National Library of Energy BETA

Sample records for advanced nuclear transformation

  1. Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY...

  2. March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

    Broader source: Energy.gov [DOE]

    The Global Nuclear Energy Partnership (GNEP) marks a major change in the direction of the DOE’s nuclear energy R&D program. It is a coherent plan to test technologies that promise to markedly...

  3. October 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Global Nuclear Energy Partnership (GNEP) program is still evolving. Since our report of March 22, 2006 the DOE has sought to gauge industry interest in participation in the program from its...

  4. Ecology Action: Small Market Advanced Retrofit Transformation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ecology Action: Small Market Advanced Retrofit Transformation Program (SMART) Ecology Action: Small Market Advanced Retrofit Transformation Program (SMART) Ecology Action: Small ...

  5. Transformer Resilience and Advanced Components (TRAC) Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OE's Transformer Resilience and Advanced Components (TRAC) program supports modernization ... which are a critical component of the electricity delivery system, are a concern because ...

  6. Advanced Nuclear Technology: Advanced Light Water Reactors Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary Advanced Nuclear Technology: Advanced Light Water Reactors ...

  7. Transformer Resilience and Advanced Components (TRAC) Program

    Broader source: Energy.gov [DOE]

    To date, much of the “smart grid” transformation has focused on applying advanced digital information and communication technologies to the power grid to improve the system’s reliability,...

  8. Advancing Global Nuclear Security

    Broader source: Energy.gov [DOE]

    Today world leaders gathered at The Hague for the Nuclear Security Summit, a meeting to measure progress and take action to secure sensitive nuclear materials.

  9. Advanced Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ...

  10. Advanced Nuclear Fuel Cycle Options

    SciTech Connect (OSTI)

    Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

    2010-06-01

    A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

  11. Advanced nuclear fuel

    SciTech Connect (OSTI)

    Terrani, Kurt

    2014-07-14

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  12. Advanced nuclear fuel

    ScienceCinema (OSTI)

    Terrani, Kurt

    2014-07-15

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  13. Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Solicitation ...

  14. Advanced Nuclear Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects ADVANCED NUCLEAR ENERGY 1 PROJECT in 1 LOCATION 2,200 MW GENERATION CAPACITY 17,200,000 MWh PROJECTED ANNUAL GENERATION * 10,000,000 METRIC TONS OF CO2 EMISSIONS PREVENTED ANNUALLY ALL FIGURES AS OF MARCH 2015 * Calculated using the project's and NREL Technology specific capacity factors. For cases in which NREL's capacity

  15. Advanced Nuclear Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WHEN: Apr 29, 2016 6:00 PM - 8:00 PM WHERE: National Museum of Nuclear Science & History, ... enabled the rapid expansion and testing of capabilities, while others have ...

  16. Advanced Nuclear Supplement_November 2015

    Broader source: Energy.gov [DOE]

    Advanced Nuclear Supplement_November 2015 SECOND SUPPLEMENT TO LOAN GUARANTEE SOLICITATION ANNOUNCEMENT FEDERAL LOAN GUARANTEES FOR ADVANCED NUCLEAR ENERGY PROJECTS Solicitation Number: DE-SOL- DE-SOL-0007791

  17. Advanced Nuclear Reactors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Nuclear Reactors Advanced Nuclear Reactors Turbulent Flow of Coolant in an Advanced Nuclear Reactor Visualizing Coolant Flow in Sodium Reactor Subassemblies Sodium-cooled Fast Reactor (SFR) Coolant Flow At the heart of a nuclear power plant is the reactor. The fuel assembly is placed inside a reactor vessel where all the nuclear reactions occur to produce the heat and steam used for power generation. Nonetheless, an entire power plant consists of many other support components and key

  18. MIT - Center for Advanced Nuclear Energy Systems | Open Energy...

    Open Energy Info (EERE)

    - Center for Advanced Nuclear Energy Systems Jump to: navigation, search Logo: MIT - Center for Advanced Nuclear Energy Systems Name: MIT - Center for Advanced Nuclear Energy...

  19. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software ... Breakout Session Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program Plan

  20. Transformer Resilience and Advanced Components (TRAC) Program Materials

    Broader source: Energy.gov [DOE]

    OE’s Transformer Resilience and Advanced Components (TRAC) program supports modernization and resiliency of the grid by addressing the challenges facing large power transformers (LPTs) and other...

  1. Advanced nuclear plant control complex

    DOE Patents [OSTI]

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  2. Higher energy fast range nuclear data evaluation advances (u...

    Office of Scientific and Technical Information (OSTI)

    Higher energy fast range nuclear data evaluation advances (u) Citation Details In-Document Search Title: Higher energy fast range nuclear data evaluation advances (u) You are ...

  3. Higher energy fast range nuclear data evaluation advances (u...

    Office of Scientific and Technical Information (OSTI)

    Conference: Higher energy fast range nuclear data evaluation advances (u) Citation Details In-Document Search Title: Higher energy fast range nuclear data evaluation advances (u) ...

  4. Energy Department Announces New Awards for Advanced Nuclear Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Awards for Advanced Nuclear Energy Development Energy Department Announces New Awards for Advanced Nuclear Energy Development April 16, 2015 - 12:46pm Addthis NEWS MEDIA CONTACT ...

  5. Department of Energy Announces New Awards for Advanced Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Awards for Advanced Nuclear Energy Development Department of Energy Announces New Awards for Advanced Nuclear Energy Development April 26, 2016 - 1:24pm Addthis News Media ...

  6. Energy Department Invests $82 Million to Advanced Nuclear Technology...

    Energy Savers [EERE]

    Energy Department Invests 82 Million to Advanced Nuclear Technology Energy Department Invests 82 Million to Advanced Nuclear Technology June 14, 2016 - 1:41pm Addthis News ...

  7. Advanced Elastic/Inelastic Nuclear Data Development Project ...

    Office of Scientific and Technical Information (OSTI)

    Advanced ElasticInelastic Nuclear Data Development Project Citation Details In-Document Search Title: Advanced ElasticInelastic Nuclear Data Development Project The optical model ...

  8. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced...

    Office of Environmental Management (EM)

    Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop ...

  9. Advanced LWR Nuclear Fuel Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... through LWRS program funding and industry cost-sharing. * Coordinate project development among research organizations associated with the U.S commercial nuclear industry, to the ...

  10. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    Office of Energy Efficiency and Renewable Energy (EERE)

    Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary November 2014

  11. Advanced LWR Nuclear Fuel Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Reactor Sustainability R&D Program Advanced Instrumentation, Information, and Control Systems Technologies Overview Bruce P. Hallbert DOE-NE Webinar September 16, 2014 Light Water Sustainability Program Goals and Scope * Develop the fundamental scientific basis to understand, predict, and measure changes in materials and structures, systems, and components (SSCs) as they age in environments * Apply this knowledge to develop and demonstrate methods and technologies that support safe and

  12. Advanced research workshop: nuclear materials safety

    SciTech Connect (OSTI)

    Jardine, L J; Moshkov, M M

    1999-01-28

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  13. The Advanced BWR Nuclear Plant: Safe, economic nuclear energy

    SciTech Connect (OSTI)

    Redding, J.R.

    1994-12-31

    The safety and economics of Advanced BWR Nuclear Power Plants are outlined. The topics discussed include: ABWR Programs: status in US and Japan; ABWR competitiveness: safety and economics; SBWR status; combining ABWR and SBWR: the passive ABWR; and Korean/GE partnership.

  14. Energy Department Announces New Investments in Advanced Nuclear...

    Energy Savers [EERE]

    X-energy and Southern Company, to further develop advanced nuclear reactor designs. ... with performance-based advanced reactor concepts for further development in the ...

  15. Computational Design of Advanced Nuclear Fuels

    SciTech Connect (OSTI)

    Savrasov, Sergey; Kotliar, Gabriel; Haule, Kristjan

    2014-06-03

    The objective of the project was to develop a method for theoretical understanding of nuclear fuel materials whose physical and thermophysical properties can be predicted from first principles using a novel dynamical mean field method for electronic structure calculations. We concentrated our study on uranium, plutonium, their oxides, nitrides, carbides, as well as some rare earth materials whose 4f eletrons provide a simplified framework for understanding complex behavior of the f electrons. We addressed the issues connected to the electronic structure, lattice instabilities, phonon and magnon dynamics as well as thermal conductivity. This allowed us to evaluate characteristics of advanced nuclear fuel systems using computer based simulations and avoid costly experiments.

  16. Energy Department Invests $67 Million to Advanced Nuclear Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    67 Million to Advanced Nuclear Technology Energy Department Invests 67 Million to Advanced Nuclear Technology August 20, 2014 - 12:00pm Addthis News Media Contact 202-586-4940 ...

  17. SMART Scale: Small Market Advanced Retrofit Transformation Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SMART Scale Small Market Advanced Retrofit Transformation Program 2015 Building Technologies Office Peer Review Colin Clark, CClark@ecoact.org ECOLOGY ACTION Project Summary Timeline:  Start date: October 1, 2013  Planned end date: September 30, 2016 Key Milestones :  June 2014: Research and develop list of measures needed to enhance Ecology !ction's DI 2.0 model to achieve an average of at least 20% energy savings  June 2015: Review of EM&V on completed projects showing an

  18. Advanced nuclear reactor public opinion project

    SciTech Connect (OSTI)

    Benson, B.

    1991-07-25

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

  19. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. ...

  20. Proliferation resistance of advanced nuclear energy systems

    SciTech Connect (OSTI)

    Pierpoint, Lara; Kazimi, Mujid; Hejzlar, Pavel

    2007-07-01

    A methodology for evaluating the proliferation resistance of advanced nuclear fuel cycles is presented. The methodology, based on multi-attribute utility theory (MAUT) is intended as a computerized assessment for fuel cycles at their earliest stages of development (i.e. when detailed facility design information is not available). Preliminary results suggest that the methodology may be useful in identifying sources of proliferation vulnerability within different fuel cycles. Of the fuel cycles and segments studied, the fabrication step of the Once- Through fuel cycle and the reprocessing step of the MOX fuel cycle present the greatest vulnerability. The Advanced Burner Reactor (ABR) fuel cycle with conversion ratio 0.0 appears to be the overall safest fuel cycle from a proliferation protection standpoint. (authors)

  1. Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Solicitation presentation.pdf (892.68 KB) More Documents & Publications REEE Solicitation Public Meeting Presentation Renewable Energy & Energy Efficiency Projects: Loan Guarantee Solicitation

  2. Advanced nuclear plant control room complex

    DOE Patents [OSTI]

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  3. Advances in Nuclear Nonproliferation Technology & Policy Conference:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bridging the Gaps in Nuclear Nonproliferation Advances in Nuclear Nonproliferation Technology & Policy Conference Advances in Nuclear Nonproliferation Technology & Policy Conference: Bridging the Gaps in Nuclear Nonproliferation WHEN: Sep 25, 2016 8:00 AM - Sep 30, 2016 5:00 PM WHERE: La Fonda Hotel, Santa Fe, NM CONTACT: Bill Flor (505) 665-8768 CATEGORY: Community Science INTERNAL: Calendar Login Event Description This conference seeks to build upon previous ANS topical conferences

  4. Department of Energy Announces New Awards for Advanced Nuclear Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Awards for Advanced Nuclear Energy Development Department of Energy Announces New Awards for Advanced Nuclear Energy Development April 26, 2016 - 1:24pm Addthis News Media Contact 202-586-4940 DOENews@hq.doe.gov WASHINGTON, D.C. - Building on the President's all-of-the-above energy strategy, the Department of Energy today awarded more than $5 million to undergraduate and graduate students in pursuit of nuclear engineering degrees and other nuclear science

  5. Advanced Nuclear Energy Projects Solicitation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Solicitation Advanced Nuclear Energy Projects Solicitation INFORMATIONAL MATERIALS ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION Solicitation and Supplements I, II, and III (January 19, 2016). Applicants should review the final solicitation and all supplements before submitting an application. The full download above contains the following documents listed below: Solicitation (December 10, 2014) Supplement I regarding Scope of Projects Eligible for the Solicitation (June 23, 2015)

  6. Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transformation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  7. Energy Department Announces New Awards for Advanced Nuclear Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Awards for Advanced Nuclear Energy Development Energy Department Announces New Awards for Advanced Nuclear Energy Development April 16, 2015 - 12:46pm Addthis NEWS MEDIA CONTACT (202) 586-4940 DOENews@hq.doe.gov WASHINGTON-Building on the President's all-of-the-above energy strategy and efforts to expand clean energy innovation, the Department of Energy today awarded more than $5 million to undergraduate and graduate students pursuing nuclear engineering

  8. Energy Department Invests $82 Million to Advanced Nuclear Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Invests $82 Million to Advanced Nuclear Technology Energy Department Invests $82 Million to Advanced Nuclear Technology June 14, 2016 - 1:41pm Addthis News release from the Department of Energy, June 14, 2016. WASHINGTON -Today, the U.S. Department of Energy (DOE) announced over $82 million in nuclear energy research, facility access, crosscutting technology development, and infrastructure awards in 28 states. In total, 93 projects were selected to receive funding that

  9. Energy Department Invests $82 Million to Advanced Nuclear Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 82 Million to Advanced Nuclear Technology Energy Department Invests $82 Million to Advanced Nuclear Technology June 14, 2016 - 1:49pm Addthis NEWS MEDIA CONTACT (202) 586-4940 DOENews@hq.doe.gov WASHINGTON -Today, the U.S. Department of Energy (DOE) announced over $82 million in nuclear energy research, facility access, crosscutting technology development, and infrastructure awards in 28 states. In total, 93 projects were selected to receive funding that will help push

  10. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactors | Department of Energy Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop and demonstrate Advanced Burner Reactors (ABRs) that consume transuranic elements (plutonium and other long-lived radioactive material) while extracting their energy. The development of ABRs will allow us to build an improved nuclear fuel cycle that recycles used fuel. Accordingly, the U.S. will work with participating

  11. Advanced safeguards for the nuclear renaissance

    SciTech Connect (OSTI)

    Miller, Michael C; Menlove, Howard O

    2008-01-01

    The global expansion of nuclear energy provides not only the benefit of carbon-neutral electricity, but also the potential for proliferation concern as well. Nuclear safeguards implemented at the state level (domestic) and at the international level by the International Atomic Energy Agency (IAEA) are essential for ensuring that nuclear materials are not misused and are thereby a critical component of the increased usage of nuclear energy. In the same way that the 1950's Atoms for Peace initiative provided the foundation for a robust research and development program in nuclear safeguards, the expansion of nuclear energy that is underway today provides the impetus to enter a new era of technical development in the safeguards community. In this paper, we will review the history of nuclear safeguards research and development as well future directions.

  12. Recent advances in nuclear fission theory: pre- and post-scission...

    Office of Scientific and Technical Information (OSTI)

    Recent advances in nuclear fission theory: pre- and post-scission physics Citation Details In-Document Search Title: Recent advances in nuclear fission theory: pre- and ...

  13. advanced simulation and computing | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    NNSA's missions get a boost from brain-inspired, radically different computer design The first computers to contribute to the nation's nuclear security work used thousands of ...

  14. Advances in Nuclear Nonproliferation Technology & Policy Conference...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Verification and Inspection Commission (UNMOVIC) Special Panel Sessions include: Iran Deal: 1 Year Later 2016 Nuclear Security Summit Lessons from the First 50 Years of ...

  15. Advanced Technology Development and Mitigation | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Advanced Technology Development and Mitigation (ATDM) subprogram includes laboratory code and computer engineering and science projects that pursue long-term simulation and ...

  16. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Program Plan Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program Plan The NEAMS program plan includes information on the program vision, objective, scope, schedule and cost, management, development team and collaborations. NEAMS Executive Program Plan.pdf (1.2 MB) More Documents & Publications NEAMS Quarterly Report April-June 2013 Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements

  17. advanced radiographic capability | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    advanced radiographic capability ARC will make tiny "movies" of thermonuclear and stockpile experiments The National Ignition Facility's (NIF) performed the first programmatic experiments with Advanced Radiographic Capability (ARC) on December 1-3, 2015. ARC, a petawatt-class laser with peak power that will exceed a quadrillion watts, is designed to produce brighter, more penetrating, higher-energy

  18. Enterprise SRS: leveraging ongoing operations to advance nuclear fuel cycles research and development programs

    SciTech Connect (OSTI)

    Murray, A.M.; Marra, J.E.; Wilmarth, W.R.; McGuire, P.W.; Wheeler, V.B.

    2013-07-01

    The Savannah River Site (SRS) is re-purposing its vast array of assets (including H Canyon - a nuclear chemical separation plant) to solve issues regarding advanced nuclear fuel cycle technologies, nuclear materials processing, packaging, storage and disposition. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into SRS facilities but also in other facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, a center for applied nuclear materials processing and engineering research has been established in SRS.

  19. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect (OSTI)

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  20. MICROBIAL TRANSFORMATIONS OF RADIONUCLIDES RELEASED FROM NUCLEAR FUEL REPROCESSING PLANTS.

    SciTech Connect (OSTI)

    FRANCIS,A.J.

    2006-10-18

    Microorganisms can affect the stability and mobility of the actinides U, Pu, Cm, Am, Np, and the fission products Tc, I, Cs, Sr, released from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been investigated, we have only limited information on the effects of microbial processes. The mechanisms of microbial transformations of the major and minor actinides and the fission products under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  1. Current Comparison of Advanced Nuclear Fuel Cycles

    SciTech Connect (OSTI)

    Steven Piet; Trond Bjornard; Brent Dixon; Robert Hill; Gretchen Matthern; David Shropshire

    2007-04-01

    This paper compares potential nuclear fuel cycle strategies – once-through, recycling in thermal reactors, sustained recycle with a mix of thermal and fast reactors, and sustained recycle with fast reactors. Initiation of recycle starts the draw-down of weapons-usable material and starts accruing improvements for geologic repositories and energy sustainability. It reduces the motivation to search for potential second geologic repository sites. Recycle in thermal-spectru

  2. The Role of Nuclear Data in Advanced Safeguards

    SciTech Connect (OSTI)

    Santi, P.; Vo, D.; Todosow, M.; Aronson, A.; Ludewig, H.

    2007-07-01

    An important question regarding the development of advanced safeguards for the Global Nuclear Energy Partnership (GNEP) is whether the current fundamental nuclear data are sufficient to allow for the proper development of appropriate nondestructive assay (NDA) techniques to measure the nuclear materials that would be processed within GNEP. Because the reprocessing technologies that are being considered would keep various actinides co-mingled with plutonium at all times, the nuclear fuel that is processed within GNEP presents unique challenges for the various NDA techniques. To efficiently design and develop advanced NDA techniques for safeguarding this nuclear fuel, models based on accurate fundamental physics data are needed to properly simulate the characteristics of this fuel. A multi-laboratory effort is currently underway to evaluate the relevant nuclear data for developing and applying NDA techniques to measure the nuclear materials that will be processed within GNEP. The data that are currently under review includes prompt neutron multiplicity distributions for nuclides which undergo either spontaneous or neutron-induced fission, ({alpha},n) cross sections, and gamma-ray branching ratios and energies. The current status of this evaluation effort will be given along with potential areas of improvement that are needed in the fundamental nuclear data. (authors)

  3. NNSA and the European Commission advance global nuclear nonproliferation

    National Nuclear Security Administration (NNSA)

    goals at 6th annual Joint Steering Committee Meeting | National Nuclear Security Administration | (NNSA) and the European Commission advance global nuclear nonproliferation goals at 6th annual Joint Steering Committee Meeting Friday, July 15, 2016 - 11:13am NNSA and the European Commission's Joint Research Centre participants at the 6th Annual Joint Steering Committee meeting. NNSA and the European Commission (E.C.) recently met in Ispra, Italy, to review the status of collaborative efforts

  4. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect (OSTI)

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

  5. ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS

    SciTech Connect (OSTI)

    Marra, J.

    2010-09-29

    proliferation), the worldwide community is working to develop and deploy new nuclear energy systems and advanced fuel cycles. These new nuclear systems address the key challenges and include: (1) extracting the full energy value of the nuclear fuel; (2) creating waste solutions with improved long term safety; (3) minimizing the potential for the misuse of the technology and materials for weapons; (4) continually improving the safety of nuclear energy systems; and (5) keeping the cost of energy affordable.

  6. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    SciTech Connect (OSTI)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    -ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.

  7. Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants

    SciTech Connect (OSTI)

    O'Connell, J. Michael

    2002-01-01

    OAK-B135 Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants

  8. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Verification and Validation (V&V) Plan Requirements | Department of Energy Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements The purpose of the NEAMS Software V&V Plan is to define what the NEAMS program expects in terms of V&V for the computational models that are developed under NEAMS. NEAMS Software Verification and Validation Plan

  9. United States and Italy Sign Agreements to Advance Developments in Nuclear

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy | Department of Energy Italy Sign Agreements to Advance Developments in Nuclear Energy United States and Italy Sign Agreements to Advance Developments in Nuclear Energy September 30, 2009 - 12:00am Addthis Washington, D.C. - U.S. Secretary of Energy Steven Chu and Italian Minister for Economic Development Claudio Scajola today signed two important nuclear energy agreements that may lead to construction of new nuclear power plants and improved cooperation on advanced nuclear energy

  10. Foundational development of an advanced nuclear reactor integrated safety code.

    SciTech Connect (OSTI)

    Clarno, Kevin; Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth; Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  11. Advanced nuclear reactor public opinion project. Interim report

    SciTech Connect (OSTI)

    Benson, B.

    1991-07-25

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

  12. Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.

    SciTech Connect (OSTI)

    Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

    2006-12-11

    This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

  13. Transform, Protect and Advance – DOE’s IT Modernization Strategy

    Broader source: Energy.gov [DOE]

    The Obama Administration’s Digital Government Strategy provides a vision for a 21st century government that lays a strong foundation for modernizing technology services across the Federal Government. At Energy, we’re implementing a three-pillar approach -- Transform, Protect and Advance – as part of this broader strategy, driving more secure, cost-effective, and efficient IT infrastructure and services.

  14. Indicator system for advanced nuclear plant control complex

    DOE Patents [OSTI]

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  15. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Brent W. Dixon; Steven J. Piet

    2004-10-01

    tripling market share by 2100 from the current 8.4% to 25%, equivalent to continuing the average market growth of last 50 years for an additional 100 years. Five primary spent fuel management strategies are assessed against each of the energy futures to determine the number of geological repositories needed and how the first repository would be used. The geological repository site at Yucca Mountain, Nevada, has the physical potential to accommodate all the spent fuel that will be generated by the current fleet of domestic commercial nuclear reactors, even with license extensions. If new nuclear plants are built in the future as replacements or additions, the United States will need to adopt spent fuel treatment to extend the life of the repository. Should a significant number of new nuclear plants be built, advanced fuel recycling will be needed to fully manage the spent fuel within a single repository. The analysis also considers the timeframe for most efficient implementation of new spent fuel management strategies. The mix of unprocessed spent fuel and processed high level waste in Yucca Mountain varies with each future and strategy. Either recycling must start before there is too much unprocessed waste emplaced or unprocessed waste will have to be retrieved later with corresponding costs. For each case, the latest date to implement reprocessing without subsequent retrieval is determined.

  16. DOE Issues Landmark Rule for Risk Insurance for Advanced Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Landmark Rule for Risk Insurance for Advanced Nuclear Facilities DOE Issues Landmark Rule for Risk Insurance for Advanced Nuclear Facilities May 8, 2006 - 10:36am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) issued on Saturday, the interim final rule required by the Energy Policy Act of 2005 (EPACT) for risk insurance to facilitate construction of new advanced nuclear power facilities. The rule establishes the requirements for risk insurance to cover

  17. Recent advances in nuclear fission theory: pre- and post-scission physics

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Recent advances in nuclear fission theory: pre- and post-scission physics Citation Details In-Document Search Title: Recent advances in nuclear fission theory: pre- and post-scission physics Recent advances in the modeling of the nuclear fission process for data evaluation purposes are reviewed. In particular, it is stressed that a more comprehensive approach to fission data is needed if predictive capability is to be achieved. The link between pre- and

  18. Advances in the ab initio description of nuclear three-cluster...

    Office of Scientific and Technical Information (OSTI)

    description of nuclear three-cluster systems Citation Details In-Document Search Title: Advances in the ab initio description of nuclear three-cluster systems Authors: Redondo, C R ...

  19. NEAC Nuclear Reactor Technology (NRT) Subcommittee Advanced Test and/or Demonstration Reactor Planning Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Reactor Technology (NRT) Subcommittee Advanced Test and/or Demonstration Reactor Planning Study October 6 th , 2015 Meeting Summary and Comments Given direction from Congress, the Department of Energy's Office of Nuclear Energy (DOE- NE) is conducting a planning study for an advanced test and/or demonstration reactor (AT/DR study) in the United States. The Nuclear Energy Advisory Committee (NEAC) and specifically its Nuclear Reactor Technology (NRT) subcommittee has been asked to provide

  20. Enterprise SRS: Leveraging Ongoing Operations To Advance Nuclear Fuel Cycles Research And Development Programs

    SciTech Connect (OSTI)

    Murray, Alice M.; Marra, John E.; Wilmarth, William R.; Mcguire, Patrick W.; Wheeler, Vickie B.

    2013-07-03

    The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS

  1. Energy Department Announces New Investments in Advanced Nuclear...

    Energy Savers [EERE]

    in the next generation of nuclear energy technologies and enable low-carbon nuclear power to be a significant ... analysis on sodium thermal hydraulics to support ...

  2. TRANSFORMER

    DOE Patents [OSTI]

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  3. Energy Department Invests $60 Million to Advance Nuclear Technology

    Broader source: Energy.gov [DOE]

    The Department of Energy announces $60 million in awards for 68 nuclear projects across the country.

  4. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect (OSTI)

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  5. Inelastic X-ray and Nuclear Resonant Scattering | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XSD-IXN XSD-IXN Home Staff Inelastic X-ray and Nuclear Resonant Scattering The Inelastic X-ray and Nuclear Resonant Scattering group operates beamlines at APS Sectors 3, 9 and 30....

  6. Recent advances in nuclear fission theory: pre- and post-scission...

    Office of Scientific and Technical Information (OSTI)

    Recent advances in the modeling of the nuclear fission process for data evaluation ... Two examples are given: (i) the modeling of fission cross-sections in the R-matrix ...

  7. Recent advances in nuclear fission theory: pre- and post-scission...

    Office of Scientific and Technical Information (OSTI)

    pre- and post-scission physics Citation Details In-Document Search Title: Recent advances in nuclear fission theory: pre- and post-scission physics You are accessing a ...

  8. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect (OSTI)

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  9. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Dixon, B.W.; Piet, S.J.

    2004-10-03

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected.

  10. FEDERAL LOAN GUARANTEE SOLICITATION & SUPPLEMENTS FOR: ADVANCED NUCLEAR ENERGY PROJECTS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED NUCLEAR ENERGY PROJECTS U.S. Department of Energy Loan Programs Office Solicitation Number: DE-SOL-0007791 INCLUDED DOCUMENTS (UPDATED: January 19, 2016) Document Issue Date Subject Solicitation Section Affected SOLICITATION December 10, 2014 Solicitation for Advanced Nuclear Energy Projects SUPPLEMENT I June 23, 2015 Scope of Projects Eligible II.C. inserted after II.B (p. 3) SUPPLEMENT II November 6, 2015 Early Upstream and Engineering Project Costs II.D inserted after II.C (p. 3)

  11. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    SciTech Connect (OSTI)

    Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  12. Acquired experience resulting from transforming a chemical installation into a nuclear one

    SciTech Connect (OSTI)

    Zamfirache, M.; Stefan, L.; Bornea, A.; Stefanescu, I.

    2015-03-15

    ICIT-Valcea has developed an experimental pilot-scale installation for tritium and deuterium separation. The main objective of this pilot was to demonstrate the water detritiation technology and to transfer this technology to the CANDU reactors of the Cernavoda nuclear power plant. The pilot-scale installation was initiated in 1992. The initial design and construction were performed similarly to chemical plants as the separation of isotopes was focused on only hydrogen and deuterium to assess feasibility. In a second phase we have begun to transform it into a nuclear facility with the aim of separating tritium. Moving to tritium separation has imposed a lot of changes. Changes consisted mainly of: -) re-design of the technological systems for nuclear material processing, applying specific codes and standards (ASME, Romanian nuclear specific pressure boundary prescriptions for code classification); -) design and implementation of new systems, classified as safety systems; -) re-design and implementation of command and control systems, complying with the requirements of reliability and maintenance required for the project promoted; -) revaluation of auxiliary systems (utilities, power supply); -) implementing radiation protection systems, including secondary barriers; -) implementing and maintaining environment operational program specific to the new nuclear plant; -) developing and conducting safety analyzes; and -) the production of specific documentation to obtain the necessary permits for construction, commissioning and operation of the plant.

  13. Materials Issues in Advanced Nuclear Systems: Executive Summary of DOE Basic Research Needs Workshop, "Basic Research Needs for Advanced Nuclear Energy Systems"

    SciTech Connect (OSTI)

    Roberto, James B; Diaz de la Rubia, Tomas

    2007-01-01

    This article is reproduced from excerpts from the Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, U.S. Department of Energy, October 2006, www.sc.doe.gov/bes/reports/files/ANES_rpt.pdf.

  14. Department of Energy Issues Final $12.5 Billion Advanced Nuclear Energy Loan Guarantee Solicitation

    Broader source: Energy.gov [DOE]

    WASHINGTON D.C. — Today, the Department of Energy issued the Advanced Nuclear Energy Projects loan guarantee solicitation, which provides as much as $12.5 billion to support innovative nuclear energy projects as a part of the Administration’s all-of-the-above energy strategy.

  15. Energy Department Announces New Investments in Advanced Nuclear Power Reactors

    Broader source: Energy.gov [DOE]

    WASHINGTON – Today, as part of the President’s all-of-the-above energy approach and Climate Action Plan, the Energy Department announced awards for five companies to lead key nuclear energy...

  16. Advanced Nuclear Fuel | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TerraPower, a private company backed by Microsoft founder Bill Gates, is developing next-generation nuclear reactor technology. And Y-12, armed with its expertise in uranium, is ...

  17. Advancing our Nuclear Collaboration with the Czech Republic ...

    Office of Environmental Management (EM)

    President Obama addresses a crowd in Hradcany Square on April 5, 2009, touching on issues from green energy to nuclear treaties. Daniel B. Poneman Daniel B. Poneman Former Deputy ...

  18. Reference Operational Concepts for Advanced Nuclear Power Plants

    SciTech Connect (OSTI)

    Hugo, Jacques Victor; Farris, Ronald Keith

    2015-09-01

    This report represents the culmination of a four-year research project that was part of the Instrumentation and Control and Human Machine Interface subprogram of the DOE Advanced Reactor Technologies program.

  19. Advancing Civil Nuclear Cooperation with Japan | Department of...

    Energy Savers [EERE]

    ... Both sides agreed to reconvene the group in Washington to advance that work in support of global efforts to reduce dangerous air pollution in a safe and sustainable manner. Addthis ...

  20. Advanced Technology Development and Mitigation | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Advanced Technology Development and Mitigation The Advanced Technology Development and Mitigation (ATDM) subprogram includes laboratory code and computer engineering and science projects that pursue long-term simulation and computing goals relevant to the broad national security missions of the NNSA. It addresses the need to adapt current integrated design codes and build new codes that are attuned to emerging computing technologies. Performing this work within the

  1. Energy Supply Transformation Needed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supply Transformation Needed - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  2. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. Isotopes» A roadmap of matter that will help unlock the secrets of how the universe is put together The DOE Office of Science's Nuclear Physics (NP) program supports the experimental and theoretical research needed to create this roadmap. This quest requires a broad approach to different, but related, scientific

  3. Advanced Elastic/Inelastic Nuclear Data Development Project

    SciTech Connect (OSTI)

    Harmon, Frank; Chowdhury, Partha; Greife, Uwe; Fisher Hicks, Sally; Tsvetkov, Pavel; Rahn Vanhoy, Jeffrey; Hill, Tony; Kawano, Toshihiko; Slaughter, David

    2015-06-08

    The optical model is used to analyze the elastic and inelastic scattering of nucleons, deuterons, hellions, tritons, and alpha particles by the nuclei. Since this paper covers primarily neutron-nucleus scattering, the focus will be limited to only that interaction. For the sake of this model, the nucleus is described as a blob of nuclear matter with properties based upon its number of nucleons. This infers that a single potential can describe the interaction of particles with different energies with different nuclei.

  4. Advanced nuclear fuel cycles - Main challenges and strategic choices

    SciTech Connect (OSTI)

    Le Biez, V.; Machiels, A.; Sowder, A.

    2013-07-01

    A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness.

  5. Advanced LWR Nuclear Fuel Cladding System Development Trade-Off Study

    SciTech Connect (OSTI)

    Kristine Barrett; Shannon Bragg-Sitton

    2012-09-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system that would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.

  6. Proceedings of the 2004 international congress on advances in nuclear power plants - ICAPP'04

    SciTech Connect (OSTI)

    2004-07-01

    The 2004 International Congress on Advances in Nuclear Power Plants (ICAPP'04) provides a forum for the industry to exchange the latest ideas and research findings on nuclear plants from all perspectives. This conference builds on the success of last year's meeting held in Cordoba, Spain, and on the 2002 inaugural meeting held in Hollywood, Florida. Because of the hard work of many volunteers from around the world, ICAPP'04 has been successful in achieving its goal. More than 325 invited and contributed papers/presentations are part of this ICAPP. There are 5 invited plenary sessions and 70 technical sessions with contributed papers. The ICAPP'04 Proceedings contain almost 275 papers prepared by authors from 25 countries covering topics related to advances in nuclear power plant technology. The program by technical track deals with: 1 - Water-Cooled Reactor Programs and Issues (Status of All New Water-Cooled Reactor Programs; Advanced PWRs: Developmental Stage I; Advanced PWRs: Developmental Stage II; Advanced PWRs: Basic Design Stage; Advanced BWRs; Economics, Regulation, Licensing, and Construction; AP1000); 2 - High Temperature Gas Cooled Reactors (Pebble Bed Modular Reactors; Very High Temperature Reactors; HTR Fuels and Materials; Innovative HTRs and Fuel Cycles); 3 - Long Term Reactor Programs and Strategies (Supercritical Pressure Water Reactors; Lead-Alloy Fast Reactors; Sodium and Gas Fast Reactors; Status of Advanced Reactor Programs; Non-classical Reactor Concepts); 4 - Operation, Performance, and Reliability Management (Information Technology Effect on Plant Operation; Operation, Maintenance and Reliability; Improving Performance and Reducing O and M Costs; Plant Modernization and Retrofits); 5 - Plant Safety Assessment and Regulatory Issues (LOCA and non-LOCA Analysis Methodologies; LOCA and non-LOCA Plant Analyses; In-Vessel Retention; Containment Performance and Hydrogen Control; Advances in Severe Accident Analysis; Advances in Severe Accident

  7. Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons

    Office of Energy Efficiency and Renewable Energy (EERE)

    Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons - December Commission meeting

  8. Advanced maintenance, inspection & repair technology for nuclear power plants

    SciTech Connect (OSTI)

    Hinton, B.M.

    1994-12-31

    Maintenance, inspection, and repair technology for nuclear power plants is outlined. The following topics are discussed: technology for reactor systems, reactor refueling bridge, fuel inspection system, fuel shuffling software, fuel reconstitution, CEA/RCCA/CRA inspection, vessel inspection capabilities, CRDM inspection and repair, reactor internals inspection and repair, stud tensioning system, stud/nut cleaning system, EDM machining technology, MI Cable systems, core exit T/C nozzle assemblies, technology for steam generators, genesis manipulator systems, ECT, UT penetrant inspections, steam generator repair and cleaning systems, technology for balance of plant, heat exchangers, piping and weld inspections, and turbogenerators.

  9. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    SciTech Connect (OSTI)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  10. Design of radiation resistant metallic multilayers for advanced nuclear systems

    SciTech Connect (OSTI)

    Zhernenkov, Mikhail E-mail: gills@bnl.gov; Gill, Simerjeet E-mail: gills@bnl.gov; Stanic, Vesna; DiMasi, Elaine; Kisslinger, Kim; Ecker, Lynne; Baldwin, J. Kevin; Misra, Amit; Demkowicz, M. J.

    2014-06-16

    Helium implantation from transmutation reactions is a major cause of embrittlement and dimensional instability of structural components in nuclear energy systems. Development of novel materials with improved radiation resistance, which is of the utmost importance for progress in nuclear energy, requires guidelines to arrive at favorable parameters more efficiently. Here, we present a methodology that can be used for the design of radiation tolerant materials. We used synchrotron X-ray reflectivity to nondestructively study radiation effects at buried interfaces and measure swelling induced by He implantation in Cu/Nb multilayers. The results, supported by transmission electron microscopy, show a direct correlation between reduced swelling in nanoscale multilayers and increased interface area per unit volume, consistent with helium storage in Cu/Nb interfaces in forms that minimize dimensional changes. In addition, for Cu/Nb layers, a linear relationship is demonstrated between the measured depth-dependent swelling and implanted He density from simulations, making the reflectivity technique a powerful tool for heuristic material design.

  11. Cladding and Structural Materials for Advanced Nuclear Energy Systems

    SciTech Connect (OSTI)

    Was, G S; Allen, T R; Ila, D; C,; Levi,; Morgan, D; Motta, A; Wang, L; Wirth, B

    2011-06-30

    The goal of this consortium is to address key materials issues in the most promising advanced reactor concepts that have yet to be resolved or that are beyond the existing experience base of dose or burnup. The research program consists of three major thrusts: 1) high-dose radiation stability of advanced fast reactor fuel cladding alloys, 2) irradiation creep at high temperature, and 3) innovative cladding concepts embodying functionally-graded barrier materials. This NERI-Consortium final report represents the collective efforts of a large number of individuals over a period of three and a half years and included 9 PIs, 4 scientists, 3 post-docs and 12 students from the seven participating institutions and 8 partners from 5 national laboratories and 3 industrial institutions (see table). University participants met semi-annually and participants and partners met annually for meetings lasting 2-3 days and designed to disseminate and discuss results, update partners, address outstanding issues and maintain focus and direction toward achieving the objectives of the program. The participants felt that this was a highly successful program to address broader issues that can only be done by the assembly of a range of talent and capabilities at a more substantial funding level than the traditional NERI or NEUP grant. As evidence of the success, this group, collectively, has published 20 articles in archival journals and made 57 presentations at international conferences on the results of this consortium.

  12. Aging Management Guideline for commercial nuclear power plants: Power and distribution transformers

    SciTech Connect (OSTI)

    Toman, G.; Gazdzinski, R.

    1994-05-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in power and distribution transformers important to license renewal in commercial nuclear power plants. The intent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  13. Department of Energy Issues Draft Loan Guarantee Solicitation for Advanced Nuclear Energy Projects

    Broader source: Energy.gov [DOE]

    The Department of Energy has issued a draft solicitation that would provide up to $12.6 billion in loan guarantees for Advanced Nuclear Energy Projects, supporting the Administration’s all-of-the-above energy strategy and bringing the nation closer to its low-carbon future.

  14. Application of PSA to review and define technical specifications for advanced nuclear power plants

    SciTech Connect (OSTI)

    Kim, I.S.; Samanta, P.K.; Reinhart, F.M.; Wohl, M.L.

    1995-11-01

    As part of the design certification process, probabilistic safety assessments (PSAS) are performed at the design stage for each advanced nuclear power plant. Among other usages, these PSAs are important inputs in defining the Technical Specifications (TSs) for these plants. Knowledge gained from their use in improving the TSs for operating nuclear power plants is providing methods and insights for using PSAs at this early stage. Evaluating the safety or the risk significance of the TSs to be defined for an advanced plant encompasses diverse aspects: (a) determining the basic limiting condition for operation (LCO); (b) structuring conditions associated with the LCO; (c) defining completion times (equivalent to allowed outage times in the TS for conventional plants); and, (d) prescribing required actions to be taken within the specified completion times. In this paper, we consider the use of PSA in defining the TSs for an advanced nuclear plant, namely General Electric`s Advanced Boiling Water Reactor (ABWR). Similar approaches are being taken for ABB-CE`s System 80+ and Westinghouse`s AP-600. We discuss the general features of an advanced reactor`s TS, how PSA is being used in reviewing the TSs, and we give an example where the TS submittal was reviewed using a PSA-based analysis to arrive at the requirements for the plant.

  15. Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology

    Office of Energy Efficiency and Renewable Energy (EERE)

    Building on President Obama’s Climate Action Plan to continue America’s leadership in clean energy innovation, the Energy Department announced more than $60 million in nuclear energy research awards and improvements to university research reactors and infrastructure.

  16. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    SciTech Connect (OSTI)

    Loflin, Leonard; McRimmon, Beth

    2014-12-18

    This report summarizes a project by EPRI to include requirements for small modular light water reactors (smLWR) into the EPRI Utility Requirements Document (URD) for Advanced Light Water Reactors. The project was jointly funded by EPRI and the U.S. Department of Energy (DOE). The report covers the scope and content of the URD, the process used to revise the URD to include smLWR requirements, a summary of the major changes to the URD to include smLWR, and how to use the URD as revised to achieve value on new plant projects.

  17. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect (OSTI)

    Kimberlyn C. Mousseau

    2011-10-01

    The Nuclear Energy Computational Fluid Dynamics Advanced Modeling and Simulation (NE-CAMS) system is being developed at the Idaho National Laboratory (INL) in collaboration with Bettis Laboratory, Sandia National Laboratory (SNL), Argonne National Laboratory (ANL), Utah State University (USU), and other interested parties with the objective of developing and implementing a comprehensive and readily accessible data and information management system for computational fluid dynamics (CFD) verification and validation (V&V) in support of nuclear energy systems design and safety analysis. The two key objectives of the NE-CAMS effort are to identify, collect, assess, store and maintain high resolution and high quality experimental data and related expert knowledge (metadata) for use in CFD V&V assessments specific to the nuclear energy field and to establish a working relationship with the U.S. Nuclear Regulatory Commission (NRC) to develop a CFD V&V database, including benchmark cases, that addresses and supports the associated NRC regulations and policies on the use of CFD analysis. In particular, the NE-CAMS system will support the Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, which aims to develop and deploy advanced modeling and simulation methods and computational tools for reliable numerical simulation of nuclear reactor systems for design and safety analysis. Primary NE-CAMS Elements There are four primary elements of the NE-CAMS knowledge base designed to support computer modeling and simulation in the nuclear energy arena as listed below. Element 1. The database will contain experimental data that can be used for CFD validation that is relevant to nuclear reactor and plant processes, particularly those important to the nuclear industry and the NRC. Element 2. Qualification standards for data evaluation and classification will be incorporated and applied such that validation data sets will result in well

  18. Impact of Nuclear Data Uncertainties on Calculated Spent Fuel Nuclide Inventories and Advanced NDA Instrument Response

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Jianwei; Gauld, Ian C.

    2014-12-01

    The U.S. Department of Energy’s Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project is nearing the final phase of developing several advanced nondestructive assay (NDA) instruments designed to measure spent nuclear fuel assemblies for the purpose of improving nuclear safeguards. Current efforts are focusing on calibrating several of these instruments with spent fuel assemblies at two international spent fuel facilities. Modelling and simulation is expected to play an important role in predicting nuclide compositions, neutron and gamma source terms, and instrument responses in order to inform the instrument calibration procedures. As part of NGSI-SF project, this work was carried outmore » to assess the impacts of uncertainties in the nuclear data used in the calculations of spent fuel content, radiation emissions and instrument responses. Nuclear data is an essential part of nuclear fuel burnup and decay codes and nuclear transport codes. Such codes are routinely used for analysis of spent fuel and NDA safeguards instruments. Hence, the uncertainties existing in the nuclear data used in these codes affect the accuracies of such analysis. In addition, nuclear data uncertainties represent the limiting (smallest) uncertainties that can be expected from nuclear code predictions, and therefore define the highest attainable accuracy of the NDA instrument. This work studies the impacts of nuclear data uncertainties on calculated spent fuel nuclide inventories and the associated NDA instrument response. Recently developed methods within the SCALE code system are applied in this study. The Californium Interrogation with Prompt Neutron instrument was selected to illustrate the impact of these uncertainties on NDA instrument response.« less

  19. Impact of Nuclear Data Uncertainties on Calculated Spent Fuel Nuclide Inventories and Advanced NDA Instrument Response

    SciTech Connect (OSTI)

    Hu, Jianwei; Gauld, Ian C.

    2014-12-01

    The U.S. Department of Energy’s Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project is nearing the final phase of developing several advanced nondestructive assay (NDA) instruments designed to measure spent nuclear fuel assemblies for the purpose of improving nuclear safeguards. Current efforts are focusing on calibrating several of these instruments with spent fuel assemblies at two international spent fuel facilities. Modelling and simulation is expected to play an important role in predicting nuclide compositions, neutron and gamma source terms, and instrument responses in order to inform the instrument calibration procedures. As part of NGSI-SF project, this work was carried out to assess the impacts of uncertainties in the nuclear data used in the calculations of spent fuel content, radiation emissions and instrument responses. Nuclear data is an essential part of nuclear fuel burnup and decay codes and nuclear transport codes. Such codes are routinely used for analysis of spent fuel and NDA safeguards instruments. Hence, the uncertainties existing in the nuclear data used in these codes affect the accuracies of such analysis. In addition, nuclear data uncertainties represent the limiting (smallest) uncertainties that can be expected from nuclear code predictions, and therefore define the highest attainable accuracy of the NDA instrument. This work studies the impacts of nuclear data uncertainties on calculated spent fuel nuclide inventories and the associated NDA instrument response. Recently developed methods within the SCALE code system are applied in this study. The Californium Interrogation with Prompt Neutron instrument was selected to illustrate the impact of these uncertainties on NDA instrument response.

  20. Proceedings of the 2006 international congress on advances in nuclear power plants - ICAPP'06

    SciTech Connect (OSTI)

    2006-07-01

    Following the highly successful ICAPP'05 meeting held in Seoul Korea, the 2006 International Congress on Advances in Nuclear Power Plants brought together international experts of the nuclear industry involved in the operation, development, building, regulation and research related to Nuclear Power Plants. The program covers the full spectrum of Nuclear Power Plant issues from design, deployment and construction of plants to research and development of future designs and advanced systems. The program covers lessons learned from power, research and demonstration reactors from over 50 years of experience with operation and maintenance, structures, materials, technical specifications, human factors, system design and reliability. The program by technical track deals with: - 1. Water-Cooled Reactor Programs and Issues Evolutionary designs, innovative, passive, light and heavy water cooled reactors; issues related to meeting medium term utility needs; design and regulatory issues; business, political and economic challenges; infrastructure limitations and improved construction techniques including modularization. - 2. High Temperature Gas Cooled Reactors Design and development issues, components and materials, safety, reliability, economics, demonstration plants and environmental issues, fuel design and reliability, power conversion technology, hydrogen production and other industrial uses; advanced thermal and fast reactors. - 3. Long Term Reactor Programs and Strategies Reactor technology with enhanced fuel cycle features for improved resource utilization, waste characteristics, and power conversion capabilities. Potential reactor designs with longer development times such as, super critical water reactors, liquid metal reactors, gaseous and liquid fuel reactors, Gen IV, INPRO, EUR and other programs. - 4. Operation, Performance and Reliability Management Training, O and M costs, life cycle management, risk based maintenance, operational experiences, performance and

  1. Thermal-hydraulic analysis of advanced reactor concepts: The Gas Core Nuclear Rocket

    SciTech Connect (OSTI)

    Banjac, V.; Heger, A.S.

    1995-12-31

    The Gas Core Nuclear Rocket (GCNR), a design first proposed in the 1960s for fast round-trip missions to Mars and the outer planets, is generally considered to be the most advanced, and therefore the most complex, iteration of the fission reactor concept. The GCNR technology involves the extraction of fission energy, by means of thermal radiation, from a high-temperature plasma core to a working fluid. A specific derivative of GCNR technology is the nuclear fight bulb (NLB) rocket engine, first proposed by the then United Aircraft Research Laboratories (UARL) in the early 1960s. The potential operating parameters provided the motivation for a detailed thermal hydraulics analysis.

  2. Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report

    SciTech Connect (OSTI)

    William Anderson; James Tulenko; Bradley Rearden; Gary Harms

    2008-09-11

    The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

  3. The Path to Sustainable Nuclear Energy. Basic and Applied Research Opportunities for Advanced Fuel Cycles

    SciTech Connect (OSTI)

    Finck, P.; Edelstein, N.; Allen, T.; Burns, C.; Chadwick, M.; Corradini, M.; Dixon, D.; Goff, M.; Laidler, J.; McCarthy, K.; Moyer, B.; Nash, K.; Navrotsky, A.; Oblozinsky, P.; Pasamehmetoglu, K.; Peterson, P.; Sackett, J.; Sickafus, K. E.; Tulenko, J.; Weber, W.; Morss, L.; Henry, G.

    2005-09-01

    The objective of this report is to identify new basic science that will be the foundation for advances in nuclear fuel-cycle technology in the near term, and for changing the nature of fuel cycles and of the nuclear energy industry in the long term. The goals are to enhance the development of nuclear energy, to maximize energy production in nuclear reactor parks, and to minimize radioactive wastes, other environmental impacts, and proliferation risks. The limitations of the once-through fuel cycle can be overcome by adopting a closed fuel cycle, in which the irradiated fuel is reprocessed and its components are separated into streams that are recycled into a reactor or disposed of in appropriate waste forms. The recycled fuel is irradiated in a reactor, where certain constituents are partially transmuted into heavier isotopes via neutron capture or into lighter isotopes via fission. Fast reactors are required to complete the transmutation of long-lived isotopes. Closed fuel cycles are encompassed by the Department of Energy?s Advanced Fuel Cycle Initiative (AFCI), to which basic scientific research can contribute. Two nuclear reactor system architectures can meet the AFCI objectives: a ?single-tier? system or a ?dual-tier? system. Both begin with light water reactors and incorporate fast reactors. The ?dual-tier? systems transmute some plutonium and neptunium in light water reactors and all remaining transuranic elements (TRUs) in a closed-cycle fast reactor. Basic science initiatives are needed in two broad areas: ? Near-term impacts that can enhance the development of either ?single-tier? or ?dual-tier? AFCI systems, primarily within the next 20 years, through basic research. Examples: Dissolution of spent fuel, separations of elements for TRU recycling and transmutation Design, synthesis, and testing of inert matrix nuclear fuels and non-oxide fuels Invention and development of accurate on-line monitoring systems for chemical and nuclear species in the nuclear

  4. Enterprise SRS: Leveraging Ongoing Operations to Advance Nuclear Fuel Cycle Programs - 12579

    SciTech Connect (OSTI)

    Marra, J.E.; Griffin, J.C.; Murray, A.M.; Wilmarth, W.R.

    2012-07-01

    The international leadership in nuclear technology development and deployment long held by the United States has eroded due to the lack of clear national strategies for advanced reactor fuel cycle concepts and for nuclear materials management, as well as to the recent policy decision that halts work on the nuclear fuel repository at Yucca Mountain. Although no national consensus on strategy has yet been reached, a number of recent high-profile reviews and workshops have clearly highlighted a national need for robust research, development and deployment (RD and D) programs in key areas of nuclear technology, especially nuclear separations science and engineering. Collectively, these reviews and workshops provide a picture of the nuclear separations mission needs for three major program offices: Department of Energy Office of-Environmental Management), DOE Office of Nuclear Energy), and the National Nuclear Security Administration (NNSA). While the individual program needs differ significantly in detail and timing, they share common needs in two critical areas of RD and D: - The need for access to and use of multi-purpose engineering-scale demonstration test facilities that can support testing with radioactive material, and - The need for collaborative research enterprises that encompass government research organizations (i.e., national laboratories), commercial industry and the academic community. Such collaborative enterprises effectively integrate theory and modeling with the actual experimental work at all scales, as well as strengthen the technical foundation for research in critical areas. The arguments for engineering-scale collaborative research facilities are compelling. Processing history has shown that test programs and demonstrations conducted with actual nuclear materials are essential to program success. It is widely recognized, however, that such facilities are expensive to build and maintain; creating an imposing, if not prohibitive, financial burden

  5. Microsoft Word - Advanced_Nuclear_Energy_Projects_Loan_Guarantee_Solicitation_Cover_Sheet_30-Apr-2015.docx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy Loan Programs Office FEDERAL LOAN GUARANTEES FOR ADVANCED NUCLEAR ENERGY PROJECTS INCLUDED DOCUMENTS (UPDATED: April 22, 2015) * FINAL SOLICITATION ANNOUNCEMENT (Issued December 10, 2014) NOTE: The Loan Programs Office recommends applicants use the January 26, 2015 version of Attachment C - Summary Greenhouse Gas Emissions Data Worksheet when submitting an application. LOAN GUARANTEE SOLICITATION ANNOUNCEMENT U.S. Department of Energy Loan Programs Office FEDERAL LOAN

  6. Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation

    SciTech Connect (OSTI)

    Jensen, Niels Gronbech; Asta, Mark; Ozolins, Nigel Browning'Vidvuds; de Walle, Axel van; Wolverton, Christopher

    2011-12-29

    The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.

  7. Update on ORNL TRANSFORM Tool: Simulating Multi-Module Advanced Reactor with End-to-End I&C

    SciTech Connect (OSTI)

    Hale, Richard Edward; Fugate, David L.; Cetiner, Sacit M.; Qualls, A. L.

    2015-05-01

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the fourth year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled reactor) concepts, including the use of multiple coupled reactors at a single site. The focus of this report is the development of a steam generator and drum system model that includes the complex dynamics of typical steam drum systems, the development of instrumentation and controls for the steam generator with drum system model, and the development of multi-reactor module models that reflect the full power reactor innovative small module design concept. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor models; ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface technical area; and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the TRANSFORM tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the Advanced Reactors Technology program; (2) developing a library of baseline component modules that can be assembled into full plant models using available geometry, design, and thermal-hydraulic data; (3) defining modeling conventions for interconnecting component models; and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  8. Advanced international training course on state systems of accounting for and control of nuclear materials

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    This report incorporates all lectures and presentations at the Advanced International Training Course on State Systems of Accounting for and Control of Nuclear Material held April 27 through May 12, 1981 at Santa Fe and Los Alamos, New Mexico, and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards. Major emphasis for the 1981 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory, the Battelle Pacific Northwest Laboratory, and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at both the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, Richland, Washington.

  9. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect (OSTI)

    Rich Johnson; Kimberlyn C. Mousseau; Hyung Lee

    2011-09-01

    NE-KAMS knowledge base will assist computational analysts, physics model developers, experimentalists, nuclear reactor designers, and federal regulators by: (1) Establishing accepted standards, requirements and best practices for V&V and UQ of computational models and simulations, (2) Establishing accepted standards and procedures for qualifying and classifying experimental and numerical benchmark data, (3) Providing readily accessible databases for nuclear energy related experimental and numerical benchmark data that can be used in V&V assessments and computational methods development, (4) Providing a searchable knowledge base of information, documents and data on V&V and UQ, and (5) Providing web-enabled applications, tools and utilities for V&V and UQ activities, data assessment and processing, and information and data searches. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the Consortium for Advanced Simulation of Light Water Reactors (CASL), the Nuclear Energy Advanced Modeling and Simulation (NEAMS), the Light Water Reactor Sustainability (LWRS), the Small Modular Reactors (SMR), and the Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve computational modeling and simulation (M&S) of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs. In addition, from the outset, NE-KAMS will support the use of computational M&S in the nuclear industry by developing guidelines and recommended practices aimed at quantifying the uncertainty and assessing the applicability of existing analysis models and methods. The NE-KAMS effort will initially focus on supporting the use of computational fluid dynamics (CFD) and thermal hydraulics (T/H) analysis for M&S of nuclear

  10. Accelerated development of Zr-containing new generation ferritic steels for advanced nuclear reactors

    SciTech Connect (OSTI)

    Tan, Lizhen; Yang, Ying; Sridharan, K.

    2015-12-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as the sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of Zr-bearing ferritic alloys that can be fabricated using conventional steelmaking methods. The new alloys are expected to have superior high-temperature creep performance and excellent radiation resistance as compared to Grade 91. The designed alloys were fabricated using arc-melting and drop-casting, followed by hot rolling and conventional heat treatments. Comprehensive experimental studies have been conducted on the developed alloys to evaluate their hardness, tensile properties, creep resistance, Charpy impact toughness, and aging resistance, as well as resistance to proton and heavy ion (Fe2+) irradiation.

  11. The advanced fuel cycle facility (AFCF) role in the global nuclear energy partnership

    SciTech Connect (OSTI)

    Griffith, Andrew

    2007-07-01

    The Global Nuclear Energy Partnership (GNEP), launched in February, 2006, proposes to introduce used nuclear fuel recycling in the United States with improved proliferation-resistance and a more effective waste management approach. This program is evaluating ways to close the fuel cycle in a manner that builds on recent laboratory breakthroughs in U.S. national laboratories and draws on international and industry partnerships. Central to moving this advanced fuel recycling technology from the laboratory to commercial implementation is a flexible research, development and demonstration facility, called the Advanced Fuel Cycle Facility (AFCF). The AFCF was introduced as one of three projects under GNEP and will provide the U.S. with the capabilities to evaluate technologies that separate used fuel into reusable material and waste in a proliferation-resistant manner. The separations technology demonstration capability is coupled with a remote transmutation fuel fabrication demonstration capability in an integrated manner that demonstrates advanced safeguard technologies. This paper will discuss the key features of AFCF and its support of the GNEP objectives. (author)

  12. The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report

    SciTech Connect (OSTI)

    Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

    2009-10-12

    In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

  13. An Advanced Reverse Osmosis Technology For Application in Nuclear Desalination Facilities

    SciTech Connect (OSTI)

    Humphries, J.R.; Davies, K.; Ackert, J.A.

    2002-07-01

    The lack of adequate supplies of clean, safe water is a growing global problem that has reached crisis proportions in many parts of the world. It is estimated that 1.5 billion people do not have access to adequate supplies of safe water, and that as a result nearly 10,000 people die every day and thousands more suffer from a range of debilitating illnesses due to water related diseases. Included in this total is an estimated 2.2 million child deaths annually. As the world's need for additional sources of fresh water continues to grow, seawater and brackish water desalination are providing an increasingly important contribution to the solution of this problem. Because desalination is an energy intensive process, nuclear desalination provides an economically attractive and environmentally sound alternative to the burning of fossil fuels for desalination. Nevertheless, the enormity of the problem dictates that additional steps must be taken to improve the efficiency of energy utilization and reduce the cost of water production in order to reduce the financial and environmental burden to communities in need. An advanced reverse osmosis (RO) desalination technology has been developed that emphasizes a nontraditional approach to system design and operation, and makes use of a sophisticated design optimization process that can lead to highly optimized design configurations and operating regimes. The technology can be coupled with a nuclear generating station (NGS) to provide an integrated facility for the co-generation of both water and electricity. Waste heat from the NGS allows the use of 'preheated' feedwater into the RO system, improving the efficiency of the RO process and reducing the cost of water production. Because waste heat, rather than process heat, is used the desalination system can be readily coupled to any existing or advanced reactor technology with little or no impact on reactor design and operation and without introducing additional reactor safety

  14. February 2004, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

    Office of Energy Efficiency and Renewable Energy (EERE)

    The ANTT Subcommittee of NERAC met February 26th and 27th (S. Pillon absent) to begin a review of the potential role of transmutation technologies in increasing the capacity of the geological...

  15. January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

    Office of Energy Efficiency and Renewable Energy (EERE)

    The ANTT Subcommittee met in Washington on Dec 4-5, 2002 to review progress in the transmutation program, and to learn about major organizational changes that affect the management of the program....

  16. October 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

    Office of Energy Efficiency and Renewable Energy (EERE)

    The committee met in Washington in Sept 16-17 to review progress in the program with respect to a changed set of mission priorities. Our last meeting took place in Dec 2002 after the reorganization...

  17. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    SciTech Connect (OSTI)

    E. R. Johnson; R. E. Best

    2009-12-28

    The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the “UREX+3c fuel cycle” and the “Alternative Fuel Cycle” (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount

  18. High Level Requirements for the Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect (OSTI)

    Rich Johnson; Hyung Lee; Kimberlyn C. Mousseau

    2011-09-01

    The US Department of Energy, Office of Nuclear Energy (DOE-NE), has been tasked with the important mission of ensuring that nuclear energy remains a compelling and viable energy source in the U.S. The motivations behind this mission include cost-effectively meeting the expected increases in the power needs of the country, reducing carbon emissions and reducing dependence on foreign energy sources. In the near term, to ensure that nuclear power remains a key element of U.S. energy strategy and portfolio, the DOE-NE will be working with the nuclear industry to support safe and efficient operations of existing nuclear power plants. In the long term, to meet the increasing energy needs of the U.S., the DOE-NE will be investing in research and development (R&D) and working in concert with the nuclear industry to build and deploy new, safer and more efficient nuclear power plants. The safe and efficient operations of existing nuclear power plants and designing, licensing and deploying new reactor designs, however, will require focused R&D programs as well as the extensive use and leveraging of advanced modeling and simulation (M&S). M&S will play a key role in ensuring safe and efficient operations of existing and new nuclear reactors. The DOE-NE has been actively developing and promoting the use of advanced M&S in reactor design and analysis through its R&D programs, e.g., the Nuclear Energy Advanced Modeling and Simulation (NEAMS) and Consortium for Advanced Simulation of Light Water Reactors (CASL) programs. Also, nuclear reactor vendors are already using CFD and CSM, for design, analysis, and licensing. However, these M&S tools cannot be used with confidence for nuclear reactor applications unless accompanied and supported by verification and validation (V&V) and uncertainty quantification (UQ) processes and procedures which provide quantitative measures of uncertainty for specific applications. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation

  19. Energy Department Announces New Investments in Advanced Nuclear Power Reactors to Help Meet America’s Carbon Emission Reduction Goal

    Broader source: Energy.gov [DOE]

    In support of the Administration’s goal to produce more carbon-free energy, today the U.S. Department of Energy (DOE) announced the selection of two companies, X-energy and Southern Company, to further develop advanced nuclear reactor designs. These awards, with a multi-year cost share of up to $80 million for both companies, will support work to address key technical challenges to the design, construction, and operation of next generation nuclear reactors.

  20. Nuclear Systems Enhanced Performance Program, Maintenance Cycle Extension in Advanced Light Water Reactor Design

    SciTech Connect (OSTI)

    Professor Neill Todreas

    2001-10-01

    A renewed interest in new nuclear power generation in the US has spurred interest in developing advanced reactors with features which will address the public's concerns regarding nuclear generation. However, it is economic performance which will dictate whether any new orders for these plants will materialize. Economic performance is, to a great extent, improved by maximizing the time that the plant is on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Indeed, the strategy for the advanced light water reactor plant IRIS (International Reactor, Innovative and Secure) is to utilize an eight year operating cycle. This report describes a formalized strategy to address, during the design phase, the maintenance-related barriers to an extended operating cycle. The top-level objective of this investigation was to develop a methodology for injecting component and system maintainability issues into the reactor plant design process to overcome these barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the IRIS design. The first step in meeting the top-level objective was to determine the types of operating cycle length barriers that the IRIS design team is likely to face. Evaluation of previously identified regulatory and investment protection surveillance program barriers preventing a candidate operating PWR from achieving an extended (48 month) cycle was conducted in the context of the IRIS design. From this analysis, 54 known IRIS operating cycle length barriers were identified. The resolution methodology was applied to each of these barriers to generate design solution alternatives for consideration in the IRIS design. The methodology developed has been demonstrated to narrow the design space to feasible design solutions which enable a desired operating cycle length, yet is general enough to have broad applicability. Feedback from the IRIS design team indicates

  1. THERMODYNAMIC AND KINETIC MODELING OF ADVANCED NUCLEAR FUELS - FINAL LDRD-ER REPORT

    SciTech Connect (OSTI)

    Turchi, P

    2011-11-28

    This project enhanced our theoretical capabilities geared towards establishing the basic science of a high-throughput protocol for the development of advanced nuclear fuel that should couple modern computational materials modeling and simulation tools, fabrication and characterization capabilities, and targeted high throughput performance testing experiments. The successful conclusion of this ER project allowed us to upgrade state-of-the-art modeling codes, and apply these modeling tools to ab initio energetics and thermodynamic assessments of phase diagrams of various mixtures of actinide alloys, propose a tool for optimizing composition of complex alloys for specific properties, predict diffusion behavior in diffusion couples made of actinide and transition metals, include one new equation in the LLNL phase-field AMPE code, and predict microstructure evolution during alloy coring. In FY11, despite limited funding, the team also initiated an experimental activity, with collaboration from Texas A&M University by preparing samples of nuclear fuels in bulk forms and for diffusion couple studies and metallic matrices, and performing preliminary characterization.

  2. The Next Generation Nuclear Plant Graphite Creep Experiment Irradiation in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Blaine Grover

    2010-10-01

    The United States Department of Energys Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energys lead laboratory for nuclear energy development. The ATR is one of the worlds premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will have differing compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of the

  3. Molecular Structure Laboratory. Fourier Transform Nuclear Magnetic Resonance (FTNMR) Spectrometer and Ancillary Instrumentation at SUNY Geneseo

    SciTech Connect (OSTI)

    Geiger, David K

    2015-12-31

    An Agilent 400-MR nuclear magnetic resonance (NMR) spectrometer and ancillary equipment were purchased, which are being used for molecular structure elucidation.  The instrumentation is housed in a pre-existing facility designed specifically for its use. This instrument package is being used to expand the research and educational efforts of the faculty and students at SUNY-Geneseo and is made available to neighboring educational institutions and business concerns.  Funds were also used for training of College personnel, maintenance of the instrumentation, and installation of the equipment.

  4. The Nuclear Energy Advanced Modeling and Simulation Safeguards and Separations Reprocessing Plant Toolkit

    SciTech Connect (OSTI)

    McCaskey, Alex; Billings, Jay Jay; de Almeida, Valmor F

    2011-08-01

    This report details the progress made in the development of the Reprocessing Plant Toolkit (RPTk) for the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. RPTk is an ongoing development effort intended to provide users with an extensible, integrated, and scalable software framework for the modeling and simulation of spent nuclear fuel reprocessing plants by enabling the insertion and coupling of user-developed physicochemical modules of variable fidelity. The NEAMS Safeguards and Separations IPSC (SafeSeps) and the Enabling Computational Technologies (ECT) supporting program element have partnered to release an initial version of the RPTk with a focus on software usability and utility. RPTk implements a data flow architecture that is the source of the system's extensibility and scalability. Data flows through physicochemical modules sequentially, with each module importing data, evolving it, and exporting the updated data to the next downstream module. This is accomplished through various architectural abstractions designed to give RPTk true plug-and-play capabilities. A simple application of this architecture, as well as RPTk data flow and evolution, is demonstrated in Section 6 with an application consisting of two coupled physicochemical modules. The remaining sections describe this ongoing work in full, from system vision and design inception to full implementation. Section 3 describes the relevant software development processes used by the RPTk development team. These processes allow the team to manage system complexity and ensure stakeholder satisfaction. This section also details the work done on the RPTk ``black box'' and ``white box'' models, with a special focus on the separation of concerns between the RPTk user interface and application runtime. Section 4 and 5 discuss that application runtime component in more detail, and describe the dependencies, behavior, and rigorous testing of its constituent components.

  5. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    SciTech Connect (OSTI)

    Schultz, Peter Andrew

    2011-12-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

  6. Advancing the Theory of Nuclear Reactions with Rare Isotopes. From the Laboratory to the Cosmos

    SciTech Connect (OSTI)

    Nunes, Filomena

    2015-06-01

    The mission of the Topical Collaboration on the Theory of Reactions for Unstable iSotopes (TORUS) was to develop new methods to advance nuclear reaction theory for unstable isotopes—particularly the (d,p) reaction in which a deuteron, composed of a proton and a neutron, transfers its neutron to an unstable nucleus. After benchmarking the state-of-the-art theories, the TORUS collaboration found that there were no exact methods to study (d,p) reactions involving heavy targets; the difficulty arising from the long-range nature of the well known, yet subtle, Coulomb force. To overcome this challenge, the TORUS collaboration developed a new theory where the complexity of treating the long-range Coulomb interaction is shifted to the calculation of so-called form-factors. An efficient implementation for the computation of these form factors was a major achievement of the TORUS collaboration. All the new machinery developed are essential ingredients to analyse (d,p) reactions involving heavy nuclei relevant for astrophysics, energy production, and stockpile stewardship.

  7. Advancing the Theory of Nuclear Reactions with Rare Isotopes: From the Laboratory to the Cosmos

    SciTech Connect (OSTI)

    Elster, Charlotte

    2015-06-01

    The mission of the TORUS Topical Collaboration is to develop new methods that will advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct-reaction calculations, and, by using a new partial-fusion theory, to integrate descriptions of direct and compound-nucleus reactions. Ohio University concentrates its efforts on the first part of the mission. Since direct measurements are often not feasible, indirect methods, e.g. (d,p) reactions, should be used. Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. While there exist several separable representations for the nucleon-nucleon interaction, the optical potential between a neutron (proton) and a nucleus is not readily available in separable form. For this reason we first embarked in introducing a separable representation for complex phenomenological optical potentials of Woods-Saxon type.

  8. Advanced Non-Destructive Assay Systems and Special Instrumentation Requirements for Spent Nuclear Fuel Recycling Facilities

    SciTech Connect (OSTI)

    Simpson, A.P.; Clapham, M.J.; Swinson, B.

    2008-07-01

    drawings and documentation (iii) Lack of compatibility with modern computers, software, data transfer networks, digital protocols and electrical code standards, (iv) Non-compliance with current and future mandatory standards and regulations for nuclear facilities (v) Design focused on measurement and control points that may be specific to the facility process (vi) Lack of utilization of recent technological advances where better performing, less complex and more cost-effective options are now available. Key radiometric measurement drivers and control points for future recycling facilities have been determined and a review of the adequacy of existing instrumentation has been performed. Areas where recent technology improvements may be more effectively deployed and future technology development may be appropriate are identified. (author)

  9. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors

    SciTech Connect (OSTI)

    Bartel, N.; Chen, M.; Utgikar, V. P.; Sun, X.; Kim, I. -H.; Christensen, R.; Sabharwall, P.

    2015-04-04

    A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimum combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well.

  10. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bartel, N.; Chen, M.; Utgikar, V. P.; Sun, X.; Kim, I. -H.; Christensen, R.; Sabharwall, P.

    2015-04-04

    A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimummore » combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well.« less

  11. Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology

    Broader source: Energy.gov [DOE]

    Learn about the Energy Department's support for the next-generation nuclear energy technology -- small modular reactors.

  12. Analysis of advanced european nuclear fuel cycle scenarios including transmutation and economical estimates

    SciTech Connect (OSTI)

    Merino Rodriguez, I.; Alvarez-Velarde, F.; Martin-Fuertes, F.

    2013-07-01

    In this work the transition from the existing Light Water Reactors (LWR) to the advanced reactors is analyzed, including Generation III+ reactors in a European framework. Four European fuel cycle scenarios involving transmutation options have been addressed. The first scenario (i.e., reference) is the current fleet using LWR technology and open fuel cycle. The second scenario assumes a full replacement of the initial fleet with Fast Reactors (FR) burning U-Pu MOX fuel. The third scenario is a modification of the second one introducing Minor Actinide (MA) transmutation in a fraction of the FR fleet. Finally, in the fourth scenario, the LWR fleet is replaced using FR with MOX fuel as well as Accelerator Driven Systems (ADS) for MA transmutation. All scenarios consider an intermediate period of GEN-III+ LWR deployment and they extend for a period of 200 years looking for equilibrium mass flows. The simulations were made using the TR-EVOL code, a tool for fuel cycle studies developed by CIEMAT. The results reveal that all scenarios are feasible according to nuclear resources demand (U and Pu). Concerning to no transmutation cases, the second scenario reduces considerably the Pu inventory in repositories compared to the reference scenario, although the MA inventory increases. The transmutation scenarios show that elimination of the LWR MA legacy requires on one hand a maximum of 33% fraction (i.e., a peak value of 26 FR units) of the FR fleet dedicated to transmutation (MA in MOX fuel, homogeneous transmutation). On the other hand a maximum number of ADS plants accounting for 5% of electricity generation are predicted in the fourth scenario (i.e., 35 ADS units). Regarding the economic analysis, the estimations show an increase of LCOE (Levelized cost of electricity) - averaged over the whole period - with respect to the reference scenario of 21% and 29% for FR and FR with transmutation scenarios respectively, and 34% for the fourth scenario. (authors)

  13. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    SciTech Connect (OSTI)

    Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-09

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  14. Chapter 4: Advancing Clean Electric Power Technologies | Hybrid Nuclear-Renewable Energy Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Hybrid Nuclear-Renewable Energy Systems Chapter 4: Technology Assessments Introduction and Background This Technology Assessment summarizes the current state of knowledge of nuclear-renewable hybrid

  15. Chapter 4: Advancing Clean Electric Power Technologies | Nuclear Fuel Cycles Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Fuel Cycles Chapter 4: Technology Assessments Introduction and Background The Nuclear Fuel Cycle (NFC) is defined as the total set of operations required to produce fission energy and manage the associated nuclear materials. It can have different attributes, including the extension of natural resources, or the minimization of waste disposal requirements. The NFC, as depicted in Figure 4.O.1, is comprised of a set of operations that include the extraction of uranium (U) resources from the

  16. U.S., China Advance Nuclear Safety and Security Cooperation through...

    National Nuclear Security Administration (NNSA)

    General Hao. "Under the PUNT framework, both sides continue to promote effective and efficient measures to enhance peaceful uses of nuclear energy and strengthen public acceptance ...

  17. Science based integrated approach to advanced nuclear fuel development - integrated multi-scale multi-physics hierarchical modeling and simulation framework Part III: cladding

    SciTech Connect (OSTI)

    Tome, Carlos N; Caro, J A; Lebensohn, R A; Unal, Cetin; Arsenlis, A; Marian, J; Pasamehmetoglu, K

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Reactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems to develop predictive tools is critical. Not only are fabrication and performance models needed to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. In this paper we review the current status of the advanced modeling and simulation of nuclear reactor cladding, with emphasis on what is available and what is to be developed in each scale of the project, how we propose to pass information from one scale to the next, and what experimental information is required for benchmarking and advancing the modeling at each scale level.

  18. System Upgrades at the Advanced Test Reactor Help Ensure that Nuclear Energy Research Continues at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Craig Wise

    2011-12-01

    Fully operational in 1967, the Advanced Test Reactor (ATR) is a first-of-its-kind materials test reactor. Located on the Idaho National Laboratorys desert site, this reactor remains at the forefront of nuclear science, producing extremely high neutron irradiation in a relatively short time span. The Advanced Test Reactor is also the only U.S. reactor that can replicate multiple reactor environments concurrently. The Idaho National Laboratory and the Department of Energy recently invested over 13 million dollars to replace three of ATRs instrumentation and control systems. The new systems offer the latest software and technology advancements, ensuring the availability of the reactor for future energy research. Engineers and project managers successfully completed the four year project in March while the ATR was in a scheduled maintenance outage. These new systems represent state-of-the-art monitoring and annunciation capabilities, said Don Feldman, ATR Station Manager. They are comparable to systems currently used for advanced reactor designs planned for construction in the U.S. and in operation in some foreign countries.

  19. Advanced dry head-end reprocessing of light water reactor spent nuclear fuel

    SciTech Connect (OSTI)

    Collins, Emory D; Delcul, Guillermo D; Hunt, Rodney D; Johnson, Jared A; Spencer, Barry B

    2013-11-05

    A method for reprocessing spent nuclear fuel from a light water reactor includes the step of reacting spent nuclear fuel in a voloxidation vessel with an oxidizing gas having nitrogen dioxide and oxygen for a period sufficient to generate a solid oxidation product of the spent nuclear fuel. The reacting step includes the step of reacting, in a first zone of the voloxidation vessel, spent nuclear fuel with the oxidizing gas at a temperature ranging from 200-450.degree. C. to form an oxidized reaction product, and regenerating nitrogen dioxide, in a second zone of the voloxidation vessel, by reacting oxidizing gas comprising nitrogen monoxide and oxygen at a temperature ranging from 0-80.degree. C. The first zone and the second zone can be separate. A voloxidation system is also disclosed.

  20. Advanced dry head-end reprocessing of light water reactor spent nuclear fuel

    SciTech Connect (OSTI)

    Collins, Emory D.; Delcul, Guillermo D.; Hunt, Rodney D.; Johnson, Jared A.; Spencer, Barry B.

    2014-06-10

    A method for reprocessing spent nuclear fuel from a light water reactor includes the step of reacting spent nuclear fuel in a voloxidation vessel with an oxidizing gas having nitrogen dioxide and oxygen for a period sufficient to generate a solid oxidation product of the spent nuclear fuel. The reacting step includes the step of reacting, in a first zone of the voloxidation vessel, spent nuclear fuel with the oxidizing gas at a temperature ranging from 200-450.degree. C. to form an oxidized reaction product, and regenerating nitrogen dioxide, in a second zone of the voloxidation vessel, by reacting oxidizing gas comprising nitrogen monoxide and oxygen at a temperature ranging from 0-80.degree. C. The first zone and the second zone can be separate. A voloxidation system is also disclosed.

  1. THE ATTRACTIVENESS OF MATERIALS IN ADVANCED NUCLEAR FUEL CYCLES FOR VARIOUS PROLIFERATION AND THEFT SCENARIOS

    SciTech Connect (OSTI)

    Bathke, C. G.; Ebbinghaus, Bartley B.; Collins, Brian A.; Sleaford, Brad W.; Hase, Kevin R.; Robel, Martin; Wallace, R. K.; Bradley, Keith S.; Ireland, J. R.; Jarvinen, G. D.; Johnson, M. W.; Prichard, Andrew W.; Smith, Brian W.

    2012-08-29

    We must anticipate that the day is approaching when details of nuclear weapons design and fabrication will become common knowledge. On that day we must be particularly certain that all special nuclear materials (SNM) are adequately accounted for and protected and that we have a clear understanding of the utility of nuclear materials to potential adversaries. To this end, this paper examines the attractiveness of materials mixtures containing SNM and alternate nuclear materials associated with the plutonium-uranium reduction extraction (Purex), uranium extraction (UREX), coextraction (COEX), thorium extraction (THOREX), and PYROX (an electrochemical refining method) reprocessing schemes. This paper provides a set of figures of merit for evaluating material attractiveness that covers a broad range of proliferant state and subnational group capabilities. The primary conclusion of this paper is that all fissile material must be rigorously safeguarded to detect diversion by a state and must be provided the highest levels of physical protection to prevent theft by subnational groups; no 'silver bullet' fuel cycle has been found that will permit the relaxation of current international safeguards or national physical security protection levels. The work reported herein has been performed at the request of the U.S. Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for, the nuclear materials in DOE nuclear facilities. The methodology and findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security is discussed.

  2. Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants

    SciTech Connect (OSTI)

    DiNunzio, Camillo A.; Gupta, Abhinav; Golay, Michael; Luk, Vincent; Turk, Rich; Morrow, Charles; Jin, Geum-Taek

    2002-11-30

    This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

  3. Advances in nuclear data and all-particle transport for radiation oncology

    SciTech Connect (OSTI)

    White, R.M.; Chadwick, M.B.; Chandler, W.P.; Hartmann Siantar, C.L.; Westbrook, C.K.

    1994-05-01

    Fast neutrons have been used to treat over 15,000 cancer patients worldwide and proton therapy is rapidly emerging as a treatment of choice for tumors around critical anatomical structures. Neutron therapy requires evaluated data to {approximately}70 MeV while proton therapy requires data to {approximately}250 MeV. Collaboration between Lawrence Livermore National Laboratory (LLNL) and the medical physics community has revealed limitations in nuclear cross section evaluations and radiation transport capabilities that have prevented neutron and proton radiation therapy centers from using Monte Carlo calculations to accurately predict dose in patients. These evaluations require energy- and angle-dependent cross sections for secondary neutrons, charged-particles and recoil nuclei. We are expanding the LLNL nuclear databases to higher energies for biologically important elements and have developed a three-dimensional, all-particle Monte Carlo radiation transport code that uses computer-assisted-tomography (CT) images as the input mesh. This code, called PEREGRINE calculates dose distributions in the human body and can be used as a tool to determine the dependence of dose on details of the evaluated nuclear data. In this paper, we will review the status of the nuclear data required for neutron and proton therapy, describe the capabilities of the PEREGRINE package, and show the effects of tissue inhomogeneities on dose distribution.

  4. Final Report: Advanced Methods for Accessing and Disseminating Nuclear Data, August 13, 1996 - March 15, 1999

    SciTech Connect (OSTI)

    Stone, Craig A.

    1999-03-15

    Scientific Digital Visions, Inc. developed methods of accessing and dissemination nuclear data contained within the databases of the National Data Center (NNDC) at the Brookhaven National Laboratory supporting a long standing and important DOE Program to provide scientists access to NNDC Databases. The NNDC participated as a partner in this effort.

  5. Multiscale Modeling of the Deformation of Advanced Ferritic Steels for Generation IV Nuclear Energy

    SciTech Connect (OSTI)

    Nasr M. Ghoniem; Nick Kioussis

    2009-04-18

    The objective of this project is to use the multi-scale modeling of materials (MMM) approach to develop an improved understanding of the effects of neutron irradiation on the mechanical properties of high-temperature structural materials that are being developed or proposed for Gen IV applications. In particular, the research focuses on advanced ferritic/ martensitic steels to enable operation up to 650-700°C, compared to the current 550°C limit on high-temperature steels.

  6. ADVANCED TECHNOLOGIES FOR THE SIMULTANEOUS SEPARATION OF CESIUM AND STRONTIUM FROM SPENT NUCLEAR FUEL

    SciTech Connect (OSTI)

    Jack D. Law; Terry A. Todd; R. Scott Herbst; David H. Meikrantz; Dean R. Peterman; Catherine L. Riddle; Richard D. Tillotson

    2005-02-01

    Two new solvent extraction technologies have been recently developed to simultaneously separate cesium and strontium from spent nuclear fuel, following dissolution in nitric acid. The first process utilizes a solvent consisting of chlorinated cobalt dicarbollide and polyethylene glycol extractants in a phenyltrifluoromethyl sulfone diluent. Recent improvements to the process include development of a new, non-nitroaromatic diluent and development of new stripping reagents, including a regenerable strip reagent that can be recovered and recycled. This new strip reagent reduces product volume by a factor of 20, over the baseline process. Countercurrent flowsheet tests on simulated spent nuclear fuel feed streams have been performed with both cesium and strontium removal efficiencies of greater than 99 %. The second process developed to simultaneously separate cesium and strontium from spent nuclear fuel is based on two highly-specific extractants: 4',4',(5')-Di-(t-butyldicyclo-hexano)-18-crown-6 (DtBuCH18C6) and Calix[4]arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium and the BOBCalixC6 extractant is selective for cesium. A solvent composition has been developed that enables both elements to be removed together and, in fact, a synergistic effect was observed with strontium distributions in the combined solvent that are much higher that in the strontium extraction (SREX) process. Initial laboratory test results of the new combined cesium and strontium extraction process indicate good extraction and stripping performance.

  7. Requirements for a Dynamic Solvent Extraction Module to Support Development of Advanced Technologies for the Recycle of Used Nuclear Fuel

    SciTech Connect (OSTI)

    Jack Law; Veronica Rutledge; Candido Pereira; Jackie Copple; Kurt Frey; John Krebs; Laura Maggos; Kevin Nichols; Kent Wardle; Pratap Sadasivan; Valmor DeAlmieda; David Depaoli

    2011-06-01

    The Department of Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program has been established to create and deploy next generation, verified and validated nuclear energy modeling and simulation capabilities for the design, implementation, and operation of future nuclear energy systems to improve the U.S. energy security. As part of the NEAMS program, Integrated Performance and Safety Codes (IPSC's) are being produced to significantly advance the status of modeling and simulation of energy systems beyond what is currently available to the extent that the new codes be readily functional in the short term and extensible in the longer term. The four IPSC areas include Safeguards and Separations, Reactors, Fuels, and Waste Forms. As part of the Safeguards and Separations (SafeSeps) IPSC effort, interoperable process models are being developed that enable dynamic simulation of an advanced separations plant. A SafeSepss IPSC 'toolkit' is in development to enable the integration of separation process modules and safeguards tools into the design process by providing an environment to compose, verify and validate a simulation application to be used for analysis of various plant configurations and operating conditions. The modules of this toolkit will be implemented on a modern, expandable architecture with the flexibility to explore and evaluate a wide range of process options while preserving their stand-alone usability. Modules implemented at the plant-level will initially incorporate relatively simple representations for each process through a reduced modeling approach. Final versions will incorporate the capability to bridge to subscale models to provide required fidelity in chemical and physical processes. A dynamic solvent extraction model and its module implementation are needed to support the development of this integrated plant model. As a stand-alone application, it will also support solvent development of extraction flowsheets and integrated

  8. Radioactive waste shipments to Hanford retrievable storage from Westinghouse Advanced Reactors and Nuclear Fuels Divisions, Cheswick, Pennsylvania

    SciTech Connect (OSTI)

    Duncan, D.; Pottmeyer, J.A.; Weyns, M.I.; Dicenso, K.D.; DeLorenzo, D.S.

    1994-04-01

    During the next two decades the transuranic (TRU) waste now stored in the burial trenches and storage facilities at the Hanford Sits in southeastern Washington State is to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico for final disposal. Approximately 5.7 percent of the TRU waste to be retrieved for shipment to WIPP was generated by the decontamination and decommissioning (D&D) of the Westinghouse Advanced Reactors Division (WARD) and the Westinghouse Nuclear Fuels Division (WNFD) in Cheswick, Pennsylvania and shipped to the Hanford Sits for storage. This report characterizes these radioactive solid wastes using process knowledge, existing records, and oral history interviews.

  9. Microsoft Word - Advanced_Nuclear_Energy_Projects_Loan_Guarantee_Solicitation_Cover_Sheet_30-Apr-2015.docx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NUCLEAR ENERGY PROJECTS Solicitation Number: DE-SOL-0007791 OMB Control Number: 1910-5134; OMB Expiration Date 11/30/2016 Announcement Type: Initial Issue Date: December 10, 2014 First Part I Submission Due Date: March 18, 2015 1 First Part II Submission Due Date: October 14, 2015 2 Last Part I Submission Due Date: March 16, 2016 Last Part II Submission Due Date: October 19 2016 1 Please refer to Section V.A. for multiple due dates regarding Part I submissions. 2 Please refer to Section V.A. for

  10. nuclear

    National Nuclear Security Administration (NNSA)

    2%2A en U.S-, Japan Exchange Best Practices on Nuclear Emergency Response http:nnsa.energy.govmediaroompressreleasesu.s-japan-exchange-best-practices-nuclear-emergency-respon...

  11. Advanced Outage and Control Center: Strategies for Nuclear Plant Outage Work Status Capabilities

    SciTech Connect (OSTI)

    Gregory Weatherby

    2012-05-01

    The research effort is a part of the Light Water Reactor Sustainability (LWRS) Program. LWRS is a research and development program sponsored by the Department of Energy, performed in close collaboration with industry to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. The LWRS Program serves to help the US nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The Outage Control Center (OCC) Pilot Project was directed at carrying out the applied research for development and pilot of technology designed to enhance safe outage and maintenance operations, improve human performance and reliability, increase overall operational efficiency, and improve plant status control. Plant outage management is a high priority concern for the nuclear industry from cost and safety perspectives. Unfortunately, many of the underlying technologies supporting outage control are the same as those used in the 1980’s. They depend heavily upon large teams of staff, multiple work and coordination locations, and manual administrative actions that require large amounts of paper. Previous work in human reliability analysis suggests that many repetitive tasks, including paper work tasks, may have a failure rate of 1.0E-3 or higher (Gertman, 1996). With between 10,000 and 45,000 subtasks being performed during an outage (Gomes, 1996), the opportunity for human error of some consequence is a realistic concern. Although a number of factors exist that can make these errors recoverable, reducing and effectively coordinating the sheer number of tasks to be performed, particularly those that are error prone, has the potential to enhance outage efficiency and safety. Additionally, outage management requires precise coordination of work groups that do not always share similar objectives. Outage

  12. Advancing Inverse Sensitivity/Uncertainty Methods for Nuclear Fuel Cycle Applications

    SciTech Connect (OSTI)

    Arbanas, Goran; Williams, Mark L; Leal, Luiz C; Dunn, Michael E; Khuwaileh, Bassam A.; Wang, C; Abdel-Khalik, Hany

    2015-01-01

    The inverse sensitivity/uncertainty quantification (IS/UQ) method has recently been implemented in the Inverse Sensitivity/UnceRtainty Estimiator (INSURE) module of the AMPX system [1]. The IS/UQ method aims to quantify and prioritize the cross section measurements along with uncer- tainties needed to yield a given nuclear application(s) target response uncertainty, and doing this at a minimum cost. Since in some cases the extant uncertainties of the differential cross section data are already near the limits of the present-day state-of-the-art measurements, requiring significantly smaller uncertainties may be unrealistic. Therefore we have incorporated integral benchmark exper- iments (IBEs) data into the IS/UQ method using the generalized linear least-squares method, and have implemented it in the INSURE module. We show how the IS/UQ method could be applied to systematic and statistical uncertainties in a self-consistent way. We show how the IS/UQ method could be used to optimize uncertainties of IBE s and differential cross section data simultaneously.

  13. Advanced Fuels Campaign Execution Plan

    SciTech Connect (OSTI)

    Kemal Pasamehmetoglu

    2011-09-01

    The purpose of the Advanced Fuels Campaign (AFC) Execution Plan is to communicate the structure and management of research, development, and demonstration (RD&D) activities within the Fuel Cycle Research and Development (FCRD) program. Included in this document is an overview of the FCRD program, a description of the difference between revolutionary and evolutionary approaches to nuclear fuel development, the meaning of science-based development of nuclear fuels, and the 'Grand Challenge' for the AFC that would, if achieved, provide a transformational technology to the nuclear industry in the form of a high performance, high reliability nuclear fuel system. The activities that will be conducted by the AFC to achieve success towards this grand challenge are described and the goals and milestones over the next 20 to 40 year period of research and development are established.

  14. Advanced Fuels Campaign Execution Plan

    SciTech Connect (OSTI)

    Kemal Pasamehmetoglu

    2010-10-01

    The purpose of the Advanced Fuels Campaign (AFC) Execution Plan is to communicate the structure and management of research, development, and demonstration (RD&D) activities within the Fuel Cycle Research and Development (FCRD) program. Included in this document is an overview of the FCRD program, a description of the difference between revolutionary and evolutionary approaches to nuclear fuel development, the meaning of science-based development of nuclear fuels, and the “Grand Challenge” for the AFC that would, if achieved, provide a transformational technology to the nuclear industry in the form of a high performance, high reliability nuclear fuel system. The activities that will be conducted by the AFC to achieve success towards this grand challenge are described and the goals and milestones over the next 20 to 40 year period of research and development are established.

  15. DEVELOPMENT OF CERAMIC WASTE FORMS FOR AN ADVANCED NUCLEAR FUEL CYCLE

    SciTech Connect (OSTI)

    Marra, J.; Billings, A.; Brinkman, K.; Fox, K.

    2010-11-30

    A series of ceramic waste forms were developed and characterized for the immobilization of a Cesium/Lanthanide (CS/LN) waste stream anticipated to result from nuclear fuel reprocessing. Simple raw materials, including Al{sub 2}O{sub 3} and TiO{sub 2} were combined with simulated waste components to produce multiphase ceramics containing hollandite-type phases, perovskites (particularly BaTiO{sub 3}), pyrochlores and other minor metal titanate phases. Three fabrication methodologies were used, including melting and crystallizing, pressing and sintering, and Spark Plasma Sintering (SPS), with the intent of studying phase evolution under various sintering conditions. X-Ray Diffraction (XRD) and Scanning Electron Microscopy coupled with Energy Dispersive Spectroscopy (SEM/EDS) results showed that the partitioning of the waste elements in the sintered materials was very similar, despite varying stoichiometry of the phases formed. Identification of excess Al{sub 2}O{sub 3} via XRD and SEM/EDS in the first series of compositions led to a Phase II study, with significantly reduced Al{sub 2}O{sub 3} concentrations and increased waste loadings. The Phase II compositions generally contained a reduced amount of unreacted Al{sub 2}O{sub 3} as identified by XRD. Chemical composition measurements showed no significant issues with meeting the target compositions. However, volatilization of Cs and Mo was identified, particularly during melting, since sintering of the pressed pellets and SPS were performed at lower temperatures. Partitioning of some of the waste components was difficult to determine via XRD. SEM/EDS mapping showed that those elements, which were generally present in small concentrations, were well distributed throughout the waste forms.

  16. Deployment & Market Transformation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    NREL's deployment and market transformation (D and MT) activities encompass the laboratory's full range of technologies, which span the energy efficiency and renewable energy spectrum. NREL staff educates partners on how they can advance sustainable energy applications and also provides clients with best practices for reducing barriers to innovation and market transformation.

  17. Recent advances in biosynthetic modeling of nitric oxide reductases and insights gained from nuclear resonance vibrational and other spectroscopic studies

    SciTech Connect (OSTI)

    Chakraborty, Saumen; Reed, Julian; Sage, Timothy; Branagan, Nicole C.; Petrik, Igor D.; Miner, Kyle D.; Hu, Michael Y.; Zhao, Jiyong; Alp, E. Ercan; Lu, Yi

    2015-08-14

    This Forum Article focuses on recent advances in structural and spectroscopic studies of biosynthetic models of nitric oxide reductases (NORs). NORs are complex metalloenzymes found in the denitrification pathway of Earth's nitrogen cycle where they catalyze the proton-dependent twoelectron reduction of nitric oxide (NO) to nitrous oxide (N2O). While much progress has been made in biochemical and biophysical studies of native NORs and their variants, a. clear mechanistic understanding of this important metalloenzyme related to its function is still elusive. We report herein UV vis and nuclear resonance vibrational spectroscopy (NRVS) studies of mononitrosylated intermediates of the NOR reaction of a biosynthetic model. The ability to selectively substitute metals at either heme or nonheme metal sites allows the introduction of independent 57Fe probe atoms at either site, as well as allowing the preparation of analogues of stable reaction intermediates by replacing either metal with a redox inactive metal. Together with previous structural and spectroscopic results, we summarize insights gained from studying these biosynthetic models toward understanding structural features responsible for the NOR activity and its mechanism. As a result, the outlook on NOR modeling is also discussed, with an emphasis on the design of models capable of catalytic turnovers designed based on close mimics of the secondary coordination sphere of native NORs.

  18. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration.

    SciTech Connect (OSTI)

    Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.; Dewers, Thomas A.; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Wang, Yifeng; Schultz, Peter Andrew

    2011-02-01

    This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.

  19. Recent advances in biosynthetic modeling of nitric oxide reductases and insights gained from nuclear resonance vibrational and other spectroscopic studies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chakraborty, Saumen; Reed, Julian; Sage, Timothy; Branagan, Nicole C.; Petrik, Igor D.; Miner, Kyle D.; Hu, Michael Y.; Zhao, Jiyong; Alp, E. Ercan; Lu, Yi

    2015-08-14

    This Forum Article focuses on recent advances in structural and spectroscopic studies of biosynthetic models of nitric oxide reductases (NORs). NORs are complex metalloenzymes found in the denitrification pathway of Earth's nitrogen cycle where they catalyze the proton-dependent twoelectron reduction of nitric oxide (NO) to nitrous oxide (N2O). While much progress has been made in biochemical and biophysical studies of native NORs and their variants, a. clear mechanistic understanding of this important metalloenzyme related to its function is still elusive. We report herein UV vis and nuclear resonance vibrational spectroscopy (NRVS) studies of mononitrosylated intermediates of the NOR reaction ofmore » a biosynthetic model. The ability to selectively substitute metals at either heme or nonheme metal sites allows the introduction of independent 57Fe probe atoms at either site, as well as allowing the preparation of analogues of stable reaction intermediates by replacing either metal with a redox inactive metal. Together with previous structural and spectroscopic results, we summarize insights gained from studying these biosynthetic models toward understanding structural features responsible for the NOR activity and its mechanism. As a result, the outlook on NOR modeling is also discussed, with an emphasis on the design of models capable of catalytic turnovers designed based on close mimics of the secondary coordination sphere of native NORs.« less

  20. advanced manufacutring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manufacutring - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  1. Nuclear and Radiological Material Security | National Nuclear...

    National Nuclear Security Administration (NNSA)

    This includes NNSA's work to advance physical protection standards for nuclear facilities and to strengthen nuclear safeguards, which are criteria for the physical security and the ...

  2. Challenge problem and milestones for : Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC).

    SciTech Connect (OSTI)

    Freeze, Geoffrey A.; Wang, Yifeng; Howard, Robert; McNeish, Jerry A.; Schultz, Peter Andrew; Arguello, Jose Guadalupe, Jr.

    2010-09-01

    This report describes the specification of a challenge problem and associated challenge milestones for the Waste Integrated Performance and Safety Codes (IPSC) supporting the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The NEAMS challenge problems are designed to demonstrate proof of concept and progress towards IPSC goals. The goal of the Waste IPSC is to develop an integrated suite of modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. To demonstrate proof of concept and progress towards these goals and requirements, a Waste IPSC challenge problem is specified that includes coupled thermal-hydrologic-chemical-mechanical (THCM) processes that describe (1) the degradation of a borosilicate glass waste form and the corresponding mobilization of radionuclides (i.e., the processes that produce the radionuclide source term), (2) the associated near-field physical and chemical environment for waste emplacement within a salt formation, and (3) radionuclide transport in the near field (i.e., through the engineered components - waste form, waste package, and backfill - and the immediately adjacent salt). The initial details of a set of challenge milestones that collectively comprise the full challenge problem are also specified.

  3. Civilian Nuclear Programs, SPO-CNP: LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Civilian Nuclear Programs, SPO-CNP Science Program Office Applied Energy Civilian Nuclear Office of Science Civilian Nuclear Programs Home Advanced Nuclear Energy Programs Yucca ...

  4. Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants

    SciTech Connect (OSTI)

    Mays, Gary T; Belles, Randy; Cetiner, Sacit M; Howard, Rob L; Liu, Cheng; Mueller, Don; Omitaomu, Olufemi A; Peterson, Steven K; Scaglione, John M

    2012-06-01

    The objective of this siting study work is to support DOE in evaluating integrated advanced nuclear plant and ISFSI deployment options in the future. This study looks at several nuclear power plant growth scenarios that consider the locations of existing and planned commercial nuclear power plants integrated with the establishment of consolidated interim spent fuel storage installations (ISFSIs). This research project is aimed at providing methodologies, information, and insights that inform the process for determining and optimizing candidate areas for new advanced nuclear power generation plants and consolidated ISFSIs to meet projected US electric power demands for the future.

  5. NUCLEAR REGULATORY COMMISSION

    Office of Environmental Management (EM)

    NUCLEAR REGULATORY COMMISSION 10 CFR Parts 71 and 73 RIN 3150-AG41 Advance Notification to Native American Tribes of Transportation of Certain Types of Nuclear Waste AGENCY: ...

  6. Report on the workshop "Decay spectroscopy at CARIBU: advanced fuel cycle applications, nuclear structure and astrophysics". 14-16 April 2011, Argonne National Laboratory, USA.

    SciTech Connect (OSTI)

    Kondev, F.; Carpenter, M.P.; Chowdhury, P.; Clark, J.A.; Lister, C.J.; Nichols, A.L.; Swewryniak, D.

    2011-10-06

    A workshop on 'Decay Spectroscopy at CARIBU: Advanced Fuel Cycle Applications, Nuclear Structure and Astrophysics' will be held at Argonne National Laboratory on April 14-16, 2011. The aim of the workshop is to discuss opportunities for decay studies at the Californium Rare Isotope Breeder Upgrade (CARIBU) of the ATLAS facility with emphasis on advanced fuel cycle (AFC) applications, nuclear structure and astrophysics research. The workshop will consist of review and contributed talks. Presentations by members of the local groups, outlining the status of relevant in-house projects and availabile equipment, will also be organized. time will also be set aside to discuss and develop working collaborations for future decay studies at CARIBU. Topics of interest include: (1) Decay data of relevance to AFC applications with emphasis on reactor decay heat; (2) Discrete high-resolution gamma-ray spectroscopy following radioactive decya and related topics; (3) Calorimetric studies of neutron-rich fission framgents using Total ABsorption Gamma-Ray Spectrometry (TAGS) technique; (4) Beta-delayed neutron emissions and related topics; and (5) Decay data needs for nuclear astrophysics.

  7. Evaluation of the applicability of existing nuclear power plant regulatory requirements in the U.S. to advanced small modular reactors.

    SciTech Connect (OSTI)

    LaChance, Jeffrey L.; Wheeler, Timothy A.; Farnum, Cathy Ottinger; Middleton, Bobby D.; Jordan, Sabina Erteza; Duran, Felicia Angelica; Baum, Gregory A.

    2013-05-01

    The current wave of small modular reactor (SMR) designs all have the goal of reducing the cost of management and operations. By optimizing the system, the goal is to make these power plants safer, cheaper to operate and maintain, and more secure. In particular, the reduction in plant staffing can result in significant cost savings. The introduction of advanced reactor designs and increased use of advanced automation technologies in existing nuclear power plants will likely change the roles, responsibilities, composition, and size of the crews required to control plant operations. Similarly, certain security staffing requirements for traditional operational nuclear power plants may not be appropriate or necessary for SMRs due to the simpler, safer and more automated design characteristics of SMRs. As a first step in a process to identify where regulatory requirements may be met with reduced staffing and therefore lower cost, this report identifies the regulatory requirements and associated guidance utilized in the licensing of existing reactors. The potential applicability of these regulations to advanced SMR designs is identified taking into account the unique features of these types of reactors.

  8. Interagency Advanced Power Group, Joint Electrical and Nuclear Working Group, meeting minutes, November 16--17, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    Reports on soldier power R&D review, N-MCT power electronic building blocks, silicon carbide power semiconductor work, and ground based radar were made to the Power Conditioning Panel. An introduction to high temperature electronics needs, research and development was made to the High Temperature Electronics Subcommittee. The Pulse Power Panel received reports on the navy ETC gun, and army pulse power. The Superconductivity Panel received reports on high-tc superconducting wires, superconducting magnetic energy storage, and superconducting applications. The Nuclear Working Group received presentations on the Topaz nuclear power program, and space nuclear work in the Department of Energy.

  9. CASL: The Consortium for Advanced Simulation of Light Water Reactors A DOE Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AMA.NRC.P5.01 CASL NRC Commissioner Technical Seminar Jess Gehin Oak Ridge National Laboratory December 22, 2012 CASL-U-2014-0076-000-a CASL-U-2012-0076-000-a 1 CASL: The Consortium for Advanced Simulation of Light Water Reactors A DOE Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors NRC Commissioner Technical Seminar November 30, 2012 Doug Kothe (ORNL) CASL Director Doug Burns (INL) CASL Deputy Director Paul Turinsky (NCSU) CASL Chief Scientist Jess Gehin (ORNL) CASL AMA FA

  10. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Over Five Years Computational Modeling & Simulation, Energy, News, News & Events, Nuclear Energy, Partnership, Systems Analysis Consortium for Advanced Simulation of...

  11. Nuclear Safety Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Safety Information Nuclear Safety Information Idaho National Laboratory's Advanced Test Reactor (ATR) | April 8, 2009 Idaho National Laboratory's Advanced Test Reactor (ATR) | April 8, 2009 Nuclear Facilities List and Map Nuclear Safety Regulatory Framework Summary Pamphlet, Nuclear Safety at the Department of Energy External Nuclear Safety Links Nuclear Regulatory Commission (NRC) Defense Nuclear Facilities Safety Board Contact Tom Staker

  12. Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS) Code Verification and Validation Data Standards and Requirements: Fluid Dynamics Version 1.0

    SciTech Connect (OSTI)

    Greg Weirs; Hyung Lee

    2011-09-01

    V&V and UQ are the primary means to assess the accuracy and reliability of M&S and, hence, to establish confidence in M&S. Though other industries are establishing standards and requirements for the performance of V&V and UQ, at present, the nuclear industry has not established such standards or requirements. However, the nuclear industry is beginning to recognize that such standards are needed and that the resources needed to support V&V and UQ will be very significant. In fact, no single organization has sufficient resources or expertise required to organize, conduct and maintain a comprehensive V&V and UQ program. What is needed is a systematic and standardized approach to establish and provide V&V and UQ resources at a national or even international level, with a consortium of partners from government, academia and industry. Specifically, what is needed is a structured and cost-effective knowledge base that collects, evaluates and stores verification and validation data, and shows how it can be used to perform V&V and UQ, leveraging collaboration and sharing of resources to support existing engineering and licensing procedures as well as science-based V&V and UQ processes. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Utah State University and others with the objective of establishing a comprehensive and web-accessible knowledge base to provide V&V and UQ resources for M&S for nuclear reactor design, analysis and licensing. The knowledge base will serve as an important resource for technical exchange and collaboration that will enable credible and reliable computational models and simulations for application to nuclear power. NE-KAMS will serve as a valuable resource for the nuclear industry, academia, the national laboratories, the U.S. Nuclear Regulatory Commission (NRC) and

  13. Market Transformation

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market transformation subprogram.

  14. DEVELOPMENT OF A MULTI-LOOP FLOW AND HEAT TRANSFER FACILITY FOR ADVANCED NUCLEAR REACTOR THERMAL HYDRAULIC AND HYBRID ENERGY SYSTEM STUDIES

    SciTech Connect (OSTI)

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-09-01

    A new high-temperature multi-fluid, multi-loop test facility for advanced nuclear applications is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Molten salts have been identified as excellent candidate heat transport fluids for primary or secondary coolant loops, supporting advanced high temperature and small modular reactors (SMRs). Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed. A preliminary design configuration will be presented, with the required characteristics of the various components. The loop will utilize advanced high-temperature compact printed-circuit heat exchangers (PCHEs) operating at prototypic intermediate heat exchanger (IHX) conditions. The initial configuration will include a high-temperature (750°C), high-pressure (7 MPa) helium loop thermally integrated with a molten fluoride salt (KF-ZrF4) flow loop operating at low pressure (0.2 MPa) at a temperature of ~450°C. Experiment design challenges include identification of suitable materials and components that will withstand the required loop operating conditions. Corrosion and high temperature creep behavior are major considerations. The facility will include a thermal energy storage capability designed to support scaled process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will also provide important data for code ve

  15. OSTIblog Articles in the nuclear security Topic | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    the nation's energy, environmental and nuclear challenges through transformative science ... in strategic areas * Enhancing nuclear security through defense, ...

  16. A Pilot Study Investigating the Effects of Advanced Nuclear Power Plant Control Room Technologies: Methods and Qualitative Results

    SciTech Connect (OSTI)

    BLanc, Katya Le; Powers, David; Joe, Jeffrey; Spielman, Zachary; Rice, Brandon; Fitzgerald, Kirk

    2015-08-01

    Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.

  17. Market Transformation

    Fuel Cell Technologies Publication and Product Library (EERE)

    This Fuel Cell Technologies Program fact sheet outlines current status and challenges in the market transformation of hydrogen and fuel cell technologies.

  18. Market Transformation

    SciTech Connect (OSTI)

    2011-02-15

    This Fuel Cell Technologies Program fact sheet outlines current status and challenges in the market transformation of hydrogen and fuel cell technologies.

  19. United States and Italy Sign Agreements to Advance Developments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    today signed two important nuclear energy agreements that may lead to construction of new nuclear power plants and improved cooperation on advanced nuclear energy systems and fuel...

  20. United States and Italy Sign Agreements to Advance Developments...

    Office of Environmental Management (EM)

    lead to construction of new nuclear power plants and improved cooperation on advanced ... nuclear industries to seek opportunities for the construction of new nuclear power plants. ...

  1. Deputy Manager for Nuclear Energy

    Broader source: Energy.gov [DOE]

    The Department of Energy's Office of Nuclear Energy (NE) advances nuclear power as a resource capable of meeting the Nation's energy, environmental, and national security needs by resolving...

  2. Nuclear Energy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our scientists and engineers conduct research in advanced nuclear energy systems, nonproliferation and national security, and environmental management. Nuclear energy is the ...

  3. Final LDRD report : nanoscale mechanisms in advanced aging of materials during storage of spent %22high burnup%22 nuclear fuel.

    SciTech Connect (OSTI)

    Clark, Blythe G.; Rajasekhara, Shreyas; Enos, David George; Dingreville, Remi Philippe Michel; Doyle, Barney Lee; Hattar, Khalid Mikhiel; Weiner, Ruth F.

    2013-09-01

    We present the results of a three-year LDRD project focused on understanding microstructural evolution and related property changes in Zr-based nuclear cladding materials towards the development of high fidelity predictive simulations for long term dry storage. Experiments and modeling efforts have focused on the effects of hydride formation and accumulation of irradiation defects. Key results include: determination of the influence of composition and defect structures on hydride formation; measurement of the electrochemical property differences between hydride and parent material for understanding and predicting corrosion resistance; in situ environmental transmission electron microscope observation of hydride formation; development of a predictive simulation for mechanical property changes as a function of irradiation dose; novel test method development for microtensile testing of ionirradiated material to simulate the effect of neutron irradiation on mechanical properties; and successful demonstration of an Idaho National Labs-based sample preparation and shipping method for subsequent Sandia-based analysis of post-reactor cladding.

  4. Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment

    Broader source: Energy.gov [DOE]

    Presenter: Bentley Harwood, Advanced Test Reactor Nuclear Safety Engineer Battelle Energy Alliance Idaho National Laboratory

  5. Market Transformation Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market Transformation Fact Sheet Market Transformation Fact Sheet This fact sheet describes the Fuel Cell Technologies Office's Market Transformation strategies and activities, which are aimed at accelerating early market adoption and advancing pre-competitive technologies. Market Transformation (1.49 MB) More Documents & Publications Early Markets: Fuel Cells for Material Handling Equipment Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets Early Markets:

  6. Civilian Nuclear Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Civilian Nuclear Program Civilian Nuclear Program Los Alamos is committed to using its advanced nuclear expertise and unique facilities to meet the civilian nuclear national security demands of the future. CONTACT US Program Director Venkateswara Rao Dasari (Rao) (505) 667-5098 Email Los Alamos partners extensively with other laboratories, universities, industry, and the international nuclear community to address real-world technical challenges The Civilian Nuclear Program is the focal point for

  7. TTU Advanced Doppler Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TTU Advanced Doppler Radar - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  8. ADVANCED NUCLEAR FUEL CYCLE EFFECTS ON THE TREATMENT OF UNCERTAINTY IN THE LONG-TERM ASSESSMENT OF GEOLOGIC DISPOSAL SYSTEMS - EBS INPUT

    SciTech Connect (OSTI)

    Sutton, M; Blink, J A; Greenberg, H R; Sharma, M

    2012-04-25

    in borosilicate glass. Because the heat load of the glass was much less than the PWR and BWR assemblies, the glass waste form was able to be co-disposed with the open cycle waste, by interspersing glass waste packages among the spent fuel assembly waste packages. In addition, the Yucca Mountain repository was designed to include some research reactor spent fuel and naval reactor spent fuel, within the envelope that was set using the commercial reactor assemblies as the design basis waste form. This milestone report supports Sandia National Laboratory milestone M2FT-12SN0814052, and is intended to be a chapter in that milestone report. The independent technical review of this LLNL milestone was performed at LLNL and is documented in the electronic Information Management (IM) system at LLNL. The objective of this work is to investigate what aspects of quantifying, characterizing, and representing the uncertainty associated with the engineered barrier are affected by implementing different advanced nuclear fuel cycles (e.g., partitioning and transmutation scenarios) together with corresponding designs and thermal constraints.

  9. SPOT Suite Transforms Beamline Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPOT Suite Transforms Beamline Science SPOT Suite Transforms Beamline Science SPOT Suite brings advanced algorithms, high performance computing and data management to the masses August 18, 2014 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov als.jpg Advanced Light Source (ALS) at Berkeley Lab (Photo by Roy Kaltschmidt) Some mysteries of science can only be explained on a nanometer scale -even smaller than a single strand of human DNA, which is about 2.5 nanometers wide. At this scale, scientists

  10. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    SciTech Connect (OSTI)

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  11. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model - 13413

    SciTech Connect (OSTI)

    Djokic, Denia [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States)] [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, Steven J.; Pincock, Layne F.; Soelberg, Nick R. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)] [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

    2013-07-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity. (authors)

  12. Transformational Manufacturing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and

  13. Advanced Test Reactor Tour

    ScienceCinema (OSTI)

    Miley, Don

    2013-05-28

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  14. Advanced Test Reactor Tour

    SciTech Connect (OSTI)

    Miley, Don

    2011-01-01

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  15. AdvAnced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AdvAnced test reActor At the InL advanced Unlike large, commercial power reactors, ATR is a low- temperature, low-pressure reactor. A nuclear reactor is basically an elaborate tool to produce power. reactors work by splitting atoms, the basic building blocks of matter, to release large amounts of energy. In commercial power reactors, that energy heats water, which creates steam. the steam turns turbines, generating electricity. What makes the Advanced test reactor, located at the Idaho national

  16. nuclear reactors | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear reactors NNSA Researchers Advance Technology for Remote Reactor Monitoring NNSA's Defense Nuclear Nonproliferation Research and Development Program drives the innovation of technical capabilities to detect, identify, and characterize foreign nuclear weapons development activities. To achieve this, NNSA leverages the unique capabilities of the national laboratories

  17. Advanced LBB methodology and considerations

    SciTech Connect (OSTI)

    Olson, R.; Rahman, S.; Scott, P.

    1997-04-01

    LBB applications have existed in many industries and more recently have been applied in the nuclear industry under limited circumstances. Research over the past 10 years has evolved the technology so that more advanced consideration of LBB can now be given. Some of the advanced considerations for nuclear plants subjected to seismic loading evaluations are summarized in this paper.

  18. Department of Energy and Nuclear Regulatory Commission Increase...

    Office of Environmental Management (EM)

    Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership Department of Energy and Nuclear Regulatory Commission Increase Cooperation to ...

  19. RF transformer

    DOE Patents [OSTI]

    Smith, James L.; Helenberg, Harold W.; Kilsdonk, Dennis J.

    1979-01-01

    There is provided an improved RF transformer having a single-turn secondary of cylindrical shape and a coiled encapsulated primary contained within the secondary. The coil is tapered so that the narrowest separation between the primary and the secondary is at one end of the coil. The encapsulated primary is removable from the secondary so that a variety of different capacity primaries can be utilized with one secondary.

  20. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) verification and validation plan. version 1.

    SciTech Connect (OSTI)

    Bartlett, Roscoe Ainsworth; Arguello, Jose Guadalupe, Jr.; Urbina, Angel; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Knupp, Patrick Michael; Wang, Yifeng; Schultz, Peter Andrew; Howard, Robert; McCornack, Marjorie Turner

    2011-01-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. To meet this objective, NEAMS Waste IPSC M&S capabilities will be applied to challenging spatial domains, temporal domains, multiphysics couplings, and multiscale couplings. A strategic verification and validation (V&V) goal is to establish evidence-based metrics for the level of confidence in M&S codes and capabilities. Because it is economically impractical to apply the maximum V&V rigor to each and every M&S capability, M&S capabilities will be ranked for their impact on the performance assessments of various components of the repository systems. Those M&S capabilities with greater impact will require a greater level of confidence and a correspondingly greater investment in V&V. This report includes five major components: (1) a background summary of the NEAMS Waste IPSC to emphasize M&S challenges; (2) the conceptual foundation for verification, validation, and confidence assessment of NEAMS Waste IPSC M&S capabilities; (3) specifications for the planned verification, validation, and confidence-assessment practices; (4) specifications for the planned evidence information management system; and (5) a path forward for the incremental implementation of this V&V plan.

  1. Advanced LWR Nuclear Fuel Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The white rectangle shows an area that can be EBSD scanned without specimen rotation operations. c) A typical EBSD scan of the cracked area. Scanning electron microscopy (SEM) was ...

  2. Advanced LWR Nuclear Fuel Development

    Energy Savers [EERE]

    ... clustering is modeled based on molecular dynamics simulation 3. The ... for hybrid welding processes - Hybrid laser weld processing model to optimize the ...

  3. Advanced LWR Nuclear Fuel Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... - X-ray microtomography * Chemical mapping - TOF-SIMSXPS - X-ray diffraction - FTIRRaman * Mechanical mapping - Nanoindenter XMT of EPR Nanoindenter 0 20 40 60 80 100 P, % 1 10 ...

  4. Nuclear Fuel Cycle Options Catalog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production Market Transformation Fuel Cells Predictive Simulation of Engines ... Twitter Google + Vimeo Newsletter Signup SlideShare Nuclear Fuel Cycle Options Catalog ...

  5. A survey of Existing V&V, UQ and M&S Data and Knowledge Bases in Support of the Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect (OSTI)

    Hyung Lee; Rich Johnson, Ph.D.; Kimberlyn C. Moussesau

    2011-12-01

    The Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Oak Ridge National Laboratory, Utah State University and others. The objective of this consortium is to establish a comprehensive knowledge base to provide Verification and Validation (V&V) and Uncertainty Quantification (UQ) and other resources for advanced modeling and simulation (M&S) in nuclear reactor design and analysis. NE-KAMS will become a valuable resource for the nuclear industry, the national laboratories, the U.S. NRC and the public to help ensure the safe operation of existing and future nuclear reactors. A survey and evaluation of the state-of-the-art of existing V&V and M&S databases, including the Department of Energy and commercial databases, has been performed to ensure that the NE-KAMS effort will not be duplicating existing resources and capabilities and to assess the scope of the effort required to develop and implement NE-KAMS. The survey and evaluation have indeed highlighted the unique set of value-added functionality and services that NE-KAMS will provide to its users. Additionally, the survey has helped develop a better understanding of the architecture and functionality of these data and knowledge bases that can be used to leverage the development of NE-KAMS.

  6. Expanding Transformer Production for U.S. Market

    Broader source: Energy.gov [DOE]

    Metglas, which makes Amorphous Metal Transformers from an amorphous metal alloy with unique mechanical and magnetic properties, is creating jobs from advance manufacturing tax credits.

  7. Transforming PV Installations toward Dispatchable, Schedulable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solutions | Department of Energy Transforming PV Installations toward Dispatchable, Schedulable Energy Solutions Transforming PV Installations toward Dispatchable, Schedulable Energy Solutions Advanced Energy logo.png -- This project is inactive -- Advanced Energy (AE) will address three important needs in the further deployment of photovoltaic (PV) systems: 1) demonstrating and commercializing a new anti-islanding method utilizing Phasor Measurement Units (PMUs), 2) demonstrating a set of

  8. Nuclear power high technology colloquium: proceedings

    SciTech Connect (OSTI)

    Not Available

    1984-12-10

    Reports presenting information on technology advancements in the nuclear industry and nuclear power plant functions have been abstracted and are available on the energy data base.

  9. TRANSFORMER APPARATUS

    DOE Patents [OSTI]

    Wolfgang, F.; Nicol, J.

    1962-11-01

    Transformer apparatus is designed for measuring the amount of a paramagnetic substance dissolved or suspended in a diamagnetic liquid. The apparatus consists of a cluster of tubes, some of which are closed and have sealed within the diamagnetic substance without any of the paramagnetic material. The remaining tubes are open to flow of the mix- ture. Primary and secondary conductors are wrapped around the tubes in such a way as to cancel noise components and also to produce a differential signal on the secondaries based upon variations of the content of the paramagnetic material. (AEC)

  10. Advanced Computing Tech Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Computing Tech Team Advanced Computing Tech Team Advanced Computing Tech Team The Advanced Computing Tech Team is working with the DOE Energy Technology Offices, the Office of Science, and the National Nuclear Security Administration to deliver technologies that will be used to create new scientific insights into complex physical systems. Advanced computing technologies have been used for decades to provide better understanding of the performance and reliability of the nuclear stockpile

  11. Advanced Sensors and Instrumentation Project Review Webinar 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program, in coordination with the Office of Nuclear Reactor Technologies and the Office of Fuel Cycle...

  12. Advance Reactor Concepts Technical Review Panel Public Report...

    Office of Environmental Management (EM)

    Advance Reactor Concepts Technical Review Panel Public Report Advance Reactor Concepts Technical Review Panel Public Report The Office of Nuclear Energy supports research and ...

  13. Leveraging U.S. nuclear weapons policy to advance U.S. nonproliferation goals : implications of major theories of international relations.

    SciTech Connect (OSTI)

    Walter, Andrew

    2009-06-01

    National policymakers are currently considering a dilemma of critical importance to the continued security of the United States: how can U.S. nuclear weapons policies be leveraged to benefit U.S. nuclear nonproliferation goals in the near-term, without sacrificing U.S. national security? In its role supporting U.S. nuclear weapons policy, Sandia National Laboratories has a responsibility to provide objective technical advice to support policy deliberations on this question. However, to best fulfill this duty Sandia must have a broader understanding of the context of the problem. To help develop this understanding, this paper analyzes the two predominant analytical perspectives of international relations theory to explore their prescriptions for how nuclear weapons and nonproliferation policies interact. As lenses with which to view and make sense of the world, theories of international relations must play a crucial role in framing the trade-offs at the intersection of the nuclear weapons and nonproliferation policy domains. An analysis of what these theories suggest as courses of action to leverage nuclear weapons policies to benefit nonproliferation goals is then offered, with particular emphasis on where the policy prescriptions resulting from the respective theories align to offer near-term policy changes with broad theoretical support. These policy prescriptions are then compared to the 2001 Nuclear Posture Review to understand what the theories indicate policymakers may have gotten right in their dealing with the nuclear dilemma, and where they may have gone wrong. Finally, a brief international relations research agenda is proposed to help address the dilemma between nuclear deterrence and nuclear nonproliferation policies, with particular emphasis on how such an agenda can best support the needs of the policy community and a potential 'all things nuclear' policy deliberation and decision-support framework.

  14. Implementing Arrangement Between the U.S. Department of Energy and the Agency of Natural Resources and Energy of Japan Concerning Cooperation in the Joint Nuclear Energy Research Initiative on Advanced Nuclear Technologies

    Broader source: Energy.gov [DOE]

    Noting further that representatives of DOE's Office of Nuclear Energy, Science, and Technology and ANRE have identified common interests in innovative light water reactor technologies, including...

  15. Global Nuclear Energy Partnership Steering Group Members Approve

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transformation to the International Framework for Nuclear Energy Cooperation | Department of Energy Global Nuclear Energy Partnership Steering Group Members Approve Transformation to the International Framework for Nuclear Energy Cooperation Global Nuclear Energy Partnership Steering Group Members Approve Transformation to the International Framework for Nuclear Energy Cooperation June 21, 2010 - 11:59am Addthis The Global Nuclear Energy Partnership Steering Group met in Accra, Ghana on June

  16. Global Nuclear Energy Partnership Steering Group Members Approve...

    Office of Environmental Management (EM)

    Steering Group Members Approve Transformation to the International Framework for Nuclear Energy Cooperation Global Nuclear Energy Partnership Steering Group Members Approve ...

  17. Department of Energy and Nuclear Regulatory Commission Increase Cooperation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Advance Global Nuclear Energy Partnership | Department of Energy Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership Department of Energy and Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership July 17, 2007 - 2:55pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) expanded cooperation for President Bush's Global Nuclear Energy Partnership (GNEP)

  18. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    SciTech Connect (OSTI)

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng

    2011-03-01

    This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are

  19. A Career in Nuclear Energy

    ScienceCinema (OSTI)

    Lambregts, Marsha

    2013-05-28

    Nuclear chemist Dr. Marsha Lambregts talks about the Center for Advanced Energy Studies and the benefits of a nuclear energy career. For more information about careers at INL, visit http://www.facebook.com/idahonationallaboratory.

  20. PUNT | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    U.S. and China Continue Cooperative Partnership to Advance Safe, Secure Civil Nuclear Energy for Clean Energy Future DOENNSA Hosts 11th U.S.-China Peaceful Uses of Nuclear ...

  1. A Career in Nuclear Energy

    SciTech Connect (OSTI)

    Lambregts, Marsha

    2009-01-01

    Nuclear chemist Dr. Marsha Lambregts talks about the Center for Advanced Energy Studies and the benefits of a nuclear energy career. For more information about careers at INL, visit http://www.facebook.com/idahonationallaboratory.

  2. Advanced Reactor Research and Development Funding Opportunity...

    Broader source: Energy.gov (indexed) [DOE]

    Nuclear Energy (NE) sponsors a program of research, development, and demonstration related to advanced non-light water reactor concepts. A goal of the program is to facilitate...

  3. Chapter 4: Advancing Clean Electric Power Technologies

    Broader source: Energy.gov (indexed) [DOE]

    dioxide power cycles, hybrid systems matching renewables with nuclear or fossil, and energy storage. Advanced capabilities in materials, computing, and manufacturing can...

  4. Leadership | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... military, and commercial technological advances in countries of a proliferation concern. ...

  5. Nuclear Security Summit | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Security Summit U.S. and China Continue Cooperative Partnership to Advance Safe, Secure Civil Nuclear Energy for Clean Energy Future DOE/NNSA Hosts 11th U.S.-China Peaceful Uses of Nuclear Technology Meeting at Savannah River National Laboratory in Aiken, South Carolina (Aiken, South Carolina) - On May 10-11, 2016 the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) and the China... Statement on Signing of the Administrative Arrangement to the Agreement for

  6. nuclear security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    security U.S. and China Continue Cooperative Partnership to Advance Safe, Secure Civil Nuclear Energy for Clean Energy Future DOE/NNSA Hosts 11th U.S.-China Peaceful Uses of Nuclear Technology Meeting at Savannah River National Laboratory in Aiken, South Carolina (Aiken, South Carolina) - On May 10-11, 2016 the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) and the China... Secretary Moniz awards Hutcheon memorial nonproliferation fellowship to Thomas Gray

  7. Advanced Sensors and Instrumentation Newsletter

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Sensors and Instrumentation (ASI) newsletter will be released periodically to inform program stakeholders about new developments and achievements in the area of sensors, instrumentation and related technologies across the Office of Nuclear Energy (NE) R&D programs.

  8. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Nuclear Energy (NE) for their advancement of nuclear power; U.S. Nuclear Regulatory Commission (NRC) for safety reviews and licensing; R&D community for identification,...

  9. Transforming a Transformative School | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transforming a Transformative School Transforming a Transformative School October 11, 2012 - 10:14am Addthis During a yearlong renovation, Harding Charter Preparatory school upgraded lighting fixtures, installed a new heating and cooling system, and replaced the entry doors. The new doors allow daylight into the school and restore the historical building envelope. | Photo courtesy of John Winkel, Energy Department. During a yearlong renovation, Harding Charter Preparatory school upgraded

  10. Global Nuclear Energy Partnership Steering Group Members Approve

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transformation to the International Framework for Nuclear Energy Cooperation | Department of Energy Steering Group Members Approve Transformation to the International Framework for Nuclear Energy Cooperation Global Nuclear Energy Partnership Steering Group Members Approve Transformation to the International Framework for Nuclear Energy Cooperation June 18, 2010 - 12:00am Addthis The Global Nuclear Energy Partnership Steering Group met in Accra, Ghana on June 16-17, 2010 and approved

  11. Advanced instrumentation for reprocessing.

    SciTech Connect (OSTI)

    Cipiti, Benjamin B.

    2005-10-01

    Recent interest in reprocessing nuclear fuel in the U.S. has led to advanced separations processes that employ continuous processing and multiple extraction steps. These advanced plants will need to be designed with state-of-the-art instrumentation for materials accountancy and control. This research examines the current and upcoming instrumentation for nuclear materials accountancy for those most suited to the reprocessing environment. Though this topic has received attention time and again in the past, new technologies and changing world conditions require a renewed look and this subject. The needs for the advanced UREX+ separations concept are first identified, and then a literature review of current and upcoming measuring techniques is presented. The report concludes with a preliminary list of recommended instruments and measurement locations.

  12. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    SciTech Connect (OSTI)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  13. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    SciTech Connect (OSTI)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  14. Demonstration & Market Transformation

    Broader source: Energy.gov (indexed) [DOE]

    Demonstration & Market Transformation Peer Review Break-Out Presentation Jim Spaeth Program Manager Demonstration & Market Transformation March 23, 2015 2 | Bioenergy Technologies ...

  15. Sandia Energy - Solar Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Market Transformation Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Market TransformationTara...

  16. Metamaterial flexible sheets could transform optics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metamaterial flexible sheets could transform optics Metamaterial flexible sheets could transform optics Advances would boost security screening systems, infrared thermal cameras, energy harvesting, and radar systems June 5, 2013 A burst of laser energy 50 times greater than the worldwide output of electrical power slams into an extremely thin foil target to produce neutrons at Los Alamos National Laboratory's TRIDENT laser facility during a recent experiment, which proved that laser-driven

  17. Advanced Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design » Design for Efficiency » Advanced House Framing Advanced House Framing Two-story home using advanced framing techniques. Two-story home using advanced framing techniques. Advanced house framing, sometimes called optimum value engineering (OVE), refers to framing techniques designed to reduce the amount of lumber used and waste generated in the construction of a wood-framed house. These techniques boost energy efficiency by replacing lumber with insulation material while maintaining the

  18. September 2010 | National Nuclear Security Administration | ...

    National Nuclear Security Administration (NNSA)

    Reducing Site's Nuclear Footprint Y-12 Transformation Continues With Potable Water Project, New Towers NNSA Breaks Ground on New Facility in Kansas City Sandia Cutting ...

  19. Office of Nuclear Energy Launches New Website | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    The Office of Nuclear Energy's mission is to advance nuclear power as a resource that can ... needs by resolving technical, cost, safety, proliferation resistance, and security ...

  20. Office of Nuclear Energy

    Broader source: Energy.gov [DOE]

    The Department of Energy Office of Nuclear Energy advances nuclear power as a resource capable of meeting the Nation's energy, environmental, and national security needs by resolving technical, cost, safety, proliferation resistance, and security barriers through research, development, and demonstration as appropriate.

  1. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    SciTech Connect (OSTI)

    Hamid, Nasri A. Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri

    2015-04-29

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO{sub 2} emission. The commitment by the government has been made clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper

  2. Nuclear Energy Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshops - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  3. Nuclear Energy Safety Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Technologies - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  4. The need for a characteristics-based approach to radioactive waste classification as informed by advanced nuclear fuel cycles using the fuel-cycle integration and tradeoffs (FIT) model

    SciTech Connect (OSTI)

    Djokic, D. [Department of Nuclear Engineering, University of California, Berkeley, 3115B Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, S.; Pincock, L.; Soelberg, N. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

    2013-07-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. Because heat generation is generally the most important factor limiting geological repository areal loading, this analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. Waste streams generated in different fuel cycles and their possible classification based on the current U.S. framework and international standards are discussed. It is shown that the effects of separating waste streams are neglected under a source-based radioactive waste classification system. (authors)

  5. FY 2012 Budget Request Advanced Research Projects Agency - Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... risk analyses * Advanced Modeling Grid Research - Continues development of computational, mathematical, and scientific ... needed to transform the tools and algorithms that ...

  6. The DOE Advanced Gas Reactor Fuel Development and Qualification Program

    SciTech Connect (OSTI)

    David Petti

    2010-09-01

    The high outlet temperatures and high thermal-energy conversion efficiency of modular High Temperature Gas-cooled Reactors (HTGRs) enable an efficient and cost effective integration of the reactor system with non-electricity generation applications, such as process heat and/or hydrogen production, for the many petrochemical and other industrial processes that require temperatures between 300C and 900C. The Department of Energy (DOE) has selected the HTGR concept for the Next Generation Nuclear Plant (NGNP) Project as a transformative application of nuclear energy that will demonstrate emissions-free nuclear-assisted electricity, process heat, and hydrogen production, thereby reducing greenhouse-gas emissions and enhancing energy security. The objective of the DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification program is to qualify tristructural isotropic (TRISO)-coated particle fuel for use in HTGRs. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission-product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete, fundamental understanding of the relationship between the fuel fabrication process and key fuel properties, the irradiation and accident safety performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. An overview of the program and recent progress is presented.

  7. Working with SRNL - The Advanced Manufacturing Collaborative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4/2016 SEARCH SRNL GO The Advanced Manufacturing Collaborative Academia Government Industry AMC Leadership Contact AMC Home SRNL Home Working with SRNL The Advanced Manufacturing Collaborative For over 50 years, the Savannah River National Laboratory (SRNL) has been providing the science behind nuclear chemical manufacturing at the Savannah River Site (SRS), a sprawling nuclear complex that was once part of our nation's Cold War. Time has changed the mission at SRS from nuclear production for

  8. Advanced Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  9. Energy Efficiency, Renewables, Advanced Transmission and Distribution

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies (2008) | Department of Energy Renewables, Advanced Transmission and Distribution Technologies (2008) Energy Efficiency, Renewables, Advanced Transmission and Distribution Technologies (2008) Energy Efficiency, Renewables, Advanced Transmission and Distribution Technologies (2008) (408.96 KB) More Documents & Publications Nuclear Power Facilities (2008) Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7,

  10. ARPA-E Announces $43 Million for Transformational Energy Storage Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Advance Electric Vehicle and Grid Technologies | Department of Energy $43 Million for Transformational Energy Storage Projects to Advance Electric Vehicle and Grid Technologies ARPA-E Announces $43 Million for Transformational Energy Storage Projects to Advance Electric Vehicle and Grid Technologies August 2, 2012 - 10:34am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Department of Energy today announced that 19 transformative new projects will receive a total of $43 million

  11. Advanced CCD camera developments

    SciTech Connect (OSTI)

    Condor, A.

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  12. Energy Department Nuclear Systems Are Powering Mars Rover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vogtle Advanced Nuclear Energy Project | Department of Energy Remaining $1.8 Billion in Loan Guarantees for Vogtle Advanced Nuclear Energy Project Energy Department Issues Remaining $1.8 Billion in Loan Guarantees for Vogtle Advanced Nuclear Energy Project June 24, 2015 - 9:20am Addthis NEWS MEDIA CONTACT (202) 586-4940 To further support the construction of two advanced nuclear reactors at the Alvin W. Vogtle Electric Generating Plant, the Department of Energy announced today it will issue

  13. Advanced dry head-end reprocessing of light water reactor spent...

    Office of Scientific and Technical Information (OSTI)

    reprocessing of light water reactor spent nuclear fuel Citation Details In-Document Search Title: Advanced dry head-end reprocessing of light water reactor spent nuclear fuel ...

  14. Mechanisms of transformation toughening

    SciTech Connect (OSTI)

    Olson, G.B.

    1992-02-01

    Modelling the thermodynamics and kinetics of isothermal martensitic transformation under stress, transformation toughening in austenitic steels, and dispersed phase transformation plasticity in low alloy steels are discussed briefly in this progress report for Doe Grant DE-FG02-88ER45365.

  15. 3 Innovations That Are Transforming America's Home Building Industry |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3 Innovations That Are Transforming America's Home Building Industry 3 Innovations That Are Transforming America's Home Building Industry December 12, 2013 - 3:07pm Addthis A worker caulks the exterior of a home window. Advanced window framing techniques can help homeowners save energy and money. | Photo courtesy of Weatherization Assistance Program Technical Center A worker caulks the exterior of a home window. Advanced window framing techniques can help homeowners save

  16. Advanced servomanipulator development

    SciTech Connect (OSTI)

    Kuban, D.P.

    1985-01-01

    The Advanced Servomanipulator (ASM) System consists of three major components: the ASM slave, the dual arm master controller (DAMC) or master, and the control system. The ASM is remotely maintainable force-reflecting servomanipulator developed at the Oak Ridge National Laboratory (ORNL) as part of the Consolidated Fuel Reprocessing Program. This new manipulator addresses requirements of advanced nuclear fuel reprocessing with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. The advanced servomanipulator is uniquely subdivided into remotely replaceable modules which will permit in situ manipulator repair by spare module replacement. Manipulator modularization and increased reliability are accomplished through a force transmission system that uses gears and torque tubes. Digital control algorithms and mechanical precision are used to offset the increased backlash, friction, and inertia resulting from the gear drives. This results in the first remotely maintainable force-reflecting servomanipulator in the world.

  17. Advanced Gasificatioin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Gasification Research Team Members Key Contacts Advanced Gasification Carbon feedstock gasification is a promising pathway for high-efficiency, low-pollutant power generation and chemical production. The inability, however, to meet a number of operational goals could create roadblocks to widespread acceptance and commercialization of advanced gasification technologies. We must, for example, achieve gasifier online availability of 85-95 percent in utility applications, and 95 percent for

  18. Advanced Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  19. China | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    China U.S. and China Continue Cooperative Partnership to Advance Safe, Secure Civil Nuclear Energy for Clean Energy Future DOE/NNSA Hosts 11th U.S.-China Peaceful Uses of Nuclear Technology Meeting at Savannah River National Laboratory in Aiken, South Carolina (Aiken, South Carolina) - On May 10-11, 2016 the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) and the China... NNSA Deputy Administrator Creedon Travels to China In March, National Nuclear Security

  20. Advanced Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Combustion Background Conventional coal-fired power plants utilize steam turbines to ... development of large-scale Ni-based superalloy castings for power plant applications. ...

  1. Adv. Nuclear Solicitation Part I Due Date | Department of Energy

    Energy Savers [EERE]

    Nuclear Solicitation Part I Due Date Adv. Nuclear Solicitation Part I Due Date July 20, 2016 12:01AM to 11:59PM EDT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION PART I DUE DATE ...

  2. Adv. Nuclear Solicitation Part I Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Solicitation Part I Due Date Adv. Nuclear Solicitation Part I Due Date March 16, 2016 12:01AM to 11:59PM EDT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION PART I DUE DATE ...

  3. Adv. Nuclear Solicitation Part II Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adv. Nuclear Solicitation Part II Due Date Adv. Nuclear Solicitation Part II Due Date April 13, 2016 12:01AM to 11:59PM EDT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION PART II ...

  4. Adv. Nuclear Solicitation Part II Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Solicitation Part II Due Date Adv. Nuclear Solicitation Part II Due Date November 23, 2016 12:01AM to 11:59PM EST ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION PART II DUE DATE Learn more about the Advanced Nuclear

  5. Adv. Nuclear Solicitation Part II Due Date | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Solicitation Part II Due Date Adv. Nuclear Solicitation Part II Due Date October 19, 2016 12:01AM to 11:59PM EDT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION PART II DUE DATE Learn more about the Advanced Nuclear

  6. Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads

    SciTech Connect (OSTI)

    2013-07-01

    The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.

  7. Advancing Small Modular Reactors: How We're Supporting Next-Gen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology...

  8. sandia national lab | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    sandia national lab NNSA Researchers Advance Technology for Remote Reactor Monitoring NNSA's Defense Nuclear Nonproliferation Research and Development Program drives the innovation ...

  9. advanced wave energy control design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wave energy control design - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  10. Advanced WEC Dynamics and Controls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WEC Dynamics and Controls - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  11. Grid Integration & Advanced Inverters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration & Advanced Inverters - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  12. Radiation effects in nuclear materials: Role of nuclear and electronic energy losses and their synergy

    SciTech Connect (OSTI)

    Thomé, Lionel; Debelle, Aurelien; Garrido, Frederico; Mylonas, Stamatis; Décamps, B.; Bachelet, C.; Sattonnay, G.; Pellegrino, S.; Miro, S.; Trocellier, P.; Serruys, Y.; Velisa, G.; Grygiel, C.; Monnet, I.; Toulemonde, Marcel; Simon, P.; Jagielski, Jacek; Jozwik-Biala, Iwona; Nowicki, Lech; Behar, M.; Weber, William J; Zhang, Yanwen; Backman, Marie; Nordlund, Kai; Djurabekova, Flyura

    2013-01-01

    Ceramic oxides and carbides are promising matrices for the immobilization and/or transmutation of nuclear wastes, cladding materials for gas-cooled fission reactors and structural components for fusion reactors. For these applications there is a need of fundamental data concerning the behavior of nuclear ceramics upon irradiation. This article is focused on the presentation of a few remarkable examples regarding ion-beam modifications of nuclear ceramics with an emphasis on the mechanisms leading to damage creation and phase transformations. Results obtained by combining advanced techniques (Rutherford backscattering spectrometry and channeling, X-ray diffraction, transmission electron microscopy, Raman spectroscopy) concern irradiations in a broad energy range (from keV to GeV) with the aim of exploring both nuclear collision (Sn) and electronic excitation (Se) regimes. Finally, the daunting challenge of the demonstration of the existence of synergistic effects between Sn and Se is tackled by discussing the healing due to intense electronic energy deposition (SHIBIEC) and by reporting results recently obtained in dual-beam irradiation (DBI) experiments.

  13. Enterprise SRS: Leveraging Ongoing Operations to Advance National Programs - 13108

    SciTech Connect (OSTI)

    Marra, J.E.; Murray, A.M.; McGuire, P.W.; Wheeler, V.B.

    2013-07-01

    The SRS is re-purposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established the Center for Applied Nuclear Materials Processing and Engineering Research (CANMPER). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by leveraging SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. CANMPER will coordinate the demonstration of R and D technologies and serve as the interface between the engineering-scale demonstration and the R and D programs, essentially providing cradle-to-grave support to the R and D team during the demonstration. While the initial focus of CANMPER will be on the effective use of SRS assets for these demonstrations, CANMPER also will work with research teams to identify opportunities to perform R and D demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical

  14. Advanced Fuels Campaign FY 2015 Accomplishments Report

    SciTech Connect (OSTI)

    Braase, Lori Ann; Carmack, William Jonathan

    2015-10-29

    The mission of the Advanced Fuels Campaign (AFC) is to perform research, development, and demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This report is a compilation of technical accomplishment summaries for FY-15. Emphasis is on advanced accident-tolerant LWR fuel systems, advanced transmutation fuels technologies, and capability development.

  15. EIS-0396: Advance Notice of Intent o Prepare an Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prepare an Environmental Impact Statement EIS-0396: Advance Notice of Intent o Prepare an Environmental Impact Statement Global Nuclear Energy Partnership Technology Demonstration...

  16. NNSA Conducts Advanced Radiation Medical Training in Taiwan ...

    National Nuclear Security Administration (NNSA)

    Advanced Radiation Medical Training in Taiwan | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  17. ORNL). Consortium for Advanced Simulation of Light Water Reactors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation of Light Water Reactors (CASL) was established by the US Department of Energy in 2010 to advance modeling and simulation capabilities for nuclear reactors. CASL's...

  18. Energy Department to Invest in Advanced Reactor Concept Development

    Broader source: Energy.gov [DOE]

    Today the Energy Department released a funding opportunity announcement to support the research, development and demonstration of advanced nuclear reactor concepts.

  19. National Power Transformer Reserve

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alliance for FLEX Emergency Response (SAFER) team, to implement off-site capabilities in ... warehouses would have predefined restoration transformers for rapid recovery. ...

  20. Nuclear Energy Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NEI) Summit Presentation University-Industry- Laboratory Partnerships: Gauging Effectiveness Douglas Kothe, CASL Director Oak Ridge National Laboratory February 26, 2014 CASL-U-2014-0355-000 CASL-U-2014-0355-000 University-Industry-Laboratory Partnerships Gauging Effectiveness CASL: The Consortium for Advanced Simulation of Light Water Reactors A DOE Energy Innovation Hub Douglas B. Kothe Oak Ridge National Laboratory Director, CASL 9 th Nuclear Energy R&D Summit Nuclear Energy Institute

  1. Nuclear Power & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power & Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  2. Nuclear Physics | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Scientists from across the country and around the world use the Thomas Jefferson National Accelerator Facility to advance mankind's understanding of the atom's nucleus. To probe nuclei, scientists use continuous beams of high-energy electrons from the lab's Continuous Electron Beam Accelerator Facility, or CEBAF, and the advanced particle-detection and ultra-high-speed data acquisition equipment in CEBAF's four experimental halls. Jefferson Lab has both theoretical and

  3. Advanced Sensors and Instrumentation Newsletter- Issue 2

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Sensors and Instrumentation (ASI) newsletter includes information about new developments and achievements in the area of sensors, instrumentation and related technologies across the Office of Nuclear Energy R&D programs.

  4. Advanced Sensors and Instrumentation Newsletter- Issue 3

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Sensors and Instrumentation (ASI) newsletter includes information about new developments and achievements in the area of sensors, instrumentation and related technologies across the Office of Nuclear Energy R&D programs.

  5. Advanced Methods for Manufacturing Newsletter- Issue 1

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Methods for Manufacturing (AMM) newsletter includes information about selected projects pertaining to additive manufacturing, concrete technologies, and welding innovations currently funded by the Department of Energy’s Office of Nuclear Energy.

  6. Advanced Sensors and Instrumentation Newsletter- Issue 4

    Broader source: Energy.gov [DOE]

    The Advanced Sensors and Instrumentation (ASI) newsletter includes information about new developments and achievements in the area of sensors, instrumentation and related technologies across the Office of Nuclear Energy R&D programs.

  7. Advanced Methods for Manufacturing Newsletter- Issue 2

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Methods for Manufacturing (AMM) newsletter includes information about selected projects pertaining to additive manufacturing, concrete technologies, and welding innovations currently funded by the Department of Energy’s Office of Nuclear Energy.

  8. Advanced Methods for Manufacturing Newslettter- Issue 3

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Methods for Manufacturing newsletter includes information about selected projects pertaining to additive manufacturing, concrete technologies, welding innovations and imaging techniques for design reconstruction currently funded by the Department of Energy's Office of Nuclear Energy.

  9. Turning nuclear waste into glass

    SciTech Connect (OSTI)

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  10. Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of...

  11. Biochemical transformation of coals

    DOE Patents [OSTI]

    Lin, M.S.; Premuzic, E.T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  12. Biochemical transformation of coals

    DOE Patents [OSTI]

    Lin, Mow S. (Rocky Point, NY); Premuzic, Eugene T. (East Moriches, NY)

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  13. Advanced Sensors and Instrumentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensors and Instrumentation Advanced Sensors and Instrumentation The ASI subprogram plans to develop the scientific basis for sensors and supporting infrastructure technology that will address crosscutting technology gaps relating to measurements at existing and advanced nuclear power plants as well as within their fuel cycles. The focus of the program is on the following technical challenges and objectives: Identify needed physical measurement accuracy of nuclear system process parameters and

  14. Advanced Fuels Campaign 2012 Accomplishments

    SciTech Connect (OSTI)

    Not Listed

    2012-11-01

    The Advanced Fuels Campaign (AFC) under the Fuel Cycle Research and Development (FCRD) program is responsible for developing fuels technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year 2012 (FY 2012) accomplishments are highlighted below. Kemal Pasamehmetoglu is the National Technical Director for AFC.

  15. Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Scientific Computing Research Advanced Scientific Computing Research Discovering, ... The DOE Office of Science's Advanced Scientific Computing Research (ASCR) program ...

  16. Nuclear Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. nuclear outages (interactive) Nuclear power plants Uranium & nuclear fuel Spent nuclear fuel All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud Current Issues & Trends See more › U.S. nuclear outages this summer were higher than in summer 2015

  17. Nuclear Forensics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear forensics Nuclear Forensics AMS is a Powerful Tool for Nuclear Forensics Nuclear forensics, which can be applied to both interdicted materials and debris from a nuclear explosion, is the application of laboratory analysis and interpretation to provide technical conclusions (provenance, design, etc.) about a nuclear device or interdicted nuclear material. Nuclear forensic analysts can build confidence in their conclusions by employing multiple signatures that collectively minimize the

  18. Office of Nuclear Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Nuclear Energy Small Modular Reactors Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation technology in the United States. Read more Middle School STEM Curriculum Middle School STEM Curriculum The Harnessed Atom curriculum offers essential principles and fundamental concepts on energy and nuclear science. Read more Educating Future Nuclear Engineers Educating Future Nuclear Engineers The Nuclear Energy University

  19. Nuclear Energy University Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy University Program Nuclear Energy University Program NEUP Award Recipients FY2009 to FY2013 Click on the icons to find out the values of the awards given to each school. The darker the icon, the more recent the award. Drag and zoom map to see more recipients. Investing in the next generation of nuclear energy leaders and advancing university-led nuclear innovation is vital to fulfilling the Office of Nuclear Energy's (NE) mission. This is accomplished primarily through NE's Nuclear Energy

  20. Implementing Arrangement Between the U.S. Department of Energy and the Agency of Natural Resources and Energy of Japan Concerning Cooperation in the Joint Nuclear Energy Research Initiative

    Broader source: Energy.gov [DOE]

    Sharing an interest in fostering advanced nuclear engineering and pursuing scientific research and development in the nuclear field; 

  1. Secretary Chu Announces $38 Million for 42 University-Led Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These projects, funded over three to four years through the Department's Nuclear Energy University Program, will help advance nuclear education and develop the next generation of ...

  2. Mark Peters testifies for Congress on nuclear energy 5/19/10

    ScienceCinema (OSTI)

    Peters, Mark

    2013-04-19

    Mark Peters, Deputy Lab Director at Argonne National Laboratory, testifies before Congress on advanced nuclear fuel cycle R&D and the DOE nuclear roadmap. May 19, 2010.

  3. Mark Peters testifies for Congress on nuclear energy 5/19/10

    ScienceCinema (OSTI)

    Mark Peters

    2010-09-01

    Mark Peters, Deputy Lab Director at Argonne National Laboratory, testifies before Congress on advanced nuclear fuel cycle R&D and the DOE nuclear roadmap. May 19, 2010.

  4. MeV Summer School prepares next-generation nuclear scientists...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer School is an annual 10-day program that provides early-career nuclear engineers with advanced studies in modeling, experimentation and validation of nuclear reactor design. ...

  5. Nuclear Facilities

    Broader source: Energy.gov [DOE]

    The nuclear sites list and map shows how DOE nuclear operations are mostly divided between nuclear weapons stockpile maintenance, research and environmental cleanup. The operations are performed within several different facilities supporting nuclear reactor operations, nuclear research, weapons disassembly, maintenance and testing, hot cell operations, nuclear material storage and processing and waste disposal.

  6. Nuclear Advances | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The scope of research and development at the Y-12 National Security Complex has widened from a single-focus World War II defense mission to a panoply of explorations and ...

  7. Proliferation resistance of advanced nuclear energy systems ...

    Office of Scientific and Technical Information (OSTI)

    Of the fuel cycles and segments studied, the fabrication step of the Once- Through fuel cycle and the reprocessing step of the MOX fuel cycle present the greatest vulnerability. ...

  8. University Program in Advanced Technology | National Nuclear...

    National Nuclear Security Administration (NNSA)

    ASC at the Labs Supercomputers University Partnerships Predictive Science Academic ... ASC Program Elements Facility Operations and User Support Computational Systems & Software ...

  9. Microsoft PowerPoint - Advances_Singley

    Office of Environmental Management (EM)

    Defense Nuclear Nonproliferation U.S. DEPARTMENT OF ENERGY 1 Global Threat Reduction Initiative 1 Implementing Advances in Transport Security Technologies Paul Singley ORNL Defense Nuclear Nonproliferation U.S. DEPARTMENT OF ENERGY 2 Transport Security Technologies Update * GTRI Domestic mission * Previous technology evaluation results * Current proposed configuration for technology deployment * Where we are going 2 Defense Nuclear Nonproliferation U.S. DEPARTMENT OF ENERGY 3 3 3 GTRI's Domestic

  10. 2012 Nuclear Energy Enabling Technology Factsheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Energy Enabling Technology Factsheet 2012 Nuclear Energy Enabling Technology Factsheet Learn more about the Nuclear Energy Enabling Technologies (NEET) program, which will develop crosscutting technologies that directly support and complement the Office of Nuclear Energy's (NE) development of new and advanced reactor concepts and fuel cycle technologies. 2012 Nuclear Energy Enabling Technology Factsheet (1.81 MB) More Documents & Publications NEET Workshop 2010 Advanced Sensors and

  11. Sandia National Laboratories: Advanced Simulation and Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facebook Twitter YouTube Flickr RSS Advanced Simulation and Computing Advanced Simulation and Computing Taking on the World's Complex Challenges Advancing Science Frontiers Our research is producing new scientific insights about the world in which we live and assists in certifying the safety and reliability of the nation's nuclear weapons stockpile. Technology Provides the Tools Growth in data and the software and hardware demands needed for physics-based answers and predictive capabilities are

  12. Demonstration & Market Transformation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration & Market Transformation Peer Review Break-Out Presentation Jim Spaeth Program Manager Demonstration & Market Transformation March 23, 2015 2 | Bioenergy Technologies Office DMT Portfolio Peer Review * Introduction of the DMT Peer Review Team * Peer Review Process - Ground rules for review process * DMT Approach to Project Management - Budget Periods * Changes Made in Response to the 2013 Peer Review - Lessons Learned / Best Practices * Portfolio Overview - FOA Status and

  13. Series Transmission Line Transformer

    DOE Patents [OSTI]

    Buckles, Robert A.; Booth, Rex; Yen, Boris T.

    2004-06-29

    A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

  14. Domestic Nuclear Detection Office's Approach to Detect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Domestic Nuclear Detection Office's Approach to Detect Concealed Threats Joel Rynes, PhD Department of Homeland Security (DHS) Domestic Nuclear Detection Office (DNDO) August 5, 2015 4:00 p.m. The Transformational and Applied Research (TAR) Directorate within the Domestic Nuclear Detection Office (DNDO) of the Department of Homeland Security (DHS) has the mission to develop break-through technologies that will have a dramatic impact on capabilities to detect nuclear and radiological threats

  15. Advanced High Strength Steel Project | Department of Energy

    Office of Environmental Management (EM)

    of Energy Advance Reactor Concepts Technical Review Panel Public Report Advance Reactor Concepts Technical Review Panel Public Report The Office of Nuclear Energy supports research and development for advanced reactor technologies. This report documents the results of the 2014 Technical Review Panel (TRP) review of seven advanced reactor concepts. The intent of the process was to identify research and development needs for advanced reactor concepts in order to inform Department of Energy

  16. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton; Richard Boardman; John Collins; Mark Ruth; Owen Zinaman; Charles Forsberg

    2014-08-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear – Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for

  17. Building an All-of-the-Above Portfolio with Loan Guarantees for Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Projects | Department of Energy Building an All-of-the-Above Portfolio with Loan Guarantees for Advanced Nuclear Projects Building an All-of-the-Above Portfolio with Loan Guarantees for Advanced Nuclear Projects December 10, 2014 - 9:00am Addthis Building an All-of-the-Above Portfolio with Loan Guarantees for Advanced Nuclear Projects Peter W. Davidson Peter W. Davidson Former Executive Director of the Loan Programs Office (LPO) This morning, the Department announced that it is

  18. Safeguards optimization tool for the advanced fuel cycle facility

    SciTech Connect (OSTI)

    DeMuth, Scott; Thomas, Kenneth; Dixon, Eleanor

    2007-07-01

    The planned Advanced Fuel Cycle Facility (AFCF) is intended to support the Global Nuclear Energy Partnership (GNEP) by demonstrating separation and fuel fabrication processes required to support an Advanced Burner Reactor. Advanced safeguards will be based on new world standards for the prevention of nuclear materials proliferation. Safeguarding nuclear facilities includes inventory accountancy, process monitoring, and containment and surveillance. An effort has been undertaken to optimize selection of technology for advanced safeguards accountancy, by way of using the Standard Error in the Inventory Difference (SEID) as a basis for cost/benefit analyses. (authors)

  19. Nuclear Facilities and Applied Technologies at Sandia

    SciTech Connect (OSTI)

    Wheeler, Dave; Kaiser, Krista; Martin, Lonnie; Hanson, Don; Harms, Gary; Quirk, Tom

    2014-11-28

    The Nuclear Facilities and Applied Technologies organization at Sandia National Laboratories Technical Area Five (TA-V) is the leader in advancing nuclear technologies through applied radiation science and unique nuclear environments. This video describes the organizations capabilities, facilities, and culture.

  20. Ecology Action: Small Market Advanced Retrofit Transformation Program (SMART)

    Broader source: Energy.gov [DOE]

    Lead Performer: Ecology Action – Santa Cruz, CA Partners: - New Buildings Institute – Portland, OR - Electric and Gas Industries Association (EGIA) – Sacramento, CA - Pacific Gas and Electric – San Francisco, CA - Sacramento Municipal Utility District – Sacramento, CA

  1. Sandia Energy - Past Market Transformation Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Past Market Transformation Activities Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Past Market Transformation...

  2. Advanced Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Manufacturing Office 13 Selectees Announced for High Performance Computing for Manufacturing Program 13 Selectees Announced for High Performance Computing for Manufacturing Program EERE, in partnership with Lawrence Livermore National Laboratory (LLNL), announced the second round of selections for the High Performance Computing for Manufacturing ("HPC4Mfg") Program. Thirteen projects were selected to receive nearly $3.8 million for manufacturers to use high-performance

  3. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  4. NREL: Hydrogen and Fuel Cells Research - Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Transformation NREL's market transformation activities address technical and non-technical barriers to the commercialization of hydrogen and fuel cell technologies to ensure that laboratory advances can be realized in the marketplace. Projects focus on deploying hydrogen and fuel cells in key early markets-specialty vehicles, backup and remote power, portable power, and primary power for critical applications such as hospitals or data centers-and renewable hydrogen production

  5. Transformative Simulation of Shock-Generated Magnetic Fields | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs January 17, 2012 - 10:45am Addthis Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's Batteries for Advanced Transportation Technologies Program where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs

  6. Transformative Battery Technology at the National Labs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs January 17, 2012 - 10:45am Addthis Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's Batteries for Advanced Transportation Technologies Program where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs

  7. The Linear Engine Pathway of Transformation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Linear Engine Pathway of Transformation The Linear Engine Pathway of Transformation This poster highlights the major milestones in the history of the linear engine in terms of technological advances, novel designs, and economic/social impact. p-06_covington.pdf (214.04 KB) More Documents & Publications Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF Development of a Stand-Alone Urea-SCR System for NOx Reduction in Marine Diesel Engines Modeling the

  8. Advanced Simulations of Plasma Microturbulence at the Petascale and Beyond

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration | (NNSA) Programs Advanced Simulation and Computing and Institutional R&D Programs The Advanced Simulation and Computing (ASC) Program supports the Department of Energy's National Nuclear Security Administration (DOE/NNSA) Defense Programs' use of simulation-based evaluation of the nation's nuclear weapons stockpile. The ASC Program is responsible for providing the simulation tools and computing environments required to qualify and certify the nation's

  9. Final Complex Transformation Supplemental Programmatic Environmental Impact Statement October 2008

    Office of Environmental Management (EM)

    I Volume I Chapters 1 - 4 Chapters 1 - 4 DOE/EIS-0236-S4 National Nuclear Security Administration U.S. Department of Energy October 2008 C C CO O OM MP PL LE EXtransfo o or r rm m mat on COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy, National Nuclear Security Administration TITLE: Final Complex Transformation Supplemental Programmatic Environmental Impact Statement (Complex Transformation SPEIS, DOE/EIS-0236-S4) CONTACTS: For further information on this SPEIS, For general information

  10. nuclear security

    National Nuclear Security Administration (NNSA)

    3%2A en Shaping the future of nuclear detection http:nnsa.energy.govblogshaping-future-nuclear-detection

    Learning techniques to combat nuclear trafficking, touring the...

  11. Production Technology | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Production Technology NNSA continues to assure the safety, security, and reliability of the existing stockpile as it progresses towards a newly responsive nuclear weapons infrastructure as called for in the 2001 Nuclear Posture Review and described in the vision for Complex Transformation. The work is one of the key providers of design-to-manufacturing and technological readiness capabilities for this transformation effort. NNSA closely integrates planning and project selection prioritization

  12. Nuclear Science

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE)

  13. nuclear enterprise

    National Nuclear Security Administration (NNSA)

    Outlines Accomplishments in Stockpile Stewardship, Nuclear Nonproliferation, Naval Reactors and Managing the Nuclear Enterprise

    The...

  14. Spent Nuclear Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear & Uranium Glossary FAQS Overview Data Status of U.S. nuclear outages (interactive) Nuclear power plants Uranium & nuclear fuel Spent nuclear fuel All nuclear data ...

  15. Nuclear Science/Nuclear Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear science nuclear chemistry Nuclear Science/Nuclear Chemistry Nuclear Physics The 10-MV tandem accelerator at CAMS provides a platform for conducting nuclear physics experiment both for basic science and lab mission-related programs. For example, we performed a new cross section measurement of the astrophysically important reaction 40Ca(a,g)44Ti in which high purity CaO targets were irradiated with helium ions at several different discrete energies. The reaction rate was measured on-line

  16. Advanced Simulation and Computing Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Simulation and Computing (ASC) Program Unstable intermixing of heavy (sulfur hexafluoride) and light fluid (air). Show Caption Turbulence generated by unstable fluid flow. Show Caption Examining the effects of a one-megaton nuclear energy source detonated on the surface of an asteroid. Show Caption Los Alamos National Laboratory is home to two of the world's most powerful supercomputers, each capable of performing more than 1,000 trillion operations per second. The newer one, Cielo, was

  17. Gateway for Accelerated Innovation in Nuclear | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gateway for Accelerated Innovation in Nuclear Gateway for Accelerated Innovation in Nuclear In November 2015, DOE announced it is establishing the Gateway for Accelerated Innovation in Nuclear (GAIN) to provide the nuclear energy community with access to the technical, regulatory, and financial support necessary to move new or advanced nuclear reactor designs toward commercialization while ensuring the continued safe, reliable, and economic operation of the existing nuclear fleet. GAIN will

  18. International Nuclear Energy Research Initiative: 2008 Annual Report

    Broader source: Energy.gov [DOE]

    The International Nuclear Energy Research Initiative (I-NERI) is an international, research-oriented initiative that supports the advancement of nuclear science and technology in the United States...

  19. International Nuclear Energy Research Initiative: Annual Report 2005

    Office of Energy Efficiency and Renewable Energy (EERE)

    The International Nuclear Energy Research Initiative (I‐NERI) supports the National Energy Policy by conducting research to advance the state of nuclear science and technology in the United States....

  20. Secretary Chu Announces Funding for 71 University-Led Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    By helping to develop the next generation of advanced ... must be part of our energy mix as we work towards energy ... the latest advancements in nuclear science and technology. ...

  1. 10 Questions for a Nuclear Engineer: Todd Allen

    Broader source: Energy.gov [DOE]

    Running two advanced research facilities and also serving as a professor and materials scientist, Todd Allen is advancing the materials that will go into the next generation of nuclear reactors.

  2. ADVANCED FUELS CAMPAIGN 2013 ACCOMPLISHMENTS

    SciTech Connect (OSTI)

    Not Listed

    2013-10-01

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. Accomplishments made during fiscal year (FY) 2013 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section.

  3. Brighter future predicted at nuclear meetings in Chicago

    SciTech Connect (OSTI)

    Stein, H.

    1993-02-01

    This article discusses the future of nuclear power in the United States and the rest of the world. It is a summary of a meeting of the American Nuclear Society/European Nuclear Society in Chicago. Some topics discussed include advanced reactor design, public relations, and nuclear safety.

  4. NNSA Awards HBCU Grants | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Clark Atlanta University (Georgia) (400,000) Research and Training in Radiochemistry, EM, Defense Nuclear Non Proliferation and Advanced Simulation and Computing Fisk University ...

  5. PNNL Radiation Detection for Nuclear Security Summer School

    SciTech Connect (OSTI)

    Runkle, Bob

    2013-07-10

    PNNL's Radiation Detection for Nuclear Security Summer School gives graduate and advanced graduate students an understanding of how radiation detectors are used in national security missions.

  6. Advanced reactor safety program. Stakeholder interaction and feedback

    SciTech Connect (OSTI)

    Szilard, Ronaldo H.; Smith, Curtis L.

    2014-08-01

    In the Spring of 2013, we began discussions with our industry stakeholders on how to upgrade our safety analysis capabilities. The focus of these improvements would primarily be on advanced safety analysis capabilities that could help the nuclear industry analyze, understand, and better predict complex safety problems. The current environment in the DOE complex is such that recent successes in high performance computer modeling could lead the nuclear industry to benefit from these advances, as long as an effort to translate these advances into realistic applications is made. Upgrading the nuclear industry modeling analysis capabilities is a significant effort that would require substantial participation and coordination from all industry segments: research, engineering, vendors, and operations. We focus here on interactions with industry stakeholders to develop sound advanced safety analysis applications propositions that could have a positive impact on industry long term operation, hence advancing the state of nuclear safety.

  7. Reduction/Transformation Operators

    Energy Science and Technology Software Center (OSTI)

    2006-09-01

    RTOp (reduction/transformation operators) is a collection of C++ software that provides the basic mechanism for implementinig vector operations in a flexible and efficient manner. This is the main interface utilized by Thyra to allow for the specification of specific vector reduction and/or transformation operations. The RTOp package contains three different types of software. (a) a small number of interoperability interfaces. (b) support software including code for the parallel SPMD mode based on only Teuchos::Comm(and notmore » MPl directly(, and (c) a library of pre-implemented RTOp subclasses for everything from simple AXPYs and norms, to more specialized vector operations. RTOp allows an algorithm developer to implement their own RTOp subclasses in a way that is independent from any specific serial, parallel, out-of-core or other type of vector implementation. RTOp is a required package by Thyra and MOOCHO. (c)« less

  8. Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Nuclear Energy Nuclear Energy Tara Camacho-Lopez 2016-06-29T14:02:38+00:00 Contributing to the Next Generation of Nuclear Power Generation Our nuclear energy and fuel cycle technologies supports the safe, secure, reliable, and sustainable use of nuclear power worldwide through strengths in repository science, nonproliferation, safety and security, transportation, modeling, and system demonstrations. Areas of Expertise Defense Waste Management Sandia advises the U.S. Department

  9. Nuclear Energy!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Technical Assistance Nuclear Energy Technical Assistance "The United States will continue to promote the safe and secure use of nuclear power worldwide through a variety of bilateral and multilateral engagements. For example, the U.S. Nuclear Regulatory Commission advises international partners on safety and regulatory best practices, and the Department of Energy works with international partners on research and development, nuclear waste and storage, training, regulations,

  10. Phase Formation and Transformations in Transmutation Fuel Materials for the LIFE Engine Part I - Path Forward

    SciTech Connect (OSTI)

    Turchi, P E; Kaufman, L; Fluss, M J

    2008-11-10

    The current specifications of the LLNL fusion-fission hybrid proposal, namely LIFE, impose severe constraints on materials, and in particular on the nuclear fissile or fertile nuclear fuel and its immediate environment. This constitutes the focus of the present report with special emphasis on phase formation and phase transformations of the transmutation fuel and their consequences on particle and pebble thermal, chemical and mechanical integrities. We first review the work that has been done in recent years to improve materials properties under the Gen-IV project, and with in particular applications to HTGR and MSR, and also under GNEP and AFCI in the USA. Our goal is to assess the nuclear fuel options that currently exist together with their issues. Among the options, it is worth mentioning TRISO, IMF, and molten salts. The later option will not be discussed in details since an entire report is dedicated to it. Then, in a second part, with the specific LIFE specifications in mind, the various fuel options with their most critical issues are revisited with a path forward for each of them in terms of research, both experimental and theoretical. Since LIFE is applicable to very high burn-up of various fuels, distinctions will be made depending on the mission, i.e., energy production or incineration. Finally a few conclusions are drawn in terms of the specific needs for integrated materials modeling and the in depth knowledge on time-evolution thermochemistry that controls and drastically affects the performance of the nuclear materials and their immediate environment. Although LIFE demands materials that very likely have not yet been fully optimized, the challenge are not insurmountable and a well concerted experimental-modeling effort should lead to dramatic advances that should well serve other fission programs such as Gen-IV, GNEP, AFCI as well as the international fusion program, ITER.

  11. NNSA Researchers Advance Technology for Remote Reactor Monitoring |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Researchers Advance Technology for Remote Reactor Monitoring Thursday, May 5, 2016 - 12:06pm New detector neutralizes neutron interference for nuclear detection. NNSA's Defense Nuclear Nonproliferation Research and Development Program drives the innovation of technical capabilities to detect, identify, and characterize foreign nuclear weapons development activities. To achieve this, NNSA leverages the unique capabilities of the national

  12. Microbial Transformations of Actinides and Other Radionuclides

    SciTech Connect (OSTI)

    Francis,A.J.; Dodge, C. J.

    2009-01-07

    Microorganisms can affect the stability and mobility of the actinides and other radionuclides released from nuclear fuel cycle and from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution in the environment and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been extensively investigated, we have only limited information on the effects of microbial processes and biochemical mechanisms which affect the stability and mobility of radionuclides. The mechanisms of microbial transformations of the major and minor actinides U, Pu, Cm, Am, Np, the fission products and other radionuclides such as Ra, Tc, I, Cs, Sr, under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  13. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries

  14. ldrd | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    ldrd Laboratory Directed Research & Development The U.S. Department of Energy (DOE) is charged with a large and complex mission: to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The DOE executes this mission to a large extent at

  15. Virtual nuclear weapons

    SciTech Connect (OSTI)

    Pilat, J.F.

    1997-08-01

    The term virtual nuclear weapons proliferation and arsenals, as opposed to actual weapons and arsenals, has entered in recent years the American lexicon of nuclear strategy, arms control, and nonproliferation. While the term seems to have an intuitive appeal, largely due to its cyberspace imagery, its current use is still vague and loose. The author believes, however, that if the term is clearly delineated, it might offer a promising approach to conceptualizing certain current problems of proliferation. The first use is in a reference to an old problem that has resurfaced recently: the problem of growing availability of weapon-usable nuclear materials in civilian nuclear programs along with materials made `excess` to defense needs by current arms reduction and dismantlement. It is argued that the availability of these vast materials, either by declared nuclear-weapon states or by technologically advanced nonweapon states, makes it possible for those states to rapidly assemble and deploy nuclear weapons. The second use has quite a different set of connotations. It is derived conceptually from the imagery of computer-generated reality. In this use, one thinks of virtual proliferation and arsenals not in terms of the physical hardware required to make the bomb but rather in terms of the knowledge/experience required to design, assemble, and deploy the arsenal. Virtual weapons are a physics reality and cannot be ignored in a world where knowledge, experience, materials, and other requirements to make nuclear weapons are widespread, and where dramatic army reductions and, in some cases, disarmament are realities. These concepts are useful in defining a continuum of virtual capabilities, ranging from those at the low end that derive from general technology diffusion and the existence of nuclear energy programs to those at the high end that involve conscious decisions to develop or maintain militarily significant nuclear-weapon capabilities.

  16. NNSA: Working to Prevent Nuclear Proliferation | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) NNSA: Working to Prevent Nuclear Proliferation February 01, 2011 NNSA's Office of Nonproliferation and International Security (NIS) provides leadership in the formulation and implementation of nonproliferation, nuclear security, and arms control strategies to advance U.S. national security objectives. NIS draws on and contributes to a wide range of technical resources within the U.S. National Laboratory complex, working in concert with international organizations and

  17. Linking Transformational Materials and Processing for an Energy-Efficient and Low-Carbon Economy, 2010

    SciTech Connect (OSTI)

    Hunt, Warren H.; Brindle, Ross; James, Mallory; Justiniano, Mauricio; Sabouni, Ridah; Seader, Melanie; Ruch, Jennifer; Andres, Howard; Zafar, Muhammad

    2010-06-01

    The Energy Materials Blue Ribbon Panel, representing experts from industry, academia, and government, identifies new materials and processing breakthroughs that could lead to transformational advances in energy efficiency, energy security, and carbon reduction.

  18. Advanced Methods for Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methods for Manufacturing Advanced Methods for Manufacturing The overall purpose of the AMM subprogram is to accelerate innovations that reduce the cost and schedule of constructing new nuclear plants and make fabrication of nuclear power plant components faster, cheaper, and more reliable. Based on past industry work and new stakeholder input, this effort will focus on opportunities that provide simplified, standardized, and labor-saving outcomes for manufacturing, fabrication, assembly, and

  19. Getting on the same page-transformation | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting on the same ... Getting on the same page-transformation Posted: August 17, 2015 - 9:53am Transformation is an effort to unify the Pantex Plant and the Y-12 National Security Complex as one team, working better together, to serve the National Nuclear Security Administration's mission and deliver critical products and services. In the dynamic international nuclear environment, we must prove that our strong traditions and reputation of excellence are still relevant, while adapting our

  20. research | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    research NNSA-lab-created new magnets will power renewable technology The Ion Beam Materials Laboratory at NNSA's Los Alamos National Laboratory (LANL) works to characterize and modify surfaces through the use of ion beams. Its purpose is to advance materials science for the safety and security of the U.S. nuclear weapons stockpile-and that research also... Nuclear weapons research holds benefits for tech industry Research work performed at NNSA's national laboratories generates fervor among

  1. ABB Combustion Engineering nuclear technology

    SciTech Connect (OSTI)

    Matzie, R.A.

    1994-12-31

    The activities of ABB Combustion Engineering in the design and construction of nuclear systems and components are briefly reviewed. ABB Construction Engineering continues to improve the design and design process for nuclear generating stations. Potential improvements are evaluated to meet new requirements both of the public and the regulator, so that the designs meet the highest standards worldwide. Advancements necessary to meet market needs and to ensure the highest level of performance in the future will be made.

  2. cielo | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    cielo Supercomputers Deploying some of the world's fastest supercomputers is among ASC's accomplishments in advanced computing. However, it is not all about speed. Each new system is engineered to bring certain capabilities to bear on the problems of modeling and simulation that will enhance the overall... ASC Program Elements Established in 1995, the Advanced Simulation and Computing (ASC) Program supports the Department of Energy's National Nuclear Security Administration (NNSA) Defense

  3. Plant maintenance and advanced reactors issue, 2008

    SciTech Connect (OSTI)

    Agnihotri, Newal

    2009-09-15

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Technologies of national importance, by Tsutomu Ohkubo, Japan Atomic Energy Agency, Japan; Modeling and simulation advances brighten future nuclear power, by Hussein Khalil, Argonne National Laboratory, Energy and desalination projects, by Ratan Kumar Sinha, Bhabha Atomic Research Centre, India; A plant with simplified design, by John Higgins, GE Hitachi Nuclear Energy; A forward thinking design, by Ray Ganthner, AREVA; A passively safe design, by Ed Cummins, Westinghouse Electric Company; A market-ready design, by Ken Petrunik, Atomic Energy of Canada Limited, Canada; Generation IV Advanced Nuclear Energy Systems, by Jacques Bouchard, French Commissariat a l'Energie Atomique, France, and Ralph Bennett, Idaho National Laboratory; Innovative reactor designs, a report by IAEA, Vienna, Austria; Guidance for new vendors, by John Nakoski, U.S. Nuclear Regulatory Commission; Road map for future energy, by John Cleveland, International Atomic Energy Agency, Vienna, Austria; and, Vermont's largest source of electricity, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovation article is titled Intelligent monitoring technology, by Chris Demars, Exelon Nuclear.

  4. ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS

    SciTech Connect (OSTI)

    E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson

    2010-09-20

    Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using

  5. Nuclear Materials Management & Safeguards System | National Nuclear...

    National Nuclear Security Administration (NNSA)

    About Our Programs Nuclear Security Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials ...

  6. Report on Advanced Detector Development

    SciTech Connect (OSTI)

    James K. Jewell

    2012-09-01

    Neutron, gamma and charged particle detection improvements are key to supporting many of the foreseen measurements and systems envisioned in the R&D programs and the future fuel cycle requirements, such as basic nuclear physics and data, modeling and simulation, reactor instrumentation, criticality safety, materials management and safeguards. This task will focus on the developmental needs of the FCR&D experimental programs, such as elastic/inelastic scattering, total cross sections and fission neutron spectra measurements, and will leverage a number of existing neutron detector development efforts and programs, such as those at LANL, PNNL, INL, and IAC as well as those at many universities, some of whom are funded under NE grants and contracts. Novel materials and fabrication processes combined with state-of-the-art electronics and computing provide new opportunities for revolutionary detector systems that will be able to meet the high precision needs of the program. This work will be closely coordinated with the Nuclear Data Crosscut. The Advanced Detector Development effort is a broadly-focused activity that supports the development of improved nuclear data measurements and improved detection of nuclear reactions and reactor conditions. This work supports the design and construction of large-scale, multiple component detectors to provide nuclear reaction data of unprecedented quality and precision. Examples include the Time Projection Chamber (TPC) and the DANCE detector at LANL. This work also supports the fabrication and end-user application of novel scintillator materials detection and monitoring.

  7. Advanced Gas Reactor Fuel Program's TRISO Particle Fuel Sets A New World Record For Irradiation Performance

    Broader source: Energy.gov [DOE]

    As part of the Office of Nuclear Energy's Next Generation Nuclear Plant (NGNP) Program, the Advanced Gas Reactor (AGR) Fuel Development Program has achieved a new international record for...

  8. Advanced dry head-end reprocessing of light water reactor spent...

    Office of Scientific and Technical Information (OSTI)

    Patent: Advanced dry head-end reprocessing of light water reactor spent nuclear fuel Citation Details In-Document Search Title: Advanced dry head-end reprocessing of light water ...

  9. EIS-0236-S4: Final Complex Transformation Supplemental Programmatic Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    This Complex Transformation Supplemental Programmatic Environmental Impact Statement (SPEIS) analyzes the potential environmental impacts of reasonable alternatives to continue transformation of the nuclear weapons complex to be smaller, and more responsive, efficient, and secure in order to meet national security requirements.

  10. Nuclear Navy

    SciTech Connect (OSTI)

    1994-12-31

    This video tells the story of the Navy`s development of nuclear power and its application in long-range submarines and the growing nuclear surface force. Narrated by Frank Blair.

  11. Secretary Chu Announces $100 Million for Advanced Research Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy $100 Million for Advanced Research Projects Secretary Chu Announces $100 Million for Advanced Research Projects December 7, 2009 - 12:00am Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Steven Chu announced today that a second round of funding opportunities for transformational energy research projects that will be made available through the Department's Advanced Research Projects Agency-Energy (ARPA-E). At an event today with Commerce Secretary Gary Locke,

  12. Achieving the Vision of the global nuclear energy partnership - greater energy security in a safer, cleaner world

    SciTech Connect (OSTI)

    Golub, S.J.; Frazier, T.A.

    2007-07-01

    This paper describes the strategy that the U.S. Department of Energy (DOE) is pursuing to transform the vision of the Global Nuclear Energy Partnership (GNEP) into reality. GNEP will promote the use of clean, safe nuclear power through the use of advanced reactors and new methods to recycle spent nuclear fuel. By shifting from a once through fuel cycle to a closed fuel cycle, we can extract more energy from the nuclear fuel and dramatically reduce the amount of nuclear waste. By incorporating enhanced safeguards and material accountability we can further reduce the risk of nuclear proliferation. While the benefits of achieving this vision are clearly profound, based on the sheer scope and magnitude of the GNEP, there will undoubtedly be challenges along the way. This endeavor will require careful planning and effective management to assure our long-term success. Moving forward, GNEP will be thoroughly engaged with our stakeholder community. By effectively leveraging the talents of DOE, the National Laboratories, Universities, private industry, the regulatory community and our international partners these challenges will become opportunities for success. (authors)

  13. Challenges at the Frontiers of Matter and Energy: Transformative Opportunities for Discovery Science

    SciTech Connect (OSTI)

    Hemminger, John C.; Sarrao, John; Crabtree, George; Flemming, Graham; Ratner, Mark

    2015-11-01

    to significant advances in the harvesting, transforming (e.g., reducing CO2, splitting water, and fixing nitrogen), storing, and use of energy to create new materials, manufacturing processes, and technologies—the lifeblood of human societies and economic growth. Beyond Ideal Materials and Systems: Understanding the Critical Roles of Heterogeneity, Interfaces, and Disorder Real materials, both natural ones and those we engineer, are usually a complex mixture of compositional and structural heterogeneities, interfaces, and disorder across all spatial and temporal scales. It is the fluctuations and disorderly states of these heterogeneities and interfaces that often determine the system’s properties and functionality. Much of our fundamental scientific knowledge is based on “ideal” systems, meaning materials that are observed in “frozen” states or represented by spatially or temporally averaged states. Too often, this approach has yielded overly simplistic models that hide important nuances and do not capture the complex behaviors of materials under realistic conditions. These behaviors drive vital chemical transformations such as catalysis, which initiates most industrial manufacturing processes, and friction and corrosion, the parasitic effects of which cost the U.S. economy billions of dollars annually. Expanding our scientific knowledge from the relative simplicity of ideal, perfectly ordered, or structurally averaged materials to the true complexity of real-world heterogeneities, interfaces, and disorder should enable us to realize enormous benefits in the materials and chemical sciences, which translates to the energy sciences, including solar and nuclear power, hydraulic fracturing, power conversion, airframes, and batteries. Harnessing Coherence in Light and Matter Quantum coherence in light and matter is a measure of the extent to which a wave field vibrates in unison with itself at neighboring points in space and time. Although this phenomenon is

  14. 2015 Advanced Sensors and Instrumentation Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program, in coordination with the Office of Nuclear Reactor Technologies and the Office of Fuel Cycle Technologies, conducted an Instrumentations and Controls (I&C) webinar on October 28-29, 2015. This webinar provided an opportunity to review the research and development being conducted in the areas of sensors, controls, communications, digital instrumentation, human-machine technologies, and related areas across the Office of Nuclear Energy (NE) and to promote greater coordination among the various NE R&D programs. The meeting presentations are available here.

  15. IAEA reorganizes nuclear information services

    SciTech Connect (OSTI)

    Levine, E.

    2012-08-15

    As part of an overall restructuring of the International Atomic Energy Agency's Department of Nuclear Energy, the agency has established the Nuclear Information Section (NIS). The restructuring, recently announced by IAEA Director General Yukiya Amano, also includes the creation of a separate Nuclear Knowledge Management (NKM) Section, as demand for assistance in this area is growing among member countries. According to the NIS Web site, 'This restructuring and the creation of the NIS provides an opportunity for further enhancing existing information products and services and introducing new ones-all with an eye towards advancing higher organizational efficiency and effectiveness.'

  16. Advanced Reactor Research and Development Funding Opportunity Announcement

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) sponsors a program of research, development, and demonstration related to advanced non-light water reactor concepts. A goal of the...

  17. 2016 NEET Advanced Sensors and Instrumentation Award Summaries

    Broader source: Energy.gov [DOE]

    The Nuclear Energy Enabling Technologies Crosscutting Technology Development (NEET- CTD) Advanced Sensors and Instrumentation (ASI) Award Summaries describe the research achievements and planned accomplishments for ongoing projects. This Award Summaries document will be updated annually, as needed.

  18. Advanced Sensors and Instrumentation Newsletter- Issue 5, September 2016

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Sensors and Instrumentation (ASI) newsletter includes information about new developments and achievements in the area of sensors, instrumentation and related technologies across the Office of Nuclear Energy R&D programs.

  19. 2016 NEET Advanced Methods for Manufacturing Award Summaries

    Broader source: Energy.gov [DOE]

    The Nuclear Energy Enabling Technologies Crosscutting Technology Development (NEET- CTD) Advanced Methods for Manufacturing (AMM) Award Summaries describe the research achievements and planned accomplishments for ongoing projects. This Award Summaries document will be updated annually, as needed.

  20. United States and Italy Sign Nuclear Energy Agreements | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Italy Sign Nuclear Energy Agreements United States and Italy Sign Nuclear Energy Agreements September 30, 2009 - 1:23pm Addthis U.S. Secretary of Energy Steven Chu and Italian Minister for Economic Development Claudio Scajola today signed two important nuclear energy agreements that may lead to construction of new nuclear power plants and improved cooperation on advanced nuclear energy systems and fuel cycle technologies in both countries. The U.S.-Italy Joint Declaration Concerning

  1. International Nuclear Energy Research Initiative: 2010 Annual Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0 Annual Report International Nuclear Energy Research Initiative: 2010 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is a research-oriented collaborative program that supports the advancement of nuclear science and technology in the United States and the world. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment. The 2010 Nuclear Energy Research and

  2. Department of Energy Announces New Nuclear Initiative | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Nuclear Initiative Department of Energy Announces New Nuclear Initiative February 6, 2006 - 10:56am Addthis Global Nuclear Energy Partnership to expand safe, clean, reliable, affordable nuclear energy worldwide WASHINGTON, DC - As part of President Bush's Advanced Energy Initiative, Secretary of Energy Samuel W. Bodman announced today a $250 million Fiscal Year (FY) 2007 request to launch the Global Nuclear Energy Partnership (GNEP). This new initiative is a comprehensive strategy to

  3. Plant maintenance and advanced reactors, 2007

    SciTech Connect (OSTI)

    Agnihotri, Newal

    2007-09-15

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: A new day for energy in America; Committed to success more than ever, by Andy White, GE--Hitachi Nuclear Energy; Competitive technology for decades, by Steve Tritch, Westinghouse Electric Company; Pioneers of positive community relationship, by Exelon Nuclear; A robust design for 60-years, by Ray Ganthner, Areva; Aiming at no evacuation plants, by Kumiaki Moriya, Hitachi-GE Nuclear Energy, Ltd.; and, Desalination and hydrogen economy, by Dr. I. Khamis, International Atomic Energy Agency. Industry innovation articles in this issue are: Reactor vessel closure head project, by Jeff LeClair, Prairie Island Nuclear Generating Plant; and Submersible remote-operated vehicle, by Michael S. Rose, Entergy's Fitzpatrick Nuclear Station.

  4. Helping nuclear power help us

    SciTech Connect (OSTI)

    Schecker, Jay A

    2009-01-01

    After a prolonged absence, the word 'nuclear' has returned to the lexicon of sustainable domestic energy resources. Due in no small part to its demonstrated reliability, nuclear power is poised to playa greater role in the nation's energy future, producing clean, carbon-neutral electricity and contributing even more to our energy security. To nuclear scientists, the resurgence presents an opportunity to inject new technologies into the industry to maximize the benefits that nuclear energy can provide. 'By developing new options for waste management and exploiting new materials to make key technological advances, we can significantly impact the use of nuclear energy in our future energy mix,' says Chris Stanek, a materials scientist at Los Alamos National Laboratory. Stanek approaches the big technology challenges by thinking way small, all the way down to the atoms. He and his colleagues are using cutting edge atomic-scale simulations to address a difficult aspect of nuclear waste -- predicting its behavior far into the future. Their research is part of a broader, coordinated effort on the part of the Laboratory to use its considerable experimental, theoretical, and computational capabilities to explore advanced materials central to not only waste issues, but to nuclear fuels as well.

  5. Partnerships Help Advance Small Modular Reactor Technology | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Partnerships Help Advance Small Modular Reactor Technology Partnerships Help Advance Small Modular Reactor Technology March 5, 2012 - 12:00pm Addthis WASHINGTON, D.C. - DOE recently announced three public-private partnerships to develop deployment plans for small modular nuclear reactor (SMR) technologies at Savannah River Site (SRS) facilities near Aiken, S.C. Read the full story on the Memorandums of Agreement to help leverage SRS land assets, energy facilities and nuclear expertise

  6. Center For Advanced Energy Studies Overview

    ScienceCinema (OSTI)

    Blackman, Harold

    2013-05-28

    A collaboration between Idaho National Laboratory, Boise State University, Idaho State University and the University of Idaho. Conducts research in nuclear energy, advanced materials, carbon management, bioenergy, energy policy, modeling and simulation, and energy efficiency. Educates next generation of energy workforce. Visit us at www.caesenergy.org.

  7. Advanced Methods for Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R. Shane Johnson Deputy Assistant Secretary for Science and Technology Innovation (NE-4) December 11, 2015 Gateway for Accelerated Innovation in Nuclear GAIN 2 Accelerating Nuclear ...

  8. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program ...

  9. IND | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    IND About Counterterrorism NNSA provides expertise, practical tools, and technically informed policy recommendations required to advance U.S. nuclear counterterrorism and counterproliferation objectives. It executes a unique program of work focused solely on these missions and builds partnerships with U.S. government

  10. Advanced isotope separation

    SciTech Connect (OSTI)

    Not Available

    1982-05-04

    The Study Group briefly reviewed the technical status of the three Advanced Isotope Separation (AIS) processes. It also reviewed the evaluation work that has been carried out by DOE's Process Evaluation Board (PEB) and the Union Carbide Corporation-Nuclear Division (UCCND). The Study Group briefly reviewed a recent draft assessment made for DOE staff of the nonproliferation implications of the AIS technologies. The staff also very briefly summarized the status of GCEP and Advanced Centrifuge development. The Study Group concluded that: (1) there has not been sufficient progress to provide a firm scientific, technical or economic basis on which to select one of the three competing AIS processes for full-scale engineering development at this time; and (2) however, should budgetary restraints or other factors force such a selection, we believe that the evaluation process that is being carried out by the PEB provides the best basis available for making a decision. The Study Group recommended that: (1) any decisions on AIS processes should include a comparison with gas centrifuge processes, and should not be made independently from the plutonium isotope program; (2) in evaluating the various enrichment processes, all applicable costs (including R and D and sales overhead) and an appropriate discounting approach should be included in order to make comparisons on a private industry basis; (3) if the three AIS programs continue with limited resources, the work should be reoriented to focus only on the most pressing technical problems; and (4) if a decision is made to develop the Atomic Vapor Laser Isotope Separation process, the solid collector option should be pursued in parallel to alleviate the potential program impact of liquid collector thermal control problems.

  11. Nuclear Deterrence | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deterrence Nuclear Deterrence Y-12's core mission is to ensure a safe, secure, and reliable U.S. nuclear deterrent, which is essential to national security. Every weapon in the U.S. nuclear stockpile has components manufactured, maintained or ultimately dismantled by Y-12, the nation's Uranium Center of Excellence. We employ only the most advanced and failsafe technologies to protect the stockpile

  12. Nuclear Energy Systems Laboratory (NESL) / Brayton Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brayton Lab - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  13. Correlation between Fermi surface transformations and superconductivit...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Correlation between Fermi surface transformations and superconductivity ... Title: Correlation between Fermi surface transformations and superconductivity in the ...

  14. Engineering Molecular Transformations for Sustainable Energy...

    Office of Scientific and Technical Information (OSTI)

    Engineering Molecular Transformations for Sustainable Energy Conversion Citation Details In-Document Search Title: Engineering Molecular Transformations for Sustainable Energy ...

  15. Sandia Energy - Advanced Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Research & Development Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Advanced Research & Development Advanced Research & DevelopmentCoryne...

  16. PRESENTATION: TRANSFORMATION OF THE GRID

    Broader source: Energy.gov [DOE]

    A briefing to the Secretary's Energy Advisory Board on the transformation of the grid delivered by Patricia Hoffman, U.S. Department of Energy.

  17. Phase transformations in steels: Processing, microstructure, and performance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gibbs, Paul J.

    2014-04-03

    In this study, contemporary steel research is revealing new processing avenues to tailor microstructure and properties that, until recently, were only imaginable. Much of the technological versatility facilitating this development is provided by the understanding and utilization of the complex phase transformation sequences available in ferrous alloys. Today we have the opportunity to explore the diverse phenomena displayed by steels with specialized analytical and experimental tools. Advances in multi-scale characterization techniques provide a fresh perspective into microstructural relationships at the macro- and micro-scale, enabling a fundamental understanding of the role of phase transformations during processing and subsequent deformation.

  18. Nuclear Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration | (NNSA) Nuclear Security Centers of Excellence: Fact Sheet March 23, 2012 "We [the Participating States]... Acknowledge the need for capacity building for nuclear security and cooperation at bilateral, regional and multilateral levels for the promotion of nuclear security culture through technology development, human resource development, education, and training; and stress the importance of optimizing international cooperation and coordination of

  19. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-08-26

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information.) Appendices A and B are Official Use Only. Point of contact is Adam Boyd (NA-82), 202-586-0010. Supersedes DOE O 457.1 and DOE M 457.1-1.

  20. NUCLEAR ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NUCLEAR ENERGY RESEARCH AND DEVELOPMENT ROADMAP Table of Contents List of Acronyms ................................................................................................... iii Executive Summary ............................................................................................... v 1. Introduction ...................................................................................................... 1 2. Background

  1. nuclear smuggling

    National Nuclear Security Administration (NNSA)

    13, 2015

    SHANGHAI, CHINA - Today, the Nuclear Security Administration's (NNSA) Principal Assistant Deputy Administrator for Defense...

  2. nuclear material

    National Nuclear Security Administration (NNSA)

    width"300" >WASHINGTON, D.C. - The Department of Energy's (DOE) National Nuclear Security Administration (NNSA), in partnership with the Defense Threat Reduction...

  3. nuclear weapons

    National Nuclear Security Administration (NNSA)

    09, 2015

    WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) and United States Air Force completed eight successful...

  4. nuclear controls

    National Nuclear Security Administration (NNSA)

    which "international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and...

  5. nuclear forensics

    National Nuclear Security Administration (NNSA)

    serves as the premier technical leader in responding to and successfully resolving nuclear and radiological threats worldwide. When the need arises, NNSA is prepared to...

  6. Advanced Manufacturing Office News

    SciTech Connect (OSTI)

    2013-08-08

    News stories about advanced manufacturing, events, and office accomplishments. Subscribe to receive updates.

  7. Science Drivers and Technical Challenges for Advanced Magnetic Resonance

    SciTech Connect (OSTI)

    Mueller, Karl T.; Pruski, Marek; Washton, Nancy M.; Lipton, Andrew S.

    2013-03-07

    This report recaps the "Science Drivers and Technical Challenges for Advanced Magnetic Resonance" workshop, held in late 2011. This exploratory workshop's goal was to discuss and address challenges for the next generation of magnetic resonance experimentation. During the workshop, participants from throughout the world outlined the science drivers and instrumentation demands for high-field dynamic nuclear polarization (DNP) and associated magnetic resonance techniques, discussed barriers to their advancement, and deliberated the path forward for significant and impactful advances in the field.

  8. Energy Department Requests Proposals for Advanced Scientific Computing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research | Department of Energy Advanced Scientific Computing Research Energy Department Requests Proposals for Advanced Scientific Computing Research December 27, 2005 - 4:55pm Addthis WASHINGTON, DC - The Department of Energy's Office of Science and the National Nuclear Security Administration (NNSA) have issued a joint Request for Proposals for advanced scientific computing research. DOE expects to fund $67 million annually for three years to five years under its Scientific Discovery

  9. Proliferation resistance and the advanced fuel cycle facility (AFCF)

    SciTech Connect (OSTI)

    DeMuth, Scott; Thomas, Kenneth; Tobin, Stephen

    2007-07-01

    The planned Advanced Fuel Cycle Facility (AFCF) is intended to support the Global Nuclear Energy Partnership (GNEP) by demonstrating separation and fuel fabrication processes required to support an Advanced Burner Reactor. The processes, materials and safeguards will be selected and designed to enhance proliferation resistance beyond that of the existing plutonium based mixed oxide (MOX) fuel cycle. This paper explores the concept of proliferation resistance and how the AFCF will advance the related state of the art. (authors)

  10. Set Equation Transformation System.

    Energy Science and Technology Software Center (OSTI)

    2002-03-22

    Version 00 SETS is used for symbolic manipulation of Boolean equations, particularly the reduction of equations by the application of Boolean identities. It is a flexible and efficient tool for performing probabilistic risk analysis (PRA), vital area analysis, and common cause analysis. The equation manipulation capabilities of SETS can also be used to analyze noncoherent fault trees and determine prime implicants of Boolean functions, to verify circuit design implementation, to determine minimum cost fire protectionmore » requirements for nuclear reactor plants, to obtain solutions to combinatorial optimization problems with Boolean constraints, and to determine the susceptibility of a facility to unauthorized access through nullification of sensors in its protection system. Two auxiliary programs, SEP and FTD, are included. SEP performs the quantitative analysis of reduced Boolean equations (minimal cut sets) produced by SETS. The user can manipulate and evaluate the equations to find the probability of occurrence of any desired event and to produce an importance ranking of the terms and events in an equation. FTD is a fault tree drawing program which uses the proprietary ISSCO DISSPLA graphics software to produce an annotated drawing of a fault tree processed by SETS. The DISSPLA routines are not included.« less

  11. Nuclear Weapons Journal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons Journal Nuclear Weapons Journal The Nuclear Weapons Journal ceased publication after Issue 2, 2009. Below are Nuclear Weapons Journal archived issues. Issue 2, 2009 ...

  12. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Myths Topics: Can a Nuclear Reactor Explode Like a Bomb? Will Nuclear Waste Be Around for Millions of Years? Is Nuclear Energy Dangerous? Moderator: Suzy Hobbs ...

  13. Nuclear Nonproliferation Treaty | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... Nuclear Nonproliferation Treaty The Treaty on the Non-Proliferation of Nuclear Weapons off ...

  14. Nuclear Nonproliferation, International Safeguards and Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Conference: Nuclear Nonproliferation, International Safeguards and Nuclear Security in the Middle East Citation Details In-Document Search Title: Nuclear Nonproliferation, ...

  15. Nuclear Nonproliferation, International Safeguards and Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Nonproliferation, International Safeguards and Nuclear Security in the Middle East Citation Details In-Document Search Title: Nuclear Nonproliferation, International ...

  16. nuclear | National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration (NNSA)

    nuclear Nuclear Science Week releases 2015 Impact Report and 2016 Request for Proposal Last week the Nuclear Science Week (NSW) National Steering Committee released its impact ...

  17. Chernobyl Nuclear Accident | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Chernobyl Nuclear Accident Chernobyl Nuclear Accident Chernobyl, Ukraine A catastrophic nuclear accident occurs at Chernobyl Reactor 4 in the then Soviet Republic of Ukraine

  18. Nuclear Nonproliferation Program Offices | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... and monitor nuclear weapons production, proliferation, and nuclear explosions worldwide. ...

  19. LIFE Materials: Phase Formation and Transformations in Transmutation Fuel Materials for the LIFE Engine Part I - Path Forward Volume 3

    SciTech Connect (OSTI)

    Turchi, P A; Kaufman, L; Fluss, M

    2008-12-19

    The current specifications of the LLNL fusion-fission hybrid proposal, namely LIFE, impose severe constraints on materials, and in particular on the nuclear fissile or fertile nuclear fuel and its immediate environment. This constitutes the focus of the present report with special emphasis on phase formation and phase transformations of the transmutation fuel and their consequences on particle and pebble thermal, chemical, and mechanical integrities. We first review the work that has been done in recent years to improve materials properties under the Gen-IV project, and with in particular applications to HTGR and MSR, and also under GNEP and AFCI in the USA. Our goal is to assess the nuclear fuel options that currently exist together with their issues. Among the options, it is worth mentioning TRISO, IMF, and molten salts. The later option will not be discussed in details since an entire report (Volume 8 - Molten-salt Fuels) is dedicated to it. Then, in a second part, with the specific LIFE specifications in mind, the various fuel options with their most critical issues are revisited with a path forward for each of them in terms of research, both experimental and theoretical. Since LIFE is applicable to very high burn-up of various fuels, distinctions will be made depending on the mission, i.e., energy production or incineration. Finally a few conclusions are drawn in terms of the specific needs for integrated materials modeling and the in depth knowledge on time-evolution thermo-chemistry that controls and drastically affects the performance of the nuclear materials and their immediate environment. Although LIFE demands materials that very likely have not yet been fully optimized, the challenges are not insurmountable, and a well concerted experimental-modeling effort should lead to dramatic advances that should well serve other fission programs such as Gen-IV, GNEP, AFCI as well as the international fusion program, ITER.

  20. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these

  1. Transformer Efficiency Assessment - Okinawa, Japan

    SciTech Connect (OSTI)

    Thomas L. Baldwin; Robert J. Turk; Kurt S. Myers; Jake P. Gentle; Jason W. Bush

    2012-05-01

    The US Army Engineering & Support Center, Huntsville (USAESCH), and the US Marine Corps Base (MCB), Okinawa, Japan retained Idaho National Laboratory (INL) to conduct a Transformer Efficiency Assessment of “key” transformers located at multiple military bases in Okinawa, Japan. The purpose of this assessment is to support the Marine Corps Base, Okinawa in evaluating medium voltage distribution transformers for potential efficiency upgrades. The original scope of work included the MCB providing actual transformer nameplate data, manufacturer’s factory test sheets, electrical system data (kWh), demand data (kWd), power factor data, and electricity cost data. Unfortunately, the MCB’s actual data is not available and therefore making it necessary to de-scope the original assessment. Note: Any similar nameplate data, photos of similar transformer nameplates, and basic electrical details from one-line drawings (provided by MCB) are not a replacement for actual load loss test data. It is recommended that load measurements are performed on the high and low sides of transformers to better quantify actual load losses, demand data, and power factor data. We also recommend that actual data, when available, be inserted by MCB Okinawa where assumptions have been made and then the LCC analysis updated. This report covers a generalized assessment of modern U.S. transformers in a three level efficiency category, Low-Level efficiency, Medium-Level efficiency, and High-Level efficiency.

  2. Transformer Efficiency Assessment - Okinawa, Japan

    SciTech Connect (OSTI)

    Thomas L. Baldwin; Robert J. Turk; Kurt S. Myers; Jake P. Gentle; Jason W. Bush

    2012-08-01

    The US Army Engineering & Support Center, Huntsville (USAESCH), and the US Marine Corps Base (MCB), Okinawa, Japan retained Idaho National Laboratory (INL) to conduct a Transformer Efficiency Assessment of “key” transformers located at multiple military bases in Okinawa, Japan. The purpose of this assessment is to support the Marine Corps Base, Okinawa in evaluating medium voltage distribution transformers for potential efficiency upgrades. The original scope of work included the MCB providing actual transformer nameplate data, manufacturer’s factory test sheets, electrical system data (kWh), demand data (kWd), power factor data, and electricity cost data. Unfortunately, the MCB’s actual data is not available and therefore making it necessary to de-scope the original assessment. Note: Any similar nameplate data, photos of similar transformer nameplates, and basic electrical details from one-line drawings (provided by MCB) are not a replacement for actual load loss test data. It is recommended that load measurements are performed on the high and low sides of transformers to better quantify actual load losses, demand data, and power factor data. We also recommend that actual data, when available, be inserted by MCB Okinawa where assumptions have been made and then the LCC analysis updated. This report covers a generalized assessment of modern U.S. transformers in a three level efficiency category, Low-Level efficiency, Medium-Level efficiency, and High-Level efficiency.

  3. Transformer Efficiency Assessment - Okinawa, Japan

    SciTech Connect (OSTI)

    Thomas L. Baldwin; Robert J. Turk; Kurt S. Myers; Jake P. Gentle; Jason W. Bush

    2012-05-01

    The US Army Engineering & Support Center, Huntsville (USAESCH), and the US Marine Corps Base (MCB), Okinawa, Japan retained Idaho National Laboratory (INL) to conduct a Transformer Efficiency Assessment of key transformers located at multiple military bases in Okinawa, Japan. The purpose of this assessment is to support the Marine Corps Base, Okinawa in evaluating medium voltage distribution transformers for potential efficiency upgrades. The original scope of work included the MCB providing actual transformer nameplate data, manufacturers factory test sheets, electrical system data (kWh), demand data (kWd), power factor data, and electricity cost data. Unfortunately, the MCBs actual data is not available and therefore making it necessary to de-scope the original assessment. Note: Any similar nameplate data, photos of similar transformer nameplates, and basic electrical details from one-line drawings (provided by MCB) are not a replacement for actual load loss test data. It is recommended that load measurements are performed on the high and low sides of transformers to better quantify actual load losses, demand data, and power factor data. We also recommend that actual data, when available, be inserted by MCB Okinawa where assumptions have been made and then the LCC analysis updated. This report covers a generalized assessment of modern U.S. transformers in a three level efficiency category, Low-Level efficiency, Medium-Level efficiency, and High-Level efficiency.

  4. Modeling the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Jacob J. Jacobson; A. M. Yacout; G. E. Matthern; S. J. Piet; A. Moisseytsev

    2005-07-01

    The Advanced Fuel Cycle Initiative is developing a system dynamics model as part of their broad systems analysis of future nuclear energy in the United States. The model will be used to analyze and compare various proposed technology deployment scenarios. The model will also give a better understanding of the linkages between the various components of the nuclear fuel cycle that includes uranium resources, reactor number and mix, nuclear fuel type and waste management. Each of these components is tightly connected to the nuclear fuel cycle but usually analyzed in isolation of the other parts. This model will attempt to bridge these components into a single model for analysis. This work is part of a multi-national laboratory effort between Argonne National Laboratory, Idaho National Laboratory and United States Department of Energy. This paper summarizes the basics of the system dynamics model and looks at some results from the model.

  5. Metal fire implications for advanced reactors. Part 1, literature review.

    SciTech Connect (OSTI)

    Nowlen, Steven Patrick; Radel, Ross F.; Hewson, John C.; Olivier, Tara Jean; Blanchat, Thomas K.

    2007-10-01

    Public safety and acceptance is extremely important for the nuclear power renaissance to get started. The Advanced Burner Reactor and other potential designs utilize liquid sodium as a primary coolant which provides distinct challenges to the nuclear power industry. Fire is a dominant contributor to total nuclear plant risk events for current generation nuclear power plants. Utilizing past experience to develop suitable safety systems and procedures will minimize the chance of sodium leaks and the associated consequences in the next generation. An advanced understanding of metal fire behavior in regards to the new designs will benefit both science and industry. This report presents an extensive literature review that captures past experiences, new advanced reactor designs, and the current state-of-knowledge related to liquid sodium combustion behavior.

  6. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-02-07

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information. The Manual is Official Use Only, and is not available on the Directives Portal. The point of contact for the Manual is Randall Weidman, NA-121.2, 202-586-4582.) Canceled by DOE O 457.1A

  7. Advanced Small Modular Reactor Economics Status Report

    SciTech Connect (OSTI)

    Harrison, Thomas J.

    2014-10-01

    This report describes the data collection work performed for an advanced small modular reactor (AdvSMR) economics analysis activity at the Oak Ridge National Laboratory. The methodology development and analytical results are described in separate, stand-alone documents as listed in the references. The economics analysis effort for the AdvSMR program combines the technical and fuel cycle aspects of advanced (non-light water reactor [LWR]) reactors with the market and production aspects of SMRs. This requires the collection, analysis, and synthesis of multiple unrelated and potentially high-uncertainty data sets from a wide range of data sources. Further, the nature of both economic and nuclear technology analysis requires at least a minor attempt at prediction and prognostication, and the far-term horizon for deployment of advanced nuclear systems introduces more uncertainty. Energy market uncertainty, especially the electricity market, is the result of the integration of commodity prices, demand fluctuation, and generation competition, as easily seen in deregulated markets. Depending on current or projected values for any of these factors, the economic attractiveness of any power plant construction project can change yearly or quarterly. For long-lead construction projects such as nuclear power plants, this uncertainty generates an implied and inherent risk for potential nuclear power plant owners and operators. The uncertainty in nuclear reactor and fuel cycle costs is in some respects better understood and quantified than the energy market uncertainty. The LWR-based fuel cycle has a long commercial history to use as its basis for cost estimation, and the current activities in LWR construction provide a reliable baseline for estimates for similar efforts. However, for advanced systems, the estimates and their associated uncertainties are based on forward-looking assumptions for performance after the system has been built and has achieved commercial operation

  8. National Symposium on Market Transformation

    Broader source: Energy.gov [DOE]

    Hosted by the American Council for an Energy-Efficient Economy (ACEEE) and the Consortium for Energy Efficiency (CEE), this three-day conference features speakers covering topics within the scope of market transformation.

  9. Transform Solar | Open Energy Information

    Open Energy Info (EERE)

    search Name: Transform Solar Place: Boise, Idaho Product: Idaho-based PV module maker and joint venture between Micron and Origin Energy. Coordinates: 43.60698, -116.193409...

  10. National Nuclear Security Administration | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  11. RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; NUCLEAR MEDICINE; HISTORICAL

    Office of Scientific and Technical Information (OSTI)

    The early days Richards, P. 38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; NUCLEAR MEDICINE; HISTORICAL ASPECTS; TECHNETIUM 99; COLLOIDS; MOLYBDENUM...

  12. ENTERPRISE SRS: LEVERAGING ONGOING OPERATIONS TO ADVANCE RADIOACTIVE WASTE MANAGEMENT TECHNOLOGIES

    SciTech Connect (OSTI)

    Murray, A.; Wilmarth, W.; Marra, J.; Mcguire, P.; Wheeler, V.

    2013-05-16

    The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for “all things nuclear” as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by using SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the R&D team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform R&D demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will

  13. Ultrafast Transformations in Superionic Nanocrystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Transformations in Superionic Nanocrystals Ultrafast Transformations in Superionic Nanocrystals Print Wednesday, 29 January 2014 00:00 A superionic material is a multi-component solid with simultaneous characteristics of both a solid and a liquid. Above a critical temperature associated with a structural phase transition, one of the atomic species in the material will exhibit liquid-like ionic conductivity and dynamic disorder within the rigid crystalline structure of the other.

  14. Market Transformation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market Transformation Market Transformation Significant research and development progress has paved the way for fuel cells to enter today's commercial marketplace for a variety of applications, including specialty vehicles and stationary and portable power. The growing number of commercial products, in combination with the federal and state financial incentives available now, are instrumental in supporting the role that fuel cells play in our nation's energy portfolio. Through its market

  15. FY 2014 Consolidated Innovative Nuclear Research FOA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consolidated Innovative Nuclear Research FOA FY 2014 Consolidated Innovative Nuclear Research FOA The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. NE strives to promote

  16. Fostering the Next Generation of Nuclear Energy Technology | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fostering the Next Generation of Nuclear Energy Technology Fostering the Next Generation of Nuclear Energy Technology September 29, 2014 - 11:06am Addthis Fostering the Next Generation of Nuclear Energy Technology Peter W. Davidson Peter W. Davidson Former Executive Director of the Loan Programs Office (LPO) What are the key facts? If finalized, this solicitation would make available $12.6 billion in loan guarantees for advanced nuclear energy technologies. Learn more about the draft

  17. Nuclear Structure Revealed by High-Precision Mass Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Summit U.S. and China Continue Cooperative Partnership to Advance Safe, Secure Civil Nuclear Energy for Clean Energy Future DOE/NNSA Hosts 11th U.S.-China Peaceful Uses of Nuclear Technology Meeting at Savannah River National Laboratory in Aiken, South Carolina (Aiken, South Carolina) - On May 10-11, 2016 the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) and the China... Statement on Signing of the Administrative Arrangement to the Agreement

  18. Advanced Simulation and Computing and Institutional R&D Programs | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Programs Advanced Simulation and Computing and Institutional R&D Programs The Advanced Simulation and Computing (ASC) Program supports the Department of Energy's National Nuclear Security Administration (DOE/NNSA) Defense Programs' use of simulation-based evaluation of the nation's nuclear weapons stockpile. The ASC Program is responsible for providing the simulation tools and computing environments required to qualify and certify the nation's

  19. Advanced Combustion FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q: What is advanced combustion? A: State-of-the-art, coal-fired boilers use air for the ... Q: What could an advanced combustion power plant look like? A: An oxy-combustion power ...

  20. nuclear navy

    National Nuclear Security Administration (NNSA)

    7%2A en Powering the Nuclear Navy http:www.nnsa.energy.govourmissionpoweringnavy

    Page...

  1. nuclear navy

    National Nuclear Security Administration (NNSA)

    7%2A en Powering the Nuclear Navy http:nnsa.energy.govourmissionpoweringnavy

    Page...

  2. Nuclear option

    SciTech Connect (OSTI)

    Olson, P.S.

    1983-03-01

    The energy demand complexion of this country is always changing and promises to change in the future. The nuclear industry is responding to changing energy demands through standards writing activities. Since the oil embargo of 1973, there has been a change in the mix of fuels contributing to energy growth in this country; virtually all of the energy growth has come from coal and nuclear power. The predicted expansion of coal use by 1985, over 1977 level, is 37%, while the use of oil is expected to decline by 17%. Use of nuclear power is expected to increase 62% from the 1977 level. The feasibility of using nuclear energy to meet the needs of the USA for electric power is discussed.

  3. Observations on A Technology Roadmap for Generation IV Nuclear Energy Systems: Technical Roadmap Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The development of advanced nuclear energy systems in the U.S. will depend greatly on the continued success of currently operating light water nuclear power plants and the ordering of new...

  4. U.S. Department of Energy Accident Resistant SiC Clad Nuclear Fuel Development

    Broader source: Energy.gov [DOE]

    A significant effort is being placed on silicon carbide ceramic matrix composite (SiC CMC) nuclear fuel cladding by Light Water Reactor Sustainability (LWRS) Advanced Light Water Reactor Nuclear...

  5. Nuclear Energy

    SciTech Connect (OSTI)

    Godfrey, Anderw

    2014-04-10

    Andrew Godfrey describes CASL -- the Consortium for Advanced Simulation of Light Water Reactors--a multi-institutional effort led by the Department of Energy that's using high-performance

  6. Nuclear Energy

    ScienceCinema (OSTI)

    Godfrey, Anderw

    2014-05-23

    Andrew Godfrey describes CASL -- the Consortium for Advanced Simulation of Light Water Reactors--a multi-institutional effort led by the Department of Energy that's using high-performance

  7. Nuclear Data

    SciTech Connect (OSTI)

    White, Morgan C.

    2014-01-23

    PowerPoint presentation targeted for educational use. Nuclear data comes from a variety of sources and in many flavors. Understanding where the data you use comes from and what flavor it is can be essential to understand and interpret your results. This talk will discuss the nuclear data pipeline with particular emphasis on providing links to additional resources that can be used to explore the issues you will encounter.

  8. Nuclear Nonproliferation

    SciTech Connect (OSTI)

    Atkins-Duffin, C E

    2008-12-10

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  9. Advanced Conversion Roadmap Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Conversion Technologies for Advanced Biofuels - Biomass Program Introduction ... has renewed the urgency for developing sustainable biofuels, bioproducts, and biopower. ...

  10. Process Monitoring for Nuclear Safeguards

    SciTech Connect (OSTI)

    Ehinger, Michael H [ORNL] [ORNL; Pomeroy, George D [ORNL] [ORNL; Budlong-Sylvester, Kory W [ORNL] [ORNL

    2009-01-01

    Process Monitoring has long been used to evaluate industrial processes and operating conditions in nuclear and non-nuclear facilities. In nuclear applications there is a recognized need to demonstrate the safeguards benefits from using advanced process monitoring on spent fuel reprocessing technologies and associated facilities, as a complement to nuclear materials accounting. This can be accomplished by: defining credible diversion pathway scenarios as a sample problem; using advanced sensor and data analysis techniques to illustrate detection capabilities; and formulating 'event detection' methodologies as a means to quantify performance of the safeguards system. Over the past 30 years there have been rapid advances and improvement in the technology associated with monitoring and control of industrial processes. In the context of bulk handling facilities that process nuclear materials, modern technology can provide more timely information on the location and movement of nuclear material to help develop more effective safeguards. For international safeguards, inspection means verification of material balance data as reported by the operator through the State to the international inspectorate agency. This verification recognizes that the State may be in collusion with the operator to hide clandestine activities, potentially during abnormal process conditions with falsification of data to mask the removal. Records provided may show material is accounted for even though a removal occurred. Process monitoring can offer additional fidelity during a wide variety of operating conditions to help verify the declaration or identify possible diversions. The challenge is how to use modern technology for process monitoring and control in a proprietary operating environment subject to safeguards inspectorate or other regulatory oversight. Under the U.S. National Nuclear Security Administration's Next Generation Safeguards Initiative, a range of potential safeguards applications

  11. United States and Czech Republic Join Together to Announce Bilateral Nuclear Energy Research and Development Efforts

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy recently joined with the Rež Nuclear Research Institute, the U.S. Embassy in Prague, Texas A&M and the Czech Nuclear Education Network (CENEN) to announce a series of bilateral nuclear research and development programs that will help to advance safe and secure nuclear energy technologies in both countries.

  12. Advanced Critical Advanced Energy Retrofit Education and Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Advanced Energy Retrofit Education and Training and Credentialing - 2014 BTO Peer Review Advanced Critical Advanced Energy Retrofit Education and Training and ...

  13. First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors

    Broader source: Energy.gov [DOE]

    The Energy Department recently announced the first step toward manufacturing small modular nuclear reactors (SMRs) in the United States, demonstrating the Administration’s commitment to advancing U...

  14. Design of Radiation-Tolerant Structural Alloys for Generation IV Nuclear Energy Systems

    SciTech Connect (OSTI)

    Todd R. Allen

    2009-06-30

    This project will use proton irradiation to further understand the microstructural stability of ceramics being considered as matrix material for advanced nuclear fuels.

  15. Building America's Top Innovations Advance High Performance Homes |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Building America's Top Innovations Advance High Performance Homes Building America's Top Innovations Advance High Performance Homes Innovations sponsored by the U.S. Department of Energy's (DOE) Building America program and its teams of building science experts continue to have a transforming impact, leading our nation's home building industry to high-performance homes. Building America researchers have worked directly with more than 300 U.S. production home builders and

  16. Competing Effects Of Electronic And Nuclear Energy Loss On Microstructural Evolution In Ionic-covalent Materials

    SciTech Connect (OSTI)

    Zhang, Yanwen; Varga, Tamas; Ishimaru, Manabu; Edmondson, P. D.; Xue, H.; Liu, Peng; Moll, Sandra; Hardiman, Christopher M.; Shannon, Steven; Weber, William J.

    2014-05-01

    Ever increasing energy needs have raised the demands for advanced fuels and cladding materials that withstand the extreme radiation environments with improved accident tolerance over a long period of time. Ceria (CeO2) is a well known ionic conductor that is isostructural with urania and plutonia-based nuclear fuels. In the context of nuclear fuels, immobilization and transmutation of actinides, CeO2 is a model system for radiation effect studies. Covalent silicon carbide (SiC) is a candidate for use as structural material in fusion, cladding material for fission reactors, and an inert matrix for the transmutation of plutonium and other radioactive actinides. Understanding microstructural change of these ionic-covalent materials to irradiation is important for advanced nuclear energy systems. While displacements from nuclear energy loss may be the primary contribution to damage accumulation in a crystalline matrix and a driving force for the grain boundary evolution in nanostructured materials, local non-equilibrium disorder and excitation through electronic While displacements from nuclear energy loss may be the primary contribution to damage accumulation in a crystalline matrix and a driving force for the grain boundary evolution in nanostructured materials, local non-equilibrium disorder and excitation through electronic energy loss may, however, produce additional damage or anneal pre-existing defect. At intermediate transit energies where electronic and nuclear energy losses are both significant, synergistic, additive or competitive processes may evolve that affect the dynamic response of materials to irradiation. The response of crystalline and nanostructured CeO2 and SiC to ion irradiation are studied under different nuclear and electronic stopping powers to describe some general material response in this transit energy regime. Although fast radiation-induced grain growth in CeO2 is evident with no phase transformation, different fluence and dose dependence

  17. Paving the path for next-generation nuclear energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paving the path for next-generation nuclear energy Paving the path for next-generation nuclear energy May 6, 2013 - 2:26pm Addthis Renewed energy and enhanced coordination are on the horizon for an international collaborative that is advancing new, safer nuclear energy systems. Renewed energy and enhanced coordination are on the horizon for an international collaborative that is advancing new, safer nuclear energy systems. Deputy Assistant Secretary Kelly Deputy Assistant Secretary Kelly Deputy

  18. Marketing and Market Transformation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marketing and Market Transformation Marketing and Market Transformation Presents how going green will grow your business, as well as how programs can overcome appraisal challenges. ...

  19. Department of Energy/ National Power Transformer Reserve

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    prior experience selling large power transformers in excess of 400 MVA to a US ... Large power transformers are one of the most critical components within the power system ...

  20. Building America Expert Meeting: Transforming Existing Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transforming Existing Buildings through New Media--An Idea Exchange Building America Expert Meeting: Transforming Existing Buildings through New Media--An Idea Exchange This report ...

  1. Demonstration and Market Transformation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Market Transformation Demonstration and Market Transformation POET-DSM's Project ... Aerial view of the Abengoa biorefinery in Hugoton, Kansas The Demonstration and Market ...

  2. Environmental Report Project Transforms Students into Informed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Report Project Transforms Students into Informed Stakeholders Environmental Report Project Transforms Students into Informed Stakeholders June 20, 2014 - 9:49am ...

  3. National Electric Delivery Technologies Roadmap: Transforming...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Technologies Roadmap: Transforming the Grid to Revolutionize Electric Power in North America National Electric Delivery Technologies Roadmap: Transforming the Grid to ...

  4. Instrumentation to Enhance Advanced Test Reactor Irradiations

    SciTech Connect (OSTI)

    J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

    2009-09-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  5. Nuclear hybrid energy infrastructure

    SciTech Connect (OSTI)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  6. Status of Iran's nuclear program and negotiations

    SciTech Connect (OSTI)

    Albright, David

    2014-05-09

    Iran's nuclear program poses immense challenges to international security. Its gas centrifuge program has grown dramatically in the last several years, bringing Iran close to a point where it could produce highly enriched uranium in secret or declared gas centrifuge plants before its breakout would be discovered and stopped. To reduce the risk posed by Iran's nuclear program, the P5+1 have negotiated with Iran short term limits on the most dangerous aspects of its nuclear programs and is negotiating long-term arrangements that can provide assurance that Iran will not build nuclear weapons. These long-term arrangements need to include a far more limited and transparent Iranian nuclear program. In advance of arriving at a long-term arrangement, the IAEA will need to resolve its concerns about the alleged past and possibly on-going military dimensions of Iran's nuclear program.

  7. Sandia National Laboratories: Advanced Pulsed Power Concepts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Pulsed Power Concepts Sandia's Pulsed Power Research Programs Sandia Research Sandia has become the undisputed leader in fast pulsed power science and technology. Beginning in the 1960s, our pulsed power devices have helped assure the performance of every nuclear system in the stockpile. In July 2014's issue of Sandia Research, learn more about the amazing capabilities of the Z Machine and our Pulsed Power technologies and the critical work we perform here at the laboratories. Linear

  8. Manufacturing Leadership Council recognizes advancements at KCNSC |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Manufacturing Leadership Council recognizes advancements at KCNSC Wednesday, July 20, 2016 - 11:01am Team members from the Kansas City National Security Campus took back three Manufacturing Leadership Awards from the ceremony in Carlsbad, CA. The spotlight was shining on the Kansas City National Security Campus (KCNSC) on June 8 at the Manufacturing Leadership Awards Summit. The Manufacturing Leadership Council recognized KCNSC's achievements

  9. Advanced Reactors Transition Program Resource Loaded Schedule

    SciTech Connect (OSTI)

    BOWEN, W.W.

    1999-11-08

    The Advanced Reactors Transition (ART) Resource Loaded Schedule (RLS) provides a cost and schedule baseline for managing the project elements within the ART Program. The Fast Flux Test Facility (FFTF) activities are delineated through the end of FY 2000, assuming continued standby. The Nuclear Energy (NE) Legacies and Plutonium Recycle Test Reactor (PRTR) activities are delineated through the end of the deactivation process. This document reflects the 1 Oct 1999 baseline.

  10. Advanced Reactors Transition Program Resource Loaded Schedule

    SciTech Connect (OSTI)

    GANTT, D.A.

    2000-01-12

    The Advanced Reactors Transition (ART) Resource Loaded Schedule (RLS) provides a cost and schedule baseline for managing the project elements within the ART Program. The Fast Flux Test Facility (FETF) activities are delineated through the end of FY 2000, assuming continued standby. The Nuclear Energy (NE) Legacies and Plutonium Recycle Test Reactor (PRTR) activities are delineated through the end of the deactivation process. This revision reflects the 19 Oct 1999 baseline.

  11. Future Transient Testing of Advanced Fuels

    SciTech Connect (OSTI)

    Jon Carmack

    2009-09-01

    The transient in-reactor fuels testing workshop was held on May 4–5, 2009 at Idaho National Laboratory. The purpose of this meeting was to provide a forum where technical experts in transient testing of nuclear fuels could meet directly with technical instrumentation experts and nuclear fuel modeling and simulation experts to discuss needed advancements in transient testing to support a basic understanding of nuclear fuel behavior under off-normal conditions. The workshop was attended by representatives from Commissariat à l'Énergie Atomique CEA, Japanese Atomic Energy Agency (JAEA), Department of Energy (DOE), AREVA, General Electric – Global Nuclear Fuels (GE-GNF), Westinghouse, Electric Power Research Institute (EPRI), universities, and several DOE national laboratories. Transient testing of fuels and materials generates information required for advanced fuels in future nuclear power plants. Future nuclear power plants will rely heavily on advanced computer modeling and simulation that describes fuel behavior under off-normal conditions. TREAT is an ideal facility for this testing because of its flexibility, proven operation and material condition. The opportunity exists to develop advanced instrumentation and data collection that can support modeling and simulation needs much better than was possible in the past. In order to take advantage of these opportunities, test programs must be carefully designed to yield basic information to support modeling before conducting integral performance tests. An early start of TREAT and operation at low power would provide significant dividends in training, development of instrumentation, and checkout of reactor systems. Early start of TREAT (2015) is needed to support the requirements of potential users of TREAT and include the testing of full length fuel irradiated in the FFTF reactor. The capabilities provided by TREAT are needed for the development of nuclear power and the following benefits will be realized by the

  12. ARPA-E Awards $130 Million for 66 Transformational Energy Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects | Department of Energy Awards $130 Million for 66 Transformational Energy Technology Projects ARPA-E Awards $130 Million for 66 Transformational Energy Technology Projects November 28, 2012 - 1:00pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Today, Energy Secretary Steven Chu announced 66 cutting-edge research projects selected by the Energy Department's Advanced Research Projects Agency - Energy (ARPA-E) to receive a total of $130 million in funding through its

  13. In-situ Monitoring of Dynamic Phenomena during Solidification and Phase Transformation Processing

    SciTech Connect (OSTI)

    Clarke, Amy J.; Cooley, Jason C.; Morris, Christopher; Merrill, Frank E.; Hollander, Brian J.; Mariam, Fesseha G.; Patterson, Brian M.; Imhoff, Seth D.; Lee, Wah Keat; Fezzaa, Kamel; Deriy, Alex; Tucker, Tim J.; Clarke, Kester D.; Field, Robert D.; Thoma, Dan J.; Teter, David F.; Beard, Timothy V.; Hudson, Richard W.; Freibert, Franz J.; Korzekwa, Deniece R.; Farrow, Adam M.; Cross, Carl E.; Mihaila, Bogdan; Lookman, Turab; Hunter, Abigail; Choudhury, Samrat; Karma, Alain; Ott, Thomas J. Jr.; Barker, Martha R.; O'Neill, Finian; Hill, Joshua; Emigh, Megan G.

    2012-07-30

    The purpose of this project is to: (1) Directly observe phase transformations and microstructure evolution using proton (and synchrotron x-ray) radiography and tomography; (2) Constrain phase-field models for microstructure evolution; (3) Experimentally control microstructure evolution during processing to enable co-design; and (4) Advance toward the MaRIE vision. Understand microstructure evolution and chemical segregation during solidification {yields} solid-state transformations in Pu-Ga.

  14. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Officer National Institute of Standards and Technology Carrie Houtman Senior Public Policy Manager Dow Chemical Overview * Advanced Manufacturing Activities * Advanced ...

  15. Competing effects of electronic and nuclear energy loss on microstructural evolution in ionic-covalent materials

    SciTech Connect (OSTI)

    Zhang, Yanwen; Varga, Tamas; Ishimaru, Dr. Manabu; Edmondson, Dr. Philip; Xue, Haizhou; Liu, Peng; Moll, Sandra; Namavar, Fereydoon; Hardiman, Chris; Shannon, Prof. Steven; Weber, William J

    2014-01-01

    Ever increasing energy needs have raised the demands for advanced fuels and cladding materials that withstand the extreme radiation environments with improved accident tolerance over a long period of time. Ceria (CeO2) is a well known ionic conductor that is isostructural with urania and plutonia-based nuclear fuels. In the context of nuclear fuels, immobilization and transmutation of actinides, CeO2 is a model system for radiation effect studies. Covalent silicon carbide (SiC) is a candidate for use as structural material in fusion, cladding material for fission reactors, and an inert matrix for the transmutation of plutonium and other radioactive actinides. Understanding microstructural change of these ionic-covalent materials to irradiation is important for advanced nuclear energy systems. While displacements from nuclear energy loss may be the primary contribution to damage accumulation in a crystalline matrix and a driving force for the grain boundary evolution in nanostructured materials, local non-equilibrium disorder and excitation through electronic energy loss may, however, produce additional damage or anneal pre-existing defect. At intermediate transit energies where electronic and nuclear energy losses are both significant, synergistic, additive or competitive processes may evolve that affect the dynamic response of materials to irradiation. The response of crystalline and nanostructured CeO2 and SiC to ion irradiation are studied under different nuclear and electronic stopping powers to describe some general material response in this transit energy regime. Although fast radiation-induced grain growth in CeO2 is evident with no phase transformation, different fluence and dose dependence on the growth rate is observed under Si and Au irradiations. While grain shrinkage and amorphization are observed in the nano-engineered 3C SiC with a high-density of stacking faults embedded in nanosize columnar grains, significantly enhanced radiation resistance is

  16. Phase Transformations in Confined Nanosystems

    SciTech Connect (OSTI)

    Shield, Jeffrey E.; Belashchenko, Kirill

    2014-04-29

    This project discovered that non-equilibrium structures, including chemically ordered structures not observed in bulk systems, form in isolated nanoscale systems. Further, a generalized model was developed that effectively explained the suppression of equilibrium phase transformations. This thermodynamic model considered the free energy decrease associated with the phase transformation was less than the increase in energy associated with the formation of an interphase interface, therefore inhibiting the phase transformation. A critical diameter exists where the system transitions to bulk behavior, and a generalized equation was formulated that successfully predicted this transition in the Fe-Au system. This provided and explains a new route to novel structures not possible in bulk systems. The structural characterization was accomplished using transmission electron microscopy in collaboration with Matthew Kramer of Ames Laboratory. The PI and graduate student visited Ames Laboratory several times a year to conduct the experiments.

  17. Efficient transformer for electromagnetic waves

    DOE Patents [OSTI]

    Miller, R.B.

    A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.

  18. Nuclear magnetic resonance methods

    SciTech Connect (OSTI)

    Ordidge, R. J.; Mansfield, P.

    1985-04-02

    This invention provides methods of investigating a body by nuclear magnetic resonance. Nuclear magnetic resonance is preferentially excited in a slice of the body and the resulting free induction decay signals are detected in the presence of a magnetic field having first and second gradients (G /SUB y/ , G /SUB x/ ). In one proposed method two experiments are performed in which the phase of the first gradient (G /SUB y/ ) reversal is opposite, and the detected signals from the two experiments are edited to obtain a set of signals, for Fourier transformation, occurring when the first gradient has one sense. Two such sets may be obtained, one for each sense of the first gradient, and the data obtained after Fourier transformation re-ordered and added. In a second proposed method the second gradient (G /SUB x/ ) is applied only when the first gradient (G /SUB y/ ) has a given sense, and the free induction decay signals obtained when both gradients are present, and when only the first gradient is present, are separately processed. In a third proposed method, the first gradient (G /SUB y/ ) is temporarily removed before each reversal of its sense, and the second gradient (G /SUB x/ ) is reversed while the first gradient is removed, the magnitude of the second gradient being controlled so that the time integral of the second gradient at the beginning of each period when the first gradient has a given sense is the same as at the end of the preceding such period, the free induction decay signals occurring when the first gradient has said given sense only being used for data retrieval.

  19. Nuclear Models

    SciTech Connect (OSTI)

    Fossion, Ruben [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico D. F., C.P. 04510 (Mexico)

    2010-09-10

    The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction).Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.

  20. The Advanced Manufacturing Partnership and the Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Program Office | Department of Energy The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office This presentation describes the Advanced Manufacturing Partnership from its beginning as a recommendation of the President's Council of Advisers on Science and Technology to its development and organization. The Advanced Manufacturing Partnership and the