Powered by Deep Web Technologies
Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE  

Broader source: Energy.gov (indexed) [DOE]

Report of Report of ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE 24 October 2003 BURTON RICHTER, CHAIR DARLEANE C. HOFFMAN SEKAZI K. MTINGWA RONALD P. OMBERG SILVIE PILLON JOY L. REMPE I. INTRODUCTION AND SUMMARY The committee met in Washington on September 16 and 17 to review progress in the program with respect to a changed set of mission priorities. Our last meeting took place in December 2002 after the reorganization that had placed the Advanced Fuel Cycle Initiative (AFCI) and the GEN IV program together in the Advanced Nuclear Research Office (AN-20). Since mission priorities have been evolving, the committee felt that it should wait until they have settled down before we met again. We have kept in touch

2

January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Broader source: Energy.gov (indexed) [DOE]

January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The ANTT Subcommittee met in Washington on Dec 4-5, 2002 to review progress in the transmutation program, and to learn about major organizational changes that affect the management of the program. The NE's new Advanced Nuclear Research Office (NE-20) now oversees both the transmutation program (ANTT) and the Generation-IV program (GEN-IV). antt14Jan_03.pdf More Documents & Publications October 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

3

March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Broader source: Energy.gov (indexed) [DOE]

March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The Global Nuclear Energy Partnership (GNEP) marks a major change in the direction of the DOE's nuclear energy R&D program. It is a coherent plan to test technologies that promise to markedly reduce the problem of nuclear waste treatment and to reduce the proliferation risk in a world with a greatly expanded nuclear power program. It brings the U.S. program into much closer alignment with that of the other major nuclear energy states. GNEP proposes to take spent fuel from existing light water reactors (LWRs),

4

October 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Broader source: Energy.gov (indexed) [DOE]

3, Report of the ADVANCED NUCLEAR TRANSFORMATION 3, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE October 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The committee met in Washington in Sept 16-17 to review progress in the program with respect to a changed set of mission priorities. Our last meeting took place in Dec 2002 after the reorganization that had place the Advanced Fuel Cycle Initiative (AFCI) and GEN IV program together in the Advanced Nuclear Reserach Office (AN-20). Since mission priorities have been evolving, the committee felt that it should wait unti they have settled down before we met again. We have kept in touch during the process,

5

October 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Broader source: Energy.gov (indexed) [DOE]

6, Report of the ADVANCED NUCLEAR TRANSFORMATION 6, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE October 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The Global Nuclear Energy Partnership (GNEP) program is still evolving. Since our report of March 22, 2006 the DOE has sought to gauge industry interest in participation in the program from its very beginning. At the time the ANTT committee met, August 30- 31, 2006, responses had not yet been received from industry to the DOE's request for Expressions of Interest. This report is based on the assumption that the program outlined recently, which does not include an Advanced Burner Test Reactor, is what

6

Advanced Nuclear Energy Projects Solicitation | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Nuclear Energy Projects Solicitation Advanced Nuclear Energy Projects Solicitation INFORMATIONAL MATERIALS ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION Solicitation...

7

Draft Advanced Nuclear Energy Projects Solicitation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Draft Advanced Nuclear Energy Projects Solicitation Draft Advanced Nuclear Energy Projects Solicitation INFORMATIONAL MATERIALS DRAFT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION...

8

Energy requirements for nuclear transformations  

Science Journals Connector (OSTI)

Energy requirements for nuclear transformations ... There are several conservation requirements that must be met in nuclear reactions, including the conservation of energy (E = mc2), charge, angular and linear momentum. ... Nuclear / Radiochemistry ...

Benjamin Carrol; Peter F. E. Marapodi

1951-01-01T23:59:59.000Z

9

UNEDF: Advanced Scienti?c Computing Collaboration Transforms the Low-Energy Nuclear Many-Body Problem  

SciTech Connect (OSTI)

With diverse scienti?c backgrounds, the UNEDF SciDAC collaboration of nuclear theorists, applied mathematicians, and computer scientists is developing a comprehensive description of nuclei and their reactions that delivers maximum predictive power with quanti?ed uncertainties. This paper describes the UNEDF collaboration and identi?es attributes that classify UNEDF as a successful computational collaboration. We illustrate signi?cant milestones accomplished by UNEDF through integrative solutions using the most reliable theoretical approaches, the most advanced algorithms, and leadership class computational resources.

Nam, Hai A.; Stoitsov, M.; Nazarewicz, Witold; Bulgac, Aurel; Hagen, Gaute; Kortelainene, Markus; Maris, P.; Pei, Junchen; Roche, Kenneth J.; Schunck, Nicolas; Thompson, Ian; Vary, James; Wild, Stefan

2012-11-03T23:59:59.000Z

10

Draft Advanced Nuclear Energy Projects Solicitation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Projects Solicitation Draft Advanced Nuclear Energy Projects Solicitation Federal loan guarantee solicitation announcement -- Advanced Nuclear Energy Projects. Draft Advanced...

11

Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation...  

Office of Environmental Management (EM)

Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Solicitation...

12

Advanced nuclear fuel  

SciTech Connect (OSTI)

Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

Terrani, Kurt

2014-07-14T23:59:59.000Z

13

Advanced nuclear fuel  

ScienceCinema (OSTI)

Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

Terrani, Kurt

2014-07-15T23:59:59.000Z

14

Advances in Metallic Nuclear Fuel  

Science Journals Connector (OSTI)

Metallic nuclear fuels have generated renewed interest for advanced ... operations is excellent. Ongoing irradiation tests in Argonne-West’s Idaho-based Experimental Breeder Reactor ... fast reactor (IFR) concept...

B. R. Seidel; L. C. Walters; Y. I. Chang

1987-04-01T23:59:59.000Z

15

ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE  

Broader source: Energy.gov (indexed) [DOE]

data for higher priority isotopes and fuel mixes in the thermal, epithermal and fast-neutron ANTT Report 14 January 2003 8 spectra using heated samples in low-power critical...

16

Advances in Nuclear Engineering  

Science Journals Connector (OSTI)

... door, closed for fifteen years, to scientific and technical information about fission and nuclear reactors. In spite of the 1,000 papers published then, there was an enormous amount ... Engineering and Science Conference held in Philadelphia, March 1957, and comprise 130 papers on reactors, fuel and a few other matters, almost all the papers being of American origin ...

T. E. ALLIBONE

1958-07-26T23:59:59.000Z

17

Advanced nuclear precleaner  

SciTech Connect (OSTI)

This Phase II Small Business Innovation Research (SBIR) program`s goal is to develop a dynamic, self-cleaning air precleaner for high-efficiency particulate air (HEPA) filtration systems that would extend significantly the life of HEPA filter banks by reducing the particulate matter that causes filter fouling and increased pack pressure. HEPA filters are widely used in DOE, Department of Defense, and a variety of commercial facilities. InnovaTech, Inc. (Formerly Micro Composite materials Corporation) has developed a proprietary dynamic separation device using a concept called Boundary Layer Momentum Transfer (BLMT) to extract particulate matter from fluid process streams. When used as a prefilter in the HVAC systems or downstream of waste vitrifiers in nuclear power plants, fuel processing facilities, and weapons decommissioning factories, the BLMT filter will dramatically extend the service life and increase the operation efficiency of existing HEPA filtration systems. The BLMT filter is self cleaning, so there will be no degraded flow or increased pressure drop. Because the BLMT filtration process is independent of temperature, it can be designed to work in ambient, medium, or high-temperature applications. During Phase II, the authors are continuing development of the computerized flow simulation model to include turbulence and incorporate expansion into a three-dimensional model that includes airflow behavior inside the filter housing before entering the active BLMT device. A full-scale (1000 ACFM) prototype filter is being designed to meet existing HEPA filter standards and will be fabricated for subsequent testing. Extensive in-house testing will be performed to determine a full range of performance characteristics. Final testing and evaluation of the prototype filter will be conducted at a DOE Quality Assurance Filter Test Station.

Wright, S.R. [InnovaTech, Inc., Durham, NC (United States)

1997-10-01T23:59:59.000Z

18

High-frequency nuclear transformation of Chlamydomonas reinhardtii.  

Science Journals Connector (OSTI)

High-frequency nuclear transformation of Chlamydomonas...combination of an efficient nuclear transformation system with...studies of chloroplast-nuclear interactions. I am indebted...Agriculture-Department of Energy-National Science Foundation...

K L Kindle

1990-01-01T23:59:59.000Z

19

Advanced nuclear plant control complex  

DOE Patents [OSTI]

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

20

Advanced Nuclear Reactors | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced Nuclear Advanced Nuclear Reactors Advanced Nuclear Reactors Turbulent Flow of Coolant in an Advanced Nuclear Reactor Visualizing Coolant Flow in Sodium Reactor Subassemblies Sodium-cooled Fast Reactor (SFR) Coolant Flow At the heart of a nuclear power plant is the reactor. The fuel assembly is placed inside a reactor vessel where all the nuclear reactions occur to produce the heat and steam used for power generation. Nonetheless, an entire power plant consists of many other support components and key structures like coolant pipes; pumps and tanks including their surrounding steel framing; and concrete containment and support structures. The Reactors Product Line within NEAMS is concerned with modeling the reactor vessel as well as those components of a complete power plant that

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced Nuclear Medicine Initiative Owen Lowe  

Broader source: Energy.gov (indexed) [DOE]

Isotopes for Life Isotopes for Life Isotopes for Life Advanced Nuclear Medicine Initiative Owen Lowe Office of Isotopes for Medicine and Science Office of Nuclear Energy, Science and Technology October 1, 2002 Isotopes for Life Isotopes for Life Isotopes for Life Office of Nuclear Energy, Science and Technology Lowe/Oct01_02 ANMI to NERAC.ppt (2) Advanced Nuclear Medicine Initiative Advanced Nuclear Medicine Initiative 6 Sponsor nuclear medical science research using a peer-review selection process * 9 three-year research grants awarded 6 Sponsor the training of individuals in nuclear medical science * 5 three-year education grants awarded 6 Continue research and education programs to completion; however, no additional funds for new grants is in the FY 2003 budget Isotopes for Life Isotopes for Life

22

Transforming the advanced lab: Part I -Learning goals Benjamin Zwickl  

E-Print Network [OSTI]

Transforming the advanced lab: Part I - Learning goals Benjamin Zwickl , Noah Finkelstein and H. J-division undergraduate level. As part of transforming our senior-level Optics and Modern Physics Lab at the University, 01.40.Fk, 01.50.Qb INTRODUCTION At the University of Colorado Boulder (CU), we are transforming our

Colorado at Boulder, University of

23

Transform, Protect and Advance - DOE's IT Modernization Strategy |  

Broader source: Energy.gov (indexed) [DOE]

Transform, Protect and Advance - DOE's IT Modernization Transform, Protect and Advance - DOE's IT Modernization Strategy Transform, Protect and Advance - DOE's IT Modernization Strategy September 5, 2012 - 12:57pm Addthis The Obama Administration's Digital Government Strategy provides a vision for a 21st century government that lays a strong foundation for modernizing technology services across the Federal Government. At Energy, we're implementing a three-pillar approach -- Transform, Protect and Advance - as part of this broader strategy, driving more secure, cost-effective, and efficient IT infrastructure and services. Transforming IT architecture to drive cost savings and streamlined operations The Department is leveraging new tools and services that will further reduce costs and streamline operations - making our IT infrastructure

24

Transform, Protect and Advance - DOE's IT Modernization Strategy |  

Broader source: Energy.gov (indexed) [DOE]

Transform, Protect and Advance - DOE's IT Modernization Transform, Protect and Advance - DOE's IT Modernization Strategy Transform, Protect and Advance - DOE's IT Modernization Strategy September 5, 2012 - 12:57pm Addthis The Obama Administration's Digital Government Strategy provides a vision for a 21st century government that lays a strong foundation for modernizing technology services across the Federal Government. At Energy, we're implementing a three-pillar approach -- Transform, Protect and Advance - as part of this broader strategy, driving more secure, cost-effective, and efficient IT infrastructure and services. Transforming IT architecture to drive cost savings and streamlined operations The Department is leveraging new tools and services that will further reduce costs and streamline operations - making our IT infrastructure

25

Draft Advanced Nuclear Energy Solicitation Fact Sheet | Department...  

Broader source: Energy.gov (indexed) [DOE]

Fact Sheet Draft Advanced Nuclear Energy Solicitation Fact Sheet Draft Advanced Nuclear Energy Projects Solicitation Fact Sheet (September 2014) More Documents & Publications Draft...

26

Energy Department Announces New Investments in Advanced Nuclear...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Announces New Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear Power Reactors October 31, 2014 - 12:20pm Addthis NEWS...

27

Energy Department Invests $67 Million to Advanced Nuclear Technology...  

Office of Environmental Management (EM)

Energy Department Invests 67 Million to Advanced Nuclear Technology Energy Department Invests 67 Million to Advanced Nuclear Technology August 20, 2014 - 12:00pm Addthis News...

28

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop and demonstrate Advanced Burner Reactors (ABRs) that...

29

Advanced Nuclear Reactor Systems – An Indian Perspective  

Science Journals Connector (OSTI)

The Indian nuclear power programme envisages use of closed nuclear fuel cycle and thorium utilisation as its mainstay for its sustainable growth. The current levels of deployment of nuclear energy in India need to be multiplied nearly hundred fold to reach levels of electricity generation that would facilitate the country to achieve energy independence as well as a developed status. The Indian thorium based nuclear energy systems are being developed to achieve sustainability in respect of fuel resource along with enhanced safety and reduced waste generation. Advanced Heavy Water Reactor and its variants have been designed to meet these objectives. The Indian High Temperature Reactor programme also envisages use of thorium-based fuel with advanced levels of passive safety features.

Ratan Kumar Sinha

2011-01-01T23:59:59.000Z

30

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner  

Broader source: Energy.gov (indexed) [DOE]

Develop Advanced Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop and demonstrate Advanced Burner Reactors (ABRs) that consume transuranic elements (plutonium and other long-lived radioactive material) while extracting their energy. The development of ABRs will allow us to build an improved nuclear fuel cycle that recycles used fuel. Accordingly, the U.S. will work with participating international partners on the design, development, and demonstration of ABRs as part of the GNEP. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors More Documents & Publications GNEP Element:Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste

31

Computational Design of Advanced Nuclear Fuels  

SciTech Connect (OSTI)

The objective of the project was to develop a method for theoretical understanding of nuclear fuel materials whose physical and thermophysical properties can be predicted from first principles using a novel dynamical mean field method for electronic structure calculations. We concentrated our study on uranium, plutonium, their oxides, nitrides, carbides, as well as some rare earth materials whose 4f eletrons provide a simplified framework for understanding complex behavior of the f electrons. We addressed the issues connected to the electronic structure, lattice instabilities, phonon and magnon dynamics as well as thermal conductivity. This allowed us to evaluate characteristics of advanced nuclear fuel systems using computer based simulations and avoid costly experiments.

Savrasov, Sergey; Kotliar, Gabriel; Haule, Kristjan

2014-06-03T23:59:59.000Z

32

E-Print Network 3.0 - advanced hybrid nuclear Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced hybrid nuclear Page: << < 1 2 3 4 5 > >> 1 Nuclear Chemical EngineeringNuclear...

33

NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program  

Broader source: Energy.gov (indexed) [DOE]

NEAMS: The Nuclear Energy Advanced NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program The Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program is developing a simulation tool kit using leading-edge computational methods that will accelerate the development and deployment of nuclear power technologies that employ enhanced safety and security features, produce power more cost-effectively, and utilize natural resources more efficiently. The NEAMS ToolKit

34

R. Shane Johnson, Associate Director Office of Advanced Nuclear Research  

Broader source: Energy.gov (indexed) [DOE]

Advanced Nuclear Research Advanced Nuclear Research September 30, 2002 Generation IV International Forum Generation IV International Forum Presentation to the Nuclear Energy Research Advisory Committee Office of Nuclear Energy, Science and Technology Generation IV International Forum Generation IV International Forum 6 Government-sanctioned organization working together to plan the future of nuclear energy * Chartered in July 2002 * Conduct joint R&D on next-generation nuclear energy systems * Voluntary member participation in specific projects 6 Observer Organizations * OECD-NEA * IAEA * Euratom South Korea U.S.A. Argentina Brazil Canada France Japan South Africa United Kingdom Switzerland Office of Nuclear Energy, Science and Technology

35

Advanced nuclear plant control room complex  

DOE Patents [OSTI]

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

36

KRNFYSIK, FRDJUPNINGSKURS FKF 021 Nuclear Physics, Advanced Course I  

E-Print Network [OSTI]

K�RNFYSIK, F�RDJUPNINGSKURS FKF 021 Nuclear Physics, Advanced Course I Antal poäng: 5.0. Valfri för. Partikelfysik. Laborationerna är obligatoriska. Litteratur Krane, K.S.: Introductory Nuclear Physics

37

KRNFYSIK, FRDJUPNINGSKURS FKF021 Nuclear Physics, Advanced Course I  

E-Print Network [OSTI]

K�RNFYSIK, F�RDJUPNINGSKURS FKF021 Nuclear Physics, Advanced Course I Poäng: 5.0 Betygskala: TH. Partikelfysik. Laborationerna är obligatoriska. Litteratur: Krane, K.S.: Introductory Nuclear Physics

38

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software...  

Broader source: Energy.gov (indexed) [DOE]

Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements...

39

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program...  

Broader source: Energy.gov (indexed) [DOE]

Program Plan Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program Plan The NEAMS program plan includes information on the program vision, objective, scope, schedule and...

40

University Program in Advanced Technology | National Nuclear Security  

National Nuclear Security Administration (NNSA)

University Program in Advanced Technology | National Nuclear Security University Program in Advanced Technology | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog University Program in Advanced Technology Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Advancing Global Nuclear Security | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

OF THE NUCLEAR ENERGY AND NUCLEAR SECURITY WORKING GROUP OF THE BILATERAL U.S. - RUSSIA PRESIDENTIAL COMMISSION Secretary Moniz's Remarks at the 2014 IAEA General Conference...

42

Energy Department Announces New Investments in Advanced Nuclear Power  

Broader source: Energy.gov (indexed) [DOE]

Investments in Advanced Nuclear Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear Power Reactors June 27, 2013 - 2:20pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to accelerate clean energy leadership and to enable a low-carbon economy, the Energy Department today announced $3.5 million for four advanced nuclear reactor projects that go beyond traditional light water designs. These projects -- led by General Atomics, GE Hitachi, Gen4 Energy and Westinghouse -- will address key technical challenges to designing, building and operating the next generation of nuclear reactors. These steps support the President's plan to cut carbon pollution and spark innovation

43

Energy Department Announces New Investments in Advanced Nuclear Power  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Announces New Investments in Advanced Nuclear Energy Department Announces New Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear Power Reactors June 27, 2013 - 2:20pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to accelerate clean energy leadership and to enable a low-carbon economy, the Energy Department today announced $3.5 million for four advanced nuclear reactor projects that go beyond traditional light water designs. These projects -- led by General Atomics, GE Hitachi, Gen4 Energy and Westinghouse -- will address key technical challenges to designing, building and operating the next generation of nuclear reactors. These steps support the President's plan to cut carbon pollution and spark innovation

44

E-Print Network 3.0 - advanced nuclear materials Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: advanced nuclear materials Page: << < 1 2 3 4 5 > >> 1 Enabling a Sustainable Nuclear Energy Future...

45

E-Print Network 3.0 - advanced nuclear power Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: advanced nuclear power Page: << < 1 2 3 4 5 > >> 1 Nuclear Engineering Graduate Program Summary: Power...

46

E-Print Network 3.0 - advanced nuclear engineering Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: advanced nuclear engineering Page: << < 1 2 3 4 5 > >> 1 Nuclear Engineering Graduate Program Summary:...

47

Department of Energy Issues Final $12.5 Billion Advanced Nuclear...  

Energy Savers [EERE]

Final 12.5 Billion Advanced Nuclear Energy Loan Guarantee Solicitation Department of Energy Issues Final 12.5 Billion Advanced Nuclear Energy Loan Guarantee Solicitation December...

48

Enterprise SRS: leveraging ongoing operations to advance nuclear fuel cycles research and development programs  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is re-purposing its vast array of assets (including H Canyon - a nuclear chemical separation plant) to solve issues regarding advanced nuclear fuel cycle technologies, nuclear materials processing, packaging, storage and disposition. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into SRS facilities but also in other facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, a center for applied nuclear materials processing and engineering research has been established in SRS.

Murray, A.M.; Marra, J.E.; Wilmarth, W.R. [Savannah River National Laboratory, Aiken, SC 29808 (United States); McGuire, P.W.; Wheeler, V.B. [Department of Energy-Savannah River Operations Office, Aiken SC 29808 (United States)

2013-07-01T23:59:59.000Z

49

Advances in model transformations by graph transformation: specification, execution and analysis  

Science Journals Connector (OSTI)

Model transformations are a core technology of today's model-driven software development processes. Graph transformations provide a state-of-the-art formalism to specify and execute such transformations in practice. This was the case in the SENSORIA ...

Gábor Bergmann; Artur Boronat; Reiko Heckel; Paolo Torrini; István Ráth; Dániel Varró

2011-01-01T23:59:59.000Z

50

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software  

Broader source: Energy.gov (indexed) [DOE]

Advanced Modeling and Simulation (NEAMS) Software Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements The purpose of the NEAMS Software V&V Plan is to define what the NEAMS program expects in terms of V&V for the computational models that are developed under NEAMS. NEAMS Software Verification and Validation Plan Requirements Version 0.pdf More Documents & Publications NEAMS Quarterly Report for January-March 2013 Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program Plan CRAD, Assessment Criteria and Guidelines for Determining the Adequacy of Software Used in the Safety Analysis and Design of Defense Nuclear Facilities

51

Advances in instrumentation for nuclear astrophysics  

SciTech Connect (OSTI)

The study of the nuclear physics properties which govern energy generation and nucleosynthesis in the astrophysical phenomena we observe in the universe is crucial to understanding how these objects behave and how the chemical history of the universe evolved to its present state. The low cross sections and short nuclear lifetimes involved in many of these reactions make their experimental determination challenging, requiring developments in beams and instrumentation. A selection of developments in nuclear astrophysics instrumentation is discussed, using as examples projects involving the nuclear astrophysics group at Oak Ridge National Laboratory. These developments will be key to the instrumentation necessary to fully exploit nuclear astrophysics opportunities at the Facility for Rare Isotope Beams which is currently under construction.

Pain, S. D. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)] [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

2014-04-15T23:59:59.000Z

52

Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development  

SciTech Connect (OSTI)

The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

Jon Carmack

2014-01-01T23:59:59.000Z

53

MIT - Center for Advanced Nuclear Energy Systems | Open Energy Information  

Open Energy Info (EERE)

MIT - Center for Advanced Nuclear Energy Systems MIT - Center for Advanced Nuclear Energy Systems Jump to: navigation, search Logo: MIT - Center for Advanced Nuclear Energy Systems Name MIT - Center for Advanced Nuclear Energy Systems Address 77 Massachusetts Avenue, 24-215 Place Cambridge, Massachusetts Zip 02139-4307 Phone number (617) 452-2660 Coordinates 42.3613041°, -71.0967653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3613041,"lon":-71.0967653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

54

Education in nuclear science at IPEN - CNEN, São Paulo, Brazil: Advanced School of Nuclear Energy—EAEN  

Science Journals Connector (OSTI)

EAEN (Advanced School of Nuclear Energy, 2010) is an annual school that ... a week of activities in the area of Nuclear Physics, Radiochemistry and uses of Nuclear Energy for a public made of high school students...

R. Semmler; M. G. M. Catharino…

2012-01-01T23:59:59.000Z

55

E-Print Network 3.0 - advanced nuclear research Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: advanced nuclear research Page: << < 1 2 3 4 5 > >> 1 Los Alamos National Laboratory DOE NNSA...

56

E-Print Network 3.0 - advancing nuclear security Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: advancing nuclear security Page: << < 1 2 3 4 5 > >> 1 Los Alamos National Laboratory DOE NNSA...

57

Programme A. Nuclear Power Subprogramme A.4 Technology Development for Advanced Reactor Lines  

E-Print Network [OSTI]

Programme A. Nuclear Power Subprogramme A.4 Technology Development for Advanced Reactor Lines the databases that will be produced in the course of the CRP and make them accessible through the IAEA's nuclear-Electrical Applications of Nuclear Power Project A.5.02: Nuclear hydrogen production CRP Title: Advances in nuclear power

De Cindio, Fiorella

58

E-Print Network 3.0 - advanced light-water nuclear Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced light-water nuclear Page: << < 1 2 3 4 5 > >> 1 1 Managed by UT-Battelle for the...

59

Advanced ceramic materials for next-generation nuclear applications  

Science Journals Connector (OSTI)

The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high-temperature plasma systems. Fusion reactors will likely depend on lithium-based ceramics to produce tritium that fuels the fusion plasma, while high-temperature alloys or ceramics will contain and control the hot plasma. All the while, alloys, ceramics, and ceramic-related processes continue to find applications in the management of wastes and byproducts produced by these processes.

John Marra

2011-01-01T23:59:59.000Z

60

Graduate School of Advanced Science and Engineering Cooperative Major in Nuclear Energy  

E-Print Network [OSTI]

Graduate School of Advanced Science and Engineering Cooperative Major in Nuclear Energy Master in Nuclear Energy Summary of Research Instruction Research Instruction Application Code Name Major in Nuclear Energy Master's Program Doctoral Program Summary of Research Instruction

Kaji, Hajime

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Small Market Advanced Retrofit Transformation Program (SMART Scale) - 2014 BTO Peer Review  

Broader source: Energy.gov [DOE]

Presenter: Colin Clark, Ecology Action of Santa Cruz Ecology Action’s Small Market Advanced Retrofit Transformation (SMART Scale) program is a new technical, business, and implementation model for delivering energy efficiency measures in small (50,000 square feet or smaller) commercial buildings.

62

Directions for advanced use of nuclear power in century XXI  

SciTech Connect (OSTI)

Nuclear power can provide a significant contribution to electricity generation and meet other needs of the world and the US during the next century provided that certain directions are taken to achieve its public acceptance. These directions include formulation of projections of population, energy consumption, and energy resources over a responsible period of time. These projections will allow assessment of cumulative effects on the environment and on fixed resources. Use of fossil energy resources in a century of growing demand for energy must be considered in the context of long-term environmental damage and resource depletion. Although some question the validity of these consequences, they can be mitigated by use of advanced fast reactor technology. It must be demonstrated that nuclear power technology is safe, resistant to material diversion for weapon use, and economical. An unbiased examination of all the issues related to energy use, especially of electricity, is an essential direction to take.

Walter, C E

1999-05-01T23:59:59.000Z

63

Nuclear desalination in the Arab world â?? Part II: advanced inherent and passive safe nuclear reactors  

Science Journals Connector (OSTI)

Rapid increases in population levels have led to greater demands for fresh water and electricity in the Arab World. Different types of energies are needed to contribute to bridging the gap between increased demand and production. Increased levels of safeguards in nuclear power plants have became reliable due to their large operational experience, which now exceeds 11,000 years of operation. Thus, the nuclear power industry should be attracting greater attention. World electricity production from nuclear power has risen from 1.7% in 1970 to 17%-20% today. This ratio had increased in June 2002 to reach more than 30%, 33% and 42% in Europe, Japan, and South Korea respectively. In the Arab World, both the public acceptance and economic viability of nuclear power as a major source of energy are greatly dependent on the achievement of a high level of safety and environmental protection. An assessment of the recent generation of advanced reactor safety criteria requirements has been carried out. The promising reactor designs adapted for the Arab world and other similar developing countries are those that profit from the enhanced and passive safety features of the new generation of reactors, with a stronger focus on the effective use of intrinsic characteristics, simplified plant design, and easy construction, operation and maintenance. In addition, selected advanced reactors with a full spectrum from small to large capacities, and from evolutionary to radical types, which have inherent and passive safety features, are discussed. The relevant economic assessment of these reactors adapted for water/electricity cogeneration have been carried out and compared with non-nuclear desalination methods. This assessment indicates that, water/electricity cogeneration by the nuclear method with advanced inherent and passive safe nuclear power plants, is viable and competitive.

Aly Karameldin; Samer S. Mekhemar

2004-01-01T23:59:59.000Z

64

Rock Alteration and Mineral Transformations for Nuclear Waste Management  

Science Journals Connector (OSTI)

Technical Paper / Argonne National Laboratory Specialists’ Workshop on Basic Research Needs for Nuclear Waste Management / Radioactive Waste

Philip A. Helmke

65

E-Print Network 3.0 - advanced nuclear analytical Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: advanced nuclear analytical Page: << < 1 2 3 4 5 > >> 1 managed for the U.S. Department of Energy by...

66

Indicator system for advanced nuclear plant control complex  

DOE Patents [OSTI]

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

67

DOE Issues Landmark Rule for Risk Insurance for Advanced Nuclear Facilities  

Broader source: Energy.gov (indexed) [DOE]

Landmark Rule for Risk Insurance for Advanced Nuclear Landmark Rule for Risk Insurance for Advanced Nuclear Facilities DOE Issues Landmark Rule for Risk Insurance for Advanced Nuclear Facilities May 8, 2006 - 10:36am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) issued on Saturday, the interim final rule required by the Energy Policy Act of 2005 (EPACT) for risk insurance to facilitate construction of new advanced nuclear power facilities. The rule establishes the requirements for risk insurance to cover costs associated with certain regulatory or litigation-related delays in the start-up of new nuclear power plants. The resurgence of nuclear power is a key component of President Bush's Advanced Energy Initiative. The Standby Support provisions of EPACT (section 638), also referred to as federal risk insurance, authorize the Secretary of Energy to enter into

68

Enterprise SRS: Leveraging Ongoing Operations To Advance Nuclear Fuel Cycles Research And Development Programs  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). Thus, the demonstration can be accomplished by leveraging the incremental cost of performing demonstrations without needing to cover the full operational cost of the facility. Current Center activities have been focused on integrating advanced safeguards monitoring technologies demonstrations into the SRS H-Canyon and advanced location technologies demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and customers as well as providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (as well as to offsite venues) so that future demonstrations can be done more efficiently and provide an opportunity to utilize these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs DOE-Nuclear Energy (DOE-NE) to advance the research for next generation fuel cycle technologies. The concept is to install processing equipment on frames. The frames are then positioned into an H-Canyon cell and testing in a relevant radiological environment involving prototypic radioactive materials can be performed.

Murray, Alice M.; Marra, John E.; Wilmarth, William R.; Mcguire, Patrick W.; Wheeler, Vickie B.

2013-07-03T23:59:59.000Z

69

United States and Italy Sign Agreements to Advance Developments in Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Italy Sign Agreements to Advance Developments in Italy Sign Agreements to Advance Developments in Nuclear Energy United States and Italy Sign Agreements to Advance Developments in Nuclear Energy September 30, 2009 - 12:00am Addthis Washington, D.C. - U.S. Secretary of Energy Steven Chu and Italian Minister for Economic Development Claudio Scajola today signed two important nuclear energy agreements that may lead to construction of new nuclear power plants and improved cooperation on advanced nuclear energy systems and fuel cycle technologies in both countries. The U.S.-Italy Joint Declaration Concerning Industrial and Commercial Cooperation in the Nuclear Energy Sector, which was signed on behalf of the United States by Secretary Chu and Deputy Secretary of Commerce Dennis F. Hightower, affirms the strong interest of the United States and Italy to

70

Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research  

SciTech Connect (OSTI)

The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User’s Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User’s week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

John Jackson; Todd Allen; Frances Marshall; Jim Cole

2013-03-01T23:59:59.000Z

71

Advanced Nuclear Final Solicitation Fact Sheet_Dec-2014  

Office of Environmental Management (EM)

tails to a higher isotopic content of U235 including by (1) gas centrifuge or (2) laser isotope separation and; c) Nuclear Fuel Fabrication Projects that fabricate nuclear...

72

Building an All-of-the-Above Portfolio with Loan Guarantees for Advanced Nuclear Projects  

Broader source: Energy.gov [DOE]

This morning, the Department announced that it is making $12.5 billion in loan guarantees available for Advanced Nuclear Energy Projects. My colleagues in the Loan Programs Office (LPO) and I are...

73

Recent advancements in cloning by somatic cell nuclear transfer  

Science Journals Connector (OSTI)

...cloning by somatic cell nuclear transfer Atsuo Ogura...medicine . Somatic cell nuclear transfer (SCNT) cloning...the nature of genomic programming and totipotency, we...genomic reprogramming|nuclear transfer|mouse|histone...systems for genomic research, especially in epigenetics...

2013-01-01T23:59:59.000Z

74

Developing improved nuclear magnetic resonance marginal oscillator spectrometers for advanced teaching laboratories  

E-Print Network [OSTI]

DEVELOPING IMPROVED NUCLEAR MAGNETIC RESONANCE MARGINAL OSCILLATOR SPECTROMETERS FOR ADVANCED TEACHING LABORATORIES A Thesis by FRANK PHILLIP WILLINGHAM Submitted to the Office of Graduate Studies of Texas ASM University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE D e cemb er 1988 Major Subject: Physics DEVELOPING IMPROVED NUCLEAR MAGNETIC RESONANCE MARGINAL OSCILLATOR SPECTROMETERS FOR ADVANCED TEACHING LABORATORIES A Thesis by FRANK PHILLIP...

Willingham, Frank Phillip

1988-01-01T23:59:59.000Z

75

Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Advancing Small Modular Reactors: How We're Supporting Next-Gen Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology December 12, 2013 - 4:00pm Addthis The basics of small modular reactor technology explained. | Infographic by Sarah Gerrity, Energy Department. The basics of small modular reactor technology explained. | Infographic by Sarah Gerrity, Energy Department. Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy Nuclear energy continues to be an important part of America's diverse energy portfolio, and the Energy Department is committed to supporting a domestic nuclear industry.

76

Advancing Civil Nuclear Cooperation with Japan | Department of...  

Energy Savers [EERE]

group in Washington to advance that work in support of global efforts to reduce dangerous air pollution in a safe and sustainable manner. Addthis Related Articles Factsheet: Second...

77

Advanced Heat Exchanger Development for Molten Salts in Nuclear and Non Nuclear Systems  

SciTech Connect (OSTI)

This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.

Piyush Sabharwall; Denis Clark; Kumar Sridharan; Guiqiu Zheng; Mark Anderson

2014-10-01T23:59:59.000Z

78

Department of Energy Issues Final $12.5 Billion Advanced Nuclear Energy Loan Guarantee Solicitation  

Broader source: Energy.gov [DOE]

WASHINGTON D.C. — Today, the Department of Energy issued the Advanced Nuclear Energy Projects loan guarantee solicitation, which provides as much as $12.5 billion to support innovative nuclear energy projects as a part of the Administration’s all-of-the-above energy strategy.

79

Congressional Preferences and the Advancement of American Nuclear Waste Policy.  

E-Print Network [OSTI]

??The problem of nuclear waste disposal has existed since the time of the Manhattan Project in World War II. Although there exist a number of… (more)

Ternate, Rhoel Gonzales

2013-01-01T23:59:59.000Z

80

Advancing our Nuclear Collaboration with the Czech Republic ...  

Energy Savers [EERE]

Obama addresses a crowd in Hradcany Square on April 5, 2009, touching on issues from green energy to nuclear treaties. Daniel B. Poneman Daniel B. Poneman Former Deputy...

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Plasma physics: A promising advance in nuclear fusion  

Science Journals Connector (OSTI)

... Formidable challenges face the decades-long quest to achieve nuclear fusion— the power source of stars — in the laboratory. For a plasma to ... power source of stars — in the laboratory. For a plasma to undergo self-heating nuclear fusion (ignition), it must be both hot and well confined. The facilities that hope ...

Mark Herrmann

2014-02-12T23:59:59.000Z

82

Energy Department Announces New Investments in Advanced Nuclear Power Reactors  

Broader source: Energy.gov [DOE]

WASHINGTON – Today, as part of the President’s all-of-the-above energy approach and Climate Action Plan, the Energy Department announced awards for five companies to lead key nuclear energy...

83

Advanced Sensor Diagnostics in Nuclear Power Plant Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensor Diagnostics in Nuclear Power Plant Applications Sensor Diagnostics in Nuclear Power Plant Applications R.B. Vilim Argonne National Laboratory Sensor degradation occurs routinely during nuclear power plant operation and can contribute to reduced power production and less efficient plant operation. Mechanisms include drift of sensor electronics and mechanical components, fouling and erosion of flow meter orifice plates, and general degradation of thermocouples. One solution to this problem is the use of higher quality instrumentation and of physical redundancy. This, however, increases plant cost and does not address the degradation problem in a fundamental way. An alternative approach is to use signal processing algorithms to detect a degraded sensor and to construct a replacement value using an

84

Recent advances in nuclear powered electric propulsion for space exploration  

Science Journals Connector (OSTI)

Nuclear and radioisotope powered electric thrusters are being developed as primary in space propulsion systems for potential future robotic and piloted space missions. Possible applications for high-power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent US high-power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high-power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems.

R. Joseph Cassady; Robert H. Frisbee; James H. Gilland; Michael G. Houts; Michael R. LaPointe; Colleen M. Maresse-Reading; Steven R. Oleson; James E. Polk; Derrek Russell; Anita Sengupta

2008-01-01T23:59:59.000Z

85

Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons  

Broader source: Energy.gov [DOE]

Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons - December Commission meeting

86

Advanced LWR Nuclear Fuel Cladding System Development Trade-Off Study  

SciTech Connect (OSTI)

The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system that would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.

Kristine Barrett; Shannon Bragg-Sitton

2012-09-01T23:59:59.000Z

87

A modeling and control approach to advanced nuclear power plants with gas turbines  

Science Journals Connector (OSTI)

Abstract Advanced nuclear power plants are currently being proposed with a number of various designs. However, there is a lack of modeling and control strategies to deal with load following operations. This research investigates a possible modeling approach and load following control strategy for gas turbine nuclear power plants in order to provide an assessment way to the concept designs. A load frequency control strategy and average temperature control mechanism are studied to get load following nuclear power plants. The suitability of the control strategies and concept designs are assessed through linear stability analysis methods. Numerical results are presented on an advanced molten salt reactor concept as an example nuclear power plant system to demonstrate the validity and effectiveness of the proposed modeling and load following control strategies.

Günyaz Ablay

2013-01-01T23:59:59.000Z

88

Advanced nuclear reactors and tritium impacts. Modeling the aquatic pathway  

Science Journals Connector (OSTI)

The effective contribution of nuclear energy will depend on various factors related to economics, safety, public acceptance and sustainability. To assure, however, the nuclear energy development, reactor accident impacts, as Fukushima, must be evaluated in a predictive way. Environmental assessment models are used for evaluating the radiological impact of potential releases of radionuclides from nuclear reactors to the environment. It is important to evaluate, to the extent possible, the reliability of the predictions of such models, by comparing with measured values in the environment or by comparing with the predictions of other models. Tritium has a complex environmental behavior once released into the environment. It is essential to establish reference scenarios to allow the simulation of tritium aquatic pathway subsequent to accidental releases. For this purpose, two scenarios for seawater circulation were analyzed by hydrodynamic modeling. An inverse modeling procedure was successfully applied to estimate tide elevations on the borders, which are based on applying the harmonic constants and using the same overestimation percentage produced by model results to correct the border values. Simulations of validated model for postulated accidental releases of tritium inventory from heavy water reactors, whose doses could be relevant, were presented here. It was observed differences between the two scenarios for the transport modeling that were caused by the removal of large volume of polluted waters from the accident site and its dilution in the discharge area, which has minor tritium concentrations. Moreover, the processes involved in the dynamic transfer of tritium in the environment were analyzed in dependence on the environmental conditions of tropical coastal ecosystem.

Francisco Fernando Lamego Simões Filho; Abner Duarte Soares; André da Silva Aguiar; Celso Marcelo Franklin Lapa; Antonio Carlos Ferreira Guimarães

2013-01-01T23:59:59.000Z

89

Advanced Resin Cleaning System (ARCS) at Grand Gulf Nuclear Station  

SciTech Connect (OSTI)

Steam generation system in-core components can undergo serious material degradation by a variety of corrosion-related phenomena. These phenomena are largely controlled by boiler water (i.e. reactor water) chemistry which is strongly impacted by the performance of the condensate system mixed bed ion exchange units. In Boiling Water Reactors (BWR), the mixed bed ion exchange units not only provide protection from ionic contaminants, but also remove insoluble corrosion products by filtration/adsorption. These insoluble corrosion products removed by the ion exchange units must then be periodically cleaned from the resin bed by some process external to the BWR primary water loop. A unique resin cleaning process called the {open_quotes}Advanced Resin Cleaning System{close_quotes} (ARCS) was developed in the late 1980`s by members of CENTEC-XXI, located in Santa Clara, CA. This system, which has been successfully operated for several years at a Pressurized Water Reactor is highly efficient for removal of both insoluble corrosion products and anion/cation resin fines, and generates significantly less waste water than other cleaning methods. The ARCS was considered the most attractive method for meeting the demanding and costly resin cleaning needs of a BWR. A {open_quotes}Tailored Collaboration{close_quotes} project was initiated between EPRI, Entergy Operations (Grand Gulf Station), and CENTEC-XXI to demonstrate the {open_quotes}Advanced Resin Cleaning System{close_quotes} in a BWR.

Asay, R.H.; Earls, J.E.; Naughton, M.D. [Centec 21, Inc., Santa Clara, CA (United States)

1996-10-01T23:59:59.000Z

90

Department of Energy Issues Draft Loan Guarantee Solicitation for Advanced Nuclear Energy Projects  

Broader source: Energy.gov [DOE]

The Department of Energy has issued a draft solicitation that would provide up to $12.6 billion in loan guarantees for Advanced Nuclear Energy Projects, supporting the Administration’s all-of-the-above energy strategy and bringing the nation closer to its low-carbon future.

91

Advanced LWR Nuclear Fuel Cladding System Development Trade-off Study |  

Broader source: Energy.gov (indexed) [DOE]

LWR Nuclear Fuel Cladding System Development Trade-off LWR Nuclear Fuel Cladding System Development Trade-off Study Advanced LWR Nuclear Fuel Cladding System Development Trade-off Study The LWR Sustainability (LWRS) Program activities must support the timeline dictated by utility life extension decisions to demonstrate a lead test rod in a commercial reactor within 10 years. In order to maintain the demanding development schedule that must accompany this aggressive timeline, the LWRS Program focuses on advanced fuel cladding systems that retain standard UO2 fuel pellets for deployment in currently operating LWR power plants. The LWRS work scope focuses on fuel system components outside of the fuel pellet, allowing for alteration of the existing zirconium-based clad system through coatings, addition of ceramic sleeves, or complete replacement

92

Office of Advanced Nuclear Research Office of Nuclear Energy, Science and Technology  

E-Print Network [OSTI]

Integrate applicable work conducted in programs in the Offices of Nuclear Energy (Gen IV, NERI, I · FY 2010: Complete the design of a commercial-scale nuclear hydrogen production system · FY 2015 to budget uncertainties (risk/benefit) · Guide the development of technology to support decisions Develop

93

Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report  

SciTech Connect (OSTI)

The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

William Anderson; James Tulenko; Bradley Rearden; Gary Harms

2008-09-11T23:59:59.000Z

94

Aging Management Guideline for commercial nuclear power plants: Power and distribution transformers  

SciTech Connect (OSTI)

This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in power and distribution transformers important to license renewal in commercial nuclear power plants. The intent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

Toman, G.; Gazdzinski, R. [Sandia National Labs., Albuquerque, NM (United States)

1994-05-01T23:59:59.000Z

95

The Path to Sustainable Nuclear Energy. Basic and Applied Research Opportunities for Advanced Fuel Cycles  

SciTech Connect (OSTI)

The objective of this report is to identify new basic science that will be the foundation for advances in nuclear fuel-cycle technology in the near term, and for changing the nature of fuel cycles and of the nuclear energy industry in the long term. The goals are to enhance the development of nuclear energy, to maximize energy production in nuclear reactor parks, and to minimize radioactive wastes, other environmental impacts, and proliferation risks. The limitations of the once-through fuel cycle can be overcome by adopting a closed fuel cycle, in which the irradiated fuel is reprocessed and its components are separated into streams that are recycled into a reactor or disposed of in appropriate waste forms. The recycled fuel is irradiated in a reactor, where certain constituents are partially transmuted into heavier isotopes via neutron capture or into lighter isotopes via fission. Fast reactors are required to complete the transmutation of long-lived isotopes. Closed fuel cycles are encompassed by the Department of Energy?s Advanced Fuel Cycle Initiative (AFCI), to which basic scientific research can contribute. Two nuclear reactor system architectures can meet the AFCI objectives: a ?single-tier? system or a ?dual-tier? system. Both begin with light water reactors and incorporate fast reactors. The ?dual-tier? systems transmute some plutonium and neptunium in light water reactors and all remaining transuranic elements (TRUs) in a closed-cycle fast reactor. Basic science initiatives are needed in two broad areas: ? Near-term impacts that can enhance the development of either ?single-tier? or ?dual-tier? AFCI systems, primarily within the next 20 years, through basic research. Examples: Dissolution of spent fuel, separations of elements for TRU recycling and transmutation Design, synthesis, and testing of inert matrix nuclear fuels and non-oxide fuels Invention and development of accurate on-line monitoring systems for chemical and nuclear species in the nuclear fuel cycle Development of advanced tools for designing reactors with reduced margins and lower costs ? Long-term nuclear reactor development requires basic science breakthroughs: Understanding of materials behavior under extreme environmental conditions Creation of new, efficient, environmentally benign chemical separations methods Modeling and simulation to improve nuclear reaction cross-section data, design new materials and separation system, and propagate uncertainties within the fuel cycle Improvement of proliferation resistance by strengthening safeguards technologies and decreasing the attractiveness of nuclear materials A series of translational tools is proposed to advance the AFCI objectives and to bring the basic science concepts and processes promptly into the technological sphere. These tools have the potential to revolutionize the approach to nuclear engineering R&D by replacing lengthy experimental campaigns with a rigorous approach based on modeling, key fundamental experiments, and advanced simulations.

Finck, P.; Edelstein, N.; Allen, T.; Burns, C.; Chadwick, M.; Corradini, M.; Dixon, D.; Goff, M.; Laidler, J.; McCarthy, K.; Moyer, B.; Nash, K.; Navrotsky, A.; Oblozinsky, P.; Pasamehmetoglu, K.; Peterson, P.; Sackett, J.; Sickafus, K. E.; Tulenko, J.; Weber, W.; Morss, L.; Henry, G.

2005-09-01T23:59:59.000Z

96

Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation  

SciTech Connect (OSTI)

The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.

Niels Gronbech Jensen; Mark Asta; Nigel Browning'Vidvuds Ozolins; Axel van de Walle; Christopher Wolverton

2011-12-29T23:59:59.000Z

97

Incorporation of a risk analysis approach for the nuclear fuel cycle advanced transparency framework.  

SciTech Connect (OSTI)

Proliferation resistance features that reduce the likelihood of diversion of nuclear materials from the civilian nuclear power fuel cycle are critical for a global nuclear future. A framework that monitors process information continuously can demonstrate the ability to resist proliferation by measuring and reducing diversion risk, thus ensuring the legitimate use of the nuclear fuel cycle. The automation of new nuclear facilities requiring minimal manual operation makes this possible by generating instantaneous system state data that can be used to track and measure the status of the process and material at any given time. Sandia National Laboratories (SNL) and the Japan Atomic Energy Agency (JAEA) are working in cooperation to develop an advanced transparency framework capable of assessing diversion risk in support of overall plant transparency. The ''diversion risk'' quantifies the probability and consequence of a host nation diverting nuclear materials from a civilian fuel cycle facility. This document introduces the details of the diversion risk quantification approach to be demonstrated in the fuel handling training model of the MONJU Fast Reactor.

Mendez, Carmen Margarita (Sociotecnia Solutions, LLC); York, David L.; Inoue, Naoko (Japan Atomic Energy Agency); Kitabata, Takuya (Japan Atomic Energy Agency); Vugrin, Eric D.; Vugrin, Kay White; Rochau, Gary Eugene; Cleary, Virginia D.

2007-05-01T23:59:59.000Z

98

A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles  

E-Print Network [OSTI]

Nuclear   Fuel”,   Nuclear  Engineering  and  Technology,  in   Engineering  -­?  Nuclear  Engineering   and  the  in  Engineering  -­?  Nuclear  Engineering   and  the  

Djokic, Denia

2013-01-01T23:59:59.000Z

99

System modeling for the advanced thermionic initiative single cell thermionic space nuclear reactor  

SciTech Connect (OSTI)

Incore thermionic space reactor design concepts which operate in a nominal power output range of 20 to 40 kWe are described. Details of the neutronics, thermionic, shielding, and heat rejection performance are presented. Two different designs, ATI-Driven and ATI-Driverless, are considered. Comparison of the core overall performance of these two configurations are described. The comparison of these two cores includes the overall conversion efficiency, reactor mass, shield mass, and heat rejection mass. An overall system design has been developed to model the advanced incore thermionic energy conversion based nuclear reactor systems for space applications in this power range.

Lee, H.H.; Lewis, B.R.; Klein, A.C. (Department of Nuclear Engineering, Oregon State University, Radiation Center, C116, Corvallis, Oregon 97331-5902 (United States)); Pawlowski, R.A. (Battelle Pacific Northwest Laboratories, Richland, Washington 99352 (United States))

1993-01-15T23:59:59.000Z

100

Hydrodeoxygenation processes: Advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels  

Science Journals Connector (OSTI)

Abstract Lignocellulosic biomass provides an attractive source of renewable carbon that can be sustainably converted into chemicals and fuels. Hydrodeoxygenation (HDO) processes have recently received considerable attention to upgrade biomass-derived feedstocks into liquid transportation fuels. The selection and design of HDO catalysts plays an important role to determine the success of the process. This review has been aimed to emphasize recent developments on HDO catalysts in effective transformations of biomass-derived platform molecules into hydrocarbon fuels with reduced oxygen content and improved H/C ratios. Liquid hydrocarbon fuels can be obtained by combining oxygen removal processes (e.g. dehydration, hydrogenation, hydrogenolysis, decarbonylation etc.) as well as by increasing the molecular weight via C–C coupling reactions (e.g. aldol condensation, ketonization, oligomerization, hydroxyalkylation etc.). Fundamentals and mechanistic aspects of the use of HDO catalysts in deoxygenation reactions will also be discussed.

Sudipta De; Basudeb Saha; Rafael Luque

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who  

SciTech Connect (OSTI)

The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.

Forsberg, C.W.; Reich, W.J.

1991-09-01T23:59:59.000Z

102

Nuclear Translocation of Type I Transforming Growth Factor ? Receptor Confers a Novel Function in RNA Processing  

Science Journals Connector (OSTI)

...Reserved. 15 June 2012 research-article Articles Nuclear Translocation of Type...Immunology, Beckman Research Institute of City...Molecular Oncology Program e Bioinformatics Core...Interestingly, several nuclear proteins implicated...

Manasa Chandra; Shengbing Zang; Haiqing Li; Lisa J. Zimmerman; Jackson Champer; Akihiro Tsuyada; Amy Chow; Weiying Zhou; Yang Yu; Harry Gao; Xiubao Ren; Ren-Jang Lin; Shizhen Emily Wang

2012-04-02T23:59:59.000Z

103

Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process  

SciTech Connect (OSTI)

The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the “UREX+3c fuel cycle” and the “Alternative Fuel Cycle” (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount of the resulting MOX. The study considered two sub-cases within each of the two fuel cycles in which the uranium and plutonium from the first generation of MOX spent fuel (i) would not be recycled to produce a second generation of MOX for use in LWRs or (ii) would be recycled to produce a second generation of MOX fuel for use in LWRs. The study also investigated the effects of recycling MOX spent fuel multiple times in LWRs. The study assumed that both fuel cycles would store and then reprocess spent MOX fuel that is not recycled to produce a next generation of LWR MOX fuel and would use the recovered products to produce FR fuel. The study further assumed that FRs would begin to be brought on-line in 2043, eleven years after recycle begins in LWRs, when products from 5-year cooled spent MOX fuel would be available. Fuel for the FRs would be made using the uranium, plutonium, and minor actinides recovered from MOX. For the cases where LWR fuel was assumed to be recycled one time, the 1st generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. For the cases where the LWR fuel was assumed to be recycled two times, the 2nd generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. The number of FRs in operation was assumed to increase in successive years until the rate that actinides were recovered from permanently discharged spent MOX fuel equaled the rate the actinides were consumed by the operating fleet of FRs. To compare the two fuel cycles, the study analyzed recycle of nuclear fuel in LWRs and FRs and determined the radiological characteristics of irradiated nuclear fuel, nuclear waste products, and recycle nuclear fuels. It also developed a model to simulate the flows of nuclear materials that could occur in the two advanced nuclear fuel cycles over 81 years beginning in 2020 and ending in 2100. Simulations projected the flows of uranium, plutonium, and minor actinides as these nuclear fuel materials were produced and consumed in a fleet of 100 1,000 MWe LWRs and in FRs. The model als

E. R. Johnson; R. E. Best

2009-12-28T23:59:59.000Z

104

February 2004, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE  

Broader source: Energy.gov [DOE]

The ANTT Subcommittee of NERAC met February 26th and 27th (S. Pillon absent) to begin a review of the potential role of transmutation technologies in increasing the capacity of the geological...

105

System modeling and reactor design studies of the Advanced Thermionic Initiative space nuclear reactor  

SciTech Connect (OSTI)

In-core thermionic space reactor design concepts that operate at a nominal power output range of 20 to 50 kW(electric) are described. Details of the neutronic, thermionic, thermal hydraulics, and shielding performance are presented. Because of the strong absorption of thermal neutrons by natural tungsten and the large amount of natural tungsten within the reactor core, two designs are considered. An overall system design code has been developed at Oregon State University to model advanced in-core thermionic energy conversion-based nuclear reactor systems for space applications. The results show that the driverless single-cell Advanced Thermionic Initiative (ATI) configuration, which does not have driver fuel rods, proved to be more efficient than the driven core, which has driver rods. The results also show that the inclusion of the true axial and radial power distribution decrease the overall conversion efficiency. The flattening of the radial power distribution by three different methods would lead to a higher efficiency. The results show that only one TFE works at the optimum emitter temperature; all other TFEs are off the optimum performance and result in a 40% decrease of the efficiency of the overall system. The true axial profile is significantly different as there is a considerable amount of neutron leakage out of the top and bottom of the reactor. The analysis reveals that the axial power profile actually has a chopped cosine shape. For this axial profile, the reactor core overall efficiency for the driverless ATI reactor version is found to be 5.84% with a total electrical power of 21.92 kW(electric). By considering the true axial power profile instead of the uniform power profile, each TFE loses {approximately}80 W(electric).

Lee, H.H.; Abdul-Hamid, S.; Klein, A.C. [Oregon State Univ., Corvallis, OR (United States). Dept. of Nuclear Engineering Radiation Center] [Oregon State Univ., Corvallis, OR (United States). Dept. of Nuclear Engineering Radiation Center

1996-07-01T23:59:59.000Z

106

Qualification issues associated with the use of advanced instrumentation and control systems hardware in nuclear power plants  

SciTech Connect (OSTI)

The instrumentation and control (I&C) systems in advanced reactors will make extensive use of digital controls, microprocessors, multiplexing, and Tiber-optic transmission. Elements of these advances in I&C have been implemented on some current operating plants. However, the widespread use of the above technologies, as well as the use of artificial intelligence with minimum reliance on human operator control of reactors, highlights the need to develop standards for qualifying I&C used in the next generation of nuclear power plants. As a first step in this direction, the protection system I&C for present-day plants was compared to that proposed for advanced light water reactors (ALWRs). An evaluation template was developed by assembling a configuration of a safety channel instrument string for a generic ALWR, then comparing the impact of environmental stressors on that string to their effect on an equivalent instrument string from an existing light water reactor. The template was then used to address reliability issues for microprocessor-based protection systems. Standards (or lack thereof) for the qualification of microprocessor-based safety I&C systems were also identified. This approach addresses in part issues raised in Nuclear Regulatory Commission policy document SECY-91-292. which recognizes that advanced I&C systems for the nuclear industry are ``being developed without consensus standards, as the technology available for design is ahead of the technology that is well understood through experience and supported by application standards.``

Korsah, K. [Oak Ridge National Lab., TN (United States); Antonescu, C. [Nuclear Regulatory Commission, Rockville, MD (United States). Office of Nuclear Regulatory Research

1993-10-01T23:59:59.000Z

107

Improved best estimate plus uncertainty methodology including advanced validation concepts to license evolving nuclear reactors  

SciTech Connect (OSTI)

Many evolving nuclear energy programs plan to use advanced predictive multi-scale multi-physics simulation and modeling capabilities to reduce cost and time from design through licensing. Historically, the role of experiments was primary tool for design and understanding of nuclear system behavior while modeling and simulation played the subordinate role of supporting experiments. In the new era of multi-scale multi-physics computational based technology development, the experiments will still be needed but they will be performed at different scales to calibrate and validate models leading predictive simulations. Cost saving goals of programs will require us to minimize the required number of validation experiments. Utilization of more multi-scale multi-physics models introduces complexities in the validation of predictive tools. Traditional methodologies will have to be modified to address these arising issues. This paper lays out the basic aspects of a methodology that can be potentially used to address these new challenges in design and licensing of evolving nuclear technology programs. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. An enhanced calibration concept is introduced and is accomplished through data assimilation. The goal is to enable best-estimate prediction of system behaviors in both normal and safety related environments. To achieve this goal requires the additional steps of estimating the domain of validation and quantification of uncertainties that allow for extension of results to areas of the validation domain that are not directly tested with experiments, which might include extension of the modeling and simulation (M&S) capabilities for application to full-scale systems. The new methodology suggests a formalism to quantify an adequate level of validation (predictive maturity) with respect to required selective data so that required testing can be minimized for cost saving purposes by showing further testing wold not enhance the quality of the validation of predictive tools. The proposed methodology is at a conceptual level. When matured and if considered favorably by the stakeholders, it could serve as a new framework for the next generation of the best estimate plus uncertainty licensing methodology that USNRC developed previously. In order to come to that level of maturity it is necessary to communicate the methodology to scientific, design and regulatory stakeholders for discussion and debates. This paper is the first step to establish this communication.

Unal, Cetin [Los Alamos National Laboratory; Williams, Brian [Los Alamos National Laboratory; Mc Clure, Patrick [Los Alamos National Laboratory; Nelson, Ralph A [IDAHO NATIONAL LAB

2010-01-01T23:59:59.000Z

108

Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).  

SciTech Connect (OSTI)

The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

Schultz, Peter Andrew

2011-12-01T23:59:59.000Z

109

Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels  

SciTech Connect (OSTI)

Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear fuels are critical to understand the burnup, and thus the fuel efficiency.

Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

2014-01-09T23:59:59.000Z

110

Advances in the Hopkinson bar testing of irradiated/non-irradiated nuclear materials and large specimens  

Science Journals Connector (OSTI)

...the twentieth century, research activity in the nuclear field of the Joint Research Centre (JRC) was concentrated on problems of nuclear reactor safety, especially...dynamic material testing programme for the high ductility...

2014-01-01T23:59:59.000Z

111

Advances in nuclear engineering and radiation health physics at Oregon State University  

SciTech Connect (OSTI)

The department of Nuclear Engineering at Oregon State University (OSU) was established as a separate, stand-alone department in 1972, although nuclear engineering courses had been offered since 1957 in the Department of Mechanical Engineering. By the late 1960s, BS, MS, and PhD degrees were being offered in nuclear engineering. A major curriculum revision occurred in 1972, concurrent with the development of a 4-yr BS degree program in nuclear engineering technology (NET). The NET program was suspended about 1980, due to limited financial support and to a misunderstanding by industry of the difference between a BS-level NET graduate and a 2-yr trained nuclear technician.

Klein, A.C.; Binney, S.E. [Oregon State Univ., Corvallis, OR (United States)

1997-12-01T23:59:59.000Z

112

E-Print Network 3.0 - advanced nuclear precleaner Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Colloque C2, suppl. au Journal de Physique 11, Vol. 1, septembre 1991 Summary: .M. ARMSTRONG Institute of Advanced Microelectronics, Department of Electrical and Electronic...

113

High Temperature Materials for Nuclear Fast Fission and Fusion Reactors and Advanced Fossil Power Plants  

Science Journals Connector (OSTI)

Development of materials plays a crucial role in the economic feasibility of fast nuclear fission and fusion power plant. In order to meet this objective, one of the methods is to extend the fuel burnup and decreasing doubling time. The burnup is largely limited by the void swelling and creep resistances of the fuel cladding and wrapping materials. India's 500 \\{MWe\\} Prototype Fast Breeder Reactor (PFBR) is in advanced stage of construction. The major structural materials chosen for PFBR with MOX fuel are alloy D9 as fuel clad and wrapper material, 316LN austenitic stainless steel for reactor components and piping and modified 9Cr-1Mo steel for steam generator. In order to improve the burnup further, titanium, phosphorous and silicon contents in alloy D9 have been optimized for better swelling and creep resistances to develop modified version of alloy D9 as IFAC-1. Creep resistance of inherently void swelling resistance 9Cr-ferritic steel has been improved with the dispersion of nano-size yttria to develop oxide dispersion strengthened (ODS) steel clad tube with long- term creep strength, similar to D9, for increasing the fuel burnup. Development of modified 9Cr-1Mo steel clad tube and 9Cr-1Mo steel wrapper for future metallic fuel reactors being developed for reducing the doubling time are in progress. Extensive studies on resistance of this new generation core materials to void swelling are also under progress along with material development. Improved versions of 316LN stainless steel with nitrogen content of about 0.14 wt.% having higher creep strength to increase the life of fast reactor and modified 9Cr-1Mo steel with reduced nitrogen content and controlled addition of boron to improve type IV cracking resistance for steam generator are other developments. India's participation in ITER programme necessitates the development of India-specific RAFM steel for Test Blanket Module (TBM). A comprehensive research programme is being carried out to develop India-specific 9Cr-W-Ta RAFM steel with the optimization of tungsten and tantalum contents for better combination of strength and toughness. Based of the extensive mechanical tests including impact, tensile, creep and fatigue on four heats of RAFM steels having tungsten in the range 1 – 2 wt. % and tantalum in the range 0.06 -.014 wt., the RAFM steel having 1.4 wt. % tungsten with 0.06 wt. % tantalum is found to possess better combination of strength and toughness. This steel is considered as India-specific RAFM steel and TBM is being manufactured by this RAFM steel. To limit the emission of green house gases, a research and development programme has been initiated to develop advanced ultra super critical fossil fuel fired thermal power plants working at temperature of around 973 K and pressure of 300 bar. High temperature creep strength super 304H austenitic steel and Inconel 617 superalloy tubes are indigenously developed for this purpose.

T. Jayakumar; M.D. Mathew; K. Laha

2013-01-01T23:59:59.000Z

114

Does US Foreign Policy Achieve Meaningful Results to Stop Nuclear Advancement?.  

E-Print Network [OSTI]

??Despite the vast research by academics and their attempt to explain why states aspire nuclear power, why states transfer conventional arms, and the effect of… (more)

Garcia Juarez, Gabriela

2013-01-01T23:59:59.000Z

115

Market Transformation Fact Sheet  

Broader source: Energy.gov [DOE]

This fact sheet describes the Fuel Cell Technologies Office's Market Transformation strategies and activities, which are aimed at accelerating early market adoption and advancing pre-competitive technologies.

116

Abstract 3952: New advances in regulation of senescence by PML and the PML nuclear bodies  

Science Journals Connector (OSTI)

...Association for Cancer Research. 15 June 2011 research-article Tumor...Stem Cell Biology Nuclear ErbB2 Enhances...Discovery Ph.D. Program, China Medical...available at Cancer Research Online (http...functions of a nuclear localized form...

Mariana D. Acevedo Aauino; Veronique Bourdeau; Mathieu Vernier; and Gerardo Ferbeyre

2012-06-04T23:59:59.000Z

117

E-Print Network 3.0 - absorption heat transformer Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

transformer Search Powered by Explorit Topic List Advanced Search Sample search results for: absorption heat transformer...

118

Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, January 1, 1980-March 31, 1980  

SciTech Connect (OSTI)

Results are presented of work performed on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Included are the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described, including screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850, and 950/sup 0/C.

Not Available

1980-06-25T23:59:59.000Z

119

Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, July 1, 1979-September 30, 1979  

SciTech Connect (OSTI)

The results of work performed from July 1, 1979 through September 30, 1979 on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment, and gas chemistry analysis instrumentation and equipment. The status of the data management system is presented. In addition, the progress in the screening test program is described.

Not Available

1980-03-07T23:59:59.000Z

120

Advanced dry head-end reprocessing of light water reactor spent nuclear fuel  

SciTech Connect (OSTI)

A method for reprocessing spent nuclear fuel from a light water reactor includes the step of reacting spent nuclear fuel in a voloxidation vessel with an oxidizing gas having nitrogen dioxide and oxygen for a period sufficient to generate a solid oxidation product of the spent nuclear fuel. The reacting step includes the step of reacting, in a first zone of the voloxidation vessel, spent nuclear fuel with the oxidizing gas at a temperature ranging from 200-450.degree. C. to form an oxidized reaction product, and regenerating nitrogen dioxide, in a second zone of the voloxidation vessel, by reacting oxidizing gas comprising nitrogen monoxide and oxygen at a temperature ranging from 0-80.degree. C. The first zone and the second zone can be separate. A voloxidation system is also disclosed.

Collins, Emory D.; Delcul, Guillermo D.; Hunt, Rodney D.; Johnson, Jared A.; Spencer, Barry B.

2014-06-10T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Advanced dry head-end reprocessing of light water reactor spent nuclear fuel  

DOE Patents [OSTI]

A method for reprocessing spent nuclear fuel from a light water reactor includes the step of reacting spent nuclear fuel in a voloxidation vessel with an oxidizing gas having nitrogen dioxide and oxygen for a period sufficient to generate a solid oxidation product of the spent nuclear fuel. The reacting step includes the step of reacting, in a first zone of the voloxidation vessel, spent nuclear fuel with the oxidizing gas at a temperature ranging from 200-450.degree. C. to form an oxidized reaction product, and regenerating nitrogen dioxide, in a second zone of the voloxidation vessel, by reacting oxidizing gas comprising nitrogen monoxide and oxygen at a temperature ranging from 0-80.degree. C. The first zone and the second zone can be separate. A voloxidation system is also disclosed.

Collins, Emory D; Delcul, Guillermo D; Hunt, Rodney D; Johnson, Jared A; Spencer, Barry B

2013-11-05T23:59:59.000Z

122

E-Print Network 3.0 - advanced nuclear energy Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is far less than any of the alternative energy technologies now... contemplated, such as solar, biomass and wind. Nuclear power must be part of any future solution to the...

123

E-Print Network 3.0 - advance nuclear energy Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is far less than any of the alternative energy technologies now... contemplated, such as solar, biomass and wind. Nuclear power must be part of any future solution to the...

124

The Attractiveness of Materials in Advanced Nuclear Fuel Cycles for Various Proliferation and Theft Scenarios  

SciTech Connect (OSTI)

This paper is an extension to earlier studies1,2 that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, COEX, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant state and sub-national group capabilities. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a state and provided the highest levels of physical protection to prevent theft by sub-national groups; no “silver bullet” has been found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of "attractiveness levels" that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities.3 The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.

Bathke, C. G.; Wallace, R. K.; Ireland, J. R.; Johnson, M. W.; Hase, Kevin R.; Jarvinen, G. D.; Ebbinghaus, B. B.; Sleaford, Brad W.; Bradley, Keith S.; Collins, Brian A.; Smith, Brian W.; Prichard, Andrew W.

2010-09-01T23:59:59.000Z

125

Advanced neutron irradiation system using Texas A&M University Nuclear Science Center Reactor  

E-Print Network [OSTI]

was installed in the irradiation cell of the Texas A&M University Nuclear Science Center Reactor (NSCR). By increasing the thickness of the lead-bismuth alloy, the neutron spectra were shifted into lower energies by the scattering interactions of fast...

Jang, Si Young

2005-11-01T23:59:59.000Z

126

FURTHER ASSESSMENTS OF THE ATTRACTIVENESS OF MATERIALS IN ADVANCED NUCLEAR FUEL CYCLES FROM A SAFEGUARDS PERSPECTIVE  

SciTech Connect (OSTI)

This paper summarizes the results of an extension to an earlier study [ ] that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with the PUREX, UREX+, and COEX reprocessing schemes. This study focuses on the materials associated with the UREX, COEX, THOREX, and PYROX reprocessing schemes. This study also examines what is required to render plutonium as “unattractive.” Furthermore, combining the results of this study with those from the earlier study permits a comparison of the uranium and thorium based fuel cycles on the basis of the attractiveness of the SNM associated with each fuel cycle. Both studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of “attractiveness levels” that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities [ ]. The methodology and key findings will be presented. Additionally, how these attractiveness levels relate to proliferation resistance (e.g. by increasing impediments to the diversion, theft, undeclared production of SNM for the purpose of acquiring a nuclear weapon), and how they could be used to help inform policy makers, will be discussed.

Bathke, C. G.; Jarvinen, G. D.; Wallace, R. K.; Ireland, J. R.; Johnson, M. W.; Sleaford, Brad W.; Ebbinghaus, B. B.; Bradley, Keith S.; Collins, Brian A.; Smith, Brian W.; Prichard, Andrew W.

2008-10-01T23:59:59.000Z

127

Requirements for a Dynamic Solvent Extraction Module to Support Development of Advanced Technologies for the Recycle of Used Nuclear Fuel  

SciTech Connect (OSTI)

The Department of Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program has been established to create and deploy next generation, verified and validated nuclear energy modeling and simulation capabilities for the design, implementation, and operation of future nuclear energy systems to improve the U.S. energy security. As part of the NEAMS program, Integrated Performance and Safety Codes (IPSC's) are being produced to significantly advance the status of modeling and simulation of energy systems beyond what is currently available to the extent that the new codes be readily functional in the short term and extensible in the longer term. The four IPSC areas include Safeguards and Separations, Reactors, Fuels, and Waste Forms. As part of the Safeguards and Separations (SafeSeps) IPSC effort, interoperable process models are being developed that enable dynamic simulation of an advanced separations plant. A SafeSepss IPSC 'toolkit' is in development to enable the integration of separation process modules and safeguards tools into the design process by providing an environment to compose, verify and validate a simulation application to be used for analysis of various plant configurations and operating conditions. The modules of this toolkit will be implemented on a modern, expandable architecture with the flexibility to explore and evaluate a wide range of process options while preserving their stand-alone usability. Modules implemented at the plant-level will initially incorporate relatively simple representations for each process through a reduced modeling approach. Final versions will incorporate the capability to bridge to subscale models to provide required fidelity in chemical and physical processes. A dynamic solvent extraction model and its module implementation are needed to support the development of this integrated plant model. As a stand-alone application, it will also support solvent development of extraction flowsheets and integrated safeguards approaches within the Fuel Cycle Research and Development (FCR&D) Program. The purpose of this document is to identify the requirements for this dynamic solvent extraction model to guide process modelers and code developers to produce a computational module that meets anticipated future needs.

Jack Law; Veronica Rutledge; Candido Pereira; Jackie Copple; Kurt Frey; John Krebs; Laura Maggos; Kevin Nichols; Kent Wardle; Pratap Sadasivan; Valmor DeAlmieda; David Depaoli

2011-06-01T23:59:59.000Z

128

Sef Downregulation by Ras Causes MEK1/2 to Become Aberrantly Nuclear Localized Leading to Polyploidy and Neoplastic Transformation  

Science Journals Connector (OSTI)

...MEK1/2 and ERK1/2. Nuclear MEK1/2 signaling sustains...phosphorylation. Prolonged nuclear ERK1/2 signaling dysregulates...Cellular Signaling. The costs of publication of this...2 expression. Bar graph indicates the percentage of samples displaying nuclear localization of pMEK1...

Stéphanie Duhamel; Josée Hébert; Louis Gaboury; Amélie Bouchard; Ronald Simon; Guido Sauter; Mark Basik; and Sylvain Meloche

2012-02-01T23:59:59.000Z

129

Functional issues and environmental qualification of digital protection systems of advanced light-water nuclear reactors  

SciTech Connect (OSTI)

Issues of obsolescence and lack of infrastructural support in (analog) spare parts, coupled with the potential benefits of digital systems, are driving the nuclear industry to retrofit analog instrumentation and control (I&C) systems with digital and microprocessor-based systems. While these technologies have several advantages, their application to safety-related systems in nuclear power plants raises key issues relating to the systems` environmental qualification and functional reliability. To bound the problem of new I&C system functionality and qualification, the authors focused this study on protection systems proposed for use in ALWRs. Specifically, both functional and environmental qualification issues for ALWR protection system I&C were addressed by developing an environmental, functional, and aging data template for a protection division of each proposed ALWR design. By using information provided by manufacturers, environmental conditions and stressors to which I&C equipment in reactor protection divisions may be subjected were identified. The resulting data were then compared to a similar template for an instrument string typically found in an analog protection division of a present-day nuclear power plant. The authors also identified fiber-optic transmission systems as technologies that are relatively new to the nuclear power plant environment and examined the failure modes and age-related degradation mechanisms of fiber-optic components and systems. One reason for the exercise of caution in the introduction of software into safety-critical systems is the potential for common-cause failure due to the software. This study, however, approaches the functionality problem from a systems point of view. System malfunction scenarios are postulated to illustrate the fact that, when dealing with the performance of the overall integrated system, the real issues are functionality and fault tolerance, not hardware vs. software.

Korsah, K.; Clark, R.L.; Wood, R.T. [Oak Ridge National Lab., TN (United States)

1994-04-01T23:59:59.000Z

130

Parametric Evaluation of Large-Scale High-Temperature Electrolysis Hydrogen Production Using Different Advanced Nuclear Reactor Heat Sources  

SciTech Connect (OSTI)

High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the sweep gas loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycles producing the highest efficiencies varied depending on the temperature range considered.

Edwin A. Harvego; Michael G. McKellar; James E. O'Brien; J. Stephen Herring

2009-09-01T23:59:59.000Z

131

Advanced Fuels Campaign Execution Plan  

SciTech Connect (OSTI)

The purpose of the Advanced Fuels Campaign (AFC) Execution Plan is to communicate the structure and management of research, development, and demonstration (RD&D) activities within the Fuel Cycle Research and Development (FCRD) program. Included in this document is an overview of the FCRD program, a description of the difference between revolutionary and evolutionary approaches to nuclear fuel development, the meaning of science-based development of nuclear fuels, and the 'Grand Challenge' for the AFC that would, if achieved, provide a transformational technology to the nuclear industry in the form of a high performance, high reliability nuclear fuel system. The activities that will be conducted by the AFC to achieve success towards this grand challenge are described and the goals and milestones over the next 20 to 40 year period of research and development are established.

Kemal Pasamehmetoglu

2011-09-01T23:59:59.000Z

132

Advanced Modeling and Evaluation of the Response of Base-Isolated Nuclear Facility Structures to Vertical Earthquake Excitation  

E-Print Network [OSTI]

Structures . iii 3 Nuclear Power Plants 3.1 Nuclear FacilityKashiwazaki-Kariwa Nuclear Power Plant 3.3.1 2004 Ch¯ uetsuKashiwazaki-Kariwa nuclear power plant in response to the

Keldrauk, Eric Scott

2012-01-01T23:59:59.000Z

133

Development of advanced direct perception displays for nuclear power plants to enhance monitoring, control and fault management. Progress report  

SciTech Connect (OSTI)

With recent theoretical and empirical research in basic and applied psychology, human factors, and engineering, it is now sufficient to define an integrated approach to the deign of advanced displays for present and future nuclear power plants. Traditionally, the conventional displays have shown operators the individual variables on gauges, meters, strip charts, etc. This design approach requires the operators to mentally integrate the separately displayed variables and determine the implications for the plant state. This traditional approach has been known as the single-sensor-single-indicator display design and it places an intolerable amount of mental workload on operators during transients and abnormal conditions. This report discusses a new alternative approach which is the use of direct perception interfaces. Direct perception a interfaces display the underlying physical and system constraints of the situation in a directly perceptual way, such that the viewer need not reason about what is seen to identify system states, but can identify the state of the system perceptually. It is expected that displays which show the dynamics of fundamental physical laws should better support operator decisions and diagnoses of plant states. The purpose of this research project is to develop a suite of direct perception displays for PWR nuclear power plant operations.

Jones, B.; Shaheen, S.; Moray, N.; Sanderson, P.; Reising, D.V.

1993-05-21T23:59:59.000Z

134

Advanced Outage and Control Center: Strategies for Nuclear Plant Outage Work Status Capabilities  

SciTech Connect (OSTI)

The research effort is a part of the Light Water Reactor Sustainability (LWRS) Program. LWRS is a research and development program sponsored by the Department of Energy, performed in close collaboration with industry to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. The LWRS Program serves to help the US nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The Outage Control Center (OCC) Pilot Project was directed at carrying out the applied research for development and pilot of technology designed to enhance safe outage and maintenance operations, improve human performance and reliability, increase overall operational efficiency, and improve plant status control. Plant outage management is a high priority concern for the nuclear industry from cost and safety perspectives. Unfortunately, many of the underlying technologies supporting outage control are the same as those used in the 1980’s. They depend heavily upon large teams of staff, multiple work and coordination locations, and manual administrative actions that require large amounts of paper. Previous work in human reliability analysis suggests that many repetitive tasks, including paper work tasks, may have a failure rate of 1.0E-3 or higher (Gertman, 1996). With between 10,000 and 45,000 subtasks being performed during an outage (Gomes, 1996), the opportunity for human error of some consequence is a realistic concern. Although a number of factors exist that can make these errors recoverable, reducing and effectively coordinating the sheer number of tasks to be performed, particularly those that are error prone, has the potential to enhance outage efficiency and safety. Additionally, outage management requires precise coordination of work groups that do not always share similar objectives. Outage managers are concerned with schedule and cost, union workers are concerned with performing work that is commensurate with their trade, and support functions (safety, quality assurance, and radiological controls, etc.) are concerned with performing the work within the plants controls and procedures. Approaches to outage management should be designed to increase the active participation of work groups and managers in making decisions that closed the gap between competing objectives and the potential for error and process inefficiency.

Gregory Weatherby

2012-05-01T23:59:59.000Z

135

Americium/Lanthanide Separations in Alkaline Solutions for Advanced Nuclear Fuel Cycles  

SciTech Connect (OSTI)

Project goals: Can used nuclear fuel be partitioned by dissolution in alkaline aqueous solution to give a solution of uranium, neptunium, plutonium, americium and curium and a filterable solid containing nearly all of the lanthanide fission products and certain other fission products? What is the chemistry of Am/Cm/Ln in oxidative carbonate solutions? Can higher oxidation states of Am be stabilized and exploited? Conclusions: Am(VI) is kinetically stable in 0.5-2.0 M carbonate solutions for hours. Aliquat 336 in toluene has been successfully shown to extract U(VI) and Pu(VI) from carbonate solutions. (Stepanov et al 2011). Higher carbonate concentration gives lower D, SF{sub U/Eu} for = 4 in 1 M K{sub 2}CO{sub 3}. Experiments with Am(VI) were unsuccessful due to reduction by the organics. Multiple sources of reducing organics...more optimization. Reduction experiments of Am(VI) in dodecane/octanol/Aliquat 336 show that after 5 minutes of contact, only 30-40% of the Am(VI) has been reduced. Long enough to perform an extraction. Shorter contact times, lower T, and lower Aliquat 336 concentration still did not result in any significant extraction of Am. Anion exchange experiments using a strong base anion exchanger show uptake of U(VI) with minimal uptake of Nd(III). Experiments with Am(VI) indicate Am sorption with a Kd of 9 (10 minute contact) but sorption mechanism is not yet understood. SF{sub U/Nd} for = 7 and SF{sub U/Eu} for = 19 after 24 hours in 1 M K{sub 2}CO{sub 3}.

Goff, George S. [Los Alamos National Laboratory; Long, Kristy Marie [Los Alamos National Laboratory; Reilly, Sean D. [Los Alamos National Laboratory; Jarvinen, Gordon D. [Los Alamos National Laboratory; Runde, Wolfgang H. [Los Alamos National Laboratory

2012-06-11T23:59:59.000Z

136

Biolistic transformation of a procaryote, Bacillus megaterium.  

Science Journals Connector (OSTI)

...gunpowder-driven sys- tem. Particle accelerator conditions were optimized for...lid removed), and a partial vacuum was drawn (29 in. [ca...technology (28). Also, nuclear transformation ; f eucaryotic...Johnston. 1990. Biolistic nuclear transformation of Saccharomyces...

K B Shark; F D Smith; P R Harpending; J L Rasmussen; J C Sanford

1991-02-01T23:59:59.000Z

137

Deployment & Market Transformation (Brochure)  

SciTech Connect (OSTI)

NREL's deployment and market transformation (D and MT) activities encompass the laboratory's full range of technologies, which span the energy efficiency and renewable energy spectrum. NREL staff educates partners on how they can advance sustainable energy applications and also provides clients with best practices for reducing barriers to innovation and market transformation.

Not Available

2012-04-01T23:59:59.000Z

138

Modeling Transformation  

E-Print Network [OSTI]

Modeling Transformation What does each step do? #12;Transformation Procedure #12;Transformation Procedure #12;Building Your Model Yarn = chromosomal DNA Beads - - - - - - - - - - - - - - Ribosomes #12;Add transformation solution Tube CaCl2 #12;Transformation solution: CaCl2

Rose, Michael R.

139

Civilian Nuclear Programs, SPO-CNP: LANL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Office of Science Civilian Nuclear Programs Home Advanced Nuclear Energy Programs Yucca Mountain and Nevada Test Site Programs WIPP and Actinide Science Programs Nuclear...

140

Challenge problem and milestones for : Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC).  

SciTech Connect (OSTI)

This report describes the specification of a challenge problem and associated challenge milestones for the Waste Integrated Performance and Safety Codes (IPSC) supporting the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The NEAMS challenge problems are designed to demonstrate proof of concept and progress towards IPSC goals. The goal of the Waste IPSC is to develop an integrated suite of modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. To demonstrate proof of concept and progress towards these goals and requirements, a Waste IPSC challenge problem is specified that includes coupled thermal-hydrologic-chemical-mechanical (THCM) processes that describe (1) the degradation of a borosilicate glass waste form and the corresponding mobilization of radionuclides (i.e., the processes that produce the radionuclide source term), (2) the associated near-field physical and chemical environment for waste emplacement within a salt formation, and (3) radionuclide transport in the near field (i.e., through the engineered components - waste form, waste package, and backfill - and the immediately adjacent salt). The initial details of a set of challenge milestones that collectively comprise the full challenge problem are also specified.

Freeze, Geoffrey A.; Wang, Yifeng; Howard, Robert; McNeish, Jerry A.; Schultz, Peter Andrew; Arguello, Jose Guadalupe, Jr.

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

AdvAnced  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AdvAnced test reActor At the InL advanced Unlike large, commercial power reactors, ATR is a low- temperature, low-pressure reactor. A nuclear reactor is basically an elaborate...

142

Advanced Modeling and Evaluation of the Response of Base-Isolated Nuclear Facility Structures to Vertical Earthquake Excitation  

E-Print Network [OSTI]

isolated nuclear power plant designs in Japan and the UnitedJapan were also affected by these events, including the Onagawa nuclear powerNuclear Power Plant In 1980, construction began on the Kashiwazaki-Kariwa NPP in Niigata Prefecture, on the west coast of Honshu, Japan.

Keldrauk, Eric Scott

2012-01-01T23:59:59.000Z

143

Nuclear Energy Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Role of Synchrotron Radiation in Solving Scientific Challenges in Advanced Nuclear Energy Systems 27 to 28 January 2010 at Argonne's Advanced Photon Source Scope Third-generation...

144

Advanced Nuclear Research Reactor  

SciTech Connect (OSTI)

This report describes technical modifications implemented by INVAP to improve the safety of the Research Reactors the company designs and builds.

Lolich, J.V.

2004-10-06T23:59:59.000Z

145

transformation restrictions  

E-Print Network [OSTI]

Integration of Graph Transformation and Temporal Logic for the Speci#12;cation of Distributed, namely distributed graph transformation and temporal logic. Distributed graph transformation is intended

Lyuu, Yuh-Dauh

146

Advanced Reactor Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced Reactor Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research, development and deployment (RD&D) activities through its Next Generation Nuclear Plant (NGNP), Advanced Reactor Concepts (ARC), and Advanced Small Modular Reactor (aSMR) programs to promote safety, technical, economical, and environmental advancements of innovative Generation IV nuclear energy technologies. The Office of Nuclear Energy (NE) will pursue these advancements through RD&D activities at the Department of Energy (DOE) national laboratories and U.S. universities, as well as through collaboration with industry and international partners. These activities will focus on advancing scientific

147

Transformation Telepresence  

E-Print Network [OSTI]

Business Transformation through Telepresence Gaining Value with Enterprise Video Collaboration-based research and April, 2011 Business Transformation through Telepresence: Gaining Value with Enterprise Video be used to transform organizations. Why Does Your Business Need to Transform? Traditionally, organizations

Fisher, Kathleen

148

E-Print Network 3.0 - arithmetic fourier transform Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fourier transform Search Powered by Explorit Topic List Advanced Search Sample search results for: arithmetic fourier transform Page: << < 1 2 3 4 5 > >> 1 Fast Fourier transform...

149

Evaluation of an advanced fault detection system using Koeberg nuclear power plant data / H.L. Pelo.  

E-Print Network [OSTI]

??The control and protection system of early nuclear power plants (Generation II) have been designed and built on the then reliable analog system. Technology has… (more)

Pelo, Herbert Leburu

2013-01-01T23:59:59.000Z

150

United States and Italy Sign Agreements to Advance Developments...  

Broader source: Energy.gov (indexed) [DOE]

Italy Sign Agreements to Advance Developments in Nuclear Energy United States and Italy Sign Agreements to Advance Developments in Nuclear Energy September 30, 2009 - 12:00am...

151

Transformations ENGINEERING  

E-Print Network [OSTI]

On the Complexity of the Discrete Fourier Transform and Related Linear Transforms Preliminary straight line program that computes an encoding of the Hadamard Transform. The transform itself can transforms, like the DFT. 1 Introduction The complexity of special linear transformations (computations

Gales, Mark

152

Interagency Advanced Power Group, Joint Electrical and Nuclear Working Group, meeting minutes, November 16--17, 1993  

SciTech Connect (OSTI)

Reports on soldier power R&D review, N-MCT power electronic building blocks, silicon carbide power semiconductor work, and ground based radar were made to the Power Conditioning Panel. An introduction to high temperature electronics needs, research and development was made to the High Temperature Electronics Subcommittee. The Pulse Power Panel received reports on the navy ETC gun, and army pulse power. The Superconductivity Panel received reports on high-tc superconducting wires, superconducting magnetic energy storage, and superconducting applications. The Nuclear Working Group received presentations on the Topaz nuclear power program, and space nuclear work in the Department of Energy.

Not Available

1993-12-31T23:59:59.000Z

153

The Centralized Reliability Data Organization (CREDO); an Advanced Nuclear Reactor Reliability, Availability, and Maintainability Data Bank and Data Analysis Center  

Science Journals Connector (OSTI)

The Centralized Reliability Data Organization (CREDO) is a data bank and data analysis center, which since 1985 has been jointly ... of Technology Support Programs and Japan’s Power Reactor and Nuclear Fuel Devel...

H. E. Knee

1991-01-01T23:59:59.000Z

154

Nuclear Hydrogen Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Nuclear Research Advanced Nuclear Research Office of Nuclear Energy, Science and Technology FY 2003 Programmatic Overview Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Office of Nuclear Energy, Science and Technology Henderson/2003 Hydrogen Initiative.ppt 2 Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Program Goal * Demonstrate the economic commercial-scale production of hydrogen using nuclear energy by 2015 Need for Nuclear Hydrogen * Hydrogen offers significant promise for reduced environmental impact of energy use, specifically in the transportation sector * The use of domestic energy sources to produce hydrogen reduces U.S. dependence on foreign oil and enhances national security * Existing hydrogen production methods are either inefficient or produce

155

Transforming development  

E-Print Network [OSTI]

Transforming Java Bytecode Laurie Hendren, Patrick Lam, Jennifer for Analyzing and Transforming Java Bytecode -- p. 1/148 #12; ,Feng,Jennifer) Conclusion, Further Reading & Homework (Laurie) Soot, a Tool for Analyzing and Transforming Java Bytecode

Verbrugge, Clark

156

Transformations for densities Linear transformations  

E-Print Network [OSTI]

' & $ % Lecture 28 Transformations for densities Linear transformations 1-1 differentiable functions General transformations Expectation of a function 1 #12;' & $ % Transformations for discrete transformation of a U[0, 1] · Take X U[0, 1], so that fX(x) = 1 0 0 and set Y

Adler, Robert J.

157

Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation  

E-Print Network [OSTI]

Henry S. Rowen, "Nuclear Energy and Nuclear Proliferation -Northeast Asian nuclear energy cooperation advanced byAsia). 2 Cooperation on nuclear energy would have a direct

Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

1998-01-01T23:59:59.000Z

158

Appell Transformation and Canonical Transforms  

E-Print Network [OSTI]

The interpretation of the optical Appell transformation, as previously elaborated in relation to the free-space paraxial propagation under both a rectangular and a circular cylindrical symmetry, is reviewed. Then, the caloric Appell transformation, well known in the theory of heat equation, is shown to be amenable for a similar interpretation involving the Laplace transform rather than the Fourier transform, when dealing with the 1D heat equation. Accordingly, when considering the radial heat equation, suitably defined Hankel-type transforms come to be involved in the inherent Appell transformation. The analysis is aimed at outlining the link between the Appell transformation and the canonical transforms.

Amalia Torre

2011-07-19T23:59:59.000Z

159

Integral transformation and Darboux transformation  

E-Print Network [OSTI]

We review Darboux-Crum transformation of Heun's differential equation. By rewriting an integral transformation of Heun's differential equation into a form of elliptic functions, we see that the integral representation is a generalization of Darboux-Crum transformation. We also consider conservation of monodromy with respect to the transformations.

Kouichi Takemura

2009-11-11T23:59:59.000Z

160

Massachusetts Institute of Technology Department of Nuclear Engineering  

E-Print Network [OSTI]

Massachusetts Institute of Technology Department of Nuclear Engineering Advanced Reactor Technology of Technology Department of Nuclear Engineering Advanced Reactor Technology Pebble Bed Project MPBR-2 Student Department of Nuclear Engineering Advanced Reactor Technology Pebble Bed Project MPBR-3 Project Objective

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Civilian Nuclear Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Civilian Nuclear Programs Civilian Nuclear Programs Civilian Nuclear Programs Los Alamos is committed to using its advanced nuclear expertise and unique facilities to meet the civilian nuclear national security demands of the future. CONTACT US Program Director Bruce Robinson (505) 667-1910 Email Los Alamos partners extensively with other laboratories, universities, industry, and the international nuclear community to address real-world technical challenges The Civilian Nuclear Programs Office is the focal point for nuclear energy research and development and next-generation repository science at Los Alamos National Laboratory. The Civilian Nuclear Programs Office manages projects funded by the Department of Energy's offices of Nuclear Energy Environmental Management Nuclear Regulatory Commission

162

Transformational Manufacturing | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transformational Manufacturing Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and transformational technology to improve the efficiency and competitiveness of domestic manufacturing while reducing its carbon footprint. The lab's efforts concentrate on sustainable manufacturing, applied nanotechnology and distributed energy, with an emphasis on transitioning science discoveries to the market.

163

6 Nuclear Fuel Designs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Message from the Director Message from the Director 2 Nuclear Power & Researrh Reactors 3 Discovery of Promethium 4 Nuclear Isotopes 4 Nuclear Medicine 5 Nuclear Fuel Processes & Software 6 Nuclear Fuel Designs 6 Nuclear Safety 7 Nuclear Desalination 7 Nuclear Nonproliferation 8 Neutron Scattering 9 Semiconductors & Superconductors 10 lon-Implanted Joints 10 Environmental Impact Analyses 11 Environmental Quality 12 Space Exploration 12 Graphite & Carbon Products 13 Advanced Materials: Alloys 14 Advanced Materials: Ceramics 15 Biological Systems 16 Biological Systems 17 Computational Biology 18 Biomedical Technologies 19 Intelligent Machines 20 Health Physics & Radiation Dosimetry 21 Radiation Shielding 21 Information Centers 22 Energy Efficiency: Cooling & Heating

164

Nuclear Data Program - Nuclear Engineering Division (Argonne)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Program Data Program Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications Nuclear Data Measurements (NDM) Reports Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program We contribute to the development of comprehensive nuclear reactions and nuclear structure databases, including nuclear data measurement, analysis, modeling and evaluation methodologies, that are implemented in basic science research and advanced nuclear technologies. Bookmark and Share Recent Events Nuclear Structure 2012 Conference Argonne National Laboratory hosted the

165

Deputy Secretary Poneman to Attend International Framework for Nuclear  

Broader source: Energy.gov (indexed) [DOE]

to Attend International Framework for to Attend International Framework for Nuclear Energy Cooperation Meeting in Jordan Deputy Secretary Poneman to Attend International Framework for Nuclear Energy Cooperation Meeting in Jordan November 3, 2010 - 12:00am Addthis Washington, D.C. - U.S. Deputy Secretary of Energy Daniel Poneman will represent the United States at the International Framework for Nuclear Energy Cooperation (IFNEC) Executive Committee Meeting in Jordan on Thursday, November 4, 2010. The conference aims to advance cooperation among participating states to promote the peaceful use of nuclear energy in a manner that meets high standards of safety, security and nonproliferation. IFNEC developed out of the Global Nuclear Energy Partnership. Last June, the Global Nuclear Energy Partnership Steering Group agreed to transform to

166

Market Transformation  

SciTech Connect (OSTI)

Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market transformation subprogram.

Not Available

2008-09-01T23:59:59.000Z

167

transformations: representations  

E-Print Network [OSTI]

Overview 1. Number transformations: from one base to another 2. Integer representations 3. Real rate, caches... #12; ECS 50, Discussion on 4/25 2 Integer Transformation: From Decimal to Binary Let, Discussion on 4/25 3 Integer Transformation: From Binary to Decimal Compute the weight of each digit position

Nguyen, Dat H.

168

Transformation Composition  

E-Print Network [OSTI]

Proc. AGTIVE'99, to appear in LNCS Graph Transformation Modules and their Composition ? Frank,knirsch,kreo,kuskeg@informatik.uni-bremen.de Abstract. In this paper, we investigate the notion of transformation modules as a structuring principle. Based on the notion of transformation units, a concept that allows to specify binary relations on graphs

Drewes, Frank

169

Transforming IMAGINATION  

E-Print Network [OSTI]

Our CAMPAIGN: Transforming MEDICINE Beyond IMAGINATION Endowed Professorships and Chairs #12;As, I know firsthand the many ways that endowed professorships can be transformative. Receiving the John. In the following pages, you can learn more about establishing your legacy by participating in the "Transforming

Weber, David J.

170

Transforming IMAGINATION  

E-Print Network [OSTI]

Our CAMPAIGN: Transforming MEDICINE Beyond IMAGINATION The School of Medicine Research Building in the Transforming Medicine Beyond Imagination Campaign, and to learn more about the specific needs, relative and translational research and help drive medical breakthroughs that will transform the health and well

Weber, David J.

171

Final LDRD report : nanoscale mechanisms in advanced aging of materials during storage of spent %22high burnup%22 nuclear fuel.  

SciTech Connect (OSTI)

We present the results of a three-year LDRD project focused on understanding microstructural evolution and related property changes in Zr-based nuclear cladding materials towards the development of high fidelity predictive simulations for long term dry storage. Experiments and modeling efforts have focused on the effects of hydride formation and accumulation of irradiation defects. Key results include: determination of the influence of composition and defect structures on hydride formation; measurement of the electrochemical property differences between hydride and parent material for understanding and predicting corrosion resistance; in situ environmental transmission electron microscope observation of hydride formation; development of a predictive simulation for mechanical property changes as a function of irradiation dose; novel test method development for microtensile testing of ionirradiated material to simulate the effect of neutron irradiation on mechanical properties; and successful demonstration of an Idaho National Labs-based sample preparation and shipping method for subsequent Sandia-based analysis of post-reactor cladding.

Clark, Blythe G.; Rajasekhara, Shreyas; Enos, David George; Dingreville, Remi Philippe Michel; Doyle, Barney Lee; Hattar, Khalid Mikhiel; Weiner, Ruth F.

2013-09-01T23:59:59.000Z

172

LAPPED TRANSFORMS Ricardo L. de Queiroz  

E-Print Network [OSTI]

LAPPED TRANSFORMS Ricardo L. de Queiroz Advanced Color Imaging Xerox Corporation queiroz@wrc.xerox.com 0.1 Introduction The idea of a lapped transform (LT, for short) maintaining orthogonality and non with the blocking artifacts so common in traditional block transform coding of images. The idea was to extend

de Queiroz, Ricardo L.

173

The Army before last military transformation and the impact of nuclear weapons on the US Army during the early Cold War .  

E-Print Network [OSTI]

??This thesis analyzes the impact of nuclear weapon on the doctrine and force structure of the US Army during the Early Cold War (1947-1957). It… (more)

Kinman, Bret C.

2004-01-01T23:59:59.000Z

174

Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, April 1, 1980-June 30, 1980  

SciTech Connect (OSTI)

Objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described; this includes: screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850 and 950/sup 0/C. The initiation of air creep-rupture testing in the intensive screening test program is discussed. In addition, the status of the data management system is described.

Not Available

1980-11-14T23:59:59.000Z

175

Advanced Test Reactor Tour  

SciTech Connect (OSTI)

The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

Miley, Don

2011-01-01T23:59:59.000Z

176

Advanced Test Reactor Tour  

ScienceCinema (OSTI)

The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

Miley, Don

2013-05-28T23:59:59.000Z

177

Nuclear Factor of Activated T3 Is a Negative Regulator of Ras-JNK1/2-AP-1–Induced Cell Transformation  

Science Journals Connector (OSTI)

...cells (Fig. 6A and graph lanes 5 and 6 ). Very...cells (Fig. 6A and graph lanes 7 and 8 ). Moreover...JNK1/2 might induce nuclear localization. These...found that although JNK nuclear localization is induced...and CA111356. The costs of publication of this...

Ke Yao; Yong-Yeon Cho; H. Robert Bergen III; Benjamin J. Madden; Bu Young Choi; Wei-Ya Ma; Ann M. Bode; and Zigang Dong

2007-09-15T23:59:59.000Z

178

Advanced LBB methodology and considerations  

SciTech Connect (OSTI)

LBB applications have existed in many industries and more recently have been applied in the nuclear industry under limited circumstances. Research over the past 10 years has evolved the technology so that more advanced consideration of LBB can now be given. Some of the advanced considerations for nuclear plants subjected to seismic loading evaluations are summarized in this paper.

Olson, R.; Rahman, S.; Scott, P. [Battelle, Columbus, OH (United States)] [and others

1997-04-01T23:59:59.000Z

179

E-Print Network 3.0 - azimuth transform interpolation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

transform interpolation Search Powered by Explorit Topic List Advanced Search Sample search results for: azimuth transform interpolation Page: << < 1 2 3 4 5 > >> 1 IEEE...

180

E-Print Network 3.0 - adaptive wavelet transform Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wavelet transform Search Powered by Explorit Topic List Advanced Search Sample search results for: adaptive wavelet transform Page: << < 1 2 3 4 5 > >> 1 Complex Wavelets Arnab...

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

TRANSFORME Dpartement  

E-Print Network [OSTI]

GEODESIE et TRANSFORMATIONS GEODESIQUES Serge BEUCHER CMM ­ Mines ParisTech Novembre 2013 #12;Cours transformation a la propriété suivante: dX,l+m = dX,l [ dX,m] · d est croissante et extensive · d est également croissante lorsqu'on la considère comme une transformation appliquée à l'espace géodésique X (Y fixé) YY

Mignotte, Max

182

Market Transformation  

Fuel Cell Technologies Publication and Product Library (EERE)

This Fuel Cell Technologies Program fact sheet outlines current status and challenges in the market transformation of hydrogen and fuel cell technologies.

183

TRANSFORME Dpartement  

E-Print Network [OSTI]

transformers of kind #3; ! #3;: NatF : #3; ! #3; NatF := #21;X: 1 +X Nat : #3; Nat := #22; NatF #15; Works also

Mignotte, Max

184

Data Transformation  

Science Journals Connector (OSTI)

Data transformation is applied when there is a... normal distribution ...or realize some other assumption about the distribution prior to carrying out certain stati...

2008-01-01T23:59:59.000Z

185

Studies on steam condensation with non-condensable gases in a horizontal condenser tube for advanced nuclear reactors using RELAP5  

Science Journals Connector (OSTI)

Horizontal heat exchangers are used in advanced light water nuclear reactors in their passive cooling systems, such as Residual Heat Removal System (RHRS) and Passive Containment Cooling System (PCCS). Horizontal condensation studies of steam with non-condensable gases mixtures in these heat exchangers are very important. This work presents a comparison between simulation results and experimental data in steady state conditions for some inlet pressure, steam and non-condensable gases (air) inlet mass fractions. The test section was modelled and the simulations were performed with the RELAP5 code. Experimental tests were carried out for 200â??400 kPa inlet pressure and 5%, 10%, 15% and 20% of inlet air mass fractions. Comparisons between experimental data and simulation results are presented for 200 kPa and 400 kPa pressure conditions and showed good agreement. New correlations for heat transfer coefficients in these steam-air conditions must be theoretically and experimentally studied and implemented in the RELAP5 code.

L.A. Macedo; W.M. Torres

2011-01-01T23:59:59.000Z

186

Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model - 13413  

SciTech Connect (OSTI)

This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity. (authors)

Djokic, Denia [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States)] [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, Steven J.; Pincock, Layne F.; Soelberg, Nick R. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)] [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

2013-07-01T23:59:59.000Z

187

Global Nuclear Energy Partnership Fact Sheet - Expand Domestic...  

Broader source: Energy.gov (indexed) [DOE]

Expand Domestic Use of Nuclear Power Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of Nuclear Power GNEP will build on the recent advances made by the...

188

Chiral Transformations  

Science Journals Connector (OSTI)

Chiral transformations are discussed phenomenologically, beginning with the known properties of the low-energy ?N system. The treatment of ?? scattering emphasizes the ambiguity in the connection between mathematical structures and the physical ? field. The unitary generalization of the meson chiral transformation is applied to the strong-interaction decay ?*??+2?. The predicted energy asymmetry of the ? is consistent with observation.

Julian Schwinger

1968-03-25T23:59:59.000Z

189

Nuclear Safety Information | Department of Energy  

Office of Environmental Management (EM)

Safety Information Nuclear Safety Information Idaho National Laboratory's Advanced Test Reactor (ATR) | April 8, 2009 Idaho National Laboratory's Advanced Test Reactor (ATR) |...

190

Nuclear Systems Technology | Nuclear Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Fuel Cycle Systems Criticality Safety Irradiation Experiment Development and Execution Robotics & Remote Systems Engineering and Applications Thermal & Hydraulic Experiments & Analysis Used Nuclear Fuel Storage, Transportation, and Disposal Reactor Technology Nuclear Science Home | Science & Discovery | Nuclear Science | Research Areas | Nuclear Systems Technology SHARE Nuclear Systems Technology Nuclear Systems Technology Image 2 ORNL has had historic involvement in a broad set of nuclear research areas: irradiated materials and isotopes R&D, fission and fusion reactors development, neutron scattering, fuel enrichment, used fuel recycling and disposal, etc. The skills and knowledge required to succeed in these research areas often cultivated core areas of expertise in which ORNL is

191

Audio compression with non-uniform modulated complex lapped transform  

E-Print Network [OSTI]

In the past 10 years, advances in audio compression have been tremendous. Lapped Orthogonal Transforms (LOT) and psychoacoustic properties have significantly improved performance of transform audio coders. As a result, standards like MP3...

Scheuble, Anne-Sophie Maud

2012-06-07T23:59:59.000Z

192

Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) verification and validation plan. version 1.  

SciTech Connect (OSTI)

The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. To meet this objective, NEAMS Waste IPSC M&S capabilities will be applied to challenging spatial domains, temporal domains, multiphysics couplings, and multiscale couplings. A strategic verification and validation (V&V) goal is to establish evidence-based metrics for the level of confidence in M&S codes and capabilities. Because it is economically impractical to apply the maximum V&V rigor to each and every M&S capability, M&S capabilities will be ranked for their impact on the performance assessments of various components of the repository systems. Those M&S capabilities with greater impact will require a greater level of confidence and a correspondingly greater investment in V&V. This report includes five major components: (1) a background summary of the NEAMS Waste IPSC to emphasize M&S challenges; (2) the conceptual foundation for verification, validation, and confidence assessment of NEAMS Waste IPSC M&S capabilities; (3) specifications for the planned verification, validation, and confidence-assessment practices; (4) specifications for the planned evidence information management system; and (5) a path forward for the incremental implementation of this V&V plan.

Bartlett, Roscoe Ainsworth; Arguello, Jose Guadalupe, Jr.; Urbina, Angel; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Knupp, Patrick Michael; Wang, Yifeng; Schultz, Peter Andrew; Howard, Robert (Oak Ridge National Laboratory, Oak Ridge, TN); McCornack, Marjorie Turner

2011-01-01T23:59:59.000Z

193

A survey of Existing V&V, UQ and M&S Data and Knowledge Bases in Support of the Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS)  

SciTech Connect (OSTI)

The Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Oak Ridge National Laboratory, Utah State University and others. The objective of this consortium is to establish a comprehensive knowledge base to provide Verification and Validation (V&V) and Uncertainty Quantification (UQ) and other resources for advanced modeling and simulation (M&S) in nuclear reactor design and analysis. NE-KAMS will become a valuable resource for the nuclear industry, the national laboratories, the U.S. NRC and the public to help ensure the safe operation of existing and future nuclear reactors. A survey and evaluation of the state-of-the-art of existing V&V and M&S databases, including the Department of Energy and commercial databases, has been performed to ensure that the NE-KAMS effort will not be duplicating existing resources and capabilities and to assess the scope of the effort required to develop and implement NE-KAMS. The survey and evaluation have indeed highlighted the unique set of value-added functionality and services that NE-KAMS will provide to its users. Additionally, the survey has helped develop a better understanding of the architecture and functionality of these data and knowledge bases that can be used to leverage the development of NE-KAMS.

Hyung Lee; Rich Johnson, Ph.D.; Kimberlyn C. Moussesau

2011-12-01T23:59:59.000Z

194

TRANSFORMATIONS GEODESIQUES  

E-Print Network [OSTI]

to A if there is a transformation R which for every input x of B yields an equivalent input R(x) of A. { The answer to x for B

Beucher, Serge

195

Transformative copy  

E-Print Network [OSTI]

The ability to create an unlimited number of identical copies is a privilege of digital documents. What if that would not be the case, if each copy of a digital file would go along with some sort of transformation? This ...

Offenhuber, Dietmar

2008-01-01T23:59:59.000Z

196

Small Market Advanced Retrofit Transformation Program (SMART...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a comprehensive set of measures, integrated financing tools, and expedited project measurement and verification via a contractor-driven delivery model. Ecology Action is...

197

Transformational advances in knowledge and technology come  

Energy Savers [EERE]

physics. Today, these machines are also widely used in semiconductor manufacturing, brain imaging and cancer treatment, and to determine the structural integrity of materials...

198

Advanced LWR Nuclear Fuel Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Radiation (Part I) - Alkali-AggregateSilica Reaction (Part II) - Creepcreep-fracture interaction (Roadmap to be developed) Part I- Irradiated Concrete Research results...

199

advancing ou r intellectual  

E-Print Network [OSTI]

Grand Challenge: Energy, Environment, and Infrastructure Grand Challenge: Health 2. Investing in Faculty ambition to transform Lehigh University by advanc- ing our intellectual footprint. The students and future' ability to compete in that world. · Globalization · Energy, environment, and infrastructure · Health Adv

Napier, Terrence

200

Advanced Windows Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exterior of Advanced Windows Test Facility Exterior of Advanced Windows Test Facility Advanced Windows Test Facility This multi-room laboratory's purpose is to test the performance and properties of advanced windows and window systems such as electrochromic windows, and automatically controlled shutters and blinds. The lab simulates real-world office spaces. Embedded instrumentation throughout the lab records solar gains and losses for specified time periods, weather conditions, energy use, and human comfort indicators. Electrochromic glazings promise to be a major advance in energy-efficient window technology, helping to achieve the goal of transforming windows and skylights from an energy liability in buildings to an energy source. The glazing can be reversibly switched from a clear to a transparent, colored

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

SPATIAL TRANSFORMATIONS 1 Running head: Spatial transformations  

E-Print Network [OSTI]

SPATIAL TRANSFORMATIONS 1 Running head: Spatial transformations Multiple Systems for Spatial Imagery: Transformations of Objects and Bodies Jeffrey M. Zacks* and Barbara Tversky * Washington COGNITION & COMPUTATION #12;SPATIAL TRANSFORMATIONS 2 Abstract Problem-solving often requires imagining

Zacks, Jeffrey M.

202

Fourier Transform Pairs The Fourier transform transforms a function of  

E-Print Network [OSTI]

Fourier Transform Pairs The Fourier transform transforms a function of time, f(t), into a function of frequency, F(s): F {f(t)}(s) = F(s) = Z - f(t)e- j2st dt. The inverse Fourier transform transforms a func. The inverse Fourier transform of the Fourier trans- form is the identity transform: f(t) = Z - Z - f()e- j2s

Masci, Frank

203

transform your thinking transform your environment  

E-Print Network [OSTI]

MBA #12;transform your thinking 2 transform your environment 18 transform your career 26 start your transformation now 34 transform yourself www.olin.wustl.edu/MBA #12;What distinguishes Washington University. But a great business school transforms the way you think, lead and give back to the world community. #12

Subramanian, Venkat

204

Substantial Transformation  

Broader source: Energy.gov (indexed) [DOE]

4 4 Recovery Act/Buy American Information Related to Substantial Transformation GUIDANCE ON MANUFACTURED GOODS AND SUBSTANTIAL TRANSFORMATION FOR FINANCIAL ASSISTANCE AWARDS Section 1605 of the Recovery Act states, "None of the funds appropriated or otherwise made available by this Act may be used for a project for the construction, alteration, maintenance, or repair of a public building or public work unless all of the iron, steel, and manufactured goods used in the project are produced in the United States." The Office of Management and Budget's (OMB) guidance on implementing this section defines "manufactured good" as a "good brought to the construction site for incorporation into

205

Conferences and Workshops | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on the Role of Synchrotron Radiation in Solving Scientific Challenges in Advanced Nuclear Energy Systems Program (pdf) Report (pdf) Argonne National Laboratory,...

206

The Laplace Transform 1 Laplace transform and inverse transform  

E-Print Network [OSTI]

The Laplace Transform Name: 1 Laplace transform and inverse transform Definition. Let f(t) be a function defined for t 0. Then the integral L {f(t)} = 0 e-st f(t)dt is said to be the Laplace transform of f provided the integral converges. Fill in the following Laplace transforms. L {tn } = L {eat } = L

Yengulalp, Lynne

207

The Laplace Transform 1 Laplace transform and inverse transform  

E-Print Network [OSTI]

The Laplace Transform Name: 1 Laplace transform and inverse transform Definition. Let f be a function defined for t 0. Then the integral L {f(t)} = 0 e-st f(t)dt is said to be the Laplace transform of f provided the integral converges. Fill in the following Laplace transforms. L {tn } = n! sn+1 L

Yengulalp, Lynne

208

Advanced Sensors and Instrumentation Newsletter  

Broader source: Energy.gov [DOE]

The Advanced Sensors and Instrumentation (ASI) newsletter will be released periodically to inform program stakeholders about new developments and achievements in the area of sensors, instrumentation and related technologies across the Office of Nuclear Energy (NE) R&D programs.

209

Nuclear Science at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Science Accelerator Science Astrophysics Biological Sciences Chemistry & Materials Science Climate & Earth Science Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear Science Science Highlights NERSC Citations HPC Requirements Reviews Home » Science at NERSC » Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of matter. This includes discovering the origins of nuclei and identifying the forces that transform matter. Specific topics include: Nuclear astrophysics and the synthesis of nuclei in stars and elsewhere in the cosmos; Nuclear forces and quantum chromodynamics (QCD), the quantum field

210

A Career in Nuclear Energy  

ScienceCinema (OSTI)

Nuclear chemist Dr. Marsha Lambregts talks about the Center for Advanced Energy Studies and the benefits of a nuclear energy career. For more information about careers at INL, visit http://www.facebook.com/idahonationallaboratory.

Lambregts, Marsha

2013-05-28T23:59:59.000Z

211

Transformers Transformer device used to raise (for  

E-Print Network [OSTI]

Transformers Transformer ­ device used to raise (for transmission) and lower (for use) the ac with different #s of turns #12;Transformers Alternating primary current induces alternating magnetic flux in iron dt d NV B PP -= dt d NV B SS -= S S P P N V N V = #12;Transformers Transformation of voltage

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

212

Introduction to Image Transform Fourier Transform  

E-Print Network [OSTI]

Monad Transformers as Monoid Transformers Mauro Jaskelioff CIFASIS/Universidad Nacional de Rosario monadic semantics constructs complex monads by using monad transformers to add computational features transformers to monoid transformers. The generalization brings more simplicity and clarity, and opens the way

Chen, Chaur-Chin

213

Hough Transform Common Names: Hough transform  

E-Print Network [OSTI]

Hough Transform Common Names: Hough transform Brief Description The Hough transform is a technique that the desired features be specified in some parametric form, the classical Hough transform is most commonly used for the detection of regular curves such as lines, circles, ellipses, etc. A generalized Hough transform can

Masci, Frank

214

Transformation and Quantization  

E-Print Network [OSTI]

Transformation and Quantization Shih-Hsuan Yang CSIE Department, NTUT #12;Contents Quantization and Distortion Analysis Lloyd Quantizer Vector Quantization Block Transforms Transform Kernels JPEG Other

Yang, Shih-Hsuan

215

E-Print Network 3.0 - aqueous nuclear wastes Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear wastes Search Powered by Explorit Topic List Advanced Search Sample search results for: aqueous nuclear wastes Page: << < 1 2 3 4 5 > >> 1 Enabling a Sustainable Nuclear...

216

E-Print Network 3.0 - amchitka underground nuclear Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

underground nuclear Search Powered by Explorit Topic List Advanced Search Sample search results for: amchitka underground nuclear Page: << < 1 2 3 4 5 > >> 1 Underground Nuclear...

217

E-Print Network 3.0 - astrophysically interesting nuclear Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

interesting nuclear Search Powered by Explorit Topic List Advanced Search Sample search results for: astrophysically interesting nuclear Page: << < 1 2 3 4 5 > >> 1 Nuclear data...

218

E-Print Network 3.0 - abundant nuclear copies Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear copies Search Powered by Explorit Topic List Advanced Search Sample search results for: abundant nuclear copies Page: << < 1 2 3 4 5 > >> 1 Nuclear membranes control...

219

E-Print Network 3.0 - analyzing nuclear magnetic Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear magnetic Search Powered by Explorit Topic List Advanced Search Sample search results for: analyzing nuclear magnetic Page: << < 1 2 3 4 5 > >> 1 Nuclear Magnetic Resonance...

220

Lorentz Transformations  

E-Print Network [OSTI]

This paper describes a particularly didactic and transparent derivation of basic properties of the Lorentz group. The generators for rotations and boosts along an arbitrary direction, as well as their commutation relations, are written as functions of the unit vectors that define the axis of rotation or the direction of the boost (an approach that can be compared with the one that in electrodynamics, works with the electric and magnetic fields instead of the Maxwell stress tensor). For finite values of the angle of rotation or the boost's velocity, collectively denoted by V, the existence of an exponential expansion for the coordinate transformation's matrix, M (in terms of GV where G is the generator) requires that the matrix's derivative with respect to V, be equal to GM. This condition can only be satisfied if the transformation is additive as it is indeed the case for rotations, but not for velocities. If it is assumed, however, that for boosts such an expansion exists, with V = V(v), v being the velocity, and if the above condition is imposed on the boost's matrix then its expression in terms of hyperbolic cosh(V) and sinh(V} is recovered, and the expression for V(= arc tanh(v)) is determined. A general Lorentz transformation can be written as an exponential containing the sum of a rotation and a boost, which to first order is equal to the product of a boost with a rotation. The calculations of the second and third order terms show that the equations for the generators used in this paper, allow to reliably infer the expressions for the higher order generators, without having recourse to the commutation relations. The transformationmatrices for Weyl spinors are derived for finite values of the rotation and velocity, and field representations, leading to the expression for the angular momentum operator, are studied.

Bernard R. Durney

2011-12-09T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NUCLEAR REGULATORY COMMISSION  

Broader source: Energy.gov (indexed) [DOE]

December 21, 1999 (Volume 64, Number 244)] December 21, 1999 (Volume 64, Number 244)] [Proposed Rules] [Page 71331-71333] From the Federal Register Online via GPO Access [wais.access.gpo.gov] [DOCID:fr21de99-21] ======================================================================= ----------------------------------------------------------------------- NUCLEAR REGULATORY COMMISSION 10 CFR Parts 71 and 73 RIN 3150-AG41 Advance Notification to Native American Tribes of Transportation of Certain Types of Nuclear Waste AGENCY: Nuclear Regulatory Commission. ACTION: Advance notice of proposed rulemaking. ----------------------------------------------------------------------- SUMMARY: The Nuclear Regulatory Commission (NRC) is considering an amendment to its regulations that would require NRC licensees to notify

222

Nuclear Astrophysics  

E-Print Network [OSTI]

Nuclear physics has a long and productive history of application to astrophysics which continues today. Advances in the accuracy and breadth of astrophysical data and theory drive the need for better experimental and theoretical understanding of the underlying nuclear physics. This paper will review some of the scenarios where nuclear physics plays an important role, including Big Bang Nucleosynthesis, neutrino production by our sun, nucleosynthesis in novae, the creation of elements heavier than iron, and neutron stars. Big-bang nucleosynthesis is concerned with the formation of elements with A nuclear physics inputs required are few-nucleon reaction cross sections. The nucleosynthesis of heavier elements involves a variety of proton-, alpha-, neutron-, and photon-induced reactions, coupled with radioactive decay. The advent of radioactive ion beam facilities has opened an important new avenue for studying these processes, as many involve radioactive species. Nuclear physics also plays an important role in neutron stars: both the nuclear equation of state and cooling processes involving neutrino emission play a very important role. Recent developments and also the interplay between nuclear physics and astrophysics will be highlighted.

Carl R. Brune

2005-02-28T23:59:59.000Z

223

Nuclear | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space exploration. Nuclear power is the use of sustained nuclear fission to generate heat and electricity. Nuclear power plants provide about 6 percent of the world's energy and 13-14 percent of the world's electricity. Featured Five Years of Building the Next Generation of Reactors Simulated three-dimensional fission power distribution of a single 17x17 rod PWR fuel assembly. | Photo courtesy of the Consortium for Advanced Simulation of Light Water Reactors (CASL). A two-year update on the Consortium for Advanced Simulation of Light Water Reactors and the progress being made in overcoming barriers to national

224

Department of Energy Announces Fellows Program for Advance Research...  

Broader source: Energy.gov (indexed) [DOE]

and entrepreneurs as we continue to look for creative and inventive approaches to transform the global energy landscape while advancing America's technology leadership." The...

225

UTNEUPDATEUTNEUPDATEA Publication from the Department of Nuclear Engineering at the University of Tennessee Continues Nuclear  

E-Print Network [OSTI]

UTNEUPDATEUTNEUPDATEA Publication from the Department of Nuclear Engineering at the University of Tennessee FALL 2014 UCOR Continues Nuclear Engineering Support Sam Donnald and Nathan Capps Outstanding NE Engineering Achieves Major Advances in Enrollment, Research, and Recognition UT Nuclear Engineering Achieves

Tennessee, University of

226

E-Print Network 3.0 - atmospheric nuclear weapon Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

weapon Search Powered by Explorit Topic List Advanced Search Sample search results for: atmospheric nuclear weapon...

227

E-Print Network 3.0 - atmospheric nuclear weapons Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

weapons Search Powered by Explorit Topic List Advanced Search Sample search results for: atmospheric nuclear weapons...

228

E-Print Network 3.0 - alkaline nuclear waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

waste Search Powered by Explorit Topic List Advanced Search Sample search results for: alkaline nuclear waste...

229

E-Print Network 3.0 - acidic nuclear waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

waste Search Powered by Explorit Topic List Advanced Search Sample search results for: acidic nuclear waste...

230

Harnessing Nuclear Fusion  

Science Journals Connector (OSTI)

... as a source of energy, only the future will show. Meanwhile the control of nuclear fusion will be welcomed both as a great advance in science and as a factor of ...

1958-01-25T23:59:59.000Z

231

Advanced Modeling & Simulation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation ADVANCING THE STATE OF THE ART Innovation advances science. Historically, innovation resulted almost exclusively from fundamental theories combined with observation and experimentation over time. With advancements in engineering, computing power and visualization tools, scientists from all disciplines are gaining insights into physical systems in ways not possible with traditional approaches alone. Modeling and simulation has a long history with researchers and scientists exploring nuclear energy technologies. In fact, the existing fleet of currently operating reactors was licensed with computational tools that were produced or initiated in the 1970s. Researchers and scientists in

232

Testability Transformation --Program Transformation to Improve Testability  

E-Print Network [OSTI]

Testability Transformation -- Program Transformation to Improve Testability Mark Harman1 , Andr, 26 Richmond Street, Glasgow G1 1XH, UK. Corresponding Author. Abstract. Testability transformation. The goal is to improve the testing process by transforming a program to one that is more amenable

Binkley, David W.

233

Testability Transformation: Program Transformation to Improve Testability  

E-Print Network [OSTI]

Testability Transformation: Program Transformation to Improve Testability An Overview of Recent Author. Abstract. Testability transformation is a new form of program transfor- mation in which the goal to some chosen test adequacy criterion. The goal is to improve the testing process by transforming

Singer, Jeremy

234

Transformation Transformation Sommersemester 2012 1 / 121  

E-Print Network [OSTI]

Testability Transformation: Program Transformation to Improve Testability An Overview of Recent Author. Abstract. Testability transformation is a new form of program transfor- mation in which the goal to some chosen test adequacy criterion. The goal is to improve the testing process by transforming

Snelting, Gregor

235

Advanced Simulation and Computing  

National Nuclear Security Administration (NNSA)

NA-ASC-117R-09-Vol.1-Rev.0 NA-ASC-117R-09-Vol.1-Rev.0 Advanced Simulation and Computing PROGRAM PLAN FY09 October 2008 ASC Focal Point Robert Meisner, Director DOE/NNSA NA-121.2 202-586-0908 Program Plan Focal Point for NA-121.2 Njema Frazier DOE/NNSA NA-121.2 202-586-5789 A Publication of the Office of Advanced Simulation & Computing, NNSA Defense Programs i Contents Executive Summary ----------------------------------------------------------------------------------------------- 1 I. Introduction -------------------------------------------------------------------------------------------------------- 2 Realizing the Vision ------------------------------------------------------------------------------------------------- 2 The Future of the Nuclear Weapons Complex ---------------------------------------------------------------- 2

236

MIT Nuclear Space Research Andrew C. Kadak  

E-Print Network [OSTI]

SELENE MIT Nuclear Space Research Andrew C. Kadak Professor of the Practice Nuclear Science with Nuclear Energy ­ Selene - Sodium-Cooled Epithermal Long-term Exploration Nuclear Engine (MS thesis) ­ The Martian Surface Reactor: An Advanced Nuclear Power Station for Manned Extraterrestrial Exploration

237

Advanced Remediation Technologies  

SciTech Connect (OSTI)

The United States Department of Energy (DOE), Office of Environmental Management (EM) is responsible for the cleanup of nation's nuclear weapons program legacy wastes, along with waste associated with nuclear energy programs and research. The EM cleanup efforts continue to progress, however the cleanup continues to be technologically complex, heavily regulated, long-term; and the effort also has a high life cycle cost estimate (LCCE) effort. Over the past few years, the EM program has undergone several changes to accelerate its cleanup efforts with varying degrees of success. This article will provide some insight into the Advanced Remediation Technologies (ART) projects that may enhance cleanup efforts and reduce life cycle costs. (authors)

Krahn, St.; Miller, C.E. [The United States Department of Energy, Office of Environmental Management, Washington, D.C. (United States)

2008-07-01T23:59:59.000Z

238

Nuclear Energy  

Science Journals Connector (OSTI)

Nuclear Energy ... A brief summary of the history and key concepts of nuclear energy. ... Nuclear / Radiochemistry ...

Charles D. Mickey

1980-01-01T23:59:59.000Z

239

Nuclear batteries  

Science Journals Connector (OSTI)

Nuclear batteries ... Describes the structure, operation, and application of nuclear batteries. ... Nuclear / Radiochemistry ...

Alfred B. Garrett

1956-01-01T23:59:59.000Z

240

Advance Reactor Concepts Technical Review Panel Public Report  

Broader source: Energy.gov [DOE]

The Office of Nuclear Energy supports research and development for advanced reactor technologies. This report documents the results of the 2014 Technical Review Panel (TRP) review of seven advanced reactor concepts. The intent of the process was to identify R&D needs for advanced reactor concepts in order to inform Department of Energy (DOE) Office of Nuclear Energy R&D investment decisions.

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Restriction Reduces the Number of Advanced Aberrant Crypt Foci and Attenuates the Expression of Colonic Transforming Growth Factor ? and Cyclooxygenase Isoforms in Zucker Obese (fa/fa) Rats  

Science Journals Connector (OSTI)

...AOM, azoxymethane; ER, energy restriction; TGF, transforming...Cellufil 5.00 6.00 Mineral mix (AIN-93G) 3.50 4.20 Vitamin mix (AIN-93-VX) 1.00 1...contributes to 4 kcal/g or 11.7% energy as fat. Table 2 Body weight...

Jayadev Raju and Ranjana P. Bird

2003-10-15T23:59:59.000Z

242

The need for a characteristics-based approach to radioactive waste classification as informed by advanced nuclear fuel cycles using the fuel-cycle integration and tradeoffs (FIT) model  

SciTech Connect (OSTI)

This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. Because heat generation is generally the most important factor limiting geological repository areal loading, this analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. Waste streams generated in different fuel cycles and their possible classification based on the current U.S. framework and international standards are discussed. It is shown that the effects of separating waste streams are neglected under a source-based radioactive waste classification system. (authors)

Djokic, D. [Department of Nuclear Engineering, University of California, Berkeley, 3115B Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, S.; Pincock, L.; Soelberg, N. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

2013-07-01T23:59:59.000Z

243

Nuclear Forensics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear forensics Nuclear Forensics AMS is a Powerful Tool for Nuclear Forensics Nuclear forensics, which can be applied to both interdicted materials and debris from a nuclear...

244

Evaluating Environmental, Health and Safety Impacts from Two Nuclear Fuel Cycles: A Comparative Analysis of Once-Through Uranium Use and Plutonium Recycle in Light Water Reactors.  

E-Print Network [OSTI]

??Prioritizing the finite resources available to advance research, development and demonstration of the nuclear industry requires a comprehensive evaluation of potential advanced nuclear technologies to… (more)

Smith, Bethany Lee

2014-01-01T23:59:59.000Z

245

Analyzing Signals Fourier transform  

E-Print Network [OSTI]

Page 1 1 Analyzing Signals Fourier transform s frequency content s linear combination of sin frequency analysis s windowed Fourier transform 6 #12;Page 4 7 Gabor Transform function to analyze window Gabor Transform Spatial domain Gabor domain b #12;Page 5 9 Gabor Transform Problems s discrete version

Sweldens, Wim

246

Advancing Small Modular Reactors: How We're Supporting Next-Gen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology...

247

Monad Transformers as Monoid Transformers Mauro Jaskelioff  

E-Print Network [OSTI]

Monad Transformers as Monoid Transformers Mauro Jaskelioff CIFASIS/Universidad Nacional de Rosario@cifasis-conicet.gov.ar (Mauro Jaskelioff), moggi@disi.unige.it (Eugenio Moggi) 1Partially supported by Italian PRIN 2008 "Metodi

Moggi, Eugenio

248

E-Print Network 3.0 - amplified dispersive fourier-transform...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fourier-transform Search Powered by Explorit Topic List Advanced Search Sample search results for: amplified dispersive fourier-transform Page: << < 1 2 3 4 5 > >> 1 Pulse energy...

249

GIS TRANSFORMATIONS Conference Presentation  

E-Print Network [OSTI]

GIS TRANSFORMATIONS Conference Presentation Waldo Tobler Geography Department University, line, area, or field phenomena, then the sixteen common classes of transformation are: point -> point (scalar, vector, tensor) data, to obtain eighty distinct possible classes of transformation. The common

Tobler, Waldo

250

Transformations KolahdouzRahimi  

E-Print Network [OSTI]

An Incremental XSLT Transformation Processor for XML Document Manipulation Lionel Villard ­ Nabil;Outline Motivation Incremental transformations Principles Static Analysis Incremental execution Conclusion presentation architecture NegotiationNegotiation Result of negotiation (Transformation Sheets) Result

Lano, Kevin Charles

251

Nuclear Sciences | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry Chemistry Advanced Materials Nuclear Forensics Climate & Environment Biology and Soft Matter Chemical and Engineering Materials Quantum Condensed Matter Computational Chemistry Nuclear Sciences More Science Home | Science & Discovery | More Science | Chemistry | Nuclear Sciences SHARE Nuclear Sciences In World War II's Manhattan Project, ORNL helped usher in the nuclear age. Today, laboratory scientists are leaders in using nuclear technologies and systems to improve human health; explore safer, more environmentally friendly power; and better understand the structure of matter. Thanks to its nuclear heritage, ORNL is a world leader in the production of isotopes for medical purposes and research. The lab's High Flux Isotope Reactor (HFIR) and Radiochemical Engineering Development Center (REDC)

252

Advanced simulation capability for environmental management (ASCEM): An overview of initial results  

E-Print Network [OSTI]

Research (ASCR) Office’s Scientific Discovery through Advanced Computing (SciDAC) program, and the DOE National Nuclear

Williamson, M.

2012-01-01T23:59:59.000Z

253

Evaluating Transformer Losses  

E-Print Network [OSTI]

and replacing them with low loss units. Today few industrials evaluate losses on either power or distribution transformers. TRANSFORMER LOSSES Transformer losses are divided 'nto load losses and no-load losses. Load losses are due to the winding resista... therefore are a function of the load squared. No-load losses occur from energizing the transformer steel and fore are continuous regardless of the transformer load. TRANSFORMER DESIGN Both types of losses are a fun ce here ion of design. If losses...

Grun, R. L. Jr.

254

Experimental investigations on decay heat removal in advanced nuclear reactors using single heater rod test facility: Air alone in the annular gap  

SciTech Connect (OSTI)

During a loss of coolant accident in nuclear reactors, radiation heat transfer accounts for a significant amount of the total heat transfer in the fuel bundle. In case of heavy water moderator nuclear reactors, the decay heat of a fuel bundle enclosed in the pressure tube and outer concentric calandria tube can be transferred to the moderator. Radiation heat transfer plays a significant role in removal of decay heat from the fuel rods to the moderator, which is available outside the calandria tube. A single heater rod test facility is designed and fabricated as a part of preliminary investigations. The objective is to anticipate the capability of moderator to remove decay heat, from the reactor core, generated after shut down. The present paper focuses mainly on the role of moderator in removal of decay heat, for situation with air alone in the annular gap of pressure tube and calandria tube. It is seen that the naturally aspirated air is capable of removing the heat generated in the system compared to the standstill air or stagnant water situations. It is also seen that the flowing moderator is capable of removing a greater fraction of heat generated by the heater rod compared to a stagnant pool of boiling moderator. (author)

Bopche, Santosh B.; Sridharan, Arunkumar [Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)

2010-11-15T23:59:59.000Z

255

Nuclear Plant Dynamics and Safety - Nuclear Engineering Division (Argonne)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Systems Nuclear Systems Modeling and Design Analysis > Nuclear Plant Dynamics and Safety Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Overview Current Projects Software Nuclear Plant Dynamics and Safety Nuclear Data Program Advanced Reactor Development Nuclear Waste Form and Repository Performance Modeling Nuclear Energy Systems Design and Development Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Reactor Physics and Fuel Cycle Analysis Nuclear Plant Dynamics and Safety Bookmark and Share Activities in Nuclear Plant Dynamics and Safety research and development fulfill a primary goal of the Nuclear Engineering (NE) Division to promote improvements in safe and reliable operation of present and future

256

Transformations | Open Energy Information  

Open Energy Info (EERE)

Transformations Transformations Jump to: navigation, search Name Transformations Place Townsend, MA Website http://transformations-inc.com References Transformations[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Transformations is a company located in Townsend, MA. References ↑ "Transformations" Retrieved from "http://en.openei.org/w/index.php?title=Transformations&oldid=381743" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link Browse properties

257

Advanced Reactor Technology Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Reactor Technologies » Advanced Reactor Nuclear Reactor Technologies » Advanced Reactor Technologies » Advanced Reactor Technology Documents Advanced Reactor Technology Documents January 30, 2013 Advanced Reactor Concepts Technical Review Panel Report This report documents the establishment of a technical review process and the findings of the Advanced Reactor Concepts (ARC) Technical Review Panel (TRP).1 The intent of the process is to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. A goal of the process is to facilitate greater engagement between DOE and industry. The process involved establishing evaluation criteria, conducting a pilot review, soliciting concept inputs from industry entities, reviewing the concepts by TRP members and compiling the

258

Application for Graduate Admission Supplementary Application Advanced Engineering Programs  

E-Print Network [OSTI]

061) Nuclear Engineering (online) (Z050) Project Management (Z063) Project Management (online) (Z040) Materials Science and Engineering (PMMS) Mechanical Engineering (PMME) Nuclear Engineering (online) (MENUApplication for Graduate Admission Supplementary Application ­ Advanced Engineering Programs Please

Rubloff, Gary W.

259

Enterprise SRS: Leveraging Ongoing Operations to Advance National Programs - 13108  

SciTech Connect (OSTI)

The SRS is re-purposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established the Center for Applied Nuclear Materials Processing and Engineering Research (CANMPER). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by leveraging SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. CANMPER will coordinate the demonstration of R and D technologies and serve as the interface between the engineering-scale demonstration and the R and D programs, essentially providing cradle-to-grave support to the R and D team during the demonstration. While the initial focus of CANMPER will be on the effective use of SRS assets for these demonstrations, CANMPER also will work with research teams to identify opportunities to perform R and D demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). The demonstration can be accomplished in a more cost-effective manner through the use of existing facilities in conjunction with ongoing missions. Essentially, the R and D program would not need to pay the full operational cost of a facility, just the incremental cost of performing the demonstration. Current CANMPER activities have been focused on integrating advanced safeguards monitoring technology demonstrations into the SRS H-Canyon and advanced location technology demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and program owners. In addition these demonstrations are providing CANMPER with an improved protocol for demonstration management that can be exercised across the entire SRS (and to offsite venues) to ensure that future demonstrations are done efficiently and provide an opportunity to use these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs of three major program offices: DOE-EM, DOE-Nuclear Energy (DOE-NE), and the NNSA. Given the modular design of H-Canyon, the demonstrations would be accomplished using a process frame. The demonstration equipment would be installed on the process frame and that frame would then be positioned into an H Canyon cell so that the demonstration is performed in a radiological environment involving prototypic nuclear materials. (authors)

Marra, J.E.; Murray, A.M. [Savannah River National Laboratory, Building 773-A, Aiken S.C 29808 (United States)] [Savannah River National Laboratory, Building 773-A, Aiken S.C 29808 (United States); McGuire, P.W.; Wheeler, V.B. [Department of Energy-Savannah River Operations Office, Aiken SC 29808 (United States)] [Department of Energy-Savannah River Operations Office, Aiken SC 29808 (United States)

2013-07-01T23:59:59.000Z

260

Advancing Cellulosic Ethanol for Large Scale Sustainable Transportation  

E-Print Network [OSTI]

Advancing Cellulosic Ethanol for Large Scale SustainableHydrogen Batteries Nuclear By Lee Lynd, Dartmouth Ethanol •Ethanol, ethyl alcohol, fermentation ethanol, or just “

Wyman, C

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Tag: transformation | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

transformation transformation Tag: transformation Displaying 1 - 10 of 11... Category: News Y-12 Knows Uranium Y-12 produces many forms of uranium. More... Category: News Energy Secretary Moniz visits Y-12 Secretary of Energy Ernest Moniz (at right) tours the Highly Enriched Uranium Materials Facility during his visit Monday to Y-12. More... Category: About Site improvements of $490 million result from FIRP The Facilities and Infrastructure Recapitalization Program has been a key component of modernization and transformation efforts at Y-12. More... Category: Nuclear Deterrence Processing Y-12's core manufacturing and processing operations are housed in decades-old buildings near or past the end of their expected life spans. More... Category: About Uranium Processing Facility An integral part of Y-12's transformation efforts and a key component

262

Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads  

SciTech Connect (OSTI)

The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.

NONE

2013-07-01T23:59:59.000Z

263

dirty bomb | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

About Counterterrorism NNSA provides expertise, practical tools, and technically informed policy recommendations required to advance U.S. nuclear counterterrorism and...

264

Office of Nuclear Energy | Department of Energy  

Office of Environmental Management (EM)

Office of Nuclear Energy Small Modular Reactors Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation...

265

Presented by CASL: The Consortium for Advanced Simulation  

E-Print Network [OSTI]

Presented by Nuclear Energy CASL: The Consortium for Advanced Simulation of Light Water Reactors A DOE Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors Doug Kothe Director, CASL Oak Ridge National Laboratory #12;www.casl.gov Nuclear Power in the US Top 10 Nuclear Generating

266

transformation languages Introduction  

E-Print Network [OSTI]

transformation languages Introduction Transformation languages are widely used for to process can I change / transform the design of a certain task without changing it's logic The common/and hierarchical or/and abstract set of information. It can even be a stream of data. · The transformation engine

Nierstrasz, Oscar

267

TRANSFORMATIONAL GOALS FOR THE  

E-Print Network [OSTI]

TRANSFORMATIONAL GOALS FOR THE 21ST CENTURY PROGRESS REPORT FALL 2014 #12;CONTENTS EXECUTIVE Transformational Goals progress report Fall 2014 #12;Transformational Goals Progress Report | FALL 20142 In 2010 Island Build a community at URI that values and embraces equity and diversity #12;Transformational Goals

Rhode Island, University of

268

Nuclear Energy Enabling Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Enabling Technologies Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Energy Enabling Technologies The Nuclear Energy Enabling Technologies (NEET) Program will develop crosscutting technologies that directly support and complement the Department of Energy, Office of Nuclear Energy's (DOE-NE) advanced reactor and fuel cycle concepts, focusing on innovative research that offers the promise of dramatically improved performance. NEET will coordinate research efforts on common issues and challenges that confront the DOE-NE R&D programs (Light Water Reactor Sustainability [LWRS], Next Generation Nuclear Plant [NGNP], Advanced Reactor Technologies [ART], and Small Modular Reactors [SMR]) to advance technology development and deployment. The activities undertaken in the NEET program will

269

Advanced Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Advanced Materials Advanced Materials Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And Membrane Express Licensing Analysis Of Macromolecule, Liggands And Macromolecule-Lingand Complexes Express Licensing Carbon Microtubes Express Licensing Chemical Synthesis Of Chiral Conducting Polymers Express Licensing Forming Adherent Coatings Using Plasma Processing Express Licensing Hydrogen Scavengers Express Licensing Laser Welding Of Fused Quartz Express Licensing Multiple Feed Powder Splitter Negotiable Licensing Boron-10 Neutron Detectors for Helium-3 Replacement Negotiable Licensing Insensitive Extrudable Explosive Negotiable Licensing Durable Fuel Cell Membrane Electrode Assembly (MEA) Express Licensing Method of Synthesis of Proton Conducting Materials

270

Perfect NOT transformation and conjugate transformation  

E-Print Network [OSTI]

The perfect NOT transformation, probabilistic perfect NOT transformation and conjugate transformation are studied. Perfect NOT transformation criteria on a quantum state set $S$ of a qubit are obtained. Two necessary and sufficient conditions for realizing a perfect NOT transformation on $S$ are derived. When these conditions are not satisfied we discuss a probabilistic perfect NOT transformation (gate). We construct a probabilistic perfect NOT machine (gate) by a general unitary-reduction operation. With a postselection of the measurement outcomes, the probabilistic NOT gate yields perfectly complements of the input states. We prove that one can realize probabilistically the NOT gate of the input states secretly chosen from a certain set $S=\\{|\\Psi_1>, |\\Psi_2>,..., |\\Psi_n>\\}$ if and only if $|\\Psi_1>, |\\Psi_2>,...,$ and $|\\Psi_n>$ are linearly independent. We also generalize the probabilistic NOT transformation to the conjugate transformation in the multi-level quantum system. The lower bound of the best possible efficiencies attained by a probabilistic perfect conjugate transformation are obtained.

Fengli Yan; Ting Gao; Zhichao Yan

2012-03-15T23:59:59.000Z

271

Radiation effects in nuclear materials: Role of nuclear and electronic energy losses and their synergy  

SciTech Connect (OSTI)

Ceramic oxides and carbides are promising matrices for the immobilization and/or transmutation of nuclear wastes, cladding materials for gas-cooled fission reactors and structural components for fusion reactors. For these applications there is a need of fundamental data concerning the behavior of nuclear ceramics upon irradiation. This article is focused on the presentation of a few remarkable examples regarding ion-beam modifications of nuclear ceramics with an emphasis on the mechanisms leading to damage creation and phase transformations. Results obtained by combining advanced techniques (Rutherford backscattering spectrometry and channeling, X-ray diffraction, transmission electron microscopy, Raman spectroscopy) concern irradiations in a broad energy range (from keV to GeV) with the aim of exploring both nuclear collision (Sn) and electronic excitation (Se) regimes. Finally, the daunting challenge of the demonstration of the existence of synergistic effects between Sn and Se is tackled by discussing the healing due to intense electronic energy deposition (SHIBIEC) and by reporting results recently obtained in dual-beam irradiation (DBI) experiments.

Thomé, Lionel [Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, CNRS-IN2P3-Université Paris-Sud; Debelle, Aurelien [Universite Paris Sud, Orsay, France; Garrido, Frederico [Universite Paris Sud, Orsay, France; Mylonas, Stamatis [Universite Paris Sud, Orsay, France; Décamps, B. [Universite Paris Sud, Orsay, France; Bachelet, C. [Universite Paris Sud, Orsay, France; Sattonnay, G. [LEMHE/ICMMO, Université Paris-Sud, Bât. Orsay, France; Moll, Sandra [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette; Pellegrino, S. [French Atomic Energy Commission (CEA); Miro, S. [French Atomic Energy Commission (CEA); Trocellier, P. [French Atomic Energy Commission (CEA); Serruys, Y. [French Atomic Energy Commission (CEA); Velisa, G. [French Atomic Energy Commission (CEA); Grygiel, C. [CNRS, France; Monnet, I. [CIMAP, CEA-CNRS-Université de Caen, France; Toulemonde, Marcel [French Atomic Energy Commission (CEA), French National Centre for Scientific Research (CNRS)-ENSICAE; Simon, P. [CEMHTI, CNRS, France; Jagielski, Jacek [Institute for Electronic Materials Technology; Jozwik-Biala, Iwona [Institute for Electronic Materials Technology; Nowicki, Lech [Soltan Institute for Nuclear Studies, Swierk, Poland; Behar, M. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre,; Weber, William J [ORNL; Zhang, Yanwen [ORNL; Backman, Marie [University of Tennessee, Knoxville (UTK); Nordlund, Kai [University of Helsinki; Djurabekova, Flyura [University of Helsinki

2013-01-01T23:59:59.000Z

272

Nuclear Forensics | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science and Engineering Materials Science and Engineering Advanced Materials Clean Energy Materials Theory and Simulation Neutron Science Nuclear Forensics Nuclear Science Supercomputing Theory, Modeling and Simulation More Science Home | Science & Discovery | More Science | Materials Science and Engineering | Nuclear Forensics SHARE Nuclear Forensics image Tools, techniques, and expertise in nuclear fuel cycle research gained over seven decades help ORNL scientists control and track nuclear bomb-grade materials to be sure they don't fall into the wrong hands. Among the leading-edge technologies used by researchers are high-resolution techniques that allow analysis of radiation detector data in stunning detail. Researchers are also developing aerosol sampling systems to collect

273

SC e-journals, Nuclear  

Office of Scientific and Technical Information (OSTI)

Nuclear Nuclear Annals of Nuclear Energy Annual Review of Nuclear and Particle Science Atomic Data & Nuclear Data Tables Atomic Energy BMC Medical Physics - OAJ Cancer Prevention Journals Portal Cancer Prevention Research Cancer Reviews Online Dose Response Energy & Environmental Science Energy Policy EURASIP Journal on Advances in Signal Processing - OAJ EURASIP Journal on Bioinformatics and Systems Biology - OAJ EURASIP Journal on Embedded Systems (2006 forward) - OAJ Fuel Fusion Engineering and Design Fusion Nuclear Society Health Physics IETE Journal of Research - OAJ International Journal of Cancer International Journal of Low Radiation International Journal of Microwave Science and Technology - OAJ International Journal of Radiation Biology Journal of Cancer Eqidemiology - OAJ

274

Department of Advanced Materials Science  

E-Print Network [OSTI]

@k.u-tokyo.ac.jpe-mail 04-7136-3781T E L Environmental-friendly materials process, Metal smelting and re ning process of Advanced Materials Science masashi@issp.u-tokyo.ac.jpe-mail 04-7136-3225T E L Nuclear magnetic resonance New Materials Synthesis, Superconductivity, Quantum Spin Liquid,Topological Hall Effect takatama

Katsumoto, Shingo

275

Advanced Safeguards Approaches for New Reprocessing Facilities  

SciTech Connect (OSTI)

U.S. efforts to promote the international expansion of nuclear energy through the Global Nuclear Energy Partnership (GNEP) will result in a dramatic expansion of nuclear fuel cycle facilities in the United States. New demonstration facilities, such as the Advanced Fuel Cycle Facility (AFCF), the Advanced Burner Reactor (ABR), and the Consolidated Fuel Treatment Center (CFTC) will use advanced nuclear and chemical process technologies that must incorporate increased proliferation resistance to enhance nuclear safeguards. The ASA-100 Project, “Advanced Safeguards Approaches for New Nuclear Fuel Cycle Facilities,” commissioned by the NA-243 Office of NNSA, has been tasked with reviewing and developing advanced safeguards approaches for these demonstration facilities. Because one goal of GNEP is developing and sharing proliferation-resistant nuclear technology and services with partner nations, the safeguards approaches considered are consistent with international safeguards as currently implemented by the International Atomic Energy Agency (IAEA). This first report reviews possible safeguards approaches for the new fuel reprocessing processes to be deployed at the AFCF and CFTC facilities. Similar analyses addressing the ABR and transuranic (TRU) fuel fabrication lines at AFCF and CFTC will be presented in subsequent reports.

Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Richard; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

2007-06-24T23:59:59.000Z

276

Gauge transformations are canonical transformations, redux  

E-Print Network [OSTI]

In this short note we return to the old paper by Tai L. Chow (Eur. J. Phys. 18 (1997), 467-468) and correct its erroneous final part. We also note that the main result of that paper, that gauge transformations of mechanics are canonical transformations, was known much earlier.

Z. K. Silagadze

2014-09-02T23:59:59.000Z

277

Uncertainty Analyses of Advanced Fuel Cycles  

SciTech Connect (OSTI)

The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development.

Laurence F. Miller; J. Preston; G. Sweder; T. Anderson; S. Janson; M. Humberstone; J. MConn; J. Clark

2008-12-12T23:59:59.000Z

278

Advanced Simulation Capability for  

Broader source: Energy.gov (indexed) [DOE]

Simulation Capability for Simulation Capability for Environmental Management (ASCEM) ASCEM is being developed to provide a tool and approach to facilitate robust and standardized development of perfor- mance and risk assessments for cleanup and closure activi- ties throughout the EM complex. The ASCEM team is composed of scientists from eight National Laboratories. This team is leveraging Department of Energy (DOE) investments in basic science and applied research including high performance computing codes developed through the Advanced Scientific Computing Research and Advanced Simulation & Computing pro- grams as well as collaborating with the Offices of Science, Fossil Energy, and Nuclear Energy. Challenge Current groundwater and soil remediation challenges that will continue to be addressed in the next decade include

279

Advanced Modeling and Simulation Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced Modeling & Simulation » Advanced Modeling Advanced Modeling & Simulation » Advanced Modeling and Simulation Documents Advanced Modeling and Simulation Documents October 30, 2013 NEAMS Quarterly Report April-June 2013 The Nuclear Energy Advanced Modeling and Simulation (NEAMS) quarterly report includes highlights, fuel and reactor product line accomplishments, recent and upcoming milestones, news on BISON fuel benchmarks, the latest MeshKit release features, and information on numerical simulations of pebble-bed reactor cores performed by the thermal hydraulics team. September 9, 2013 Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements The purpose of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan is to define what the NEAMS

280

LEADING, TRANSFORMING, STRATEGIC PLAN  

E-Print Network [OSTI]

-in- environment (PIE) perspective across systems. Instrumental Objective (b): By the end of the advanced year

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Presented by CASL: The Consortium for Advanced  

E-Print Network [OSTI]

against 60% of existing U.S. reactor fleet (PWRs), using data from TVA reactors · Base M&S LWR capabilityPresented by Nuclear Energy CASL: The Consortium for Advanced Simulation of Light Water Reactors A DOE Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors Doug Kothe Director, CASL

282

Assessment of National Nuclear Fuel Cycle for Transmutations of High Level Nuclear Waste  

Science Journals Connector (OSTI)

The advanced fuel cycle initiative (AFCI) has been investigated for the safe processing of the spent nuclear fuels (SNFs), which has focused mainly ... of the SNFs considering the characteristics of the nuclear m...

Taeho Woo

2012-01-01T23:59:59.000Z

283

Mark Peters testifies for Congress on nuclear energy 5/19/10  

SciTech Connect (OSTI)

Mark Peters, Deputy Lab Director at Argonne National Laboratory, testifies before Congress on advanced nuclear fuel cycle R&D and the DOE nuclear roadmap. May 19, 2010.

Peters, Mark

2010-01-01T23:59:59.000Z

284

Mark Peters testifies for Congress on nuclear energy 5/19/10  

SciTech Connect (OSTI)

Mark Peters, Deputy Lab Director at Argonne National Laboratory, testifies before Congress on advanced nuclear fuel cycle R&D and the DOE nuclear roadmap. May 19, 2010.

Mark Peters

2010-05-25T23:59:59.000Z

285

E-Print Network 3.0 - affecting nuclear waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: affecting nuclear waste Page: << < 1 2 3 4 5 > >> 1 Nuclear Waste Assessment System for Technical...

286

E-Print Network 3.0 - anomaly guandong nuclear Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

guandong nuclear Search Powered by Explorit Topic List Advanced Search Sample search results for: anomaly guandong nuclear Page: << < 1 2 3 4 5 > >> 1 An Integrated Scheme for...

287

E-Print Network 3.0 - alpha-induced nuclear reactions Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear reactions Search Powered by Explorit Topic List Advanced Search Sample search results for: alpha-induced nuclear reactions Page: << < 1 2 3 4 5 > >> 1 Scintillation of...

288

E-Print Network 3.0 - altitude nuclear explosion Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear explosion Search Powered by Explorit Topic List Advanced Search Sample search results for: altitude nuclear explosion Page: << < 1 2 3 4 5 > >> 1 Imaging of the atmosphere...

289

Mark Peters testifies for Congress on nuclear energy 5/19/10  

ScienceCinema (OSTI)

Mark Peters, Deputy Lab Director at Argonne National Laboratory, testifies before Congress on advanced nuclear fuel cycle R&D and the DOE nuclear roadmap. May 19, 2010.

Mark Peters

2010-09-01T23:59:59.000Z

290

E-Print Network 3.0 - applied nuclear research Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: applied nuclear research Page: << < 1 2 3 4 5 > >> 1 Enabling a Sustainable Nuclear Energy Future...

291

E-Print Network 3.0 - accountability nuclear materials Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear materials Search Powered by Explorit Topic List Advanced Search Sample search results for: accountability nuclear materials Page: << < 1 2 3 4 5 > >> 1 Los Alamos National...

292

E-Print Network 3.0 - atmospheric nuclear tests Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: atmospheric nuclear tests Page: << < 1 2 3 4 5 > >> 1 January 3, 2007 National Nuclear Security...

293

E-Print Network 3.0 - asymmetric nuclear matter Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear matter Search Powered by Explorit Topic List Advanced Search Sample search results for: asymmetric nuclear matter Page: << < 1 2 3 4 5 > >> 1 Los Alamos National Laboratory...

294

E-Print Network 3.0 - assessing nuclear capacity Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: assessing nuclear capacity Page: << < 1 2 3 4 5 > >> 1 Enabling a Sustainable Nuclear Energy Future...

295

E-Print Network 3.0 - anti-small nuclear ribonucleoprotein Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

small nuclear ribonucleoprotein Search Powered by Explorit Topic List Advanced Search Sample search results for: anti-small nuclear ribonucleoprotein Page: << < 1 2 3 4 5 > >> 1...

296

E-Print Network 3.0 - alberto nuclear power Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear power Search Powered by Explorit Topic List Advanced Search Sample search results for: alberto nuclear power Page: << < 1 2 3 4 5 > >> 1 Informatics UNDERGRADUATES AND...

297

E-Print Network 3.0 - actinide consumption nuclear Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

consumption nuclear Search Powered by Explorit Topic List Advanced Search Sample search results for: actinide consumption nuclear Page: << < 1 2 3 4 5 > >> 1 November 21, 2008 To:...

298

E-Print Network 3.0 - american nuclear society Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear society Search Powered by Explorit Topic List Advanced Search Sample search results for: american nuclear society Page: << < 1 2 3 4 5 > >> 1 Todd S. Palmer Associate...

299

Mark Peters testifies for Congress on nuclear energy 5/19/10  

ScienceCinema (OSTI)

Mark Peters, Deputy Lab Director at Argonne National Laboratory, testifies before Congress on advanced nuclear fuel cycle R&D and the DOE nuclear roadmap. May 19, 2010.

Peters, Mark

2013-04-19T23:59:59.000Z

300

E-Print Network 3.0 - automated nuclear chemistry Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: automated nuclear chemistry Page: << < 1 2 3 4 5 > >> 1 Dr. Jeff Fortner Nuclear Power Summary: Dr....

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

E-Print Network 3.0 - applied nuclear science Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

science Search Powered by Explorit Topic List Advanced Search Sample search results for: applied nuclear science Page: << < 1 2 3 4 5 > >> 1 Enabling a Sustainable Nuclear Energy...

302

A framework for nuclear facility safeguard evaluation using probabilistic methods and expert elicitation .  

E-Print Network [OSTI]

??With the advancement of the next generation of nuclear fuel cycle facilities, concerns of the effectiveness of nuclear facility safeguards have been increasing due to… (more)

Iamsumang, Chonlagarn

2010-01-01T23:59:59.000Z

303

E-Print Network 3.0 - analiticas nucleares segunda Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

analiticas nucleares segunda Search Powered by Explorit Topic List Advanced Search Sample search results for: analiticas nucleares segunda Page: << < 1 2 3 4 5 > >> 1 INTROD....

304

Metrics for enterprise transformation  

E-Print Network [OSTI]

The objective of this thesis is to depict the role of metrics in the evolving journey of enterprise transformation. To this end, three propositions are explored: (i) metrics and measurement systems drive transformation, ...

Blackburn, Craig D. (Craig David), S. M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

305

The Patch Transform  

E-Print Network [OSTI]

The patch transform represents an image as a bag of overlapping patches sampled on a regular grid. This representation allows users to manipulate images in the patch domain, which then seeds the inverse patch transform to ...

Avidan, Shai

306

Transformations Ordered set of  

E-Print Network [OSTI]

Modeling Transformations Michael Kazhdan (600.357 / 600.457) HB Ch. 5 FvDFH Ch. 5 #12;Anouncements · Assignment 2 has been posted! #12;Overview · Ray-Tracing so far · Modeling transformations #12;Ray Casting

Jacobs, David

307

E-Print Network 3.0 - advanced computed tomography Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

advanced computed tomography Page: << < 1 2 3 4 5 > >> 1 CAT scan and RadonX-ray transform Relations with the Fourier transform. Dual Radon Summary: problems X-ray tomography...

308

Advanced Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Systems: Advanced Systems: high Performance fenestration systems Research areas: Research activities to improve the performance of windows and other fenestration products must address window systems issues as well as Glazing Materials research. LBNL activities in the area of Advanced Systems include research at both the product level and the building envelope and building systems levels. Highly insulating windows - using non structural center layers Lower cost solutions to more insulating three layer glazing systems, with the potential to turn windows in U.S. heating dominated residential applications into net-energy gainers. Highly Insulating Window Frames In collaboration with the Norwegian University of Science and Technology, we are researching the potentials for highly insulating window frames. Our initial work examines European frames with reported U-factors under 0.15 Btu/hr-ft2-F. Future research aims to analyze these designs, verify these performance levels and ensure that procedures used to calculate frame performance are accurate.

309

Euclidean Gauge Transformation  

Science Journals Connector (OSTI)

The Green's function gauge transformation induced by the elimination of the longitudinal field in Euclidean electrodynamics is discussed.

Julian Schwinger

1960-03-01T23:59:59.000Z

310

TRANSFORMED DSM TARGETS GROWTH  

Science Journals Connector (OSTI)

TRANSFORMED DSM TARGETS GROWTH ... DSM CHIEF Executive Officer Feike Sijbesma refers to Charles Darwin when talking about his company’s transformation. ... In the past 10 years, DSM has transformed itself, shifting its portfolio from petrochemicals and specialties to life sciences and materials. ...

PAIGE MARIE MORSE

2011-03-14T23:59:59.000Z

311

LAPPED TRANSFORMS COMPRESSION  

E-Print Network [OSTI]

Chapter 6 LAPPED TRANSFORMS FOR IMAGE COMPRESSION Ricardo L. de Queiroz Digital Imaging Technology aspects of lapped transforms and their applications to image compression. It is a subject that has been extensively studied mainly because lapped transforms are closely related to filter banks, wavelets, and time

de Queiroz, Ricardo L.

312

TRANSFORMATIONAL GOALS FOR THE  

E-Print Network [OSTI]

TRANSFORMATIONAL GOALS FOR THE 21ST CENTURY The presidenT's 21sT cenTury fund for excellence #12;TRANSFORMATIONAL GOALS FOR THE 21ST CENTURY 1 THE UNIVERSITY OF RHODE ISLAND The University of Rhode Island and transform our approaches to teaching, research, and service so that we can prepare students for a rapidly

Rhode Island, University of

313

Transforming Health Research  

E-Print Network [OSTI]

Transforming Health Research the first two years National Institute for Health Research Progress For Information R OCR R ef: 0 Gateway R ef: 9298 Title Transforming Health Research the first two years. Health Institute for Health Research Progress Report i Transforming Health Research the first two years National

Diggle, Peter J.

314

transform e Construction  

E-Print Network [OSTI]

Abstraction by Symbolic Indexing Transformations Thomas F. Melham1 and Robert B. Jones2 1 describes some logical machinery aimed at bridging these gaps. We present an algorithm to transform ordinary-conditions that must hold for this transformation to be sound. We also describe how the algorithm can be applied

Csürös, Miklós

315

Transformation and Quantization  

E-Print Network [OSTI]

' & $ % Linear Transformations (Yet Again!!) Mark Gales CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT mjfg@eng.cam.ac.uk 1 #12; ' & $ % Introduction Linear transformations within HMM systems have been shown to be very useful. ffl Adaptation: MLLR, SAT, CAT, Cluster Transform etc etc. ffl Feature space

Yang, Shih-Hsuan

316

Transforming Anxiety into ENERGYTM  

E-Print Network [OSTI]

Transforming Anxiety into ENERGYTM How to Prevent Panic and Promote Productivity in Turbulent Times By Wendy Mack with contributions from Meredith Kimbell and Myron Radio #12;Transforming Anxiety into Energy, consultants, and researchers who shared their stories and expertise. 1 #12;Transforming Anxiety into Energy

Maryland, Baltimore County, University of

317

Spacetime transformation acoustics  

E-Print Network [OSTI]

A recently proposed analogue transformation method has allowed the extension of transformation acoustics to general spacetime transformations. We analyze here in detail the differences between this new analogue transformation acoustics (ATA) method and the standard one (STA). We show explicitly that STA is not suitable for transformations that mix space and time. ATA takes as starting point the acoustic equation for the velocity potential, instead of that for the pressure as in STA. This velocity-potential equation by itself already allows for some transformations mixing space and time, but not all of them. We explicitly obtain the entire set of transformations that do not leave its form invariant. It is in these cases that ATA shows its true potential, allowing for building a transformation acoustics method that enables the full range of spacetime transformations. We provide an example of an important transformation which cannot be achieved with STA. Using this transformation, we design and simulate an acoustic frequency converter via the ATA approach. Furthermore, in those cases in which one can apply both the STA and ATA approaches, we study the different transformational properties of the corresponding physical quantities.

C. García-Meca; S. Carloni; C. Barceló; G. Jannes; J. Sánchez-Dehesa; A. Martínez

2014-07-08T23:59:59.000Z

318

TRANSFORM a electronics  

E-Print Network [OSTI]

THE DISCRETE FRACTIONAL FOURIER TRANSFORM a thesis submitted to the department of electrical TRANSFORM C ¸a~ gatay Candan M.S. in Electrical and Electronics Engineering Supervisor: Haldun M. ¨ Ozakta Transform (FrFT) is proposed, discussed and consolidated. The discrete trans­ form generalizes the Discrete

Candan, Cagatay

319

Transformation haskell-Programs  

E-Print Network [OSTI]

On the Transformation of Control Flow between Block-Oriented and Graph-Oriented Process Modeling E-mail: zdun@acm.org Abstract: Much recent research work discusses the transformation between differ. In this article, we aim to abstract from concrete transformations by distinguishing two major paradigms

Ábrahám, Erika

320

The Tunneling Transform  

E-Print Network [OSTI]

We supplement the Lorentz transform $L(v)$ with a new "Tunneling" transform $T(v)$. Application of this new transform to elementary quantum mechanics offers a novel, intuitive insight into the nature of quantum tunneling; in particular, the so called "Klein Paradox" is discussed.

Robert Hipple

2014-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Transforming Data into Knowledge  

E-Print Network [OSTI]

The Application Of Correctness Preserving Transformations To Software Maintenance J. Paul Gibson transformation (CPT), to a real software engineering prob- lem: the need for optimization during the maintenance of code. We present four program transformations and a model that forms a framework for proof

Giles, C. Lee

322

Transforming our information systems  

E-Print Network [OSTI]

Transforming our information systems and technology Information Systems Development Framework #12 university. In support of this position we are transforming our information systems, servicesDonald Principal and Vice-Chancellor #12;Strategy for transformation Tactical Delivering the services and tools our

Strathclyde, University of

323

Advanced Sensors and Instrumentation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sensors and Instrumentation Sensors and Instrumentation Advanced Sensors and Instrumentation The ASI subprogram plans to develop the scientific basis for sensors and supporting infrastructure technology that will address crosscutting technology gaps relating to measurements at existing and advanced nuclear power plants as well as within their fuel cycles. The focus of the program is on the following technical challenges and objectives: Identify needed physical measurement accuracy of nuclear system process parameters and minimize uncertainty. Identify and conduct research into monitoring and control technologies, including human factors, to achieve control of new nuclear energy processes, and new methodologies for monitoring to achieve high reliability and availability. Integrate control of multiple processes, potential reductions in

324

Advanced Model and Methodology Development [Heat Transfer and Fluid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Model and Advanced Model and Methodology Development Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Advanced Model and Methodology Development Electrorefiner Model for Treatment of Spent Nuclear Fuel Electrorefiner Model for Treatment of Spent Nuclear Fuel. Click on image to

325

Transforming a Transformative School | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Transforming a Transformative School Transforming a Transformative School October 11, 2012 - 10:14am Addthis During a yearlong renovation, Harding Charter Preparatory school upgraded lighting fixtures, installed a new heating and cooling system, and replaced the entry doors. The new doors allow daylight into the school and restore the historical building envelope. | Photo courtesy of John Winkel, Energy Department. During a yearlong renovation, Harding Charter Preparatory school upgraded lighting fixtures, installed a new heating and cooling system, and replaced the entry doors. The new doors allow daylight into the school and restore the historical building envelope. | Photo courtesy of John Winkel, Energy Department. Julie McAlpin

326

Invertible Darboux Transformations  

E-Print Network [OSTI]

For operators of many different kinds it has been proved that (generalized) Darboux transformations can be built using so called Wronskian formulae. Such Darboux transformations are not invertible in the sense that the corresponding mappings of the operator kernels are not invertible. The only known invertible ones were Laplace transformations (and their compositions), which are special cases of Darboux transformations for hyperbolic bivariate operators of order 2. In the present paper we find a criteria for a bivariate linear partial differential operator of an arbitrary order d to have an invertible Darboux transformation. We show that Wronkian formulae may fail in some cases, and find sufficient conditions for such formulae to work.

Ekaterina Shemyakova

2013-01-04T23:59:59.000Z

327

Transformation Nets -A Runtime Model for Transformation Languages  

E-Print Network [OSTI]

Transformation Nets - A Runtime Model for Transformation Languages Johannes Schoenboeck Institute transformation languages. Although numerous approaches are available, they lack convenient facilities for supporting debugging and understand- ing of the transformation logic. This is not least because

Hochreiter, Sepp

328

Nuclear Energy Advisory Committee  

Broader source: Energy.gov (indexed) [DOE]

December 9, 2010 L'Enfant Plaza Hotel Washington, D.C. Committee Members Participating John Ahearne Raymond Juzaitis Ashok Bhatnagar William Martin, Chair Dana Christensen Carl Paperiello Thomas Cochran Burton Richter Michael Corradini John Sackett Marvin Fertel Allen Sessoms Donald Hintz Neil Todreas Committee Members Absent Brew Barron Susan Ion Other Participants: Richard Black, Director, Office of Advanced Reactor Concepts, Office of Nuclear Energy, USDOE Nancy Carder, Medical University of South Carolina, NEAC Support Staff David Hill, Director, Institute for Nuclear Energy Science and Technology, Idaho National Laboratory Shane Johnson, Chief Operating Officer, Office of Nuclear Energy, USDOE

329

Relativistic nuclear structure. I. Nuclear matter  

Science Journals Connector (OSTI)

The formalism for the Dirac-Brueckner approach to the nuclear many-body problem is described including its basis in relativistic two-nucleon scattering. A family of relativistic meson-exchange potentials is constructed which (apart from the usual coupling terms for heavy mesons) apply the pseudovector (gradient) coupling for the interaction of pseudoscalar mesons (?,?) with nucleons. These potentials describe low-energy two-nucleon scattering and the deuteron data accurately. Using these potentials, the properties of nuclear matter are calculated in the Dirac-Brueckner-Hartree-Fock approximation, in which the empirical nuclear matter saturation is explained quantitatively. The effective two-body interaction in the nuclear matter medium (G matrix) is calculated directly in the nuclear matter rest frame. Thus, cumbersome transformations between the two-nucleon center-of-mass frame and the nuclear matter rest frame are avoided. Size and nature of relativistic effects included in the present approach are examined in detail. The formalism, the potentials, and the results of this paper may also serve as a basis and a realistic starting point for systematic relativistic nuclear structure studies as well as for the investigation of further relativistic many-body corrections and of contributions of higher order.

R. Brockmann and R. Machleidt

1990-11-01T23:59:59.000Z

330

Advanced (AI-Based) Nonlinear Controllers for Industrial Processes -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced (AI-Based) Nonlinear Controllers for Industrial Processes Advanced (AI-Based) Nonlinear Controllers for Industrial Processes Capabilities Nuclear Systems Technologies Nuclear Criticality Safety Research Reactor Analysis Decontamination and Decommissioning Systems/Process Monitoring, Diagnostics and Control Overview Process Monitoring & Signal Validation Diagnostic & Advisory Systems Advanced (AI-based) Nonlinear Controllers for Industrial Processes Artificial intelligence Other Capabilities Work with Argonne Contact us For Employees Site Map Help Systems/Process Monitoring, Diagnostics and Control Advanced (AI-Based) Nonlinear Controllers for Industrial Processes Bookmark and Share Advanced (AI-Based) Nonlinear Controllers for Industrial Processes The overall objective of this research is to explore and demonstrate the

331

A Safeguards Design Strategy for Domestic Nuclear Materials Processing Facilities.  

E-Print Network [OSTI]

?? The outdated and oversized nuclear manufacturing complex within the United States requires its transformation into a smaller, safe, and secure enterprise. Health and safety… (more)

Long, Jonathan

2010-01-01T23:59:59.000Z

332

Supercomputers | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supercomputers | National Nuclear Security Administration Supercomputers | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Supercomputers Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > Supercomputers

333

Nuclear Energy | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Energy Nuclear Energy Argonne has contributed to the development of civilian nuclear power for over 50 years. Our scientists and engineers conduct research in advanced nuclear energy systems, nonproliferation and national security, and environmental management. Nuclear energy is the largest generator of carbon-free electricity in use today, and it will play an increasing role in worldwide power generation as advanced reactor designs and improved fuel-cycle technologies are brought into commercial application. Nearly every commercial reactor in operation today was developed from Argonne research. Building on this heritage, we are supporting the reliable, safe and secure use of nuclear power worldwide - and fostering its increased use in the future by incorporating science and engineering

334

Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Programs >> Nuclear Energy Error Error Nuclear Energy Home - RCC cannot be displayed due to a timeout error. We recommend: * Refresh Nuclear Energy Home - RCC * Increasing...

335

Advanced Search  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications Advanced Search Most publications by Environmental Energy Technologies Division authors are searchable from this page, including peer-reviewed publications, book chapters, conference proceedings and LBNL reports. Filter Advanced Search Publications list This publications database is an ongoing project, and not all Division publications are represented here yet. For additional help see the bottom of this page. Documents Found: 4418 Title Keyword LBNL Number Author - Any - Abadie, Marc O Abbey, Chad Abdolrazaghi, Mohamad Aberg, Annika Abhyankar, Nikit Abraham, Marvin M Abshire, James B Abushakra, Bass Acevedo-Ruiz, Manuel Aceves, Salvador Ache, Hans J Ackerly, David D Ackerman, Andrew S Adamkiewicz, Gary Adams, J W Adams, Carl Adamson, Bo Addy, Nathan Addy, Susan E Aden, Nathaniel T Adesola, Bunmi Adhikari,

336

Advanced Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Systems Advanced Combustion Background Conventional coal-fired power plants utilize steam turbines to generate electricity, which operate at efficiencies of 35-37 percent. Operation at higher temperatures and pressures can lead to higher efficiencies, resulting in reduced fuel consumption and lower greenhouse gas emissions. Higher efficiency also reduces CO2 production for the same amount of energy produced, thereby facilitating a reduction in greenhouse gas emissions. When combined, oxy-combustion comes with an efficiency hit, so it will actually increase the amount of CO2 to be captured. But without so much N2 in the flue gas, it will be easier and perhaps more efficient to capture, utilize and sequester. NETL's Advanced Combustion Project and members of the NETL-Regional University

337

Nuclear fusion: Advanced fuels under debate  

Science Journals Connector (OSTI)

... confinement concepts were mentioned briefly at the miniconference, such as the field-reversed configuration, spheromak, spherical torus and reversed-field pinch. ...

G. L. Kulcinski; J. F. Santarius

1998-12-24T23:59:59.000Z

338

Reactor and Nuclear Systems Division (RNSD)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RNSD Home RNSD Home Research Groups Advanced Reactor Systems & Safety Nuclear Data & Criticality Safety Nuclear Security Modeling Radiation Safety Information Computational Center Radiation Transport Reactor Physics Thermal Hydraulics & Irradiation Engineering Used Fuel Systems Staff Details (CV/Bios) Publications Org Chart Contact Us ORNL Staff Only Research Groups Advanced Reactor Systems & Safety Nuclear Data & Criticality Safety Nuclear Security Modeling Radiation Safety Information Computational Center Radiation Transport Reactor Physics Thermal Hydraulics & Irradiation Engineering Used Fuel Systems Reactor and Nuclear Systems Division News Highlights U.S. Rep. Fleischmann touts ORNL as national energy treasure Martin Peng wins Fusion Power Associates Leadership Award

339

Office of Nuclear Energy | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Office of Nuclear Energy Office of Nuclear Energy Office of Nuclear Energy Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation technology in the United States. Read more Middle School STEM Curriculum The Harnessed Atom curriculum offers essential principles and fundamental concepts on energy and nuclear science. Read more Educating Future Nuclear Engineers The Nuclear Energy University Program offers fellowships and scholarships for graduate and undergraduate students. Read more Managing Used Fuel and Waste REPORT: Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Read more Consortium for Advanced Simulations of LWRs The Consortium for Advanced Simulation of Light Water Reactors (CASL) is

340

Energy systems transformation  

Science Journals Connector (OSTI)

...coal (27.3%), natural gas (21.4%), and nuclear...TPES for oil, coal, natural gas, and nuclear energy...To generate energy, capital-intensive technology...pipelines, liquefied natural gas supertankers), and...

A. T. C. Jérôme Dangerman; Hans Joachim Schellnhuber

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Nuclear Debate  

Science Journals Connector (OSTI)

Nuclear Debate ... This month, the Senate will consider the nominations of two women to serve on the Nuclear Regulatory Commission. ... Svinicki is a nuclear engineer with experience in the Department of Energy’s nuclear energy programs. ...

JEFF JOHNSON

2012-06-11T23:59:59.000Z

342

Transforming Commercial Building Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

343

Transforming Commercial Building Operations  

Broader source: Energy.gov (indexed) [DOE]

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

344

Electronic Waste Transformation  

Science Journals Connector (OSTI)

Electronic Waste Transformation ... Instead, entrepreneurial individuals and small businesses recover valuable metals such as copper from obsolete equipment through activities such as burning. ...

CHERYL HOGUE

2012-04-01T23:59:59.000Z

345

Spherical Harmonic Transform Algorithms  

SciTech Connect (OSTI)

A collection of MATLAB classes for computing spherical harmonic transforms are presented and used to solve simple partial differential equations on the sphere. The spectral synthesis and analysis using fast Fourier transforms and Legendre transforms with the associated Legendre functions are presented in depth. A set of methods associated with a spectral\\_field class provides spectral approximation to the $\\DIV$, $\\CURL$, $\\GRAD$, and $\\LAPL$ in spherical geometr y. Laplace inversion and Helmholtz equation solvers are also methods for this clas s. Investigation of algorithms and analysis for spherical harmonic transform optio ns for parallel high performance computers are discussed in the context of global climate and weather models.

Drake, John B [ORNL; Worley, Patrick H [ORNL; D'Azevedo, Eduardo [ORNL

2008-01-01T23:59:59.000Z

346

Engineering Molecular Transformations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Molecular Transformations for Sustainable Energy Conversion Matthew Neurock* Departments of Chemical Engineering and Chemistry, UniVersity of Virginia, CharlottesVille,...

347

Engineering Molecular Transformations for Sustainable Energy Conversion  

SciTech Connect (OSTI)

Future strategies for sustainable energy production will undoubtedly require processes and materials that can efficiently convert renewable resources into fuels. Nature’s enzymes can exquisitely integrate highly active catalytic centers within flexible environments that can adaptively guide reactants to products with very high activities and selectivities. They are limited, however, by their stability and ability to integrate into large scale production processes. The design of more robust heterogeneous catalytic materials that mimic the performance of enzymes, however, has been hindered by our limited understanding of how such transformations proceed. The tremendous advances in ab initio quantum mechanical methods, atomistic simulations, and high performance computing that have occurred over the past two decades, however, provide unprecedented ability to track molecular transformations and how they proceed at specific sites and within particular environments. This information together with the advances in in situ spectroscopic methods that follow such transformations can begin to enable the design of atomic surface ensembles and nanoscale reaction environments. This paper provides the author’s perspective on how theory and simulation can be used to move from current onedimensional design efforts based on catalytic descriptors to the design of two-dimensional surfaces, threedimensional reaction environments, and proton-coupled electron transfer systems that mimic enzymes in the transformation of molecules.

Neurock, Matthew

2010-12-03T23:59:59.000Z

348

Advanced Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ductility EnhancEmEnt of molybDEnum Ductility EnhancEmEnt of molybDEnum PhasE by nano-sizED oxiDE DisPErsions Description Using computational modeling techniques, this research aims to develop predictive capabilities to facilitate the design and optimization of molybdenum (Mo), chromium (Cr), and other high-temperature structural materials to enable these materials to withstand the harsh environments of advanced power generation systems, such as gasification-based systems. These types of materials are essential to the development of highly efficient, clean energy technologies such as low-emission power systems that use coal or other fossil fuels.

349

Advanced Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Super HigH-TemperaTure alloyS and Super HigH-TemperaTure alloyS and CompoSiTeS From nb-W-Cr SySTemS Description The U.S. Department of Energy's Office of Fossil Energy (DOE-FE) has awarded a three-year grant to the University of Texas at El Paso (UTEP) and Argonne National Laboratory (ANL) to jointly explore the high-temperature properties of alloys composed of niobium (Nb), tungsten (W), and chromium (Cr). The grant is administered by the Advanced Research (AR) program of the National

350

Mission Advancing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NETL Accomplishments NETL Accomplishments - the lab 2 Mission Advancing energy options to fuel our economy, strengthen our security, and improve our environment. Renewed Prosperity Through Technological Innovation - Letter from the Director NETL: the ENERGY lab 4 6 3 Contents Technology Transfer Patents and Commercialization Sharing Our Expertise Noteworthy Publications 60 62 63 64 66 Environment, Economy, & Supply Carbon Capture and Storage Partnerships Work to Reduce Atmospheric CO 2 Demand-Side Efficiencies New NETL Facility Showcases Green Technologies Environment & Economy Materials Mercury Membranes NETL Education Program Produces Significant Achievement Monitoring Water Economy & Supply NETL's Natural Gas Prediction Tool Aids Hurricane Recovery Energy Infrastructure

351

ADVANCED REACTOR SAFETY PROGRAM – STAKEHOLDER INTERACTION AND FEEDBACK  

SciTech Connect (OSTI)

In the Spring of 2013, we began discussions with our industry stakeholders on how to upgrade our safety analysis capabilities. The focus of these improvements would primarily be on advanced safety analysis capabilities that could help the nuclear industry analyze, understand, and better predict complex safety problems. The current environment in the DOE complex is such that recent successes in high performance computer modeling could lead the nuclear industry to benefit from these advances, as long as an effort to translate these advances into realistic applications is made. Upgrading the nuclear industry modeling analysis capabilities is a significant effort that would require substantial participation and coordination from all industry segments: research, engineering, vendors, and operations. We focus here on interactions with industry stakeholders to develop sound advanced safety analysis applications propositions that could have a positive impact on industry long term operation, hence advancing the state of nuclear safety.

Benjamin W. Spencer; Hai Huang

2014-08-01T23:59:59.000Z

352

ADVANCED FUELS CAMPAIGN 2013 ACCOMPLISHMENTS  

SciTech Connect (OSTI)

The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. Accomplishments made during fiscal year (FY) 2013 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section.

Not Listed

2013-10-01T23:59:59.000Z

353

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

354

Advanced LIGO  

E-Print Network [OSTI]

The Advanced LIGO gravitational wave detectors are second generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid- and high- frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

The LIGO Scientific Collaboration

2014-11-17T23:59:59.000Z

355

Exploring Functional Mellin Transforms  

E-Print Network [OSTI]

We define functional Mellin transforms within a scheme for functional integration proposed in [1]. Functional Mellin transforms can be used to define functional traces, logarithms, and determinants. The associated functional integrals are useful tools for probing function spaces in general and $C^\\ast$-algebras in particular. Several interesting aspects are explored.

J. LaChapelle

2015-01-08T23:59:59.000Z

356

TRANSFORMATION FOURIER--BOREL  

E-Print Network [OSTI]

LA TRANSFORMATION DE FOURIER--BOREL : â?? â?? de Hilbert est duale de celle de Gel'fond, tandis que la z e , t h d dz t dont la transforme â??e de Fourier--Borel est #(u) = q th u t e h#u . 0 1 #(## 0 # 1

Waldschmidt, Michel

357

Transforming Education at Einstein  

E-Print Network [OSTI]

Transforming Education at Einstein EinstEin Winter/spring 2012 The Magazine for Alumni and Friends trANsfOrMiNg eDuCAtiON At eiNsteiN Education at Albert Einstein College of Medicine is undergoing

Yates, Andrew

358

Prospects for the development of advanced reactors  

SciTech Connect (OSTI)

Energy supply is an important prerequisite for further socio-economic development, especially in developing countries where the per capita energy use is only a very small fraction of that in industrialized countries. Nuclear energy is an essentially unlimited energy resource with the potential to provide this energy in the form of electricity, district heat and process heat under environmentally acceptable conditions. However, this potential will be realized only if nuclear power plants can meet the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide a tremendous amount of experience has been accumulated during development, licensing, construction and operation of nuclear power reactors. The experience forms a sound basis for further improvements. Nuclear programmes in many countries are addressing the development of advanced reactors which are intended to have better economics, higher reliability and improved safety in order to overcome the current concerns of nuclear power. Advanced reactors now being developed could help to meet the demand for new plants in developed and developing countries, not only for electricity generation, but also for district heating, desalination and for process heat. The IAEA, as the only global international governmental organization dealing with nuclear power, promotes international information exchange and international co-operation between all countries with their own advanced nuclear power programmes and offers assistance to countries with an interest in exploratory or research programmes.

Semenov, B.A.; Kupitz, J.; Cleveland, J. [International Atomic Energy Agency Vienna (Austria). Dept. of Nuclear Energy and Safety

1992-12-31T23:59:59.000Z

359

Amplified Quantum Transforms  

E-Print Network [OSTI]

In this thesis we investigate two new Amplified Quantum Transforms. In particular we create and analyze the Amplified Quantum Fourier Transform (Amplified-QFT) and the Amplified-Haar Wavelet Transform. First, we provide a brief history of quantum mechanics and quantum computing. Second, we examine the Amplified-QFT in detail and compare it against the Quantum Fourier Transform (QFT) and Quantum Hidden Subgroup (QHS) algorithms for solving the Local Period Problem. We calculate the probabilities of success of each algorithm and show the Amplified-QFT is quadratically faster than the QFT and QHS algorithms. Third, we examine the Amplified-QFT algorithm for solving The Local Period Problem with an Error Stream. Fourth, we produce an uncertainty relation for the Amplified-QFT algorithm. Fifth, we show how the Amplified-Haar Wavelet Transform can solve the Local Constant or Balanced Signal Decision Problem which is a generalization of the Deutsch-Jozsa algorithm.

David Cornwell

2014-06-01T23:59:59.000Z

360

Department of Energy and Nuclear Regulatory Commission Increase Cooperation  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Regulatory Commission Increase Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership Department of Energy and Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership July 17, 2007 - 2:55pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) expanded cooperation for President Bush's Global Nuclear Energy Partnership (GNEP) through a Memorandum of Understanding (MOU) that was signed on Friday by DOE's GNEP Deputy Program Manager Paul Lisowski and NRC Executive Director for Operations Luis Reyes. The MOU establishes the foundation for increased cooperation between DOE and NRC on technological research and engineering studies and marks another important milestone

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Global Nuclear Energy Partnership Steering Group Members Approve  

Broader source: Energy.gov (indexed) [DOE]

Global Nuclear Energy Partnership Steering Group Members Approve Global Nuclear Energy Partnership Steering Group Members Approve Transformation to the International Framework for Nuclear Energy Cooperation Global Nuclear Energy Partnership Steering Group Members Approve Transformation to the International Framework for Nuclear Energy Cooperation June 21, 2010 - 11:59am Addthis The Global Nuclear Energy Partnership Steering Group met in Accra, Ghana on June 16-17, 2010, and approved unanimously several transformative changes to reflect global developments that have occurred since the Partnership was established in 2007. The transformation includes a new name - the International Framework for Nuclear Energy Cooperation -- and the establishment of a new Statement of Mission. Participants in this new International Framework agreed that this

362

Program Transformation Mechanics A Classification of Mechanisms for Program Transformation  

E-Print Network [OSTI]

Program Transformation Mechanics A Classification of Mechanisms for Program Transformation with a Survey of Existing Transformation Systems Jonne van Wijngaarden Eelco Visser UU-CS-2003-048 Institute Transformation Mechanics A Classification of Mechanisms for Program Transformation with a Survey of Existing

Utrecht, Universiteit

363

Logarithmic transformation of response Logarithmic transformation of response  

E-Print Network [OSTI]

Logarithmic transformation of response Logarithmic transformation of response Often, support S of Y is S = (0, ). Logarithm is then one of transformations to consider when trying to obtain a correct (wrong. Model Building 1. Transformation of response #12;Logarithmic transformation of response When does

Komarek, Arnost

364

IMAGINED TRANSFORMATIONS 1 Running head: IMAGINED TRANSFORMATION OF BODIES  

E-Print Network [OSTI]

IMAGINED TRANSFORMATIONS 1 Running head: IMAGINED TRANSFORMATION OF BODIES Imagined Transformations TRANSFORMATIONS 2 Abstract A number of spatial reasoning problems can be solved by performing an imagined transformation of one's egocentric perspective. A series of experiments were carried out to characterize

Zacks, Jeffrey M.

365

Laplace Transforms (Ch. 7) LAPLACE TRANSFORMS (Ch. 7)  

E-Print Network [OSTI]

Laplace Transforms (Ch. 7) LAPLACE TRANSFORMS (Ch. 7) ? restart; ? with( plots ): ? with( DEtools ): The Laplace transform is a very common, and useful, technique for solving and analyz­ ing the solution of the Laplace transform is that derivatives are transformed into powers; thus, the differential equation

Meade, Douglas B.

366

Geophysical applications of nuclear resonant spectroscopy Wolfgang Sturhahn and Jennifer M. Jackson*  

E-Print Network [OSTI]

Geophysical applications of nuclear resonant spectroscopy Wolfgang Sturhahn and Jennifer M. Jackson* 17th August 2007 Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Ave, Argonne summarize recent developments of nuclear resonant spectroscopy methods like nuclear resonant inelastic x

Jackson, Jennifer M.

367

E-Print Network 3.0 - asco nuclear power Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear power Search Powered by Explorit Topic List Advanced Search Sample search results for: asco nuclear power Page: << < 1 2 3 4 5 > >> 1 A P-5 Nuclear Dialogue: Concept,...

368

E-Print Network 3.0 - aluminum-based spent nuclear Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

spent nuclear Search Powered by Explorit Topic List Advanced Search Sample search results for: aluminum-based spent nuclear Page: << < 1 2 3 4 5 > >> 1 Nuclear engineers design,...

369

E-Print Network 3.0 - alternative nuclear energy Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: alternative nuclear energy Page: << < 1 2 3 4 5 > >> 1 Preparing Non-nuclear Engineers for the Nuclear...

370

Bold, Transformational Energy Research Projects Win $151 Million in Funding  

Broader source: Energy.gov (indexed) [DOE]

Bold, Transformational Energy Research Projects Win $151 Million in Bold, Transformational Energy Research Projects Win $151 Million in Funding Bold, Transformational Energy Research Projects Win $151 Million in Funding October 26, 2009 - 12:00am Addthis San Francisco, Calif. - The Department of Energy today announced major funding for 37 ambitious research projects - including some that could allow intermittent energy sources like wind and solar to provide a steady flow of power, or use bacteria to produce automotive fuel from sunlight, water and carbon dioxide. The $151 million in funding is being awarded through the Department's recently-formed Advanced Research Projects Agency-Energy ("ARPA-E"). ARPA-E's mission is to develop nimble, creative and inventive approaches to transform the global energy landscape while advancing America's technology

371

Indian nuclear power programme – Past, present and future  

Science Journals Connector (OSTI)

Unlike the advanced countries where nuclear power came about as a spin-off from the development of the strategic programme and related military research, in India, nuclear energy development began with the object...

S A BHARDWAJ

2013-10-01T23:59:59.000Z

372

Transforming Biomass - main page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

harvesting, collection, and storage systems, and preconversion of advanced feedstocks for bioenergy commodity markets. INL feedstock preprocessing research and development ranges...

373

Inelastic X-ray and Nuclear Resonant Scattering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

... Search About User Information News & Events Science & Education Beamlines Divisions Argonne Home > Advanced Photon Source > Inelastic X-ray and Nuclear Resonant Scattering...

374

PNNL Radiation Detection for Nuclear Security Summer School  

SciTech Connect (OSTI)

PNNL's Radiation Detection for Nuclear Security Summer School gives graduate and advanced graduate students an understanding of how radiation detectors are used in national security missions.

Runkle, Bob

2013-07-10T23:59:59.000Z

375

Modern Imaging Technology: Recent Advances  

SciTech Connect (OSTI)

This 2-day conference is designed to bring scientist working in nuclear medicine, as well as nuclear medicine practitioners together to discuss the advances in four selected areas of imaging: Biochemical Parameters using Small Animal Imaging, Developments in Small Animal PET Imaging, Cell Labeling, and Imaging Angiogenesis Using Multiple Modality. The presentations will be on molecular imaging applications at the forefront of research, up to date on the status of molecular imaging in nuclear medicine as well as in related imaging areas. Experts will discuss the basic science of imaging techniques, and scheduled participants will engage in an exciting program that emphasizes the current status of molecular imaging as well as the role of DOE funded research in this area.

Welch, Michael J.; Eckelman, William C.

2004-06-18T23:59:59.000Z

376

Advanced Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

05/2007 05/2007 NitrogeN evolutioN aNd CorrosioN MeChaNisMs With oxyCoMbustioN of Coal Description Under a grant from the University Coal Research (UCR) program, Brigham Young University (BYU) is leading a three-year research effort to investigate the physical processes that several common types of coal undergo during oxy-fuel combustion. Specifically, research addresses the mixture of gases emitted from burning, particularly such pollutants as nitrogen oxides (NO X ) and carbon dioxide (CO 2 ), and the potential for corrosion at the various stages of combustion. The UCR program is administered by the Advanced Research Program at the National Energy Technology Laboratory (NETL), under the U.S. Department of Energy's Office of

377

Nuclear Resonance Fluorescence for Nuclear Materials Assay  

E-Print Network [OSTI]

Potential of Nuclear Resonance Fluorescence . . . . . . . .2.9.1 Nuclear ThomsonSections . . . . . . . . . . . . . . . Nuclear Resonance

Quiter, Brian Joseph

2010-01-01T23:59:59.000Z

378

Nuclear Energy Program  

Broader source: Energy.gov (indexed) [DOE]

September 30, 2002 September 30, 2002 NERAC Fall 2002 Meeting Office of Nuclear Energy, Science and Technology Major Program Developments Major Program Developments 6 June 2002: Department selects three U.S. electric utilities (Dominion Energy, Entergy, and Exelon) to participate in joint government/ industry projects to demonstrate NRC's Early Site Permit (ESP) process and seek NRC approval by mid-decade 6 July 2002: Secretary Abraham announces transition of management of the Idaho National Engineering and Environmental Laboratory to Nuclear Energy and revitalization of its nuclear R&D mission 6 September 2002: Generation IV International Forum reaches agreement on six advanced reactor and fuel cycle technologies for joint development Office of Nuclear Energy, Science and Technology

379

A discrete fractional random transform  

E-Print Network [OSTI]

We propose a discrete fractional random transform based on a generalization of the discrete fractional Fourier transform with an intrinsic randomness. Such discrete fractional random transform inheres excellent mathematical properties of the fractional Fourier transform along with some fantastic features of its own. As a primary application, the discrete fractional random transform has been used for image encryption and decryption.

Zhengjun Liu; Haifa Zhao; Shutian Liu

2006-05-20T23:59:59.000Z

380

Transformer Abdullah Al-Otaibi  

E-Print Network [OSTI]

Transformer Abdullah Al-Otaibi ID#242374 Section#2 Abstract- this is a brief description for transformer and how it works. I. DEFINITION A transformer is a device that transfers electrical energy from of the transformer in 1831. The transformer is used by Faraday only to demonstrate the principle of electromagnetic

Masoudi, Husain M.

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Accomplishments | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accomplishments | National Nuclear Security Administration Accomplishments | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Accomplishments Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > About ASC > Accomplishments

382

Overview | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Overview | National Nuclear Security Administration Overview | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Overview Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > About ASC > Overview Overview

383

Accomplishments | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Accomplishments | National Nuclear Security Administration Accomplishments | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Accomplishments Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > About ASC > Accomplishments

384

Office of Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Office of Nuclear Energy Office of Nuclear Energy Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation technology in the United States. Read more Middle School STEM Curriculum The Harnessed Atom curriculum offers essential principles and fundamental concepts on energy and nuclear science. Read more Educating Future Nuclear Engineers The Nuclear Energy University Program offers fellowships and scholarships for graduate and undergraduate students. Read more Managing Used Fuel and Waste REPORT: Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Read more Consortium for Advanced Simulations of LWRs The Consortium for Advanced Simulation of Light Water Reactors (CASL) is the first DOE Hub for the modeling and simulation (M&S) of commercial

385

Lorentz transformation by mimicking the Lorentz transformation  

E-Print Network [OSTI]

We show that starting with the fact that special relativity theory is concerned with a distortion of the observed length of a moving rod, without mentioning if it is a "contraction" or "dilation", we can derive the Lorentz transformations for the spacetime coordinates of the same event. This derivation is based on expressing the length of the moving rod as a sum of components with all the lengths involved in this summation being measured by the observers of the same inertial reference frame.

Bernhard Rothenstein; Stefan Popescu

2007-09-24T23:59:59.000Z

386

Market Transformation Fact Sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transformation Market Transformation is based on the concept that federal support can catalyze a market to achieve economic and environmental benefits that can reduce costs through economies of scale. Adoption of fuel cells in emerging markets expands the growth of green jobs, with new opportunities in manufacturing, fuel cell maintenance and support systems, and domestic hydrogen fuel production and delivery. By providing reliable field operations data and increasing user confidence, early market deployments help overcome non-technical challenges like developing appropriate safety codes and standards and reducing high insurance costs. Strategies Market Transformation's primary goal is to accelerate the expansion of hydrogen and fuel cell use by lowering the life

387

Final Complex Transformation Supplemental Programmatic Environmental Impact Statement October 2008  

Broader source: Energy.gov (indexed) [DOE]

I I Volume I Chapters 1 - 4 Chapters 1 - 4 DOE/EIS-0236-S4 National Nuclear Security Administration U.S. Department of Energy October 2008 C C CO O OM MP PL LE EXtransfo o or r rm m mat on COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy, National Nuclear Security Administration TITLE: Final Complex Transformation Supplemental Programmatic Environmental Impact Statement (Complex Transformation SPEIS, DOE/EIS-0236-S4) CONTACTS: For further information on this SPEIS, For general information on the DOE write or call: National Environmental Policy Act (NEPA) process, write or call: Theodore A. Wyka Carol Borgstrom, Director Complex Transformation Office of NEPA Policy and Compliance, GC-20 SPEIS Document Manager U.S. Department of Energy Office of Transformation, NA-10.1 1000 Independence Avenue, SW

388

Final Complex Transformation Supplemental Programmatic Environmental Impact Statement October 2008  

Broader source: Energy.gov (indexed) [DOE]

Summary Summary Summary DOE/EIS-0236-S4 National Nuclear Security Administration U.S. Department of Energy October 2008 C C CO O OM MP PL LE EXtransfo o or r rm m mat on COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy, National Nuclear Security Administration TITLE: Final Complex Transformation Supplemental Programmatic Environmental Impact Statement (Complex Transformation SPEIS, DOE/EIS-0236-S4) CONTACTS: For further information on this SPEIS, For general information on the DOE write or call: National Environmental Policy Act (NEPA) process, write or call: Theodore A. Wyka Carol Borgstrom, Director Complex Transformation Office of NEPA Policy and Compliance, GC-20 SPEIS Document Manager U.S. Department of Energy Office of Transformation, NA-10.1 1000 Independence Avenue, SW

389

Nuclear Returns  

Science Journals Connector (OSTI)

Nuclear Returns ... For the first time since 1978, the Nuclear Regulatory Commission has given the green light for a new U.S. nuclear power plant. ... NRC granted a license to Southern Co. to build and operate twin 1,100-MW reactors adjacent to two operating nuclear power plants at its Vogtle nuclear facility, near Waynesboro, Ga. ...

JEFF JOHNSON

2012-02-19T23:59:59.000Z

390

Transform Analysis Using the definition of the Laplace transform, Laplace transform properties, and the integral  

E-Print Network [OSTI]

Transform Analysis QUESTION 1 Using the definition of the Laplace transform, Laplace transform properties, and the integral tables on the course website, determine the Laplace transforms of the functions - = (3) QUESTION 2 Determine the inverse Laplace transform for the functions in equations (1)­(4). ( ) 3

Landers, Robert G.

391

TRANSFORMATIONS 4.1 TRANSFORMATIONS, ISOMETRIES. The term transformation has several  

E-Print Network [OSTI]

1 Chapter 4 TRANSFORMATIONS 4.1 TRANSFORMATIONS, ISOMETRIES. The term transformation has several. On the other hand, in linear algebra courses a linear transformation maps vectors to vectors and subspaces to subspaces. When we use the term transformation in geometry, however, we have all of these interpretations

392

Linear Transformer Ideal Transformer Consider linear and ideal transformers attached to Circuit 1 and Circuit 2.  

E-Print Network [OSTI]

Linear Transformer Ideal Transformer I1 + V2 _ + V1 _ Consider linear and ideal transformers in linear transformer equations for :MLL ,, 21 ( ) ( ) ( ) ( ) ( ) ( ) 12212212 2 1 112 2 12 2 1 2212 2 PP Now solve the linear transformer equations for the currents: 1 212 2 22 2 1 2 1 212 2 22 12 2 2 2

Kozick, Richard J.

393

E-Print Network 3.0 - advanced lwr concept Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ENABLING SUSTAINABLE NUCLEAR POWER Summary: and NRE Design Class., "Advances in the Subcritical, Gas-Cooled Fast Transmutation Reactor Concept", Nucl... uranium energy...

394

E-Print Network 3.0 - advanced technologies based Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bed Reactor Collection: Fission and Nuclear Technologies 18 Kompetenzzentrum fr Automobil-und Industrieelektronik Summary: of materials for these advanced semiconductor...

395

E-Print Network 3.0 - advanced reactor research Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to build the world's most advanced nuclear fusion reactor... ) International Thermonuclear Experimental Reactor (ITER), which will be built at Cadarache, near the...

396

E-Print Network 3.0 - advanced research reactor Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to build the world's most advanced nuclear fusion reactor... ) International Thermonuclear Experimental Reactor (ITER), which will be built at Cadarache, near the...

397

E-Print Network 3.0 - advanced marine reactor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to build the world's most advanced nuclear fusion reactor... ) International Thermonuclear Experimental Reactor (ITER), which will be built at Cadarache, near the...

398

E-Print Network 3.0 - advanced hanaro reactor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to build the world's most advanced nuclear fusion reactor... ) International Thermonuclear Experimental Reactor (ITER), which will be built at Cadarache, near the...

399

Proceedings of the US Nuclear Regulatory Commission fifteenth water reactor safety information meeting: Volume 1, Plenary sessions, reactor licensing topics, NUREG-1150, risk analysis/PRA applications, innovative concepts for increased safety of advanced power reactors, severe accident modeling and analysis  

SciTech Connect (OSTI)

This six-volume report contains 140 papers out of the 164 that were presented at the Fifteenth Water Reactor Safety Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 26-29, 1987. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. This report, Volume 1, discusses the following: plenary sessions; reactor licensing; NUREG-1150; risk analysis; innovative concepts for increased safety of advanced power reactors; and severe accident modeling and analysis. Thirty-two reports have been cataloged separately.

Weiss, A.J. (comp.)

1988-02-01T23:59:59.000Z

400

Transforming California's Freight Transport System  

E-Print Network [OSTI]

Transforming California's Freight Transport System Policy Forum on the Role of Freight Transport Standard #12;2050 Vision- Key Conceptual Outcomes Technology Transformation Early Action Cleaner Combustion Multiple Strategies Federal Action Efficiency Gains Energy Transformation 9 #12;Further reduce localized

California at Davis, University of

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nuclear Science and Technology Division - Home page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

image image image - mural in bldg 5200 image image Fuels, Isotopes, and Nuclear Materials image Fuels, Isotopes, and Nuclear Materials Nuclear System Analysis, Design, and Safety image Nuclear System Analysis, Design, and Safety WELCOME Performing basic and applied R&D for the Department of Energy, the National Nuclear Security Administration, and other government agencies, as well as supporting and leveraging industrial partnerships Mission Statement The Nuclear Science and Technology Division at Oak Ridge National Laboratory will provide leading-edge science, technology, and engineering research that support our Nation's nuclear science and technology enterprise across a broad spectrum of applications including but not limited to advanced nuclear power systems, nuclear medicine,and nuclear

402

Energy systems transformation  

Science Journals Connector (OSTI)

Energy systems transformation 10...associated with the incumbent energy economy that is unlikely to...its gatekeepers, such as auditors, analysts, debt-rating...problems generated by the energy system became more visible...

A. T. C. Jérôme Dangerman; Hans Joachim Schellnhuber

2013-01-01T23:59:59.000Z

403

The Quantum Mellin transform  

E-Print Network [OSTI]

We uncover a new type of unitary operation for quantum mechanics on the half-line which yields a transformation to ``Hyperbolic phase space''. We show that this new unitary change of basis from the position x on the half line to the Hyperbolic momentum $p_\\eta$, transforms the wavefunction via a Mellin transform on to the critial line $s=1/2-ip_\\eta$. We utilise this new transform to find quantum wavefunctions whose Hyperbolic momentum representation approximate a class of higher transcendental functions, and in particular, approximate the Riemann Zeta function. We finally give possible physical realisations to perform an indirect measurement of the Hyperbolic momentum of a quantum system on the half-line.

J. Twamley; G. J. Milburn

2007-02-12T23:59:59.000Z

404

Transformation inverse design  

E-Print Network [OSTI]

We present a new technique for the design of transformation-optics devices based on large-scale optimization to achieve the optimal effective isotropic dielectric materials within prescribed index bounds, which is ...

Liu, David

405

Functional Mellin Transforms  

E-Print Network [OSTI]

Functional integrals are defined in terms of locally compact topological groups and their associated Banach-valued Haar integrals. This approach generalizes the functional integral scheme of Cartier and DeWitt-Morette. The definition allows a construction of functional Mellin transforms. In turn, the functional Mellin transforms can be used to define functional traces, logarithms, and determinants. The associated functional integrals are useful tools for probing function spaces in general and $C^\\ast$-algebras in particular. Several interesting aspects are explored.

J. LaChapelle

2015-01-07T23:59:59.000Z

406

Series Transmission Line Transformer  

DOE Patents [OSTI]

A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

Buckles, Robert A. (Livermore, CA); Booth, Rex (Livermore, CA); Yen, Boris T. (El Cerrito, CA)

2004-06-29T23:59:59.000Z

407

Nuclear Fusion  

Science Journals Connector (OSTI)

Although not yet developed at the commercial stage, nuclear fusion technology is still being considered as a ... used in nuclear warfare. Since research in nuclear fusion for the production of energy started abou...

Ricardo Guerrero-Lemus; José Manuel Martínez-Duart

2013-01-01T23:59:59.000Z

408

Nuclear Nonproliferation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Nonproliferation As more countries embrace nuclear power as a cost-effective and clean alternative to fossil fuels, the need exists to ensure that the nuclear fuel cycle is...

409

A Review of Nuclear Computational Information  

SciTech Connect (OSTI)

The Radiation Safety Information Computational Center (RSICC) and the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency Data Bank (NEADB) work together to acquire sets of computer codes, nuclear data, and integral experiments relevant to shielding and dosimetry applications for fission, fusion, and accelerator applications. To keep up with advances in computing technology, international researchers continue to develop nuclear software. Collection centers like RSICC and NEADB serve the community and play a role in advancing nuclear science and technology research.

Kirk, Bernadette Lugue [ORNL] [ORNL

2010-01-01T23:59:59.000Z

410

Nuclear Engineering Nuclear Criticality Safety  

E-Print Network [OSTI]

Nuclear Engineering Nuclear Criticality Safety The Nuclear Engineering Division (NE) of Argonne National Laboratory is experienced in performing criticality safety and shielding evaluations for nuclear, and neutron spectra. The NE nuclear criticality safety (NCS) capabilities are based on a staff with decades

Kemner, Ken

411

Energy systems transformation  

Science Journals Connector (OSTI)

...3%), natural gas (21.4%), and nuclear...animal products, gas/liquids from biofuels...coal, natural gas, and nuclear energy...among its associated technologies are concentrated solar technology and wind turbines. This system generates...5 decades, the development of global TPES suggests...

A. T. C. Jérôme Dangerman; Hans Joachim Schellnhuber

2013-01-01T23:59:59.000Z

412

Institute for Atom-Efficient Chemical Transformations Energy Frontier  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Institute for Atom-Efficient Chemical Transformations DOE Logo Institute for Atom-Efficient Chemical Transformations DOE Logo Focus Areas Reaction Mechanisms Controlled Active Metals Materials Synthesis Search Argonne ... Search Argonne Home > Institute for Atom-Efficient Chemical Transformations > IACT Home IACT News IACT Partners IACT Staff IACT Awards Publications & Presentations Jobs at IACT Energy Frontier Research Centers at Argonne Strategic Alliances Research Facilities & Tools Institute for Atom-Efficient Chemical Transformations - an Energy Frontier Research Center The Institute for Atom-Efficient Chemical Transformations (IACT) employs a multidisciplinary approach to address key catalytic conversions that could improve the efficiency of producing fuels from biomass. IACT focuses on advancing the science of catalysis for the efficient conversion of energy resources into usable forms. IACT's goal is to find ways to achieve control and efficiency of chemical conversions comparable to those in nature.

413

NUCLEAR REACTORS.  

E-Print Network [OSTI]

??Nuclear reactors are devices containing fissionable material in sufficient quantity and so arranged as to be capable of maintaining a controlled, self-sustaining NUCLEAR FISSION chain… (more)

Belachew, Dessalegn

2010-01-01T23:59:59.000Z

414

nuclear reactor  

Science Journals Connector (OSTI)

...a complex atomic apparatus used to obtain energy from nuclear fission chain reaction. Used to produce nuclear energy, radioactive isotopes, and artificial elements.... atomic pile ...

2009-01-01T23:59:59.000Z

415

Nuclear Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Energy Idaho National Laboratory is the Department of Energy's lead nuclear energy research and development facility. Building upon its legacy responsibilities,...

416

Nuclear Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Error Error Nuclear Hydrogen - RCC cannot be displayed due to a timeout error. We recommend: * Refresh Nuclear Hydrogen - RCC * Increasing your portlet timeout setting. *...

417

Nuclear Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Underground Research Facility in South Dakota, which will search for neutrinoless double-beta decay. Strong Los Alamos programs in nuclear data and nuclear theory supports...

418

Physics high-ranking Journals (category 2) Advances in Physics  

E-Print Network [OSTI]

Physics high-ranking Journals (category 2) Advances in Physics Annual Review of Astronomy and Astrophysics Annual Review of Nuclear and Particle Science Applied Physics Letters Astronomy & Astrophysics Astronomy and Astrophysics Review Astrophysical Journal European Physical Journal D. Atomic, Molecular

419

Idaho National Laboratory Advanced Test Reactor Probabilistic Risk  

Broader source: Energy.gov (indexed) [DOE]

Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment September 19, 2012 Presenter: Bentley Harwood, Advanced Test Reactor Nuclear Safety Engineer Battelle Energy Alliance Idaho National Laboratory Topics covered: PRA studies began in the late 1980s 1989, ATR PRA published as a summary report 1991, ATR PRA full report 1994 and 2004 various model changes 2011, Consolidation, update and improvement of previous PRA work 2012/2013, PRA risk monitor implementation Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment More Documents & Publications DOE's Approach to Nuclear Facility Safety Analysis and Management Nuclear Regulatory Commission Handling of Beyond Design Basis Events for

420

APPENDIX F. TRANSFORMS, COMPLEX ANALYSIS 1 Transforms, Complex  

E-Print Network [OSTI]

APPENDIX F. TRANSFORMS, COMPLEX ANALYSIS 1 Appendix F Transforms, Complex Analysis This appendix discusses Fourier and Laplace transforms as they are used in plasma physics and this book. Also, key properties of complex variable theory that are needed for understanding and inverting these transforms

Callen, James D.

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

From transformation traces to transformation rules: Assisting Model Driven Engineering  

E-Print Network [OSTI]

From transformation traces to transformation rules: Assisting Model Driven Engineering approach. In this paper we are interested in semi-automatically gen- erating labelled graph (model) transformations conform to a particu- lar syntax (meta-model). Those transformations are basic operations in model driven

Paris-Sud XI, Université de

422

Optical transformation from chirplet to fractional Fourier transformation kernel  

E-Print Network [OSTI]

We find a new integration transformation which can convert a chirplet function to fractional Fourier transformation kernel, this new transformation is invertible and obeys Parseval theorem. Under this transformation a new relationship between a phase space function and its Weyl-Wigner quantum correspondence operator is revealed.

Hong-yi Fan; Li-yun Hu

2009-02-11T23:59:59.000Z

423

Laplace Transforms An integral transform is an operator  

E-Print Network [OSTI]

9­28­1998 Laplace Transforms An integral transform is an operator F (s) = Z b a K(s; t)f(t) dt: The input to the transform is the function f(t); the output is the function F (s). (By convention, small letters denote the inputs to a transform, and the corresponding capital letters denote the corresponding

Ikenaga, Bruce

424

Transform Coding: Past, Present, and Future Transforms are perva-  

E-Print Network [OSTI]

Transform Coding: Past, Present, and Future Transforms are perva- sive in signal process- ing) and wavelets are part of the widely used JPEG standards, transforms are at the heart of the compression engine of transforms in compression, and the flurry of activ- ity in both research and applications around signal

Vetterli, Martin

425

ARPA-E Announces $43 Million for Transformational Energy Storage Projects  

Broader source: Energy.gov (indexed) [DOE]

ARPA-E Announces $43 Million for Transformational Energy Storage ARPA-E Announces $43 Million for Transformational Energy Storage Projects to Advance Electric Vehicle and Grid Technologies ARPA-E Announces $43 Million for Transformational Energy Storage Projects to Advance Electric Vehicle and Grid Technologies August 2, 2012 - 10:34am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Department of Energy today announced that 19 transformative new projects will receive a total of $43 million in funding from the Department's Advanced Research Projects Agency-Energy (ARPA-E) to leverage the nation's brightest scientists, engineers and entrepreneurs to develop breakthrough energy storage technologies and support promising small businesses. These projects are supported through two new ARPA-E programs -- Advanced Management and Protection of Energy

426

State Partnership for Energy Efficient Demonstrations: Market Transformation Partnerships for Crossing the "Valley of Death"  

E-Print Network [OSTI]

market to deliver improved quality, zero net energy (ZNE) buildings, and a 60 ­ 80% reduction goals are to: "By 2020, advanced products and best practices will transform the California lighting

California at Davis, University of

427

Development of a portable neutron coincidence counter for field measurements of nuclear materials using the advanced multiplicity capabilities of MCNPX 2.5.F and the neutron coincidence point model  

E-Print Network [OSTI]

given material. In an effort to identify unknown nuclear samples in field inspections, the Portable Neutron Coincidence Counter (PNCC) has been developed. This detector makes use of the coincident neutrons being emitted from a bulk sample. An in...

Thornton, Angela Lynn

2009-05-15T23:59:59.000Z

428

Development of a portable neutron coincidence counter for field measurements of nuclear materials using the advanced multiplicity capabilities of MCNPX 2.5.F and the neutron coincidence point model  

E-Print Network [OSTI]

given material. In an effort to identify unknown nuclear samples in field inspections, the Portable Neutron Coincidence Counter (PNCC) has been developed. This detector makes use of the coincident neutrons being emitted from a bulk sample. An in...

Thornton, Angela Lynn

2008-10-10T23:59:59.000Z

429

Phase Formation and Transformations in Transmutation Fuel Materials for the LIFE Engine Part I - Path Forward  

SciTech Connect (OSTI)

The current specifications of the LLNL fusion-fission hybrid proposal, namely LIFE, impose severe constraints on materials, and in particular on the nuclear fissile or fertile nuclear fuel and its immediate environment. This constitutes the focus of the present report with special emphasis on phase formation and phase transformations of the transmutation fuel and their consequences on particle and pebble thermal, chemical and mechanical integrities. We first review the work that has been done in recent years to improve materials properties under the Gen-IV project, and with in particular applications to HTGR and MSR, and also under GNEP and AFCI in the USA. Our goal is to assess the nuclear fuel options that currently exist together with their issues. Among the options, it is worth mentioning TRISO, IMF, and molten salts. The later option will not be discussed in details since an entire report is dedicated to it. Then, in a second part, with the specific LIFE specifications in mind, the various fuel options with their most critical issues are revisited with a path forward for each of them in terms of research, both experimental and theoretical. Since LIFE is applicable to very high burn-up of various fuels, distinctions will be made depending on the mission, i.e., energy production or incineration. Finally a few conclusions are drawn in terms of the specific needs for integrated materials modeling and the in depth knowledge on time-evolution thermochemistry that controls and drastically affects the performance of the nuclear materials and their immediate environment. Although LIFE demands materials that very likely have not yet been fully optimized, the challenge are not insurmountable and a well concerted experimental-modeling effort should lead to dramatic advances that should well serve other fission programs such as Gen-IV, GNEP, AFCI as well as the international fusion program, ITER.

Turchi, P E; Kaufman, L; Fluss, M J

2008-11-10T23:59:59.000Z

430

Advanced Editor Usage Advanced Editor Usage  

E-Print Network [OSTI]

Advanced Editor Usage Advanced Editor Usage Log in and click the edit icon How to navigate of the events will seek the video to where that event starts Page 1 of 11 #12;Advanced Editor Usage How Editor Usage 3. Type in the new caption name, enter any searchable metadata and click OK (the thumbnail

Benos, Panayiotis "Takis"

431

Nuclear Matter and Nuclear Dynamics  

E-Print Network [OSTI]

Highlights on the recent research activity, carried out by the Italian Community involved in the "Nuclear Matter and Nuclear Dynamics" field, will be presented.

M Colonna

2009-02-26T23:59:59.000Z

432

Advanced Manufacturing Office Overview  

Broader source: Energy.gov [DOE]

Overview presentation by the Advanced Manufacturing Office for the Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

433

Virtual nuclear weapons  

SciTech Connect (OSTI)

The term virtual nuclear weapons proliferation and arsenals, as opposed to actual weapons and arsenals, has entered in recent years the American lexicon of nuclear strategy, arms control, and nonproliferation. While the term seems to have an intuitive appeal, largely due to its cyberspace imagery, its current use is still vague and loose. The author believes, however, that if the term is clearly delineated, it might offer a promising approach to conceptualizing certain current problems of proliferation. The first use is in a reference to an old problem that has resurfaced recently: the problem of growing availability of weapon-usable nuclear materials in civilian nuclear programs along with materials made `excess` to defense needs by current arms reduction and dismantlement. It is argued that the availability of these vast materials, either by declared nuclear-weapon states or by technologically advanced nonweapon states, makes it possible for those states to rapidly assemble and deploy nuclear weapons. The second use has quite a different set of connotations. It is derived conceptually from the imagery of computer-generated reality. In this use, one thinks of virtual proliferation and arsenals not in terms of the physical hardware required to make the bomb but rather in terms of the knowledge/experience required to design, assemble, and deploy the arsenal. Virtual weapons are a physics reality and cannot be ignored in a world where knowledge, experience, materials, and other requirements to make nuclear weapons are widespread, and where dramatic army reductions and, in some cases, disarmament are realities. These concepts are useful in defining a continuum of virtual capabilities, ranging from those at the low end that derive from general technology diffusion and the existence of nuclear energy programs to those at the high end that involve conscious decisions to develop or maintain militarily significant nuclear-weapon capabilities.

Pilat, J.F.

1997-08-01T23:59:59.000Z

434

Energy systems transformation  

Science Journals Connector (OSTI)

...Renewable-energy industries evidently suffer more...conventional-energy industries under recession conditions...generation of energy for industry and consumers has multiple...and water; nuclear waste; geopolitical conflicts...among others, coal gasification, cracking, and refining...

A. T. C. Jérôme Dangerman; Hans Joachim Schellnhuber

2013-01-01T23:59:59.000Z

435

Nuclear choices  

SciTech Connect (OSTI)

This book contains part of the series New Liberal Arts, which is intended to make science and technology more accessible to students of the liberal arts. Volume in hand provides a comprehensive, multifaceted examination of nuclear energy, in nontechnical terms. Wolfson explains the basics of nuclear energy and radiation, nuclear power..., and nuclear weapons..., and he invites readers to make their own judgments on controversial nuclear issues. Illustrated with photos and diagrams. Each chapter contains suggestions for additional reading and a glossary. For policy, science, and general collections in all libraries. (ES) Topics contained include Atoms and nuclei. Effects and uses of radiation. Energy and People. Reactor safety. Nuclear strategy. Defense in the nuclear age. Nuclear power, nuclear weapons, and nuclear futures.

Wolfson, R.

1991-01-01T23:59:59.000Z

436

Fuel Cycle Science & Technology | Nuclear Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Fuel Cycle Systems Radiochemical Separation & Processing Recycle & Waste Management Uranium Enrichment Used Nuclear Fuel Storage, Transportation, and Disposal Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology Reactor Technology Nuclear Science Home | Science & Discovery | Nuclear Science | Research Areas | Fuel Cycle Science & Technology SHARE Fuel Cycle Science and Technology The ORNL expertise and experience across the entire nuclear fuel cycle is underpinned by extensive facilities and a comprehensive modeling and simulation capability ORNL supports the understanding, development, evaluation and deployment of

437

Office of Nuclear Energy Launches New Website | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Office of Nuclear Energy Launches New Website Office of Nuclear Energy Launches New Website Office of Nuclear Energy Launches New Website February 11, 2013 - 4:01pm Addthis The Office of Nuclear Energy's mission is to advance nuclear power as a resource that can meet the United State's energy, environmental and national security needs. The Office of Nuclear Energy's mission is to advance nuclear power as a resource that can meet the United State's energy, environmental and national security needs. Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy What does this mean for me? Visit the new Office of Nuclear Energy website at energy.gov/ne. The Office of Nuclear Energy (NE) is pleased to introduce our new, updated public website: energy.gov/ne. The new site was designed to help facilitate users' access to NE

438

Transformative Battery Technology at the National Labs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs January 17, 2012 - 10:45am Addthis Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's Batteries for Advanced Transportation Technologies Program where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What are the key facts? Berkeley's Batteries for Advanced Transportation Technologies Program is developing lithium-ion technology to power a vehicle for 300 miles. Lithium-sulfur and lithium-air are "unknown known" technologies for the future of electric vehicle batteries.

439

Transformative Battery Technology at the National Labs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs January 17, 2012 - 10:45am Addthis Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's Batteries for Advanced Transportation Technologies Program where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What are the key facts? Berkeley's Batteries for Advanced Transportation Technologies Program is developing lithium-ion technology to power a vehicle for 300 miles. Lithium-sulfur and lithium-air are "unknown known" technologies for the future of electric vehicle batteries.

440

Energy Department Announces $66 Million for Transformational Energy  

Broader source: Energy.gov (indexed) [DOE]

66 Million for Transformational Energy 66 Million for Transformational Energy Technologies Energy Department Announces $66 Million for Transformational Energy Technologies September 19, 2013 - 3:30pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON- Deputy Director Cheryl Martin today announced that 33 breakthrough energy projects will receive approximately $66 million from the Advanced Research Projects Agency-Energy (ARPA-E) under two new programs that provide options for a more sustainable and secure American future. One program, Modern Electro/Thermochemical Advancements for Light-metal Systems (METALS), provides $32 million to find cost-effective and energy-efficient manufacturing techniques to process and recycle metals for lightweight vehicles. The other program, Reducing Emissions using

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sandia National Laboratories: Advanced Simulation and Computing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facebook Facebook Twitter YouTube Flickr RSS Advanced Simulation and Computing Advanced Simulation and Computing Taking on the World's Complex Challenges Advancing Science Frontiers Our research is producing new scientific insights about the world in which we live and assists in certifying the safety and reliability of the nation's nuclear weapons stockpile. Technology Provides the Tools Growth in data and the software and hardware demands needed for physics-based answers and predictive capabilities are driving technology improvements. We could not achieve the breakthroughs we're making without these important tools. Partnerships Accelerate Innovation Partnerships leverage talent and multiply the effectiveness of our research efforts. Impacting Global Issues ASC software and hardware tools solve global issues ranging from nuclear

442

Advanced isotope separation  

SciTech Connect (OSTI)

The Study Group briefly reviewed the technical status of the three Advanced Isotope Separation (AIS) processes. It also reviewed the evaluation work that has been carried out by DOE's Process Evaluation Board (PEB) and the Union Carbide Corporation-Nuclear Division (UCCND). The Study Group briefly reviewed a recent draft assessment made for DOE staff of the nonproliferation implications of the AIS technologies. The staff also very briefly summarized the status of GCEP and Advanced Centrifuge development. The Study Group concluded that: (1) there has not been sufficient progress to provide a firm scientific, technical or economic basis on which to select one of the three competing AIS processes for full-scale engineering development at this time; and (2) however, should budgetary restraints or other factors force such a selection, we believe that the evaluation process that is being carried out by the PEB provides the best basis available for making a decision. The Study Group recommended that: (1) any decisions on AIS processes should include a comparison with gas centrifuge processes, and should not be made independently from the plutonium isotope program; (2) in evaluating the various enrichment processes, all applicable costs (including R and D and sales overhead) and an appropriate discounting approach should be included in order to make comparisons on a private industry basis; (3) if the three AIS programs continue with limited resources, the work should be reoriented to focus only on the most pressing technical problems; and (4) if a decision is made to develop the Atomic Vapor Laser Isotope Separation process, the solid collector option should be pursued in parallel to alleviate the potential program impact of liquid collector thermal control problems.

Not Available

1982-05-04T23:59:59.000Z

443

Science Drivers and Technical Challenges for Advanced Magnetic Resonance  

SciTech Connect (OSTI)

This report recaps the "Science Drivers and Technical Challenges for Advanced Magnetic Resonance" workshop, held in late 2011. This exploratory workshop's goal was to discuss and address challenges for the next generation of magnetic resonance experimentation. During the workshop, participants from throughout the world outlined the science drivers and instrumentation demands for high-field dynamic nuclear polarization (DNP) and associated magnetic resonance techniques, discussed barriers to their advancement, and deliberated the path forward for significant and impactful advances in the field.

Mueller, Karl T.; Pruski, Marek; Washton, Nancy M.; Lipton, Andrew S.

2013-03-07T23:59:59.000Z

444

Research Councils UK Transforming  

E-Print Network [OSTI]

research is helping to accelerate the use of green energy technologies. RCUK has played a key role to help combat climate change, accelerate the deployment of green energy technologies and create newResearch Councils UK Transforming our energy future #12;Research funded by the Research Councils

Berzins, M.

445

TO TRANSFORM BIOMEDICAL ENGINEERING  

E-Print Network [OSTI]

IT'S TIME TO TRANSFORM BIOMEDICAL ENGINEERING EDUCATION #12;Charles H. & Bettye Barclay Professor Head, Department of Biomedical Engineering Texas A&M University We're dedicated to solving the world in biomedical engineering research and education ­ and we're well on our way. Our faculty continues to engineer

446

Functional Materials for Energy | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at Interfaces Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Functional Materials for Energy SHARE Functional Materials for Energy The concept of functional materials for energy occupies a very prominent position in ORNL's research and more broadly the scientific research sponsored by DOE's Basic Energy Sciences. These materials facilitate the capture and transformation of energy, the storage of energy or the efficient release and utilization of stored energy. A different kind of

447

IAEA reorganizes nuclear information services  

SciTech Connect (OSTI)

As part of an overall restructuring of the International Atomic Energy Agency's Department of Nuclear Energy, the agency has established the Nuclear Information Section (NIS). The restructuring, recently announced by IAEA Director General Yukiya Amano, also includes the creation of a separate Nuclear Knowledge Management (NKM) Section, as demand for assistance in this area is growing among member countries. According to the NIS Web site, 'This restructuring and the creation of the NIS provides an opportunity for further enhancing existing information products and services and introducing new ones-all with an eye towards advancing higher organizational efficiency and effectiveness.'

Levine, E.

2012-08-15T23:59:59.000Z

448

The history of nuclear weapon safety devices  

SciTech Connect (OSTI)

The paper presents the history of safety devices used in nuclear weapons from the early days of separables to the latest advancements in MicroElectroMechanical Systems (MEMS). Although the paper focuses on devices, the principles of Enhanced Nuclear Detonation Safety implementation will also be presented.

Plummer, D.W.; Greenwood, W.H.

1998-06-01T23:59:59.000Z

449

US?Ukraine stalemate over nuclear weapons  

Science Journals Connector (OSTI)

... Washington. Ukraine's opposition to the complete relinquishment of strategic nuclear weapons located on its soil is ... for the Advancement of Science (AAAS), focused on the disposal of nuclear weapons in Ukraine itself, while a United Nations symposium addressed the wider question of disarmament across the ...

Colin Macilwain

1993-10-14T23:59:59.000Z

450

defense nuclear security | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

nuclear security | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

451

Chernobyl Nuclear Accident | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Chernobyl Nuclear Accident | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

452

Countering Nuclear Terrorism and Trafficking | National Nuclear...  

National Nuclear Security Administration (NNSA)

Countering Nuclear Terrorism and Trafficking | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

453

Institutional Research & Development | National Nuclear Security  

National Nuclear Security Administration (NNSA)

| National Nuclear Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Institutional Research & Development Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

454

Collaboration Topics - System Software | National Nuclear Security  

National Nuclear Security Administration (NNSA)

System Software | National Nuclear Security System Software | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Collaboration Topics - System Software Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

455

Working with Interpreters | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Working with Interpreters | National Nuclear Security Administration Working with Interpreters | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Working with Interpreters Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

456

Final Complex Transformation Supplemental Programmatic Environmental Impact Statement October 2008  

Broader source: Energy.gov (indexed) [DOE]

Volume II Volume II Volume II Chapters 5 - 15 and Chapters 5 - 15 and Appendices A - G Appendices A - G DOE/EIS-0236-S4 National Nuclear Security Administration U.S. Department of Energy October 2008 C C CO O OM MP PL LE EXtransfo o or r rm m mat on COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy, National Nuclear Security Administration TITLE: Final Complex Transformation Supplemental Programmatic Environmental Impact Statement (Complex Transformation SPEIS, DOE/EIS-0236-S4) CONTACTS: For further information on this SPEIS, For general information on the DOE write or call: National Environmental Policy Act (NEPA) process, write or call: Theodore A. Wyka Carol Borgstrom, Director Complex Transformation Office of NEPA Policy and Compliance, GC-20 SPEIS Document Manager U.S. Department of Energy

457

ENTERPRISE SRS: LEVERAGING ONGOING OPERATIONS TO ADVANCE RADIOACTIVE WASTE MANAGEMENT TECHNOLOGIES  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for “all things nuclear” as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by using SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the R&D team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform R&D demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE’s critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). These demonstrations can be accomplished in a more cost-effective manner through the use of existing facilities in conjunction with ongoing missions. Essentially, the R&D program would not need to pay the full operational cost of a facility, just the incremental cost of performing the demonstration. Current Center activities have been focused on integrating advanced safeguards monitoring technology demonstrations into the SRS H-Canyon and advanced location technology demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and program owners. In addition these demonstrations are providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (and to offsite venues) to ensure that future demonstrations are done efficiently and provide an opportunity to use these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future use of SRS assets is the demonstration of new radioactive waste management technologies critical for advancing the mission needs of the DOE-EM program offices in their efforts to cleanup 107 sites across the United States. Of particular interest is the demonstration of separations technologies in H-Canyon. Given the modular design of H-Canyon, those demonstrations would be accomplished using a process frame. The demonstration equipment would be installed on the process frame and that frame would then be positioned into an H-Canyon cell so that the demonstration is performed in a radiological environment involving prototypic nuclear materials.

Murray, A.; Wilmarth, B.; Marra, J.; Mcguire, P.; Wheeler, V.

2013-05-16T23:59:59.000Z

458

Chapter 14 Treatise on Geochemistry Raman and Nuclear Resonant Spectroscopy in Geosciences  

E-Print Network [OSTI]

Chapter 14 Treatise on Geochemistry 1 Raman and Nuclear Resonant Spectroscopy in Geosciences Jung Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA Alexander F. Goncharov Geophysical technical advances in Raman and nuclear resonance spectroscopy (both Mössbauer spectroscopy and nuclear

Lin, Jung-Fu "Afu"

459

Linear Transformations, Canonoid Transformations and BiHamiltonian Structures  

E-Print Network [OSTI]

We give a characterization of linear canonoid transformations on symplectic manifolds and we use it to generate biHamiltonian structures for some mechanical systems. Utilizing this characterization we also study the behavior of quadratic superintegrable systems under canonoid transformations. We present a description of canonoid transformations due to E.T. Whittaker, and we show that it leads, in a natural way, to the modern, coordinate-independent definition of canonoid transformations. We also generalize canonoid transformations to Poisson manifolds by introducing Poissonoid transformations. We give examples of such transformations for Euler's equations of the rigid body (on $ \\mathfrak{ so}^\\ast (3) $ and $ \\mathfrak{ so}^\\ast (4)$) and for an integrable case of Kirchhoff's equations for the motion of a rigid body immersed in an ideal fluid. We study the relationship between biHamiltonian structures and Poissonoid transformations for these examples.

Giovanni Rastelli; Manuele Santoprete

2014-07-19T23:59:59.000Z

460

Conference on Advances in Materials Science - Presentations | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Materials Science - Presentations | National in Materials Science - Presentations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Feature Bottom Conference on Advances in Materials Science - Presentations Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Conference on Advances in Materials Science - Presentations | National  

National Nuclear Security Administration (NNSA)

in Materials Science - Presentations | National in Materials Science - Presentations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Feature Bottom Conference on Advances in Materials Science - Presentations Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

462

EIS-0236-S4: Final Complex Transformation Supplemental Programmatic Environmental Impact Statement  

Broader source: Energy.gov [DOE]

This Complex Transformation Supplemental Programmatic Environmental Impact Statement (SPEIS) analyzes the potential environmental impacts of reasonable alternatives to continue transformation of the nuclear weapons complex to be smaller, and more responsive, efficient, and secure in order to meet national security requirements.

463

ARPA-E Issues Open Call for Transformational Energy Technologies |  

Broader source: Energy.gov (indexed) [DOE]

ARPA-E Issues Open Call for Transformational Energy Technologies ARPA-E Issues Open Call for Transformational Energy Technologies ARPA-E Issues Open Call for Transformational Energy Technologies March 2, 2012 - 2:31pm Addthis Washington, D.C. - Today, the Advanced Research Projects Agency - Energy (ARPA-E) issued a $150 million funding opportunity open to all transformational energy technologies to support the Obama Administration's all-of-the-above approach to solving our nation's most pressing energy challenges. This Open Funding Opportunity Announcement is a call to our country's brightest scientists, engineers and entrepreneurs to propose early-stage research projects that would not otherwise be able to attract private investment, but could lead to breakthrough energy technologies. This is the second open funding opportunity released under

464

ARPA-E Issues Open Call for Transformational Energy Technologies |  

Broader source: Energy.gov (indexed) [DOE]

Issues Open Call for Transformational Energy Technologies Issues Open Call for Transformational Energy Technologies ARPA-E Issues Open Call for Transformational Energy Technologies March 2, 2012 - 2:31pm Addthis Washington, D.C. - Today, the Advanced Research Projects Agency - Energy (ARPA-E) issued a $150 million funding opportunity open to all transformational energy technologies to support the Obama Administration's all-of-the-above approach to solving our nation's most pressing energy challenges. This Open Funding Opportunity Announcement is a call to our country's brightest scientists, engineers and entrepreneurs to propose early-stage research projects that would not otherwise be able to attract private investment, but could lead to breakthrough energy technologies. This is the second open funding opportunity released under

465

Nuclear Science  

Broader source: Energy.gov (indexed) [DOE]

Science Science and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE) Sourcebook. We have evolved and improved! The core mission of the Sourcebook has not changed, however. Our purpose is to facilitate interaction among faculty, students, industry, and government agencies to accomplish nuclear research, teaching and service activities. Since 1986 we have compiled critical information on nuclear

466

Nuclear reactions  

Science Journals Connector (OSTI)

Much reference has been made in the last chapter to nuclear energy levels and their various properties (e.g ... ways of doing this — the use of nuclear reactions, and studies of how excited nuclei...

R. J. Blin-Stoyle FRS

1991-01-01T23:59:59.000Z

467

nuclear security  

National Nuclear Security Administration (NNSA)

3%2A en Shaping the future of nuclear detection http:nnsa.energy.govblogshaping-future-nuclear-detection

468

Transformations of polynomial ensembles  

E-Print Network [OSTI]

A polynomial ensemble is a probability density function for the position of $n$ real particles of the form $\\frac{1}{Z_n} \\, \\prod_{jtransformations that preserve the structure of a polynomial ensemble. These transformations include the restriction of a Hermitian matrix by removing one row and one column, a rank-one modification of a Hermitian matrix, and the extension of a Hermitian matrix by adding an extra row and column with complex Gaussians.

Arno B. J. Kuijlaars

2015-01-30T23:59:59.000Z

469

Argonne's pyroprocessing and advanced reactor research featured on WGN  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne's pyroprocessing and advanced reactor research featured on WGN Argonne's pyroprocessing and advanced reactor research featured on WGN radio Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Argonne's pyroprocessing and advanced reactor research featured on WGN radio Uranium dendrites These tiny branches, or "dendrites," of pure uranium form when engineers

470

Systems/Process Monitoring, Diagnostics and Control - Nuclear Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capabilities > Nuclear Systems Capabilities > Nuclear Systems Technologies > Systems/Process Monitoring, Diagnostics and Control Capabilities Nuclear Systems Technologies Nuclear Criticality Safety Research Reactor Analysis Decontamination and Decommissioning Systems/Process Monitoring, Diagnostics and Control Overview Process Monitoring & Signal Validation Diagnostic & Advisory Systems Advanced (AI-based) Nonlinear Controllers for Industrial Processes Artificial intelligence Other Capabilities Work with Argonne Contact us For Employees Site Map Help Systems/Process Monitoring, Diagnostics and Control Bookmark and Share Systems/Process Monitoring, Diagnostics and Control Systems/Process Monitoring, Diagnostics and Control. Click on image to view larger image. The goal of the Nuclear Engineering Division's research on advanced

471

Energy Department Invests $60 Million to Train Next Generation Nuclear  

Broader source: Energy.gov (indexed) [DOE]

60 Million to Train Next Generation 60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology September 20, 2013 - 1:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan to continue America's leadership in clean energy innovation, the Energy Department announced today more than $60 million in nuclear energy research awards and improvements to university research reactors and infrastructure. The 91 awards announced today will help train and educate the next generation of leaders in America's nuclear industry as well as support new and advanced nuclear technologies from reactor materials to innovative

472

Energy Department Invests $60 Million to Train Next Generation Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Invests $60 Million to Train Next Generation Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology September 20, 2013 - 1:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan to continue America's leadership in clean energy innovation, the Energy Department announced today more than $60 million in nuclear energy research awards and improvements to university research reactors and infrastructure. The 91 awards announced today will help train and educate the next generation of leaders in America's nuclear industry as well as support new and advanced nuclear technologies from reactor materials to innovative

473

Transformative Wave Technologies Kent, Washington  

E-Print Network [OSTI]

Transformative Wave Technologies Kent, Washington www.transformativewave.com #12;#12;North America are shifted to off peak times #12;#12;Transformative Wave Technologies www.transformativewave.com #12

California at Davis, University of

474

Transforming Parks and Protected Areas  

E-Print Network [OSTI]

Transforming Parks and Protected Areas Policy and governance in a changing world Edited by Kevin S from the British Library Library of Congress Cataloging In Publication Data Transforming parks

Bolch, Tobias

475

Nuclear Ukraine  

Science Journals Connector (OSTI)

... SIR - Your article (Nature 365, 599; 1993) on the US-Ukraine stalemate over nuclear weapons prompts the following remarks. The United States made a mistake ... nuclear weapons prompts the following remarks. The United States made a mistake in not recognizing Ukraine as a legitimate successor state to the Soviet nuclear arsenal and is still insisting that ...

Arno Arrak

1994-01-13T23:59:59.000Z

476

Master's programme in Nuclear Energy Engineering Programme outline  

E-Print Network [OSTI]

Master's programme in Nuclear Energy Engineering Programme outline The two-year Master's programme to work abroad. career ProsPects Nuclear power is a significant part of the current energy balance.With advances in science and technology, nuclear energy is increasingly re- garded as an eminent part

Haviland, David

477

Getting to Know Nuclear Energy: The Past, Present & Future  

E-Print Network [OSTI]

Getting to Know Nuclear Energy: The Past, Present & Future Argonne National Laboratory was founded on the peaceful uses of nuclear energy and has pioneered many of the technologies in use today. Argonne's Roger Blomquist will discuss the history of nuclear energy, advanced reactor designs and future technologies, all

Kemner, Ken

478

Nuclear magnetic resonance analysis of protein–DNA interactions  

Science Journals Connector (OSTI)

...review-article Review articles 1004 30 15 Nuclear magnetic resonance analysis of protein-DNA...instrumental advances in solution-state nuclear magnetic resonance have opened up the...structural biology|protein-DNA complex|nuclear magnetic resonance| 1. Introduction...

2011-01-01T23:59:59.000Z

479

Nuclear models relevant to evaluation  

SciTech Connect (OSTI)

The widespread use of nuclear models continues in the creation of data evaluations. The reasons include extension of data evaluations to higher energies, creation of data libraries for isotopic components of natural materials, and production of evaluations for radiative target species. In these cases, experimental data are often sparse or nonexistent. As this trend continues, the nuclear models employed in evaluation work move towards more microscopically-based theoretical methods, prompted in part by the availability of increasingly powerful computational resources. Advances in nuclear models applicable to evaluation will be reviewed. These include advances in optical model theory, microscopic and phenomenological state and level density theory, unified models that consistently describe both equilibrium and nonequilibrium reaction mechanism, and improved methodologies for calculation of prompt radiation from fission. 84 refs., 8 figs.

Arthur, E.D.; Chadwick, M.B.; Hale, G.M.; Young, P.G.

1991-01-01T23:59:59.000Z

480

FY 2012 Budget Request Advanced Research Projects Agency - Energy  

Broader source: Energy.gov (indexed) [DOE]

Office of Nuclear Energy FY 2014 Budget Request April 10, 2013 Peter Lyons Assistant Secretary for Nuclear Energy U.S. Department of Energy Nuclear Energy President Obama's Commitment to Clean Energy 2 "With rising oil prices and a warming climate, nuclear energy will only become more important. That's why, in the United States, we've restarted our nuclear industry as part of a comprehensive strategy to develop every energy source." President Barack Obama Seoul, Republic of Korea March 2012 Nuclear Energy Department of Energy Mission and Goals DOE Mission The mission of the Department of Energy is to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology

Note: This page contains sample records for the topic "advanced nuclear transformation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Nonlocal conservation laws and related Bäcklund transformations via reciprocal transformations  

E-Print Network [OSTI]

A set of infinitely many nonlocal conservation laws are revealed for (1+1)-dimensional evolution equations. For some special known integrable systems, say, the KdV and Dym equations, it is found that different nonlocal conservation laws can lead to same new integrable systems via reciprocal transformation. On the other hand, it can be considered as one solution of the new model obtained via reciprocal transformation(s) can be changed to different solutions of the original model. The fact indicates also that two or more different (local and nonlocal) conservation laws can be used to find implicit auto-B\\"acklund transformations via reciprocal transformation to other systems.

Sen-Yue Lou

2014-06-08T23:59:59.000Z

482

Generalized Transforms and Special Functions  

E-Print Network [OSTI]

We study the properties of different type of transforms by means of operational methods and discuss the relevant interplay with many families of special functions. We consider in particular the binomial transform and its generalizations. A general method, based on the use of the Fourier transform technique, is proposed for the study of the properties of functions of operators.

G. Dattoli; E. Sabia

2010-10-08T23:59:59.000Z

483

VLA Antenna Pad Transformer Breaker  

E-Print Network [OSTI]

NRAO VLA Antenna Pad Transformer Breaker Survey B-Array, November 22nd , 2013 Summary: None connections in the cabinet and may be indicating a problem inside the transformer. If the heating on these bushings continues the transformer may need service. NOTE: The low ambient temperature and good conductance

Groppi, Christopher

484

VLA Antenna Pad Transformer Breaker  

E-Print Network [OSTI]

NRAO VLA Antenna Pad Transformer Breaker Survey D-Array, April 5th 2013 #12;VLA Antenna Pad Transformer Breaker Survey D-Array, April 2013, Bob Broilo 2 Summary: No action needed. Inspected by: Bob2 Visible Light Image Notes: #12;VLA Antenna Pad Transformer Breaker Survey D-Array, April 2013, Bob

Groppi, Christopher

485

VLA Antenna Pad Transformer Breaker  

E-Print Network [OSTI]

NRAO VLA Antenna Pad Transformer Breaker Survey A-Array, July 2011, Bob Broilo #12;A-Array Antenna Pad Transformer Survey July 2011, Bob Broilo 2 Inspected by: Bob Broilo Inspection Date: 6/16/2011 2 Transformer Survey July 2011, Bob Broilo 3 Inspected by: Bob Broilo Inspection Date: 6/16/2011 1:58:06 PM

Groppi, Christopher

486

VLA Antenna Pad Transformer Breaker  

E-Print Network [OSTI]

NRAO VLA Antenna Pad Transformer Breaker Survey C-Array, August 20th 2013 #12;VLA Antenna Pad Transformer Breaker Survey C-Array, August 2013, Bob Broilo 2 Summary: Breaker at CE7 needs to be replaced transformer can be shut down with the switch at DE9. Inspected by: Bob Broilo Inspection Date: 8/16/2013 2

Groppi, Christopher

487

VLA Antenna Pad Transformer Breaker  

E-Print Network [OSTI]

NRAO VLA Antenna Pad Transformer Breaker Survey D-Array, October 2011, Bob Broilo #12;D-Array Antenna Pad Transformer Survey October 2011, Bob Broilo 2 Inspected by: Bob Broilo Inspection Date: 10-hand) feeds DE2. #12;D-Array Antenna Pad Transformer Survey October 2011, Bob Broilo 3 Inspected by: Bob

Groppi, Christopher

488

The Transformer By Aaron Lo  

E-Print Network [OSTI]

(3) Transforming lambda-expressions with several patterns n pat 1 : : : pat n -> exp n pat 1 -> (n pat 2 -> : : : (n pat n -> exp) : : :) where n #21; 2 (4) Transforming lambda-patterns into case n pat -> exp n var -> case var of pat -> exp where pat is no variable, var is new (5) Transforming case

Treuille, Adrien

489

VLA Antenna Pad Transformer Breaker  

E-Print Network [OSTI]

NRAO VLA Antenna Pad Transformer Breaker Survey C-Array, April 2012, Bob Broilo #12;C-Array Antenna Pad Transformer Survey April 2012, Bob Broilo 2 Inspected by: Bob Broilo Inspection Date: 4/4/2012 2 Pad Transformer Survey April 2012, Bob Broilo 3 Inspected by: Bob Broilo Inspection Date: 4/4/2012 2

Groppi, Christopher

490

VLA Antenna Pad Transformer Breaker  

E-Print Network [OSTI]

NRAO VLA Antenna Pad Transformer Breaker Survey A-Array, May 20, 2014 Summary: The breakers at AN5 Transformer Breaker Survey A-Array, May 2014, Bob Broilo 2 Inspected by: Bob Broilo Inspection Date: 5 Notes: #12;VLA Antenna Pad Transformer Breaker Survey A-Array, May 2014, Bob Broilo 3 Inspected by: Bob

Groppi, Christopher

491

TRANSFORMING MEDICINE October 1, 2009  

E-Print Network [OSTI]

TRANSFORMING MEDICINE October 1, 2009 Strategic Plan #12;ABOUT THE KECK SCHOOL OF MEDICINE OF USC Century for the benefit of humankind. This is an exciting time of great transformation as we endeavor of Medicine is undergoing a major transformation. It was sparked by the expansion of biomedical research

Valero-Cuevas, Francisco

492

VLA Antenna Pad Transformer Breaker  

E-Print Network [OSTI]

NRAO VLA Antenna Pad Transformer Breaker Survey B-Array, May 2011, Bob Broilo #12;B-array Antenna Pad Transformer Breaker Survey May 2011, Bob Broilo 2 Inspected by: Bob Broilo Inspection Date: 5 Transformer Breaker Survey May 2011, Bob Broilo 3 Inspected by: Bob Broilo Inspection Date: 5/5/2011 3

Groppi, Christopher

493

Nuclear Engineer (Nuclear Safety Specialist)  

Broader source: Energy.gov [DOE]

A successful candidate of this position will serve as a Nuclear Engineer (Nuclear Safety Specialist) responsible for day-to-day technical monitoring, and evaluation of aspects of authorization...

494

Nuclear Deterrence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Deterrence Nuclear Deterrence Nuclear Deterrence LANL's mission is to develop and apply science and technology to ensure the safety, security, and effectiveness of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. April 12, 2012 A B-2 Spirit bomber refuels from a KC-135 Stratotanker A B-2 Spirit bomber refuels from a KC-135 Stratotanker. Contact Operator Los Alamos National Laboratory (505) 667-5061 Charlie McMillan, Director: "For the last 70 years there has not been a world war, and I have to think that our strong deterrent has something to do with that fact." Mission nuclear weapons Charlie McMillan, Director of Los Alamos National Laboratory 1:06 Director McMillan on nuclear deterrence While the role and prominence of nuclear weapons in U.S. security policy

495

Advanced Critical Advanced Energy Retrofit Education and Training...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Critical Advanced Energy Retrofit Education and Training and Credentialing - 2014 BTO Peer Review Advanced Critical Advanced Energy Retrofit Education and Training and...

496

Nuclear power economics and prospects in the USA  

Science Journals Connector (OSTI)

This paper addresses three questions concerning the economics of and prospects for nuclear power in the USA: (1) What is the long-term economic future of nuclear energy? (2) Is the inability to resolve the nuclear waste issue a factor that will limit new nuclear plant development? (3) Are the new designs for nuclear plants an advance over current designs? With respect to the first question, we find that the long-term economic future of nuclear energy is uncertain, at best. Despite recent interest in a 'nuclear renaissance', objective, rigorous studies have concluded that at present, new nuclear power plants are not economically competitive with coal or natural gas for electricity generation and will not be for the foreseeable future. With respect to the second question, we find that the inability to resolve the nuclear waste issue will likely limit new nuclear plant development. Nuclear waste disposal poses a serious, seemingly intractable problem for the future of nuclear power and the waste issue could be a showstopper for new nuclear plants. With respect to the third question, the new designs for nuclear plants are an advance over current designs, but only marginally. Thus, while some new nuclear power plants will likely be built in the USA over the next two decades, a major 'nuclear renaissance' is unlikely.

Roger H. Bezdek

2009-01-01T23:59:59.000Z

497

Advanced Search Search Tips  

E-Print Network [OSTI]

Advanced Search Search Tips Advanced Search Search Tips springerlink.com SpringerLink 2,000 40,000 20,000 2010 11 Please visit 7 http://www.springerlink.com GO 1997 1997 SpringerLink Advanced Search Search Tips CONTENT DOI CITATION DOI ISSN ISBN CATEGORY AND DATE LIMITERS Journals Books Protocols

Kinosita Jr., Kazuhiko

498

Thirty states sign ITER nuclear fusion plant deal 1 hour, 28 minutes ago  

E-Print Network [OSTI]

Thirty states sign ITER nuclear fusion plant deal 1 hour, 28 minutes ago Representatives of more than 30 countries signed a deal on Tuesday to build the world's most advanced nuclear fusion reactor

499

E-Print Network 3.0 - acordo nuclear brasil-alemanha Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

acordo nuclear brasil-alemanha Search Powered by Explorit Topic List Advanced Search Sample search results for: acordo nuclear brasil-alemanha Page: << < 1 2 3 4 5 > >> 1 Portugal...

500

E-Print Network 3.0 - angle spinning nuclear Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear Search Powered by Explorit Topic List Advanced Search Sample search results for: angle spinning nuclear Page: << < 1 2 3 4 5 > >> 1 PUBLISHED ONLINE: 10 MAY 2009 | DOI:...