Neutron Scattering Center Materials Test Station Proton Radiography Ultra-Cold Neutrons...

  10. Advanced Light Source Activity Report 2005

    E-Print Network [OSTI]

    Tamura Ed., Lori S.

    2010-01-01T23:59:59.000Z

    PLoS Biology 3, 1549 Beetz, T , M . R . Howells, C.Shapiro, D . , P. Thibault, T. Beetz, V. Elser, M . Howells,P i t h l b a u J t T . Beetz, V. Eiser, M, Howells, C,

  11. Advanced Photon Source Activity Report 2002 at Argonne National Laboratory, Argonne, IL, December 2003 - contribution title:"Microdiffraction Study of Epitaxial Growth and Lattice Tilts in Oxide Films on Polycrystalline Metal Substrates"

    SciTech Connect (OSTI)

    Budai, J.D.

    2004-03-18T23:59:59.000Z

    Texture, the preference for a particular crystallographic orientation in polycrystalline materials, plays an important role in controlling such diverse materials properties as corrosion resistance, recording density in magnetic media and electrical transport in superconductors [1]. Without texture, polycrystalline oxide superconductors contain many high-angle, weak-linked grain boundaries which reduce critical current densities by several orders of magnitude [2]. One approach for inducing texture in oxide superconductors has been the epitaxial growth of films on rolling-assisted biaxially-textured substrates (RABiTS) [3]. In this approach, rolled Ni foils are recrystallized under conditions that lead to a high degree of biaxial {l_brace}001{r_brace}<100> cube texture. Subsequent deposition of epitaxial oxide buffer layers (typically CeO{sub 2} and YSZ as chemical barriers) and superconducting YBCO preserves the lattice alignment, eliminating high-angle boundaries and enabling high critical current densities, J{sub c} > 10{sup 6}/cm{sup 2}. Conventional x-ray diffraction using {omega}- and {phi}-scans typically shows macroscopic biaxial texture to within {approx}5{sup o}-10{sup o} FWHM for all layers, but does not describe the local microstructural features that control the materials properties. Understanding and controlling the local texture and microstructural evolution of processes associated with heteroepitaxial growth, differential thermal contraction and cracking remain significant challenges in this complex system [4], as well as in many other technologically important thin-film applications.

  12. Science and Technology of Future Light Sources

    E-Print Network [OSTI]

    Bergmann, Uwe

    2009-01-01T23:59:59.000Z

    dye-sensitized solar cell (DSSC). [Source: Michael Graetzel,is a dye- sensitized solar cell (DSSC) shown in Figure 3.6.In the DSSC (also known as Graetzel cell), solar photons are

  13. Efficient generation of single and entangled photons on a silicon photonic integrated chip

    E-Print Network [OSTI]

    Jacob Mower; Dirk Englund

    2011-10-18T23:59:59.000Z

    We present a protocol for generating on-demand, indistinguishable single photons on a silicon photonic integrated chip. The source is a time-multiplexed spontaneous parametric down-conversion element that allows optimization of single-photon versus multiphoton emission while realizing high output rate and indistinguishability. We minimize both the scaling of active elements and the scaling of active element loss with multiplexing. We then discuss detection strategies and data processing to further optimize the procedure. We simulate an improvement in single-photon-generation efficiency over previous time-multiplexing protocols, assuming existing fabrication capabilities. We then apply this system to generate heralded Bell states. The generation efficiency of both nonclassical states could be increased substantially with improved fabrication procedures.

  14. Strain-tuning of periodic optical devices : tunable gratings and photonic crystals

    E-Print Network [OSTI]

    Wong, Chee Wei, 1975-

    2003-01-01T23:59:59.000Z

    The advancement of micro- and nano-scale optical devices has heralded micromirrors, semiconductor micro- and nano-lasers, and photonic crystals, among many. Broadly defined with the field of microphotonics and microelect ...

  15. Photon transport in binary photonic lattices

    E-Print Network [OSTI]

    B. M. Rodríguez-Lara; H. Moya-Cessa

    2013-01-08T23:59:59.000Z

    We present a review on the mathematical methods used to theoretically study classical propagation and quantum transport in arrays of coupled photonic waveguides. We focus on analysing two types of binary photonic lattices where self-energies or couplings are alternated. For didactic reasons, we split the analysis in classical propagation and quantum transport but all methods can be implemented, mutatis mutandis, in any given case. On the classical side, we use coupled mode theory and present an operator approach to Floquet-Bloch theory in order to study the propagation of a classical electromagnetic field in two particular infinite binary lattices. On the quantum side, we study the transport of photons in equivalent finite and infinite binary lattices by couple mode theory and linear algebra methods involving orthogonal polynomials. Curiously the dynamics of finite size binary lattices can be expressed as roots and functions of Fibonacci polynomials.

  16. Photon and graviton mass limits

    SciTech Connect (OSTI)

    Nieto, Michael [Los Alamos National Laboratory; Goldhaber Scharff, Alfred [SUNY

    2008-01-01T23:59:59.000Z

    We review past and current studies of possible long-distance, low-frequency deviations from Maxwell electrodynamics and Einstein gravity. Both have passed through three phases: (1) Testing the inverse-square laws of Newton and Coulomb, (2) Seeking a nonzero value for the rest mass of photon or graviton, and (3) Considering more degrees of freedom, allowing mass while preserving gauge or general-coordinate invariance. For electrodynamics there continues to be no sign of any deviation. Since our previous review the lower limit on the photon Compton wavelength (associated with weakening of electromagnetic fields in vacuum over large distance scale) has improved by four orders of magnitude, to about one astronomical unit. Rapid current progress in astronomical observations makes it likely that there will be further advances. These ultimately could yield a bound exceeding galactic dimensions, as has long been contemplated. Meanwhile, for gravity there have been strong arguments about even the concept of a graviton rest mass. At the same time there are striking observations, commonly labeled 'dark matter' and 'dark energy' that some argue imply modified gravity. This makes the questions for gravity much more interesting. For dark matter, which involves increased attraction at large distances, any explanation by modified gravity would be qualitatively different from graviton mass. Because dark energy is associated with reduced attraction at large distances, it might be explained by a graviton-mass-like effect.

  17. Photonic layered media

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A new class of structured dielectric media which exhibit significant photonic bandstructure has been invented. The new structures, called photonic layered media, are easy to fabricate using existing layer-by-layer growth techniques, and offer the ability to significantly extend our practical ability to tailor the properties of such optical materials.

  18. High energy photon emission

    E-Print Network [OSTI]

    Jabs, Harry

    1997-01-01T23:59:59.000Z

    photons, neutrons, charged particles, and fission fragments were used to study the reaction 160 + 238 U at a projectile energy of 50 MeV/u. Inverse slope values of the photon spectra were extracted for inclusive data and data of higher multiplicities...

  19. Photonic quantum technologies

    E-Print Network [OSTI]

    Jeremy L. O'Brien; Akira Furusawa; Jelena Vu?kovi?

    2010-03-20T23:59:59.000Z

    The first quantum technology, which harnesses uniquely quantum mechanical effects for its core operation, has arrived in the form of commercially available quantum key distribution systems that achieve enhanced security by encoding information in photons such that information gained by an eavesdropper can be detected. Anticipated future quantum technologies include large-scale secure networks, enhanced measurement and lithography, and quantum information processors, promising exponentially greater computation power for particular tasks. Photonics is destined for a central role in such technologies owing to the need for high-speed transmission and the outstanding low-noise properties of photons. These technologies may use single photons or quantum states of bright laser beams, or both, and will undoubtably apply and drive state-of-the-art developments in photonics.

  20. Generation and transfer of single photons on a photonic crystal chip

    E-Print Network [OSTI]

    Dirk Englund; Andrei Faraon; Bingyang Zhang; Yoshihisa Yamamoto; Jelena Vuckovic

    2006-09-07T23:59:59.000Z

    We present a basic building block of a quantum network consisting of a quantum dot coupled to a source cavity, which in turn is coupled to a target cavity via a waveguide. The single photon emission from the high-Q/V source cavity is characterized by a twelve-fold spontaneous emission (SE) rate enhancement that results in a SE coupling efficiency near 0.98 into the source cavity mode. Single photons are efficiently transferred into the target cavity through the waveguide, with a source/target field intensity ratio of 0.12 (up to 0.49 observed in other structures without coupled quantum dots). This system shows great promise as a building block of future on-chip quantum information processing systems.

  1. Fiber-Optic Sources of Quantum Entanglement

    E-Print Network [OSTI]

    P. Kumar; X. Li; M. Fiorentino; P. L. Voss; J. E. Sharping; G. A. Barbosa

    2002-09-20T23:59:59.000Z

    We present a fiber-based source of polarization-entangled photon pairs that is well suited for quantum communication applications in the 1.5$\\mu$m band of standard telecommunication fiber. Quantum-correlated signal and idler photon pairs are produced when a nonlinear-fiber Sagnac interferometer is pumped in the anomalous-dispersion region of the fiber. Recently, we have demonstrated nonclassical properties of such photon pairs by using Geiger-mode InGaAs/InP avalanche photodiodes. Polarization entanglement in the photon pairs can be created by pumping the Sagnac interferometer with two orthogonally polarized pulses. In this case the parametrically scattered signal-idler photons yield biphoton interference with $>$90% visibility in coincidence detection, while no interference is observed in direct detection of either the signal or the idler photons.

  2. Photon collider Higgs factories

    E-Print Network [OSTI]

    V. I. Telnov

    2014-09-19T23:59:59.000Z

    The discovery of the Higgs boson (and still nothing else) have triggered appearance of many proposals of Higgs factories for precision measurement of the Higgs properties. Among them there are several projects of photon colliders (PC) without e+e- in addition to PLC based on e+e- linear colliders ILC and CLIC. In this paper, following a brief discussion of Higgs factories physics program I give an overview of photon colliders based on linear colliders ILC and CLIC, and of the recently proposed photon-collider Higgs factories with no e+e- collision option based on recirculation linacs in ring tunnels.

  3. Superconducting single photon detectors integrated with diamond nanophotonic circuits

    E-Print Network [OSTI]

    Rath, Patrik; Ferrari, Simone; Sproll, Fabian; Lewes-Malandrakis, Georgia; Brink, Dietmar; Ilin, Konstantin; Siegel, Michael; Nebel, Christoph; Pernice, Wolfram

    2015-01-01T23:59:59.000Z

    Photonic quantum technologies promise to repeat the success of integrated nanophotonic circuits in non-classical applications. Using linear optical elements, quantum optical computations can be performed with integrated optical circuits and thus allow for overcoming existing limitations in terms of scalability. Besides passive optical devices for realizing photonic quantum gates, active elements such as single photon sources and single photon detectors are essential ingredients for future optical quantum circuits. Material systems which allow for the monolithic integration of all components are particularly attractive, including III-V semiconductors, silicon and also diamond. Here we demonstrate nanophotonic integrated circuits made from high quality polycrystalline diamond thin films in combination with on-chip single photon detectors. Using superconducting nanowires coupled evanescently to travelling waves we achieve high detection efficiencies up to 66 % combined with low dark count rates and timing resolu...

  4. Photon Storage Cavities

    E-Print Network [OSTI]

    Kim, K.-J.

    2008-01-01T23:59:59.000Z

    Sessler, "Analysis of Photon Storage Cavities for a Free-configuration of coupled storage cavity and PEL cavity. TheFig. 2. A ring resonator storage cavity coupled through a

  5. Photonic laser-driven accelerator for GALAXIE

    SciTech Connect (OSTI)

    Naranjo, B.; Ho, M.; Hoang, P.; Putterman, S.; Valloni, A.; Rosenzweig, J. B. [UCLA Dept. of Physics and Astronomy Los Angeles, CA 90095-1547 (United States)

    2012-12-21T23:59:59.000Z

    We report on the design and development of an all-dielectric laser-driven accelerator to be used in the GALAXIE (GV-per-meter Acce Lerator And X-ray-source Integrated Experiment) project's compact free-electron laser. The approach of our working design is to construct eigenmodes, borrowing from the field of photonics, which yield the appropriate, highly demanding dynamics in a high-field, short wavelength accelerator. Topics discussed include transverse focusing, power coupling, bunching, and fabrication.

  6. Neutron sources and applications

    SciTech Connect (OSTI)

    Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1994-01-01T23:59:59.000Z

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  7. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R. [NETL

    2013-03-11T23:59:59.000Z

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  8. Synchrotron-Radiation Photon Distribution for Highest Energy Circular Colliders

    E-Print Network [OSTI]

    Maury Cuna, GHI; Dugan, G; Zimmermann, F

    2013-01-01T23:59:59.000Z

    At high energies, beam-induced synchrotron radiation is an important source of heating, beam-related vacuum pressure increase, and primary photoelectrons, which can give rise to an electron cloud. The photon distribution along the beam pipe wall is a key input to codes such as ECLOUD and PyECLOUD, which model the electron cloud build-up. For future high-energy colliders, like TLEP or SHE-LHC, photon stops and antechambers are considered in order to facilitate cooling and vacuum pressure control. We use the Synrad3D code developed at Cornell to simulate the photon distribution for the LHC.

  9. Synchrotron-Radiation Photon Distributions for Highest Energy Circular Colliders

    E-Print Network [OSTI]

    Maury Cuna, G H I; Dugan, G; Zimmermann, F

    2013-01-01T23:59:59.000Z

    At high energies, beam-induced synchrotron radiation is an important source of heating, beam-related vacuum pressure increase, and primary photoelectrons, which can give rise to an electron cloud. The photon distribution along the beam pipe wall is a key input to codes such as ECLOUD and PyECLOUD, which model the electron cloud build-up. For future high-energy colliders, like TLEP or SHE-LHC, photon stops and antechambers are considered in order to facilitate cooling and vacuum pressure control. We use the Synrad3D code developed at Cornell to simulate the photon distribution for the LHC.

  10. The role of pump coherence in two-photon interferometry

    E-Print Network [OSTI]

    J. Liang; S. M. Hendrickson; T. B. Pittman

    2010-12-20T23:59:59.000Z

    We use a parametric down-conversion source pumped by a short coherence-length continuous-wave (CW) diode laser to perform two-photon interferometry in an intermediate regime between the more familiar Franson-type experiments with a long coherence-length pump laser, and the short pulsed pump "time-bin" experiments pioneered by Gisin's group. The use of a time-bin-like Mach-Zehnder interferometer in the CW pumping beam induces coherence between certain two-photon amplitudes, while the CW nature of the experiment prevents the elimination of remaining incoherent ones. The experimental results highlight the role of pump coherence in two-photon interferometry.

  11. advanced biomedical research: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rose, Michael R. 2 THE CENTER FOR INTEGRATIVE BIOMEDICAL COMPUTING: ADVANCING BIOMEDICAL SCIENCE WITH OPEN SOURCE Computer Technologies and Information Sciences Websites Summary:...

  12. advanced accelerator experimental: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 1.2 Sources of Residual Gas Kemner, Ken 8 A EUROPEAN ADVANCED TECHNOLOGY PROGRAMME FOR ADS ACCELERATOR DEVELOPMENT* Physics Websites Summary: A EUROPEAN...

  13. advanced imaging techniques: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Image restoration Lfdahl, Mats 8 Advanced Penning-type ion source development and passive beam focusing techniques for an associated particle imaging neutron generator. Open...

  14. Semiconductor ridge microcavity source of quantum light at room temperature

    E-Print Network [OSTI]

    X. Caillet; A. Orieux; A. Lemaitre; P. Filloux; I. Favero; G. Leo; S. Ducci

    2009-10-31T23:59:59.000Z

    We experimentally demonstrate an integrated semiconductor ridge microcavity source of counterpropagating twin photons at room temperature in the telecom range. Based on parametric down conversion with a counterpropagating phase-matching, pump photons generate photon pairs with an efficiency of about 10^(-11) and a spectral linewidth of 0.3 nm for a 1mm long sample. The indistiguishability of the photons of the pair are measured via a two-photon interference experiment showing a visibility of 85%. This work opens a route towards new guided-wave semiconductor quantum devices.

  15. Nonlinear interferometry approach to photonic sequential logic

    E-Print Network [OSTI]

    Hideo Mabuchi

    2011-08-08T23:59:59.000Z

    Motivated by rapidly advancing capabilities for extensive nanoscale patterning of optical materials, I propose an approach to implementing photonic sequential logic that exploits circuit-scale phase coherence for efficient realizations of fundamental components such as a NAND-gate-with-fanout and a bistable latch. Kerr-nonlinear optical resonators are utilized in combination with interference effects to drive the binary logic. Quantum-optical input-output models are characterized numerically using design parameters that yield attojoule-scale energy separation between the latch states.

  16. Nonlinear interferometry approach to photonic sequential logic

    E-Print Network [OSTI]

    Mabuchi, Hideo

    2011-01-01T23:59:59.000Z

    Motivated by rapidly advancing capabilities for extensive nanoscale patterning of optical materials, I propose an approach to implementing photonic sequential logic that exploits circuit-scale phase coherence for efficient realizations of fundamental components such as a NAND-gate-with-fanout and a bistable latch. Kerr-nonlinear optical resonators are utilized in combination with interference effects to drive the binary logic. Quantum-optical input-output models are characterized numerically using design parameters that yield attojoule-scale energy separation between the latch states.

  17. Advanced Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power and TransmissionAdolphusAdvanced Energy

  18. Introduction to Solar Photon Conversion

    SciTech Connect (OSTI)

    Nozik, A.; Miller, J.

    2010-11-10T23:59:59.000Z

    The efficient and cost-effective direct conversion of solar photons into solar electricity and solar fuels is one of the most important scientific and technological challenges of this century. It is estimated that at least 20 terawatts of carbon-free energy (1 and 1/2 times the total amount of all forms of energy consumed today globally), in the form of electricity and liquid and gaseous fuels, will be required by 2050 in order to avoid the most serious consequences of global climate change and to ensure adequate global energy supply that will avoid economic chaos. But in order for solar energy to contribute a major fraction of future carbon-free energy supplies, it must be priced competitively with, or perhaps even be less costly than, energy from fossil fuels and nuclear power as well as other renewable energy resources. The challenge of delivering very low-cost solar fuels and electricity will require groundbreaking advances in both fundamental and applied science. This Thematic Issue on Solar Photon Conversion will provide a review by leading researchers on the present status and prognosis of the science and technology of direct solar photoconversion to electricity and fuels. The topics covered include advanced and novel concepts for low-cost photovoltaic (PV) energy based on chemistry (dye-sensitized photoelectrodes, organic and molecular PV, multiple exciton generation in quantum dots, singlet fission), solar water splitting, redox catalysis for water oxidation and reduction, the role of nanoscience and nanocrystals in solar photoconversion, photoelectrochemical energy conversion, and photoinduced electron transfer. The direct conversion of solar photons to electricity via photovoltaic (PV) cells is a vital present-day commercial industry, with PV module production growing at about 75%/year over the past 3 years. However, the total installed yearly averaged energy capacity at the end of 2009 was about 7 GW-year (0.2% of global electricity usage). Thus, there is potential for the PV industry to grow enormously in the future (by factors of 100-300) in order for it to provide a significant fraction of total global electricity needs (currently about 3.5 TW). Such growth will be greatly facilitated by, and probably even require, major advances in the conversion efficiency and cost reduction for PV cells and modules; such advances will depend upon advances in PV science and technology, and these approaches are discussed in this Thematic Issue. Industrial and domestic electricity utilization accounts for only about 30% of the total energy consumed globally. Most ({approx}70%) of our energy consumption is in the form of liquid and gaseous fuels. Presently, solar-derived fuels are produced from biomass (labeled as biofuels) and are generated through biological photosynthesis. The global production of liquid biofuels in 2009 was about 1.6 million barrels/day, equivalent to a yearly output of about 2.5 EJ (about 1.3% of global liquid fuel utilization). The direct conversion of solar photons to fuels produces high-energy chemical products that are labeled as solar fuels; these can be produced through nonbiological approaches, generally called artificial photosynthesis. The feedstocks for artificial photosynthesis are H{sub 2}O and CO{sub 2}, either reacting as coupled oxidation-reduction reactions, as in biological photosynthesis, or by first splitting H{sub 2}O into H{sub 2} and O{sub 2} and then reacting the solar H{sub 2} with CO{sub 2} (or CO produced from CO2) in a second step to produce fuels through various well-known chemical routes involving syngas, water gas shift, and alcohol synthesis; in some applications, the generated solar H{sub 2} itself can be used as an excellent gaseous fuel, for example, in fuel cells. But at the present time, there is no solar fuels industry. Much research and development are required to create a solar fuels industry, and this Thematic Issue presents several reviews on the relevant solar fuels science and technology. The first three manuscripts relate to the daunting problem of producing

  19. Advanced thermochemical hydrogen cycles

    SciTech Connect (OSTI)

    Hollabaugh, C.M.; Bowman, M.G.

    1981-01-01T23:59:59.000Z

    The overall objective of this program is to contribute to the development of practical thermochemical cycles for the production of hydrogen from water. Specific goals are: investigate and evaluate the technical and economic viability of thermochemical cycles as an advanced technology for producing hydrogen from water; investigate and evaluate the engineering principles involved in interfacing individual thermochemical cycles with the different thermal energy sources (high temperature fission, solar, and fusion); and conduct a continuing research and development effort to evaluate the use of solid sulfates, oxides and other compounds as potentially advanced cycles and as alternates to H/sub 2/SO/sub 4/ based cycles. Basic thermochemistry studies have been completed for two different steps in the decomposition of bismuth sulfate. Two different bismuth sulfate cycles have been defined for different sulfuric acid strengths. The eventual best cycle will depend on energy required to form sulfuric acid at different concentrations. A solids decomposition facility has been constructed and practical studies of solid decompositions are being conducted. The facility includes a rotary kiln system and a dual-particle fluidized bed system. Evaluation of different types of cycles for coupling with different heat sources is continuing.

  20. Full Quantum Analysis of Two-Photon Absorption Using Two-Photon Wavefunction: Comparison with One-Photon Absorption

    E-Print Network [OSTI]

    Toshihiro Nakanishi; Hirokazu Kobayashi; Kazuhiko Sugiyama; Masao Kitano

    2009-06-01T23:59:59.000Z

    For dissipation-free photon-photon interaction at the single photon level, we analyze one-photon transition and two-photon transition induced by photon pairs in three-level atoms using two-photon wavefunctions. We show that the two-photon absorption can be substantially enhanced by adjusting the time correlation of photon pairs. We study two typical cases: Gaussian wavefunction and rectangular wavefunction. In the latter, we find that under special conditions one-photon transition is completely suppressed while the high probability of two-photon transition is maintained.

  1. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoid NanosheetsStudying thePhotoinducedPhotonPhotonic2

  2. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoid NanosheetsStudying thePhotoinducedPhotonPhotonic2July

  3. Efficiency limits for linear optical processing of single photons and single-rail qubits

    E-Print Network [OSTI]

    Dominic W. Berry; A. I. Lvovsky; Barry C. Sanders

    2006-05-03T23:59:59.000Z

    We analyze the problem of increasing the efficiency of single-photon sources or single-rail photonic qubits via linear optical processing and destructive conditional measurements. In contrast to previous work we allow for the use of coherent states and do not limit to photon-counting measurements. We conjecture that it is not possible to increase the efficiency, prove this conjecture for several important special cases, and provide extensive numerical results for the general case.

  4. Active materials in photonic crystals

    E-Print Network [OSTI]

    Bermel, Peter (Peter A.)

    2007-01-01T23:59:59.000Z

    I analyze new phenomena arising from embedding active materials inside of photonic crystal structures. These structures strongly modify the photonic local density of states (LDOS), leading to quantitative and qualitative ...

  5. Qubit entanglement on a silicon photonic chip

    E-Print Network [OSTI]

    Joshua W. Silverstone; Raffaele Santagati; Damien Bonneau; Michael J. Strain; Marc Sorel; Jeremy L. O'Brien; Mark G. Thompson

    2014-11-21T23:59:59.000Z

    Entanglement--one of the most delicate phenomena in nature--is an essential resource for quantum information applications. Large entangled cluster states have been predicted to enable universal quantum computation, with the required single- qubit measurements readily implemented with photons. Useful large-scale systems must generate and control qubit entanglement on-chip, where quantum information is naturally encoded in photon path. Here we report a silicon photonic chip which integrates resonant-enhanced sources, filters, and reconfigurable optics to generate a path-entangled two-qubit state--the smallest non-trivial cluster state--and analyse its entanglement. We show that ring-resonator-based spontaneous four-wave mixing sources can be made highly indistinguishable, despite their nonlinear dynamics, and the first evidence that their frequency correlations are small, as predicted. We use quantum state tomography, and the strict Bell-CHSH inequality to quantify entanglement in the device, confirming its high performance. This work integrates essential components for building devices and systems to harness quantum entanglement on the large scale.

  6. Two-photon wave mechanics

    E-Print Network [OSTI]

    Brian J. Smith; M. G. Raymer

    2007-02-21T23:59:59.000Z

    The position-representation wave function for multi-photon states and its equation of motion are introduced. A major strength of the theory is that it describes the complete evolution (including polarization and entanglement) of multi-photon states propagating through inhomogeneous media. As a demonstration of the two-photon wave function's use, we show how two photons in an orbital-angular-momentum entangled state decohere upon propagation through a turbulent atmosphere.

  7. advance photonics map: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with a CV (gerne auch auf deutsch) Dr. Peter Baum Max-Planck-Institute for Quantum Optics, and Ludwig are table-top and will be operated by yourself and our small team. Our...

  8. The Electronic Origin of Photoinduced Strain | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that light can induce simultaneous structural and electronic effects now enables optical control of ferroelectric and multiferroic materials without requiring electrical contacts....

  9. A Better Way to Probe Biological Polymorphs | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and C map the results of diffraction tomography. Panel B is the distribution of the two CaCO3 polymorphs, calcite (turquoise) and aragonite (magenta), proving that aragonite is...

  10. Simulating Deep Earthquakes in the Laboratory | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    team focused on the role that phase transformations of olivine, a magnesium iron silicate, might play in triggering deep earthquakes. They performed laboratory deformation...

  11. Advanced materials, process, and designs for silicon photonic integration

    E-Print Network [OSTI]

    Sun, Rong, Ph. D. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    The copper (Cu) interconnect has become the bottleneck for bandwidth scaling due to its increasing RC time constant with the decreasing gate line width. Currently, silicon based optical interconnect is widely pursued as ...

  12. IMPRS (Stand Juni 2011) Sitzland Advanced Photon Science Bayern

    E-Print Network [OSTI]

    Falge, Eva

    Law Baden-Württemberg Successful Dispute Resolution in International Law Baden-Württemberg Quantum #12;Biomimetic Systems Brandenburg Geometric Analysis, Gravitation and String Theory Brandenburg Molecular Biology Niedersachsen Neurosciences Niedersachsen Gravitational Wave Astronomy Niedersachsen Aging

  13. Cool Muscles: Storing Elastic Energy for Flight | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding of Superconductivity New Family of Tiny Crystals Glow Bright in LED Lights How Serotonin Receptors Can Shape Drug Effects, from LSD to Migraine Medication X-rays...

  14. A Layered Nanostructure Held Together By DNA | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    orientation. The researchers are now exploring the possibility that by patterning the substrate in a suitable way, they can control the orientation of the crystals in both...

  15. How Do Bacteria Repair Damage from the Sun? | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of premature aging), and trichothiodystrophy (an inherited condition in which hair is brittle, sparse, and easily broken). Previous work had shown that the bacterial DNA...

  16. Photon collider at TESLA

    E-Print Network [OSTI]

    Valery Telnov

    2001-03-06T23:59:59.000Z

    High energy photon colliders (gamma-gamma, gamma-electron) based on backward Compton scattering of laser light is a very natural addition to e+e- linear colliders. In this report we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case the gamma-gamma luminosity luminosity in the high energy part of spectrum can reach (1/3)L_{e+e-}. Typical cross sections of interesting processes in gamma-gamma collisions are higher than those in e+e- collisions by about one order of magnitude, so the number of events in gamma-gamma collisions will be more than that in e+e- collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is ``an optical storage ring (optical trap)'' with diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based at TESLA, its possible parameters and existing problems.

  17. Photonic Science & Engineering

    E-Print Network [OSTI]

    Wu, Shin-Tson

    3321 Engineering Dynamics (3) EGN 3211 Engineering Analysis (3) STA 3032 Probability / Statistics (3Photonic Science & Engineering 2014-2015 Suggested Plan* www.creol.ucf.edu undergrad for Engineers I (4) PHY 3101 Physics for Engineers III (3) MAC 2311C** Calculus I (4) MAC 2312** Calculus II (4

  18. Slow light enhanced photon echoes

    E-Print Network [OSTI]

    J. Hahn; B. S. Ham

    2009-09-28T23:59:59.000Z

    We report a slow light-enhanced photon echo method, whose retrieval efficiency is two orders of magnitude higher than that of conventional photon echoes. The enhanced photon echo efficiency is due to lengthened interaction time given by ultraslow group velocity.

  19. Nonlocal photon correlations and violation of Bell inequalities for spatially separated classical light fields

    E-Print Network [OSTI]

    Daniel Bhatti; Raimund Schneider; Thomas Mehringer; Steffen Oppel; Joachim von Zanthier

    2015-01-21T23:59:59.000Z

    It is theoretically and experimentally shown that photons emitted by statistically independent incoherent classical light sources and measured in the far field in spatially separated modes may display spatial correlations akin to path-entanglement of photons produced by quantum sources. By measuring higher order photon-correlations at different locations, i.e., $m$ photons in one mode and one photon in another mode, we experimentally demonstrate for $m \\geq 6$ a violation of Bell-type inequalities for spatial degrees of freedom. The spatial correlations among the photons can be understood from state projection where the detection of the first $m$ photons projects the sources onto a state which emits the subsequent photon in a strongly correlated manner. From this perspective the entanglement and violation of Bell's inequalities appears as a consequence of nonvanishing cross correlations between noncommuting quadrature phase components of the two spatially separated fields after $m$ photons have been recorded. In this way we show that classical systems may produce spatial field correlations violating local realistic theories.

  20. AMES LABORATORY Hydrogen Storage Grand Challenge Pre-Solicitation Meeting, June 19, 20031

    E-Print Network [OSTI]

    at the Advanced Photon Source for structure/property characterization In charge of Neutron Scattering

  1. EA-1455: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Enhanced Operations of the Advanced Photon Source at Argonne National Laboratory-East, Argonne, Illinois

  2. A Single-Photon Server with Just One Atom

    E-Print Network [OSTI]

    Markus Hijlkema; Bernhard Weber; Holger P. Specht; Simon C. Webster; Axel Kuhn; Gerhard Rempe

    2007-02-05T23:59:59.000Z

    Neutral atoms are ideal objects for the deterministic processing of quantum information. Entanglement operations have been performed by photon exchange or controlled collisions. Atom-photon interfaces were realized with single atoms in free space or strongly coupled to an optical cavity. A long standing challenge with neutral atoms, however, is to overcome the limited observation time. Without exception, quantum effects appeared only after ensemble averaging. Here we report on a single-photon source with one-and-only-one atom quasi permanently coupled to a high-finesse cavity. Quasi permanent refers to our ability to keep the atom long enough to, first, quantify the photon-emission statistics and, second, guarantee the subsequent performance as a single-photon server delivering up to 300,000 photons for up to 30 seconds. This is achieved by a unique combination of single-photon generation and atom cooling. Our scheme brings truly deterministic protocols of quantum information science with light and matter within reach.

  3. Non-local geometric phase in two-photon interferometry

    E-Print Network [OSTI]

    Anthony Martin; Olivier Alibart; Jean-Christoph Flesch; Joseph Samuel; Supurna Sinha; Sébastien Tanzilli; Anders Kastberg

    2012-01-05T23:59:59.000Z

    We report the experimental observation of the nonlocal geometric phase in Hanbury Brown-Twiss polarized intensity interferometry. The experiment involves two independent, polar- ized, incoherent sources, illuminating two polarized detectors. Varying the relative polarization angle between the detectors introduces a geometric phase equal to half the solid angle on the Poincar\\'e sphere traced out by a pair of single photons. Local measurements at either detector do not reveal the effect of the geometric phase, which appears only in the coincidence counts between the two detectors, showing a genuinely nonlocal effect. We show experimentally that coincidence rates of photon arrival times at separated detectors can be controlled by the two photon geometric phase. This effect can be used for manipulating and controlling photonic entanglement.

  4. Particle Acceleration in Astrophysical Sources

    E-Print Network [OSTI]

    Amato, Elena

    2015-01-01T23:59:59.000Z

    Astrophysical sources are extremely efficient accelerators. Some sources emit photons up to multi-TeV energies, a signature of the presence, within them, of particles with energies much higher than those achievable with the largest accelerators on Earth. Even more compelling evidence comes from the study of Cosmic Rays, charged relativistic particles that reach the Earth with incredibly high energies: at the highest energy end of their spectrum, these subatomic particles are carrying a macroscopic energy, up to a few Joules. Here I will address the best candidate sources and mechanisms as cosmic particle accelerators. I will mainly focus on Galactic sources such as Supernova Remnants and Pulsar Wind Nebulae, which being close and bright, are the best studied among astrophysical accelerators. These sources are held responsible for most of the energy that is put in relativistic particles in the Universe, but they are not thought to accelerate particles up to the highest individual energies, $\\approx 10^{20}$ eV...

  5. National Synchrotron Light Source 2010 Activity Report

    SciTech Connect (OSTI)

    Rowe, M.; Snyder, K. J.

    2010-12-29T23:59:59.000Z

    This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biology department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of electricity or hydrogen; (3) high-temperature superconducting materials that carry electricity with no loss for efficient power transmission lines; and (4) materials for solid-state lighting with half of the present power consumption. Excitement about NSLS-II is evident in many ways, most notably the extraordinary response we had to the 2010 call for beamline development proposals for the anticipated 60 or more beamlines that NSLS-II will ultimately host. A total of 54 proposals were submitted and, after extensive review, 34 were approved. Funding from both the Department of Energy and the National Institutes of Health has already been secured to support the design and construction of a number of these beamlines. FY11 is a challenging and exciting year for the NSLS-II Project as we reach the peak of our construction activity. We remain on track to complete the project by March 2014, a full 15 months ahead of schedule and with even more capabilities than originally planned. The Photon Sciences Directorate is well on its way to fulfilling our vision of being a provider of choice for world-class photon sciences and facilities.

  6. High-energy photon transport modeling for oil-well logging

    E-Print Network [OSTI]

    Johnson, Erik D., Ph. D. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    Nuclear oil well logging tools utilizing radioisotope sources of photons are used ubiquitously in oilfields throughout the world. Because of safety and security concerns, there is renewed interest in shifting to ...

  7. All-Optical Switch and Transistor Gated by One Stored Photon

    E-Print Network [OSTI]

    Chen, Wenlan

    The realization of an all-optical transistor, in which one “gate” photon controls a “source” light beam, is a long-standing goal in optics. By stopping a light pulse in an atomic ensemble contained inside an optical ...

  8. Multiplexed single-photon state preparation using a fibre-loop architecture

    E-Print Network [OSTI]

    Peter P. Rohde; L. G. Helt; M. J. Steel; Alexei Gilchrist

    2015-04-07T23:59:59.000Z

    Heralded spontaneous parametric down-conversion (SPDC) has become the mainstay for single-photon state preparation in present-day photonics experiments. Because they are heralded, in principle one knows when a single photon has been prepared. However, the heralding efficiencies in experimentally realistic SPDC sources are typically very low. To overcome this, multiplexing techniques have been proposed which employ a bank of SPDC sources in parallel, and route successfully heralded photons to the output, thereby effectively boosting the heralding efficiency. However, running a large bank of independent SPDC sources is costly and requires complex switching. We analyse a multiplexing technique based on time-bin encoding that allows the heralding efficiency of just a single SPDC source to be increased. The scheme is simple and experimentally viable using present-day technology. We analyse the operation of the scheme in terms of experimentally realistic considerations, such as losses, detector inefficiency, and pump-power.

  9. ls.dvi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEASUREMENT OF GAS BREMSSTRAHLUNG FROM THE INSERTION DEVICE BEAMLINES OF THE ADVANCED PHOTON SOURCE M. Pisharody and P.K. Job Experimental Facilities Division Advanced Photon...

  10. Environmental Assessment for the National Synchrotron Light Source...

    Broader source: Energy.gov (indexed) [DOE]

    synchrotron light source, NSLS-II, would incorporate advanced insertion devices, optics, detectors and non-destructive tools and instruments to image the structure and...

  11. Single photon absorption by a single atom: from heralded absorption to polarization state mapping

    E-Print Network [OSTI]

    Nicolas Piro; Jürgen Eschner

    2015-02-19T23:59:59.000Z

    Together with photon emission, the absorption of a single photon by a single atom is a fundamental process in matter-light interaction that manifests its quantum mechanical nature. As an experimentally controlled process, it is a key tool for the realization of quantum technologies. In particular, in an atom/photon based quantum network scenario, in which localized atomic particles are used as quantum information processing nodes while photons are used as carriers of quantum information between distant nodes, controlling both emission and absorption of single photons by single atoms is required for quantum coherent state mapping between the two entities. Most experimental efforts to date have focused on establishing the control of single photon emission by single trapped atoms, and the implementation of quantum networking protocols using this interaction. In this chapter, we describe experimental efforts to control the process of single photon absorption by single trapped ions. We describe a series of experiments in which polarization entangled photon pairs, generated by a spontaneous parametric down-conversion source, are coupled to a single ion. First the source is operated to generate heralded single photons, and coincidences between the absorption event of one photon of the pair and the detection of the heralding partner photon are observed. We then show how polarization control in the process is established, leading to the manifestation of the photonic polarization entanglement in the absorption process. Finally, we introduce protocols in which this interaction scheme is harnessed to perform tasks in a quantum network, such as entanglement distribution among distant nodes of the network, and we demonstrate a specific protocol for heralded, high-fidelity photon-to-atom quantum state transfer.

  12. Non-classical higher-order photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity

    E-Print Network [OSTI]

    Armand Rundquist; Michal Bajcsy; Arka Majumdar; Tomas Sarmiento; Kevin Fischer; Konstantinos G. Lagoudakis; Sonia Buckley; Alexander Y. Piggott; Jelena Vuckovic

    2014-08-12T23:59:59.000Z

    We use the third- and fourth-order autocorrelation functions $g^{(3)}(\\tau_1,\\tau_2)$ and $g^{(4)}(\\tau_1,\\tau_2, \\tau_3)$ to detect the non-classical character of the light transmitted through a photonic-crystal nanocavity containing a strongly-coupled quantum dot probed with a train of coherent light pulses. We contrast the value of $g^{(3)}(0, 0)$ with the conventionally used $g^{(2)}(0)$ and demonstrate that in addition to being necessary for detecting two-photon states emitted by a low-intensity source, $g^{(3)}$ provides a more clear indication of the non-classical character of a light source. We also present preliminary data that demonstrates bunching in the fourth-order autocorrelation function $g^{(4)}(\\tau_1,\\tau_2, \\tau_3)$ as the first step toward detecting three-photon states.

  13. Advanced thyristor valve project

    SciTech Connect (OSTI)

    Flairty, C. (General Electric Co., Malvern, PA (USA))

    1991-04-01T23:59:59.000Z

    An advanced thyristor value was developed HVDC conversion applications. New features incorporated in the design include: improved heat transfer from the thyristors, two phase cooling of components, and light firing required the development of both a separate light triggered thyristor with a full forward blocking voltage rating and a special flash lamp employing cesium vapor as the associated light source. A valve rated 133 kV and 2200 A bridge current was constructed and lab tested before shipment to the Sylmar Converter Station, which is the southern terminus of the Pacific DC Intertie. The Los Angeles Department of Water and Power, which operates the Sylmar Station, installed the valve and operated it to gain experience. 36 figs., 5 tabs.

  14. Photonics | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum Reserves Vision,4 PhotomultiplierPhotonicHome

  15. Correlated histogram representation of Monte Carlo derived medical accelerator photon-output phase space

    DOE Patents [OSTI]

    Schach Von Wittenau, Alexis E. (Livermore, CA)

    2003-01-01T23:59:59.000Z

    A method is provided to represent the calculated phase space of photons emanating from medical accelerators used in photon teletherapy. The method reproduces the energy distributions and trajectories of the photons originating in the bremsstrahlung target and of photons scattered by components within the accelerator head. The method reproduces the energy and directional information from sources up to several centimeters in radial extent, so it is expected to generalize well to accelerators made by different manufacturers. The method is computationally both fast and efficient overall sampling efficiency of 80% or higher for most field sizes. The computational cost is independent of the number of beams used in the treatment plan.

  16. Geothermal: Advanced Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links You...

  17. The role of plasma in advanced accelerators* Jonathan S. Wurtele+

    E-Print Network [OSTI]

    Wurtele, Jonathan

    concentrated on using plasma to accelerate charged particles, photon accel- eration is another area of active generation of particle accelerators. The develop- ment and status of advanced accelerator concepts, plasma beam, and is known as the particle beam wake field accelerator.6~67 While most studies have

  18. Advances in gas avalanche radiation detectors for biomedical applications

    E-Print Network [OSTI]

    , either Wire Chambers [3] or more recent advanced Micro-pattern Detectors [4,5], have been widely employed- getic X-ray or gamma photons, they often age un- der long-term operation at high radiation #ux and su beam, have shown to successfully compete with traditional "lm-screen imagers. These line-scanning

  19. Woodhead Publishing Limited, 2010 Advances in laser-induced plastic

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    in a local increase in temperature, e.g. laser cutting, drilling, welding, in a sense these processes© Woodhead Publishing Limited, 2010 535 18 Advances in laser-induced plastic deformation processes laser processes take advantage of the ability to convert photon energy into thermal energy resulting

  20. Source and channel coding for low-bandwidth speech communication between optoelectronic devices

    E-Print Network [OSTI]

    Perry, Daniel S

    2009-01-01T23:59:59.000Z

    Optical communication is one solution to the communication problem that many military forces face in today's urban environments. The recent advances in optoelectronic fibers by the Photonic Bandgap Fibers and Devices Group ...

  1. Multiple-Photon Absorption Attack on Entanglement-Based Quantum Key Distribution Protocols

    E-Print Network [OSTI]

    Guillaume Adenier; Irina Basieva; Andrei Yu. Khrennikov; Masanori Ohya; Noboru Watanabe

    2011-02-16T23:59:59.000Z

    In elaborating on the multiple-photon absorption attack on Ekert protocol proposed in arXiv:1011.4740, we show that it can be used in other entanglement-based protocols, in particular the BBM92 protocol. In this attack, the eavesdropper (Eve) is assumed to be in control of the source, and she sends pulses correlated in polarization (but not entangled) containing several photons at frequencies for which only multiple-photon absorptions are possible in Alice's and Bob's detectors. Whenever the photons stemming from one pulse are dispatched in such a way that the number of photons is insufficient to trigger a multiple-photon absorption in either channel, the pulse remains undetected. We show that this simple feature is enough to reproduce the type of statistics on the detected pulses that are considered as indicating a secure quantum key distribution, even though the source is actually a mixture of separable states. The violation of Bell inequalities measured by Alice and Bob increases with the order of the multiple-photon absorption that Eve can drive into their detectors, while the measured quantum bit error rate decreases as a function of the same variable. We show that the attack can be successful even in the simplest case of a two-photon absorption or three-photon absorption attack, and we discuss possible countermeasures, in particular the use of a fair sampling test.

  2. Undulator-Based Production of Polarized Photons

    SciTech Connect (OSTI)

    Professor Kirk McDonald

    2008-05-29T23:59:59.000Z

    "Project Title: Undulator-Based Production of Polarized Photons" DOE Contract Number: FG02-04ER41355 Principal Investigator: Prof. Kirk McDonald Period of Performance: 09/10/2004 thru 08/31/2006 This award was to fund Princeton's activity on SLAC experiment E166, "Undulator-Based Production of Polarized Positrons" which was performed at SLAC during June and September 2005. Princeton U. fabricated a magnetic spectrometer for this experiment, and participated in the commissioning, operation, and analysis of the experiment, for which Prof. McDonald was a co-spokesperson. The experiment demonstrated that an intense positron beam with 80% longitudinal polarization could be generated by conversion of MeVenergy circularly polarized photons in a thin target, which photons were generated by passage of high-energy electrons through a helical undulator. This technique has since been adopted as the baseline for the polarized positron source of the proposed International Linear Collider. Results of the experiment have been published in Physical Review Letters, vol 100, p 210801 (2008) [see attached .pdf file], and a longer paper is in preparation.

  3. Stimulated photon emission from the vacuum

    E-Print Network [OSTI]

    Felix Karbstein; Rashid Shaisultanov

    2015-06-04T23:59:59.000Z

    We study the effect of stimulated photon emission from the vacuum in strong space-time-dependent electromagnetic fields. We emphasize the viewpoint that the vacuum subjected to macroscopic electromagnetic fields with at least one nonzero electromagnetic field invariant, as, e.g., attainable by superimposing two laser beams, can represent a source term for outgoing photons. We believe that this view is particularly intuitive and allows for a straightforward and intuitive study of optical signatures of quantum vacuum nonlinearity in realistic experiments involving the collision of high-intensity laser pulses, and exemplify this view for the vacuum subjected to a strong standing electromagnetic wave as generated in the focal spot of two counterpropagating, linearly polarized, high-intensity laser pulses. Focusing on a comparably simple electromagnetic field profile, which should nevertheless capture the essential features of the electromagnetic fields generated in the focal spots of real high-intensity laser beams, we provide estimates for emission characteristics and the numbers of emitted photons attainable with present and near future high-intensity laser facilities.

  4. Single photon absorption and dynamic control of a coupled quantum dot-cavity system

    E-Print Network [OSTI]

    Robert Johne; Andrea Fiore

    2011-10-11T23:59:59.000Z

    We theoretically investigate the dynamic interaction of a quantum dot in a nanocavity with timesymmetric single photon pulses. The simulations, based on a wavefunction approach, reveal that almost perfect single photon absorption occurs for quantum dot-cavity systems operating on the edge between strong and weak coupling regime. The computed maximum absorptions probability is close to unity for pulses with a typical length comparable to the half of the Rabi period. Furthermore, the dynamic control of the quantum dot energy via electric fields allows the freezing of the light-matter interaction leaving the quantum dot in its excited state. Shaping of single photon wavepackets by the electric field control is limited by the occurrence of chirping of the single photon pulse. This understanding of the interaction of single photon pulses with the quantum dot-cavity system provides the basis for the development of advanced protocols for quantum information processing in the solid state.

  5. Quantum state fusion in photons

    E-Print Network [OSTI]

    Chiara Vitelli; Nicolò Spagnolo; Lorenzo Aparo; Fabio Sciarrino; Enrico Santamato; Lorenzo Marrucci

    2012-09-17T23:59:59.000Z

    Photons are the ideal carriers of quantum information for communication. Each photon can have a single qubit or even multiple qubits encoded in its internal quantum state, as defined by optical degrees of freedom such as polarization, wavelength, transverse modes, etc. Here, we propose and experimentally demonstrate a physical process, named "quantum state fusion", in which the two-dimensional quantum states (qubits) of two input photons are combined into a single output photon, within a four-dimensional quantum space. The inverse process is also proposed, in which the four-dimensional quantum state of a single photon is split into two photons, each carrying a qubit. Both processes can be iterated, and hence may be used to bridge multi-particle protocols of quantum information with the multi-degree-of-freedom ones, with possible applications in quantum communication networks.

  6. Soft-Lithographical Fabrication of Three-dimensional Photonic Crystals in the Optical Regime

    SciTech Connect (OSTI)

    Jae-Hwang Lee

    2006-08-09T23:59:59.000Z

    This dissertation describes several projects to realize low-cost and high-quality three-dimensional (3D) microfabrication using non-photolithographic techniques for layer-by-layer photonic crystals. Low-cost, efficient 3D microfabrication is a demanding technique not only for 3D photonic crystals but also for all other scientific areas, since it may create new functionalities beyond the limit of planar structures. However, a novel 3D microfabrication technique for photonic crystals implies the development of a complete set of sub-techniques for basic layer-by-layer stacking, inter-layer alignment, and material conversion. One of the conventional soft lithographic techniques, called microtransfer molding ({mu}TM), was developed by the Whitesides group in 1996. Although {mu}TM technique potentially has a number of advantages to overcome the limit of conventional photolithographic techniques in building up 3D microstructures, it has not been studied intensively after its demonstration. This is mainly because of technical challenges in the nature of layer-by-layer fabrication, such as the demand of very high yield in fabrication. After two years of study on conventional {mu}TM, We have developed an advanced microtransfer molding technique, called two-polymer microtransfer molding (2P-{mu}TM) that shows an extremely high yield in layer-by-layer microfabrication sufficient to produce highly layered microstructures. The use of two different photo-curable prepolymers, a filler and an adhesive, allows for fabrication of layered microstructures without thin films between layers. The capabilities of 2P-{mu}TM are demonstrated by the fabrication of a wide-area 12-layer microstructure with high structural fidelity. Second, we also had to develop an alignment technique. We studied the 1st-order diffracted moire fringes of transparent multilayered structures comprised of irregularly deformed periodic patterns. By a comparison study of the diffracted moire fringe pattern and detailed microscopy of the structure, we show that the diffracted moire fringe can be used as a nondestructive tool to analyze the alignment of multilayered structures. We demonstrate the alignment method for the case of layer-by-layer microstructures using soft lithography. The alignment method yields high contrast of fringes even when the materials being aligned have very weak contrasts. The imaging method of diffracted moire fringes is a versatile visual tool for the microfabrication of transparent deformable microstructures in layer-by-layer fashion. Third, we developed several methods to convert a polymer template to dielectric or metallic structures, for instance, metallic infiltration using electrodeposition, metallic coating using sputter deposition, dielectric infiltration using titania nano-slurry, and dielectric coating using atomic layer deposition of Titania. By several different developed techniques, high quality photonic crystals have been successfully fabricated; however, I will focus on a line of techniques to reach metallic photonic crystals in this dissertation since they are completely characterized at this moment. In addition to the attempts for photonic crystal fabrication, our non-photolithographic technique is applied for other photonic applications such as small optical waveguides whose diameter is comparable to the wavelength of guided light. Although, as guiding medium, polymers have tremendous potential because of their enormous variation in optical, chemical and mechanical properties, their application for optical waveguides is limited in conventional photolithography. By 2P-{mu}TM, we achieve low cost, high yield, high fidelity, and tailorable fabrication of small waveguides. Embedded semiconductor quantum-dots and grating couplers are used for efficient internal and external light source, respectively.

  7. The Nonlocal Pancharatnam Phase in Two-Photon Interferometry

    E-Print Network [OSTI]

    Poonam Mehta; Joseph Samuel; Supurna Sinha

    2010-09-03T23:59:59.000Z

    We propose a polarised intensity interferometry experiment, which measures the nonlocal Pancharatnam phase acquired by a pair of Hanbury Brown-Twiss photons. The setup involves two polarised thermal sources illuminating two polarised detectors. Varying the relative polarisation angle of the detectors introduces a two photon geometric phase. Local measurements at either detector do not reveal the effects of the phase, which is an optical analog of the multiparticle Aharonov-Bohm effect. The geometric phase sheds light on the three slit experiment and suggests ways of tuning entanglement.

  8. Photon Speedway Puts Big Data In the Fast Lane

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoid NanosheetsStudying thePhotoinducedPhoton SourcePhoton

  9. Advanced X-ray Optics Metrology for Nanofocusing and Coherence Preservation

    E-Print Network [OSTI]

    Goldberg, Kenneth A.

    2008-01-01T23:59:59.000Z

    workshop: “Advanced X-Ray Optics Metrology for Nano-focusinglight sources if beamline optics won’t be available toTitled, “Advanced X-Ray Optics Metrology for Nano-focusing

  10. Energy Department Announces up to $4 Million to Advance Low-Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces up to 4 Million to Advance Low-Cost Hydrogen Production from Renewable and Low Carbon Sources Energy Department Announces up to 4 Million to Advance Low-Cost Hydrogen...

  11. LED Light Sources for Projection Display Applications

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    LED Light Sources for Projection Display Applications By Chenhui Peng 04-13-2012 #12;Outline · 1. · The first practical LED is in red color and it is made with gallium arsenide (GaAs). 4http://en.wikipedia.org/wiki/Light with holes and release energy in the form of photons. 5http://en.wikipedia.org/wiki/Light-emitting_diode #12

  12. Electronic Properties of Hydrogen Storage Materials with Photon-in/Photon-out Soft-X-Ray Spectroscopy

    SciTech Connect (OSTI)

    Guo, Jinghua

    2008-09-22T23:59:59.000Z

    The applications of resonant soft X-ray emission spectroscopy on a variety of carbon systems have yielded characteristic fingerprints. With high-resolution monochromatized synchrotron radiation excitation, resonant inelastic X-ray scattering has emerged as a new source of information about electronic structure and excitation dynamics. Photon-in/photon-out soft-X-ray spectroscopy is used to study the electronic properties of fundamental materials, nanostructure, and complex hydrides and will offer potential in-depth understanding of chemisorption and/or physisorption mechanisms of hydrogen adsorption/desorption capacity and kinetics.

  13. Deterministic and Robust Generation of Single Photons On a Chip with 99.5% Indistinguishability Using Rapid Adiabatic Passage

    E-Print Network [OSTI]

    Yu-Jia Wei; Yu-Ming He; Ming-Cheng Chen; Yi-Nan Hu; Yu He; Dian Wu; Christian Schneider; Martin Kamp; Sven Höfling; Chao-Yang Lu; Jian-Wei Pan

    2014-05-08T23:59:59.000Z

    We demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single InGaAs quantum dot using the method of rapid adiabatic passage. Comparative study is performed with transform-limited, negatively chirped and positively chirped pulses, identifying the last one to be the most robust against fluctuation of driving strength. The generated single photons are background free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong-Ou-Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. The single-photon source can be readily scaled up to multi-photon entanglement and used for quantum metrology, boson sampling and linear optical quantum computing.

  14. Broadband terahertz photonics

    E-Print Network [OSTI]

    Burghoff, David Patrick

    2014-01-01T23:59:59.000Z

    In recent years, quantum cascade lasers have emerged as mature semiconductor sources of light in the terahertz range, the frequency range spanning 1 to 10 THz. Though technological development has pushed their operating ...

  15. Unified single-photon and single-electron counting statistics: From cavity QED to electron transport

    SciTech Connect (OSTI)

    Lambert, Neill [Advanced Science Institute, RIKEN, Saitama 351-0198 (Japan); Chen, Yueh-Nan [Department of Physics and National Center for Theoretical Sciences, National Cheng-Kung University, Tainan 701, Taiwan (China); Nori, Franco [Advanced Science Institute, RIKEN, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2010-12-15T23:59:59.000Z

    A key ingredient of cavity QED is the coupling between the discrete energy levels of an atom and photons in a single-mode cavity. The addition of periodic ultrashort laser pulses allows one to use such a system as a source of single photons--a vital ingredient in quantum information and optical computing schemes. Here we analyze and time-adjust the photon-counting statistics of such a single-photon source and show that the photon statistics can be described by a simple transport-like nonequilibrium model. We then show that there is a one-to-one correspondence of this model to that of nonequilibrium transport of electrons through a double quantum dot nanostructure, unifying the fields of photon-counting statistics and electron-transport statistics. This correspondence empowers us to adapt several tools previously used for detecting quantum behavior in electron-transport systems (e.g., super-Poissonian shot noise and an extension of the Leggett-Garg inequality) to single-photon-source experiments.

  16. Single photon energy dispersive x-ray diffraction

    SciTech Connect (OSTI)

    Higginbotham, Andrew; Patel, Shamim; Ciricosta, Orlando; Suggit, Matthew J.; Wark, Justin S. [Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)] [Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Hawreliak, James A.; Collins, Gilbert W.; Coppari, Federica; Eggert, Jon H. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Tang, Henry [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, California 94720 (United States)] [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, California 94720 (United States)

    2014-03-15T23:59:59.000Z

    With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signal from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored.

  17. Efficient heralding of O-band passively spatial-multiplexed photons for noise-tolerant quantum key distribution

    E-Print Network [OSTI]

    Mao Tong Liu; Han Chuen Lim

    2014-08-07T23:59:59.000Z

    When implementing O-band quantum key distribution on optical fiber transmission lines carrying C-band data traffic, noise photons that arise from spontaneous Raman scattering or insufficient filtering of the classical data channels could cause the quantum bit-error rate to exceed the security threshold. In this case, a photon heralding scheme may be used to reject the uncorrelated noise photons in order to restore the quantum bit-error rate to a low level. However, the secure key rate would suffer unless one uses a heralded photon source with sufficiently high heralding rate and heralding efficiency. In this work we demonstrate a heralded photon source that has a heralding efficiency that is as high as 74.5%. One disadvantage of a typical heralded photon source is that the long deadtime of the heralding detector results in a significant drop in the heralding rate. To counter this problem, we propose a passively spatial-multiplexed configuration at the heralding arm. Using two heralding detectors in this configuration, we obtain an increase in the heralding rate by 37% and a corresponding increase in the heralded photon detection rate by 16%. We transmitted the O-band photons over 10 km of noisy optical fiber to observe the relation between quantum bit-error rate and noise-degraded second-order correlation function of the transmitted photons. The effects of afterpulsing when we shorten the deadtime of the heralding detectors are also observed and discussed.

  18. Photon enhanced thermionic emission

    DOE Patents [OSTI]

    Schwede, Jared; Melosh, Nicholas; Shen, Zhixun

    2014-10-07T23:59:59.000Z

    Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200.degree. C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

  19. Measurement of photon correlations with multipixel photon counters

    E-Print Network [OSTI]

    Dmitry Kalashnikov; Leonid A. Krivitsky

    2014-08-01T23:59:59.000Z

    Development of reliable photon number resolving detectors (PNRD), devices which are capable to distinguish 1,2,3.. photons, is of a great importance for quantum optics and its applications. A new class of affordable PNRD is based on multipixel photon counters (MPPC). Here we review results of experiments on using MPPCs for direct characterization of squeezed vacuum (SV) states, generated via parametric downconversion (PDC). We use MPPCs to measure the second order normalized intensity correlation function (g^(2)) and directly detect the two-mode squeezing of SV states. We also present a method of calibration of crosstalk probability in MPPCs based on g^(2) measurements of coherent states.

  20. Sufficient bound on the mode mismatch of single photons for scalability of the boson sampling computer

    E-Print Network [OSTI]

    Valery Shchesnovich

    2014-12-02T23:59:59.000Z

    The boson sampler proposed by Aaronson and Arkhipov is a non-universal quantum computer, which can serve as evidence against the extended Church-Turing thesis. It samples the probability distribution at the output of linear unitary optical network, with indistinguishable single photons at the input. Four experimental groups have already tested their small-scale prototypes with up to four photons. The boson sampler with few dozens of single photons is believed to be hard to simulate on a classical computer. For scalability of a realistic boson sampler with current technology it is necessary to know the effect of the photon mode mismatch on its operation. Here a nondeterministic model of the boson sampler is analyzed, which employs partially indistinguishable single photons emitted by identical sources. A sufficient condition on the average mutual fidelity $ \\langle \\mathcal{F}\\rangle$ of the single photons is found, which guarantees that the realistic boson sampler outperforms the classical computer. Moreover, the boson sampler computer with partially indistinguishable single photons is scalable while being beyond the power of classical computers when the single photon mode mismatch $1-\\langle \\mathcal{F}\\rangle$ scales as $ \\mathcal{O}(N^{-3/2})$ with the total number of photons $N$.