Powered by Deep Web Technologies
Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Advanced Photon Source Upgrade Project  

ScienceCinema (OSTI)

Upgrade to Advanced Photon Source announced by Department Of Energy. Read more: http://go.usa.gov/ivZ

Mitchell, John; Gibson, Murray; Young, Linda; Joachimiak, Andrzej

2013-04-19T23:59:59.000Z

2

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home Group Members

3

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home Group

4

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home GroupISM Day -

5

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home GroupISM Day

6

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home GroupISM Day0

7

Advanced Photon Source Upgrade Project - Materials  

ScienceCinema (OSTI)

An upgrade to Advanced Photon Source announced by DOE - http://go.usa.gov/ivZ -- will help scientists break through bottlenecks in materials design in order to develop materials with desirable functions.

Gibbson, Murray;

2013-04-19T23:59:59.000Z

8

Advanced Photon Source Upgrade Project - Energy  

ScienceCinema (OSTI)

An upgrade to the Advanced Photon Source (announced by DOE - http://go.usa.gov/ivZ) will help scientists better understand complex environments such as in catalytic reactions.

Gibson, Murray; Chamberlain, Jeff; Young, Linda

2013-04-19T23:59:59.000Z

9

The Advanced Photon Source main control room  

SciTech Connect (OSTI)

The Advanced Photon Source at Argonne National Laboratory is a third-generation light source built in the 1990s. Like the machine itself, the Main Control Room (MCR) employs design concepts based on today`s requirements. The discussion will center on ideas used in the design of the MCR, the comfort of personnel using the design, and safety concerns integrated into the control room layout.

Pasky, S.

1998-07-01T23:59:59.000Z

10

Science at the Speed of Light: Advanced Photon Source  

ScienceCinema (OSTI)

An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest x-ray beams in the Western Hemisphere, and the research carried out by scientists using those x-rays.

Murray Gibson

2010-01-08T23:59:59.000Z

11

Sixth users meeting for the Advanced Photon Source: Proceedings  

SciTech Connect (OSTI)

Scientists and engineers from universities, industry, and national laboratories came to review the status of the facility and to look ahead to the types of forefront science that will be possible when the APS is completed. The presentations at the meeting included an overview of the project, advances in synchrotron radiation applications, and technical developments at the APS. The actions taken at the 1994 Business Meeting of the Advanced Photon Source Users Organization are also documented here.

NONE

1994-12-01T23:59:59.000Z

12

Metal Model Mimics Metalloenzymes | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergy StorageAdvanced Materials Advanced Materials

13

APS Document Central | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2AP-XPS MeasuresIrradiationAdvancedAPS

14

Advanced Photon Source Storage Ring Weekly Status  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home GroupISM

15

Kwang-Je Kim, 7/3/02 Advanced Photon Source Analysis of CSR  

E-Print Network [OSTI]

/3/02 Advanced Photon Source · Derivation: KJK · Application: ZRH Based on ZRH & KJK Main References SSY (Saldin

16

Abstracts of papers presented at SRI '95 Status of the Advanced Photon Source at Argonne National  

E-Print Network [OSTI]

Abstracts of papers presented at SRI '95 Status of the Advanced Photon Source at Argonne National Laboratory David E. Moncton Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 Presented on 18 October 1995 The Advanced Photon Source at Argonne National Laboratory is a third

17

Shielding design for the proposed Advanced Photon Source at Argonne  

SciTech Connect (OSTI)

Bulk shielding was designed for the proposed Argonne Advanced Photon Source. The shielding is for two linacs, the positron converter, booster synchrotron, and the storage ring. Shielding design limits exposure to 20 mrem/wk for occupational and 25 mrem/y for an individual member of the public from the radiation products, which include high energy neutrons (HEN), giant resonance neutrons (GRN), and Bremsstrahlung radiation (BR). The beam loss parameters at various components were estimated. Dose rates were computed for continuous loss during beam decay using an empirical method. Normal operational losses and certain accidental beam losses were also considered.

Moe, H.J.; Veluri, V.R.

1987-01-01T23:59:59.000Z

18

E-Print Network 3.0 - advanced photon source Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Calculus Fundamentals of Light Sources... 4 Applications of Quantum Physics Optoelectronic Devices Applied Advanced Optics Photonics... . At Algonquin College, courses are...

19

EA-0389: Proposed 7-GeV Advanced Photon Source, Argonne, Illinois  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal for construction and operation of a 6- to 7-GeV synchrotron radiation source known as the 7-GeV Advanced Photon Source at DOE's Argonne...

20

Experiments with radioactive samples at the Advanced Photon Source.  

SciTech Connect (OSTI)

The Advanced Photon Source (APS) at Argonne National Laboratory is a national synchrotron-radiation light source research facility. The 7 GeV electron Storage Ring is currently delivering intense high brilliance x-ray beams to a total of 34 beamlines with over 120 experiment stations to members of the international scientific community to carry out forefront basic and applied research in several scientific disciplines. Researchers come to the APS either as members of Collaborative Access Teams (CATs) or as Independent Investigators (IIs). Collaborative Access Teams comprise large number of investigators from universities, industry, and research laboratories with common research objectives. These teams are responsible for the design, construction, finding, and operation of beamlines. They are the owners of their experimental enclosures (''hutches'') designed and built to meet their specific research needs. Fig. 1 gives a plan view of the location of the Collaborative Access Teams by Sector and Discipline. In the past two years, over 2000 individual experiments were conducted at the APS facility. Of these, about 60 experiments involved the use of radioactive samples, which is less than 3% of the total. However, there is an increase in demand for experiment stations to accommodate the use of radioactive samples in different physical forms embedded in various matrices with activity levels ranging from trace amounts of naturally occurring radionuclides to MBq (mCi) quantities including transuranics. This paper discusses in some detail the steps in the safety review process for experiments involving radioactive samples and how ALARA philosophy is invoked at each step and implemented.

Veluri, V. R.; Justus, A.; Glagola, B.; Rauchas, A.; Vacca, J.

2000-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Proceedings of the fourth users meeting for the advanced photon source  

SciTech Connect (OSTI)

The Fourth Users Meeting for the Advanced Photon Source (APS) was held on May 7--8, 1991 at Argonne National Laboratory. Scientists and engineers from universities, industry, and national laboratories came to review the status of the facility and to look ahead to the types of forefront science that will be possible when the APS is completed. The presentations at the meeting included an overview of the project; critical issues for APS operation; advances in synchrotron radiation applications; users perspectives, and funding perspectives. The actions taken at the 1991 Business Meeting of the Advanced Photon Source Users Organization are also documented.

Not Available

1992-02-01T23:59:59.000Z

22

Design, construction, and procurement methodology of magnets for the 7-GeV Advanced Photon Source  

SciTech Connect (OSTI)

All major magnets of the Advanced Photon Source (APS) have now been measured and installed in the facility. This paper describes the mechanical design, construction, and procurement philosophy and methodology, and lessons learned from the construction and procurement of more than 1500 magnets for the APS storage ring, injector synchrotron ring, and positron accumulator ring.

Gorski, A.; Argyrakis, J.; Biggs, J. [and others

1995-06-01T23:59:59.000Z

23

KJK /10/18-19/01 / MUTAC Review Advanced Photon Source Kwang-Je Kim  

E-Print Network [OSTI]

KJK /10/18-19/01 / MUTAC Review Advanced Photon Source Kwang-Je Kim University of Chicago and Argonne National Laboratory MUTAC Review Lawrence Berkeley National Laboratory October 18-19, 2001 #12;KJK · KJK & CXW · Papers: - Formulas for transverse ionization cooling in SFC PRL 85(4) 700, 2000 (KJK & CXW

24

APS ES&H Committees | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2AP-XPS MeasuresIrradiationAdvancedAPSAPS

25

7-GeV Advanced Photon Source Conceptual Design Report  

SciTech Connect (OSTI)

During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV.

Not Available

1987-04-01T23:59:59.000Z

26

Proceedings of the third users meeting for the Advanced Photon Source  

SciTech Connect (OSTI)

The Third Users Meetings for the Advanced Photon Source, held on October 12--13, 1989, at Argonne National Laboratory, brought together scientists and engineers from industry, universities, and national laboratories to review the status of the facility and make plans for its use. The presentations documented in these proceedings include overviews of the project status and the user access policy; updates on several fundamental research efforts that make use of synchrotron radiation; reports on insertion-device R D and beam line design activities; cost and manpower estimates for beam line construction; and a panel discussion on strategies for developing and managing Collaborative Access Teams. The actions taken at the 1989 Business Meeting of the Advanced Photon Source Users Organization are also documented.

Not Available

1990-06-01T23:59:59.000Z

27

EA-1455: Enhanced Operations of the Advanced Photon Source at Argonne National Laboratory-East, Argonne, Illinois  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to continue and enhance operation of the Advanced photon Source, including modifications, upgrades, and new facilities, at the U.S....

28

Optimization and modeling studies for obtaining high injection efficiency at the Advanced Photon Source.  

SciTech Connect (OSTI)

In recent years, the optics of the Advanced Photon Source storage ring has evolved to a lower equilibrium emittance (2.5 nm-rad) at the cost of stronger sextupoles and stronger nonlinearities, which have reduced the injection efficiency from the virtual 100% of the high emittance mode. Over the years we have developed a series of optimizations, measurements, and modeling studies of the injection process, which allows us to obtain or maintain low injection losses. The above will be described along with the injection configuration.

Emery, L.; APS Operations Division

2005-01-01T23:59:59.000Z

29

Advanced Photon Source experimental beamline Safety Assessment Document: Addendum to the Advanced Photon Source Accelerator Systems Safety Assessment Document (APS-3.2.2.1.0)  

SciTech Connect (OSTI)

This Safety Assessment Document (SAD) addresses commissioning and operation of the experimental beamlines at the Advanced Photon Source (APS). Purpose of this document is to identify and describe the hazards associated with commissioning and operation of these beamlines and to document the measures taken to minimize these hazards and mitigate the hazard consequences. The potential hazards associated with the commissioning and operation of the APS facility have been identified and analyzed. Physical and administrative controls mitigate identified hazards. No hazard exists in this facility that has not been previously encountered and successfully mitigated in other accelerator and synchrotron radiation research facilities. This document is an updated version of the APS Preliminary Safety Analysis Report (PSAR). During the review of the PSAR in February 1990, the APS was determined to be a Low Hazard Facility. On June 14, 1993, the Acting Director of the Office of Energy Research endorsed the designation of the APS as a Low Hazard Facility, and this Safety Assessment Document supports that designation.

NONE

1995-01-01T23:59:59.000Z

30

Proceedings of the first users meeting for the Advanced Photon Source  

SciTech Connect (OSTI)

The first national users meeting for the Advanced Photon Source (APS) at Argonne National Laboratory - held November 13-14, 1986, at Argonne - brought together scientists and engineers from industry, universities, and national laboratories to exchange information on the design of the facility and expectations for its use. Presented papers and potential participating research team (PRT) plans are documented in these proceedings. Topics covered include the current status of the project, an overview of the APS conceptual design, scientific opportunities offered by the facility for synchrotron-radiation-related research, current proposals and funding mechanisms for beam lines, and user policies. A number of participants representing universities and private industry discussed plans for the possible formation of PRTs to build and use beam lines at the APS site. The meeting also provided an opportunity for potential users to organize their efforts to support and guide the facility's development.

Not Available

1988-02-01T23:59:59.000Z

31

Development of GUS for control applications at the Advanced Photon Source  

SciTech Connect (OSTI)

A script-based interpretive shell GUS (General Purpose Data Acquisition for Unix Shell) has been developed for application to the Advanced Photon Source (APS) control. The primary design objective of GUS is to provide a mechanism for efficient data flow among modularized objects called Data Access Modules (DAMs). GUS consists of four major components: user interface, kernel, built-in command module, and DAMS. It also incorporates the Unix shell to make use of the existing utility programs for file manipulation and data analysis. At this time, DAMs have been written for device access through EPICS (Experimental Physics and Industrial Control System), data I/O for SDDS (Self-Describing Data Set) files, matrix manipulation, graphics display, digital signal processing, and beam position feedback system control. The modular and object-oriented construction of GUS will facilitate addition of more DAMs with other functions in the future.

Chung, Y.; Barr, D.; Borland, M.; Kirchman, J.; Decker, G.; Kim, K.

1994-08-01T23:59:59.000Z

32

Mirror mounts designed for the Advanced Photon Source SRI-CAT  

SciTech Connect (OSTI)

Use of a mirror for beamlines at third-generation synchrotron radiation facilities, such as the Advanced Photon Source (APS) at Argonne National laboratory, has many advantages. A mirror as a first optical component provides significant reduction in the beam peak heat flux and total power on the downstream monochromator and simplifies the bremsstrahlung shielding design for the beamline transport. It also allows one to have a system for multibeamline branching and switching. More generally, a mirror is used for beam focusing and/or low-pass filtering. Six different mirror mounts have been designed for the SRI-CAT beamlines. Four of them are designed as water-cooled mirrors for white or pink beam use, and the other two are for monochromatic beam use. Mirror mount designs, including vacuum vessel structure and precision supporting stages, are presented in this paper.

Shu, D.; Benson, C.; Chang, J. [and others

1997-09-01T23:59:59.000Z

33

Environmental assessment of the proposed 7-GeV Advanced Photon Source  

SciTech Connect (OSTI)

The potential environmental impacts of construction and operation of a 6- to 7-GeV synchrotron radiation source known as the 7-GeV Advanced Photon Source at Argonne National Laboratory were evaluated. Key elements considered include on- and off-site radiological effects; socioeconomic effects; and impacts to aquatic and terrestrial flora and fauna, wetlands, water and air quality, cultural resources, and threatened or endangered species. Also incorporated are the effects of decisions made as a result of the preliminary design (Title I) being prepared. Mitigation plans to further reduce impacts are being developed. These plans include coordination with the US Army Corps of Engineers (COE) and other responsible agencies to mitigate potential impacts to wetlands. This mitigation includes providing habitat of comparable ecological value to assure no net loss of wetlands. These mitigation actions would be permitted and monitored by COE. A data recovery plan to protect cultural resources has been developed and approved, pursuant to a Programmatic Agreement among the US Department of Energy, the Advisory Council on Historic Preservation, and the Illinois State Historic Preservation Office. Applications for National Emission Standard for Hazardous Air Pollutants (NESHAP) and air emissions permits have been submitted to the US Environmental Protection Agency (EPA) and the Illinois Environmental Protection Agency (IEPA), respectively. 71 refs., 10 figs., 11 tabs.

Not Available

1990-02-01T23:59:59.000Z

34

Advanced Photon Source, Canadian Light Source Strengthen Ties, Expand X-ray  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home

35

Phase loop bandwidth measurements on the advanced photon source 352 MHz rf systems  

SciTech Connect (OSTI)

Phase loop bandwidth tests were performed on the Advanced Photon Source storage ring 352-MHz rf systems. These measurements were made using the HP3563A Control Systems Analyzer, with the rf systems running at 30 kilowatts into each of the storage ring cavities, without stored beam. An electronic phase shifter was used to inject approximately 14 degrees of stimulated phase shift into the low-level rf system, which produced measureable response voltage in the feedback loops without upsetting normal rf system operation. With the PID (proportional-integral-differential) amplifier settings at the values used during accelerator operation, the measurement data revealed that the 3-dB response for the cavity sum and klystron power-phase loops is approximately 7 kHz and 45 kHz, respectively, with the cavities the primary bandwidth-limiting factor in the cavity-sum loop. Data were taken at various PID settings until the loops became unstable. Crosstalk between the two phase loops was measured.

Horan, D.; Nassiri, A.; Schwartz, C.

1997-08-01T23:59:59.000Z

36

Global search tool for the Advanced Photon Source Integrated Relational Model of Installed Systems (IRMIS) database.  

SciTech Connect (OSTI)

The Integrated Relational Model of Installed Systems (IRMIS) is a relational database tool that has been implemented at the Advanced Photon Source to maintain an updated account of approximately 600 control system software applications, 400,000 process variables, and 30,000 control system hardware components. To effectively display this large amount of control system information to operators and engineers, IRMIS was initially built with nine Web-based viewers: Applications Organizing Index, IOC, PLC, Component Type, Installed Components, Network, Controls Spares, Process Variables, and Cables. However, since each viewer is designed to provide details from only one major category of the control system, the necessity for a one-stop global search tool for the entire database became apparent. The user requirements for extremely fast database search time and ease of navigation through search results led to the choice of Asynchronous JavaScript and XML (AJAX) technology in the implementation of the IRMIS global search tool. Unique features of the global search tool include a two-tier level of displayed search results, and a database data integrity validation and reporting mechanism.

Quock, D. E. R.; Cianciarulo, M. B.; APS Engineering Support Division; Purdue Univ.

2007-01-01T23:59:59.000Z

37

The role of plasma evolution and photon transport in optimizing future advanced lithography sources  

E-Print Network [OSTI]

, and reduced contamination and damage to the optical mirror collection system from plasma debris and energetic particles. The ideal target is to generate a source of maximum EUV radiation output and collection in the 13 and plasma, ioniza- tion, plasma radiation, and details of photon transport in these media. We studied

Harilal, S. S.

38

Photonic crystal light source  

DOE Patents [OSTI]

A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Bur, James A. (Corrales, NM)

2004-07-27T23:59:59.000Z

39

Advanced Photon Source (APS) | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHuman ResourcesScienceHomeAboutLight Source (ALS)Photon

40

Engineered Quantum Dot Single Photon Sources  

E-Print Network [OSTI]

Fast, high efficiency, and low error single photon sources are required for implementation of a number of quantum information processing applications. The fastest triggered single photon sources to date have been demonstrated using epitaxially grown semiconductor quantum dots (QDs), which can be conveniently integrated with optical microcavities. Recent advances in QD technology, including demonstrations of high temperature and telecommunications wavelength single photon emission, have made QD single photon sources more practical. Here we discuss the applications of single photon sources and their various requirements, before reviewing the progress made on a quantum dot platform in meeting these requirements.

Sonia Buckley; Kelley Rivoire; Jelena Vuckovic

2012-10-03T23:59:59.000Z

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Advanced Photon Source (APS) | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

Syncrotron Light Source (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects...

42

Prototype photon position monitors for undulator beams at the Advanced Light Source  

SciTech Connect (OSTI)

Design criteria are described, and test results are presented, for prototype ALS undulator beam position monitors. The design is based on monitors presently in use at NSLS, with modifications to account for the widely varying and large K values of the undulators to be installed at the ALS. In particular, we have modified the design to simplify the thermal engineering and we have explored techniques to suppress the response of the monitors to soft photons, so that the beam position can be determined by measuring the higher energy photons which are better collimated. 4 refs., 8 figs.

Warwick, T.; Shu, D. (Lawrence Berkeley Lab., CA (United States)); Rodricks, B. (Argonne National Lab., IL (United States)); Johnson, E.D. (Brookhaven National Lab., Upton, NY (United States))

1990-10-17T23:59:59.000Z

43

High-power RF testing of a 352-MHZ fast-ferrite RF cavity tuner at the Advanced Photon Source.  

SciTech Connect (OSTI)

A 352-MHz fast-ferrite rf cavity tuner, manufactured by Advanced Ferrite Technology, was high-power tested on a single-cell copper rf cavity at the Advanced Photon Source. These tests measured the fast-ferrite tuner performance in terms of power handling capability, tuning bandwidth, tuning speed, stability, and rf losses. The test system comprises a single-cell copper rf cavity fitted with two identical coupling loops, one for input rf power and the other for coupling the fast-ferrite tuner to the cavity fields. The fast-ferrite tuner rf circuit consists of a cavity coupling loop, a 6-1/8-inch EIA coaxial line system with directional couplers, and an adjustable 360{sup o} mechanical phase shifter in series with the fast-ferrite tuner. A bipolar DC bias supply, controlled by a low-level rf cavity tuning loop consisting of an rf phase detector and a PID amplifier, is used to provide a variable bias current to the tuner ferrite material to maintain the test cavity at resonance. Losses in the fast-ferrite tuner are calculated from cooling water calorimetry. Test data will be presented.

Horan, D.; Cherbak, E.; Accelerator Systems Division (APS)

2006-01-01T23:59:59.000Z

44

X-ray Diffraction and Multi-Frame Phase Contrast Imaging Diagnostics for IMPULSE at the Advanced Photon Source  

SciTech Connect (OSTI)

The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSE experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.

Iverson, Adam [National Security Technologies, LLC; Carlson, Carl [National Security Technologies, LLC; Young, Jason [National Security Technologies, LLC; Curtis, Alden [National Security Technologies, LLC; Jensen, Brian [Los Alamos National Laboratory; Ramos, Kyle [Los Alamos National Laboratory; Yeager, John [Los Alamos National Laboratory; Montgomery, David [Los Alamos National Laboratory; Fezza, Kamel [Argonne National Laboratory

2013-07-08T23:59:59.000Z

45

7-GeV Advanced Photon Source Instrumentation Initiative conceptual design report  

SciTech Connect (OSTI)

In this APS Instrumentation Initiative, 2.5-m-long and 5-m-long insertion-device x-ray sources will be built on 9 straight sections of the APS storage ring, and an additional 9 bending-magnet sources will also be put in use. The front ends for these 18 x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build state-of-the-art insertion-device beamlines to meet scientific and technological research demands well into the next century. This new initiative will also include four user laboratory modules and a special laboratory designed to meet the x-ray imaging research needs of the users. The Conceptual Design Report (CDR) for the APS Instrumentation Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. According to these plans, this new initiative begins in FY 1994 and ends in FY 1998. The document also describes the preconstruction R D plans for the Instrumentation Initiative activities and provides the cost estimates for the required R D.

Not Available

1992-12-01T23:59:59.000Z

46

7-GeV Advanced Photon Source Instrumentation Initiative conceptual design report  

SciTech Connect (OSTI)

In this APS Instrumentation Initiative, 2.5-m-long and 5-m-long insertion-device x-ray sources will be built on 9 straight sections of the APS storage ring, and an additional 9 bending-magnet sources will also be put in use. The front ends for these 18 x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build state-of-the-art insertion-device beamlines to meet scientific and technological research demands well into the next century. This new initiative will also include four user laboratory modules and a special laboratory designed to meet the x-ray imaging research needs of the users. The Conceptual Design Report (CDR) for the APS Instrumentation Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. According to these plans, this new initiative begins in FY 1994 and ends in FY 1998. The document also describes the preconstruction R&D plans for the Instrumentation Initiative activities and provides the cost estimates for the required R&D.

Not Available

1992-12-01T23:59:59.000Z

47

Design of the commissioning filter/mask/window assembly for undulator beamline front ends at the Advanced Photon Source  

SciTech Connect (OSTI)

A compact filter/mask/window assembly has been designed for undulator beamline commissioning activity at the Advanced Photon Source beamlines. The assembly consists of one 300-{mu}m graphite filter, one 127-{mu}m CVD diamond filter and two 250-{mu}m beryllium windows. A water-cooled Glidcop fixed mask with a 4.5-mm {times} 4.5-mm output optical aperture and a 0.96-mrad {times} 1.6-mrad beam missteering acceptance is a major part in the assembly. The CVD diamond filter which is mounted on the downstream side of the fixed mask is designed to also function as a transmitting x-ray beam position monitor. The sum signal from the latter can be used to monitor the physical condition of the graphite filter and prevent any possible chain reaction damage to the beryllium windows downstream. In this paper, the design concept as well as the detailed structural design of the commissioning window are presented. Further applications of the commissioning window commissioning window components are also discussed.

Shu, D.; Kuzay, T.M.

1995-10-20T23:59:59.000Z

48

The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory  

SciTech Connect (OSTI)

The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube.

NONE

1995-10-01T23:59:59.000Z

49

ADVANCED PHOTON SOURCE Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC  

E-Print Network [OSTI]

activation of cancer cell growth by naturally occurring estrogen in a woman's body. Research at the APS Synchrotron Radiation Lightsource, and the Advanced Light Source, researchers have achieved a significant

Kemner, Ken

50

Committees | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and UserofProtein structureAnalysisDOE-ID

51

Contacts | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov Contacts for E-Gov LeAnnProjectContacts

52

Training | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler Tina ButlerToday inm"TopoTracking LivingTraining

53

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home| Visitors| Education| REU|Archaeal

54

People | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to the PacificCollaboration »People ProfilesAbout the

55

Publications | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNewsCenter for GasNewsnuclear APS Publications

56

About | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects ofAbout Science Education OurUsthe

57

People | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven AshbyDepartment ofGE's Manual Chapter 8.0 -Îł-Al2O3:

58

Divisions | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct:Directives Templates The OfficeDitch

59

Visiting | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlongUpdatesValley winsVideo HistoryVisitingVisiting

60

Welcome | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlender NetAdministration NNSAWelcomeWelcome

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Beamlines | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I. Ben-Zvi, P.2.2 Beamline21 Print21 Print2

62

Brochures | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M.ExtracellularBradburyBrian ToonenBrianBroader NationalH

63

Posters | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design PassivePostdoctoral Opportunities Are you Your Cart (0

64

Overview | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeedingOptimizing I/O performanceOtherOutreach fordefault SignAPS

65

Archives | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mailRadioimmunotherapyArchive ArchiveArchived

66

Photon Source Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheStevenAdministrationPhotometric Variations asPhoton Source

67

Photon Source Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design Passive SolarCenter |Photoinduced electronPhoton Source

68

Photon Source Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design Passive SolarCenter |Photoinduced electronPhotonPhoton

69

advanced neutron source: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSR Microbunching Zhirong Huang and Kwang302 Advanced Photon Source Derivation: KJK Application: ZRH Based on ZRH & KJK Main References SSY (Saldin, Schneidmiller,...

70

advanced neutron sources: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSR Microbunching Zhirong Huang and Kwang302 Advanced Photon Source Derivation: KJK Application: ZRH Based on ZRH & KJK Main References SSY (Saldin, Schneidmiller,...

71

Photon Source Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheStevenAdministrationPhotometric Variations asPhoton

72

Photon Source Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design Passive SolarCenter |Photoinduced electronPhoton

73

Use of the high-energy x-ray microprobe at the Advanced Photon Source to investigate the interactions between metals and bacteria.  

SciTech Connect (OSTI)

Understanding the fate of heavy-metal contaminants in the environment is of fundamental importance in the development and evaluation of effective remediation and sequestration strategies. Among the factors influencing the transport of these contaminants are their chemical separation and the chemical and physical attributes of the surrounding medium. Bacteria and the extracellular material associated with them are thought to play a key role in determining a contaminant's speciation and thus its mobility in the environment. In addition, the microenvironment at and adjacent to actively metabolizing cell surfaces can be significantly different from the bulk environment. Thus, the spatial distribution and chemical separation of contaminants and elements that are key to biological processes must be characterized at micron and submicron resolution in order to understand the microscopic physical, geological, chemical, and biological interfaces that determine a contaminant's macroscopic fate. Hard X-ray microimaging is a powerful technique for the element-specific investigation of complex environmental samples at th needed micron and submicron resolution. An important advantage of this technique results from the large penetration depth of hard X-rays in water. This advantage minimizes the requirements for sample preparation and allows the detailed study of hydrated samples. This paper presents results of studies of the spatial distribution of naturally occurring metals and a heavy-metal contaminant (Cr) in and near hydrated bacteria (Pseudomonas fluorescens) in the early stages of biofilm development, performed at the Advanced Photon Source Sector 2 X-ray microscopy beamline.

Kemner, K. M.; Lai, B.; Maser, J.; Schneegurt, M. A.; Cai, Z.; Ilinski, P. P.; Kulpa, C. F.; Legnini, D. G.; Nealson, K. H.; Pratt, S. T.; Rodrigues, W.; Tischler, M. L.; Yun, W.

1999-09-30T23:59:59.000Z

74

APS Upgrade | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

APS View Larger The brightness and energy of x-ray beams are critical properties for research. Higher brightness means more x-rays can be focused onto a smaller, laser-like spot,...

75

Hazard Classes | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSiteAboutRadioactive

76

Detectors (XSD) | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape, Density, andagingaboutDrizzlethiolOfficer

77

Construction Schedule | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial Validation andPWR MediaHuman

78

Users Meetings | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEMUsedUser Services

79

Video Library | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudha PatriPhotoelectron Spectroscopy ofVictor F.Video

80

Video Library | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudha PatriPhotoelectron Spectroscopy ofVictor

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Proposal Types | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for Plutonium CleanupProposalTeam: D.N. Basov 1

82

Recent Publications | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1PrincipalRareRequirementsRecentScience

83

Linear Accelerator | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011Liisa O'Neill About Us LiisaLin WangLinear

84

APS Upgrade | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|PhysicsGasandArgonneALS inRelated ReportsAPS

85

ASD Groups | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects of GlobalASCR User Facilities UserASD Groups

86

Imaging (XSD) | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasicsScience atIanIgorIlyaBuildingImaging About

87

Beamlines Directory | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground8.0.1 PrintTemperatures Energy:

88

Data Exchange | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases

89

Video Library | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlongUpdatesValley wins 2015MayoXML Bookmark and

90

XSD Groups | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL Home SRNL main campusMoreXRAYOPS -- APSXRootD inXSD

91

Optics (XSD) | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002Optics Group (X-ray Science Division) The mission of the

92

AES Groups | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A FirstEMSLAEMSL341AACEiiRenewablesAES

93

APS News | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies ColoradoTechnical109)Long Range72005News

94

APS Today | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRing Under Maintenance Upcoming Events

95

Media Center | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMissionreal-timeMaRIEMcNary-Dam-hits-the-rewind Sign In

96

Transportation Resources | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II:LIGHT-DUTY

97

Beamlines Directory | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBES ReportsExperimentBasicBeam

98

Booster Synchrotron | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply forBiosurveillance A8^ -inPictureBooster

99

CAT Communicator | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route Segments (notCAMDL20-000 Initial1-000108-000News

100

Spectroscopy (XSD) | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering Facilities5:68MtrCParticles.photoelectron

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Storage Ring | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4American'! ITransportStorageThe Electron

102

Site Map | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)Sharing Smartversatileplatform chemical.

103

Technical Bulletins | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and Innovation » Technical

104

IPAS Institute for Photonics & Advanced Sensing  

E-Print Network [OSTI]

IPAS Institute for Photonics & Advanced Sensing Life Impact | The University of Adelaide Annual Report 2010 #12;Table of Contents 1 Executive Summary 2 IPAS Director's Snapshot 3 Director's Message 4 Chairman's Report 5 2010 Highlights 6 IPAS Launch 7 illumin8 Project ­ IPAS new headquarters 9 IPAS

105

IPAS Institute for Photonics & Advanced Sensing  

E-Print Network [OSTI]

IPAS Institute for Photonics & Advanced Sensing 2011 Annual Report #12;Table of Contents 1 Executive Summary 2 IPAS Director's Snapshot 3 Director's Message 5 Chairman's Report 6 2011 Highlights 7 illumin8 8 IPAS Research & Facilities 9 Research Overview 10 ARC Super Science Fellowships 12 IPAS Pilot

106

Light Source Notes | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs spaceLaser TheLessonsLienertLife ScienceLight

107

Asymmetric Architecture for Heralded Single Photon Sources  

E-Print Network [OSTI]

Single photon source represent a fundamental building block for optical implementations of quantum information tasks ranging from basic tests of quantum physics to quantum communication and high-resolution quantum measurement. In this paper we investigate the performance of a multiplexed system based on asymmetric configuration of multiple heralded single photon sources. {To compare the effectiveness of different designs we introduce a single-photon source performance index that is based on the value of single photon probability required to achieve a guaranteed signal to noise ratio.} The performance and scalability comparison with both currently existing multiple-source architectures and faint laser configurations reveals an advantage the proposed scheme offers in realistic scenarios. This analysis also provides insights on the potential of using such architectures for integrated implementation.

Luca Mazzarella; Francesco Ticozzi; Alexander V. Sergienko; Giuseppe Vallone; Paolo Villoresi

2013-02-15T23:59:59.000Z

108

Photon Statistics of Semiconductor Light Sources.  

E-Print Network [OSTI]

??In recent years, semiconductor light sources have become more and more interesting in terms of applications due to their high efficiency and low cost. Advanced… (more)

Aßmann, Marc

2010-01-01T23:59:59.000Z

109

Lighting affects appearance LightSource emits photons  

E-Print Network [OSTI]

1 Lighting affects appearance #12;2 LightSource emits photons Photons travel in a straight line). And then some reach the eye/camera. #12;3 Basic fact: Light is linear Double intensity of sources, double photons reaching eye. Turn on two lights, and photons reaching eye are same as sum of number when each

Jacobs, David

110

Quantum key distribution with entangled photon sources  

E-Print Network [OSTI]

A parametric down-conversion (PDC) source can be used as either a triggered single photon source or an entangled photon source in quantum key distribution (QKD). The triggering PDC QKD has already been studied in the literature. On the other hand, a model and a post-processing protocol for the entanglement PDC QKD are still missing. In this paper, we fill in this important gap by proposing such a model and a post-processing protocol for the entanglement PDC QKD. Although the PDC model is proposed to study the entanglement-based QKD, we emphasize that our generic model may also be useful for other non-QKD experiments involving a PDC source. Since an entangled PDC source is a basis independent source, we apply Koashi-Preskill's security analysis to the entanglement PDC QKD. We also investigate the entanglement PDC QKD with two-way classical communications. We find that the recurrence scheme increases the key rate and Gottesman-Lo protocol helps tolerate higher channel losses. By simulating a recent 144km open-a...

Ma, X; Lo, H K; Ma, Xiongfeng; Fung, Chi-Hang Fred; Lo, Hoi-Kwong

2007-01-01T23:59:59.000Z

111

Quantum key distribution with entangled photon sources  

E-Print Network [OSTI]

A parametric down-conversion (PDC) source can be used as either a triggered single photon source or an entangled photon source in quantum key distribution (QKD). The triggering PDC QKD has already been studied in the literature. On the other hand, a model and a post-processing protocol for the entanglement PDC QKD are still missing. In this paper, we fill in this important gap by proposing such a model and a post-processing protocol for the entanglement PDC QKD. Although the PDC model is proposed to study the entanglement-based QKD, we emphasize that our generic model may also be useful for other non-QKD experiments involving a PDC source. Since an entangled PDC source is a basis independent source, we apply Koashi-Preskill's security analysis to the entanglement PDC QKD. We also investigate the entanglement PDC QKD with two-way classical communications. We find that the recurrence scheme increases the key rate and Gottesman-Lo protocol helps tolerate higher channel losses. By simulating a recent 144km open-air PDC experiment, we compare three implementations -- entanglement PDC QKD, triggering PDC QKD and coherent state QKD. The simulation result suggests that the entanglement PDC QKD can tolerate higher channel losses than the coherent state QKD. The coherent state QKD with decoy states is able to achieve highest key rate in the low and medium-loss regions. By applying Gottesman-Lo two-way post-processing protocol, the entanglement PDC QKD can tolerate up to 70dB combined channel losses (35dB for each channel) provided that the PDC source is placed in between Alice and Bob. After considering statistical fluctuations, the PDC setup can tolerate up to 53dB channel losses.

Xiongfeng Ma; Chi-Hang Fred Fung; Hoi-Kwong Lo

2007-03-14T23:59:59.000Z

112

Photon Source Parameters | Stanford Synchrotron Radiation Lightsource  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews & Blog » PhotoOxygenPhoton Source

113

Argonne User Facility Agreements | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Institute (N) National Renewable Energy Laboratory (N) National Security Technologies (NSTec) (N) National Taiwan University (N) National Taiwan University of Science and...

114

Handling AES Emergencies | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuided Self-Assembly of GoldHAWCHIGSSiteHamada winsAES

115

Handling ASD Emergencies | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuided Self-Assembly of GoldHAWCHIGSSiteHamada winsAESASD

116

Directions to Argonne | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocation of

117

Conferences, Workshops, Meetings | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositional VariationCluster) |About Us2.1

118

User Facility Training | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEMUsed FuelM07: The HPCFacilitiesSee Also:

119

Resources for Macromolecular Crystallography | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter ApropaneBacteria

120

New User Checklist | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn CyberNeutrons usedDOENew Technique Gives aNew User

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

LOMs and Beamlines | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample Environment: Magnet and6ledp/5826LMLOMs &

122

Lab Safety Captains | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LOSEngineering | Jefferson Lab LabLab

123

APS User Information | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|PhysicsGasandArgonneALS inRelated ReportsAPSUser

124

Safety and Training | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeScience SSRL Science Visit ourSafety is aBeamlines:

125

Science Highlights 2007 | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2)Science Highlight Archives:2 Image of knotted5

126

Science Highlights 2008 | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2)Science Highlight Archives:2 Image of knotted5Finding

127

Science Highlights 2009 | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2)Science Highlight Archives:2 Image of

128

Science Highlights 2010 | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2)Science Highlight Archives:2 Image ofThe Molecular

129

Science Highlights 2011 | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2)Science Highlight Archives:2 Image ofThe

130

Science Highlights 2012 | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2)Science Highlight Archives:2 Image ofTheNew Physics in

131

Science Highlights 2013 | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2)Science Highlight Archives:2 Image ofTheNew Physics

132

Science Highlights 2013 | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2)Science Highlight Archives:2 Image ofTheNew PhysicsTwo

133

Safety Interlocks Group - Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguards and Security Systems5, 2014SafetySafety

134

Accelerator Systems Division (ASD) | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects ofAbout ScienceAboutAccelerationAccelerator

135

Accelerator Systems Division Courses | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects ofAbout

136

Acknowledgment Statement for Publications | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the EffectsAcknowledgment Statement for Publications The

137

7-ID Home Page | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- Decay Evaluated7-ID Home Page

138

President Obama at the Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medicalSecurity Administration CallsDepartment ofVon

139

Required Training for Users | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ESH100U: Argonne National Laboratory User Facility Orientation (2 years) ESH223U: Cybersecurity Annual Education and Awareness (1 year) ESH738, GERT: General Employee Radiation...

140

Industry and the APS | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningtoA Journey Inside the

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Introduction to APS | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for and ApplicationNuclear Workforce Survey

142

How HIV Infects Cells | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortalAllBPA addresses EMF B O NHowPart

143

Imaging Ferroelectric Domains | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. |Endecaheme c-Type|Iltt:ImagingImproved

144

Fishing for Viral RNA | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityField OfficeFirmFirsthexagonalInformation on

145

Experiment Hall & Beamline | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance100 tonusingdeposition.EnergyExpedited6Experiment

146

Experiment Hall Phone Numbers | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial Thin Film XRDEvanExecutiveSRD-13Experiences

147

APCF Construction Schedule | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2AP-XPS Measures MIEC Oxides inAPCF Past

148

APS Floor Coordinators | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2AP-XPSAPS Floor Coordinators APS Floor

149

APS Map | Overview | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2AP-XPSAPS Floor Coordinators5)1-3APS

150

APS News 2007 | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2AP-XPSAPS FloorAlbert Macrander named

151

APS News 2008 | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2AP-XPSAPS FloorAlbert Macrander

152

APS News 2009 | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2AP-XPSAPS FloorAlbert MacranderICALEPCS

153

APS News 2010 | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2AP-XPSAPS FloorAlbert

154

APS News 2011 | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2AP-XPSAPS FloorAlbertMoffat Appointed

155

APS News 2012 | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2AP-XPSAPS FloorAlbertMoffat

156

APS News 2013 | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2AP-XPSAPS FloorAlbertMoffatHarkay of ASD

157

APS News 2013 | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2AP-XPSAPS FloorAlbertMoffatHarkay of

158

HERIX at the Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meeting was called toEnergyForpecu- HEPL»68 a .

159

Handling XSD Emergencies | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meetingand Eric Edlund | Princeton Plasma

160

APS Beamline Questionnaire Form | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies ColoradoTechnical1 NationalC HomeD HomeAPS

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

APS Chainfall Hoist Training | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies ColoradoTechnical1 NationalC HomeDAPS

162

APS Colloquium: Future Speakers | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies ColoradoTechnical1 NationalC5 The73

163

APS Organization Chart | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies ColoradoTechnical109)LongAPS Organization

164

APS Seminars & Meetings | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies ColoradoTechnical109)LongAPSlistAPS

165

APS User News | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRing Under Maintenance Upcoming TheAPS User

166

Insertion Devices & Brilliance | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface Emissivity inFermilabWhich1 Welcome to

167

Materials Physics and Engineering | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90 4.86(NHMFL)X-Ray Science

168

Machine Status and Schedule | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMissionreal-time information TourTour Alcator

169

Calendar of Events | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASL Symposium: CelebratingMission

170

Argonne User Facility Agreements | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2 (CRACApril 22-23, 2011ArgonneArgonne User

171

Science & Research Highlights | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertzonExplore byScience Highlights

172

Composite Battery Boost | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity Involvement andMISR, and4Compliance and

173

Conferences and Workshops | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To report an event that is not listed,

174

Conferences and Workshops | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To report an event that is not listed,09

175

Conferences and Workshops | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To report an event that is not listed,090

176

Conferences and Workshops | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To report an event that is not

177

Conferences and Workshops | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To report an event that is not2 Date

178

Conferences and Workshops | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To report an event that is not2

179

Mission and Goals | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fundProject8 -3EutecticMindingMiraHanford ContractorsMission

180

Superconductivity with Stripes | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline Gallium OxideSumin KimSuperconductingSuperconductivityHow HIV

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Accelerator Operations and Physics - Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building Technologies Office Workshop Working GroupsToggleArgonne

182

All-Hands Meetings | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCHThermal Solar Thermal SolarMassNews2.All-Hands

183

Administrator References and Logins | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre theAdministrator References and Logins User-related

184

Apply for Beam Time | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mailRadioimmunotherapy ofevolvedAppliedApply for Beam Time

185

Argonne Site Access | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDear Friend, Please, markREGISTRATION FORM

186

Advanced Light Source Activity Report 2002  

SciTech Connect (OSTI)

This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori (Editors)

2003-06-12T23:59:59.000Z

187

Advanced Light Source Activity Report 2000  

SciTech Connect (OSTI)

This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

2001-04-01T23:59:59.000Z

188

Fast quantum dot single photon source triggered at telecommunications wavelength  

E-Print Network [OSTI]

We demonstrate a quantum dot single photon source at 900 nm triggered at 300 MHz by a continuous wave telecommunications wavelength laser followed by an electro-optic modulator. The quantum dot is excited by on-chip-generated second harmonic radiation, resonantly enhanced by a GaAs photonic crystal cavity surrounding the InAs quantum dot. Our result suggests a path toward the realization of telecommunications-wavelength-compatible quantum dot single photon sources with speeds exceeding 1 GHz.

Kelley Rivoire; Sonia Buckley; Arka Majumdar; Hyochul Kim; Pierre Petroff; Jelena Vuckovic

2010-12-20T23:59:59.000Z

189

Lighting affects appearance LightSource emits photons  

E-Print Network [OSTI]

1 Lighting affects appearance #12;2 LightSource emits photons Photons travel in a straight line). And then some reach the eye/camera. #12;3 Reflectance Model how objects reflect light. Model light sources Algorithms for computing Shading: computing intensities within polygons Determine what light strikes what

Jacobs, David

190

Advanced Variable Speed Air-Source Integrated Heat Pump 2013...  

Energy Savers [EERE]

Advanced Variable Speed Air-Source Integrated Heat Pump 2013 Peer Review Advanced Variable Speed Air-Source Integrated Heat Pump 2013 Peer Review Emerging Technologies Project for...

191

Advanced Solar Photonics | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:Iowa ASHRAEAddis,Advanced RenewableEnergyInc

192

E-Print Network 3.0 - advanced mcr operators Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computer Technologies and Information Sciences 31 Advanced Photon Source Conduct of Operations Manual Summary: ;TABLE OF CONTENTS x Advanced Photon Source Conduct of...

193

Single Photon Source Using Laser Pulses and Two-Photon Absorption  

E-Print Network [OSTI]

We have previously shown that two-photon absorption (TPA) and the quantum Zeno effect can be used to make deterministic quantum logic devices from an otherwise linear optical system. Here we show that this type of quantum Zeno gate can be used with additional two-photon absorbing media and weak laser pulses to make a heralded single photon source. A source of this kind is expected to have a number of practical advantages that make it well suited for large scale quantum information processing applications.

B. C. Jacobs; T. B. Pittman; J. D. Franson

2006-03-17T23:59:59.000Z

194

Sub-Rayleigh quantum imaging using single-photon sources  

SciTech Connect (OSTI)

We propose a technique capable of imaging a distinct physical object with sub-Rayleigh resolution in an ordinary far-field imaging setup using single-photon sources and linear optical tools only. We exemplify our method for the case of a rectangular aperture and two or four single-photon emitters obtaining a resolution enhanced by a factor of 2 or 4, respectively.

Thiel, C.; Zanthier, J. von [Institut fuer Optik, Information und Photonik, Universitaet Erlangen-Nuernberg, 91058 Erlangen (Germany); Bastin, T. [Institut de Physique Nucleaire, Atomique et de Spectroscopie, Universite de Liege, 4000 Liege (Belgium); Agarwal, G. S. [Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078-3072 (United States)

2009-07-15T23:59:59.000Z

195

Efficient room-temperature source of polarized single photons  

DOE Patents [OSTI]

An efficient technique for producing deterministically polarized single photons uses liquid-crystal hosts of either monomeric or oligomeric/polymeric form to preferentially align the single emitters for maximum excitation efficiency. Deterministic molecular alignment also provides deterministically polarized output photons; using planar-aligned cholesteric liquid crystal hosts as 1-D photonic-band-gap microcavities tunable to the emitter fluorescence band to increase source efficiency, using liquid crystal technology to prevent emitter bleaching. Emitters comprise soluble dyes, inorganic nanocrystals or trivalent rare-earth chelates.

Lukishova, Svetlana G. (Honeoye Falls, NY); Boyd, Robert W. (Rochester, NY); Stroud, Carlos R. (Rochester, NY)

2007-08-07T23:59:59.000Z

196

Advanced Neutron Source (ANS) Project progress report FY 1992  

SciTech Connect (OSTI)

This report discusses project management, research and development, design, and safety at the Advanced Neutron Source facility.

Campbell, J.H. (ed.); Selby, D.L.; Harrington.

1993-01-01T23:59:59.000Z

197

Sandia National Laboratories: Advanced Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguardsEngineersSandia/NewAdvanced Light Source

198

A spintronic source of circularly polarized single photons  

E-Print Network [OSTI]

We present a spintronic single photon source which emits circularly polarized light, where the helicity is determined by an applied magnetic field. Photons are emitted from an InGaAs quantum dot inside an electrically operated spin light-emitting diode, which comprises the diluted magnetic semiconductor ZnMnSe. The circular polarization degree of the emitted light is high, reaching 83% at an applied magnetic field of 2T and 96% at 6 T. Autocorrelation traces recorded in pulsed operation mode prove the emitted light to be antibunched. The two circular polarization states could be used for representing quantum states |0> and |1> in quantum cryptography implementations.

Asshoff, Pablo; Kalt, Heinz; Hetterich, Michael

2011-01-01T23:59:59.000Z

199

Engineering integrated pure narrow-band photon sources  

E-Print Network [OSTI]

Engineering and controlling well defined states of light for quantum information applications is of increasing importance as the complexity of quantum systems grows. For example, in quantum networks high multi-photon interference visibility requires properly devised single mode sources. In this paper we propose a spontaneous parametric down conversion source based on an integrated cavity-waveguide, where single narrow-band, possibly distinct, spectral modes for the idler and the signal fields can be generated. This mode selection takes advantage of the clustering effect, due to the intrinsic dispersion of the nonlinear material. In combination with a CW laser and fast detection, our approach provides a means to engineer a source that can efficiently generate pure photons, without filtering, that is compatible with long distance quantum communication. Furthermore, it is extremely flexible and could easily be adapted to a wide variety of wavelengths and applications.

Enrico Pomarico; Bruno Sanguinetti; Clara I. Osorio; Harald Herrmann; Rob Thew

2011-08-29T23:59:59.000Z

200

Extreme environmental testing of a rugged correlated photon source  

E-Print Network [OSTI]

Experiments in long distance quantum key distribution have motivated the development of ruggedised single photon sources, capable of producing useful correlations even when removed from the warm, nurturing environment found in most optics laboratories. As part of an ongoing pro- gramme to place such devices into low earth orbit (LEO), we have developed and built a number of rugged single photon sources based on spontaneous parametric downconversion. In order to evalu- ate device reliability, we have subjected our design to various thermal, mechanical and atmospheric stresses. Our results show that while such a device may tolerate launch into orbit, operation in orbit and casual mishandling by graduate students, it is probably unable to survive the forcible disassembly of a launch vehicle at the top of a ball of rapidly expanding and oxidising kerosene and liquid oxygen.

Grieve, James A; Ling, Alexander

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

ADVANCES IN MODELING OF GROUND-SOURCE HEAT  

E-Print Network [OSTI]

ADVANCES IN MODELING OF GROUND-SOURCE HEAT PUMP SYSTEMS By ANDREW D. CHIASSON Bachelor of Applied 1999 #12;ii ADVANCES IN MODELING OF GROUND-SOURCE HEAT PUMP SYSTEMS Thesis Approved: Thesis Adviser..............................................................................................................1 1.1. Overview of Ground-Source Heat Pump Systems ..............................................1 1

202

Current status of the Taiwan Photon Source project  

SciTech Connect (OSTI)

The progress of establishment of a high brightness and low emittance mid-energy storage ring is reported. The status of the 3 GeV Taiwan Photon Source (TPS) currently under construction will be presented. The progress on the civil construction, manufacturing of machine components, as well as the opportunity of using low emittace synchrotron source and phase I beamlines at TPS will be mentioned. The future planning of phase II beamlines and related research will be sketched. Future developments will be also briefly outlined.

Chang, Shih-Lin [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, 30076 Taiwan (China)

2014-03-05T23:59:59.000Z

203

Lighting the way to a brighter energy future is a major focus of photon science at the U.S. Department of Energy's  

E-Print Network [OSTI]

at Argonne, including the Advanced Photon Source, the scientists stud- ied the oxide scale that protects

Kemner, Ken

204

Entanglement formation and violation of Bell's inequality with a semiconductor single photon source  

E-Print Network [OSTI]

We report the generation of polarization-entangled photons, using a quantum dot single photon source, linear optics and photodetectors. Two photons created independently are observed to violate Bell's inequality. The density matrix describing the polarization state of the postselected photon pairs is also reconstructed, and agrees well with a simple model predicting the quality of entanglement from the known parameters of the single photon source. Our scheme provides a method to generate no more than one entangled photon pair per cycle, a feature useful to enhance quantum cryptography protocols using entangled photons.

David Fattal; Kyo Inoue; Jelena Vuckovic; Charles Santori; Glenn S. Solomon; Yoshihisa Yamamoto

2003-05-09T23:59:59.000Z

205

Dye-doped cholesteric-liquid-crystal room-temperature single-photon source*  

E-Print Network [OSTI]

Dye-doped cholesteric-liquid-crystal room-temperature single-photon source* SVETLANA G. LUKISHOVAy) increase the source efficiency, firstly, by aligning the dye molecules along the direction preferable output photons), secondly, by tuning the 1-D photonic-band-gap microcavity to the dye fluorescence band

Boyd, Robert W.

206

Temporal Loop Multiplexing: A resource efficient scheme for multiplexed photon-pair sources  

E-Print Network [OSTI]

Single photons are a vital resource for photonic quantum information processing. However, even state-of-the-art single photon sources based on photon-pair generation and heralding detection have only a low probability of delivering a single photon when one is requested. We analyse a scheme that uses a switched fibre delay loop to increase the delivery probability per time bin of single photons from heralded sources. We show that, for realistic experimental parameters, combining the output of up to 15 pulses can yield a performance improvement of a factor of 10. We consider the future performance of this scheme with likely component improvements.

Francis-Jones, Robert J A

2015-01-01T23:59:59.000Z

207

Advanced Research in Diesel Fuel Sprays Using X-rays from the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Research in Diesel Fuel Sprays Using X-rays from the Advanced Photon Source Advanced Research in Diesel Fuel Sprays Using X-rays from the Advanced Photon Source 2003 DEER...

208

A mathematical criterion for single photon sources used in quantum cryptography  

E-Print Network [OSTI]

A single photon source (SPS) is very important for quantum computation. In particular, it is essential for secured quantum cryptography. But there is no perfect SPS in reality. Therefore, probabilistic SPS where probability of simultaneous emission of two, three, four and more photon is less than the emission of a single photon are used. Since classical photon always comes in bunch, the required single photon source must be nonclassical. In the well-known antibunched state the rate of simultaneous emission of two photon is less than that of single photon. But the requirement of quantum cryptography is a multiphoton version of the antibunched state or the higher order antibunched state. Recently we have reported a mathematical criterion for higher order antibunching. Here we have shown that any proposal for SPS to be used in quantum cryptography should satisfy this criterion. We have studied four wave mixing as a possible candidate of single photon source.

Anirban Pathak

2007-05-11T23:59:59.000Z

209

Building the World's Most Advanced Light Source  

SciTech Connect (OSTI)

View this time-lapse video showing construction of the National Synchrotron Light Source II at Brookhaven National Laboratory. Construction is shown from 2009-2012.

None

2012-08-03T23:59:59.000Z

210

New results in atomic physics at the Advanced Light Source  

SciTech Connect (OSTI)

The Advanced Light Source is the world's first low-energy third-generation synchrotron radiation source. It has been running reliably and exceeding design specifications since it began operation in October 1993. It is available to a wide community of researchers in many scientific fields, including atomic and molecular science and chemistry. Here, new results in atomic physics at the Advanced Light Source demonstrate the opportunities available in atomic and molecular physics at this synchrotron light source. The unprecedented brightness allows experiments with high flux, high spectral resolution, and nearly 100% linear polarization.

Schlachter, A.S.

1995-01-01T23:59:59.000Z

211

Improving noise threshold for optical quantum computing with the EPR photon source  

E-Print Network [OSTI]

We show that the noise threshold for optical quantum computing can be significantly improved by using the EPR-type of photon source. In this implementation, the detector efficiency $\\eta_{d}$ is required to be larger than 50%, and the source efficiency $\\eta_{s}$ can be an arbitrarily small positive number. This threshold compares favorably with the implementation using the single-photon source, where one requires the combined efficiency $\\eta_{d}\\eta_{s}>2/3$. We discuss several physical setups for realization of the required EPR photon source, including the photon emitter from a single-atom cavity.

Z. -H. Wei; Y. -J. Han; C. H. OH; L. -M. Duan

2009-12-08T23:59:59.000Z

212

Novel advancements in nanofabrication for photonic crystal applications  

E-Print Network [OSTI]

The progress of large-area 2D- and 3D-photonic crystals (PCs) at optical and near infra-red frequencies has been limited by fabrication challenges. Periodic nanostructures must be patterned in high-index and crystalline ...

Cheong, Lin Lee

2013-01-01T23:59:59.000Z

213

Studies of advanced integrated nano-photonic devices in silicon  

E-Print Network [OSTI]

Electronic-photonic integrated circuits (EPICs) are a promising technology for overcoming bandwidth and power-consumption bottlenecks of traditional integrated circuits. Silicon is a good candidate for building such devices, ...

Dahlem, Marcus

2011-01-01T23:59:59.000Z

214

advanced photon research: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to attend EVERY class, on time, regardless Gallo, Linda C. 85 Photon Physics and Plasma Research, WILGA 2012; EuCARD Sessions CERN Preprints Summary: Wilga Sessions on HEP...

215

advanced thermal analysis: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jaski XFD Division Advanced Photon Source July 2005 Work sponsored by U.S. DEPARTMENT OF ENERGY---...

216

Advanced RF power sources for linacs  

SciTech Connect (OSTI)

In order to maintain a reasonable over-all length at high center-of-mass energy, the main linac of an electron-positron linear collider must operate at a high accelerating gradient. For copper (non-superconducting) accelerator structures, this implies a high peak power per unit length and a high peak power per RF source, assuming a limited number of discrete sources are used. To provide this power, a number of devices are currently under active development or conceptual consideration: conventional klystrons with multi-cavity output structures, gyroklystrons, magnicons, sheet-beam klystrons, multiple-beam klystrons and amplifiers based on the FEL principle. To enhance the peak power produced by an rf source, the SLED rf pulse compression scheme is currently in use on existing linacs, and new compression methods that produce a flatter output pulse are being considered for future linear colliders. This paper covers the present status and future outlook for the more important rf power sources and pulse compression systems. It should be noted that high gradient electron linacs have applications in addition to high-energy linear colliders; they can, for example, serve as compact injectors for FEL`s and storage rings.

Wilson, P.B.

1996-10-01T23:59:59.000Z

217

Ultrafast electrical control of a resonantly driven single photon source  

SciTech Connect (OSTI)

We demonstrate generation of a pulsed stream of electrically triggered single photons in resonance fluorescence, by applying high frequency electrical pulses to a single quantum dot in a p-i-n diode under resonant laser excitation. Single photon emission was verified, with the probability of multiple photon emission reduced to 2.8%. We show that despite the presence of charge noise in the emission spectrum of the dot, resonant excitation acts as a “filter” to generate narrow bandwidth photons.

Cao, Y. [Toshiba Research Europe Limited, Cambridge Research Laboratory, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Controlled Quantum Dynamics Group, Imperial College London, London SW7 2AZ (United Kingdom); Bennett, A. J., E-mail: anthony.bennett@crl.toshiba.co.uk; Ellis, D. J. P.; Shields, A. J. [Toshiba Research Europe Limited, Cambridge Research Laboratory, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

2014-08-04T23:59:59.000Z

218

Next-Generation Photon Sources for Grand Challenges in Science and Energy  

SciTech Connect (OSTI)

The next generation of sustainable energy technologies will revolve around transformational new materials and chemical processes that convert energy efficiently among photons, electrons, and chemical bonds. New materials that tap sunlight, store electricity, or make fuel from splitting water or recycling carbon dioxide will need to be much smarter and more functional than today's commodity-based energy materials. To control and catalyze chemical reactions or to convert a solar photon to an electron requires coordination of multiple steps, each carried out by customized materials and interfaces with designed nanoscale structures. Such advanced materials are not found in nature the way we find fossil fuels; they must be designed and fabricated to exacting standards, using principles revealed by basic science. Success in this endeavor requires probing, and ultimately controlling, the interactions among photons, electrons, and chemical bonds on their natural length and time scales. Control science - the application of knowledge at the frontier of science to control phenomena and create new functionality - realized through the next generation of ultraviolet and X-ray photon sources, has the potential to be transformational for the life sciences and information technology, as well as for sustainable energy. Current synchrotron-based light sources have revolutionized macromolecular crystallography. The insights thus obtained are largely in the domain of static structure. The opportunity is for next generation light sources to extend these insights to the control of dynamic phenomena through ultrafast pump-probe experiments, time-resolved coherent imaging, and high-resolution spectroscopic imaging. Similarly, control of spin and charge degrees of freedom in complex functional materials has the potential not only to reveal the fundamental mechanisms of high-temperature superconductivity, but also to lay the foundation for future generations of information science. This report identifies two aspects of energy science in which next-generation ultraviolet and X-ray light sources will have the deepest and broadest impact: (1) The temporal evolution of electrons, spins, atoms, and chemical reactions, down to the femtosecond time scale. (2) Spectroscopic and structural imaging of nano objects (or nanoscale regions of inhomogeneous materials) with nanometer spatial resolution and ultimate spectral resolution. The dual advances of temporal and spatial resolution promised by fourth-generation light sources ideally match the challenges of control science. Femtosecond time resolution has opened completely new territory where atomic motion can be followed in real time and electronic excitations and decay processes can be followed over time. Coherent imaging with short-wavelength radiation will make it possible to access the nanometer length scale, where intrinsic quantum behavior becomes dominant. Performing spectroscopy on individual nanometer-scale objects rather than on conglomerates will eliminate the blurring of the energy levels induced by particle size and shape distributions and reveal the energetics of single functional units. Energy resolution limited only by the uncertainty relation is enabled by these advances. Current storage-ring-based light sources and their incremental enhancements cannot meet the need for femtosecond time resolution, nanometer spatial resolution, intrinsic energy resolution, full coherence over energy ranges up to hard X-rays, and peak brilliance required to enable the new science outlined in this report. In fact, the new, unexplored territory is so expansive that no single currently imagined light source technology can fulfill the whole potential. Both technological and economic challenges require resolution as we move forward. For example, femtosecond time resolution and high peak brilliance are required for following chemical reactions in real time, but lower peak brilliance and high repetition rate are needed to avoid radiation damage in high-resolution spatial imaging and to avoid space-charge broadenin

None

2009-05-01T23:59:59.000Z

219

Advanced Neutron Source (ANS) Project Progress report, FY 1991  

SciTech Connect (OSTI)

This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

Campbell, J.H. [ed.] [Oak Ridge National Lab., TN (United States); Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., (United States). Engineering Division

1992-01-01T23:59:59.000Z

220

Advanced Neutron Source (ANS) Project Progress report, FY 1991  

SciTech Connect (OSTI)

This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I C Research and Development; Design; and Safety.

Campbell, J.H. (ed.) (Oak Ridge National Lab., TN (United States)); Selby, D.L.; Harrington, R.M. (Oak Ridge National Lab., TN (United States)); Thompson, P.B. (Martin Marietta Energy Systems, Inc., (United States). Engineering Division)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Improving noise threshold for optical quantum computing with the EPR photon source  

SciTech Connect (OSTI)

We show that the noise threshold for optical quantum computing obtained by Varnava et al. [Phys. Rev. Lett. 100, 060502 (2008)] can be significantly improved by replacing the single-photon source with the Einstein-Podolsky-Rosen (EPR) type of photon source. In this implementation, for an EPR source that emits either nothing (a vacuum state) or a perfect EPR state with probability {eta}{sub s}, the detector efficiency {eta}{sub d} is required to be larger than 50% and the source efficiency {eta}{sub s} can be an arbitrarily small positive number. We also present the error threshold for a more general noise model including additional photon absorption and show that the threshold still compares favorably with the previous results. We discuss several physical setups for realization of the required EPR photon source, including a photon emitter in a single-atom cavity.

Wei, Z.-H. [Centre for Quantum Technologies, National University of Singapore, Singapore 117542 (Singapore); Department of Physics and MCTP, University of Michigan, Ann Arbor, Michigan 48109 (United States); Han, Y.-J.; Duan, L.-M. [Department of Physics and MCTP, University of Michigan, Ann Arbor, Michigan 48109 (United States); Oh, C. H. [Centre for Quantum Technologies, National University of Singapore, Singapore 117542 (Singapore)

2010-06-15T23:59:59.000Z

222

Advanced Photon Source Upgrade —Creating a Better Quality of Life  

SciTech Connect (OSTI)

The upgrade will enable ultrafast X-ray pulses that could point the way to more efficient electronics and vehicles.

Linda Young

2012-11-05T23:59:59.000Z

223

Directions to the APS User Office | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocation ofthe APS User Office New users must go directly

224

Catalog of Data Analysis Software | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy,MUSEUM DISPLAYCareers TheEmailCatalog of Data Analysis

225

Chemical and Materials Science (XSD) | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof a blast-resistant navalChemCamSearch Button About

226

Training Courses for Argonne User Facilities | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler Tina ButlerToday inm"TopoTracking Living

227

Transportation Beamline at the Advanced Photon Source | Argonne National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler TinaContact-Information-TransmissionLaboratory

228

2013 Advanced Photon Source Science | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H. I. Park,October 2013

229

27-ID and 35-ID Construction Schedule | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value ofRPT-55983,7 Long Range

230

27-ID and 35-ID Construction Schedule | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value ofRPT-55983,7 Long

231

27-ID and 35-ID Construction Schedule | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value ofRPT-55983,7 Long27-ID

232

A Better Way to Probe Biological Polymorphs | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β- DecayBenew20-Year6 GeneralAAAComposite

233

A Further Understanding of Superconductivity | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β-Research and EducationF O S RAAAANew

234

A Key Target for Diabetes Drugs | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β-Research andA Hollow-IonHybridA

235

A Layered Nanostructure Held Together By DNA | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β-Research andAFishing for Viral RNA

236

A New Family of Quasicrystals | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β-Research andAFishing forAAEIA'sNewA

237

Watching a Protein as it Functions | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition Information Wastethe YearShedding Light

238

Modifying Proteins to Combat Disease | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification and Application of a NewHigher Temperature at

239

Data Management and Retrieval Practices | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files Data Files 1 EIA Best Estimate of Gross

240

The Electronic Origin of Photoinduced Strain | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2Different Impacts ofDepositedofModifying

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Higher Temperature at the Earth's Core | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in theinPlastics -â¤, improved

242

Off-site Lodging (short-term) | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002 Wholesale Power Rate Schedules (base rates) forOdds2

243

Organic Polymers Show Sunny Potential | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002Optics Group (X-ray ScienceMicroflows.coal4.00ReclamationA

244

APS Engineering Support Division (AES) | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies ColoradoTechnical1 NationalC5 The73APSAPS

245

InterCAT Technical Workgroup (TWG) | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land SurfaceVirus-InfectedIntelligent Coatings forIntel®1InterCAT

246

Earth's Core Reveals an Inner Weakness | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutronEnvironmentZIRKLE FRUIT reducesEarly Biogeochemistry MultiscaleHow

247

Animatedly Suspended X-ray Observations | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes Laboratory Site|Andrea LockwoodAndrzej19 12Thin FoilThe

248

Time-Resolved Research (XSD) | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1A:decisional. 1 B O N N E V I L LTime to About

249

Clues about Rheumatoid Arthritis Damage | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVailCloisteredPresence3Science Highlights

250

Cool Muscles: Storing Elastic Energy for Flight | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops01ControllingControlsCool MagneticCool

251

Squeezing Out the Hidden Lives of Electrons | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4 By I. Tudosa,Spreading an

252

Simulating Deep Earthquakes in the Laboratory | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)Sharing Smart GridShiftMethod forA "Sponge" Path to

253

Syndicated Content and Social Bookmarking | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout »LabSustainability AmesSynchrotrons ExploreSyndicated

254

Linear optics schemes for entanglement distribution with realistic single-photon sources  

E-Print Network [OSTI]

We study the operation of linear optics schemes for entanglement distribution based on nonlocal photon subtraction when input states, produced by imperfect single-photon sources, exhibit both vacuum and multiphoton contributions. Two models for realistic photon statistics with radically different properties of the multiphoton "tail" are considered. The first model assumes occasional emission of double photons and linear attenuation, while the second one is motivated by heralded sources utilizing spontaneous parametric down-conversion. We find conditions for the photon statistics that guarantee generation of entanglement in the relevant qubit subspaces and compare it with classicality criteria. We also quantify the amount of entanglement that can be produced with imperfect single-photon sources, optimized over setup parameters, using as a measure entanglement of formation. Finally, we discuss verification of the generated entanglement by testing Bell's inequalities. The analysis is carried out for two schemes. The first one is the well-established one-photon scheme, which produces a photon in a delocalized superposition state between two nodes, each of them fed with one single photon at the input. As the second scheme, we introduce and analyze a linear-optics analog of the robust scheme based on interfering two Stokes photons emitted by atomic ensembles, which does not require phase stability between the nodes.

Miko?aj Lasota; Czes?aw Radzewicz; Konrad Banaszek; Rob Thew

2014-09-24T23:59:59.000Z

255

Advanced radioisotope power source options for Pluto Express  

SciTech Connect (OSTI)

In the drive to reduce mass and cost, Pluto Express is investigating using an advanced power conversion technology in a small Radioisotope Power Source (RPS) to deliver the required mission power of 74 W(electric) at end of mission. Until this year the baseline power source under consideration has been a Radioisotope Thermoelectric Generator (RTG). This RTG would be a scaled down GPHS RTG with an inventory of 6 General Purpose Heat Sources (GPHS) and a mass of 17.8 kg. High efficiency, advanced technology conversion options are being examined to lower the power source mass and to reduce the amount of radioisotope needed. Three technologies are being considered as the advanced converter technology: the Alkali Metal Thermal-to-Electric Converter (AMTEC), Thermophotovoltaic (TPV) converters, and Stirling Engines. Conceptual designs for each of these options have been prepared. Each converter would require only 2 GPHSs to provide the mission power and would have a mass of 6.1, 7.2, and 12.4 kg for AMTEC, TPV, and Stirling Engines respectively. This paper reviews the status of each technology and the projected performance of an advanced RPS based on each technology. Based on the projected performance and spacecraft integration issues, Pluto Express would prefer to use the AMTEC based RPS. However, in addition to technical performance, selection of a power technology will be based on many other factors.

Underwood, M.L. [California Inst. of Technology, Pasadena, CA (United States). Jet Propulsion Lab.

1995-12-31T23:59:59.000Z

256

Advanced Light Source Activity Report 1997/1998  

SciTech Connect (OSTI)

This Lawrence Berkeley National Laboratory, Advanced Light Source (ALS) activity report for 1997/98 discusses the following topics: Introduction and Overview; Science Highlights; Facility Report; Special Events; ALS Advisory Panels 1997/98; ALS Staff 1997/98 and Facts and Figures for the year.

Greiner, Annette (ed.)

1999-03-01T23:59:59.000Z

257

Noise source identification techniques: simple to advanced applications  

E-Print Network [OSTI]

required. Practical application examples ranging from hearing aids to wind turbines are presented to optimise the noise emission from a wide range of products including vehicles, household goods and windNoise source identification techniques: simple to advanced applications K.B. Ginn and K. Haddad Br

Paris-Sud XI, Université de

258

Advanced Neutrino Sources (Neutrino Factories and Beta Beams)  

E-Print Network [OSTI]

Advanced Neutrino Sources (Neutrino Factories and Beta Beams) · Design · R&D Status · Remaining R Meeting February, 2008 page 1 #12;· The stored beam properties & decay kinematics are well known uncertainties on neutrino flux & spectra are small PRECISION · Initial beams are flavor "pure" (BB) or "tagged

259

ADVANCED LIGHT SOURCE DIVISION FY2008 SELF-ASSESSMENT REPORT  

E-Print Network [OSTI]

....................................................................3 E4. Division participates in pollution prevention, energy conservation, recycling, and wasteADVANCED LIGHT SOURCE DIVISION FY2008 SELF-ASSESSMENT REPORT November 7, 2008 Prepared by to confined space, energized electrical work); waste management criteria (SAAs, waste sampling, NCARs

Knowles, David William

260

Room temperature triggered single-photon source in the near infrared  

E-Print Network [OSTI]

We report the realization of a solid-state triggered single-photon source with narrow emission in the near infrared at room temperature. It is based on the photoluminescence of a single nickel-nitrogen NE8 colour centre in a chemical vapour deposited diamond nanocrystal. Stable single-photon emission has been observed in the photoluminescence under both continuous-wave and pulsed excitations. The realization of this source represents a step forward in the application of diamond-based single-photon sources to Quantum Key Distribution (QKD) under practical operating conditions.

E. Wu; James Rabeau; Gérard Roger; François Treussart; Heping Zeng; Philippe Grangier; Steven Prawer; Jean-François Roch

2007-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

EK 131/132 Photonics Engineering with light Photonics is used in advanced technology as well as everyday familiar objects. This 6 week freshman  

E-Print Network [OSTI]

EK 131/132 Photonics ­ Engineering with light Photonics is used in advanced technology as well: golden rule, follower, non-inverting amplifier, inverting amplifier Optoelectronics: Band gap, Optical: Using breadboards, oscilloscope, voltmeter, function generator, using op-amps, reading C and R, Reading

262

Localization of gravitational wave sources with networks of advanced detectors  

SciTech Connect (OSTI)

Coincident observations with gravitational wave (GW) detectors and other astronomical instruments are among the main objectives of the experiments with the network of LIGO, Virgo, and GEO detectors. They will become a necessary part of the future GW astronomy as the next generation of advanced detectors comes online. The success of such joint observations directly depends on the source localization capabilities of the GW detectors. In this paper we present studies of the sky localization of transient GW sources with the future advanced detector networks and describe their fundamental properties. By reconstructing sky coordinates of ad hoc signals injected into simulated detector noise, we study the accuracy of the source localization and its dependence on the strength of injected signals, waveforms, and network configurations.

Klimenko, S.; Mitselmakher, G.; Pankow, C. [University of Florida, P.O. Box 118440, Gainesville, Florida, 32611 (United States); Vedovato, G. [INFN, Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Drago, M.; Prodi, G. [University of Trento, Physics Department and INFN, Gruppo Collegato di Trento, via Sommarive 14, 38123 Povo, Trento (Italy); Mazzolo, G.; Salemi, F. [Max Planck Institut fuer Gravitationsphysik, Callinstrasse 38, 30167 Hannover and Leibniz Universitaet Hannover, Hannover (Germany); Re, V. [INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Yakushin, I. [LIGO Livingston Observatory, Louisiana (United States)

2011-05-15T23:59:59.000Z

263

E-Print Network 3.0 - advanced magnetic resonance Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(Namikawa, 1985; Gibbs, 1988) channels. These include studies... weak, synchrotron radiation brightness, together with resonant ... Source: Haskel, Daniel - Advanced Photon...

264

Beetlejuice! Secrets of beetle sprays unlocked at the Advanced Photon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBES ReportsExperimentBasicBeamBecoming anSource

265

Antibody Evolution Could Guide HIV Vaccine Development | Advanced Photon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes Laboratory Site|Andrea4»AnotherSource Blue

266

Shedding Light on Chemistry with a Biological Twist | Advanced Photon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)Sharing Smart Grid Experiences throughand InfraredSource

267

BNL ACTIVITIES IN ADVANCED NEUTRON SOURCE DEVELOPMENT: PAST AND PRESENT  

SciTech Connect (OSTI)

Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In the sections below the authors discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

HASTINGS,J.B.; LUDEWIG,H.; MONTANEZ,P.; TODOSOW,M.; SMITH,G.C.; LARESE,J.Z.

1998-06-14T23:59:59.000Z

268

BNL Activities in Advanced Neutron Source Development: Past and Present  

SciTech Connect (OSTI)

Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In this report we discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

Hastings, J.B.; Ludewig, H.; Montanez, P.; Todosow, M.; Smith, G.C.; Larese, J.Z.

1998-06-14T23:59:59.000Z

269

Advances in InGaAs/InP single-photon detector systems for quantum communication  

E-Print Network [OSTI]

Single-photon detectors (SPDs) are the most sensitive instruments for light detection. In the near-infrared range, SPDs based on III-V compound semiconductor avalanche photodiodes have been extensively used during the past two decades for diverse applications due to their advantages in practicality including small size, low cost and easy operation. In the past decade, the rapid developments and increasing demands in quantum information science have served as key drivers to improve the device performance of single-photon avalanche diodes and to invent new avalanche quenching techniques. This Review aims to introduce the technology advances of InGaAs/InP single-photon detector systems in the telecom wavelengths and the relevant quantum communication applications, and particularly to highlight recent emerging techniques such as high-frequency gating at GHz rates and free-running operation using negative-feedback avalanche diodes. Future perspectives of both the devices and quenching techniques are summarized.

Zhang, Jun; Zbinden, Hugo; Pan, Jian-Wei

2015-01-01T23:59:59.000Z

270

Advances in InGaAs/InP single-photon detector systems for quantum communication  

E-Print Network [OSTI]

Single-photon detectors (SPDs) are the most sensitive instruments for light detection. In the near-infrared range, SPDs based on III-V compound semiconductor avalanche photodiodes have been extensively used during the past two decades for diverse applications due to their advantages in practicality including small size, low cost and easy operation. In the past decade, the rapid developments and increasing demands in quantum information science have served as key drivers to improve the device performance of single-photon avalanche diodes and to invent new avalanche quenching techniques. This Review aims to introduce the technology advances of InGaAs/InP single-photon detector systems in the telecom wavelengths and the relevant quantum communication applications, and particularly to highlight recent emerging techniques such as high-frequency gating at GHz rates and free-running operation using negative-feedback avalanche diodes. Future perspectives of both the devices and quenching techniques are summarized.

Jun Zhang; Mark A. Itzler; Hugo Zbinden; Jian-Wei Pan

2015-01-26T23:59:59.000Z

271

On-chip single photon sources based on quantum dots in photonic crystal structures  

E-Print Network [OSTI]

of this dissertation have appeared or will appear in form of the following journal articles and contributed talks at international conferences. Articles A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields. “On... -chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide.” Applied Physics Letters 99, 261108 (2011). A. Schwagmann, S. Kalliakos, D. J. P. Ellis, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie...

Schwagmann, Andre

2013-02-05T23:59:59.000Z

272

High-Efficiency Nitride-Based Photonic Crystal Light Sources  

Broader source: Energy.gov [DOE]

The University of California Santa Barbara (UCSB) is maximizing the efficiency of a white LED by enhancing the external quantum efficiency using photonic crystals to extract light that would normally be confined in a conventional structure. Ultimate efficiency can only be achieved by looking at the internal structure of light. To do this, UCSB is focusing on maximizing the light extraction efficiency and total light output from light engines driven by Gallium Nitride (GaN)-based LEDs. The challenge is to engineer large overlap (interaction) between modes and photonic crystals. The project is focused on achieving high extraction efficiency in LEDs, controlled directionality of emitted light, integrated design of vertical device structure, and nanoscale patterning of lateral structure.

273

Experimental filtering of two-, four-, and six-photon singlets from single PDC source  

E-Print Network [OSTI]

Invariant entangled states remain unchanged under simultaneous identical unitary transformations of all their subsystems. We experimentally generate and characterize such invariant two-, four-, and six-photon polarization entangled states. This is done only with a suitable filtering procedure of multiple emissions of entangled photon pairs from a single source, without any interferometric overlaps. We get the desired states utilizing bosonic emission enhancement due to indistinguishability. The setup is very stable, and gives high interference contrasts. Thus, the process is a very likely candidate for various photonic demonstrations of quantum information protocols.

Radmark, Magnus; Zukowski, Marek; Bourennane, Mohamed

2009-01-01T23:59:59.000Z

274

Experimental filtering of two-, four-, and six-photon singlets from single PDC source  

E-Print Network [OSTI]

Invariant entangled states remain unchanged under simultaneous identical unitary transformations of all their subsystems. We experimentally generate and characterize such invariant two-, four-, and six-photon polarization entangled states. This is done only with a suitable filtering procedure of multiple emissions of entangled photon pairs from a single source, without any interferometric overlaps. We get the desired states utilizing bosonic emission enhancement due to indistinguishability. The setup is very stable, and gives high interference contrasts. Thus, the process is a very likely candidate for various photonic demonstrations of quantum information protocols.

Magnus Radmark; Marcin Wiesniak; Marek Zukowski; Mohamed Bourennane

2009-03-13T23:59:59.000Z

275

Inverse free electron laser accelerator for advanced light sources  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We discuss the inverse free electron laser (IFEL) scheme as a compact high gradient accelerator solution for driving advanced light sources such as a soft x-ray free electron laser amplifier or an inverse Compton scattering based gamma-ray source. In particular, we present a series of new developments aimed at improving the design of future IFEL accelerators. These include a new procedure to optimize the choice of the undulator tapering, a new concept for prebunching which greatly improves the fraction of trapped particles and the final energy spread, and a self-consistent study of beam loading effects which leads to an energy-efficient high laser-to-beam power conversion.

Duris, J. P.; Musumeci, P.; Li, R. K.

2012-06-01T23:59:59.000Z

276

New chicane magnet design for insertion device straights at the Advanced Light Source  

SciTech Connect (OSTI)

A chicane magnet incorporating counter-rotating permanent magnet pairs together with trim coils has been designed for use in the Advanced Light Source (ALS) straights in conjunction with two insertion devices. In particular, this design is being developed for use in the existing beam line (BL) 4 elliptically polarizing undulator (EPU) straight and in the BL11 EPU straight, currently under design and construction. The purpose of the chicane is to provide a fixed angular separation between two successive EPU photon fans, and to correct steering perturbations resulting from EPU polarization state changes. Polarization changes occur on the time scale of one second; associated steering corrections must be accomplished in less than a second. Hysteresis associated with conventional iron core electromagnets prevents fast steering correction to the required precision. This consideration motivated the iron-free design presented here.

Marks, Steve; Schlueter, Ross; Anderson, David; Gath, William; Jung, Jin-Young; Robin, David; Steier, Christoph; Stevens, Troy

2001-12-10T23:59:59.000Z

277

Refrigeration options for the Advanced Light Source Superbend Dipole Magnets  

E-Print Network [OSTI]

The photon energy in selected ports can be increased byenergy is 1.9 GeV. These photons can be delivered to users through forty-eight ports

Green, M.A.

2011-01-01T23:59:59.000Z

278

Measurement of Coupling PDC photon sources with single-mode and multimode optical fibers  

E-Print Network [OSTI]

Measurement of Coupling PDC photon sources with single-mode and multimode optical fibers Stefania the coupling efficiency of parametric downconversion light (PDC) into single and multi-mode optical fibers models for the preparation and collection of either single-mode or multi-mode PDC light (defined by

Hart, Gus

279

Advanced Neutron Source Reactor thermal analysis of fuel plate defects  

SciTech Connect (OSTI)

The Advanced Neutron Source Reactor (ANSR) is a research reactor designed to provide the highest continuous neutron beam intensity of any reactor in the world. The present technology for determining safe operations were developed for the High Flux Isotope Reactor (HFIR). These techniques are conservative and provide confidence in the safe operation of HFIR. However, the more intense requirements of ANSR necessitate the development of more accurate, but still conservative, techniques. This report details the development of a Local Analysis Technique (LAT) that provides an appropriate approach. Application of the LAT to two ANSR core designs are presented. New theories of the thermal and nuclear behavior of the U{sub 3}Si{sub 2} fuel are utilized. The implications of lower fuel enrichment and of modifying the inspection procedures are also discussed. Development of the computer codes that enable the automate execution of the LAT is included.

Giles, G.E.

1995-08-01T23:59:59.000Z

280

Advanced Neutron Source (ANS) Project progress report, FY 1994  

SciTech Connect (OSTI)

The President`s budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met.

Campbell, J.H.; King-Jones, K.H. [eds.; Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Central Engineering Services

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

High-Efficiency Nitride-Base Photonic Crystal Light Sources  

SciTech Connect (OSTI)

The research activities performed in the framework of this project represent a major breakthrough in the demonstration of Photonic Crystals (PhC) as a competitive technology for LEDs with high light extraction efficiency. The goals of the project were to explore the viable approaches to manufacturability of PhC LEDS through proven standard industrial processes, establish the limits of light extraction by various concepts of PhC LEDs, and determine the possible advantages of PhC LEDs over current and forthcoming LED extraction concepts. We have developed three very different geometries for PhC light extraction in LEDs. In addition, we have demonstrated reliable methods for their in-depth analysis allowing the extraction of important parameters such as light extraction efficiency, modal extraction length, directionality, internal and external quantum efficiency. The information gained allows better understanding of the physical processes and the effect of the design parameters on the light directionality and extraction efficiency. As a result, we produced LEDs with controllable emission directionality and a state of the art extraction efficiency that goes up to 94%. Those devices are based on embedded air-gap PhC - a novel technology concept developed in the framework of this project. They rely on a simple and planar fabrication process that is very interesting for industrial implementation due to its robustness and scalability. In fact, besides the additional patterning and regrowth steps, the process is identical as that for standard industrially used p-side-up LEDs. The final devices exhibit the same good electrical characteristics and high process yield as a series of test standard LEDs obtained in comparable conditions. Finally, the technology of embedded air-gap patterns (PhC) has significant potential in other related fields such as: increasing the optical mode interaction with the active region in semiconductor lasers; increasing the coupling of the incident light into the active region of solar cells; increasing the efficiency of the phosphorous light conversion in white light LEDs etc. In addition to the technology of embedded PhC LEDs, we demonstrate a technique for improvement of the light extraction and emission directionality for existing flip-chip microcavity (thin) LEDs by introducing PhC grating into the top n-contact. Although, the performances of these devices in terms of increase of the extraction efficiency are not significantly superior compared to those obtained by other techniques like surface roughening, the use of PhC offers some significant advantages such as improved and controllable emission directionality and a process that is directly applicable to any material system. The PhC microcavity LEDs have also potential for industrial implementation as the fabrication process has only minor differences to that already used for flip-chip thin LEDs. Finally, we have demonstrated that achieving good electrical properties and high fabrication yield for these devices is straightforward.

James Speck; Evelyn Hu; Claude Weisbuch; Yong-Seok Choi; Kelly McGroddy; Gregor Koblmuller; Elison Matioli; Elizabeth Rangel; Fabian Rol; Dobri Simeonov

2010-01-31T23:59:59.000Z

282

Deterministic source of a train of indistinguishable single-photon pulses with single-atom-cavity system  

E-Print Network [OSTI]

We present a mechanism to produce indistinguishable single-photon pulses on demand from an optical cavity. The sequences of two laser pulses generate, at the two Raman transitions of a four-level atom, the same cavity-mode photons without repumping of the atom between photon generations. Photons are emitted from the cavity with near-unit efficiency in well-defined temporal modes of identical shapes controlled by the laser fields. The second order correlation function reveals the single-photon nature of the proposed source. A realistic setup for the experimental implementation is presented.

A. Gogyan; S. Guérin; H. -R. Jauslin; Yu. Malakyan

2010-05-01T23:59:59.000Z

283

Advanced neutron source reactor probabilistic flow blockage assessment  

SciTech Connect (OSTI)

The Phase I Level I Probabilistic Risk Assessment (PRA) of the conceptual design of the Advanced Neutron Source (ANS) Reactor identified core flow blockage as the most likely internal event leading to fuel damage. The flow blockage event frequency used in the original ANS PRA was based primarily on the flow blockage work done for the High Flux Isotope Reactor (HFIR) PRA. This report examines potential flow blockage scenarios and calculates an estimate of the likelihood of debris-induced fuel damage. The bulk of the report is based specifically on the conceptual design of ANS with a 93%-enriched, two-element core; insights to the impact of the proposed three-element core are examined in Sect. 5. In addition to providing a probability (uncertainty) distribution for the likelihood of core flow blockage, this ongoing effort will serve to indicate potential areas of concern to be focused on in the preliminary design for elimination or mitigation. It will also serve as a loose-parts management tool.

Ramsey, C.T.

1995-08-01T23:59:59.000Z

284

Fuel qualification plan for the Advanced Neutron Source Reactor  

SciTech Connect (OSTI)

This report describes the development and qualification plan for the fuel for the Advanced Neutron Source. The reference fuel is U{sub 3}Si{sub 2}, dispersed in aluminum and clad in 6061 aluminum. This report was prepared in May 1994, at which time the reference design was for a two-element core containing highly enriched uranium (93% {sup 235}U) . The reactor was in the process of being redesigned to accommodate lowered uranium enrichment and became a three-element core containing a higher volume fraction of uranium enriched to 50% {sup 235}U. Consequently, this report was not issued at that time and would have been revised to reflect the possibly different requirements of the lower-enrichment, higher-volume fraction fuel. Because the reactor is now being canceled, this unrevised report is being issued for archival purposes. The report describes the fabrication and inspection development plan, the irradiation tests and performance modeling to qualify performance, the transient testing that is part of the safety program, and the interactions and interfaces of the fuel development with other tasks.

Copeland, G.L.

1995-07-01T23:59:59.000Z

285

Fabrication development for the Advanced Neutron Source Reactor  

SciTech Connect (OSTI)

This report presents the fuel fabrication development for the Advanced Neutron Source (ANS) reactor. The fuel element is similar to that successfully fabricated and used in the High Flux Isotope Reactor (HFIR) for many years, but there are two significant differences that require some development. The fuel compound is U{sub 3}Si{sub 2} rather than U{sub 3}O{sub 8}, and the fuel is graded in the axial as well as the radial direction. Both of these changes can be accomplished with a straightforward extension of the HFIR technology. The ANS also requires some improvements in inspection technology and somewhat more stringent acceptance criteria. Early indications were that the fuel fabrication and inspection technology would produce a reactor core meeting the requirements of the ANS for the low volume fraction loadings needed for the highly enriched uranium design (up to 1.7 Mg U/m{sup 3}). Near the end of the development work, higher volume fractions were fabricated that would be required for a lower- enrichment uranium core. Again, results look encouraging for loadings up to {approx}3.5 Mg U/m{sup 3}; however, much less evaluation was done for the higher loadings.

Pace, B.W. [Babcock and Wilcox, Lynchburg, VA (United States); Copeland, G.L. [Oak Ridge National Lab., TN (United States)

1995-08-01T23:59:59.000Z

286

Water cooled metal optics for the Advanced Light Source  

SciTech Connect (OSTI)

The program for providing water cooled metal optics for the Advanced Light Source at Berkeley is reviewed with respect to fabrication and metrology of the surfaces. Materials choices, surface figure and smoothness specifications, and metrology systems for measuring the plated metal surfaces are discussed. Results from prototype mirrors and grating blanks will be presented, which show exceptionally low microroughness and mid-period error. We will briefly describe out improved version of the Long Trace Profiler, and its importance to out metrology program. We have completely redesigned the mechanical, optical and computational parts of the profiler system with the cooperation of Peter Takacs of Brookhaven, Continental Optical, and Baker Manufacturing. Most important is that one of our profilers is in use at the vendor to allow testing during fabrication. Metrology from the first water cooled mirror for an ALS beamline is presented as an example. The preplating processing and grinding and polishing were done by Tucson Optical. We will show significantly better surface microroughness on electroless nickel, over large areas, than has been reported previously.

McKinney, W.R.; Irick, S.C. [Lawrence Berkeley Lab., CA (United States); Lunt, D.L.J. [Tucson Optical Research Corp., AZ (United States)

1991-10-28T23:59:59.000Z

287

Electroluminescence from isolated defects in zinc oxide, towards electrically triggered single photon sources at room temperature  

E-Print Network [OSTI]

Single photon sources are required for a wide range of applications in quantum information science, quantum cryptography and quantum communications. However, so far majority of room temperature emitters are only excited optically, which limits their proper integration into scalable devices. In this work, we overcome this limitation and present room temperature electrically triggered light emission from localized defects in zinc oxide (ZnO) nanoparticles and thin films. The devices emit at the red spectral range and show excellent rectifying behavior. The emission is stable over an extensive period of time, providing an important prerequisite for practical devices. Our results open up possibilities to build new ZnO based quantum integrated devices that incorporate solid-state single photon sources for quantum information technologies.

Choi, Sumin; Gentle, Angus; Ton-That, Cuong; Phillips, Matthew R; Aharonovich, Igor

2015-01-01T23:59:59.000Z

288

Identification of extragalactic sources of the highest energy EGRET photons by correlation analysis  

E-Print Network [OSTI]

We found significant correlations between the arrival directions of the highest energy photons (E>10 GeV) observed by EGRET and positions of the BL Lac type objects (BL Lacs). The observed correlations imply that not less than three per cent of extragalactic photons at these energies originate from BL Lacs. Some of the correlating BL Lacs have no counterparts in the EGRET source catalog, i.e. do not coincide with strong emitters of gamma-rays at lower energy. The study of correlating BL Lacs suggests that they may form a subset which is statistically different from the total BL Lac catalog; we argue that they are prominent candidates for TeV gamma-ray sources. Our results demonstrate that the analysis of positional correlations is a powerful approach indispensable in cases when low statistics limits or even prohibits the standard case-by-case identification.

D. S. Gorbunov; P. G. Tinyakov; I. I. Tkachev; S. V. Troitsky

2005-05-30T23:59:59.000Z

289

DYNAMIC STRESS FIELD OF ADVANCED KINEMATIC SOURCE J. Burjanek and J. Zahradnik  

E-Print Network [OSTI]

DYNAMIC STRESS FIELD OF ADVANCED KINEMATIC SOURCE MODELS J. Burj´anek and J. Zahradn´ik Department@karel.troja.mff.cuni.cz / fax: +420-2-21912555 Recently, advanced theoretical kinematic source models have been developed, since wave field which follows widely accepted omega-squared model. As these models are purely kine- matic

Cerveny, Vlastislav

290

Advanced Neutron Source reactor control and plant protection systems design  

SciTech Connect (OSTI)

This paper describes the reactor control and plant protection systems' conceptual design of the Advanced Neutron Source (ANS). The Plant Instrumentation, Control, and Data Systems and the Reactor Instrumentation and Control System of the ANS are planned as an integrated digital system with a hierarchical, distributed control structure of qualified redundant subsystems and a hybrid digital/analog protection system to achieve the necessary fast response for critical parameters. Data networks transfer information between systems for control, display, and recording. Protection is accomplished by the rapid insertion of negative reactivity with control rods or other reactivity mechanisms to shut down the fission process and reduce heat generation in the fuel. The shutdown system is designed for high functional reliability by use of conservative design features and a high degree of redundance and independence to guard against single failures. Two independent reactivity control systems of different design principles are provided, and each system has multiple independent rods or subsystems to provide appropriate margin for malfunctions such as stuck rods or other single failures. Each system is capable of maintaining the reactor in a cold shutdown condition independently of the functioning of the other system. A highly reliable, redundant channel control system is used not only to achieve high availability of the reactor, but also to reduce challenges to the protection system by maintaining important plant parameters within appropriate limits. The control system has a number of contingency features to maintain acceptable, off-normal conditions in spite of limited control or plant component failures thereby further reducing protection system challenges.

Anderson, J.L.; Battle, R.E.; March-Leuba, J. (Oak Ridge National Lab., TN (United States)); Khayat, M.I. (Tennessee Univ., Knoxville, TN (United States))

1992-01-01T23:59:59.000Z

291

Measurement of Coupling PDC photon sources with single-mode and multimode optical fibers  

E-Print Network [OSTI]

We investigate the coupling efficiency of parametric downconversion light (PDC) into single and multi-mode optical fibers as a function of the pump beam diameter, crystal length and walk-off. We outline two different theoretical models for the preparation and collection of either single-mode or multi-mode PDC light (defined by, for instance, multi-mode fibers or apertures, corresponding to bucket detection). Moreover, we define the mode-matching collection efficiency, important for realizing a single-photon source based on PDC output into a well-defined single spatial mode. We also define a multimode collection efficiency that is useful for single-photon detector calibration applications.

Stefania Castelletto; Ivo Pietro Degiovanni; Alan Migdall; Valentina Schettini; Michael Ware

2004-08-03T23:59:59.000Z

292

Measurement of Coupling PDC photon sources with single-mode and multimode optical fibers  

E-Print Network [OSTI]

We investigate the coupling efficiency of parametric downconversion light (PDC) into single and multi-mode optical fibers as a function of the pump beam diameter, crystal length and walk-off. We outline two different theoretical models for the preparation and collection of either single-mode or multi-mode PDC light (defined by, for instance, multi-mode fibers or apertures, corresponding to bucket detection). Moreover, we define the mode-matching collection efficiency, important for realizing a single-photon source based on PDC output into a well-defined single spatial mode. We also define a multimode collection efficiency that is useful for single-photon detector calibration applications.

Castelletto, S; Migdal, A; Schettini, V; Ware, M; Castelletto, Stefania; Degiovanni, Ivo Pietro; Migdall, Alan; Schettini, Valentina; Ware, Michael

2004-01-01T23:59:59.000Z

293

High-brightness single photon source from a quantum dot in a directional-emission nanocavity  

E-Print Network [OSTI]

We analyze a single photon source consisting of an InAs quantum dot coupled to a directional-emission photonic crystal (PC) cavity implemented in GaAs. On resonance, the dot's lifetime is reduced by more than 10 times, to 45ps. Compared to the standard three-hole defect cavity, the perturbed PC cavity design improves the collection efficiency into an objective lens (NA=0.75) by factor 6, and improves the coupling efficiency of the collected light into a single mode fiber by factor 1.9. The emission frequency is determined by the cavity mode, which is antibunched to g(2)=0.05. The cavity design also enables efficient coupling to a higher-order cavity mode for local optical excitation of cavity-coupled quantum dots.

Mitsuru Toishi; Dirk Englund; Andrei Faraon; Jelena Vuckovic

2009-04-08T23:59:59.000Z

294

Extractors for LowWeight A#ne Sources Institute for Advanced Study  

E-Print Network [OSTI]

to solve this problem. These are functions that are easy to invert given the en­ tire output, but very hardExtractors for Low­Weight A#ne Sources Anup Rao # Institute for Advanced Study arao . An extractor for entropy k a#ne sources is a function A#Ext : F n # {0, 1} m such that for any such source X

Anderson, Richard

295

Proceedings of the 10th meeting of the international collaboration on advanced neutron sources  

SciTech Connect (OSTI)

This report contains papers from the 10th meeting of the International Collaboration on Advanced Neutron Sources. Two general types of workshops are discussed, instrument and target-station. Individual papers are indexed separately elsewhere. (LSP)

Hyer, D.K. (comp. and ed.)

1989-03-01T23:59:59.000Z

296

advanced light source: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

detectors. A 2.5 m diameter light source illuminated by an ultra--violet light emitting diode is calibrated with an overall uncertainty of 2.1 % at a wavelength of 365 nm....

297

Instrumentation and Beam Dynamics Study of Advanced Electron-Photon Facility in Indiana University  

SciTech Connect (OSTI)

The Advanced eLectron-PHoton fAcility (ALPHA) is a compact electron accelerator under construction and being commissioned at the Indiana University Center for Exploration of Energy and Matter (CEEM). In this thesis, we have studied the refurbished Cooler Injector Synchrotron (CIS) RF cavity using both the transmission line model and SUPERFISH simulation. Both low power and high power RF measurements have been carried out to characterize the cavity. Considering the performance limit of ferrite, we have designed a new ferrite loaded, co-axial quarter wave like cavity with similar structure but a more suitable ferrite material. We have also designed a traveling wave stripline kicker for fast extraction by POISSON and Microwave Studio. The strips geometry is trimmed to maximize the uniformity of the kicking field and match the impedance of the power cables. The time response simulation shows the kicker is fast enough for machine operation. The pulsed power supply requirement has also been specified. For the beam diagnosis in the longitudinal direction, we use a wideband Wall Gap Monitor (WGM) served in CIS. With proper shielding and amplification to get good WGM signal, we have characterized the injected and extracted beam signal in single pass commissioning, and also verified the debunching effect of the ALPHA storage ring. A modulation-demodulation signal processing method is developed to measure the current and longitudinal profile of injected beam. By scanning the dipole strength in the injection line, we have reconstructed the tomography of the longitudinal phase space of the LINAC beam. In the accumulation mode, ALPHA will be operated under a low energy and high current condition, where intra beam scattering (IBS) becomes a dominant effect on the beam emittance. A self consistent simulation, including IBS effect, gas scattering and linear coupling, has been carried out to calculate the emittance of the stored beam.

Luo, Tianhuan; /Indiana U.

2011-08-01T23:59:59.000Z

298

Radiation Therapy Photon Beams Dose Conformation According to Dose Distribution Around Intracavitary-Applied Brachytherapy Sources  

SciTech Connect (OSTI)

Intracavitary application of brachytherapy sources followed by external beam radiation is essential for the local treatment of carcinoma of the cervix. Due to very high doses to the central portion of the target volume delivered by brachytherapy sources, this part of the target volume must be shielded while being irradiated by photon beams. Several shielding techniques are available, from rectangular block and standard cervix wedge to more precise, customized step wedge filters. Because the calculation of a step wedge filter's shape was usually based on effective attenuation coefficient, an approach that accounts, in a more precise way, for the scattered radiation, is suggested. The method was verified under simulated clinical conditions using film dosimetry. Measured data for various compensators were compared to the numerically determined sum of the dose distribution around brachytherapy sources and one of compensated beam. Improvements in total dose distribution are demonstrated, using our method. Agreement between calculation and measurements were within 3%. Sensitivity of the method on sources displacement during treatment has also been investigated.

Jurkovic, Slaven [Department of Radiotherapy and Oncology, University Hospital, Rijeka (Croatia)], E-mail: slaven.jurkovic@ri.htnet.hr; Zauhar, Gordana [Department of Physics, School of Medicine, Rijeka (Croatia); Faj, Dario [Department of Radiotherapy and Oncology, University Hospital, Osijek (Croatia); Radojcic, Deni Smilovic; Svabic, Manda [Department of Radiotherapy and Oncology, University Hospital, Rijeka (Croatia)

2010-04-01T23:59:59.000Z

299

Source-free electromagnetism's canonical fields reveal the free-photon Schroedinger equation  

E-Print Network [OSTI]

Classical equations of motion that are first-order in time and conserve energy can only be quantized after their variables have been transformed to canonical ones, i.e., variables in which the energy is the system's Hamiltonian. The source-free version of Maxwell's equations is purely dynamical, first-order in time and has a well-defined nonnegative conserved field energy, but is decidedly noncanonical, an issue that has attracted little attention. The opposite parities of the electric and magnetic fields and consequent curl operations that typify Maxwell's equations are especially at odds with their being canonical fields. Transformation of the magnetic field into the transverse part of the vector potential helps but is not sufficient; further simple nonnegative symmetric integral transforms, which commute with all differential operators, are needed for both fields; such transforms also supplant the curls in the equations of motion. The canonical replacements of the source-free electromagnetic fields remain transverse-vector fields, but are more diffuse than their predecessors. Combined as the real and imaginary parts of a complex field, the canonical fields prove to be the transverse-vector wave function of a time-dependent Schroedinger equation whose Hamiltonian operator is the quantization of the free photon's square-root relativistic energy. Thus proper quantization of the source-free Maxwell equations is identical to second quantization of free photons that have normal square-root energy. There is no physical reason why first and second quantization of any relativistic free particle ought not to proceed in precise parallel, utilizing the square-root Hamiltonian operator. This natural procedure leaves no role for the completely artificial Klein-Gordon and Dirac equations, as accords with their grossly unphysical properties.

Steven Kenneth Kauffmann

2010-11-29T23:59:59.000Z

300

Annual meeting of the Advanced Light Source Users` Association  

SciTech Connect (OSTI)

This report contains papers on the following topics: ALS Director`s Report; ALS Operations Update; Recent Results in Machine Physics; Progress in Beamline Commissioning and Overview of New Projects; The ALS Scientific Program; First Results from the SpectroMicroscopy Beamline; Soft X-ray Fluorescence Spectroscopy of Solids; Soft X-Ray Fluorescence Spectroscopy of Molecules; Microstructures and Micromachining at the ALS; High-Resolution Photoemission from Simple Atoms and Molecules; X-Ray Diffraction at the ALS; Utilizing Synchrotron Radiation in Advanced Materials Industries; Polymer Microscopy: About Balls, Rocks and Other ``Stuff``; Infrared Research and Applications; and ALS User Program.

NONE

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Marketing Ground Source Heat Pump Advanced Applications that  

E-Print Network [OSTI]

Solar Thermal n Real World Examples Overview #12;n High First Cost n Incompetent Contractor n Operating Wallace President, Energy Environmental Corporation October 9, 2013 #12;Within the United States, what is the fastest growing market with the available capital and need for the benefits of ground source heat pumps

302

Imaging spectroscopic analysis at the Advanced Light Source  

SciTech Connect (OSTI)

One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications.

MacDowell, A. A.; Warwick, T.; Anders, S.; Lamble, G.M.; Martin, M.C.; McKinney, W.R.; Padmore, H.A.

1999-05-12T23:59:59.000Z

303

Inverter for interfacing advanced energy sources to a utility grid  

DOE Patents [OSTI]

A transistor is operated in the PWM mode such that a hlaf sine wave of current is delivered first to one-half of a distribution transformer and then the other as determined by steering thyristors operated at the fundamental sinusoidal frequency. Power to the transistor is supplied by a dc source such as a solar array and the power is converted such that a sinusoidal current is injected into a utility at near unity power factor.

Steigerwald, Robert L. (Scotia, NY)

1984-01-01T23:59:59.000Z

304

Which optical processes are suitable to make probabilistic single photon sources for quantum cryptography?  

E-Print Network [OSTI]

Single photon sources to be used in quantum cryptography must show higher order antibunching (HOA). HOA is reported by us in several many wave mixing processes. In the present work we have investigated the possibility of observing HOA in multiwave mixing processes in general. The generalized Hamiltonian is solved for several particular cases in Heisenberg picture and possibility of observing HOA is investigated with the help of criterion of Pathak and Garcia. Several particular cases of the generalized Hamiltonian are solved with the help of short time approximation technique and HOA is reported for pump modes of different multiwave mixing processes. It is also found that HOA can not be observed for the signal and stokes modes in of the cases studied here.

Amit Verma; Anirban Pathak

2009-09-02T23:59:59.000Z

305

Advanced Power Sources Ltd APS | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:Iowa ASHRAEAddis, LA)AdobeFuelOffshoreSources Ltd

306

Low Temperature Heat Source Utilization Current and Advanced Technology  

SciTech Connect (OSTI)

Once a geothermal heat source has been identified as having the potential for development, and its thermal, physical, and chemical characteristics have been determined, a method of utilization must be decided upon. This compendium will touch upon some of these concerns, and hopefully will provide the reader with a better understanding of technologies being developed that will be applicable to geothermal development in East Africa, as well as other parts of the world. The appendices contain detailed reports on Down-the-Well Turbo Pump, The Vapor-Turbine Cycle for Geothermal Power Generation, Heat Exchanger Design for Geothermal Power Plants, and a Feasibility Study of Combined Power and Water Desalting Plant Using Hot Geothermal Water. [DJE-2005

Anderson, James H. Jr.; Dambly, Benjamin W.

1992-06-01T23:59:59.000Z

307

E-Print Network 3.0 - advanced photon radiotherapy Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Printed in the UK PII: S0031-9155(00)10689-X Energy-and intensity-modulated electron beams for Summary: for clinical electron and intensity modulated photon beams in...

308

A photon-pair source with controllable delay based on shaped inhomogeneous broadening of rare-earth doped solids  

E-Print Network [OSTI]

Spontaneous Raman emission in atomic gases provides an attractive source of photon pairs with a controllable delay. We show how this technique can be implemented in solid state systems by appropriately shaping the inhomogeneous broadening. Our proposal is eminently feasible with current technology and provides a realistic solution to entangle remote rare-earth doped solids in a heralded way.

Pavel Sekatski; Nicolas Sangouard; Nicolas Gisin; Hugues de Riedmatten; Mikael Afzelius

2011-01-31T23:59:59.000Z

309

Spontaneous parametric down-conversion photon sources are scalable in the asymptotic limit for boson-sampling  

E-Print Network [OSTI]

Boson-sampling has emerged as a promising avenue towards post-classical optical quantum computation, and numerous elementary demonstrations have recently been performed. Spontaneous parametric down-conversion (SPDC) is the mainstay for single-photon state preparation, the technique employed in most optical quantum information processing implementations to-date. Here we present a simple architecture for boson-sampling based on multiplexed SPDC sources and demonstrate that the architecture is limited only by the post-selection detection efficiency assuming that other errors, such as spectral impurity, dark counts, and interferometric instability are negligible. For any given number of input photons, there exists a minimum detector efficiency that allows post selection. If this efficiency is achieved, photon-number errors in the SPDC sources are sufficiently low as to guarantee correct boson-sampling most of the time. In this scheme the required detector efficiency must increase exponentially in the photon number. Thus, we show that idealised SPDC sources will not present a bottleneck for future boson-sampling implementations. Rather, photodetection efficiency is the limiting factor and thus future implementations may continue to employ SPDC sources.

Keith R. Motes; Jonathan P. Dowling; Peter P. Rohde

2014-04-14T23:59:59.000Z

310

Phase-locked indistinguishable photons with synthesized waveforms from a solid-state source  

E-Print Network [OSTI]

Resonance fluorescence in the Heitler regime provides access to single photons with coherence well beyond the Fourier transform limit of the transition, and holds the promise to circumvent environment-induced dephasing common to all solid-state systems. Here we demonstrate that the coherently generated single photons from a single self-assembled InAs quantum dot display mutual coherence with the excitation laser on a timescale exceeding 3 seconds. Exploiting this degree of mutual coherence we synthesize near-arbitrary coherent photon waveforms by shaping the excitation laser field. In contrast to post-emission filtering, our technique avoids both photon loss and degradation of the single photon nature for all synthesized waveforms. By engineering pulsed waveforms of single photons, we further demonstrate that separate photons generated coherently by the same laser field are fundamentally indistinguishable, lending themselves to creation of distant entanglement through quantum interference.

Clemens Matthiesen; Martin Geller; Carsten H. H. Schulte; Claire Le Gall; Jack Hansom; Zhengyong Li; Maxime Hugues; Edmund Clarke; Mete Atatüre

2013-03-27T23:59:59.000Z

311

Extractors for Low-Weight Affine Sources Institute for Advanced Study  

E-Print Network [OSTI]

], are functions that can be used to solve this problem. These are functions that are easy to invert given the enExtractors for Low-Weight Affine Sources Anup Rao Institute for Advanced Study arao@ias.edu January is a function AffExt : Fn {0, 1}m such that for any such source X, the distribution of AffExt(X) is close

Anderson, Richard

312

TECHNICAL ADVANCES Dye shift: a neglected source of genotyping error in molecular  

E-Print Network [OSTI]

TECHNICAL ADVANCES Dye shift: a neglected source of genotyping error in molecular ecology JOLENE T for genotyping error, yet potential errors stemming from dye-induced mobility shift (dye shift) may be frequently left uncorrected, dye shift can lead to mis-scoring alleles and even to fal- sely calling new alleles

Jamieson, Ian

313

THE CENTER FOR INTEGRATIVE BIOMEDICAL COMPUTING: ADVANCING BIOMEDICAL SCIENCE WITH OPEN SOURCE  

E-Print Network [OSTI]

THE CENTER FOR INTEGRATIVE BIOMEDICAL COMPUTING: ADVANCING BIOMEDICAL SCIENCE WITH OPEN SOURCE the new Center for Integrative Biomedical Com- puting (CIBC) whose mission is to produce high performance im- age analysis, simulation, and visualization software in support of biomedical research. Software

Utah, University of

314

An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity  

E-Print Network [OSTI]

We have demonstrated efficient production of triggered single photons by coupling a single semiconductor quantum dot to a three-dimensionally confined optical mode in a micropost microcavity. The efficiency of emitting single photons into a single-mode travelling wave is approximately 38%, which is nearly two orders of magnitude higher than for a quantum dot in bulk semiconductor material. At the same time, the probability of having more than one photon in a given pulse is reduced by a factor of seven as compared to light with Poissonian photon statistics.

Matthew Pelton; Charles Santori; Jelena Vuckovic; Bingyang Zhang; Glenn S. Solomon; Jocelyn Plant; Yoshihisa Yamamoto

2002-08-08T23:59:59.000Z

315

Narrow Band Source of Transform-Limited Photon Pairs via Four-Wave Mixing in a Cold Atomic Ensemble  

E-Print Network [OSTI]

We observe narrowband pairs of time-correlated photons of wavelengths 776\\,nm and 795\\,nm from non-degenerate four-wave mixing in a laser-cooled atomic ensemble of $^{87}${Rb} using a cascade decay scheme. Coupling the photon pairs into single mode fibers, we observe an instantaneous rate of 7700 pairs per second with silicon avalanche photodetectors, and an optical bandwidth below 30\\,MHz. Detection events exhibit a strong correlation in time ($g^{(2)}(\\tau=0)\\approx5800$), and a high coupling efficiency indicated by a pair-to-single ratio of 23%. The violation of the Cauchy-Schwarz inequality by a factor of $8.4\\times10^6$ indicates a strong non-classical correlation between the generated fields, while a Hanbury--Brown--Twiss experiment in the individual photons reveals their thermal nature. The narrow bandwidth and brightness of our source makes it ideal for interacting with atomic ensembles in quantum communication protocols.

Bharath Srivathsan; Gurpreet Kaur Gulati; Chng Mei Yuen Brenda; Gleb Maslennikov; Dzmitry Matsukevich; Christian Kurtsiefer

2013-09-18T23:59:59.000Z

316

Thermophysical properties of saturated light and heavy water for advanced neutron source applications  

SciTech Connect (OSTI)

The Advanced Neutron Source is an experimental facility being developed by Oak Ridge National Laboratory. As a new nuclear fission research reactor of unprecedented flux, the Advanced Neutron Source Reactor will provide the most intense steady-state beams of neutrons in the world. The high heat fluxes generated in the reactor [303 MW(t) with an average power density of 4.5 MW/L] will be accommodated by a flow of heavy water through the core at high velocities. In support of this experimental and analytical effort, a reliable, highly accurate, and uniform source of thermodynamic and transport property correlations for saturated light and heavy water were developed. In order to attain high accuracy in the correlations, the range of these correlations was limited to the proposed Advanced Neutron Source Reactor's nominal operating conditions. The temperature and corresponding saturation pressure ranges used for light water were 20--300[degrees]C and 0.0025--8.5 MPa, respectively, while those for heavy water were 50--250[degrees]C and 0.012--3.9 MPa. Deviations between the correlation predictions and data from the various sources did not exceed 1.0%. Light water vapor density was the only exception, with an error of 1.76%. The physical property package consists of analytical correlations, SAS codes, and FORTRAN subroutines incorporating these correlations, as well as an interactive, easy-to-use program entitled QuikProp.

Crabtree, A.; Siman-Tov, M.

1993-05-01T23:59:59.000Z

317

Thermophysical properties of saturated light and heavy water for Advanced Neutron Source applications  

SciTech Connect (OSTI)

The Advanced Neutron Source is an experimental facility being developed by Oak Ridge National Laboratory. As a new nuclear fission research reactor of unprecedented flux, the Advanced Neutron Source Reactor will provide the most intense steady-state beams of neutrons in the world. The high heat fluxes generated in the reactor [303 MW(t) with an average power density of 4.5 MW/L] will be accommodated by a flow of heavy water through the core at high velocities. In support of this experimental and analytical effort, a reliable, highly accurate, and uniform source of thermodynamic and transport property correlations for saturated light and heavy water were developed. In order to attain high accuracy in the correlations, the range of these correlations was limited to the proposed Advanced Neutron Source Reactor`s nominal operating conditions. The temperature and corresponding saturation pressure ranges used for light water were 20--300{degrees}C and 0.0025--8.5 MPa, respectively, while those for heavy water were 50--250{degrees}C and 0.012--3.9 MPa. Deviations between the correlation predictions and data from the various sources did not exceed 1.0%. Light water vapor density was the only exception, with an error of 1.76%. The physical property package consists of analytical correlations, SAS codes, and FORTRAN subroutines incorporating these correlations, as well as an interactive, easy-to-use program entitled QuikProp.

Crabtree, A.; Siman-Tov, M.

1993-05-01T23:59:59.000Z

318

E-Print Network 3.0 - advanced photonic devices Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to flourish in the areas of high speed, high performance electronics and optoelectronic devices Source: Akhmedov, Azer - Department of Mathematics, University of...

319

The Advanced Neutron Source (ANS) project: A world-class research reactor facility  

SciTech Connect (OSTI)

This paper provides an overview of the Advanced Neutron Source (ANS), a new research facility being designed at Oak Ridge National Laboratory. The facility is based on a 330 MW, heavy-water cooled and reflected reactor as the neutron source, with a thermal neutron flux of about 7.5{times}10{sup 19}m{sup {minus}2}{center_dot}sec{sup {minus}1}. Within the reflector region will be one hot source which will serve 2 hot neutron beam tubes, two cryogenic cold sources serving fourteen cold neutron beam tubes, two very cold beam tubes, and seven thermal neutron beam tubes. In addition there will be ten positions for materials irradiation experiments, five of them instrumented. The paper touches on the project status, safety concerns, cost estimates and scheduling, a description of the site, the reactor, and the arrangements of the facilities.

Thompson, P.B. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (US); Meek, W.E. [Gilbert/Commonwealth, Inc., Pittsburgh, PA (US)

1993-07-01T23:59:59.000Z

320

An advanced hadron facility: A combined kaon factory and cold-neutron source  

SciTech Connect (OSTI)

A design concept is presented for an advanced hadron facility consisting of a combined kaon factory and second generation spallation source. Our proposed facility consists of a 1.2 GeV superconducting H/sup -/ linac to bring the LAMPF energy up to 2 GeV, a multi-ring 2 GeV compressor, a shared cold-neutron and stopped-pion neutrino source, a 60 GeV 25 ..mu..Amp 6 Hz proton synchrotron, and kaon and proton experimental areas. We discuss the considerations which led to this design concept. We summarize recent results of r and d work on components for rapid-cycling synchrotrons. Finally, we mention briefly a pion linac, which may be a good way to gain experience with superconducting cavities if advanced hadron facility funding is delayed.

Thiessen, H.A.

1987-03-16T23:59:59.000Z

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Efficiency and stray light measurements and calculations of diffraction gratings for the Advanced Light Source  

SciTech Connect (OSTI)

Water-cooled gratings manufactured for spherical grating monochromators of the Advanced Light Source beamlines 7.0, 8.0, and 9.0 were measured with the laser plasma source and reflectometer in the Center for X-ray Optics at Lawrence Berkeley Laboratory. The square-wave gratings are ion milled into the polished electroless nickel surface after patterning by holographic photolithography. Absolute efficiency data are compared with exact electromagnetic theory calculation. Interorder stray light and groove depths can be estimated from the measurements.

McKinney, W.R.; Mossessian, D. (Accelerator and Fusion Research Division, Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States)); Gullikson, E. (Materials Sciences Division, Center for X-ray Optics, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States)); Heimann, P. (Accelerator and Fusion Research Division, Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States))

1995-02-01T23:59:59.000Z

322

On-axis brilliance and power of in-vacuum undulators for the Advanced Photon Source.  

SciTech Connect (OSTI)

A request for studying the spectral performance of in-vacuum undulators (IVUs) for the APS storage ring was recently put forward. In-vacuum undulators are prevalent at other synchrotron radiation facilities such as the ESRF and the Spring-8. However, they never made it into the arsenal of undulators at the APS because the brilliance tuning curves were sufficiently wide due to the fact that the undulator minimum gap could be set as low as 10.5 mm. For sector 3, which in the past used a narrow-gap vacuum chamber, the minimum undulator pole gap was allowed to be set as low as 8.5 mm, providing contiguous tuning curves between the first and third harmonic radiation for a 2.7-cm-period device. (Subsequently, the narrow-gap vacuum chamber was removed and replaced with a standard vacuum chamber, which allows a minimum gap of 10.5 mm.) For sector 4, which currently holds the only narrow-gap vacuum chamber at the APS, the minimum gap is 9.5 mm. In this sector, a permanent magnet hybrid undulator with SmCo magnets is used instead of NdFeB magnets because of their higher radiation resistance and their better protection against radiation-induced demagnetization of the magnets. In the realm of looking to the future, new concepts and technologies are being revisited. Most notable is the superconducting undulator (SCU) technology, which provides the ultimate highest magnetic field of any technology and design. The SCU program has been ongoing at the APS for several years and substantial progress has been made.3,4 However, the in-vacuum undulators may bridge some of the user demands, and it is therefore worthwhile revisiting their potential at the APS. In this work, the following were assumed or required: (1) the smallest in-vacuum beam-stay-clear gap is 5.0 mm, (2) a beam-liner of 2 x 0.060 mm, which increases the pole gap by the same amount, (3) both NdFeB and SmCo magnets shall be studied, even though SmCo magnets are the preferred choice for very small gaps, (4) compare the in-vacuum undulators with superconducting NbTi undulators with a wall thickness/space of 2 x 1.0 mm, and (5) all undulators will have an effective magnetic length of 2.4 m. Three short undulator period lengths were chosen somewhat arbitrary and studied. We will compare the performance of undulators with period lengths of 2.5 cm and 2.0 cm to one with a 1.6-cm period, which is the chosen period length of the first designed and tested short-length SCU for the APS. Additionally, we will make comparisons with the undulator A, which has a period length of 3.3 cm.

Dejus, R.; Jaski, M.; Kim, S. H.; Accelerator Systems Division (APS)

2009-11-25T23:59:59.000Z

323

Photo of the Week: Penguins, Plankton, and Argonne's Advanced Photon Source  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange VisitorsforDepartmentPOET-DSMCarbonDepartment ofthe|

324

New Physics in a Copper-Iridium Compound | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Libraryornl.gov Ron WalliA Key Target for Diabetes

325

High Resolution X-Ray Scattering at Sector 3, Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in the MadisonPortal Hydrogen

326

A High-Pressure Nano-imaging Breakthrough | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β-Research and EducationF OAGlobal8

327

A New Material for Warm-White LEDs | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β-Research andAFishingMicroscopyProbing

328

X-ray Science Division: Mission and Goals | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1of EnergyX-ray

329

X-rays Paint a Picture of Picasso's Pigments | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1of EnergyX-rayNew

330

Inelastic X-Ray Scattering at Sector 30, Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningtoA Journey Inside the Introduction Staff

331

Molten Metal Solidifies into a New Kind of Glass | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface of water.Organic Polymers Show

332

The Linac Injector For The ANL 7 Ge V Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2DifferentTheInforumLast W-79

333

How Do Bacteria Repair Damage from the Sun? | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortalAllBPA addresses EMF B O N N E V IScience

334

On-Axis Brilliance and Power of In-Vacuum Undulators for The Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002 WholesaleEnergy's 1000 acres of landJuneEMSL On the4

335

ANL/APS/TB-16 ADVANCED PHOTON SOURCE ACCELERATOR ULTRAHIGH VACUUM GUIDE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2 Print258Department of31 . Wiggler A2146

336

ANL/APS/TB-36, Advanced Photon Source Research No. 2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2 Print258Department of31 . Wiggler926

337

ANL/APS/TB-37, Advanced Photon Source Research No. 3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2 Print258Department of31 . Wiggler9267

338

ANL/APS/TB-41, Advanced Photon Source Research No. 4  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2 Print258Department of31 . Wiggler92671

339

"Inside the Advanced Photon Source" Inside the latest Argonne Now  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy SystemsFebruary 7-8,MarchKnyszek,A. JaworskiAPS Director

340

Compact 2D nonlinear photonic crystal source of beamlike path entangled  

E-Print Network [OSTI]

the generation of entangled photons with controlled spatial, spectral and polarization properties. © 2013 Optical, 4337­4341 (1995). 2. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions­4139 (1998). 12. N. Broderick, G. Ross, H. Offerhaus, D. Richardson, and D. Hanna, "Hexagonally poled lithium

Arie, Ady

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their  

E-Print Network [OSTI]

Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their effects on human reliability is critical of complexity leveraging network theory. INTRODUCTION The nuclear power industry in United States has declined

Cummings, Mary "Missy"

342

Advanced Light Source Compendium of User Abstracts andTechnical Reports 1997  

SciTech Connect (OSTI)

The Advanced Light Source (ALS), a national user facility located at Ernest Orlando Lawrence Berkeley National Laboratory of the University of California is available to researchers from academia, industry, and government laboratories. Operation of the ALS is funded by the Department of Energy's Office of Basic Energy Sciences. This Compendium contains abstracts written by users summarizing research completed or in progress during 1997, ALS technical reports describing ongoing efforts related to improvement in machine operations and research and development projects, and information on ALS beamlines planned through 1998.

Cross, J.; Devereaux, M.K.; Dixon, D.J.; Greiner, A.; editors

1998-07-01T23:59:59.000Z

343

The advanced light source: America`s brightest light for science and industry  

SciTech Connect (OSTI)

America`s brightest light comes from the Advanced Light Source (ALS), a national facility for scientific research, product development, and manufacturing. Completed in 1993, the ALS produces light in the ultraviolet and x-ray regions of the spectrum. Its extreme brightness provides opportunities for scientific and technical progress not possible anywhere else. Technology is poised on the brink of a major revolution - one in which vital machine components and industrial processes will be drastically miniaturized. Industrialized nations are vying for leadership in this revolution - and the huge economic rewards the leaders will reap.

Cross, J.; Lawler, G.

1994-03-01T23:59:59.000Z

344

The Most Detailed Picture Yet of a Key AIDS Protein | Advanced Photon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe Molecular Bond: October 2014Source

345

Fabrication of InAs quantum dots in AlAs/GaAs DBR pillar microcavities for single photon sources  

SciTech Connect (OSTI)

We report the molecular beam epitaxy growth of low-density strain-induced InAs quantum dots (QD) embedded in an AlAs/GaAs distributed Bragg reflector structure for a triggered photon source. By optimal selection of growth temperature, InAs deposited thickness and other experimental parameters, it is possible to grow low density (10/{mu}m{sup 2}) InAs quantum dots with a suitable emission wavelength for a triggered photon source. The empirical formulas for the refractive indices of AlAs and GaAs materials at high temperature over a wide wavelength range are constructed by combining high resolution x-ray diffraction, dynamic optical reflectivity, and optical reflectivity spectrum techniques. Utilizing the electron-beam lithography and electron-cyclotron-resonance plasma etching techniques, a micropost microcavity with the top diameter of 0.6 {mu}m and the post height of 4.2 {mu}m has been fabricated. Narrow, spectrally limited single QD emission embedded in a micropost microcavity is observed in the photoluminescence.

Zhang Bingyang; Solomon, Glenn S.; Pelton, Matthew; Plant, Jocelyn; Santori, Charles; Vuckovic, Jelena; Yamamoto, Yoshihisa [Quantum Entanglement Project, ICORP, JST, Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305-4085 (United States)

2005-04-01T23:59:59.000Z

346

Engineering of quantum dot photon sources via electro-elastic fields  

E-Print Network [OSTI]

The possibility to generate and manipulate non-classical light using the tools of mature semiconductor technology carries great promise for the implementation of quantum communication science. This is indeed one of the main driving forces behind ongoing research on the study of semiconductor quantum dots. Often referred to as artificial atoms, quantum dots can generate single and entangled photons on demand and, unlike their natural counterpart, can be easily integrated into well-established optoelectronic devices. However, the inherent random nature of the quantum dot growth processes results in a lack of control of their emission properties. This represents a major roadblock towards the exploitation of these quantum emitters in the foreseen applications. This chapter describes a novel class of quantum dot devices that uses the combined action of strain and electric fields to reshape the emission properties of single quantum dots. The resulting electro-elastic fields allow for control of emission and binding energies, charge states, and energy level splittings and are suitable to correct for the quantum dot structural asymmetries that usually prevent these semiconductor nanostructures from emitting polarization-entangled photons. Key experiments in this field are presented and future directions are discussed.

Rinaldo Trotta; Armando Rastelli

2015-03-01T23:59:59.000Z

347

Advances in the Ion Source Research and Development Program at ISIS  

SciTech Connect (OSTI)

This paper covers the advances in the ion source research and development Program at ISIS over the last 2 years. The work is a combination of theoretical finite element analysis calculations and experiments conducted on a purpose built development rig. The broad development goals are higher beam current with longer pulse length. A Finite Element Analysis (FEA) model is used here to understand the steady state and dynamic thermal behavior of the source, and to investigate the design changes necessary to offset the extra heating. Electromagnetic FEA modeling of the extraction region of the ISIS H- ion source has suggested that the present set up of extraction electrode and 90 deg. sector magnet is sub-optimal, with the result that the beam profile is asymmetric, the beam is strongly divergent in the horizontal plane and there is severe aberration in the focusing in the vertical plane. The FEA model of the beam optics has demonstrated that relatively simple changes to the system should produce a dramatic improvement in performance. The theoretical and experimental results are compared here.

Faircloth, D.C.; Thomason, J.W.G.; Sidlow, R.; Whitehead, M.O. [CCLRC, RAL, ISIS, Didcot, Oxon, OX11 0QX (United Kingdom)

2005-04-06T23:59:59.000Z

348

Measurements of the subcriticality using advanced technique of shooting source during operation of NPP reactors  

SciTech Connect (OSTI)

According to the rules of nuclear safety, the measurements of the subcriticality of reactors should be carried out in the process of performing nuclear hazardous operations. An advanced technique of shooting source of neutrons is proposed to meet this requirement. As such a source, a pulsed neutron source (PNS) is used. In order to realize this technique, it is recommended to enable a PNS with a frequency of 1–20 Hz. The PNS is stopped after achieving a steady-state (on average) number of neutrons in the reactor volume. The change in the number of neutrons in the reactor volume is measured in time with an interval of discreteness of ?0.1 s. The results of these measurements with the application of a system of point-kinetics equations are used in order to calculate the sought subcriticality. The basic idea of the proposed technique used to measure the subcriticality is elaborated in a series of experiments on the Kvant assembly. The conditions which should be implemented in order to obtain a positive result of measurements are formulated. A block diagram of the basic version of the experimental setup is presented, whose main element is a pulsed neutron generator.

Lebedev, G. V., E-mail: lgv2004@mail.ru; Petrov, V. V. [National Research Center Kurchatov Institute (Russian Federation); Bobylyov, V. T.; Butov, R. I.; Zhukov, A. M.; Sladkov, A. A. [Dukhov VNIIA (Russian Federation)

2014-12-15T23:59:59.000Z

349

Multiple time scale blinking in InAs quantum dot single-photon sources  

E-Print Network [OSTI]

We use photon correlation measurements to study blinking in single, epitaxially-grown self-assembled InAs quantum dots situated in circular Bragg grating and microdisk cavities. The normalized second-order correlation function g(2)(\\tau) is studied across eleven orders of magnitude in time, and shows signatures of blinking over timescales ranging from tens of nanoseconds to tens of milliseconds. The g(2)(\\tau) data is fit to a multi-level system rate equation model that includes multiple non-radiating (dark) states, from which radiative quantum yields significantly less than 1 are obtained. This behavior is observed even in situations for which a direct histogramming analysis of the emission time-trace data produces inconclusive results.

Marcelo Davanco; C. Stephen Hellberg; Serkan Ates; Antonio Badolato; Kartik Srinivasan

2014-04-21T23:59:59.000Z

350

Integrating advanced materials simulation techniques into an automated data analysis workflow at the Spallation Neutron Source  

SciTech Connect (OSTI)

This presentation will review developments on the integration of advanced modeling and simulation techniques into the analysis step of experimental data obtained at the Spallation Neutron Source. A workflow framework for the purpose of refining molecular mechanics force-fields against quasi-elastic neutron scattering data is presented. The workflow combines software components to submit model simulations to remote high performance computers, a message broker interface for communications between the optimizer engine and the simulation production step, and tools to convolve the simulated data with the experimental resolution. A test application shows the correction to a popular fixed-charge water model in order to account polarization effects due to the presence of solvated ions. Future enhancements to the refinement workflow are discussed. This work is funded through the DOE Center for Accelerating Materials Modeling.

Borreguero Calvo, Jose M [ORNL] [ORNL; Campbell, Stuart I [ORNL] [ORNL; Delaire, Olivier A [ORNL] [ORNL; Doucet, Mathieu [ORNL] [ORNL; Goswami, Monojoy [ORNL] [ORNL; Hagen, Mark E [ORNL] [ORNL; Lynch, Vickie E [ORNL] [ORNL; Proffen, Thomas E [ORNL] [ORNL; Ren, Shelly [ORNL] [ORNL; Savici, Andrei T [ORNL] [ORNL; Sumpter, Bobby G [ORNL] [ORNL

2014-01-01T23:59:59.000Z

351

Relative performance properties of the ORNL Advanced Neutron Source Reactor with reduced enrichment fuels  

SciTech Connect (OSTI)

Three cores for the Advanced Neutron Source reactor, differing in size, enrichment, and uranium density in the fuel meat, have been analyzed. Performance properties of the reduced enrichment cores are compared with those of the HEU reference configuration. Core lifetime estimates suggest that none of these configurations will operate for the design goal of 17 days at 330 MW. With modes increases in fuel density and/or enrichment, however, the operating lifetimes of the HEU and MEU designs can be extended to the desired length. Achieving this lifetime with LEU fuel in any of the three studies cores, however, will require the successful development of denser fuels and/or structural materials with thermal neutron absorption cross sections substantially less than that of Al-6061. Relative to the HEU reference case, the peak thermal neutron flux in cores with reduced enrichment will be diminished by about 25--30%.

Bretscher, M.M.; Deen, J.R.; Hanan, N.A.; Matos, J.E.; Mo, S.C.; Pond, R.B.; Travelli, A.; Woodruff, W.L.

1994-12-31T23:59:59.000Z

352

Emission spectra and quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime  

E-Print Network [OSTI]

We derive analytical formulas for the forward emission and side emission spectra of cavity-modified single-photon sources, as well as the corresponding normal-mode oscillations in the cavity quantum electrodynamics (QED) strong-coupling regime. We investigate the effects of pure dephasing, treated in the phase-diffusion model based on a Wiener-Levy process, on the emission spectra and normal-mode oscillations. We also extend our previous calculation of quantum efficiency to include the pure dephasing process. All results are obtained in the Weisskopf-Wigner approximation for an impulse-excited emitter. We find that the spectra are broadened, the depths of the normal-mode oscillations are reduced and the quantum efficiency is decreased in the presence of pure dephasing.

Guoqiang Cui; M. G. Raymer

2008-10-30T23:59:59.000Z

353

Advanced silicon photonic modulators  

E-Print Network [OSTI]

Various electrical and optical schemes used in Mach-Zehnder (MZ) silicon plasma dispersion effect modulators are explored. A rib waveguide reverse biased silicon diode modulator is designed, tested and found to operate at ...

Sorace, Cheryl M

2010-01-01T23:59:59.000Z

354

Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production of medical and industrial isotopes such as {sup 252}Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2.

Blasing, T.J.; Brown, R.A.; Cada, G.F.; Easterly, C.; Feldman, D.L.; Hagan, C.W.; Harrington, R.M.; Johnson, R.O.; Ketelle, R.H.; Kroodsma, R.L.; McCold, L.N.; Reich, W.J.; Scofield, P.A.; Socolof, M.L.; Taleyarkhan, R.P.; Van Dyke, J.W.

1992-02-01T23:59:59.000Z

355

Development of procedures for refurbishing x-ray optics at the Advanced Light Source  

E-Print Network [OSTI]

and Setting of Bendable Optics for Diffraction- Limitedof Soft X-Rays,” Abstract to SPIE Optics and Photonics 2012,Metrology for X-Ray and EUV Optics IV (San Diego, August 12-

Yashchuk, Valeriy V.

2013-01-01T23:59:59.000Z

356

Irradiation research capabilities at HFIR (High Flux Isotope Reactor) and ANS (Advanced Neutron Source)  

SciTech Connect (OSTI)

A variety of materials irradiation facilities exist in the High Flux Isotope Reactor (HFIR) and are planned for the Advanced Neutron Source (ANS) reactor. In 1986 the HFIR Irradiation Facilities Improvement (HIFI) project began modifications to the HFIR which now permit the operation of two instrumented capsules in the target region and eight capsules of 46-mm OD in the RB region. Thus, it is now possible to perform instrumented irradiation experiments in the highest continuous flux of thermal neutrons available in the western world. The new RB facilities are now large enough to permit neutron spectral tailoring of experiments and the modified method of access to these facilities permit rotation of experiments thereby reducing fluence gradients in specimens. A summary of characteristics of irradiation facilities in HFIR is presented. The ANS is being designed to provide the highest thermal neutron flux for beam facilities in the world. Additional design goals include providing materials irradiation and transplutonium isotope production facilities as good, or better than, HFIR. The reference conceptual core design consists of two annular fuel elements positioned one above the other instead of concentrically as in the HFIR. A variety of materials irradiation facilities with unprecedented fluxes are being incorporated into the design of the ANS. These will include fast neutron irradiation facilities in the central hole of the upper fuel element, epithermal facilities surrounding the lower fuel element, and thermal facilities in the reflector tank. A summary of characteristics of irradiation facilities presently planned for the ANS is presented. 2 tabs.

Thoms, K.R.

1990-01-01T23:59:59.000Z

357

The U5. 0 undulator design for the advanced light source at LBL  

SciTech Connect (OSTI)

The U5.0 undulator, currently under design, is the first in a series of insertion devices planned for the Advanced Light Source at LBL. U5.0 parameters include a 5 cm period, 5 m length with a 0.837 T maximum field at a 14 mm gap. A hybrid configuration utilizing Nd-Fe-B permanent magnet material and Vanadium Permendur poles is used for the magnetic structure. Construction is modular with many pole assemblies attached to a pole mount, which in turn is fastened onto one of the backing beams. Vertical field integral correction at the ends is with permanent magnet rotators. The supports structure features a 4-post configuration, a rigid base with 3 kinematic floor supports and 2 rigid 5 m long backing beams that fit within the 2.4 m high accelerator enclosure. The drive system is computer controlled utilizing a stepper motor and shaft encode coupled to a roller-screw/nut and chain drive train. Vacuum chamber design is a rigid configuration with a 10 mm vertical by 218 mm horizontal aperture of 5.5 m length. Chamber fabrication features a two-piece welded chamber of 5083 H321 aluminum. Pumping is with ion and titanium sublimation pumps. 5 figs., 1 tab.

Hoyer, E.; Chin, J.; Halbach, K.; Hassenzahl, W.; Humphries, D.; Kincaid, B.; Lancaster, H.; Plate, D.; Savoy, R.

1989-08-01T23:59:59.000Z

358

Advanced Light Source (ALS) | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

Syncrotron Light Source (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects...

359

Advances  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScienceScripting forAdvances in

360

arXiv:quant-ph/0311099v217Nov2003 Coupling Efficiencies in Single Photon On-Demand Sources  

E-Print Network [OSTI]

, 13 rely on optical parametric downconversion (PDC), because it produces photons two at a time suppressing the probability of multi-photon generation.13 Most PDC based schemes (including ours) require that the PDC output be collected into a single spatial mode defined by an optical fiber. In order for these PDC

Hart, Gus

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Nonlinear interaction between two heralded single photons  

E-Print Network [OSTI]

Harnessing nonlinearities strong enough to allow two single photons to interact with one another is not only a fascinating challenge but is central to numerous advanced applications in quantum information science. Currently, all known approaches are extremely challenging although a few have led to experimental realisations with attenuated classical laser light. This has included cross-phase modulation with weak classical light in atomic ensembles and optical fibres, converting incident laser light into a non-classical stream of photon or Rydberg blockades as well as all-optical switches with attenuated classical light in various atomic systems. Here we report the observation of a nonlinear parametric interaction between two true single photons. Single photons are initially generated by heralding one photon from each of two independent spontaneous parametric downconversion sources. The two heralded single photons are subsequently combined in a nonlinear waveguide where they are converted into a single photon with a higher energy. Our approach highlights the potential for quantum nonlinear optics with integrated devices, and as the photons are at telecom wavelengths, it is well adapted to applications in quantum communication.

T. Guerreiro; A. Martin; B. Sanguinetti; J. S. Pelc; C. Langrock; M. M. Fejer; N. Gisin; H. Zbinden; N. Sangouard; R. T. Thew

2014-03-09T23:59:59.000Z

362

Electrically driven photonic crystal nanocavity devices  

E-Print Network [OSTI]

Interest in photonic crystal nanocavities is fueled by advances in device performance, particularly in the development of low-threshold laser sources. Effective electrical control of high performance photonic crystal lasers has thus far remained elusive due to the complexities associated with current injection into cavities. A fabrication procedure for electrically pumping photonic crystal membrane devices using a lateral p-i-n junction has been developed and is described in this work. We have demonstrated electrically pumped lasing in our junctions with a threshold of 181 nA at 50K - the lowest threshold ever demonstrated in an electrically pumped laser. At room temperature we find that our devices behave as single-mode light-emitting diodes (LEDs), which when directly modulated, have an ultrafast electrical response up to 10 GHz corresponding to less than 1 fJ/bit energy operation - the lowest for any optical transmitter. In addition, we have demonstrated electrical pumping of photonic crystal nanobeam LEDs...

Shambat, Gary; Petykiewicz, Jan; Mayer, Marie A; Majumdar, Arka; Sarmiento, Tomas; Harris, James; Haller, Eugene E; Vuckovic, Jelena

2012-01-01T23:59:59.000Z

363

Photon Source Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews & Blog » PhotoOxygen

364

Photon Source Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheStevenAdministrationPhotometric Variations as

365

E-Print Network 3.0 - advanced power sources Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with Feedback Control MISO control laws SISO control law Summary: : To mitigate wind power intermittency using rechargeable battery as reserve power source Simulation Results......

366

DOE LABORATORY OPEN SOURCE SOFTWARE: ADVANCE DOE PROGRAM Approval and other oss Licensing Issues  

Broader source: Energy.gov [DOE]

On Feb 1, 2002, DOE Patent Counsel issued an IPI-II-1-01 for "Development and Use of Open Source Software."

367

Advanced Variable Speed Air-Source Integrated Heat Pump | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance PatentDepartment|AdvancedEnergy Pump

368

Electronic and photonic power applications  

SciTech Connect (OSTI)

Efficient conversion of radioactive decay to electrical power has been the goal of a number of past research efforts. One of these was the Elgin-Kidde nuclear battery. In this concept promethium-147 was used as a beta source which was then mixed with a phosphor to produce a radioluminescent (RL) source of light. The light source was coupled to silicon photovoltaic converters to create electricity. This photoelectric approach is being revisited using tritium based solid state compounds and advanced gas concepts to produce RL light sources being disclosed at this conference. Efficient conversion of the RL light energy to electrical energy imposes certain requirements on the semiconductor converter. These requirements will be discussed. Projections of power source electrical and physical characteristics will be presented based on reasonable design parameter assumptions. The words Power Supply'' usually evoke a vision of a rotating machine or chemical battery. However, today's technology is making increasing use of photonics, where information and even power can be moved through optical fibers. Brighter volumetric RL light sources open a whole new range of photonics-based applications, while solid state tritiated compounds provide the foundation for improved mechanical adaptability and safety. 4 refs., 6 figs., 1 tab.

Walko, R.J.; Ashley, C.S.; Brinker, C.J.; Reed, S.T.; Renschler, C.L. (Sandia National Labs., Albuquerque, NM (USA)); Shepodd, T.J. (Sandia National Labs., Livermore, CA (USA)); Ellefson, R.E.; Gill, J.T. (EG and G Mound Applied Technologies, Miamisburg, OH (USA)); Leonard, L.E. (USDOE, Washington, DC (USA))

1990-01-01T23:59:59.000Z

369

Advanced Variable Speed Air-Source Integrated Heat Pump 2013 Peer Review |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------ChapterJuly 20142 U.S.AdvancedThermal

370

ADVANCED PHOTON SOURCE Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC  

E-Print Network [OSTI]

and outer core--is the D layer. The D layer has long mystified geologists because it exhibits of Chicago indicate that patches of the post-perovskite lying just above the outer core may be enriched (DOE) Geosciences, and the State of Illinois. The HP-CAT facility is supported by the DOE Office

Kemner, Ken

371

ANL/APS/TB-44, Guidelines for Beamline and Front-End Radiation Shielding Design at the Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2 Print258Department of31 .

372

Effusive molecular beam-sampled Knudsen flow reactor coupled to vacuum ultraviolet single photon ionization mass spectrometry using an external free radical source  

SciTech Connect (OSTI)

A new apparatus using vacuum ultraviolet single photon ionization mass spectrometry (VUV SPIMS) of an effusive molecular beam emanating from a Knudsen flow reactor is described. It was designed to study free radical-molecule kinetics over a significant temperature range (300–630 K). Its salient features are: (1) external free radical source, (2) counterpropagating molecular beam and diffuse VUV photon beam meeting in a crossed-beam ion source of a quadrupole mass spectrometer with perpendicular ion extraction, (3) analog detection of the photocurrent of the free radical molecular cation, and (4) possibility of detecting both free radicals and closed shell species in the same apparatus and under identical reaction conditions owing to the presence of photoelectrons generated by the photoelectric effect of the used VUV-photons. The measured thermal molecular beam-to-background ratio was 6.35 ± 0.39 for Ar and 10.86 ± 1.59 for i-C{sub 4}H{sub 10} at 300 K, a factor of 2.52 and 1.50 smaller, respectively, than predicted from basic gas-dynamic considerations. Operating parameters as well as the performance of key elements of the instrument are presented and discussed. Coupled to an external free radical source a steady-state specific exit flow of 1.6 × 10{sup 11} and 5.0 × 10{sup 11} molecule s{sup ?1} cm{sup ?3} of C{sub 2}H{sub 5}{sup •} (ethyl) and t-C{sub 4}H{sub 9}{sup •} (t-butyl) free radicals have been detected using VUV SPIMS at their molecular ion m/z 29 and 57, respectively, at 300 K.

Leplat, N.; Rossi, M. J. [Laboratory of Atmospheric Chemistry (LAC), Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland)] [Laboratory of Atmospheric Chemistry (LAC), Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland)

2013-11-15T23:59:59.000Z

373

Deterministic photon-emitter coupling in chiral photonic circuits  

E-Print Network [OSTI]

The ability to engineer photon emission and photon scattering is at the heart of modern photonics applications ranging from light harvesting, through novel compact light sources, to quantum-information processing based on single photons. Nanophotonic waveguides are particularly well suited for such applications since they confine photon propagation to a 1D geometry thereby increasing the interaction between light and matter. Adding chiral functionalities to nanophotonic waveguides lead to new opportunities enabling integrated and robust quantum-photonic devices or the observation of novel topological photonic states. In a regular waveguide, a quantum emitter radiates photons in either of two directions, and photon emission and absorption are reverse processes. This symmetry is violated in nanophotonic structures where a non-transversal local electric field implies that both photon emission and scattering may become directional. Here we experimentally demonstrate that the internal state of a quantum emitter determines the chirality of single-photon emission in a specially engineered photonic-crystal waveguide. Single-photon emission into the waveguide with a directionality of more than 90\\% is observed under conditions where practically all emitted photons are coupled to the waveguide. Such deterministic and highly directional photon emission enables on-chip optical diodes, circulators operating at the single-photon level, and deterministic quantum gates. Based on our experimental demonstration, we propose an experimentally achievable and fully scalable deterministic photon-photon CNOT gate, which so far has been missing in photonic quantum-information processing where most gates are probabilistic.

Immo Söllner; Sahand Mahmoodian; Sofie Lindskov Hansen; Leonardo Midolo; Alisa Javadi; Gabija Kiršansk?; Tommaso Pregnolato; Haitham El-Ella; Eun Hye Lee; Jin Dong Song; Sřren Stobbe; Peter Lodahl

2015-01-12T23:59:59.000Z

374

Advanced variable speed air-source integrated heat pump (AS-IHP)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| DepartmentEnergyPolicy andAdvanced

375

An electrically driven quantum dot-in-nanowire visible single photon source operating up to 150 K  

SciTech Connect (OSTI)

We demonstrate electrically pumped single photon emission up to 150 K from a single InGaN quantum dot embedded in a GaN nanowire junction diode. The InGaN dot-in-nanowire p-n junctions were grown on silicon by molecular beam epitaxy. The exciton electroluminescence from individual dot-in-nanowires is in the green spectral range (? ? 520 nm) and is detectable up to 150 K. Second order autocorrelation measurements performed at the exciton energy at an ambient temperature of 125 K show a background corrected g{sup (2)}(0) equal to 0.35, indicating dominant single photon emission. The steady state nanowire temperature under these conditions is estimated to be 150 K due to Joule heating induced by the large nanowire series resistance. Time resolved photoluminescence measurements yield an exciton radiative lifetime of 1.1 ns.

Deshpande, Saniya; Bhattacharya, Pallab [Center for Photonics and Multiscale Nanomaterials, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122 (United States)] [Center for Photonics and Multiscale Nanomaterials, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122 (United States)

2013-12-09T23:59:59.000Z

376

Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources  

SciTech Connect (OSTI)

The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designing a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.

Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.; Cauchy, Charles J.

2010-09-01T23:59:59.000Z

377

Photonic-powered cable assembly  

DOE Patents [OSTI]

A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

2013-01-22T23:59:59.000Z

378

Photonic-powered cable assembly  

DOE Patents [OSTI]

A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

Sanderson, Stephen N; Appel, Titus James; Wrye, IV, Walter C

2014-06-24T23:59:59.000Z

379

Advanced Light Source (ALS) | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHuman ResourcesScienceHomeAboutLight Source (ALS)

380

Advanced Ultrasonic Inspection Techniques for General Purpose Heat Source Fueled Clad Closure Welds  

SciTech Connect (OSTI)

A radioisotope thermoelectric generator is used to provide a power source for long-term deep space missions. This General Purpose Heat Source (GPHS) is fabricated using iridium clad vent sets to contain the plutonium oxide fuel pellets. Integrity of the closure weld is essential to ensure containment of the plutonium. The Oak Ridge Y-12 Plant took the lead role in developing the ultrasonic inspection for the closure weld and transferring the inspection to Los Alamos National Laboratory for use in fueled clad inspection for the Cassini mission. Initially only amplitude and time-of-flight data were recorded. However, a number of benign geometric conditions produced signals that were larger than the acceptance threshold. To identify these conditions, a B-scan inspection was developed that acquired full ultrasonic waveforms. Using a test protocol the B-scan inspection was able to identify benign conditions such as weld shield fusion and internal mismatch. Tangential radiography was used to confirm the ultrasonic results. All but two of 29 fueled clads for which ultrasonic B-scan data was evaluated appeared to have signals that could be attributed to benign geometric conditions. This report describes the ultrasonic inspection developed at Y-12 for the Cassini mission.

Moyer, M.W.

2001-01-11T23:59:59.000Z

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Prospects for advanced electron cyclotron resonance and electron beam ion source charge breeding methods for EURISOL  

SciTech Connect (OSTI)

As the most ambitious concept of isotope separation on line (ISOL) facility, EURISOL aims at producing unprecedented intensities of post-accelerated radioactive isotopes. Charge breeding, which transforms the charge state of radioactive beams from 1+ to an n+ charge state prior to post-acceleration, is a key technology which has to overcome the following challenges: high charge states for high energies, efficiency, rapidity and purity. On the roadmap to EURISOL, a dedicated R and D is being undertaken to push forward the frontiers of the present state-of-the-art techniques which use either electron cyclotron resonance or electron beam ion sources. We describe here the guidelines of this R and D.

Delahaye, P.; Jardin, P.; Maunoury, L.; Traykov, E.; Varenne, F. [GANIL, CEA/DSM-CNRS/IN2P3, Bd. Becquerel, BP 55027, 14076 Caen Cedex 05 (France); Galata, A.; Porcellato, A. M.; Prete, G. F. [INFN-Laboratori Nazionali di Legnaro, Viale dell'Universita 2, 35020 Legnaro, Padova (Italy); Angot, J.; Lamy, T.; Sortais, P.; Thuillier, T. [LPSC Grenoble, 53, rue des Martyrs, 38026 Grenoble Cedex (France); Ban, G. [LPC Caen, 6 bd Marechal Juin, 14050 Caen Cedex (France); Celona, L.; Lunney, D. [INFN-Laboratori Nazionali del Sud, via S.Sofia 62, 95125 Catania (Italy); Choinski, J.; Gmaj, P.; Jakubowski, A.; Steckiewicz, O. [Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5a, 02 093 Warsaw (Poland); Kalvas, T. [Department of Physics, University of Jyvaeskylae, PB 35 (YFL) 40351 Jyvaeskylae (Finland); and others

2012-02-15T23:59:59.000Z

382

Photon-photon collisions  

SciTech Connect (OSTI)

Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

Brodsky, S.J.

1988-07-01T23:59:59.000Z

383

Integrated source of tunable nonmaximally mode-entangled photons in a domain-engineered lithium niobate waveguide  

SciTech Connect (OSTI)

The nonmaximally entangled state is a special kind of entangled state, which has important applications in quantum information processing. It has been generated in quantum circuits based on bulk optical elements. However, corresponding schemes in integrated quantum circuits have been rarely considered. In this Letter, we propose an effective solution for this problem. An electro-optically tunable nonmaximally mode-entangled photon state is generated in an on-chip domain-engineered lithium niobate (LN) waveguide. Spontaneous parametric down-conversion and electro-optic interaction are effectively combined through suitable domain design to transform the entangled state into our desired formation. Moreover, this is a flexible approach to entanglement architectures. Other kinds of reconfigurable entanglements are also achievable through this method. LN provides a very promising platform for future quantum circuit integration.

Ming, Yang; Wu, Zi-jian; Xu, Fei, E-mail: feixu@nju.edu.cn; Lu, Yan-qing, E-mail: yqlu@nju.edu.cn [National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093 (China); Cui, Guo-xin [National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093 (China); Key Laboratory of Nanodevices and Nanoapplications, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215000 (China); Tan, Ai-hong [Laboratory for Quantum Information, China Jiliang University, Hangzhou 310018 (China)

2014-04-28T23:59:59.000Z

384

SOURCE?  

Energy Savers [EERE]

Department of Energy (DOE) in partnership with Lawrence Berkeley National Laboratory (LBNL), is an open-source code package designed to be a common, low-cost, standardized tool...

385

Advanced Neutron Source Reactor (ANSR) phenomena identification and ranking (PIR) for large break loss of coolant accidents (LBLOCA)  

SciTech Connect (OSTI)

A team of experts in reactor analysis conducted a phenomena identification and ranking (PIR) exercise for a large break loss-of-coolant accident (LBLOCA) in the Advanced Neutron source Reactor (ANSR). The LBLOCA transient is broken into two separate parts for the PIR exercise. The first part considers the initial depressurization of the system that follows the opening of the break. The second part of the transient includes long-term decay heat removal after the reactor is shut down and the system is depressurized. A PIR is developed for each part of the LBLOCA. The ranking results are reviewed to establish if models in the RELAP5-MOD3 thermalhydraulic code are adequate for use in ANSR LBLOCA simulations. Deficiencies in the RELAP5-MOD3 code are identified and existing data or models are recommended to improve the code for this application. Experiments were also suggested to establish models for situations judged to be beyond current knowledge. The applicability of the ANSR PIR results is reviewed for the entire set of transients important to the ANSR safety analysis.

Ruggles, A.E. [Oak Ridge National Lab., TN (United States)]|[Tennessee Univ., Knoxville, TN (United States); Cheng, L.Y. [Brookhaven National Lab., Upton, NY (United States); Dimenna, R.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Griffith, P. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Wilson, G.E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1994-06-01T23:59:59.000Z

386

Advanced Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home| Visitors| Education| REU|Archaeal ProvidingNext

387

Apparatus for photon activation positron annihilation analysis  

DOE Patents [OSTI]

Non-destructive testing apparatus according to one embodiment of the invention comprises a photon source. The photon source produces photons having predetermined energies and directs the photons toward a specimen being tested. The photons from the photon source result in the creation of positrons within the specimen being tested. A detector positioned adjacent the specimen being tested detects gamma rays produced by annihilation of positrons with electrons. A data processing system operatively associated with the detector produces output data indicative of a lattice characteristic of the specimen being tested.

Akers, Douglas W. (Idaho Falls, ID)

2007-06-12T23:59:59.000Z

388

Description of TASHA: Thermal Analysis of Steady-State-Heat Transfer for the Advanced Neutron Source Reactor  

SciTech Connect (OSTI)

This document describes the code used to perform Thermal Analysis of Steady-State-Heat-Transfer for the Advanced Neutron Source (ANS) Reactor (TASHA). More specifically, the code is designed for thermal analysis of the fuel elements. The new code reflects changes to the High Flux Isotope Reactor steady-state thermal-hydraulics code. These changes were aimed at both improving the code`s predictive ability and allowing statistical thermal-hydraulic uncertainty analysis to be performed. A significant portion of the changes were aimed at improving the correlation package in the code. This involved incorporating more recent correlations for both single-phase flow and two-phase flow thermal limits, including the addition of correlations to predict the phenomenon of flow excursion. Since the code was to be used in the design of the ANS, changes were made to allow the code to predict limiting powers for a variety of thermal limits, including critical heat flux, flow excursion, incipient boiling, oxide spallation, maximum centerline temperature, and surface temperature equal to the saturation temperature. Statistical uncertainty analysis also required several changes to the code itself as well as changes to the code input format. This report describes these changes in enough detail to allow the reader to interpret code results and also to understand where the changes were made in the code programming. This report is not intended to be a stand alone report for running the code, however, and should be used in concert with the two previous reports published on the original code. Sample input and output files are also included to help accomplish these goals. In addition, a section is included that describes requirements for a new, more modem code that the project planned to develop.

Morris, D.G.; Chen, N.C.; Nelson, W.R.; Yoder, G.L.

1996-10-01T23:59:59.000Z

389

Ion photon emission microscope  

DOE Patents [OSTI]

An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

Doyle, Barney L. (Albuquerque, NM)

2003-04-22T23:59:59.000Z

390

E-Print Network 3.0 - accelerator photon beams Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

photon beams Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerator photon beams Page: << < 1 2 3 4 5 > >> 1 KJKDec. 52002 Opportunities for...

391

EUV reflectance characterization of the 94/304 ? flight secondary AIA mirror at beamline 6.3.2 of the Advanced Light Source  

SciTech Connect (OSTI)

The AIA secondary flight mirror, previously coated at Columbia University with Mg/SiC for the 303.8 {angstrom} channel and Mo/Y for the 93.9 {angstrom} channel was characterized by means of EUV reflectance measurements at beamline 6.3.2 of the Advanced Light Source (ALS) synchrotron at LBNL on January 10, 2006. Paul Boerner (LMSAL) also participated in these measurements.

Soufli, R; Spiller, E; Aquila, A L; Gullikson, E M; Windt, D L

2006-02-22T23:59:59.000Z

392

Photon beam position monitor  

DOE Patents [OSTI]

A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

Kuzay, T.M.; Shu, D.

1995-02-07T23:59:59.000Z

393

Study of narrowband single photon emitters in polycrystalline diamond films  

SciTech Connect (OSTI)

Quantum information processing and integrated nanophotonics require robust generation of single photon emitters on demand. In this work, we demonstrate that diamond films grown on a silicon substrate by microwave plasma chemical vapor deposition can host bright, narrowband single photon emitters in the visible—near infra-red spectral range. The emitters possess fast lifetime (?several ns), absolute photostability, and exhibit full polarization at excitation and emission. Pulsed and continuous laser excitations confirm their quantum behaviour at room temperature, while low temperature spectroscopy is performed to investigate inhomogeneous broadening. Our results advance the knowledge of solid state single photon sources and open pathways for their practical implementation in quantum communication and quantum information processing.

Sandstrom, Russell G.; Shimoni, Olga; Martin, Aiden A.; Aharonovich, Igor, E-mail: igor.aharonovich@uts.edu.au [School of Physics and Advanced Materials, University of Technology, Sydney, P.O. Box 123, Broadway, New South Wales 2007 (Australia)

2014-11-03T23:59:59.000Z

394

Photon management in thermal and solar photovoltaics  

E-Print Network [OSTI]

Photovoltaics is a technology that directly converts photon energy into electrical energy. Depending on the photon source, photovoltaic systems can be categorized into two groups: solar photovoltaics (PV) and thermophotovoltaics ...

Hu, Lu

2008-01-01T23:59:59.000Z

395

advanced sic fiber: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

23 24 25 Next Page Last Page Topic Index 1 Photonic Crystal Fibers Advances in Fiber Optics Physics Websites Summary: Photonic Crystal Fibers Advances in Fiber Optics Elliott L....

396

The College of Optics & Photonics 1 Industrial Affiliates Day  

E-Print Network [OSTI]

3/7/14 1 CREOL The College of Optics & Photonics 1 Industrial Affiliates Day 2014 Symposium Advances in Optics & Photonics CREOLThe College of Optics and Photonics CREOL The College of Optics & Photonics 2 MJ Soileau V.P. for Research & Commercialization Professor of Optics, ECE & Physics Founder

Van Stryland, Eric

397

Collimator-free photon tomography  

DOE Patents [OSTI]

A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image. 6 figs.

Dilmanian, F.A.; Barbour, R.L.

1998-10-06T23:59:59.000Z

398

Collimator-free photon tomography  

DOE Patents [OSTI]

A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image.

Dilmanian, F. Avraham (Yaphank, NY); Barbour, Randall L. (Westbury, NY)

1998-10-06T23:59:59.000Z

399

A photonic cluster state machine gun  

E-Print Network [OSTI]

We present a method to convert certain single photon sources into devices capable of emitting large strings of photonic cluster state in a controlled and pulsed "on demand" manner. Such sources would greatly reduce the resources required to achieve linear optical quantum computation. Standard spin errors, such as dephasing, are shown to affect only 1 or 2 of the emitted photons at a time. This allows for the use of standard fault tolerance techniques, and shows that the photonic machine gun can be fired for arbitrarily long times. Using realistic parameters for current quantum dot sources, we conclude high entangled-photon emission rates are achievable, with Pauli-error rates per photon of less than 0.2%. For quantum dot sources the method has the added advantage of alleviating the problematic issues of obtaining identical photons from independent, non-identical quantum dots, and of exciton dephasing.

Netanel H. Lindner; Terry Rudolph

2009-08-23T23:59:59.000Z

400

Probing higher order correlations of the photon field with photon number resolving avalanche photodiodes  

E-Print Network [OSTI]

We demonstrate the use of two high speed avalanche photodiodes in exploring higher order photon correlations. By employing the photon number resolving capability of the photodiodes the response to higher order photon coincidences can be measured. As an example we show experimentally the sensitivity to higher order correlations for three types of photon sources with distinct photon statistics. This higher order correlation technique could be used as a low cost and compact tool for quantifying the degree of correlation of photon sources employed in quantum information science.

J. F. Dynes; Z. L. Yuan; A. W. Sharpe; O. Thomas; A. J. Shields

2011-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Laser Micromachining of Active and Passive Photonic Integrated Circuits  

E-Print Network [OSTI]

This thesis describes the development of advanced laser resonators and applications of laserinduced micromachining for photonic circuit fabrication. Two major advantages of laserinduced micromachining are direct patterning ...

Cho, Seong-Ho

2006-06-28T23:59:59.000Z

403

IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 23, NO. 7, APRIL 1, 2011 453 Quantum-Dash Mode-Locked Laser as a Source for  

E-Print Network [OSTI]

was supported by the French National Re- search Agency projects TELDOT and PERSYST II, by Québec's Regroupe are with the Université Laval, Centre for Optics, Photonics and Lasers (COPL), Electrical and Com- puter Engineering owing to their low-noise, high thermal stability, and a broad gain spectru

Boyer, Edmond

404

Advanced Engine Trends, Challenges and Opportunities  

Broader source: Energy.gov (indexed) [DOE]

Petroleum (Conventional and Alternative Sources) Alternative Fuels (Ethanol, Biodiesel, CNG, LPG) Electricity (Conv. and Alternative Sources) Hydrogen Time ADVANCED...

405

Advanced Propulsion Technology Strategy  

Broader source: Energy.gov (indexed) [DOE]

Alternative Sources) Hydrogen Time ADVANCED PROPULSION TECHNOLOGY STRATEGY DOWNSIZED TURBO GAS ENGINE CHEVROLET CRUZE 1.4L TURBO ECOTEC Downsized SIDI Turbo Boosting HCCI -...

406

E-Print Network 3.0 - asymptotical photon distributions Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3D photonic band-gap structures 413 12;DownloadedBy:EBSCOHostEJSContentDistribution... tunable 3D photonic ... Source: Dowling, Jonathan P. - Department of Physics and...

407

Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the Advanced Neutron Source reactor at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at ORNL. Damage propagation is postulated to occur from thermal conduction between dmaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur beause of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A parametric study was done for several uncertain variables. The study included investigating effects of plate contact area, convective heat transfer coefficient, thermal conductivity on fuel swelling, and initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects of damage propagation. Results provide useful insights into how variouss uncertain parameters affect damage propagation.

Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V.

1995-12-31T23:59:59.000Z

408

A low-neutron background slow-positron source.  

SciTech Connect (OSTI)

The addition of a thermionic rf gun [1] and a photocathode rf gun will allow the Advanced Photon Source (APS) linear accelerator (linac) [2] [3] to become a free-electron laser (FEL) driver [4]. As the FEL project progresses, the existing high-charge DC thermionic gun will no longer be critical to APS operation and could be used to generate high-energy or low-energy electrons to drive a slow-positron source. We investigated possibilities to create a useful low-energy source that could operate semi-independently and would have a low neutron background.

White, M. M.

1998-10-09T23:59:59.000Z

409

Photon Science for renewable energy  

E-Print Network [OSTI]

Photon Science for renewable energy at Light-Source Facilities of Today andTomorrow Lawrence revolution in renewable and carbon- neutral energy technologies. in these pages, we outline and illustrate is causing potentially catastrophic changes to our planet.The quest for renewable, nonpolluting sources

Knowles, David William

410

Design of an efficient single photon source from a metallic nanorod dimer: a quasinormal mode finite-difference time-domain approach  

E-Print Network [OSTI]

We describe how the finite-difference time-domain (FDTD) technique can be used to compute the quasinormal mode (QNM) for metallic nano-resonators, which is important for describing and understanding light-matter interactions in nanoplasmonics. We use the QNM to model the enhanced spontaneous emission rate for dipole emitters near a gold nanorod dimer structure using a newly developed QNM expansion technique. Significant enhanced photon emission factors of around 1500 are obtained with large output $\\beta$-factors of about $60\\%$.

Ge, Rong-Chun

2015-01-01T23:59:59.000Z

411

Testing foundations of quantum mechanics with photons  

E-Print Network [OSTI]

The foundational ideas of quantum mechanics continue to give rise to counterintuitive theories and physical effects that are in conflict with a classical description of Nature. Experiments with light at the single photon level have historically been at the forefront of tests of fundamental quantum theory and new developments in photonics engineering continue to enable new experiments. Here we review recent photonic experiments to test two foundational themes in quantum mechanics: wave-particle duality, central to recent complementarity and delayed-choice experiments; and Bell nonlocality where recent theoretical and technological advances have allowed all controversial loopholes to be separately addressed in different photonics experiments.

Peter Shadbolt; Jonathan C. F. Matthews; Anthony Laing; Jeremy L. O'Brien

2015-01-15T23:59:59.000Z

412

Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the Advanced Neutron Source Reactor at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at the Oak Ridge National Laboratory (ORNL). Damage propagation is postulated to occur from thermal conduction between damaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur because of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A scoping study was conducted to learn what parameters are important for core damage propagation, and to obtain initial estimates of core melt mass for addressing recriticality and steam explosion events. The study included investigating the effects of the plate contact area, the convective heat transfer coefficient, thermal conductivity upon fuel swelling, and the initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects on damage propagation. The results provide useful insights into how various uncertain parameters affect damage propagation.

Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V.

1995-09-01T23:59:59.000Z

413

Postirradiation evaluations of capsules HANS-1 and HANS-2 irradiated in the HFIR target region in support of fuel development for the advanced neutron source  

SciTech Connect (OSTI)

This report describes the design, fabrication, irradiation, and evaluation of two capsule tests containing U{sub 3}Si{sub 2} fuel particles in contact with aluminum. The tests were in support of fuel qualification for the Advanced Neutron Source (ANS) reactor, a high-powered research reactor that was planned for the Oak Ridge National Laboratory. At the time of these tests, the fuel consisted of U{sub 3}Si{sub 2}, containing highly enriched uranium dispersed in aluminum at a volume fraction of {approximately}0.15. The extremely high thermal flux in the target region of the High Flux Isotope Reactor provided up to 90% burnup in one 23-d cycle. Temperatures up to 450{degrees}C were maintained by gamma heating. Passive SiC temperature monitors were employed. The very small specimen size allowed only microstructural examination of the fuel particles but also allowed many specimens to be tested at a range of temperatures. The determination of fission gas bubble morphology by microstructural examination has been beneficial in developing a fuel performance model that allows prediction of fuel performance under these extreme conditions. The results indicate that performance of the reference fuel would be satisfactory under the ANS conditions. In addition to U{sub 3}Si{sub 2}, particles of U{sub 3}Si, UAl{sub 2}, UAl{sub x}, and U{sub 3}O{sub 8} were tested.

Hofman, G.L.; Snelgrove, J.L. [Argonne National Lab., IL (United States); Copeland, G.L. [Oak Ridge National Lab., TN (United States)

1995-08-01T23:59:59.000Z

414

E-Print Network 3.0 - atom-photon pair laser Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

photon pair laser Search Powered by Explorit Topic List Advanced Search Sample search results for: atom-photon pair laser Page: << < 1 2 3 4 5 > >> 1 Observation of Entanglement of...

415

Photonic Crystal Fibers Advances in Fiber Optics  

E-Print Network [OSTI]

susceptible to electromagnetic interference (EMI) from signals on neighbouring lines. From a speed perspective

La Rosa, Andres H.

416

X-entanglement of PDC photon pairs  

E-Print Network [OSTI]

We investigate the spatio-temporal structure of the bi-photon entanglement in parametric down-conversion (PDC) and we demonstrate its non-factorable X-shaped geometry. Such a structure gives access to the ultra-broad bandwidth of PDC, and can be exploited to achieve a bi-photon temporal localization in the femtosecond range. This extreme localization is connected to our ability to resolve the photon positions in the source near-field. The non factorability opens the possibility of tailoring the temporal entanglement by acting on the spatial degrees of freedom of twin photons.

E. Brambilla; L. Caspani; O. Jedrkiewicz; L. A. Lugiato; A. Gatti

2008-12-18T23:59:59.000Z

417

X-entanglement of PDC photon pairs  

E-Print Network [OSTI]

We investigate the spatio-temporal structure of the bi-photon entanglement in parametric down-conversion (PDC) and we demonstrate its non-factorable X-shaped geometry. Such a structure gives access to the ultra-broad bandwidth of PDC, and can be exploited to achieve a bi-photon temporal localization in the femtosecond range. This extreme localization is connected to our ability to resolve the photon positions in the source near-field. The non factorability opens the possibility of tailoring the temporal entanglement by acting on the spatial degrees of freedom of twin photons.

Brambilla, Elena; Jedrkiewicz, O; Lugiato, L A; Gatti, A

2008-01-01T23:59:59.000Z

418

Photon Calorimeter  

DOE Patents [OSTI]

A photon calorimeter (20, 40) is provided that comprises a laminar substrate (10, 22, 42) that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating (28, 48, 52), that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions (30, 50, 54) are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly.

Chow, Tze-Show (Hayward, CA)

1989-01-01T23:59:59.000Z

419

Fuels for Advanced Combustion Engines  

Broader source: Energy.gov (indexed) [DOE]

not finalized, AARF is considering: * 2 nd generation biofuels * Non-food sources * Jatropha * Algae * Lignocellulose * Other biomass-to-liquid * Advanced processing of edible...

420

E-Print Network 3.0 - air pollution source Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

source Search Powered by Explorit Topic List Advanced Search Sample search results for: air pollution source...

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

E-Print Network 3.0 - alternative energy sources Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sources Search Powered by Explorit Topic List Advanced Search Sample search results for: alternative energy sources...

422

E-Print Network 3.0 - alternative energy source Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

source Search Powered by Explorit Topic List Advanced Search Sample search results for: alternative energy source...

423

Generation and manipulation of nonclassical light using photonic crystals  

E-Print Network [OSTI]

Photonic crystal cavities can localize light into nanoscale volumes with high quality factors. This permits a strong interaction between light and matter, which is important for the construction of classical light sources with improved properties (e.g., low threshold lasers) and of nonclassical light sources (such as single and entangled photon sources) that are crucial pieces of hardware of quantum information processing systems. This article will review some of our recent experimental and theoretical results on the interaction between single quantum dots and photonic crystal cavity fields, and on the integration of multiple photonic crystal devices into functional circuits for quantum information processing.

Jelena Vuckovic; Dirk Englund; David Fattal; Edo Waks; Yoshihisa Yamamoto

2005-10-07T23:59:59.000Z

424

Experimental study of photonic band gap accelerator structures  

E-Print Network [OSTI]

This thesis reports theoretical and experimental research on a novel accelerator concept using a photonic bandgap (PBG) structure. Major advances in higher order mode (HOM) damping are required for the next generation of ...

Marsh, Roark A

2009-01-01T23:59:59.000Z

425

Laser micromachining of active and passive photonic integrated circuits  

E-Print Network [OSTI]

This thesis describes the development of advanced laser resonators and applications of laser-induced micromachining for photonic circuit fabrication. Two major advantages of laser-induced micromachining are direct patterning ...

Cho, Seong-Ho, 1966-

2004-01-01T23:59:59.000Z

426

A review of recent advances in thermophotovoltaics  

SciTech Connect (OSTI)

Thermophotovoltaic (TPV) generation of electricity is attracting attention because of advances in materials and devices and because of a widening appreciation of the large number of applications that may be addressed using TPV-based generators. The attractions include the wide range of fuel sources and the potentially high power density outputs. The two main approaches to TPV generators are (1) broadband radiators, coupled with converters with bandgaps in the range 0.4-0.7 eV, and (2) narrow-band emitters coupled with lower-cost silicon converters. The key issues in realizing a viable TPV system are the durability, efficiency, and properties of the radiant emitter; the recuperation of sub-bandgap photons; the optimization of the converter performance; and the recuperation of waste heat.

Coutts, T.J.; Wanlass, M.W.; Ward, J.S.; Johnson, S. [National Renewable Energy Lab., Golden, CO (United States)

1996-05-01T23:59:59.000Z

427

A review of recent advances in thermophotovoltaics  

SciTech Connect (OSTI)

Thermophotovoltaic (TPV) generation of electricity is attracting attention because of advances in materials and devices and because of a widening appreciation of the large number of applications that may be addressed using TPV-based generators. The attractions include the wide range of fuel sources and the potentially high power density outputs. The two main approaches to TPV generators are (1) broadband radiators, coupled with converters with bandgaps in the range 0.4--0.7 eV, and (2) narrow-band emitters coupled with lower-cost silicon converters. The key issues in realizing a viable TPV system are the durability, efficiency, and properties of the radiant emitter; the recuperation of sub-bandgap photons; the optimization of the converter performance; and the recuperation of waste heat.

Coutts, T.J.; Wanlass, M.W.; Ward, J.S. [National Renewable Energy Lab., Golden, CO (United States); Johnson, S.

1996-09-01T23:59:59.000Z

428

Better Randomness with Single Photons  

E-Print Network [OSTI]

Randomness is one of the most important resources in modern information science, since encryption founds upon the trust in random numbers. Since it is impossible to prove if an existing random bit string is truly random, it is relevant that they be generated in a trust worthy process. This requires specialized hardware for random numbers, for example a die or a tossed coin. But when all input parameters are known, their outcome might still be predicted. A quantum mechanical superposition allows for provably true random bit generation. In the past decade many quantum random number generators (QRNGs) were realized. A photonic implementation is described as a photon which impinges on a beam splitter, but such a protocol is rarely realized with non-classical light or anti-bunched single photons. Instead, laser sources or light emitting diodes are used. Here we analyze the difference in generating a true random bit string with a laser and with anti-bunched light. We show that a single photon source provides more r...

Oberreiter, Lukas

2014-01-01T23:59:59.000Z

429

Identification of potential sources and source regions of fine ambient particles measured at Gosan background site in Korea using advanced hybrid receptor model combined with positive matrix factorization - article no. D22217  

SciTech Connect (OSTI)

The size- and time-resolved measurement of particulate trace elements was made using an eight-stage Davis Rotating Unit for Monitoring sampler and synchrotron X-ray fluorescence system from 29 March to 29 May in 2002 at Gosan, Korea, which is one of the representative background sites in east Asia. A sa result, continuous 3-hour average concentrations were obtained for 19 elements including S, Si, Al, Fe, Ca, Cl, Cu, Zn, Ti, K, Mn, Pb, Ni, V, Se, As, Rb, Cr, and Br. Positive matrix factorization (PMF) method was applied to the size-resolved aerosol data sets in order to identify the possible sources and to estimate their contribution to particulate matter mass in each size range. Twelve sources were then resolved in the fine size range ( 0.07 to 1.15 {mu}m), including continental aerosol, biomass burning, coal combustion, oil heating furnace, residual oil-fired boiler, municipal incineration, nonferrous metal source, ferrous metal source, gasoline vehicle, diesel vehicle, copper smelter, and volcanic emission. A newly developed hybrid receptor model, concentration, retention time, and source emission weighted trajectory (CRSWT) was then applied to the source intensities derived from the PMF analysis by incorporating meteorological and source inventory information of the study region in order to suggest the regional information of long-range transported fine aerosol sources. The CRSWT model was able to resolve highly potential source areas and pathways for the fine ambient aerosol at the Gosan background site.

Han, J.S.; Moon, K.J.; Kim, Y.J. [National Institute of Environmental Research, Inchon (Republic of Korea). Dept. of Air Quality Research

2006-11-15T23:59:59.000Z

430

Counterintuitive temporal shape of single photons  

E-Print Network [OSTI]

We prepare heralded single photons from a photon pair source based on non-degenerate four-wave mixing in a cold atomic ensemble via a cascade decay scheme. Their statistics shows strong antibunching with g(2)(0) < 0.03, indicating a near single photon character. In an optical homodyne experiment, we directly measure the temporal envelope of these photons and find, depending on the heralding scheme, an exponentially decaying or rising profile. The rising envelope will be useful for efficient interaction between single photons and microscopic systems like single atoms and molecules. At the same time, their observation illustrates the breakdown of a realistic interpretation of the heralding process in terms of defining an initial condition of a physical system.

Gurpreet Kaur Gulati; Bharath Srivathsan; Brenda Chng; Alessandro Cerč; Dzmitry Matsukevich; Christian Kurtsiefer

2014-02-24T23:59:59.000Z

431

Hybrid photonic entanglement: Realization, characterization and applications  

E-Print Network [OSTI]

We show that the quantum disentanglement eraser implemented on a two-photon system from parametric down-conversion is a general method to create hybrid photonic entanglement, namely the entanglement between different degrees of freedom of the photon pair. To demonstrate this, we generate and characterize a source with tunable degree of hybrid entanglement between two qubits, one encoded in the transverse momentum and position of a photon, and the other in the polarization of its partner. In addition, we show that a simple extension of our setup enables the generation of two-photon qubit-qudit hybrid entangled states. Finally, we discuss the advantages that this type of entanglement can bring for an optical quantum network.

Leonardo Neves; Gustavo Lima; Aldo Delgado; Carlos Saavedra

2009-06-24T23:59:59.000Z

432

Low dimension structures and devices for new generation photonic technology  

SciTech Connect (OSTI)

Low dimensional structures and devices are the key technological building blocks for new generation of electronic and photonic technology. Such structures and devices show novel properties and can be integrated into systems for wide applications in many areas, including medical, biological and military and advancement of science. In this invited talk, I will present the main results achieved in our competitive research program which aims to explore the application of the mesoscopic structures in light source, manipulation and imaging and integrate them into advanced systems. In the light source aspect, we have for the first time developed graphene mode-locked lasers which are in the process of commercialization. Nanocrystal Si embedded in dielectrics was formed by ion implantation and subsequent annealing. Si light emitting devices with external quantum efficiency of about 2.9×10{sup ?3}% for visible emission were demonstrated at room temperature and the color of emitted light can be tuned electrically from violet to white by varying the injected current. In light manipulation, loss compensation of surface plasmon polaritons (SPPs) using quantum well (QW) gain media was studied theoretically and demonstrated experimentally. The SPP propagation length was effectively elongated several times through electrical pumping. One and two microring resonators based on silicon on insulator and III-V semiconductors technologies have been successfully fabricated and they can be used as filter and switch in the photonic circuit. In imaging, both SPP and low dimension structures are investigated and resolution far beyond diffraction limit in visible range has been realized. The integration of the components in the three aspects into complicated systems is on the way.

Zhang, D. H.; Tang, D. Y.; Chen, T. P. [School of Electrical and Electronic Engineering, Nanyang Technological University, 679798 (Singapore); Mei, T. [Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631 (China); Yuan, X. C. [Institute of Modern Optics, Nankai University, Tianjin 300071 (China)

2014-05-15T23:59:59.000Z

433

FY 2006 Infrared Photonics Final Report  

SciTech Connect (OSTI)

Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics and optical fiber processing methods for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology—all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions.

Anheier, Norman C.; Allen, Paul J.; Bernacki, Bruce E.; Ho, Nicolas; Krishnaswami, Kannan; Qiao, Hong (Amy); Schultz, John F.

2006-12-28T23:59:59.000Z

434

Digital Tomosynthesis: Advanced Breast Cancer  

E-Print Network [OSTI]

creating an image. · A newer process, called full field digital mammography uses digital receptors. #12Digital Tomosynthesis: Advanced Breast Cancer Imaging Technique Max Wiedmann #12;Digital Bremsstrahlung, a process in which electrons are accelerated against an anode, causing photons to be fired off

Fygenson, Deborah Kuchnir

435

Photon position measure  

E-Print Network [OSTI]

The positive operator valued measure (POVM) for a photon counting array detector is derived and found to equal photon flux density integrated over pixel area and measurement time. Since photon flux density equals number density multiplied by the speed of light, this justifies theoretically the observation that a photon counting array provides a coarse grained measurement of photon position. The POVM obtained here can be written as a set of projectors onto a basis of localized states, consistent with the description of photon position in a recent quantum imaging proposal [M. Tsang, Phys. Rev. Lett. \\textbf{102}, 253601 (2009)]. The wave function that describes a photon counting experiment is the projection of the photon state vector onto this localized basis. Collapse is to the electromagnetic vacuum and not to a localized state, thus violating the text book rules of quantum mechanics but compatible with the theory of generalized observables and the nonlocalizability of an incoming photon.

Margaret Hawton

2010-07-03T23:59:59.000Z

436

Photon position measure  

E-Print Network [OSTI]

The positive operator valued measure (POVM) for a photon counting array detector is derived and found to equal photon flux density integrated over pixel area and measurement time. Since photon flux density equals number density multiplied by the speed of light, this justifies theoretically the observation that a photon counting array provides a coarse grained measurement of photon position. The POVM obtained here can be written as a set of projectors onto a basis of localized states, consistent with the description of photon position in a recent quantum imaging proposal [M. Tsang, Phys. Rev. Lett. \\textbf{102}, 253601 (2009)]. The wave function that describes a photon counting experiment is the projection of the photon state vector onto this localized basis. Collapse is to the electromagnetic vacuum and not to a localized state, thus violating the text book rules of quantum mechanics but compatible with the theory of generalized observables and the nonlocalizability of an incoming photon.

Hawton, Margaret

2010-01-01T23:59:59.000Z

437

Nuclear photonics  

SciTech Connect (OSTI)

With the planned new {gamma}-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 10{sup 13}{gamma}/s and a band width of {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -3}, a new era of {gamma} beams with energies up to 20MeV comes into operation, compared to the present world-leading HI{gamma}S facility at Duke University (USA) with 10{sup 8}{gamma}/s and {Delta}E{gamma}/E{gamma} Almost-Equal-To 3 Dot-Operator 10{sup -2}. In the long run even a seeded quantum FEL for {gamma} beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused {gamma} beams. Here we describe a new experiment at the {gamma} beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for {gamma} beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for {gamma} beams are being developed. Thus, we have to optimize the total system: the {gamma}-beam facility, the {gamma}-beam optics and {gamma} detectors. We can trade {gamma} intensity for band width, going down to {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -6} and address individual nuclear levels. The term 'nuclear photonics' stresses the importance of nuclear applications. We can address with {gamma}-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, {gamma} beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to {mu}m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

Habs, D.; Guenther, M. M.; Jentschel, M.; Thirolf, P. G. [Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany); Max Planck Institut fuer Quantenoptik, D-85748 Garching (Germany); Institut Laue-Langevin, F-38042 Grenoble (Germany); Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany)

2012-07-09T23:59:59.000Z

438

Photonic Molecules and Spectral Engineering  

E-Print Network [OSTI]

This chapter reviews the fundamental optical properties and applications of photonic molecules (PMs) – photonic structures formed by electromagnetic coupling of two or more optical microcavities (photonic atoms). Controllable ...

Boriskina, Svetlana V.

2010-01-01T23:59:59.000Z

439

The Implementation of Photon Polarization into the Mercury Transport Code  

E-Print Network [OSTI]

of . ............................. 33 Figure 10. U/I for the coherently scattered portion of a 5 keV photon beam with a source Stokes vector of . ............................. 33 Figure 11. V/I for the coherently scattered portion of a 5 keV photon beam... of . ................................ 34 vi Figure 13. P for the coherently scattered portion of a 5 keV photon beam with a source Stokes vector of . ................................ 35 Figure 14. ? for the coherently scattered portion of a 5 keV photon...

Windsor, Ethan

2014-06-04T23:59:59.000Z

440

Photon Science for Renewable Energy  

SciTech Connect (OSTI)

Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities - the synchrotrons of today and the next-generation light sources of tomorrow - are the scientific tools of choice for exploring the electronic and atomic structure of matter. As such, these photon-science facilities are uniquely positioned to jump-start a global revolution in renewable and carbonneutral energy technologies. In these pages, we outline and illustrate through examples from our nation's light sources possible scientific directions for addressing these profound yet urgent challenges.

Hussain, Zahid; Tamura, Lori; Padmore, Howard; Schoenlein, Bob; Bailey, Sue

2010-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

High energy photon-photon collisions  

SciTech Connect (OSTI)

The collisions of high energy photons produced at a electron-positron collider provide a comprehensive laboratory for testing QCD, electroweak interactions and extensions of the standard model. The luminosity and energy of the colliding photons produced by back-scattering laser beams is expected to be comparable to that of the primary e{sup +}e{sup {minus}} collisions. In this overview, we shall focus on tests of electroweak theory in photon-photon annihilation, particularly {gamma}{gamma} {yields} W{sup +}W{sup {minus}}, {gamma}{gamma} {yields} Higgs bosons, and higher-order loop processes, such as {gamma}{gamma} {yields} {gamma}{gamma}, Z{gamma} and ZZ. Since each photon can be resolved into a W{sup +}W{sup minus} pair, high energy photon-photon collisions can also provide a remarkably background-free laboratory for studying WW collisions and annihilation. We also review high energy {gamma}{gamma} tests of quantum chromodynamics, such as the scaling of the photon structure function, t{bar t} production, mini-jet processes, and diffractive reactions.

Brodsky, S.J. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

1994-07-01T23:59:59.000Z

442

Composite Photon Theory Versus Elementary Photon Theory  

E-Print Network [OSTI]

The purpose of this paper is to show that the composite photon theory measures up well against the Standard Model's elementary photon theory. This is done by comparing the two theories area by area. Although the predictions of quantum electrodynamics are in excellent agreement with experiment (as in the anomalous magnetic moment of the electron), there are some problems, such as the difficulty in describing the electromagnetic field with the four-component vector potential because the photon has only two polarization states. In most areas the two theories give similar results, so it is impossible to rule out the composite photon theory. Pryce's arguments in 1938 against a composite photon theory are shown to be invalid or irrelevant. Recently, it has been realized that in the composite theory the antiphoton does not interact with matter because it is formed of a neutrino and an antineutrino with the wrong helicity. This leads to experimental tests that can determine which theory is correct.

Walton A. Perkins

2015-03-02T23:59:59.000Z

443

Photon Physics in ALICE  

E-Print Network [OSTI]

We give an overview of photon physics which will be studied by the ALICE experiment in proton-proton and heavy ion collisions at LHC. We compare properties of ALICE photon detectors and estimate their ability to measure neutral meson and direct photon spectra as well as gamma-hadron and gamma-jet correlations in pp and Pb+Pb collisions.

D. Peressounko; Y. Kharlov; for the ALICE collaboration

2009-07-16T23:59:59.000Z

444

advanced design tools: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photon Source, an Office of Science User Facility Kemner, Ken 47 Computer-aided Tooling Design for Manufacturing Processes MIT - DSpace Summary: Tooling design for...

445

E-Print Network 3.0 - advanced cmos devices Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: . Paniccia, "Advances in silicon photonic devices for silicon-based optoelectronic applications," Physica E... . Paniccia, "Development of CMOS-compatible integrated...

446

E-Print Network 3.0 - advanced optical measurements Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

results for: advanced optical measurements Page: << < 1 2 3 4 5 > >> 1 The College of Optics & Photonics Industrial Affiliates Day Summary: ) to optimize optical properties...

447

Contactless heat flux control with photonic devices  

E-Print Network [OSTI]

The ability to control electric currents in solids using diodes and transistors is undoubtedly at the origin of the main developments in modern electronics which have revolutionized the daily life in the second half of 20th century. Surprisingly, until the year 2000 no thermal counterpart for such a control had been proposed. Since then, based on pioneering works on the control of phononic heat currents new devices were proposed which allow for the control of heat fluxes carried by photons rather than phonons or electrons. The goal of the present paper is to summarize the main advances achieved recently in the field of thermal energy control with photons.

Ben-Abdallah, Philippe

2015-01-01T23:59:59.000Z

448

Photon wave function  

E-Print Network [OSTI]

Photon wave function is a controversial concept. Controversies stem from the fact that photon wave functions can not have all the properties of the Schroedinger wave functions of nonrelativistic wave mechanics. Insistence on those properties that, owing to peculiarities of photon dynamics, cannot be rendered, led some physicists to the extreme opinion that the photon wave function does not exist. I reject such a fundamentalist point of view in favor of a more pragmatic approach. In my view, the photon wave function exists as long as it can be precisely defined and made useful.

Iwo Bialynicki-Birula

2005-08-26T23:59:59.000Z

449

Enhanced single-photon emission from a quantum dot in a micropost microcavity  

E-Print Network [OSTI]

We demonstrate a single-photon source based on a quantum dot in a micropost microcavity that exhibits a large Purcell factor together with a small multi-photon probability. For a quantum dot on resonance with the cavity, the spontaneous emission rate is increased by a factor of five, while the probability to emit two or more photons in the same pulse is reduced to 2% compared to a Poisson-distributed source of the same intensity. In addition to the small multi-photon probability, such a strong Purcell effect is important in a single-photon source for improving the photon outcoupling efficiency and the single-photon generation rate, and for bringing the emitted photon pulses closer to the Fourier transform limit.

Jelena Vuckovic; David Fattal; Charles Santori; Glenn Solomon; Yoshihisa Yamamoto

2003-07-03T23:59:59.000Z

450

The Dawn of Nuclear Photonics with Laser-based Gamma-rays  

SciTech Connect (OSTI)

A renaissance in nuclear physics is occurring around the world because of a new kind of incredibly bright, gamma-ray light source that can be created with short pulse lasers and energetic electron beams. These highly Mono-Energetic Gamma-ray (MEGa-ray) sources produce narrow, laser-like beams of incoherent, tunable gamma-rays and are enabling access and manipulation of the nucleus of the atom with photons or so called 'Nuclear Photonics'. Just as in the early days of the laser when photon manipulation of the valence electron structure of the atom became possible and enabling to new applications and science, nuclear photonics with laser-based gamma-ray sources promises both to open up wide areas of practical isotope-related, materials applications and to enable new discovery-class nuclear science. In the United States, the development of high brightness and high flux MEGa-ray sources is being actively pursued at the Lawrence Livermore National Laboratory in Livermore (LLNL), California near San Francisco. The LLNL work aims to create by 2013 a machine that will advance the state of the art with respect to source the peak brightness by 6 orders of magnitude. This machine will create beams of 1 to 2.3 MeV photons with color purity matching that of common lasers. In Europe a similar but higher photon energy gamma source has been included as part of the core capability that will be established at the Extreme Light Infrastructure Nuclear Physics (ELI-NP) facility in Magurele, Romania outside of Bucharest. This machine is expected to have an end point gamma energy in the range of 13 MeV. The machine will be co-located with two world-class, 10 Petawatt laser systems thus allowing combined intense-laser and gamma-ray interaction experiments. Such capability will be unique in the world. In this talk, Dr. Chris Barty from LLNL will review the state of the art with respect to MEGa-ray source design, construction and experiments and will describe both the ongoing projects around the world as well some of the exciting applications that these machines will enable. The optimized interaction of short-duration, pulsed lasers with relativistic electron beams (inverse laser-Compton scattering) is the key to unrivaled MeV-scale photon source monochromaticity, pulse brightness and flux. In the MeV spectral range, such Mono-Energetic Gamma-ray (MEGa-ray) sources can have many orders of magnitude higher peak brilliance than even the world's largest synchrotrons. They can efficiently perturb and excite the isotope-specific resonant structure of the nucleus in a manner similar to resonant laser excitation of the valence electron structure of the atom.

Barty, C J

2011-03-17T23:59:59.000Z

451

Energy Recovery Linacs for Light Source Applications  

SciTech Connect (OSTI)

Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

George Neil

2011-04-01T23:59:59.000Z

452

A high energy photon polarimeter for astrophysics  

E-Print Network [OSTI]

A high-energy photon polarimeter for astrophysics studies in the energy range from 20 MeV to 1000 MeV is considered. The proposed concept uses a stack of silicon micro-strip detectors where they play the roles of both a converter and a tracker. The purpose of this paper is to outline the parameters of such a polarimeter and to estimate the productivity of measurements. Our study supported by a Monte Carlo simulation shows that with a one-year observation period the polarimeter will provide 5.5 % accuracy of the polarization degree for a photon energy of 100 MeV, which would be a significant advance relative to the currently explored energy range of a few MeV. The proposed polarimeter design could easily be adjusted to the specific photon energy range to maximize efficiency if needed.

Eingorn, Maxim; Vlahovic, Branislav; Wojtsekhowski, Bogdan; Urciuoli, Guido Maria; De Persio, Fulvio; Meddi, Franco

2015-01-01T23:59:59.000Z

453

Polarized photon facilities - windows to new physics  

SciTech Connect (OSTI)

The status of new and proposed sources of intermediate-energy polarized photons is reviewed. The N {r_arrow} {delta} transition is discussed as an example of new physics that can be addressed at these facilities through precision measurements of polarization observables.

Sandorfi, A.M.

1995-12-31T23:59:59.000Z

454

Photonics Research and Development  

SciTech Connect (OSTI)

During the period August 2005 through October 2009, the UNLV Research Foundation (UNLVRF), a non-profit affiliate of the University of Nevada, Las Vegas (UNLV), in collaboration with UNLVâ??s Colleges of Science and Engineering; Boston University (BU); Oak Ridge National Laboratory (ORNL); and Sunlight Direct, LLC, has managed and conducted a diverse and comprehensive research and development program focused on light-emitting diode (LED) technologies that provide significantly improved characteristics for lighting and display applications. This final technical report provides detailed information on the nature of the tasks, the results of the research, and the deliverables. It is estimated that about five percent of the energy used in the nation is for lighting homes, buildings and streets, accounting for some 25 percent of the average homeâ??s electric bill. However, the figure is significantly higher for the commercial sector. About 60 percent of the electricity for businesses is for lighting. Thus replacement of current lighting with solid-state lighting technology has the potential to significantly reduce this nationâ??s energy consumption â?? by some estimates, possibly as high as 20%. The primary objective of this multi-year R&D project has been to develop and advance lighting technologies to improve national energy conversion efficiencies; reduce heat load; and significantly lower the cost of conventional lighting technologies. The UNLVRF and its partners have specifically focused these talents on (1) improving LED technologies; (2) optimizing hybrid solar lighting, a technology which potentially offers the benefits of blending natural with artificial lighting systems, thus improving energy efficiency; and (3) building a comprehensive academic infrastructure within UNLV which concentrates on photonics R&D. Task researchers have reported impressive progress in (1) the development of quantum dot laser emitting diodes (QDLEDs) which will ultimately improve energy efficiency and lower costs for display and lighting applications (UNLV College of Engineering); (2) advancing green LED technology based on the Indium-Gallium-Nitride system (BU), thus improving conversion efficiencies; (3) employing unique state-of-the-art X-ray, electron and optical spectroscopies with microscopic techniques to learn more about the electronic structure of materials and contacts in LED devices (UNLV College of Science); (4) establishing a UNLV Display Lighting Laboratory staffed with a specialized team of academic researchers, students and industrial partners focused on identifying and implementing engineering solutions for lighting display-related problems; and (5) conducting research, development and demonstration for HSL essential to the resolution of technological barriers to commercialization.

Pookpanratana, Sujitra; Shlayan, Neveen; Venkat, Rama; Das, Bisjwajit; Boehm, Bob; Heske, Clemens; Fraser, Donald; Moustakas, Theodore

2010-01-15T23:59:59.000Z

455

Photonically Engineered Incandescent Emitter  

DOE Patents [OSTI]

A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

Gee, James M. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

2005-03-22T23:59:59.000Z

456

Portable thermo-photovoltaic power source  

DOE Patents [OSTI]

A miniature thermo-photovoltaic (TPV) device for generation of electrical power for use in portable electronic devices. A TPV power source is constructed to provide a heat source chemical reactor capable of using various fuels, such as liquid hydrocarbons, including but not limited to propane, LPG, butane, alcohols, oils and diesel fuels to generate a source of photons. A reflector dish guides misdirected photon energy from the photon source toward a photovoltaic array. A thin transparent protector sheet is disposed between the photon source and the array to reflect back thermal energy that cannot be converted to electricity, and protect the array from thermal damage. A microlens disposed between the protector sheet and the array further focuses the tailored band of photon energy from the photon source onto an array of photovoltaic cells, whereby the photon energy is converted to electrical power. A heat recuperator removes thermal energy from reactor chamber exhaust gases, preferably using mini- or micro-bellows to force air and fuel past the exhaust gases, and uses the energy to preheat the fuel and oxidant before it reaches the reactor, increasing system efficiency. Mini- or micro-bellows force ambient air through the system both to supply oxidant and to provide cooling. Finally, an insulator, which is preferably a super insulator, is disposed around the TPV power source to reduce fuel consumption, and to keep the TPV power source cool to the touch so it can be used in hand-held devices.

Zuppero, Anthony C. (Idaho Falls, ID); Krawetz, Barton (Idaho Falls, ID); Barklund, C. Rodger (Idaho Falls, ID); Seifert, Gary D. (Idaho Falls, ID)

1997-01-14T23:59:59.000Z

457

Pure single photon generation by type-I PDC with backward-wave amplification  

E-Print Network [OSTI]

We explore a promising method of generating pure heralded single photons. Our approach is based on parametric downconversion in a periodically-poled waveguide. However, unlike conventional downconversion sources, the photon pairs are counter-propagating: one travels with the pump beam in the forward direction while the other is backpropagating towards the laser source. Our calculations reveal that these downconverted two-photon states carry minimal spectral correlations within each photon-pair. This approach offers the possibility to employ a new range of downconversion processes and materials like PPLN (previously considered unsuitable due to their unfavorable phasematching properties) to herald pure single photons over a broad frequency range.

Christ, A; Mosley, P J; Silberhorn, C

2009-01-01T23:59:59.000Z

458

Pure single photon generation by type-I PDC with backward-wave amplification  

E-Print Network [OSTI]

We explore a promising method of generating pure heralded single photons. Our approach is based on parametric downconversion in a periodically-poled waveguide. However, unlike conventional downconversion sources, the photon pairs are counter-propagating: one travels with the pump beam in the forward direction while the other is backpropagating towards the laser source. Our calculations reveal that these downconverted two-photon states carry minimal spectral correlations within each photon-pair. This approach offers the possibility to employ a new range of downconversion processes and materials like PPLN (previously considered unsuitable due to their unfavorable phasematching properties) to herald pure single photons over a broad frequency range.

A. Christ; A. Eckstein; P. J. Mosley; C. Silberhorn

2009-02-09T23:59:59.000Z

459

In-plane emission of indistinguishable photons generated by an integrated quantum emitter  

SciTech Connect (OSTI)

We demonstrate the emission of indistinguishable photons along a semiconductor chip originating from carrier recombination in an InAs quantum dot. The emitter is integrated in the waveguiding region of a photonic crystal structure, allowing for on-chip light propagation. We perform a Hong-Ou-Mandel-type of experiment with photons collected from the exit of the waveguide, and we observe two-photon interference under continuous wave excitation. Our results pave the way for the integration of quantum emitters in advanced photonic quantum circuits.

Kalliakos, Sokratis, E-mail: sokratis.kalliakos@crl.toshiba.co.uk; Bennett, Anthony J.; Ward, Martin B.; Ellis, David J. P.; Skiba-Szymanska, Joanna; Shields, Andrew J. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Brody, Yarden; Schwagmann, Andre [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Farrer, Ian; Griffiths, Jonathan P.; Jones, Geb A. C.; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

2014-06-02T23:59:59.000Z

460

MTL ANNUAL RESEARCH REPORT 2014 Photonics 99 Photonics, Optoelectronics  

E-Print Network [OSTI]

MTL ANNUAL RESEARCH REPORT 2014 Photonics 99 Photonics, Optoelectronics Generating Optical Orbital................................................................................................................................................118 Optoelectronics Based on Monolayer WSe2 p-n Diodes

Reif, Rafael

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

High energy photon emission  

E-Print Network [OSTI]

photons, neutrons, charged particles, and fission fragments were used to study the reaction 160 + 238 U at a projectile energy of 50 MeV/u. Inverse slope values of the photon spectra were extracted for inclusive data and data of higher multiplicities...

Jabs, Harry

1997-01-01T23:59:59.000Z

462

Photonic quantum technologies  

E-Print Network [OSTI]

The first quantum technology, which harnesses uniquely quantum mechanical effects for its core operation, has arrived in the form of commercially available quantum key distribution systems that achieve enhanced security by encoding information in photons such that information gained by an eavesdropper can be detected. Anticipated future quantum technologies include large-scale secure networks, enhanced measurement and lithography, and quantum information processors, promising exponentially greater computation power for particular tasks. Photonics is destined for a central role in such technologies owing to the need for high-speed transmission and the outstanding low-noise properties of photons. These technologies may use single photons or quantum states of bright laser beams, or both, and will undoubtably apply and drive state-of-the-art developments in photonics.

Jeremy L. O'Brien; Akira Furusawa; Jelena Vu?kovi?

2010-03-20T23:59:59.000Z

463

Photon and graviton mass limits  

SciTech Connect (OSTI)

We review past and current studies of possible long-distance, low-frequency deviations from Maxwell electrodynamics and Einstein gravity. Both have passed through three phases: (1) Testing the inverse-square laws of Newton and Coulomb, (2) Seeking a nonzero value for the rest mass of photon or graviton, and (3) Considering more degrees of freedom, allowing mass while preserving gauge or general-coordinate invariance. For electrodynamics there continues to be no sign of any deviation. Since our previous review the lower limit on the photon Compton wavelength (associated with weakening of electromagnetic fields in vacuum over large distance scale) has improved by four orders of magnitude, to about one astronomical unit. Rapid current progress in astronomical observations makes it likely that there will be further advances. These ultimately could yield a bound exceeding galactic dimensions, as has long been contemplated. Meanwhile, for gravity there have been strong arguments about even the concept of a graviton rest mass. At the same time there are striking observations, commonly labeled 'dark matter' and 'dark energy' that some argue imply modified gravity. This makes the questions for gravity much more interesting. For dark matter, which involves increased attraction at large distances, any explanation by modified gravity would be qualitatively different from graviton mass. Because dark energy is associated with reduced attraction at large distances, it might be explained by a graviton-mass-like effect.

Nieto, Michael [Los Alamos National Laboratory; Goldhaber Scharff, Alfred [SUNY

2008-01-01T23:59:59.000Z

464

Efficient generation of single and entangled photons on a silicon photonic integrated chip  

E-Print Network [OSTI]

We present a protocol for generating on-demand, indistinguishable single photons on a silicon photonic integrated chip. The source is a time-multiplexed spontaneous parametric down-conversion element that allows optimization of single-photon versus multiphoton emission while realizing high output rate and indistinguishability. We minimize both the scaling of active elements and the scaling of active element loss with multiplexing. We then discuss detection strategies and data processing to further optimize the procedure. We simulate an improvement in single-photon-generation efficiency over previous time-multiplexing protocols, assuming existing fabrication capabilities. We then apply this system to generate heralded Bell states. The generation efficiency of both nonclassical states could be increased substantially with improved fabrication procedures.

Jacob Mower; Dirk Englund

2011-10-18T23:59:59.000Z

465

Generation and transfer of single photons on a photonic crystal chip  

E-Print Network [OSTI]

We present a basic building block of a quantum network consisting of a quantum dot coupled to a source cavity, which in turn is coupled to a target cavity via a waveguide. The single photon emission from the high-Q/V source cavity is characterized by a twelve-fold spontaneous emission (SE) rate enhancement that results in a SE coupling efficiency near 0.98 into the source cavity mode. Single photons are efficiently transferred into the target cavity through the waveguide, with a source/target field intensity ratio of 0.12 (up to 0.49 observed in other structures without coupled quantum dots). This system shows great promise as a building block of future on-chip quantum information processing systems.

Dirk Englund; Andrei Faraon; Bingyang Zhang; Yoshihisa Yamamoto; Jelena Vuckovic

2006-09-07T23:59:59.000Z

466

Photon collider Higgs factories  

E-Print Network [OSTI]

The discovery of the Higgs boson (and still nothing else) have triggered appearance of many proposals of Higgs factories for precision measurement of the Higgs properties. Among them there are several projects of photon colliders (PC) without e+e- in addition to PLC based on e+e- linear colliders ILC and CLIC. In this paper, following a brief discussion of Higgs factories physics program I give an overview of photon colliders based on linear colliders ILC and CLIC, and of the recently proposed photon-collider Higgs factories with no e+e- collision option based on recirculation linacs in ring tunnels.

V. I. Telnov

2014-09-19T23:59:59.000Z

467

Photon Clusters in Thermal Radiation  

E-Print Network [OSTI]

Within the framework of Bose-Einstein statistics, it is shown that the blackbody radiation, in addition to single photons, contains photon clusters, or coalescent photons. The probability to find a k-photon cluster versus radiation frequency and temperature is found, as well as the statistics of clusters. Spectra of photon-cluster radiation are calculated as functions of blackbody temperature. The Planck's radiation law is derived based on the existence of photon clusters. The possibility of experimental observation of photon clusters in thermal radiation is discussed.

Aleksey Ilyin

2014-10-30T23:59:59.000Z

468

Advanced Test Reactor National Scientific User Facility Partnerships  

SciTech Connect (OSTI)

In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin-Madison; (8) Illinois Institute of Technology (IIT) Materials Research Collaborative Access Team (MRCAT) beamline at Argonne National Laboratory's Advanced Photon Source; and (9) Nanoindenter in the University of California at Berkeley (UCB) Nuclear Engineering laboratory Materials have been analyzed for ATR NSUF users at the Advanced Photon Source at the MRCAT beam, the NIST Center for Neutron Research in Gaithersburg, MD, the Los Alamos Neutron Science Center, and the SHaRE user facility at Oak Ridge National Laboratory (ORNL). Additionally, ORNL has been accepted as a partner facility to enable ATR NSUF users to access the facilities at the High Flux Isotope Reactor and related facilities.

Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

2012-03-01T23:59:59.000Z

469

Advanced Light Source Activity Report 2005  

E-Print Network [OSTI]

reliable evidence of high hydrogen storage capacity at roommechanism could provide hydrogen storage capacity thatthe feasi­ bility of hydrogen storage through chemisorption

Tamura Ed., Lori S.

2010-01-01T23:59:59.000Z

470

MAST-Upgrade Advancing compact fusion sources  

E-Print Network [OSTI]

of innovation. It will also put the UK in a leading position to develop engineering systems for the future to the drive towards commercial fusion power. 1. Testing reactor concepts. MAST-Upgrade will be the first machine to include the Super-X divertor design, an innovative plasma exhaust system that, if successful

471

Advanced Light Source Activity Report 2005  

E-Print Network [OSTI]

chemical states, and small metal-silicide precipi- F I G U Rmetal defects in commercial solar cell material. Left: Iron silicide

Tamura Ed., Lori S.

2010-01-01T23:59:59.000Z

472

Brain protein deciphered at Advanced Light Source  

SciTech Connect (OSTI)

This computer-generated model of a rat glutamate receptor is the first complete portrait of this important link in the nervous system. At the top of the Y-shaped protein, a pair of molecules splay outward like diverging prongs. The bottom section, which is embedded in a neuronal membrane, houses the ion channel. The resolution of this image is 3.6 angstroms per pixel, or just under four ten-billionths of a meter per image unit. http://newscenter.lbl.gov/feature-stories/2010/01/21/glutamate-receptor/

None

2010-01-01T23:59:59.000Z

473

Advanced Light Source Activity Report 2000  

E-Print Network [OSTI]

Goldstein, E. Blakely, K. Bjornstad, M. Martin, and W.R.M.L. Russell, and K. Bjornstad (Berkeley Lab) and M.C.Martin, E.A. Blakely, K. Bjornstad, and W.R. McKinney, “

Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

2001-01-01T23:59:59.000Z

474

Advanced Light Source Beam Position Monitor  

E-Print Network [OSTI]

2 Diagram of storage ring BPM button test set. The 290 ohmmodules. Fig. 6 Drawing of BPM modules and bin. The chassis7 Basic signal flow between BPM plug-in modules. Throughout

Hinkson, J.

2011-01-01T23:59:59.000Z

475

Sandia National Laboratories: LBNL Advanced Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowa State University

476

Suitability versus fidelity for rating single-photon guns  

E-Print Network [OSTI]

The creation of specified quantum states is important for most, if not all, applications in quantum computation and communication. The quality of the state preparation is therefore an essential ingredient in any assessment of a quantum-state gun. We show that the fidelity, under the standard definitions is not sufficient to assess quantum sources, and we propose a new measure of suitability that necessarily depends on the application for the source. We consider the performance of single-photon guns in the context of quantum key distribution (QKD) and linear optical quantum computation. Single-photon sources for QKD need radically different properties than sources for quantum computing. Furthermore, the suitability for single-photon guns is discussed explicitly in terms of experimentally accessible criteria.

George M. Hockney; Pieter Kok; Jonathan P. Dowling

2003-04-01T23:59:59.000Z

477

Design-Space Exploration for CMOS Photonic Processor Vladimir Stojanovia  

E-Print Network [OSTI]

achieve up to 4x better energy-efficiency and throughput than electrical interconnects in core advances [1,2] in building high-throughput, energy-efficient photonic networks for core-to-core and core in core count has to be followed by the corresponding increase in energy-efficiency of the core

Asanovic, Krste

478

E-Print Network 3.0 - advanced microwave sounding Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

power systems. It is described as an advanced modern tool ready for the direct use in simulation... in a number of advanced commercial software available by the ... Source:...

479

E-Print Network 3.0 - advanced underground vehicle Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

analysis shows that the advanced technologies strategy... energy, and modernized'' coal. By aggressively pursu- ing the advanced technology strategy now Source: Collection:...

480

E-Print Network 3.0 - advanced development volume Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Fuel Cycle... (GNEP). An Argonne researcher tests a nuclear fuel treatment process. Advanced Separations ... Source: Kemner, Ken - Biosciences Division, Argonne...

Note: This page contains sample records for the topic "advanced photon source" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Heralded single photon absorption by a single atom  

E-Print Network [OSTI]

The emission and absorption of single photons by single atomic particles is a fundamental limit of matter-light interaction, manifesting its quantum mechanical nature. At the same time, as a controlled process it is a key enabling tool for quantum technologies, such as quantum optical information technology [1, 2] and quantum metrology [3, 4, 5, 6]. Controlling both emission and absorption will allow implementing quantum networking scenarios [1, 7, 8, 9], where photonic communication of quantum information is interfaced with its local processing in atoms. In studies of single-photon emission, recent progress includes control of the shape, bandwidth, frequency, and polarization of single-photon sources [10, 11, 12, 13, 14, 15, 16, 17], and the demonstration of atom-photon entanglement [18, 19, 20]. Controlled absorption of a single photon by a single atom is much less investigated; proposals exist but only very preliminary steps have been taken experimentally such as detecting the attenuation and phase shift of a weak laser beam by a single atom [21, 22], and designing an optical system that covers a large fraction of the full solid angle [23, 24, 25]. Here we report the interaction of single heralded photons with a single trapped atom. We find strong correlations of the detection of a heralding photon with a change in the quantum state of the atom marking absorption of the quantum-correlated heralded photon. In coupling a single absorber with a quantum light source, our experiment demonstrates previously unexplored matter-light interaction, while opening up new avenues towards photon-atom entanglement conversion in quantum technology.

Nicolas Piro; Felix Rohde; Carsten Schuck; Marc Almendros; Jan Huwer; Joyee Ghosh; Albrecht Haase; Markus Hennrich; Francois Dubin; Jürgen Eschner

2010-04-23T23:59:59.000Z

482

Photonic laser-driven accelerator for GALAXIE  

SciTech Connect (OSTI)

We report on the design and development of an all-dielectric laser-driven accelerator to be used in the GALAXIE (GV-per-meter Acce Lerator And X-ray-source Integrated Experiment) project's compact free-electron laser. The approach of our working design is to construct eigenmodes, borrowing from the field of photonics, which yield the appropriate, highly demanding dynamics in a high-field, short wavelength accelerator. Topics discussed include transverse focusing, power coupling, bunching, and fabrication.

Naranjo, B.; Ho, M.; Hoang, P.; Putterman, S.; Valloni, A.; Rosenzweig, J. B. [UCLA Dept. of Physics and Astronomy Los Angeles, CA 90095-1547 (United States)

2012-12-21T23:59:59.000Z

483

Synchrotron-Radiation Photon Distribution for Highest Energy Circular Colliders  

E-Print Network [OSTI]

At high energies, beam-induced synchrotron radiation is an important source of heating, beam-related vacuum pressure increase, and primary photoelectrons, which can give rise to an electron cloud. The photon distribution along the beam pipe wall is a key input to codes such as ECLOUD and PyECLOUD, which model the electron cloud build-up. For future high-energy colliders, like TLEP or SHE-LHC, photon stops and antechambers are considered in order to facilitate cooling and vacuum pressure control. We use the Synrad3D code developed at Cornell to simulate the photon distribution for the LHC.

Maury Cuna, GHI; Dugan, G; Zimmermann, F

2013-01-01T23:59:59.000Z

484

Synchrotron-Radiation Photon Distributions for Highest Energy Circular Colliders  

E-Print Network [OSTI]

At high energies, beam-induced synchrotron radiation is an important source of heating, beam-related vacuum pressure increase, and primary photoelectrons, which can give rise to an electron cloud. The photon distribution along the beam pipe wall is a key input to codes such as ECLOUD and PyECLOUD, which model the electron cloud build-up. For future high-energy colliders, like TLEP or SHE-LHC, photon stops and antechambers are considered in order to facilitate cooling and vacuum pressure control. We use the Synrad3D code developed at Cornell to simulate the photon distribution for the LHC.

Maury Cuna, G H I; Dugan, G; Zimmermann, F

2013-01-01T23:59:59.000Z

485

The role of pump coherence in two-photon interferometry  

E-Print Network [OSTI]

We use a parametric down-conversion source pumped by a short coherence-length continuous-wave (CW) diode laser to perform two-photon interferometry in an intermediate regime between the more familiar Franson-type experiments with a long coherence-length pump laser, and the short pulsed pump "time-bin" experiments pioneered by Gisin's group. The use of a time-bin-like Mach-Zehnder interferometer in the CW pumping beam induces coherence between certain two-photon amplitudes, while the CW nature of the experiment prevents the elimination of remaining incoherent ones. The experimental results highlight the role of pump coherence in two-photon interferometry.

J. Liang; S. M. Hendrickson; T. B. Pittman

2010-12-20T23:59:59.000Z

486

Three-Dimensional Photonic Crystal Laser-Driven Accelerator Structures  

SciTech Connect (OSTI)

We discuss simulated photonic crystal structure designs for laser-driven particle acceleration, focusing on three-dimensional planar structures based on the so-called ''woodpile'' lattice. We describe guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice and discuss the properties of this mode, including particle beam dynamics and potential coupling methods for the structure. We also discuss possible materials and power sources for this structure and their effects on performance parameters, as well as possible manufacturing techniques and the required tolerances. In addition we describe the computational technique and possible improvements in numerical modeling that would aid development of photonic crystal structures.

Cowan, B.; /SLAC

2006-09-07T23:59:59.000Z

487

Nonlinear interferometry approach to photonic sequential logic  

E-Print Network [OSTI]

Motivated by rapidly advancing capabilities for extensive nanoscale patterning of optical materials, I propose an approach to implementing photonic sequential logic that exploits circuit-scale phase coherence for efficient realizations of fundamental components such as a NAND-gate-with-fanout and a bistable latch. Kerr-nonlinear optical resonators are utilized in combination with interference effects to drive the binary logic. Quantum-optical input-output models are characterized numerically using design parameters that yield attojoule-scale energy separation between the latch states.

Hideo Mabuchi

2011-08-08T23:59:59.000Z

488

E-Print Network 3.0 - advanced microwave processing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RF Phase Shifter Yu Yan and Jianping Yao... , Senior Member, IEEE Abstract--A novel tunable photonic microwave filter ... Source: Yao, Jianping - School of Information...

489

Introduction to Solar Photon Conversion  

SciTech Connect (OSTI)

The efficient and cost-effective direct conversion of solar photons into solar electricity and solar fuels is one of the most important scientific and technological challenges of this century. It is estimated that at least 20 terawatts of carbon-free energy (1 and 1/2 times the total amount of all forms of energy consumed today globally), in the form of electricity and liquid and gaseous fuels, will be required by 2050 in order to avoid the most serious consequences of global climate change and to ensure adequate global energy supply that will avoid economic chaos. But in order for solar energy to contribute a major fraction of future carbon-free energy supplies, it must be priced competitively with, or perhaps even be less costly than, energy from fossil fuels and nuclear power as well as other renewable energy resources. The challenge of delivering very low-cost solar fuels and electricity will require groundbreaking advances in both fundamental and applied science. This Thematic Issue on Solar Photon Conversion will provide a review by leading researchers on the present status and prognosis of the science and technology of direct solar photoconversion to electricity and fuels. The topics covered include advanced and novel concepts for low-cost photovoltaic (PV) energy based on chemistry (dye-sensitized photoelectrodes, organic and molecular PV, multiple exciton generation in quantum dots, singlet fission), solar water splitting, redox catalysis for water oxidation and reduction, the role of nanoscience and nanocrystals in solar photoconversion, photoelectrochemical energy conversion, and photoinduced electron transfer. The direct conversion of solar photons to electricity via photovoltaic (PV) cells is a vital present-day commercial industry, with PV module production growing at about 75%/year over the past 3 years. However, the total installed yearly averaged energy capacity at the end of 2009 was about 7 GW-year (0.2% of global electricity usage). Thus, there is potential for the PV industry to grow enormously in the future (by factors of 100-300) in order for it to provide a significant fraction of total global electricity needs (currently about 3.5 TW). Such growth will be greatly facilitated by, and probably even require, major advances in the conversion efficiency and cost reduction for PV cells and modules; such advances will depend upon advances in PV science and technology, and these approaches are discussed in this Thematic Issue. Industrial and domestic electricity utilization accounts for only about 30% of the total energy consumed globally. Most ({approx}70%) of our energy consumption is in the form of liquid and gaseous fuels. Presently, solar-derived fuels are produced from biomass (labeled as biofuels) and are generated through biological photosynthesis. The global production of liquid biofuels in 2009 was about 1.6 million barrels/day, equivalent to a yearly output of about 2.5 EJ (about 1.3% of global liquid fuel utilization). The direct conversion of solar photons to fuels produces high-energy chemical products that are labeled as solar fuels; these can be produced through nonbiological approaches, generally called artificial photosynthesis. The feedstocks for artificial photosynthesis are H{sub 2}O and CO{sub 2}, either reacting as coupled oxidation-reduction reactions, as in biological photosynthesis, or by first splitting H{sub 2}O into H{sub 2} and O{sub 2} and then reacting the solar H{sub 2} with CO{sub 2} (or CO produced from CO2) in a second step to produce fuels through various well-known chemical routes involving syngas, water gas shift, and alcohol synthesis; in some applications, the generated solar H{sub 2} itself can be used as an excellent gaseous fuel, for example, in fuel cells. But at the present time, there is no solar fuels industry. Much research and development are required to create a solar fuels industry, and this Thematic Issue presents several reviews on the relevant solar fuels science and technology. The first three manuscripts relate to the daunting problem of producing

Nozik, A.; Miller, J.

2010-11-10T23:59:59.000Z

490

Full Quantum Analysis of Two-Photon Absorption Using Two-Photon Wavefunction: Comparison with One-Photon Absorption  

E-Print Network [OSTI]

For dissipation-free photon-photon interaction at the single photon level, we analyze one-photon transition and two-photon transition induced by photon pairs in three-level atoms using two-photon wavefunctions. We show that the two-photon absorption can be substantially enhanced by adjusting the time correlation of photon pairs. We study two typical cases: Gaussian wavefunction and rectangular wavefunction. In the latter, we find that under special conditions one-photon transition is completely suppressed while the high probability of two-photon transition is maintained.

Toshihiro Nakanishi; Hirokazu Kobayashi; Kazuhiko Sugiyama; Masao Kitano

2009-06-01T23:59:59.000Z

491

Designing of Metallic Photonic Structures and Applications  

SciTech Connect (OSTI)

In this thesis our main interest has been to investigate metallic photonic crystal and its applications. We explained how to solve a periodic photonic structure with transfer matrix method and when and how to use modal expansion method. Two different coating methods were introduced, modifying a photonic structure's intrinsic optical properties and rigorous calculation results are presented. Two applications of metallic photonic structures are introduced. For thermal emitter, we showed how to design and find optimal structure. For conversion efficiency increasing filter, we calculated its efficiency and the way to design it. We presented the relation between emitting light spectrum and absorption and showed the material and structural dependency of the absorption spectrum. By choosing a proper base material and structural parameters, we can design a selective emitter at a certain region we are interested in. We have developed a theoretical model to analyze a blackbody filament enclosed by a metallic mesh which can increase the efficiency of converting a blackbody radiation to visible light. With this model we found that a square lattice metallic mesh enclosing a filament might increase the efficiency of incandescent lighting sources. Filling fraction and thickness dependency were examined and presented. Combining these two parameters is essential to achieve the maximum output result.

Yong-Sung Kim

2006-08-09T23:59:59.000Z

492

Two-photon wave mechanics  

E-Print Network [OSTI]

The position-representation wave function for multi-photon states and its equation of motion are introduced. A major strength of the theory is that it describes the complete evolution (including polarization and entanglement) of multi-photon states propagating through inhomogeneous media. As a demonstration of the two-photon wave function's use, we show how two photons in an orbital-angular-momentum entangled state decohere upon propagation through a turbulent atmosphere.

Brian J. Smith; M. G. Raymer

2007-02-21T23:59:59.000Z

493

Photon collider at TESLA  

E-Print Network [OSTI]

High energy photon colliders (gamma-gamma, gamma-electron) based on backward Compton scattering of laser light is a very natural addition to e+e- linear colliders. In this report we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case the gamma-gamma luminosity luminosity in the high energy part of spectrum can reach (1/3)L_{e+e-}. Typical cross sections of interesting processes in gamma-gamma collisions are higher than those in e+e- collisions by about one order of magnitude, so the number of events in gamma-gamma collisions will be more than that in e+e- collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is ``an optical storage ring (optical trap)'' with diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based at TESLA, its possible parameters and existing problems.

Valery Telnov

2001-03-06T23:59:59.000Z

494

Photonic Science & Engineering  

E-Print Network [OSTI]

3321 Engineering Dynamics (3) EGN 3211 Engineering Analysis (3) STA 3032 Probability / Statistics (3Photonic Science & Engineering 2014-2015 Suggested Plan* www.creol.ucf.edu undergrad for Engineers I (4) PHY 3101 Physics for Engineers III (3) MAC 2311C** Calculus I (4) MAC 2312** Calculus II (4

Wu, Shin-Tson

495

Hidden Photons from the Sun  

E-Print Network [OSTI]

A brief account of the phenomenon of photon oscillations into sub-eV mass hidden photons is given and used to estimate the flux and properties of these hypothetical particles from the Sun. A new generation of dedicated helioscopes, the Solar Hidden Photon Search (SHIPS) in the Hamburg Observatory amongst them, will cover a vast region of parameter space.

Davide Cadamuro; Javier Redondo

2010-10-22T23:59:59.000Z

496

Advanced Combustion  

SciTech Connect (OSTI)

The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

Holcomb, Gordon R. [NETL

2013-03-11T23:59:59.000Z

497

IMPRS (Stand Juni 2011) Sitzland Advanced Photon Science Bayern  

E-Print Network [OSTI]

Law Baden-Württemberg Successful Dispute Resolution in International Law Baden-Württemberg Quantum #12;Biomimetic Systems Brandenburg Geometric Analysis, Gravitation and String Theory Brandenburg Molecular Biology Niedersachsen Neurosciences Niedersachsen Gravitational Wave Astronomy Niedersachsen Aging

Falge, Eva

498

APS and Synchrotron-related Employment Opportunities | Advanced Photon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|PhysicsGasandArgonneALS inRelated

499

advance photonics map: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with a CV (gerne auch auf deutsch) Dr. Peter Baum Max-Planck-Institute for Quantum Optics, and Ludwig are table-top and will be operated by yourself and our small team. Our...

500

Water-Like Properties of Soft Nanoparticle Suspensions | Advanced Photon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition3 WaterFebruary 18, 2014 B O N