Powered by Deep Web Technologies
Note: This page contains sample records for the topic "advanced nuclear reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Advanced Reactor Development and Technology - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Nuclear Data Program Advanced Reactor Development Overview Advanced Fast Reactor...

2

Advanced Nuclear Research Reactor  

SciTech Connect

This report describes technical modifications implemented by INVAP to improve the safety of the Research Reactors the company designs and builds.

Lolich, J.V.

2004-10-06T23:59:59.000Z

3

Advanced Nuclear Reactors | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Nuclear Advanced Nuclear Reactors Advanced Nuclear Reactors Turbulent Flow of Coolant in an Advanced Nuclear Reactor Visualizing Coolant Flow in Sodium Reactor Subassemblies Sodium-cooled Fast Reactor (SFR) Coolant Flow At the heart of a nuclear power plant is the reactor. The fuel assembly is placed inside a reactor vessel where all the nuclear reactions occur to produce the heat and steam used for power generation. Nonetheless, an entire power plant consists of many other support components and key structures like coolant pipes; pumps and tanks including their surrounding steel framing; and concrete containment and support structures. The Reactors Product Line within NEAMS is concerned with modeling the reactor vessel as well as those components of a complete power plant that

4

Advanced Nuclear Reactors | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

in Sodium Reactor Subassemblies Sodium-cooled Fast Reactor (SFR) Coolant Flow At the heart of a nuclear power plant is the reactor. The fuel assembly is placed inside a reactor...

5

Advanced nuclear reactor public opinion project  

SciTech Connect

This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

Benson, B.

1991-07-25T23:59:59.000Z

6

Shielding considerations for advanced space nuclear reactor systems  

SciTech Connect

To meet the anticipated future space power needs, the Los Alamos National Laboratory is developing components for a compact, 100 kW/sub e/-class heat pipe nuclear reactor. The reactor uses uranium dioxide (UO/sub 2/) as its fuel, and is designed to operate around 1500 k. Heat pipes are used to remove thermal energy from the core without the use of pumps or compressors. The reactor heat pipes transfer mal energy to thermoelectric conversion elements that are advanced versions of the converters used on the enormously successful Voyager missions to the outer planets. Advanced versions of this heat pipe reactor could also be used to provide megawatt-level power plants. The paper reviews the status of this advanced heat pipe reactor and explores the radiation environments and shielding requirements for representative manned and unmanned applications.

Angelo, J.P. Jr.; Buden, D.

1982-01-01T23:59:59.000Z

7

Foundational development of an advanced nuclear reactor integrated safety code.  

SciTech Connect

This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

2010-02-01T23:59:59.000Z

8

Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.  

SciTech Connect

This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

2006-12-11T23:59:59.000Z

9

Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants  

E-Print Network (OSTI)

Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants ANL-AFCI-168 of Nuclear Reactor and Chemical Separation Plants ANL-AFCI-168 by G. Palmiotti, J. Cahalan, P. Pfeiffer, T;2 ANL-AFCI-168 Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants G

Anitescu, Mihai

10

Advanced nuclear reactor public opinion project. Interim report  

SciTech Connect

This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

Benson, B.

1991-07-25T23:59:59.000Z

11

Advanced Nuclear Technology Advanced Light Water Reactor Utility Requirements Document, Revision 12  

Science Conference Proceedings (OSTI)

The utility requirement document (URD) is an industry-developed technical foundation for the design of advanced light water reactors (ALWRs). It was created with the objective of providing a comprehensive set of plant functional requirements that are considered important to utilities considering the construction of a nuclear plant and in ensuring successful deployment and operation of the plant. The scope of the URD is broad, addressing the entire plant (including the nuclear steam supply system, ...

2013-12-16T23:59:59.000Z

12

AN ADVANCED SODIUM-GRAPHITE REACTOR NUCLEAR POWER PLANT  

SciTech Connect

An advanced sodium-cooled, graphite-moderated nuclear power plant is described which utilizes high-pressure, high-temperature steam to generate electricity at a high thermal efficiency. Steam is generated at 2400 psig, superheated to 1050 deg F and, after partial expansion in the turbine, reheated to 1000 deg F. Net thermal efficiency of the plant is 42.3%. In a plant sized to produce a net electrical output of 256 Mw, the estimated cost is 8232/kw. Estimated cost of power generation is 6.7 mills/kwh. In a similar plant with a net electrical output of 530 Mw, the estimated power generating cost is 5.4 mills/ kwh. Most of the components of the plant are within the capability of current technology. The major exception is the fuel material, uranium carbide. Preliminary results of the development work now in progress indicate that uranium carbide would be an excellent fuel for high-temperature reactors, but temperature and burnup limitation have yet to be firmly established. Additional development work is also required on the steam generators. These are the single-barrier type similar to those which will be used in the Enrico Fernri Fast Breeder Reactor plant but produce steam at higher pressure and temperature. Questions also remain regarding the use of nitrogen as a cover gas over sodium at 1200 deg F and compatibility of the materials used in the primary neutron shield. All of these questions are currently under investigation. (auth)

Churchill, J.R.; Renard, J.

1960-03-15T23:59:59.000Z

13

Use of Sensitivity and Uncertainty Analysis in the Design of Reactor Physics and Criticality Benchmark Experiments for Advanced Nuclear Fuel  

Science Conference Proceedings (OSTI)

Technical Paper / Advances in Nuclear Fuel Management - Increased Enrichment/High Burnup and Light Water Reactor Fuel Cycle Optimization

B. T. Rearden; W. J. Anderson; G. A. Harms

14

Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Small Modular Reactors: How We're Supporting Next-Gen Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology December 12, 2013 - 4:00pm Addthis The basics of small modular reactor technology explained. | Infographic by Sarah Gerrity, Energy Department. The basics of small modular reactor technology explained. | Infographic by Sarah Gerrity, Energy Department. Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy Nuclear energy continues to be an important part of America's diverse energy portfolio, and the Energy Department is committed to supporting a domestic nuclear industry.

15

Advanced reactors, passive safety, and acceptance of nuclear energy  

SciTech Connect

If nuclear power is to make a serious impact on CO{sub 2} emission, the industry will have to be very large. A 1000-MWe coal-fired power plant releases about 1.4 {times} 10{sup {minus}3} gigatons of carbon per year in the form of CO{sub 2}. The total of 6 GTC/yr of carbon released by human use of 300 quads/yr of energy worldwide then corresponds to the equivalent of about 4000 one-gigawatt power plants. By the middle of the next century, the world's energy demand might grow to about 500 quads/yr. One might halve the implied 10 GTC/yr by deploying 3500 1000-megawatt large reactors. Now the median core melt probability of today's fleet of reactors is according to Rasmussen 5 {times} 10{sup {minus}5} per reactor year which corresponds to a core melt frequency in such a large nuclear system of 0.18/yr - one accident equivalent to that at Three Mile Island Unit 2 every six years. This is almost surely unacceptable. Thus one concludes that a necessary condition for deployment of nuclear reactors on a scale sufficient to contribute significantly to mitigation of the greenhouse effect is reduction of the core melt probability considerably below Rasmussen's fiducial figure. In this paper, the authors summarize developments, both institutional and technical, since 1985 in the development of safer, if not inherently safe, reactors.

Forsberg, C.W. (Chemical Technology Div., Oak Ridge National Lab., Oak Ridge, TN (US)); Weinberg, A.M. (Oak Ridge Associated Univ., Oak Ridge, TN (US))

1990-01-01T23:59:59.000Z

16

Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors  

E-Print Network (OSTI)

L. J. Hamilton Nuclear Reactor Analysis John Wiley and Sons,R. J. Neuhold, Introductury Nuclear Reactor Dynamics. ANSL. J. Hamilton Nuclear Reactor Analysis John Wiley and Sons,

Galvez, Cristhian

2011-01-01T23:59:59.000Z

17

The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology  

Science Conference Proceedings (OSTI)

To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team projects and faculty/staff exchanges. In June of 2008, the first week-long ATR NSUF Summer Session was attended by 68 students, university faculty and industry representatives. The Summer Session featured presentations by 19 technical experts from across the country and covered topics including irradiation damage mechanisms, degradation of reactor materials, LWR and gas reactor fuels, and non-destructive evaluation. High impact research results from leveraging the entire research infrastructure, including universities, industry, small business, and the national laboratories. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. Current partner facilities include the MIT Reactor, the University of Michigan Irradiated Materials Testing Laboratory, the University of Wisconsin Characterization Laboratory, and the University of Nevada, Las Vegas transmission Electron Microscope User Facility. Needs for irradiation of material specimens at tightly controlled temperatures are being met by dedication of a large in-pile pressurized water loop facility for use by ATR NSUF users. Several environmental mechanical testing systems are under construction to determine crack growth rates and fracture toughness on irradiated test systems.

T. R. Allen; J. B. Benson; J. A. Foster; F. M. Marshall; M. K. Meyer; M. C. Thelen

2009-05-01T23:59:59.000Z

18

Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research  

SciTech Connect

The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User’s Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User’s week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

John Jackson; Todd Allen; Frances Marshall; Jim Cole

2013-03-01T23:59:59.000Z

19

Nuclear Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactors Nuclear reactors created not only large amounts of plutonium needed for the weapons programs, but a variety of other interesting and useful radioisotopes. They produced...

20

Advanced Reactor Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Reactor Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research, development and deployment (RD&D) activities through its Next Generation Nuclear Plant (NGNP), Advanced Reactor Concepts (ARC), and Advanced Small Modular Reactor (aSMR) programs to promote safety, technical, economical, and environmental advancements of innovative Generation IV nuclear energy technologies. The Office of Nuclear Energy (NE) will pursue these advancements through RD&D activities at the Department of Energy (DOE) national laboratories and U.S. universities, as well as through collaboration with industry and international partners. These activities will focus on advancing scientific

Note: This page contains sample records for the topic "advanced nuclear reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who  

SciTech Connect

The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.

Forsberg, C.W.; Reich, W.J.

1991-09-01T23:59:59.000Z

22

Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who  

SciTech Connect

The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.

Forsberg, C.W.; Reich, W.J.

1991-09-01T23:59:59.000Z

23

Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report  

SciTech Connect

The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

William Anderson; James Tulenko; Bradley Rearden; Gary Harms

2008-09-11T23:59:59.000Z

24

The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor  

SciTech Connect

The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In addition, the purpose and differences between the two experiments will be compared and the irradiation results to date on the first experiment will be presented.

S. Blaine Grover

2009-09-01T23:59:59.000Z

25

Containment building : architecture between the city and advanced nuclear reactors  

E-Print Network (OSTI)

Since the inception of nuclear energy research, the element thorium (Th) has been considered the superior fuel for nuclear reactions because of its potency, safety, abundance and reduced waste. Cold War agendas broke from ...

Pauli, Lisa M

2011-01-01T23:59:59.000Z

26

NUCLEAR REACTOR  

DOE Patents (OSTI)

A boiling-water nuclear reactor is described wherein control is effected by varying the moderator-to-fuel ratio in the reactor core. This is accomplished by providing control tubes containing a liquid control moderator in the reactor core and providing means for varying the amount of control moderatcr within the control tubes.

Treshow, M.

1961-09-01T23:59:59.000Z

27

Advanced converter reactors  

SciTech Connect

Advanced converter reactors (ACRs) of primary US interest are those which can be commercialized within about 20 years, and are: Advanced Light-Water Reactors, Spectral-Shift-Control Reactors, Heavy-Water Reactors (CANDU type), and High-Temperature Gas-Cooled Reactors. These reactors can operate on uranium, thorium, or uranium-thorium fuel cycles, but have the greatest fuel utilization on thorium type cycles. The water reactors tend to operate more economically on uranium cycles, while the HTGR is more economical on thorium cycles. Thus, the HTGR had the greatest practical potential for improving fuel utilization. If the US has 3.4 to 4 million tons U/sub 3/O/sub 8/ at reasonable costs, ACRs can make important contributions to maintaining a high nuclear power level for many decades; further, they work well with fast breeder reactors in the long term under symbiotic fueling conditions. Primary nuclear data needs of ACRs are integral measurements of reactivity coefficients and resonance absorption integrals.

Kasten, P.R.

1979-01-01T23:59:59.000Z

28

NUCLEAR REACTOR  

DOE Patents (OSTI)

A nuclear reactor incorporating seed and blanket assemblies is designed. Means are provided for obtaining samples of the coolant from the blanket assemblies and for varying the flow of coolant through the blanket assemblies. (AEC)

Sherman, J.; Sharbaugh, J.E.; Fauth, W.L. Jr.; Palladino, N.J.; DeHuff, P.G.

1962-10-23T23:59:59.000Z

29

NUCLEAR REACTOR  

DOE Patents (OSTI)

High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

Grebe, J.J.

1959-07-14T23:59:59.000Z

30

NUCLEAR REACTOR  

DOE Patents (OSTI)

A nuclear reactor is described that includes spaced vertical fuel elements centrally disposed in a pressure vessel, a mass of graphite particles in the pressure vessel, means for fluidizing the graphite particles, and coolant tubes in the pressure vessel laterally spaced from the fuel elements. (AEC)

Post, R.G.

1963-05-01T23:59:59.000Z

31

NUCLEAR REACTOR  

DOE Patents (OSTI)

This patent relates to a combination useful in a nuclear reactor and is comprised of a casing, a mass of graphite irapregnated with U compounds in the casing, and at least one coolant tube extending through the casing. The coolant tube is spaced from the mass, and He is irtroduced irto the space between the mass and the coolant tube. (AEC)

Starr, C.

1963-01-01T23:59:59.000Z

32

Materials and Fuels for the Current and Advanced Nuclear Reactors II  

Science Conference Proceedings (OSTI)

Lifetime extension of reactors - nuclear materials aging, degradation and others ... A Rate-Theory Approach to Irradiation Damage Modeling with Random ...

33

Materials and Fuels for the Current and Advanced Nuclear Reactors III  

Science Conference Proceedings (OSTI)

Jul 15, 2013 ... Lifetime extension of reactors - nuclear materials aging, degradation and ... A Theoretical Model of Corrosion Rate Distribution in Liquid LBE ...

34

NUCLEAR REACTOR  

DOE Patents (OSTI)

This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors

Young, G.

1963-01-01T23:59:59.000Z

35

NUCLEAR REACTOR  

DOE Patents (OSTI)

A nuclear reactor of the homogeneous liquid fuel type is described wherein the fissionable isotope is suspended or dissolved in a liquid moderator such as water. The reactor core is comprised essentially of a spherical vessel for containing the reactive composition surrounded by a reflector, preferably of beryllium oxide. The reactive composition may be an ordinary water solution of a soluble salt of uranium, the quantity of fissionable isotope in solution being sufficient to provide a critical mass in the vessel. The liquid fuel is stored in a tank of non-crtttcal geometry below the reactor vessel and outside of the reflector and is passed from the tank to the vessel through a pipe connecting the two by air pressure means. Neutron absorbing control and safety rods are operated within slots in the reflector adjacent to the vessel.

Christy, R.F.

1958-07-15T23:59:59.000Z

36

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop...

37

Advanced Reactor Technology Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Reactor Technologies » Advanced Reactor Nuclear Reactor Technologies » Advanced Reactor Technologies » Advanced Reactor Technology Documents Advanced Reactor Technology Documents January 30, 2013 Advanced Reactor Concepts Technical Review Panel Report This report documents the establishment of a technical review process and the findings of the Advanced Reactor Concepts (ARC) Technical Review Panel (TRP).1 The intent of the process is to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. A goal of the process is to facilitate greater engagement between DOE and industry. The process involved establishing evaluation criteria, conducting a pilot review, soliciting concept inputs from industry entities, reviewing the concepts by TRP members and compiling the

38

Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, January 1, 1980-March 31, 1980  

Science Conference Proceedings (OSTI)

Results are presented of work performed on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Included are the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described, including screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850, and 950/sup 0/C.

Not Available

1980-06-25T23:59:59.000Z

39

Nuclear reactor  

DOE Patents (OSTI)

A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.

Pennell, William E. (Greensburg, PA); Rowan, William J. (Monroeville, PA)

1977-01-01T23:59:59.000Z

40

Programme A. Nuclear Power Subprogramme A.4 Technology Development for Advanced Reactor Lines  

E-Print Network (OSTI)

and the economic merits of centralized versus distributed production units. #12;Page 2 Programme B. Nuclear Fuel natural polymers. New marketable advanced materials (using, for example, the concept of nanomaterials

De Cindio, Fiorella

Note: This page contains sample records for the topic "advanced nuclear reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors  

E-Print Network (OSTI)

H. G. MacPherson The molten salt adventure Nuclear Scienceand P.F. Peterson, Molten-Salt-Cooled Advanced High-Clarno Assessment of candidate molten salt coolants for the

Galvez, Cristhian

2011-01-01T23:59:59.000Z

42

NUCLEAR REACTOR  

DOE Patents (OSTI)

A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

Moore, R.V.; Bowen, J.H.; Dent, K.H.

1958-12-01T23:59:59.000Z

43

Advanced Intermediate Heat Transport Loop Design Configurations for Hydrogen Production Using High Temperature Nuclear Reactors  

DOE Green Energy (OSTI)

The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic evaluations and cycle-efficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The evaluations determined which configurations and coolants are the most promising from thermal-hydraulic and efficiency points of view.

Chang Oh; Cliff Davis; Rober Barner; Paul Pickard

2005-11-01T23:59:59.000Z

44

Nuclear Reactor Accidents  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Accidents The accidents at the Three Mile Island (TMI) and Chernobyl nuclear reactors have triggered particularly intense concern about radiation hazards. The TMI accident,...

45

NUCLEAR REACTOR  

DOE Patents (OSTI)

A neuclear reactor is described of the heterogeneous type and employing replaceable tubular fuel elements and heavy water as a coolant and moderator. A pluraltty of fuel tubesa having their axes parallel, extend through a tank type pressure vessel which contatns the liquid moderator. The fuel elements are disposed within the fuel tubes in the reaetive portion of the pressure vessel during normal operation and the fuel tubes have removable plug members at each end to permit charging and discharging of the fuel elements. The fuel elements are cylindrical strands of jacketed fissionable material having helical exterior ribs. A bundle of fuel elements are held within each fuel tube with their longitudinal axes parallel, the ribs serving to space them apart along their lengths. Coolant liquid is circulated through the fuel tubes between the spaced fuel elements. Suitable control rod and monitoring means are provided for controlling the reactor.

Treshow, M.

1958-08-19T23:59:59.000Z

46

NUCLEAR REACTORS  

DOE Patents (OSTI)

An active portion assembly for a fast neutron reactor is described wherein physical distortions resulting in adverse changes in the volume-to-mass ratio are minimized. A radially expandable locking device is disposed within a cylindrical tube within each fuel subassembly within the active portion assembly, and clamping devices expandable toward the center of the active portion assembly are disposed around the periphery thereof. (AEC)

Koch, L.J.; Rice, R.E. Jr.; Denst, A.A.; Rogers, A.J.; Novick, M.

1961-12-01T23:59:59.000Z

47

Guidebook to nuclear reactors  

SciTech Connect

A general introduction to reactor physics and theory is followed by descriptions of commercial nuclear reactor types. Future directions for nuclear power are also discussed. The technical level of the material is suitable for laymen.

Nero, A.V. Jr.

1976-05-01T23:59:59.000Z

48

Energy Department Announces New Investments in Advanced Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Energy Department Announces New Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear...

49

NUCLEAR REACTOR CONTROL SYSTEM  

DOE Patents (OSTI)

A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

1959-11-01T23:59:59.000Z

50

Design of the Next Generation Nuclear Plant Graphite Creep Experiments for Irradiation in the Advanced Test Reactor  

SciTech Connect

The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain seven separate stacks of graphite specimens. Six of the specimen stacks will have half of their graphite specimens under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will be organized into pairs with a different compressive load being applied to the top half of each pair of specimen stacks. The seventh stack will not have a compressive load on the graphite specimens during irradiation. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of the experiment. The final design phase for the first experiment was completed in September 2008, and the fabrication and assembly of the experiment test train as well as installation and testing of the control and support systems that will monitor and control the experiment during irradiation are being completed in early calendar 2009. The first experiment is scheduled to be ready for insertion in the ATR by April 30, 2009. This paper will discuss the design of the experiment including the test train and the temperature and compressive load monitoring, control, and data collection systems.

S. Blaine Grover

2009-05-01T23:59:59.000Z

51

Reactor and Nuclear Systems Division (RNSD)  

NLE Websites -- All DOE Office Websites (Extended Search)

RNSD Home RNSD Home Research Groups Advanced Reactor Systems & Safety Nuclear Data & Criticality Safety Nuclear Security Modeling Radiation Safety Information Computational Center Radiation Transport Reactor Physics Thermal Hydraulics & Irradiation Engineering Used Fuel Systems Staff Details (CV/Bios) Publications Org Chart Contact Us ORNL Staff Only Research Groups Advanced Reactor Systems & Safety Nuclear Data & Criticality Safety Nuclear Security Modeling Radiation Safety Information Computational Center Radiation Transport Reactor Physics Thermal Hydraulics & Irradiation Engineering Used Fuel Systems Reactor and Nuclear Systems Division News Highlights U.S. Rep. Fleischmann touts ORNL as national energy treasure Martin Peng wins Fusion Power Associates Leadership Award

52

Presented by Collaboration for Advanced Nuclear  

E-Print Network (OSTI)

Presented by Collaboration for Advanced Nuclear Simulation: Predictive Reactor Simulation for GNEP Kevin Clarno Reactor Analysis, NST Nuclear Science and Technology Division #12;2 Clarno_GNEP_SC07 Many operating nuclear reactors worldwide 2 Clarno_GNEP_SC07 Immediate response to global warming Designs static

53

Challenges in the Development of Advanced Reactors  

SciTech Connect

Past generations of nuclear reactors have been successively developed and the next generation is currently being developed, demonstrating the constant progress and technical and industrial vitality of nuclear energy. In 2000 US Department of Energy launched Generation IV International Forum (GIF) which is one of the main international frameworks for the development of future nuclear systems. The six systems that were selected were: sodium cooled fast reactor, lead cooled fast reactor, supercritical water cooled reactor, very high temperature gas cooled reactor (VHTR), gas cooled fast reactor and molten salt reactor. This paper discusses some of the proposed advanced reactor concepts that are currently being researched to varying degrees in the United States, and highlights some of the major challenges these concepts must overcome to establish their feasibility and to satisfy licensing requirements.

P. Sabharwall; M.C. Teague; S.M. Bragg-Sitton; M.W. Patterson

2012-08-01T23:59:59.000Z

54

Functional issues and environmental qualification of digital protection systems of advanced light-water nuclear reactors  

Science Conference Proceedings (OSTI)

Issues of obsolescence and lack of infrastructural support in (analog) spare parts, coupled with the potential benefits of digital systems, are driving the nuclear industry to retrofit analog instrumentation and control (I&C) systems with digital and microprocessor-based systems. While these technologies have several advantages, their application to safety-related systems in nuclear power plants raises key issues relating to the systems` environmental qualification and functional reliability. To bound the problem of new I&C system functionality and qualification, the authors focused this study on protection systems proposed for use in ALWRs. Specifically, both functional and environmental qualification issues for ALWR protection system I&C were addressed by developing an environmental, functional, and aging data template for a protection division of each proposed ALWR design. By using information provided by manufacturers, environmental conditions and stressors to which I&C equipment in reactor protection divisions may be subjected were identified. The resulting data were then compared to a similar template for an instrument string typically found in an analog protection division of a present-day nuclear power plant. The authors also identified fiber-optic transmission systems as technologies that are relatively new to the nuclear power plant environment and examined the failure modes and age-related degradation mechanisms of fiber-optic components and systems. One reason for the exercise of caution in the introduction of software into safety-critical systems is the potential for common-cause failure due to the software. This study, however, approaches the functionality problem from a systems point of view. System malfunction scenarios are postulated to illustrate the fact that, when dealing with the performance of the overall integrated system, the real issues are functionality and fault tolerance, not hardware vs. software.

Korsah, K.; Clark, R.L.; Wood, R.T. [Oak Ridge National Lab., TN (United States)

1994-04-01T23:59:59.000Z

55

Light Water Reactors Technology Development - Nuclear Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactors Light Water Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

56

New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy dedicated the Consortium for Advanced Simulation of Light Water Reactors (CASL), an advanced research facility that will accelerate the advancement of nuclear reactor technology.

57

Radioactive waste shipments to Hanford retrievable storage from Westinghouse Advanced Reactors and Nuclear Fuels Divisions, Cheswick, Pennsylvania  

Science Conference Proceedings (OSTI)

During the next two decades the transuranic (TRU) waste now stored in the burial trenches and storage facilities at the Hanford Sits in southeastern Washington State is to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico for final disposal. Approximately 5.7 percent of the TRU waste to be retrieved for shipment to WIPP was generated by the decontamination and decommissioning (D&D) of the Westinghouse Advanced Reactors Division (WARD) and the Westinghouse Nuclear Fuels Division (WNFD) in Cheswick, Pennsylvania and shipped to the Hanford Sits for storage. This report characterizes these radioactive solid wastes using process knowledge, existing records, and oral history interviews.

Duncan, D. [Westinghouse Hanford Co., Richland, WA (United States); Pottmeyer, J.A.; Weyns, M.I.; Dicenso, K.D.; DeLorenzo, D.S. [Los Alamos Technical Associates, Inc., NM (United States)

1994-04-01T23:59:59.000Z

58

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Develop Advanced Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop and demonstrate Advanced Burner Reactors (ABRs) that consume transuranic elements (plutonium and other long-lived radioactive material) while extracting their energy. The development of ABRs will allow us to build an improved nuclear fuel cycle that recycles used fuel. Accordingly, the U.S. will work with participating international partners on the design, development, and demonstration of ABRs as part of the GNEP. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors More Documents & Publications GNEP Element:Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste

59

The Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

Symposium, Materials Solutions for the Nuclear Renaissance ... U.S. Department of Energy designated the Advanced Test Reactor (ATR) as a National Scientific ...

60

Advanced neutron irradiation system using Texas A&M University Nuclear Science Center Reactor  

E-Print Network (OSTI)

A heavily filtered fast neutron irradiation system (FNIS) was developed for a variety of applications, including the study of long-term health effects of fast neutrons by evaluating the biological mechanisms of damage in cultured cells and living animals such as rats or mice. This irradiation system includes an exposure cave made with a lead-bismuth alloy, a cave positioning system, a gamma and neutron monitoring system, a sample transfer system, and interchangeable filters. This system was installed in the irradiation cell of the Texas A&M University Nuclear Science Center Reactor (NSCR). By increasing the thickness of the lead-bismuth alloy, the neutron spectra were shifted into lower energies by the scattering interactions of fast neutrons with the alloy. It is possible, therefore, by changing the alloy thickness, to produce distinctly different dose weighted neutron spectra inside the exposure cave of the FNIS. The calculated neutron spectra showed close agreement with the results of activation foil measurements, unfolded by SAND-II close to the cell window. However, there was a considerable less agreement for locations far away from the cell window. Even though the magnitude of values such as neutron flux and tissue kerma rates in air differed, the weighted average neutron energies showed close agreement between the MCNP and SAND-II since the normalized neutron spectra were in a good agreement each other. A paired ion chamber system was constructed, one with a tissue equivalent plastic (A-150) and propane gas for total dose monitoring, and another with graphite and argon for photon dose monitoring. Using the pair of detectors, the neutron to gamma ratio can be inferred. With the 20 cm-thick FNIS, the absorbed dose rates of neutrons measured with the paired ion chamber method and calculated with the SAND-II results were 13.7 ?? 0.02 Gy/min and 15.5 Gy/min, respectively. The absorbed dose rate of photons and the gamma contribution to total dose were 6.7??10-1 ?? 1.3??10-1 Gy/min and 4.7%, respectively. However, the estimated gamma contribution to total dose varied between 3.6 % to 6.6 % as the assumed neutron sensitivity to the graphite detector was changed from 0.01 to 0.03.

Jang, Si Young

2004-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

TITAN : an advanced three dimensional coupled neutronicthermal-hydraulics code for light water nuclear reactor core analysis  

E-Print Network (OSTI)

The accurate analysis of nuclear reactor transients frequently requires that neutronics, thermal-hydraulics and feedback be included. A number of coupled neutronics/thermal-hydraulics codes have been developed for this ...

Griggs, D. P.

1984-01-01T23:59:59.000Z

62

Plant maintenance and advanced reactors, 2005  

SciTech Connect

The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: First U.S. EPRs in 2015, by Ray Ganthner, Framatome ANP; Pursuing several opportunities, by William E. (Ed) Cummins, Westinghouse Electric Company; Vigorous plans to develop advanced reactors, by Yuliang Sun, Tsinghua University, China; Multiple designs, small and large, by Kumiaki Moriya, Hitachi Ltd., Japan; Sealed and embedded for safety and security, by Handa Norihiko, Toshiba Corporation, Japan; Scheduled online in 2010, by Johan Slabber, PMBR (Pty) Ltd., South Africa; Multi-application reactors, by Nikolay G. Kodochigov, OKBM, Russia; Six projects under budget and on schedule, by David F. Togerson, AECL, Canada; Creating a positive image, by Scott Peterson, Nuclear Energy Institute (NEI); Advanced plans for nuclear power's renaissance, by John Cleveland, International Atomic Energy Agency, Austria; and, Plant profile: last five outages in less than 20 days, by Beth Rapczynski, Exelon Nuclear.

Agnihotri, Newal (ed.)

2005-09-15T23:59:59.000Z

63

Update; Sodium advanced fast reactor (SAFR) concept  

SciTech Connect

This paper reports on the sodium advanced fast reactor (SAFR) concept developed by the team of Rockwell International, Combustion Engineering, and Bechtel during the 3-year period extending from January 1985 to December 1987 as one element in the U.S. Department of Energy's Advanced Liquid Metal Reactor Program. In January 1988, the team was expanded to include Duke Engineering and Services, Inc., and the concept development was extended under DOE's Program for Improvement in Advanced Modular LMR Design. The SAFR plant concept employs a 450-MWe pool-type liquid metal cooled reactor as its basic module. The reactor assembly module is a standardized shop-fabricated unit that can be shipped to the plant site by barge for installation. Shop fabrication minimizes nuclear-grade field fabrication and reduces the plant construction schedule. Reactor modules can be used individually or in multiples at a given site to supply the needed generating capacity.

Oldenkamp, R.D.; Brunings, J.E. (Rockwell International Corp., Canoga Park, CA (USA)); Guenther, E. (Combustion Engineering, Windsor, CT (US)); Hren, R. (Bechtel National Inc., San Francisco, CA (US))

1988-01-01T23:59:59.000Z

64

Nuclear reactor overflow line  

DOE Patents (OSTI)

The overflow line for the reactor vessel of a liquid-metal-cooled nuclear reactor includes means for establishing and maintaining a continuous bleed flow of coolant amounting to 5 to 10% of the total coolant flow through the overflow line to prevent thermal shock to the overflow line when the reactor is restarted following a trip. Preferably a tube is disposed concentrically just inside the overflow line extending from a point just inside the reactor vessel to an overflow tank and a suction line is provided opening into the body of liquid metal in the reactor vessel and into the annulus between the overflow line and the inner tube.

Severson, Wayne J. (Pittsburgh, PA)

1976-01-01T23:59:59.000Z

65

Nuclear reactor apparatus  

DOE Patents (OSTI)

A lifting, rotating and sealing apparatus for nuclear reactors utilizing rotating plugs above the nuclear reactor core. This apparatus permits rotation of the plugs to provide under the plug refueling of a nuclear core. It also provides a means by which positive top core holddown can be utilized. Both of these operations are accomplished by means of the apparatus lifting the top core holddown structure off the nuclear core while stationary, and maintaining this structure in its elevated position during plug rotation. During both of these operations, the interface between the rotating member and its supporting member is sealingly maintained.

Wade, Elman E. (Ruffs Dale, PA)

1978-01-01T23:59:59.000Z

66

NUCLEAR REACTORS AND EARTHQUAKES  

SciTech Connect

A book is presented which supplies pertinent seismological information to engineers in the nuclear reactor field. Data are presented on the occurrence, intensity, and wave shapes. Techniques are described for evaluating the response of structures to such events. Certain reactor types and their modes of operation are described briefly. Various protection systems are considered. Earthquake experience in industrial and reactor plants is described. (D.L.C.)

1961-01-01T23:59:59.000Z

67

Nuclear fusion advances  

Science Conference Proceedings (OSTI)

The last decade has seen advances in the shaping and confinement of plasmas, and in approaches to noninductive current drive. Here, the author presents an overview of nuclear fusion advances between 1983-93 examining: fusion milestones; plasma shaping; ...

W. Sweet

1994-02-01T23:59:59.000Z

68

HOMOGENEOUS NUCLEAR POWER REACTOR  

DOE Patents (OSTI)

A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

King, L.D.P.

1959-09-01T23:59:59.000Z

69

Evaluation of an Advanced Radiation Shielding Material for Permanent Installation at an Operating Commercial Nuclear Reactor  

Science Conference Proceedings (OSTI)

The industry continues to investigate, validate, and implement new radiation field reduction measures in response to increased emphasis on reducing dose to workers. Many nuclear plants are interested in permanent shielding applications to further reduce personnel exposure and to reduce the recurring effort associated with temporary installations. In 2008, a flexible, impregnated, layered matrix material was identified as a possible material for incorporating a shielding substance. This report provides an...

2010-09-30T23:59:59.000Z

70

Prospects for the development of advanced reactors  

SciTech Connect

Energy supply is an important prerequisite for further socio-economic development, especially in developing countries where the per capita energy use is only a very small fraction of that in industrialized countries. Nuclear energy is an essentially unlimited energy resource with the potential to provide this energy in the form of electricity, district heat and process heat under environmentally acceptable conditions. However, this potential will be realized only if nuclear power plants can meet the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide a tremendous amount of experience has been accumulated during development, licensing, construction and operation of nuclear power reactors. The experience forms a sound basis for further improvements. Nuclear programmes in many countries are addressing the development of advanced reactors which are intended to have better economics, higher reliability and improved safety in order to overcome the current concerns of nuclear power. Advanced reactors now being developed could help to meet the demand for new plants in developed and developing countries, not only for electricity generation, but also for district heating, desalination and for process heat. The IAEA, as the only global international governmental organization dealing with nuclear power, promotes international information exchange and international co-operation between all countries with their own advanced nuclear power programmes and offers assistance to countries with an interest in exploratory or research programmes.

Semenov, B.A.; Kupitz, J.; Cleveland, J. [International Atomic Energy Agency Vienna (Austria). Dept. of Nuclear Energy and Safety

1992-12-31T23:59:59.000Z

71

Idaho National Laboratory Advanced Test Reactor Probabilistic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment September 19, 2012...

72

Advanced Reactor Research and Development Funding Opportunity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Reactor Research and Development Funding Opportunity Announcement Advanced Reactor Research and Development Funding Opportunity Announcement The U.S. Department of Energy...

73

Evaluation of the applicability of existing nuclear power plant regulatory requirements in the U.S. to advanced small modular reactors.  

SciTech Connect

The current wave of small modular reactor (SMR) designs all have the goal of reducing the cost of management and operations. By optimizing the system, the goal is to make these power plants safer, cheaper to operate and maintain, and more secure. In particular, the reduction in plant staffing can result in significant cost savings. The introduction of advanced reactor designs and increased use of advanced automation technologies in existing nuclear power plants will likely change the roles, responsibilities, composition, and size of the crews required to control plant operations. Similarly, certain security staffing requirements for traditional operational nuclear power plants may not be appropriate or necessary for SMRs due to the simpler, safer and more automated design characteristics of SMRs. As a first step in a process to identify where regulatory requirements may be met with reduced staffing and therefore lower cost, this report identifies the regulatory requirements and associated guidance utilized in the licensing of existing reactors. The potential applicability of these regulations to advanced SMR designs is identified taking into account the unique features of these types of reactors.

LaChance, Jeffrey L.; Wheeler, Timothy A.; Farnum, Cathy Ottinger; Middleton, Bobby D.; Jordan, Sabina Erteza; Duran, Felicia Angelica; Baum, Gregory A.

2013-05-01T23:59:59.000Z

74

Nuclear reactor reflector  

DOE Patents (OSTI)

A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

Hopkins, Ronald J. (Pensacola, FL); Land, John T. (Pensacola, FL); Misvel, Michael C. (Pensacola, FL)

1994-01-01T23:59:59.000Z

75

Nuclear reactor reflector  

DOE Patents (OSTI)

A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

Hopkins, R.J.; Land, J.T.; Misvel, M.C.

1994-06-07T23:59:59.000Z

76

Nuclear reactor control column  

DOE Patents (OSTI)

The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

Bachovchin, Dennis M. (Plum Borough, PA)

1982-01-01T23:59:59.000Z

77

Advances in reactor physics education: Visualization of reactor parameters  

Science Conference Proceedings (OSTI)

Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for reactor operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and a typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software. (authors)

Snoj, L.; Kromar, M.; Zerovnik, G. [Josef Stefan Inst., Jamova cesta 39, SI-1000 Ljubljana (Slovenia)

2012-07-01T23:59:59.000Z

78

INSIGHTS INTO THE ROLE OF THE OPERATOR IN ADVANCED REACTORS.  

SciTech Connect

NUCLEAR POWER PLANT PERSONNEL PLAY A VITAL ROLE IN THE PRODUCTIVE, EFFICIENT, AND SAFE GENERATION OF ELECTRIC POWER, WHETHER FOR CONVENTIONAL LIGHT WATER REACTORS OR NEW ADVANCED REACTORS. IT IS WIDELY RECOGNIZED THAT HUMAN ACTIONS THAT DEPART FROM OR FAIL TO ACHIEVE WHAT SHOULD BE DONE CAN BE IMPORTANT CONTRIBUTORS TO THE RISK ASSOCIATED WITH THE OPERATION OF NUCLEAR POWER PLANTS. ADVANCED REACTORS ARE EXPECTED TO PRESENT A CONCEPT OF OPERATI...

PERSENSKY, J.; LEWIS, P.; O' HARA, J.

2005-11-13T23:59:59.000Z

79

Plant maintenance and advanced reactors, 2007  

Science Conference Proceedings (OSTI)

The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: A new day for energy in America; Committed to success more than ever, by Andy White, GE--Hitachi Nuclear Energy; Competitive technology for decades, by Steve Tritch, Westinghouse Electric Company; Pioneers of positive community relationship, by Exelon Nuclear; A robust design for 60-years, by Ray Ganthner, Areva; Aiming at no evacuation plants, by Kumiaki Moriya, Hitachi-GE Nuclear Energy, Ltd.; and, Desalination and hydrogen economy, by Dr. I. Khamis, International Atomic Energy Agency. Industry innovation articles in this issue are: Reactor vessel closure head project, by Jeff LeClair, Prairie Island Nuclear Generating Plant; and Submersible remote-operated vehicle, by Michael S. Rose, Entergy's Fitzpatrick Nuclear Station.

Agnihotri, Newal (ed.)

2007-09-15T23:59:59.000Z

80

Reactor & Nuclear Systems Publications | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications and Reports NSED Monthly Reports Reactor and Nuclear Systems Publications 2013 Publications 2012 Publications 2011 Publications 2010 and Older Publications Nuclear...

Note: This page contains sample records for the topic "advanced nuclear reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nuclear Reactors and Technology  

SciTech Connect

This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

Cason, D.L.; Hicks, S.C. [eds.

1992-01-01T23:59:59.000Z

82

1 INTRODUCTION Modern nuclear reactor concepts make use of pas-  

E-Print Network (OSTI)

1 INTRODUCTION Modern nuclear reactor concepts make use of pas- sive safety features (Fong et al systems in advanced nuclear reactors; in (Cardoso et al. 2008), Artificial Neural Networks (ANNs: Special Issue "Natural Circulation in Nuclear Reactor Systems", Hindawi Publishing Corpo- ration, Paper

83

Mirror Advanced Reactor Study (MARS)  

DOE Green Energy (OSTI)

Progress in a two year study of a 1200 MWe commercial tandem mirror reactor (MARS - Mirror Advanced Reactor Study) has reached the point where major reactor system technologies are identified. New design features of the magnets, blankets, plug heating systems and direct converter are described. With the innovation of radial drift pumping to maintain low plug density, reactor recirculating power fraction is reduced to 20%. Dominance of radial ion and impurity losses into the halo permits gridless, circular direct converters to be dramatically reduced in size. Comparisons of MARS with the Starfire tokamak design are made.

Logan, B.G.

1983-03-28T23:59:59.000Z

84

Advanced Safeguards Approaches for New Fast Reactors  

SciTech Connect

This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

2007-12-15T23:59:59.000Z

85

Idaho National Laboratory Advanced Test Reactor Probabilistic Risk  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment September 19, 2012 Presenter: Bentley Harwood, Advanced Test Reactor Nuclear Safety Engineer Battelle Energy Alliance Idaho National Laboratory Topics covered: PRA studies began in the late 1980s 1989, ATR PRA published as a summary report 1991, ATR PRA full report 1994 and 2004 various model changes 2011, Consolidation, update and improvement of previous PRA work 2012/2013, PRA risk monitor implementation Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment More Documents & Publications DOE's Approach to Nuclear Facility Safety Analysis and Management Nuclear Regulatory Commission Handling of Beyond Design Basis Events for

86

Heavy Liquid Metal Reactor Development - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

> Heavy Liquid Metal Reactor Development > Heavy Liquid Metal Reactor Development Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Nuclear Data Program Advanced Reactor Development Overview Advanced Fast Reactor (AFR) Heavy Liquid Metal Reactor Development Generation IV Nuclear Waste Form and Repository Performance Modeling Nuclear Energy Systems Design and Development Other Capabilities Work with Argonne Contact us For Employees Site Map Help Advanced Reactor Development and Technology Heavy Liquid Metal Reactor Development Bookmark and Share STAR-LM: Simplified, Modular, Small Reactor Featuring Flow-thru Fuel Cartridge STAR-LM: Simplified, Modular, Small Reactor Featuring Flow-thru Fuel Cartridge. Click on image to view larger image. Argonne has traditionally been the foremost institute in the US for

87

Plant maintenance and advanced reactors issue, 2004  

SciTech Connect

The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Optimism about the future of nuclear power, by Ruth G. Shaw, Duke Power Company; Licensed in three countries, by GE Energy; Enhancing public acceptance, by Westinghouse Electric Company; Standardized MOV program, by Ted Neckowicz, Exelon; Inservice testing, by Steven Unikewicz, U.S. Nuclear Regulatory Commission; Asian network for education, Fatimah Mohd Amin, Malaysian Institute for Nuclear Technology Research; and, Cooling water intake optimization, by Jeffrey M. Jones and Bert Mayer, P.E., Framatome ANP.

Agnihotri, Newal (ed.)

2004-09-15T23:59:59.000Z

88

Plant maintenance and advanced reactors issue, 2008  

Science Conference Proceedings (OSTI)

The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Technologies of national importance, by Tsutomu Ohkubo, Japan Atomic Energy Agency, Japan; Modeling and simulation advances brighten future nuclear power, by Hussein Khalil, Argonne National Laboratory, Energy and desalination projects, by Ratan Kumar Sinha, Bhabha Atomic Research Centre, India; A plant with simplified design, by John Higgins, GE Hitachi Nuclear Energy; A forward thinking design, by Ray Ganthner, AREVA; A passively safe design, by Ed Cummins, Westinghouse Electric Company; A market-ready design, by Ken Petrunik, Atomic Energy of Canada Limited, Canada; Generation IV Advanced Nuclear Energy Systems, by Jacques Bouchard, French Commissariat a l'Energie Atomique, France, and Ralph Bennett, Idaho National Laboratory; Innovative reactor designs, a report by IAEA, Vienna, Austria; Guidance for new vendors, by John Nakoski, U.S. Nuclear Regulatory Commission; Road map for future energy, by John Cleveland, International Atomic Energy Agency, Vienna, Austria; and, Vermont's largest source of electricity, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovation article is titled Intelligent monitoring technology, by Chris Demars, Exelon Nuclear.

Agnihotri, Newal (ed.)

2009-09-15T23:59:59.000Z

89

THERMAL NUCLEAR REACTOR  

DOE Patents (OSTI)

Nuclear reactors of the graphite moderated air cooled type in which canned slugs or rods of fissile material are employed are discussed. Such a reactor may be provided with a means for detecting dust particles in the exhausted air. The means employed are lengths of dust absorbent cord suspended in vertical holes in the shielding structure above each vertical coolant flow channel to hang in the path of the cooling air issuing from the channels, and associated spindles and drive motors for hauling the cords past detectors, such as Geiger counters, for inspecting the cords periodically. This design also enables detecting the individual channel in which a fault condition may have occurred.

Fenning, F.W.; Jackson, R.F.

1957-09-24T23:59:59.000Z

90

Advanced Nuclear Fuel Concepts for Minor Actinide Burning  

Science Conference Proceedings (OSTI)

Abstract Scope, New fuel cycle strategies entail advanced nuclear fuel concepts. This especially applies for the burning of minor actinides in a fast reactor cycle ...

91

Uncertainty quantification approaches for advanced reactor analyses.  

SciTech Connect

The original approach to nuclear reactor design or safety analyses was to make very conservative modeling assumptions so as to ensure meeting the required safety margins. Traditional regulation, as established by the U. S. Nuclear Regulatory Commission required conservatisms which have subsequently been shown to be excessive. The commission has therefore moved away from excessively conservative evaluations and has determined best-estimate calculations to be an acceptable alternative to conservative models, provided the best-estimate results are accompanied by an uncertainty evaluation which can demonstrate that, when a set of analysis cases which statistically account for uncertainties of all types are generated, there is a 95% probability that at least 95% of the cases meet the safety margins. To date, nearly all published work addressing uncertainty evaluations of nuclear power plant calculations has focused on light water reactors and on large-break loss-of-coolant accident (LBLOCA) analyses. However, there is nothing in the uncertainty evaluation methodologies that is limited to a specific type of reactor or to specific types of plant scenarios. These same methodologies can be equally well applied to analyses for high-temperature gas-cooled reactors and to liquid metal reactors, and they can be applied to steady-state calculations, operational transients, or severe accident scenarios. This report reviews and compares both statistical and deterministic uncertainty evaluation approaches. Recommendations are given for selection of an uncertainty methodology and for considerations to be factored into the process of evaluating uncertainties for advanced reactor best-estimate analyses.

Briggs, L. L.; Nuclear Engineering Division

2009-03-24T23:59:59.000Z

92

Nuclear reactor safety device  

DOE Patents (OSTI)

A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

Hutter, Ernest (Wilmette, IL)

1986-01-01T23:59:59.000Z

93

Heat dissipating nuclear reactor  

DOE Patents (OSTI)

Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extends from the metal base plate downwardly and outwardly into the earth.

Hunsbedt, Anstein (Los Gatos, CA); Lazarus, Jonathan D. (Sunnyvale, CA)

1987-01-01T23:59:59.000Z

94

Heat dissipating nuclear reactor  

DOE Patents (OSTI)

Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extend from the metal base plate downwardly and outwardly into the earth.

Hunsbedt, A.; Lazarus, J.D.

1985-11-21T23:59:59.000Z

95

Instrumentation to Enhance Advanced Test Reactor Irradiations  

SciTech Connect

The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

2009-09-01T23:59:59.000Z

96

Use of Sensitivity and Uncertainty Analysis in the Design of Reactor Physics and Criticality Benchmark Experiments for Advanced Nuclear Fuel  

SciTech Connect

Framatome ANP, Sandia National Laboratories (SNL), Oak Ridge National Laboratory (ORNL), and the University of Florida are cooperating on the U.S. Department of Energy Nuclear Energy Research Initiative (NERI) project 2001-0124 to design, assemble, execute, analyze, and document a series of critical experiments to validate reactor physics and criticality safety codes for the analysis of commercial power reactor fuels consisting of UO{sub 2} with {sup 235}U enrichments {>=}5 wt%. The experiments will be conducted at the SNL Pulsed Reactor Facility.Framatome ANP and SNL produced two series of conceptual experiment designs based on typical parameters, such as fuel-to-moderator ratios, that meet the programmatic requirements of this project within the given restraints on available materials and facilities. ORNL used the Tools for Sensitivity and Uncertainty Analysis Methodology Implementation (TSUNAMI) to assess, from a detailed physics-based perspective, the similarity of the experiment designs to the commercial systems they are intended to validate. Based on the results of the TSUNAMI analysis, one series of experiments was found to be preferable to the other and will provide significant new data for the validation of reactor physics and criticality safety codes.

Rearden, B.T. [Oak Ridge National Laboratory (United States); Anderson, W.J. [Framatome ANP, Inc. (France); Harms, G.A. [Sandia National Laboratories (United States)

2005-08-15T23:59:59.000Z

97

CESAR: Center for Exascale Simulation of Advanced Reactors | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

CESAR: Center for Exascale Simulation of Advanced Reactors CESAR: Center for Exascale Simulation of Advanced Reactors CESAR: Center for Exascale Simulation of Advanced Reactors CESAR is an interdisciplinary center for developing an innovative, next-generation nuclear reactor analysis tool that both utilizes and guides the development of exascale computing platforms. Existing reactor analysis codes are highly tuned and calibrated for commercial light-water reactors, but they lack the physics fidelity to seamlessly carry over to new classes of reactors with significantly different design characteristics-as, for example, innovative concepts such as TerraPower's Traveling Wave reactor and Small Modular Reactor concepts. Without vastly improved modeling capabilities, the economic and safety characteristics of these and other novel systems will require tremendous

98

Nuclear Reactor Technologies | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Technologies Nuclear Reactor Technologies TVA Watts Bar Nuclear Power Plant | Photo courtesy of Tennessee Valley Authority TVA Watts Bar Nuclear Power Plant | Photo...

99

Nuclear reactor building  

DOE Patents (OSTI)

A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed there above. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define there between an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin. 4 figures.

Gou, P.F.; Townsend, H.E.; Barbanti, G.

1994-04-05T23:59:59.000Z

100

Nuclear reactor building  

DOE Patents (OSTI)

A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed thereabove. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define therebetween an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin.

Gou, Perng-Fei (Saratoga, CA); Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Sirtori, IT)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Advances in metallic nuclear fuel  

Science Conference Proceedings (OSTI)

Metallic nuclear fuels have generated renewed interest for advanced liquid metal reactors (LMRs) due to their physical properties, ease of fabrication, irradiation behavior, and simple reprocessing. Irradiation performance for both steady-state and transient operations is excellent. Ongoing irradiation tests in Argonne-West's Idaho-based Experimental Breeder Reactor II (EBR-II) have surpassed 100,000 MWd/T burnup and are on their way to a lifetime burnup of 150,000 MWd/T or greater. Metallic fuel also has a unique neutronic characteristic that enables benign reactor responses to loss-of-flow without scram and loss-of-heat-sink without scram accident conditions. This inherent safety potential of metallic fuel was demonstrated in EBR-II just one year ago. Safety tests performed in the reactor have also demonstrated that there is ample margin to fuel element cladding failure under transient overpower conditions. These metallic fuel attributes are key ingredients of the integral fast reactor (IFR) concept being developed at Argonne National Laboratory.

Seidel, B.R.; Walters, L.C.; Chang, Y.I.

1987-04-01T23:59:59.000Z

102

PIA - Advanced Test Reactor National Scientific User Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor...

103

Nuclear reactor safety device  

DOE Patents (OSTI)

A safety device is described for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of a thermal excursion. It comprises a laminated strip helically configured to form a tube, said tube being in operative relation to said control rod. The laminated strip is formed of at least two materials having different thermal coefficients of expansion, and is helically configured such that the material forming the outer lamina of the tube has a greater thermal coefficient of expansion than the material forming the inner lamina of said tube. In the event of a thermal excursion the laminated strip will tend to curl inwardly so that said tube will increase in length, whereby as said tube increases in length it exerts a force on said control rod to axially reposition said control rod with respect to said core.

Hutter, E.

1983-08-15T23:59:59.000Z

104

HOMOGENEOUS NUCLEAR REACTOR  

DOE Patents (OSTI)

Nuclear reactors of the homogeneous liquid fuel type are discussed. The reactor is comprised of an elongated closed vessel, vertically oriented, having a critical region at the bottom, a lower chimney structure extending from the critical region vertically upwardly and surrounded by heat exchanger coils, to a baffle region above which is located an upper chimney structure containing a catalyst functioning to recombine radiolyticallydissociated moderator gages. In operation the liquid fuel circulates solely by convection from the critical region upwardly through the lower chimney and then downwardly through the heat exchanger to return to the critical region. The gases formed by radiolytic- dissociation of the moderator are carried upwardly with the circulating liquid fuel and past the baffle into the region of the upper chimney where they are recombined by the catalyst and condensed, thence returning through the heat exchanger to the critical region.

Hammond, R.P.; Busey, H.M.

1959-02-17T23:59:59.000Z

105

Advanced burner test reactor preconceptual design report.  

Science Conference Proceedings (OSTI)

The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.

Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

2008-12-16T23:59:59.000Z

106

Nuclear reactor control apparatus  

DOE Patents (OSTI)

Nuclear reactor core safety rod release apparatus comprises a control rod having a detent notch in the form of an annular peripheral recess at its upper end, a control rod support tube for raising and lowering the control rod under normal conditions, latches pivotally mounted on the control support tube with free ends thereof normally disposed in the recess in the control rod, and cam means for pivoting the latches out of the recess in the control rod when a scram condition occurs. One embodiment of the invention comprises an additional magnetically-operated latch for releasing the control rod under two different conditions, one involving seismic shock.

Sridhar, Bettadapur N. (Cupertino, CA)

1983-11-01T23:59:59.000Z

107

Material Science Advances Using Test Reactor Facilities  

Science Conference Proceedings (OSTI)

Aug 2, 2010 ... About this Symposium. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium, Material Science Advances Using Test Reactor Facilities.

108

Advanced Nuclear Technology: EPRI Materials Management Matrix Project—Toshiba Advanced Boiling Water Reactor Materials Managem ent Table Report, Revision 0  

Science Conference Proceedings (OSTI)

Experience gained through years of operating nuclear plants has shown that materials performance issues can be a significant concern related to economic and safe long-term plant operations. Although concerns remain, industry efforts to address materials performance issues at operating plants have led to several important advances in both the underlying scientific understanding of materials degradation and the implementation of practical mitigation and management technologies. The Electric Power Research...

2010-02-09T23:59:59.000Z

109

Argonne's pyroprocessing and advanced reactor research featured on WGN  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's pyroprocessing and advanced reactor research featured on WGN Argonne's pyroprocessing and advanced reactor research featured on WGN radio Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Argonne's pyroprocessing and advanced reactor research featured on WGN radio Uranium dendrites These tiny branches, or "dendrites," of pure uranium form when engineers

110

Nuclear Reactor Severe Accident Experiments  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Reactor Severe Accident Experiments Nuclear Reactor Severe Accident Experiments Capabilities Engineering Experimentation Reactor Safety Testing and Analysis Overview Nuclear Reactor Severe Accident Experiments MAX NSTF SNAKE Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Nuclear Reactor Severe Accident Experiments 1 2 3 4 5 6 7 We perform experiments simulating reactor core melt phenomena in which molten core debris ("corium") erodes the concrete floor of a containment building. This occurred during the Fukushima nuclear power plant accident though the extent of concrete damage is yet unknown. This video shows the top view of a churning molten pool of uranium oxide at 2000°C (3600°F) seen during an experiment at Argonne. Corium behaves much like lava.

111

Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation  

E-Print Network (OSTI)

Wood, Completely automated nuclear reactors for long- termhandbook: Nuclear physics and reactor theory. 1993. (121 p).The analysis of any nuclear reactor system is closely

Heidet, Florent

2010-01-01T23:59:59.000Z

112

Advanced Light Water Reactor utility requirements document  

SciTech Connect

The ALWR Requirements Document is a primary work product of the EPRI Program. This document is an extensive compilation of the utility requirements for design, construction and performance of advanced light water reactor power plants for the 1990s and beyond. The Requirements Document's primary emphasis is on resolution of significant problems experienced at existing nuclear power plants. It is intended to be used with companion documents, such as utility procurement specifications, which would cover the remaining detailed technical requirements applicable to new plant projects. The ALWR Requirements Document consists of several major parts. This volume is Part I, The Executive Summary. It is intended to serve as a concise, management level synopsis of advanced light water reactors including design objectives and philosophy, overall configuration and features and the steps necessary to proceed from the conceptual design stage to a completed, functioning power plant.

1986-06-01T23:59:59.000Z

113

Overview of Reactor and Nuclear  

E-Print Network (OSTI)

and Safety Gary Mays Nuclear Data and Criticality Safety Mike Dunn Nuclear Security Modeling Tim Valentine - Office of Environmental Management - Office of Intelligence · National Nuclear Security AdministrationOverview of Reactor and Nuclear Systems Division Cecil Parks RNS Division Director parkscv

114

EMERGENCY SHUTDOWN FOR NUCLEAR REACTORS  

DOE Patents (OSTI)

An emergency shutdown or scram apparatus for use in a nuclear reactor that includes a neutron absorber suspended from a temperature responsive substance that is selected to fail at a preselected temperature in excess of the normal reactor operating temperature, whereby the neutron absorber is released and allowed to fall under gravity to a preselected position within the reactor core is presented. (AEC)

Paget, J.A.; Koutz, S.L.; Stone, R.S.; Stewart, H.B.

1963-12-24T23:59:59.000Z

115

Advanced Reactor Research and Development Funding Opportunity Announcement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Reactor Research and Development Funding Opportunity Advanced Reactor Research and Development Funding Opportunity Announcement Advanced Reactor Research and Development Funding Opportunity Announcement The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) sponsors a program of research, development, and demonstration related to advanced non-light water reactor concepts. A goal of the program is to facilitate greater engagement between DOE and industry. During FY12, DOE established a Technical Review Panel (TRP) process to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. That process involved the use of a Request for Information (RFI) to solicit concept information from industry and engage technical experts to evaluate those concepts. Having completed this process, DOE desires to

116

Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors  

SciTech Connect

The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

Radulescu, Laura ['Horia Hulubei' National Institute of Nuclear Physics and Engineering, PO BOX MG-6, Bucharest 077125 (Romania); Pavelescu, Margarit [Academy of Romanian Scientists, Bucharest (Romania)

2010-01-21T23:59:59.000Z

117

Advanced Light Water Reactor - Boiling Water Reactor Degradation Matrix (ALWR BWR DM), Revision 0  

Science Conference Proceedings (OSTI)

The advanced light water reactor–boiling water reactor degradation matrix (ALWR BWR DM) is an essential piece of the Electric Power Research Institute’s (EPRI’s) Advanced Nuclear Technology (ANT) materials management matrix initiative for advanced LWR designs. The materials management matrix provides a tool to assist the industry in proactive identification and consideration of materials issues as well as mitigation and management opportunities from the design phase, through component fabrication and pla...

2009-08-25T23:59:59.000Z

118

Nuclear reactor control apparatus  

DOE Patents (OSTI)

Nuclear reactor safety rod release apparatus comprises a ring which carries detents normally positioned in an annular recess in outer side of the rod, the ring being held against the lower end of a drive shaft by magnetic force exerted by a solenoid carried by the drive shaft. When the solenoid is de-energized, the detent-carrying ring drops until the detents contact a cam surface associated with the lower end of the drive shaft, at which point the detents are cammed out of the recess in the safety rod to release the rod from the drive shaft. In preferred embodiments of the invention, an additional latch is provided to release a lower portion of a safety rod under conditions that may interfere with movement of the entire rod.

Sridhar, Bettadapur N. (Cupertino, CA)

1983-10-25T23:59:59.000Z

119

GAS COOLED NUCLEAR REACTORS  

DOE Patents (OSTI)

A gas-cooled nuclear reactor consisting of a graphite reacting core and reflector structure supported in a containing vessel is described. A gas sealing means is included for sealing between the walls of the graphite structure and containing vessel to prevent the gas coolant by-passing the reacting core. The reacting core is a multi-sided right prismatic structure having a pair of parallel slots around its periphery. The containing vessel is cylindrical and has a rib on its internal surface which supports two continuous ring shaped flexible web members with their radially innermost ends in sealing engagement within the radially outermost portion of the slots. The core structure is supported on ball bearings. This design permits thermal expansion of the core stracture and vessel while maintainirg a peripheral seal between the tvo elements.

Long, E.; Rodwell, W.

1958-06-10T23:59:59.000Z

120

Nuclear reactor control  

DOE Patents (OSTI)

1. In a nuclear reactor incorporating a plurality of columns of tubular fuel elements disposed in horizontal tubes in a mass of graphite wherein water flows through the tubes to cool the fuel elements, the improvement comprising at least one control column disposed in a horizontal tube including fewer fuel elements than in a normal column of fuel elements and tubular control elements disposed at both ends of said control column, and means for varying the horizontal displacement of the control column comprising a winch at the upstream end of the control column and a cable extending through the fuel and control elements and attached to the element at the downstream end of the column.

Cawley, William E. (Phoenix, AZ); Warnick, Robert F. (Pasco, WA)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Reactor Physics and Fuel Cycle Analysis - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Analysis Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Overview Current Projects Software Nuclear Plant Dynamics and Safety Nuclear Data Program Advanced Reactor Development Nuclear Waste Form and Repository Performance Modeling Nuclear Energy Systems Design and Development Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Reactor Physics and Fuel Cycle Analysis Bookmark and Share Reactor physics and fuel cycle analysis is a core competency of the Nuclear Engineering (NE) Division. The Division has played a major role in the design and analysis of advanced reactors, particularly liquid-metal-cooled reactors. NE researchers have concentrated on developing computer codes for

122

Fast Reactor Curriculum Workshop - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fast Reactor Curriculum Workshop Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear...

123

Sandia LDRD-funded project looks at advanced materials for reactors...  

NLE Websites -- All DOE Office Websites (Extended Search)

LDRD-funded project looks at advanced materials for reactors | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

124

Investigation of Freeze-Cast Scaffolds as an Advanced Reactor Fuel ...  

Science Conference Proceedings (OSTI)

Symposium, Materials and Fuels for the Current and Advanced Nuclear Reactors II ... A Rate-Theory Approach to Irradiation Damage Modeling with Random ...

125

Advanced Burner Reactor Preliminary NEPA Data Study.  

Science Conference Proceedings (OSTI)

The Global Nuclear Energy Partnership (GNEP) is a new nuclear fuel cycle paradigm with the goals of expanding the use of nuclear power both domestically and internationally, addressing nuclear waste management concerns, and promoting nonproliferation. A key aspect of this program is fast reactor transmutation, in which transuranics recovered from light water reactor spent fuel are to be recycled to create fast reactor transmutation fuels. The benefits of these fuels are to be demonstrated in an Advanced Burner Reactor (ABR), which will provide a representative environment for recycle fuel testing, safety testing, and modern fast reactor design and safeguard features. Because the GNEP programs will require facilities which may have an impact upon the environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), preparation of a Programmatic Environmental Impact Statement (PEIS) for GNEP is being undertaken by Tetra Tech, Inc. The PEIS will include a section on the ABR. In support of the PEIS, the Nuclear Engineering Division of Argonne National Laboratory has been asked to provide a description of the ABR alternative, including graphics, plus estimates of construction and operations data for an ABR plant. The compilation of this information is presented in the remainder of this report. Currently, DOE has started the process of engaging industry on the design of an Advanced Burner Reactor. Therefore, there is no specific, current, vendor-produced ABR design that could be used for this PEIS datacall package. In addition, candidate sites for the ABR vary widely as to available water, geography, etc. Therefore, ANL has based its estimates for construction and operations data largely on generalization of available information from existing plants and from the environmental report assembled for the Clinch River Breeder Reactor Plant (CRBRP) design [CRBRP, 1977]. The CRBRP environmental report was chosen as a resource because it thoroughly documents the extensive evaluation which was performed on the anticipated environmental impacts of that plant. This source can be referenced in the open literature and is publicly available. The CRBRP design was also of a commercial demonstration plant size - 975 MWth - which falls in the middle of the range of ABR plant sizes being considered (250 MWth to 2000 MWth). At the time the project was cancelled, the CRBRP had progressed to the point of having completed the licensing application to the Nuclear Regulatory Commission (NRC) and was in the process of receiving NRC approval. Therefore, it was felt that [CRBRP, 1977] provides some of the best available data and information as input to the GNEP PEIS work. CRBRP was not the source of all the information in this document. It is also expected that the CRBRP data will be bounding from the standpoint of commodity usage because fast reactor vendors will develop designs which will focus on commodity and footprint reduction to reduce the overall cost per kilowatt electric compared with the CRBR plant. Other sources used for this datacall information package are explained throughout this document and in Appendix A. In particular, see Table A.1 for a summary of the data sources used to generate the datacall information.

Briggs, L. L.; Cahalan, J. E.; Deitrich, L. W.; Fanning, T. H.; Grandy, C.; Kellogg, R.; Kim, T. K.; Yang, W. S.; Nuclear Engineering Division

2007-10-15T23:59:59.000Z

126

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network (OSTI)

Fundamental aspects of nuclear reactor fuel elements.Unlike permanent nuclear reactor core components, nuclearof the first nuclear reactors, commercial nuclear fuel still

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

127

Nuclear Reactors and Technology; (USA)  

SciTech Connect

Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

Cason, D.L.; Hicks, S.C. (eds.)

1991-01-01T23:59:59.000Z

128

Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories  

Office of Legacy Management (LM)

ADVANCED REACTORS DIVISION FUEL LABORATORIES CHESWICK, PENNSYLVANIA Department of Energy Office of Policy, Safety and Environment Office of Operational Safety Environmental...

129

Energy Department Announces New Investments in Advanced Nuclear Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces New Investments in Advanced Nuclear Energy Department Announces New Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear Power Reactors June 27, 2013 - 2:20pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to accelerate clean energy leadership and to enable a low-carbon economy, the Energy Department today announced $3.5 million for four advanced nuclear reactor projects that go beyond traditional light water designs. These projects -- led by General Atomics, GE Hitachi, Gen4 Energy and Westinghouse -- will address key technical challenges to designing, building and operating the next generation of nuclear reactors. These steps support the President's plan to cut carbon pollution and spark innovation

130

Energy Department Announces New Investments in Advanced Nuclear Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investments in Advanced Nuclear Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear Power Reactors June 27, 2013 - 2:20pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to accelerate clean energy leadership and to enable a low-carbon economy, the Energy Department today announced $3.5 million for four advanced nuclear reactor projects that go beyond traditional light water designs. These projects -- led by General Atomics, GE Hitachi, Gen4 Energy and Westinghouse -- will address key technical challenges to designing, building and operating the next generation of nuclear reactors. These steps support the President's plan to cut carbon pollution and spark innovation

131

Nuclear reactor I  

DOE Patents (OSTI)

A nuclear reactor, particularly a liquid-metal breeder reactor whose upper internals include provision for channeling the liquid metal flowing from the core-component assemblies to the outlet plenum in vertical paths in direction generally along the direction of the respective assemblies. The metal is channeled by chimneys, each secured to, and extending from, a grid through whose openings the metal emitted by a plurality of core-component assemblies encompassed by the grid flows. To reduce the stresses resulting from structural interaction, or the transmissive of thermal strains due to large temperature differences in the liquid metal emitted from neighboring core-component assemblies, throughout the chimneys and the other components of the upper internals, the grids and the chimneys are supported from the heat plate and the core barrel by support columns (double portal support) which are secured to the head plate at the top and to a member, which supports the grids and is keyed to the core barrel, at the bottom. In addition to being restrained from lateral flow by the chimneys, the liquid metal is also restrained from flowing laterally by a peripheral seal around the top of the core. This seal limits the flow rate of liquid metal, which may be sharply cooled during a scram, to the outlet nozzles. The chimneys and the grids are formed of a highly-refractory, high corrosion-resistant nickel-chromium-iron alloy which can withstand the stresses produced by temperature differences in the liquid metal. The chimneys are supported by pairs of plates, each pair held together by hollow stubs coaxial with, and encircling, the chimneys. The plates and stubs are a welded structure but, in the interest of economy, are composed of stainless steel which is not weld compatible with the refractory metal. The chimneys and stubs are secured together by shells of another nickel-chromium-iron alloy which is weld compatible with, and is welded to, the stubs and has about the same coefficient of expansion as the highly-refractory, high corrosion-resistant alloy.

Ference, Edward W. (Central City, PA); Houtman, John L. (Acme, PA); Waldby, Robert N. (New Stanton, PA)

1977-01-01T23:59:59.000Z

132

Advanced Reactor Research and Development Funding Opportunity Announcement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Research and Development Funding Opportunity Reactor Research and Development Funding Opportunity Announcement Advanced Reactor Research and Development Funding Opportunity Announcement The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) sponsors a program of research, development, and demonstration related to advanced non-light water reactor concepts. A goal of the program is to facilitate greater engagement between DOE and industry. During FY12, DOE established a Technical Review Panel (TRP) process to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. That process involved the use of a Request for Information (RFI) to solicit concept information from industry and engage technical experts to evaluate those concepts. Having completed this process, DOE desires to

133

Partnerships Help Advance Small Modular Reactor Technology | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnerships Help Advance Small Modular Reactor Technology Partnerships Help Advance Small Modular Reactor Technology Partnerships Help Advance Small Modular Reactor Technology March 5, 2012 - 12:00pm Addthis WASHINGTON, D.C. - DOE recently announced three public-private partnerships to develop deployment plans for small modular nuclear reactor (SMR) technologies at Savannah River Site (SRS) facilities near Aiken, S.C. Read the full story on the Memorandums of Agreement to help leverage SRS land assets, energy facilities and nuclear expertise to support potential private sector development, testing and licensing of prototype SMR technologies. Addthis Related Articles Energy Department Announces Small Modular Reactor Technology Partnerships at Savannah River Site The development of clean, affordable nuclear power options is a key element of the Energy Department's Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. | Photo by the Energy Department.

134

NUCLEAR REACTOR FUEL SYSTEMS  

DOE Patents (OSTI)

Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

1959-09-15T23:59:59.000Z

135

ASME Material Challenges for Advanced Reactor Concepts  

SciTech Connect

This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at higher temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.

Piyush Sabharwall; Ali Siahpush

2013-07-01T23:59:59.000Z

136

Uncertainties in the Anti-neutrino Production at Nuclear Reactors  

E-Print Network (OSTI)

neutrino Production at Nuclear Reactors Z. Djurcic 1 , ?emission rates from nuclear reactors are determined fromlarge commercial nuclear reactors are playing an important

Djurcic, Zelimir

2009-01-01T23:59:59.000Z

137

RADIATION FACILITY FOR NUCLEAR REACTORS  

DOE Patents (OSTI)

A radiation facility is designed for irradiating samples in close proximity to the core of a nuclear reactor. The facility comprises essentially a tubular member extending through the biological shield of the reactor and containing a manipulatable rod having the sample carrier at its inner end, the carrier being longitudinally movable from a position in close proximity to the reactor core to a position between the inner and outer faces of the shield. Shield plugs are provided within the tubular member to prevent direct radiation from the core emanating therethrough. In this device, samples may be inserted or removed during normal operation of the reactor without exposing personnel to direct radiation from the reactor core. A storage chamber is also provided within the radiation facility to contain an irradiated sample during the period of time required to reduce the radioactivity enough to permit removal of the sample for external handling. (AEC)

Currier, E.L. Jr.; Nicklas, J.H.

1961-12-12T23:59:59.000Z

138

Summary of advanced LMR (Liquid Metal Reactor) evaluations: PRISM (Power Reactor Inherently Safe Module) and SAFR (Sodium Advanced Fast Reactor)  

Science Conference Proceedings (OSTI)

In support of the US Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) has performed independent analyses of two advanced Liquid Metal Reactor (LMR) concepts. The designs, sponsored by the US Department of Energy (DOE), the Power Reactor Inherently Safe Module (PRISM) (Berglund, 1987) and the Sodium Advanced Fast Reactor (SAFR) (Baumeister, 1987), were developed primarily by General Electric (GE) and Rockwell International (RI), respectively. Technical support was provided to DOE, RI, and GE, by the Argonne National Laboratory (ANL), particularly with respect to the characteristics of the metal fuels. There are several examples in both PRISM and SAFR where inherent or passive systems provide for a safe response to off-normal conditions. This is in contrast to the engineered safety systems utilized on current US Light Water Reactor (LWR) designs. One important design inherency in the LMRs is the inherent shutdown'', which refers to the tendency of the reactor to transition to a much lower power level whenever temperatures rise significantly. This type of behavior was demonstrated in a series of unscrammed tests at EBR-II (NED, 1986). The second key design feature is the passive air cooling of the vessel to remove decay heat. These systems, designated RVACS in PRISM and RACS in SAFR, always operate and are believed to be able to prevent core damage in the event that no other means of heat removal is available. 27 refs., 78 figs., 3 tabs.

Van Tuyle, G.J.; Slovik, G.C.; Chan, B.C.; Kennett, R.J.; Cheng, H.S.; Kroeger, P.G. (Brookhaven National Lab., Upton, NY (USA))

1989-10-01T23:59:59.000Z

139

NUCLEAR REACTOR FUEL ELEMENT  

DOE Patents (OSTI)

A fuel plate is designed for incorporation into control rods of the type utilized in high-flux test reactors. The fuel plate is designed so that the portion nearest the poison section of the control rod contains about one-half as much fissionable material as in the rest of the plate, thereby eliminating dangerous flux peaking in that portion. (AEC)

Currier, E.L. Jr.; Nicklas, J.H.

1963-06-11T23:59:59.000Z

140

HOMOGENEOUS NUCLEAR REACTOR  

SciTech Connect

This homogeneous reactor comprises a core occupied by a solution of a fissile material in a moderator liquid and a breeder region enclosing the core and having a suspension of fertile material in the same moderator liquid. There is communication between the core and breeder to allow mass transfer and pressure equalization between the regions. The zones each have a separate circuit for removing heat by a mixer chamber situated inside the reactor vessel. The effluents coming from the two regions are mixed and led to a common device for separation into a clear solution and suspension, which are each led back to its corresponding circuit. To control the relative concentration of the two regions, an evaporator is provided separating a part of the moderator liquid from the solution occupying the core, the condensed separated moderator liquid being led into the breeder region. (NPO)

1960-07-11T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Advancements in nuclear waste assay.  

E-Print Network (OSTI)

??The research described in this thesis is directed at advancing the state of the practice of the non-destructive gamma-ray assay of nuclear waste containers. A… (more)

Curtis, Deborah Claire

2008-01-01T23:59:59.000Z

142

Nuclear Reactors and Technology; (USA)  

SciTech Connect

Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

Cason, D.L.; Hicks, S.C. (eds.)

1991-01-01T23:59:59.000Z

143

Modeling and Simulation for Nuclear Reactors Hub | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modeling and Simulation for Nuclear Reactors Hub Modeling and Simulation for Nuclear Reactors Hub Modeling and Simulation for Nuclear Reactors Hub August 1, 2010 - 4:20pm Addthis Scientists and engineers are working to help the nuclear industry make reactors more efficient through computer modeling and simulation. Scientists and engineers are working to help the nuclear industry make reactors more efficient through computer modeling and simulation. The Department's Energy Innovation Hubs are helping to advance promising areas of energy science and engineering from the earliest stages of research to the point of commercialization where technologies can move to the private sector by bringing together leadings scientists to collaborate on critical energy challenges. The Energy Innovation Hubs aim to develop innovation through a unique

144

Software: Reactor Physics and Fuel Cycle Analysis - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis > Analysis > Software Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Overview Current Projects Software Nuclear Plant Dynamics and Safety Nuclear Data Program Advanced Reactor Development Nuclear Waste Form and Repository Performance Modeling Nuclear Energy Systems Design and Development Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Reactor Physics and Fuel Cycle Analysis Software Bookmark and Share An extensive powerful suite of computer codes developed and validated by the NE Division and its predecessor divisions at Argonne supports the development of fast reactors; many of these codes are also applicable to other reactor types. A brief description of these codes follows. Contact

145

Advanced Nuclear Fuels  

Science Conference Proceedings (OSTI)

Oct 19, 2010 ... The United States Department of Energy has defined an approach to energy security that includes sustainable nuclear energy. To achieve ...

146

METHOD OF OPERATING NUCLEAR REACTORS  

DOE Patents (OSTI)

A method is presented for obtaining enhanced utilization of natural uranium in heavy water moderated nuclear reactors by charging the reactor with an equal number of fuel elements formed of natural uranium and of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction. The reactor is operated until the rate of burnup of plutonium equals its rate of production, the fuel elements are processed to recover plutonium, the depleted uranium is discarded, and the remaining uranium is formed into fuel elements. These fuel elements are charged into a reactor along with an equal number of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction, and reuse of the uranium is continued as aforesaid until it wlll no longer support a chain reaction when combined with an equal quantity of natural uranium.

Untermyer, S.

1958-10-14T23:59:59.000Z

147

Performance and safety design of the advanced liquid metal reactor  

SciTech Connect

The Advanced Liquid Metal Reactor (ALMR) program led by General Electric is developing, under U.S. Department of Energy sponsorship, a conceptual design for an advanced sodium-cooled liquid metal reactor plant. This design is intended to improve the already excellent level of plant safety achieved by the nuclear power industry while at the same time providing significant reductions in plant construction and operating costs. In this paper, the plant design and performance are reviewed, with emphasis on the ALMR's unique passive design safety features and its capability to utilize as fuel the actinides in LWR spent fuel.

Berglund, R.C.; Magee, P.M.; Boardman, C.E.; Gyorey, G.L. (General Electric Co., San Jose, CA (United States). Advanced Nuclear Technology)

1991-01-01T23:59:59.000Z

148

Partnerships Help Advance Small Modular Reactor Technology |...  

NLE Websites -- All DOE Office Websites (Extended Search)

March 5, 2012 - 12:00pm Addthis WASHINGTON, D.C. - DOE recently announced three public-private partnerships to develop deployment plans for small modular nuclear reactor (SMR)...

149

Advanced Burner Test Reactor - Preconceptual Design Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Burner Test Reactor Preconceptual Design Report ANL-ABR-1 (ANL-AFCI-173) Nuclear Engineering Division Disclaimer This report was prepared as an account of work sponsored by an...

150

March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The Global Nuclear Energy Partnership (GNEP) marks a major change in the direction of the DOE's nuclear energy R&D program. It is a coherent plan to test technologies that promise to markedly reduce the problem of nuclear waste treatment and to reduce the proliferation risk in a world with a greatly expanded nuclear power program. It brings the U.S. program into much closer alignment with that of the other major nuclear energy states. GNEP proposes to take spent fuel from existing light water reactors (LWRs),

151

Economic analysis of nuclear reactors  

SciTech Connect

The report presents several methods for estimating the power costs of nuclear reactors. When based on a consistent set of economic assumptions, total power costs may be useful in comparing reactor alternatives. The principal items contributing to the total power costs of a nuclear power plant are: (1) capital costs, (2) fuel cycle costs, (3) operation and maintenance costs, and (4) income taxes and fixed charges. There is a large variation in capital costs and fuel expenses among different reactor types. For example, the standard once-through LWR has relatively low capital costs; however, the fuel costs may be very high if U/sub 3/O/sub 8/ is expensive. In contrast, the FBR has relatively high capital costs but low fuel expenses. Thus, the distribution of expenses varies significantly between these two reactors. In order to compare power costs, expenses and revenues associated with each reactor may be spread over the lifetime of the plant. A single annual cost, often called a levelized cost, may be obtained by the methods described. Levelized power costs may then be used as a basis for economic comparisons. The paper discusses each of the power cost components. An exact expression for total levelized power costs is derived. Approximate techniques of estimating power costs will be presented.

Owen, P.S.; Parker, M.B.; Omberg, R.P.

1979-05-01T23:59:59.000Z

152

Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Risk Informed Safety Margin Characterization (RISMC) Advanced Test Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC)

153

Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(RISMC) Advanced Test (RISMC) Advanced Test Reactor Demonstration Case Study Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for

154

Advances in Tandem Mirror fusion power reactors  

DOE Green Energy (OSTI)

The Tandem Mirror exhibits several distinctive features which make the reactor embodiment of the principle very attractive: Simple low-technology linear central cell; steady-state operation; high-..beta.. operation; no driven current or disruptions; divertorless operation; direction conversion of end-loss power; low-surface heat loads; and advanced fusion fuel capability. In this paper, we examine these features in connection with two tandem mirror reactor designs, MARS and MINIMARS, and several advanced reactor concepts including the wall-stabilized reactor and the field-reversed mirror. With a novel compact end plug scheme employing octopole stabilization, MINIMARS is expressly designed for short construction times, factory-built modules, and a small (600 MWe) but economic reactor size. We have also configured the design for low radioactive afterheat and inherent/passive safety under LOCA/LOFA conditions, thereby obviating the need for expensive engineered safety systems. In contrast to the complex and expensive double-quadrupole end-cell of the MARS reactor, the compact octopole end-cell of MINIMARS enables ignition to be achieved with much shorter central cell lengths and considerably improves the economy of scale for small (approx.250 to 600 MWe) tandem mirror reactors. Finally, we examine the prospects for realizing the ultimate potential of the tandem mirror with regard to both innovative configurations and novel neutron energy conversion schemes, and stress that advanced fuel applications could exploit its unique reactor features.

Perkins, L.J.; Logan, B.G.

1986-05-20T23:59:59.000Z

155

Propellant actuated nuclear reactor steam depressurization valve  

DOE Patents (OSTI)

A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

Ehrke, Alan C. (San Jose, CA); Knepp, John B. (San Jose, CA); Skoda, George I. (Santa Clara, CA)

1992-01-01T23:59:59.000Z

156

Reactors for nuclear electric propulsion  

SciTech Connect

Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

Buden, D.; Angelo, J.A. Jr.

1981-01-01T23:59:59.000Z

157

FUEL ELEMENT FOR NUCLEAR REACTORS  

DOE Patents (OSTI)

A fuel element particularly adapted for use in nuclear reactors of high power density is offered. It has fissionable fuel pellet segments mounted in a tubular housing and defining a central passage in the fuel element. A burnable poison element extends through the central passage, which is designed to contain more poison material at the median portion than at the end portions thereby providing a more uniform hurnup and longer reactivity life.

Bassett, C.H.

1961-05-16T23:59:59.000Z

158

Flow duct for nuclear reactors  

DOE Patents (OSTI)

Improved liquid sodium flow ducts for nuclear reactors are described wherein the improvement comprises varying the wall thickness of each of the walls of a polygonal tubular duct structure so that each of the walls is of reduced cross-section along the longitudinal center line and of a greater cross-section along wall junctions with the other walls to form the polygonal tubular configuration.

Straalsund, Jerry L. (Richland, WA)

1978-01-01T23:59:59.000Z

159

NUCLEAR REACTOR COMPENENT CLADDING MATERIAL  

DOE Patents (OSTI)

Fuel elements and coolant tubes used in nuclear reactors of the heterogeneous, water-cooled type are described, wherein the coolant tubes extend through the moderator and are adapted to contain the fuel elements. The invention comprises forming the coolant tubes and the fuel element cladding material from an alloy of aluminum and nickel, or an alloy of aluminum, nickel, alloys are selected to prevent intergranular corrosion of these components by water at temperatures up to 35O deg C.

Draley, J.E.; Ruther, W.E.

1959-01-27T23:59:59.000Z

160

The Consortium for Advanced Simulation of Light Water Reactors  

SciTech Connect

The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

Ronaldo Szilard; Hongbin Zhang; Doug Kothe; Paul Turinsky

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report of Report of ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE 24 October 2003 BURTON RICHTER, CHAIR DARLEANE C. HOFFMAN SEKAZI K. MTINGWA RONALD P. OMBERG SILVIE PILLON JOY L. REMPE I. INTRODUCTION AND SUMMARY The committee met in Washington on September 16 and 17 to review progress in the program with respect to a changed set of mission priorities. Our last meeting took place in December 2002 after the reorganization that had placed the Advanced Fuel Cycle Initiative (AFCI) and the GEN IV program together in the Advanced Nuclear Research Office (AN-20). Since mission priorities have been evolving, the committee felt that it should wait until they have settled down before we met again. We have kept in touch

162

Code qualification of structural materials for AFCI advanced recycling reactors.  

Science Conference Proceedings (OSTI)

This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Code Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP) and the Power Reactor Innovative Small Module (PRISM), the NRC/Advisory Committee on Reactor Safeguards (ACRS) raised numerous safety-related issues regarding elevated-temperature structural integrity criteria. Most of these issues remained unresolved today. These critical licensing reviews provide a basis for the evaluation of underlying technical issues for future advanced sodium-cooled reactors. Major materials performance issues and high temperature design methodology issues pertinent to the ARR are addressed in the report. The report is organized as follows: the ARR reference design concepts proposed by the Argonne National Laboratory and four industrial consortia were reviewed first, followed by a summary of the major code qualification and licensing issues for the ARR structural materials. The available database is presented for the ASME Code-qualified structural alloys (e.g. 304, 316 stainless steels, 2.25Cr-1Mo, and mod.9Cr-1Mo), including physical properties, tensile properties, impact properties and fracture toughness, creep, fatigue, creep-fatigue interaction, microstructural stability during long-term thermal aging, material degradation in sodium environments and effects of neutron irradiation for both base metals and weld metals. An assessment of modified versions of Type 316 SS, i.e. Type 316LN and its Japanese version, 316FR, was conducted to provide a perspective for codification of 316LN or 316FR in Subsection NH. Current status and data availability of four new advanced alloys, i.e. NF616, NF616+TMT, NF709, and HT-UPS, are also addressed to identify the R&D needs for their code qualification for ARR applications. For both conventional and new alloys, issues related to high temperature design methodology are described to address the needs for improvements for the ARR design and licensing. Assessments have shown that there are significant data gaps for the full qualification and licensing of the ARR structural materials. Development and evaluation of structural materials require a variety of experimental facilities that have been seriously degraded

Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L. (Nuclear Engineering Division); (ORNL)

2012-05-31T23:59:59.000Z

163

Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee...

164

Reactivity control assembly for nuclear reactor  

DOE Patents (OSTI)

Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.

Bollinger, Lawrence R. (Schenectady, NY)

1984-01-01T23:59:59.000Z

165

October 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, Report of the ADVANCED NUCLEAR TRANSFORMATION 6, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE October 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The Global Nuclear Energy Partnership (GNEP) program is still evolving. Since our report of March 22, 2006 the DOE has sought to gauge industry interest in participation in the program from its very beginning. At the time the ANTT committee met, August 30- 31, 2006, responses had not yet been received from industry to the DOE's request for Expressions of Interest. This report is based on the assumption that the program outlined recently, which does not include an Advanced Burner Test Reactor, is what

166

ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor (SFR) * Gas-Cooled Fast Reactor (GFR) * Lead-Bismuth-Cooled Fast Reactor (LFR) * Molten Salt Reactor (MSR). While the international community will study all six concepts,...

167

Electric Power Produced from Nuclear Reactor | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Power Produced from Nuclear Reactor | National Nuclear Security Electric Power Produced from Nuclear Reactor | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Electric Power Produced from Nuclear Reactor Electric Power Produced from Nuclear Reactor December 20, 1951 Arco, ID Electric Power Produced from Nuclear Reactor

168

The DOE Advanced Gas Reactor Fuel Development and Qualification Program  

Science Conference Proceedings (OSTI)

The high outlet temperatures and high thermal-energy conversion efficiency of modular High Temperature Gas-cooled Reactors (HTGRs) enable an efficient and cost effective integration of the reactor system with non-electricity generation applications, such as process heat and/or hydrogen production, for the many petrochemical and other industrial processes that require temperatures between 300°C and 900°C. The Department of Energy (DOE) has selected the HTGR concept for the Next Generation Nuclear Plant (NGNP) Project as a transformative application of nuclear energy that will demonstrate emissions-free nuclear-assisted electricity, process heat, and hydrogen production, thereby reducing greenhouse-gas emissions and enhancing energy security. The objective of the DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification program is to qualify tristructural isotropic (TRISO)-coated particle fuel for use in HTGRs. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission-product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete, fundamental understanding of the relationship between the fuel fabrication process and key fuel properties, the irradiation and accident safety performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. An overview of the program and recent progress is presented.

David Petti

2010-09-01T23:59:59.000Z

169

FUEL ELEMENT FOR NUCLEAR REACTORS  

DOE Patents (OSTI)

A nuclear reactor fuel element comprising high density ceramic fissionable material enclosed in a tubular cladding of corrosion-resistant material is described. The fissionable material is in the form of segments of a tube which have cooperating tapered interfaces which produce outward radial displacement when the segments are urged axially together. A resilient means is provided within the tubular housing to constantly urge the fuel segments axially. This design maintains the fuel material in tight contacting engagement against the inner surface of the outer cladding tube to eliminate any gap therebetween which may be caused by differential thermal expansion between the fuel material and the material of the tube.

Bassett, C.H.

1961-05-01T23:59:59.000Z

170

University Program in Advanced Technology | National Nuclear...  

National Nuclear Security Administration (NNSA)

University Program in Advanced Technology | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

171

Advanced Gas Reactor Fuel Program's TRISO Particle Fuel Sets A New World  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Gas Reactor Fuel Program's TRISO Particle Fuel Sets A New Advanced Gas Reactor Fuel Program's TRISO Particle Fuel Sets A New World Record For Irradiation Performance Advanced Gas Reactor Fuel Program's TRISO Particle Fuel Sets A New World Record For Irradiation Performance November 16, 2009 - 1:12pm Addthis As part of the Office of Nuclear Energy's Next Generation Nuclear Plant (NGNP) Program, the Advanced Gas Reactor (AGR) Fuel Development Program has achieved a new international record for irradiation testing of next-generation particle fuel for use in high temperature gas reactors (HTGRs). The AGR Fuel Development Program was initiated by the Department of Energy in 2002 to develop the advanced fabrication and characterization technologies, and provide irradiation and safety performance data required to license TRISO particle fuel for the NGNP and future HTGRs. The AGR

172

Advanced LWR Fuel Testing Capabilities in the ORNL High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

A new test capability for the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) is being developed that will allow testing of advanced nuclear fuels and cladding materials under prototypic light-water reactor (LWR) operating conditions in less time than it takes in other research reactors. This paper will describe the HFIR testing capabilities, the new advanced fuel/cladding testing facilities, and the initial cooperative irradiation experiments currently planned to start in late 2008.

Ott, Larry J [ORNL; McDuffee, Joel Lee [ORNL; Spellman, Donald J [ORNL

2008-01-01T23:59:59.000Z

173

Achievements: Nuclear Reactors designed/built by Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Achievements > Argonne National Laboratory Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

174

Reactors: Modern-Day Alchemy - Argonne's Nuclear Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Achievements > Legacy > Reactors: Modern-Day Alchemy About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

175

Development of advanced strain diagnostic techniques for reactor environments.  

SciTech Connect

The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

2013-02-01T23:59:59.000Z

176

Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

2011-08-01T23:59:59.000Z

177

Simulated nuclear reactor fuel assembly  

DOE Patents (OSTI)

An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

Berta, Victor T. (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

178

Nuclear reactor characteristics and operational history  

Gasoline and Diesel Fuel Update (EIA)

Nuclear > U.S. reactor operation status tables Nuclear > U.S. reactor operation status tables Nuclear Reactor Operational Status Tables Release date: November 22, 2011 Next release date: November 2012 See also: Table 1. Capacity and Generation, Table 2. Ownership Data Table 3. Nuclear Reactor Characteristics and Operational History PDF XLS Plant Name Generator ID Type Reactor Supplier and Model Construction Start Grid Connection Original Expiration Date License Renewal Application License Renewal Issued Extended Expiration Arkansas Nuclear One 1 PWR Babcock&Wilcox, Lower Loop 10/1/1968 8/17/1974 5/20/2014 2/1/2000 6/20/2001 5/20/2034 Arkansas Nuclear One 2 PWR Combustion Eng. 7/1/1971 12/26/1978 7/17/2018 10/15/2003 6/30/2005 7/17/2038

179

Nuclear reactor characteristics and operational history  

U.S. Energy Information Administration (EIA) Indexed Site

Nuclear > U.S. reactor operation status tables Nuclear > U.S. reactor operation status tables Nuclear Reactor Operational Status Tables Release date: November 22, 2011 Next release date: November 2012 See also: Table 2. Ownership Data, Table 3. Characteristics and Operational History Table 1. Nuclear Reactor, State, Type, Net Capacity, Generation, and Capacity Factor PDF XLS Plant/Reactor Name Generator ID State Type 2009 Summer Capacity Net MW(e)1 2010 Annual Generation Net MWh2 Capacity Factor Percent3 Arkansas Nuclear One 1 AR PWR 842 6,607,090 90 Arkansas Nuclear One 2 AR PWR 993 8,415,588 97 Beaver Valley 1 PA PWR 892 7,119,413 91 Beaver Valley 2 PA PWR 885 7,874,151 102 Braidwood Generation Station 1 IL PWR 1,178 9,196,689 89

180

Licensed reactor nuclear safety criteria applicable to DOE reactors  

SciTech Connect

The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC (Nuclear Regulatory Commission) licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor.

Not Available

1991-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nuclear Energy Enabling Technologies (NEET) Reactor Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enabling Technologies (NEET) Reactor Materials Enabling Technologies (NEET) Reactor Materials Award Recipient Estimated Award Amount* Award Location Supporting Organizations Project Description University of Nebraska $979,978 Lincoln, NE Massachusetts Institute of Technology (Cambridge, MA), Texas A&M (College Station, TX) Project will explore the development of advanced metal/ceramic composites. These improvements could lead to more efficient production of electricity in advanced reactors. Oak Ridge National Laboratory $849,000 Oak Ridge, TN University of Wisconsin-Madison (Madison, WI) Project will develop novel high-temperature high-strength steels with the help of computational modeling, which could lead to increased efficiency in advanced reactors. Pacific Northwest National Laboratory

182

Proliferation Resistant Nuclear Reactor Fuel  

Science Conference Proceedings (OSTI)

Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and we posit that the exploration, development, and implementation of intrinsic mechanisms such as discussed here are part of a balanced approach aimed at preventing the misuse of nuclear material for nuclear-energy applications.

Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

2011-02-18T23:59:59.000Z

183

Sterile Neutrino Search Using China Advanced Research Reactor  

E-Print Network (OSTI)

We study the feasibility of a sterile neutrino search at the China Advanced Research Reactor by measuring $\\bar {\

Guo, Gang; Ji, Xiangdong; Liu, Jianglai; Xi, Zhaoxu; Zhang, Huanqiao

2013-01-01T23:59:59.000Z

184

Licensed reactor nuclear safety criteria applicable to DOE reactors  

SciTech Connect

This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards.

Not Available

1993-11-01T23:59:59.000Z

185

Nuclear Reactor Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Technologies Reactor Technologies Nuclear Reactor Technologies TVA Watts Bar Nuclear Power Plant | Photo courtesy of Tennessee Valley Authority TVA Watts Bar Nuclear Power Plant | Photo courtesy of Tennessee Valley Authority Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Small Modular Reactor Technologies Small modular reactors can also be made in factories and transported to sites where they would be ready to "plug and play" upon arrival, reducing both capital costs and construction times. The smaller size also makes these reactors ideal for small electric grids and for locations that

186

Johnson Noise Thermometry for Advanced Small Modular Reactors  

Science Conference Proceedings (OSTI)

Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor’s physical condition. In and near the core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurement due to their fundamental natures. Small Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of the current ORNL-led project, conducted under the Instrumentation, Controls, and Human-Machine Interface (ICHMI) research pathway of the U.S. Department of Energy (DOE) Advanced SMR Research and Development (R&D) program, is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.

Britton, C.L.,Jr.; Roberts, M.; Bull, N.D.; Holcomb, D.E.; Wood, R.T.

2012-09-15T23:59:59.000Z

187

Small Modular Nuclear Reactors | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Technologies » Small Modular Reactor Technologies » Small Modular Nuclear Reactors Small Modular Nuclear Reactors Cutaway of 2-Unit Generation mPower SMR Installation. | © 2012 Generation mPower LLC. All Rights Reserved. Reprinted with permission. Cutaway of 2-Unit Generation mPower SMR Installation. | © 2012 Generation mPower LLC. All Rights Reserved. Reprinted with permission. The development of clean, affordable nuclear power options is a key element of the Department of Energy's Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. Begun

188

Technology gap analysis on sodium-cooled reactor fuel handling system supporting advanced burner reactor development.  

Science Conference Proceedings (OSTI)

The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integral fast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fast reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphenix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fuel transportation cask, ex-vessel sodium-cooled storage, and cleaning stations-have accumulated satisfactory construction and operation experiences. In addition, two special issues for future development are described in this report: large capacity interim storage and transuranic-bearing fuel handling.

Chikazawa, Y.; Farmer, M.; Grandy, C.; Nuclear Engineering Division

2009-03-01T23:59:59.000Z

189

Updated comparison of economics of fusion reactors with advanced fission reactors  

Science Conference Proceedings (OSTI)

The projected cost of electricity (COE) for fusion is compared with that from current and advanced nuclear fission and coal-fired plants. Fusion cost models were adjusted for consistency with advanced fission plants and the calculational methodology and cost factors follow guidelines recommended for cost comparisons of advanced fission reactors. The results show COEs of about 59--74 mills/kWh for the fusion designs considered. In comparison, COEs for future fission reactors are estimated to be in the 43--54 mills/kWh range with coal-fired plant COEs of about 53--69 mills/kWh ($2--3/GJ coal). The principal cost driver for the fusion plants relative to fission plants is the fusion island cost. Although the estimated COEs for fusion are greater than those for fission or coal, the costs are not so high as to preclude fusion's competitiveness as a safe and environmentally sound alternative.

Delene, J.G.

1990-01-01T23:59:59.000Z

190

Nuclear reactor characteristics and operational history  

Gasoline and Diesel Fuel Update (EIA)

1. Capacity and Generation, Table 3. Characteristics and Operational History 1. Capacity and Generation, Table 3. Characteristics and Operational History Table 2. U.S. Nuclear Reactor Ownership Data PDF XLS Plant/Reactor Name Generator ID Utility Name - Operator Owner Name % Owned Arkansas Nuclear One 1 Entergy Arkansas Inc Entergy Arkansas Inc 100 Arkansas Nuclear One 2 Entergy Arkansas Inc Entergy Arkansas Inc 100 Beaver Valley 1 FirstEnergy Nuclear Operating Company FirstEnergy Nuclear Generation Corp 100 Beaver Valley 2 FirstEnergy Nuclear Operating Company FirstEnergy Nuclear Generation Corp 100 Braidwood Generation Station 1 Exelon Nuclear Exelon Nuclear 100 Braidwood Generation Station 2 Exelon Nuclear Exelon Nuclear 100 Browns Ferry 1 Tennessee Valley Authority Tennessee Valley Authority 100

191

NUCLEAR REACTOR FUEL ELEMENT ASSEMBLY  

DOE Patents (OSTI)

A method of fabricating nuclear reactor fuel element assemblies having a plurality of longitudinally extending flat fuel elements in spaced parallel relation to each other to form channels is presented. One side of a flat side plate is held contiguous to the ends of the elements and a welding means is passed along the other side of the platertransverse to the direction of the longitudinal extension of the elements. The setting and speed of travel of the welding means is set to cause penetration of the side plate with welds at bridge the gap in each channel between adjacent fuel elements with a weld-through bubble of predetermined size. The fabrication of a high strength, dependable fuel element is provided, and the reduction of distortion and high production costs are facilitated by this method. (AEC)

Stengel, F.G.

1963-12-24T23:59:59.000Z

192

Nuclear reactor control apparatus. [FBR  

DOE Patents (OSTI)

Nuclear reactor safety rod release apparatus comprises a ring which carries detents normally positioned in an annular recess in outer side of the rod, the ring being held against the lower end of a drive shaft by magnetic force exerted by a solenoid carried by the drive shaft. When the solenoid is de-energized, the detent-carrying ring drops until the detents contact a cam surface associated with the lower end of the drive shaft, at which point the detents are cammed out of the recess in the safety rod to release the rod from the drive shaft. In preferred embodiments of the invention, an additional latch is provided to release a lower portion of a safety rod under conditions that may interfere with movement of the entire rod.

Sridhar, B.N.

1981-04-16T23:59:59.000Z

193

Nuclear reactor composite fuel assembly  

DOE Patents (OSTI)

A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

Burgess, Donn M. (Richland, WA); Marr, Duane R. (West Richland, WA); Cappiello, Michael W. (Richland, WA); Omberg, Ronald P. (Richland, WA)

1980-01-01T23:59:59.000Z

194

Digital computer operation of a nuclear reactor  

DOE Patents (OSTI)

A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

Colley, R.W.

1982-06-29T23:59:59.000Z

195

Liquid metal cooled nuclear reactor plant system  

DOE Patents (OSTI)

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1993-01-01T23:59:59.000Z

196

Digital computer operation of a nuclear reactor  

DOE Patents (OSTI)

A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

Colley, Robert W. (Richland, WA)

1984-01-01T23:59:59.000Z

197

Mirror Advanced Reactor Study interim design report  

DOE Green Energy (OSTI)

The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

Not Available

1983-04-01T23:59:59.000Z

198

Safer nuclear reactors could result from Los Alamos research  

NLE Websites -- All DOE Office Websites (Extended Search)

Calendar Video Newsroom News Releases News Releases - 2010 March Safer nuclear reactors could result from research Safer nuclear reactors could result from Los...

199

Advanced Nuclear Fuel Cycles -- Main Challenges and Strategic Choices  

Science Conference Proceedings (OSTI)

This report presents the results of a critical review of the technological challenges to the growth of nuclear energy, emerging advanced technologies that would have to be deployed, and fuel cycle strategies that could conceivably involve interim storage, plutonium recycling in thermal and fast reactors, reprocessed uranium recycling, and transmutation of minor actinide elements and fission products before eventual disposal of residual wastes.

2010-09-02T23:59:59.000Z

200

Capabilities listed by Department: Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Executive Bio Research & Test Reactor Advanced Reactor Development Decontamination and Decommissioning Heat Transfer and fluid Mechanics International Nuclear Safety Reactor...

Note: This page contains sample records for the topic "advanced nuclear reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

New Fuel Cycle and Fuel Management Options in Heavy Liquid Metal-Cooled Reactors  

Science Conference Proceedings (OSTI)

Technical Paper / Advances in Nuclear Fuel Management - Fuel Management of Reactors Other Than Light Water Reactors

Ehud Greenspan; Pavel Hejzlar; Hiroshi Sekimoto; Georgy Toshinsky; David Wade

202

Feasibility of Burning First- and Second-Generation Plutonium in Pebble Bed High-Temperature Reactors  

Science Conference Proceedings (OSTI)

Technical Paper / Advances in Nuclear Fuel Management - Fuel Management of Reactors Other Than Light Water Reactors

J. B. M. De Haas; J. C. Kuijper

203

Reactor Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Fuel Cycle Science & Technology Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation...

204

Gas-cooled nuclear reactor  

DOE Patents (OSTI)

A gas-cooled nuclear reactor includes a central core located in the lower portion of a prestressed concrete reactor vessel. Primary coolant gas flows upward through the core and into four overlying heat-exchangers wherein stream is generated. During normal operation, the return flow of coolant is between the core and the vessel sidewall to a pair of motor-driven circulators located at about the bottom of the concrete pressure vessel. The circulators repressurize the gas coolant and return it back to the core through passageways in the underlying core structure. If during emergency conditions the primary circulators are no longer functioning, the decay heat is effectively removed from the core by means of natural convection circulation. The hot gas rising through the core exits the top of the shroud of the heat-exchangers and flows radially outward to the sidewall of the concrete pressure vessel. A metal liner covers the entire inside concrete surfaces of the concrete pressure vessel, and cooling tubes are welded to the exterior or concrete side of the metal liner. The gas coolant is in direct contact with the interior surface of the metal liner and transfers its heat through the metal liner to the liquid coolant flowing through the cooling tubes. The cooler gas is more dense and creates a downward convection flow in the region between the core and the sidewall until it reaches the bottom of the concrete pressure vessel when it flows radially inward and up into the core for another pass. Water is forced to flow through the cooling tubes to absorb heat from the core at a sufficient rate to remove enough of the decay heat created in the core to prevent overheating of the core or the vessel.

Peinado, Charles O. (La Jolla, CA); Koutz, Stanley L. (San Diego, CA)

1985-01-01T23:59:59.000Z

205

Current Status of the Advanced High Temperature Reactor  

SciTech Connect

The Advanced High Temperature Reactor (AHTR) is a design concept for a central station type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently under development by Oak Ridge National Laboratory for the U. S. Department of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR design option exploration is a multidisciplinary design effort that combines core neutronic and fuel configuration evaluation with structural, thermal, and hydraulic analysis to produce a reactor and vessel concept and place it within a power generation station. The AHTR design remains at the notional level of maturity, as key technologies require further development and a logically complete integrated design has not been finalized. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated.

Holcomb, David Eugene [ORNL; Ilas, Dan [ORNL; Qualls, A L [ORNL; Peretz, Fred J [ORNL; Varma, Venugopal Koikal [ORNL; Bradley, Eric Craig [ORNL; Cisneros, Anselmo T. [University of California, Berkeley

2012-01-01T23:59:59.000Z

206

Johnson Noise Thermometry for Advanced Small Modular Reactors  

SciTech Connect

Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor s physical condition. In and near core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurement due to their fundamental natures. Small, Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of this project is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.

Britton Jr, Charles L [ORNL; Roberts, Michael [ORNL; Bull, Nora D [ORNL; Holcomb, David Eugene [ORNL; Wood, Richard Thomas [ORNL

2012-10-01T23:59:59.000Z

207

Fast-acting nuclear reactor control device  

DOE Patents (OSTI)

A fast-acting nuclear reactor control device for moving and positioning a fety control rod to desired positions within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump/motor, an electric gear motor, and solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.

Kotlyar, Oleg M. (Idaho Falls, ID); West, Phillip B. (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

208

Shutdown system for a nuclear reactor  

DOE Patents (OSTI)

An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion. 8 figs.

Groh, E.F.; Olson, A.P.; Wade, D.C.; Robinson, B.W.

1984-06-05T23:59:59.000Z

209

Shutdown system for a nuclear reactor  

DOE Patents (OSTI)

An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion.

Groh, Edward F. (Naperville, IL); Olson, Arne P. (Western Springs, IL); Wade, David C. (Naperville, IL); Robinson, Bryan W. (Oak Lawn, IL)

1984-01-01T23:59:59.000Z

210

Shutdown system for a nuclear reactor  

DOE Patents (OSTI)

An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion.

Groh, E.F.; Olson, A.P.; Wade, D.C.; Robinson, B.W.

1982-01-20T23:59:59.000Z

211

Advanced nuclear plant control complex  

DOE Patents (OSTI)

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

212

Advanced Test Reactor National Scientific User Facility Partnerships  

SciTech Connect

In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin-Madison; (8) Illinois Institute of Technology (IIT) Materials Research Collaborative Access Team (MRCAT) beamline at Argonne National Laboratory's Advanced Photon Source; and (9) Nanoindenter in the University of California at Berkeley (UCB) Nuclear Engineering laboratory Materials have been analyzed for ATR NSUF users at the Advanced Photon Source at the MRCAT beam, the NIST Center for Neutron Research in Gaithersburg, MD, the Los Alamos Neutron Science Center, and the SHaRE user facility at Oak Ridge National Laboratory (ORNL). Additionally, ORNL has been accepted as a partner facility to enable ATR NSUF users to access the facilities at the High Flux Isotope Reactor and related facilities.

Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

2012-03-01T23:59:59.000Z

213

Nuclear propulsion apparatus with alternate reactor segments  

DOE Patents (OSTI)

1. Nuclear propulsion apparatus comprising: A. means for compressing incoming air; B. nuclear fission reactor means for heating said air; C. means for expanding a portion of the heated air to drive said compressing means; D. said nuclear fission reactor means being divided into a plurality of radially extending segments; E. means for directing a portion of the compressed air for heating through alternate segments of said reactor means and another portion of the compressed air for heating through the remaining segments of said reactor means; and F. means for further expanding the heated air from said drive means and the remaining heated air from said reactor means through nozzle means to effect reactive thrust on said apparatus.

Szekely, Thomas (Santa Monica, CA)

1979-04-03T23:59:59.000Z

214

ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS  

SciTech Connect

Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement, and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using factory prefabricated structural modules, for application to external event shell and base isolated structures.

E. Blanford; E. Keldrauk; M. Laufer; M. Mieler; J. Wei; B. Stojadinovic; P.F. Peterson

2010-09-20T23:59:59.000Z

215

Large Scale Weather Control Using Nuclear Reactors  

E-Print Network (OSTI)

It is pointed out that controlled release of thermal energy from fission type nuclear reactors can be used to alter weather patterns over significantly large geographical regions. (1) Nuclear heat creates a low pressure region, which can be used to draw moist air from oceans, onto deserts. (2) Creation of low pressure zones over oceans using Nuclear heat can lead to Controlled Cyclone Creation (CCC).(3) Nuclear heat can also be used to melt glaciers and control water flow in rivers.

Moninder Singh Modgil

2002-10-02T23:59:59.000Z

216

Structural Materials in Advanced Nuclear Energy Systems  

Science Conference Proceedings (OSTI)

Apr 28, 2008 ... Structural Materials in Advanced Nuclear Energy Systems: The Need for ... of functionalized interfaces for optimization of materials properties.

217

Nuclear reactor shield including magnesium oxide  

DOE Patents (OSTI)

An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

Rouse, Carl A. (Del Mar, CA); Simnad, Massoud T. (La Jolla, CA)

1981-01-01T23:59:59.000Z

218

Fuel handling apparatus for a nuclear reactor  

DOE Patents (OSTI)

Fuel handling apparatus for transporting fuel elements into and out of a nuclear reactor and transporting them within the reactor vessel extends through a penetration in the side of the reactor vessel. A lateral transport device carries the fuel elements laterally within the vessel and through the opening in the side of the vessel, and a reversible lifting device raises and lowers the fuel elements. In the preferred embodiment, the lifting device is supported by a pair of pivot arms.

Hawke, Basil C. (Solana Beach, CA)

1987-01-01T23:59:59.000Z

219

Today and Future Neutrino Experiments at Krasnoyarsk Nuclear Reactor  

E-Print Network (OSTI)

The results of undergoing experiments and new experiment propositions at Krasnoyarsk underground nuclear reactor are presented

Yu. V. Kozlov; S. V. Khalturtsev; I. N. Machulin; A. V. Martemyanov; V. P. Martemyanov; A. A. Sabelnikov; V. G. Tarasenkov; E. V. Turbin; V. N. Vyrodov; L. A. Popeko; A. V. Cherny; G. A. Shishkina

1999-12-21T23:59:59.000Z

220

AdvAnced  

NLE Websites -- All DOE Office Websites (Extended Search)

AdvAnced test reActor At the InL advanced Unlike large, commercial power reactors, ATR is a low- temperature, low-pressure reactor. A nuclear reactor is basically an elaborate tool...

Note: This page contains sample records for the topic "advanced nuclear reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Dynamic detection of nuclear reactor core incident  

Science Conference Proceedings (OSTI)

Surveillance, safety and security of evolving systems are a challenge to prevent accident. The dynamic detection of a hypothetical and theoretical blockage incident in the Phenix nuclear reactor is investigated. Such an incident is characterized by abnormal ... Keywords: Contrast, Dynamic detection of perturbations, Evolving system, Fast-neutron reactor, Neighbourhood, Noise

Laurent Hartert; Danielle Nuzillard; Jean-Philippe Jeannot

2013-02-01T23:59:59.000Z

222

MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR  

DOE Patents (OSTI)

This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

Balent, R.

1963-03-12T23:59:59.000Z

223

Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel, Progress Report for Work through August 31, 2002, First Annual/4th Quarterly Report  

SciTech Connect

OAK B204 The objective of this Nuclear Energy Research Initiative (NERI) project is to design, perform, and analyze critical benchmark experiments for validating reactor physics methods and models for fuel enrichments greater than 5-wt% 235U. These experiments will also provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5-wt% 235U fuel. These experiments are designed as reactor physics benchmarks, to include measurements of critical boron concentration, burnable absorber worth, relative pin powers, and relative average powers.The first year focused primarily on designing the experiments using available fuel, preparing the necessary plans, procedures and authorization basis for performing the experiments, and preparing for the transportation, receipt and storage of the Pathfinder fuel currently stored at Pennsylvania State University.Framatome ANP, Inc. leads the project with the collaboration of Oak Ridge National Laboratory (ORNL), Sandia National Laboratories (SNL), and the University of Florida (UF). The project is organized into 5 tasks:Task 1: Framatome ANP, Inc., ORNL, and SNL will design the specific experiments, establish the safety authorization, and obtain approvals to perform these experiments at the SNL facility. ORNL will apply their sensitivity/uncertainty methodology to verify the need for particular experiments and the parameters that these experiments need to explore.Task 2: Framatome ANP, Inc., ORNL, and UF will analyze the proposed experiments using a variety of reactor-physics methods employed in the nuclear industry. These analyses will support the operation of the experiments by predicting the expected experimental values for the criticality and physics parameters.Task 3: This task encompasses the experiments to be performed. The Pathfinder fuel will be transported from Penn State to SNL for use in the experiments. The experiments will be performed and the hardware will be decontaminated and decommissioned.Task 4: Framatome ANP, Inc., ORNL, and UF will analyze the experiments and compare calculated values of physics parameters for the experiments with the measured values. Potential sources of differences will be sought between calculated physics parameter values and the experimental values. The results of all analyses will be documented.Task 5: UF and Framatome ANP, Inc. will evaluate typical fuel-processing operations to establish the limits and restrictions required for fabricating higher-enriched fuel.Work in Year 1 included completion of Task 1 and the licensing of a transportation cask under Task 5. This work entailed a number of milestones accomplished in Year 1. These include:?h Issuance of the Preliminary Design Report in February 2002?h Completion of the Sensitivity and Uncertainty Analysis in May 2002?h Completion of the Final Design Report in June 2002?h Submittal of the NRC license application for the transportation package in May 2002.This first year was a year of successes as all deliverables were met on time and the project completed the year within the budget.In Year 2, the project moves into a manufacturing and application phase. Year 2 includes successful completion of the licensing process for the transportation package and transportation of the fuel from Pennsylvania State University to Sandia National Laboratories in Albuquerque, New Mexico. Also, Year 2 includes the fabrication of the fuel into smaller aluminum cladding. Once the fuel is ready and the necessary approvals are in place, the experiments will end; begin following the design presented in the Final Design Report. Although Year 2 will be primarily ''hand's on'' fabrication and handling work, the analytical work will continue on the experiments and the generic fuel processing facility.

Anderson, William J.; Ake, Timothy N.; Punatar, Mahendra; Pitts, Michelle L.; Harms, Gary A.; Rearden, Bradley T.; Parks, Cecil V.; Tulenko, James S.; Dugan, Edward; Smith, Robert M.

2002-09-23T23:59:59.000Z

224

Early Argonne reactor lit the way for worldwide nuclear industry -  

NLE Websites -- All DOE Office Websites (Extended Search)

Early Argonne reactor lit the way for worldwide Early Argonne reactor lit the way for worldwide nuclear industry About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

225

Computer simulations help design new nuclear reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer simulations help design new nuclear reactors Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Reprinted from "Argonne Now" - Spring 2008 Physicist Won-Sik Yang and computer scientist Andrew Siegel hold a fuel rod assembly in front of a model of the Experimental Breeder Reactor-II

226

Nuclear reactor vessel fuel thermal insulating barrier  

DOE Patents (OSTI)

The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

2013-03-19T23:59:59.000Z

227

Why Nuclear Energy? - Reactors designed/built by Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Energy: Nuclear Energy: Why Nuclear Energy? About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

228

Power conversion system design for supercritical carbon dioxide cooled indirect cycle nuclear reactors  

E-Print Network (OSTI)

The supercritical carbon dioxide (S-CO?) cycle is a promising advanced power conversion cycle which couples nicely to many Generation IV nuclear reactors. This work investigates the power conversion system design and ...

Gibbs, Jonathan Paul

2008-01-01T23:59:59.000Z

229

High-Fidelity Light Water Reactor Analysis with the Numerical Nuclear Reactor  

Science Conference Proceedings (OSTI)

Technical Paper / Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications

David P. Weber; Tanju Sofu; Won Sik Yang; Thomas J. Downar; Justin W. Thomas; Zhaopeng Zhong; Jin Young Cho; Kang Seog Kim; Tae Hyun Chun; Han Gyu Joo; Chang Hyo Kim

230

Heat dissipating nuclear reactor with metal liner  

DOE Patents (OSTI)

Disclosed is a nuclear reactor containment including a reactor vessel disposed within a cavity with capability for complete inherent decay heat removal in the earth and surrounded by a cast steel containment member which surrounds the vessel. The member has a thick basemat in contact with metal pilings. The basemat rests on a bed of porous particulate material, into which water is fed to produce steam which is vented to the atmosphere. There is a gap between the reactor vessel and the steel containment member. The containment member holds any sodium or core debris escaping from the reactor vessel if the core melts and breaches the vessel.

Gluekler, Emil L. (San Jose, CA); Hunsbedt, Anstein (Los Gatos, CA); Lazarus, Jonathan D. (Sunnyvale, CA)

1987-01-01T23:59:59.000Z

231

Heat dissipating nuclear reactor with metal liner  

DOE Patents (OSTI)

A nuclear reactor containment including a reactor vessel disposed within a cavity with capability for complete inherent decay heat removal in the earth and surrounded by a cast steel containment member which surrounds the vessel is described in this disclosure. The member has a thick basemat in contact with metal pilings. The basemat rests on a bed of porous particulate material, into which water is fed to produce steam which is vented to the atmosphere. There is a gap between the reactor vessel and the steel containment member. The containment member holds any sodium or core debris escaping from the reactor vessel if the core melts and breaches the vessel.

Gluekler, E.L.; Hunsbedt, A.; Lazarus, J.D.

1985-11-21T23:59:59.000Z

232

Reactivity control assembly for nuclear reactor. [LMFBR  

DOE Patents (OSTI)

This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.

Bollinger, L.R.

1982-03-17T23:59:59.000Z

233

Prognostics Health Management for Advanced Small Modular Reactor Passive Components  

SciTech Connect

In the United States, sustainable nuclear power to promote energy security is a key national energy priority. Advanced small modular reactors (AdvSMR), which are based on modularization of advanced reactor concepts using non-light-water reactor (LWR) coolants such as liquid metal, helium, or liquid salt may provide a longer-term alternative to more conventional LWR-based concepts. The economics of AdvSMRs will be impacted by the reduced economy-of-scale savings when compared to traditional LWRs and the controllable day-to-day costs of AdvSMRs are expected to be dominated by operations and maintenance costs. Therefore, achieving the full benefits of AdvSMR deployment requires a new paradigm for plant design and management. In this context, prognostic health management of passive components in AdvSMRs can play a key role in enabling the economic deployment of AdvSMRs. In this paper, the background of AdvSMRs is discussed from which requirements for PHM systems are derived. The particle filter technique is proposed as a prognostics framework for AdvSMR passive components and the suitability of the particle filter technique is illustrated by using it to forecast thermal creep degradation using a physics-of-failure model and based on a combination of types of measurements conceived for passive AdvSMR components.

Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Mitchell, Mark R.; Wootan, David W.; Hirt, Evelyn H.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

2013-10-18T23:59:59.000Z

234

Current Comparison of Advanced Nuclear Fuel Cycles  

SciTech Connect

This paper compares potential nuclear fuel cycle strategies – once-through, recycling in thermal reactors, sustained recycle with a mix of thermal and fast reactors, and sustained recycle with fast reactors. Initiation of recycle starts the draw-down of weapons-usable material and starts accruing improvements for geologic repositories and energy sustainability. It reduces the motivation to search for potential second geologic repository sites. Recycle in thermal-spectru

Steven Piet; Trond Bjornard; Brent Dixon; Robert Hill; Gretchen Matthern; David Shropshire

2007-04-01T23:59:59.000Z

235

Updated Uranium Fuel Cycle Environmental Impacts for Advanced Reactor Designs  

Science Conference Proceedings (OSTI)

The purpose of this project was to update the environmental impacts from the uranium fuel cycle for select advanced (GEN III+) reactor designs.

Nitschke, R.

2004-10-03T23:59:59.000Z

236

Development of Advanced Ceramic Reactors - Programmaster.org  

Science Conference Proceedings (OSTI)

Presentation Title, Development of Advanced Ceramic Reactors ... a cubic size followed by fabrication of small high power modules operating under 600°C. This  ...

237

Nuclear reactor construction with bottom supported reactor vessel  

DOE Patents (OSTI)

An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment structure base mat so as to insulate the reactor vessel bottom end wall from the containment structure base mat and allow the reactor vessel bottom end wall to freely expand as it heats up while providing continuous support thereof. Further, a deck is supported upon the side wall of the containment structure above the top open end of the reactor vessel, and a plurality of serially connected extendible and retractable annular bellows extend between the deck and the top open end of the reactor vessel and flexibly and sealably interconnect the reactor vessel at its top end to the deck. An annular guide ring is disposed on the containment structure and extends between its side wall and the top open end of the reactor vessel for providing lateral support of the reactor vessel top open end by limiting imposition of lateral loads on the annular bellows by the occurrence of a lateral seismic event.

Sharbaugh, John E. (Bullskin Township, Fayette County, PA)

1987-01-01T23:59:59.000Z

238

The DOE Advanced Gas Reactor Fuel Development and Qualification  

Science Conference Proceedings (OSTI)

Materials for Nuclear Power Overview. The DOE Advanced ... electricity- generation applications, such as ... United States by reducing dependence on foreign ...

239

Developing a Comprehensive Software Suite for Advanced Reactor Performance and Safety Analysis  

SciTech Connect

This paper provides an introduction to the reactor analysis capabilities of the nuclear power reactor simulation tools that are being developed as part of the U.S. Department of Energy s Nuclear Energy Advanced Modeling and Simulation (NEAMS) Toolkit. The NEAMS Toolkit is an integrated suite of multi-physics simulation tools that leverage high-performance computing to reduce uncertainty in the prediction of performance and safety of advanced reactor and fuel designs. The Toolkit effort is comprised of two major components, the Fuels Product Line (FPL), which provides tools for fuel performance analysis, and the Reactor Product Line (RPL), which provides tools for reactor performance and safety analysis. This paper provides an overview of the NEAMS RPL development effort.

Pointer, William David [ORNL; Bradley, Keith S [ORNL; Fischer, Paul F [ORNL; Smith, Micheal A [ORNL; Tautges, Timothy J [ORNL; Ferencz, Robert M [ORNL; Martineau, Richard C [ORNL; Jain, Rajeev [ORNL; Obabko, Aleksandr [Argonne National Laboratory (ANL); Billings, Jay Jay [ORNL

2013-01-01T23:59:59.000Z

240

Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems  

Science Conference Proceedings (OSTI)

The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

D. E. Shropshire

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Advanced Reactor Concepts Technical Review Panel Report | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Reactor Concepts Technical Review Panel Report Advanced Reactor Concepts Technical Review Panel Report Advanced Reactor Concepts Technical Review Panel Report This report documents the establishment of a technical review process and the findings of the Advanced Reactor Concepts (ARC) Technical Review Panel (TRP).1 The intent of the process is to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. A goal of the process is to facilitate greater engagement between DOE and industry. The process involved establishing evaluation criteria, conducting a pilot review, soliciting concept inputs from industry entities, reviewing the concepts by TRP members and compiling the results. The eight concepts received from industry spanned a range of reactor types

242

IMPROVEMENTS RELATING TO NUCLEAR REACTORS  

SciTech Connect

In order to reduce the pumping power for the coolant in a steam-cooled reactor, in which the steam being passed through successive sections of the reactor core and being superheated there, the sections are connected in series with one another, while a plurality of de-superheaters is provided such that steam flowing from one section to the next passes through a de-superheater. The condensed steam returning to the reactor from the means utilizing the steam heat content is divided into a number of separate streams. The first stream going to the first section in the reactor core is raised at least to saturated steam outside the reactor, while the remaining streams of condensed steam are conveyed to the de-superheaters to be mixed with steam passing therethrough between successive sections of the reactor, cooling in this manner said steam and being themselves converted into steam. Increasing amounts of condensate are added in successive de-superheaters until the steam returning to the reactor from the final desuperheater is equivalent to the full mass flow of steam circulating to the heat utilizing means. (NPO)

1960-08-01T23:59:59.000Z

243

ME 361E Nuclear Reactor Engineering ABET EC2000 syllabus  

E-Print Network (OSTI)

ME 361E ­ Nuclear Reactor Engineering Page 1 ABET EC2000 syllabus ME 361E ­ Nuclear Reactor; neutron diffusion and moderation; reactor equations; Fermi Age theory; multigroup and multiregional students should be able to: · Compare and contrast numerous nuclear reactor designs · Calculate the effects

Ben-Yakar, Adela

244

Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)  

Science Conference Proceedings (OSTI)

High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next Generation Safeguards Initiative (NGSI).

Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

2009-10-01T23:59:59.000Z

245

Advanced Nuclear Medicine Initiative Owen Lowe  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Isotopes for Life Isotopes for Life Isotopes for Life Advanced Nuclear Medicine Initiative Owen Lowe Office of Isotopes for Medicine and Science Office of Nuclear Energy, Science and Technology October 1, 2002 Isotopes for Life Isotopes for Life Isotopes for Life Office of Nuclear Energy, Science and Technology Lowe/Oct01_02 ANMI to NERAC.ppt (2) Advanced Nuclear Medicine Initiative Advanced Nuclear Medicine Initiative 6 Sponsor nuclear medical science research using a peer-review selection process * 9 three-year research grants awarded 6 Sponsor the training of individuals in nuclear medical science * 5 three-year education grants awarded 6 Continue research and education programs to completion; however, no additional funds for new grants is in the FY 2003 budget Isotopes for Life Isotopes for Life

246

STEAM GENERATOR FOR NUCLEAR REACTOR  

DOE Patents (OSTI)

The steam generator described for use in reactor powergenerating systems employs a series of concentric tubes providing annular passage of steam and water and includes a unique arrangement for separating the steam from the water. (AEC)

Kinyon, B.W.; Whitman, G.D.

1963-07-16T23:59:59.000Z

247

MOLTEN FLUORIDE NUCLEAR REACTOR FUEL  

DOE Patents (OSTI)

Molten-salt reactor fuel compositions consisting of mixtures of fluoride salts are reported. In its broadest form, the composition contains an alkali fluoride such as sodium fluoride, zirconium tetrafluoride, and a uranium fluoride, the latter being the tetrafluoride or trifluoride or a mixture of the two. An outstanding property of these fuel compositions is a high coeffieient of thermal expansion which provides a negative temperature coefficient of reactivity in reactors in which they are used.

Barton, C.J.; Grimes, W.R.

1960-01-01T23:59:59.000Z

248

Optimally moderated nuclear fission reactor and fuel source therefor  

DOE Patents (OSTI)

An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

Ougouag, Abderrafi M. (Idaho Falls, ID); Terry, William K. (Shelley, ID); Gougar, Hans D. (Idaho Falls, ID)

2008-07-22T23:59:59.000Z

249

Compiled reports on the applicability of selected codes and standards to advanced reactors  

Science Conference Proceedings (OSTI)

The following papers were prepared for the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission under contract DE-AC06-76RLO-1830 NRC FIN L2207. This project, Applicability of Codes and Standards to Advance Reactors, reviewed selected mechanical and electrical codes and standards to determine their applicability to the construction, qualification, and testing of advanced reactors and to develop recommendations as to where it might be useful and practical to revise them to suit the (design certification) needs of the NRC.

Benjamin, E.L.; Hoopingarner, K.R.; Markowski, F.J.; Mitts, T.M.; Nickolaus, J.R.; Vo, T.V.

1994-08-01T23:59:59.000Z

250

FFTF and Advanced Reactors Transition Program Resource Loaded Schedule  

SciTech Connect

This Resource Load Schedule (RLS) addresses two missions. The Advanced Reactors Transition (ART) mission, funded by DOE-EM, is to transition assigned, surplus facilities to a safe and compliant, low-cost, stable, deactivated condition (requiring minimal surveillance and maintenance) pending eventual reuse or D&D. Facilities to be transitioned include the 309 Building Plutonium Recycle Test Reactor (PRTR) and Nuclear Energy Legacy facilities. This mission is funded through the Environmental Management (EM) Project Baseline Summary (PBS) RL-TP11, ''Advanced Reactors Transition.'' The second mission, the Fast Flux Test Facility (FFTF) Project, is funded through budget requests submitted to the Office of Nuclear Energy, Science and Technology (DOE-NE). The FFTF Project mission is maintaining the FFTF, the Fuels and Materials Examination Facility (FMEF), and affiliated 400 Area buildings in a safe and compliant standby condition. This mission is to preserve the condition of the plant hardware, software, and personnel in a manner not to preclude a plant restart. This revision of the Resource Loaded Schedule (RLS) is based upon the technical scope in the latest revision of the following project and management plans: Fast Flux Test Facility Standby Plan (Reference 1); Hanford Site Sodium Management Plan (Reference 2); and 309 Building Transition Plan (Reference 4). The technical scope, cost, and schedule baseline is also in agreement with the concurrent revision to the ART Fiscal Year (FY) 2001 Multi-Year Work Plan (MYWP), which is available in an electronic version (only) on the Hanford Local Area Network, within the ''Hanford Data Integrator (HANDI)'' application.

GANTT, D.A.

2000-10-31T23:59:59.000Z

251

Structural mechanics of fast spectrum nuclear reactor cores  

NLE Websites -- All DOE Office Websites (Extended Search)

mechanics of fast spectrum nuclear reactor cores A fast reactor core is composed of a closely packed hexagonal arrangement of fuel, control, blanket , and shielding assemblies....

252

Export possibilities for small nuclear reactors  

Science Conference Proceedings (OSTI)

The worldwide deployment of peaceful nuclear technology is predicated on conformance with the Nuclear Non-Proliferation Treaty of 1972. Under this international treaty, countries have traded away pursuit of nuclear weapons in exchange for access to commercial nuclear technology that could help them grow economically. Realistically, however, most nuclear technology has been beyond the capacity of the NPT developing countries to afford. Even if the capital cost of the plant is managed, the costs of the infrastructure and the operational complexity of most nuclear technology have taken it out of the hands of the nations who need it the most. Now, a new class of small sodium cooled reactors has been specifically designed to meet the electrical power, water, hydrogen and heat needs of small and remote users. These reactors feature small size, long refueling interval, no onsite fuel storage, and simplified operations. Sized in the 10 MW(e) to 50 MW(e) range these reactors are modularized for factory production and for rapid site assembly. The fuel would be <20% U-235 uranium fuel with a 30-year core life. This new reactor type more appropriately fills the needs of countries for lower power distributed systems that can fill the gap between large developed infrastructure and primitive distributed energy systems. Looking at UN Resolution 1540 and the impact of other agreements, there is a need to address the issues of nuclear security, fuel, waste, and economic/legal/political-stakeholder concerns. This paper describes the design features of this new reactor type that specifically address these issues in a manner that increases the availability of commercial nuclear technology to the developing nations of the world. (authors)

Campagna, M.S.; Hess, C.; Moor, P. [Burns and Roe Enterprises, Inc., Oradell, NJ (United States); Sawruk, W. [ABSG Consulting, Inc., Shillington, PA (United States)

2007-07-01T23:59:59.000Z

253

White paper report on using nuclear reactors to search for a value of theta13  

E-Print Network (OSTI)

PAPER REPORT on Using Nuclear Reactors to Search for a valuetimely new experiment at a nuclear reactor sensitive to theand judicious choice of a nuclear reactor. The dominant

2004-01-01T23:59:59.000Z

254

STATEMENT OF CONSIDERATIONS Advance Test Reactor Class Waiver  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Test Reactor Class Waiver Advance Test Reactor Class Waiver W(C)-2008-004 The Advanced Test Reactor (A TR) is a pressurized water test reactor at the Idaho National Laboratory (INL) that operates at low pressure and temperature. The ATR was originally designed to study the effects of intense radiation on reactor material and fuels . It has a "Four Leaf Clover" design that allows a diverse array of testing locations. The unique design allows for different flux in various locations and specialized systems also allow for certain experiments to be run at their own temperature and pressure. The U.S. Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007. This designation will allow the ATR to

255

Cooling system for a nuclear reactor  

DOE Patents (OSTI)

A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.

Amtmann, Hans H. (Rancho Santa Fe, CA)

1982-01-01T23:59:59.000Z

256

Fast-acting nuclear reactor control device  

DOE Patents (OSTI)

This invention consists of a fast-acting nuclear reactor control device for moving and positioning a safety control rod to desired elevations within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump motor, an electric gear motor, and a solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch, allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.

Kotlyar, O.M.; West, P.B.

1992-12-31T23:59:59.000Z

257

Use of Thorium in Light Water Reactors  

Science Conference Proceedings (OSTI)

Technical Paper / Advances in Nuclear Fuel Management - Use of Alternate Fuels in Light Water Reactors

Michael Todosow; A. Galperin; S. Herring; M. Kazimi; T. Downar; A. Morozov

258

Nuclear reactor fissile isotopes antineutrino spectra  

E-Print Network (OSTI)

Positron spectrum from inverse beta decay reaction on proton was measured in 1988-1990 as a result of neutrino exploration experiment. The measured spectrum has the largest statistics and lowest energy threshold between other neutrino experiments made that time at nuclear reactors. On base of the positron spectrum the standard antineutrino spectrum for typical reactor fuel composition was restored. In presented analysis the partial spectra forming this standard spectrum were extracted using specific method. They could be used for neutrino experiments data analysis made at any fuel composition of reactor core.

Sinev, V

2012-01-01T23:59:59.000Z

259

Nuclear reactor fissile isotopes antineutrino spectra  

E-Print Network (OSTI)

Positron spectrum from inverse beta decay reaction on proton was measured in 1988-1990 as a result of neutrino exploration experiment. The measured spectrum has the largest statistics and lowest energy threshold between other neutrino experiments made that time at nuclear reactors. On base of the positron spectrum the standard antineutrino spectrum for typical reactor fuel composition was restored. In presented analysis the partial spectra forming this standard spectrum were extracted using specific method. They could be used for neutrino experiments data analysis made at any fuel composition of reactor core.

V. Sinev

2012-07-30T23:59:59.000Z

260

Theta 13 Determination with Nuclear Reactors  

E-Print Network (OSTI)

Recently there has been a lot of interest around the world in the use of nuclear reactors to measure theta 13, the last undetermined angle in the 3-neutrino mixing scenario. In this paper the motivations for theta 13 measurement using short baseline nuclear reactor experiments are discussed. The features of such an experiment are described in the context of Double Chooz, which is a new project planned to start data-taking in 2008, and to reach a sensitivity of sinsq(2 theta 13) < 0.03.

F. Dalnoki-Veress

2004-06-24T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles  

E-Print Network (OSTI)

Anthony   V.   Guide  Nuclear  Reactors.   University   of  of   fuel   for   nuclear   reactors—create   wastes  Level  Waste   nuclear reactors, and subsequent utilization

Djokic, Denia

2013-01-01T23:59:59.000Z

262

Office of Nuclear Reactor Regulation  

E-Print Network (OSTI)

The U.S. Nuclear Regulatory Commission (NRC) is considering renewal of the operating licenses for the Edwin I. Hatch Nuclear Plant, Units 1 and 2 (HNP) for a period of an additional 20 years. The purpose of this assessment is to provide information to the U.S. National Marine Fisheries Service concerning the impacts of continued operation of the HNP on the shortnose sturgeon, Acipenser brevirostrum. The

unknown authors

2000-01-01T23:59:59.000Z

263

22.312 Engineering of Nuclear Reactors, Fall 2004  

E-Print Network (OSTI)

Engineering principles of nuclear reactors, emphasizing power reactors. Power plant thermodynamics, reactor heat generation and removal (single-phase as well as two-phase coolant flow and heat transfer), and structural ...

Buongiorno, Jacopo, 1971-

264

22.312 Engineering of Nuclear Reactors, Fall 2002  

E-Print Network (OSTI)

Engineering principles of nuclear reactors, emphasizing power reactors. Power plant thermodynamics, reactor heat generation and removal (single-phase as well as two-phase coolant flow and heat transfer), and structural ...

Todreas, Neil E.

265

Investigation of bond graphs for nuclear reactor simulations  

E-Print Network (OSTI)

This work proposes a simple and effective approach to modeling multiphysics nuclear reactor problems using bond graphs. The conventional method of modeling the coupled multiphysics transients in nuclear reactors is operator ...

Sosnovsky, Eugeny

2010-01-01T23:59:59.000Z

266

More About NNSA's Naval Reactors Office | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Naval Reactors Office The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This...

267

Domestic U.S. Reactor Conversions: Fact Sheet | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Reactor Conversions: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

268

Damper mechanism for nuclear reactor control elements  

DOE Patents (OSTI)

A damper mechanism which provides a nuclear reactor control element decelerating function at the end of the scram stroke. The total damping function is produced by the combination of two assemblies, which operate in sequence. First, a tapered dashram assembly decelerates the control element to a lower velocity, after which a spring hydraulic damper assembly takes over to complete the final damping.

Taft, William Elwood (Los Gatos, CA)

1976-01-01T23:59:59.000Z

269

NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT  

DOE Patents (OSTI)

A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)

Currier, E.L. Jr.; Nicklas, J.H.

1962-08-14T23:59:59.000Z

270

Current Abstracts Nuclear Reactors and Technology  

SciTech Connect

This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

Bales, J.D.; Hicks, S.C. [eds.

1993-01-01T23:59:59.000Z

271

Nuclear reactor shutdown control rod assembly  

DOE Patents (OSTI)

A temperature responsive, self-actuated nuclear reactor shutdown control rod assembly 10. The upper end 18 of a lower drive line 17 fits within the lower end of an upper drive line 12. The lower end (not shown) of the lower drive line 17 is connected to a neutron absorber. During normal temperature conditions the lower drive line 17 is supported by detent means 22,26. When an overtemperature condition occurs thermal actuation means 34 urges ring 26 upwardly sufficiently to allow balls 22 to move radially outwardly thereby allowing lower drive line 17 to move downwardly toward the core of the nuclear reactor resulting in automatic reduction of the reactor powder.

Bilibin, Konstantin (North Hollywood, CA)

1988-01-01T23:59:59.000Z

272

Characterization of Nuclear Reactor Materials and Components with ...  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium, Characterization of Nuclear Reactor Materials and Components with  ...

273

Characterization of Nuclear Reactor Materials and Components with ...  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium, Characterization of Nuclear Reactor Materials and Components with  ...

274

Heat pipe nuclear reactor for space power  

SciTech Connect

A heat-pipe cooled nuclear reactor has been designed to provide 3.2 MW(t) to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat pipe temperature of 1675/sup 0/K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum, lithium vapor, heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO/sub 2/ pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber and a BeO reflector containing boron loaded control drums.

Koenig, D.R.

1976-01-01T23:59:59.000Z

275

Passive heat transfer means for nuclear reactors  

DOE Patents (OSTI)

An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. Means such as shrouding normally isolated the secondary condensing section from effective heat transfer with the heat sink, but a sensor responds to overheat conditions of the reactor to open the shrouding, which thereby increases the cooling capacity of the heat pipe. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

Burelbach, James P. (Glen Ellyn, IL)

1984-01-01T23:59:59.000Z

276

DOE - Office of Legacy Management -- Westinghouse Advanced Reactors Div  

Office of Legacy Management (LM)

Advanced Reactors Div Advanced Reactors Div Plutonium and Advanced Fuel Labs - PA 10 FUSRAP Considered Sites Site: WESTINGHOUSE ADVANCED REACTORS DIV., PLUTONIUM FUEL LABORATORIES, AND THE ADVANCED FUEL LAB (PA.10 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Cheswick , Pennsylvania PA.10-1 Evaluation Year: Circa 1987 PA.10-1 PA.10-4 Site Operations: 1960s and 1970s - Produced light water and fast breeder reactor fuels on a development and pilot plant scale. Closed in 1979. PA.10-2 PA.10-3 Site Disposition: Eliminated - Decommissioned and decontaminated under another Federal program. Release condition confirmed by radiological surveys. PA.10-1 PA.10-2 PA.10-3 PA.10-4 PA.10-5 Radioactive Materials Handled: Yes

277

Irradiation Performance of Advanced and Model Alloys  

Science Conference Proceedings (OSTI)

Mar 14, 2012 ... Mechanical Performance of Materials for Current and Advanced Nuclear Reactors: Irradiation Performance of Advanced and Model Alloys

278

MA50177: Scientific Computing Nuclear Reactor Simulation Generalised Eigenvalue Problems  

E-Print Network (OSTI)

MA50177: Scientific Computing Case Study Nuclear Reactor Simulation ­ Generalised Eigenvalue of a malfunction or of an accident experimentally, the numerical simulation of nuclear reactors is of utmost balance in a nuclear reactor are the two-group neutron diffusion equations -div (K1 u1) + (a,1 + s) u1 = 1

Scheichl, Robert

279

Polynomial regression with derivative information in nuclear reactor uncertainty quantification*  

E-Print Network (OSTI)

1 Polynomial regression with derivative information in nuclear reactor uncertainty quantification in the outputs. The usual difficulties in modeling the work of the nuclear reactor models include the large size, applying the existing AD tools to nuclear reactor models still takes considerable development effort

Anitescu, Mihai

280

LIMITED POWER BURSTS IN DISTRIBUTED MODELS OF NUCLEAR REACTORS  

E-Print Network (OSTI)

of a nuclear reactor with feedback," in: Applied Problems in the Theory of Oscillations [in RussianLIMITED POWER BURSTS IN DISTRIBUTED MODELS OF NUCLEAR REACTORS M. V. Bazhenov and E. F. Sabaev UDC of Nuclear Reactors [in Russian], l~nergoatomizdat, Moscow (1990). F. R. Gantmakher and V. A. Yakubovich

Bazhenov, Maxim

Note: This page contains sample records for the topic "advanced nuclear reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

FUEL ELEMENT FOR NUCLEAR REACTOR  

DOE Patents (OSTI)

A nuclear fuel element comprising a large number og wafers of fissionable material and a protective jacket having compartments holding these wafers is described. The compartments of the jacket aid the removal of heat from the wafers, keep the wafers or fragments thereof from migrating in the jacket, and permit the escape of gaseous fission products.

Carney, K.G. Jr.

1959-07-14T23:59:59.000Z

282

DECOMMISSIONING OF NUCLEAR POWER REACTORS  

E-Print Network (OSTI)

Decommissioning means permanently removing a nuclear facility from service and reducing radioactive material on the licensed site to levels that would permit termination of the NRC license. On June 27, 1988, the NRC issued general requirements on decommissioning that contained technical and financial criteria and dealt with planning needs, timing, funding mechanisms, and environmental review

unknown authors

2000-01-01T23:59:59.000Z

283

Performance Evaluation of Advanced LLW Liquid Processing Technology: Boiling Water Reactor Liquid Processing  

Science Conference Proceedings (OSTI)

This report provides condensed information on boiling water reactor (BWR) membrane based liquid radwaste processing systems. The report presents specific details of the technology, including design, configuration, and performance. This information provides nuclear plant personnel with data useful in evaluating the merits of applying advanced processes at their plant.

2001-11-26T23:59:59.000Z

284

Methods for manufacturing porous nuclear fuel elements for high-temperature gas-cooled nuclear reactors  

SciTech Connect

Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.

Youchison, Dennis L. (Albuquerque, NM); Williams, Brian E. (Pocoima, CA); Benander, Robert E. (Pacoima, CA)

2010-02-23T23:59:59.000Z

285

Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors  

SciTech Connect

Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

Youchison, Dennis L. (Albuquerque, NM); Williams, Brian E. (Pacoima, CA); Benander, Robert E. (Pacoima, CA)

2011-03-01T23:59:59.000Z

286

Advanced High Temperature Reactor Systems and Economic Analysis  

SciTech Connect

The Advanced High Temperature Reactor (AHTR) is a design concept for a large-output [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR's large thermal output enables direct comparison of its performance and requirements with other high output reactor concepts. As high-temperature plants, FHRs can support either high-efficiency electricity generation or industrial process heat production. The AHTR analysis presented in this report is limited to the electricity generation mission. FHRs, in principle, have the potential to be low-cost electricity producers while maintaining full passive safety. However, no FHR has been built, and no FHR design has reached the stage of maturity where realistic economic analysis can be performed. The system design effort described in this report represents early steps along the design path toward being able to predict the cost and performance characteristics of the AHTR as well as toward being able to identify the technology developments necessary to build an FHR power plant. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High temperature gas-cooled reactors provide experience with coated particle fuel and graphite components. Light water reactors (LWRs) show the potentials of transparent, high-heat capacity coolants with low chemical reactivity. Modern coal-fired power plants provide design experience with advanced supercritical-water power cycles. The current design activities build upon a series of small-scale efforts over the past decade to evaluate and describe the features and technology variants of FHRs. Key prior concept evaluation reports include the SmAHTR preconceptual design report,1 the PB-AHTR preconceptual design, and the series of early phase AHTR evaluations performed from 2004 to 2006. This report provides a power plant-focused description of the current state of the AHTR. The report includes descriptions and sizes of the major heat transport and power generation components. Component configuration and sizing are based upon early phase AHTR plant thermal hydraulic models. The report also provides a top-down AHTR comparative economic analysis. A commercially available advanced supercritical water-based power cycle was selected as the baseline AHTR power generation cycle both due to its superior performance and to enable more realistic economic analysis. The AHTR system design, however, has several remaining gaps, and the plant cost estimates consequently have substantial remaining uncertainty. For example, the enriched lithium required for the primary coolant cannot currently be produced on the required scale at reasonable cost, and the necessary core structural ceramics do not currently exist in a nuclear power qualified form. The report begins with an overview of the current, early phase, design of the AHTR plant. Only a limited amount of information is included about the core and vessel as the core design and refueling options are the subject of a companion report. The general layout of an AHTR system and site showing the relationship of the major facilities is then provided. Next is a comparative evaluation of the AHTR anticipated performance and costs. Finally, the major system design efforts necessary to bring the AHTR design to a pre-conceptual level are then presented.

Holcomb, David Eugene [ORNL; Peretz, Fred J [ORNL; Qualls, A L [ORNL

2011-09-01T23:59:59.000Z

287

Nuclear reactor control room construction  

DOE Patents (OSTI)

A control room for a nuclear plant is disclosed. In the control room, objects labelled 12, 20, 22, 26, 30 in the drawing are no less than four inches from walls labelled 10.2. A ceiling contains cooling fins that extend downwards toward the floor from metal plates. A concrete slab is poured over the plates. Studs are welded to the plates and are encased in the concrete. 6 figures.

Lamuro, R.C.; Orr, R.

1993-11-16T23:59:59.000Z

288

FUEL ELEMENT FOR NUCLEAR REACTORS  

DOE Patents (OSTI)

A fuel element is designed which is particularly adapted for reactors of high power density used to generate steam for the production of electricity. The fuel element consists of inner and outer concentric tubes forming an annular chamber within which is contained fissionable fuel pellet segments, wedge members interposed between the fuel segments, and a spring which, acting with wedge members, urges said fuel pellets radially into contact against the inner surface of the outer tube. The wedge members may be a fertile material convertible into fissionable fuel material by absorbing neutrons emitted from the fissionable fuel pellet segments. The costly grinding of cylindrical fuel pellets to close tolerances for snug engagement is reduced because the need to finish the exact size is eliminated. (AEC)

Bassett, C.H.

1961-11-21T23:59:59.000Z

289

FUEL ELEMENT FOR NUCLEAR REACTORS  

DOE Patents (OSTI)

A method is described whereby fuel tubes or pins are cut, loaded with fuel pellets and a heat transfer medium, sealed at each end with slotted fittings, and assembled into a rectangular tube bundle to form a fuel element. The tubes comprising the fuel element are laterally connected between their ends by clips and tabs to form a linear group of spaced parallel tubes, which receive their vertical support by resting on a grid. The advantages of this method are that it permits elimination of structural material (e.g., fuel-element cans) within the reactor core, and removal of at least one fuel pin from an element and replacement thereof so that a burnable poison may be utilized during the core lifetime. (AEC)

Dickson, J.J.

1963-09-24T23:59:59.000Z

290

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

for magnetic fusion reactors and IFMIF. Journal of NuclearFusion reactors blanket nucleonics. In Progress in NuclearFusion-Fission hybrid reactors. In Advances in Nuclear

Kramer, Kevin James

2010-01-01T23:59:59.000Z

291

PRISM; The plant design concept for the U. S. advanced liquid metal reactor program  

SciTech Connect

The US program for development of an advanced liquid metal reactor (ALMR) is proceeding into a new phase of focused design development. This new phase started at the beginning of 1989; its objective is to complete the conceptual design of the US ALMR, with supporting key feature tests, sufficiently to enter a more detailed design phase and subsequent construction of a prototype reactor plant. A project goal is to demonstrate by actual performance of the reactor its passive, inherent safety features and thereby provide the technical basis for certification of the design by the Nuclear Regulatory Commission (NRC). This paper reports on the PRISM (power reactor inherently safe module) reactor concept which in combination with the IFR (integral fast reactor) metal fuel cycle being developed by Argonne National Laboratory, was selected by DOE in 1988 as the reference design for the US ALMR program.

Berglund, R.C.; Tippets, F.E. (GE Nuclear Energy, Advance Nuclear Technology, San Jose, CA (US))

1989-01-01T23:59:59.000Z

292

CRC handbook of nuclear reactors calculations. Vol. II  

Science Conference Proceedings (OSTI)

This handbook breaks down the complex field of nuclear reactor calculations into major steps. Each step presents a detailed analysis of the problems to be solved, the parameters involved, and the elaborate computer programs developed to perform the calculations. This book bridges the gap between nuclear reactor theory and the implementation of that theory, including the problems to be encountered and the level of confidence that should be given to the methods described. Volume II: Monte Carlo Calculations for Nuclear Reactors. In-Core Management of Four Reactor Types. In-Core Management in CANDU-PHW Reactors. Reactor Dynamics. The Theory of Neutron Leakage in Reactor Lattices. Index.

Ronen, Y.

1986-01-01T23:59:59.000Z

293

Advanced LWR Nuclear Fuel Cladding System Development Trade-Off Study  

SciTech Connect

The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system that would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.

Kristine Barrett; Shannon Bragg-Sitton

2012-09-01T23:59:59.000Z

294

Rodded shutdown system for a nuclear reactor  

DOE Patents (OSTI)

A top mounted nuclear reactor diverse rodded shutdown system utilizing gas fed into a pressure bearing bellows region sealed at the upper extremity to an armature. The armature is attached to a neutron absorber assembly by a series of shafts and connecting means. The armature is held in an uppermost position by an electromagnet assembly or by pressurized gas in a second embodiment. Deenergizing the electromagnet assembly, or venting the pressurized gas, causes the armature to fall by the force of gravity, thereby lowering the attached absorber assembly into the reactor core.

Golden, Martin P. (Penn Township, Allegheny County, PA); Govi, Aldo R. (Greensburg, PA)

1978-01-01T23:59:59.000Z

295

The AMP (Advanced MultiPhysics) Nuclear Fuel Performance Code  

Science Conference Proceedings (OSTI)

The AMP (Advanced MultiPhysics) Nuclear Fuel Performance code is a new, three-dimensional, multi-physics tool that uses state-of-the-art solution methods and validated nuclear fuel models to simulate the nominal operation and anticipated operational transients of nuclear fuel. The AMP Nuclear Fuel Performance code leverages existing validated material models from traditional fuel performance codes and the Scale/ORIGEN-S spent-fuel characterization code to provide an initial capability that is shown to be sufficiently accurate for a single benchmark problem and anticipated to be accurate for a broad range of problems. The thermomechanics-chemical foundation can be solved in a time-dependent or quasi-static approach with any variation of operator-split or fully-coupled solutions at each time step. The AMP Nuclear Fuel Performance code provides interoperable interfaces to leading computational mathematics tools, which will simplify the integration of the code into existing parallel code suites for reactor simulation or lower-length-scale coupling. A baseline validation of the AMP Nuclear Fuel Performance code has been performed through the modeling of an experiment in the Halden Reactor Project (IFA-432), which is the first validation problem incorporated in the FRAPCON Integral Assessment report.

Clarno, Kevin T [ORNL; Philip, Bobby [ORNL; Cochran, Bill [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Barai, Pallab [ORNL; Simunovic, Srdjan [ORNL; Ott, Larry J [ORNL; Pannala, Sreekanth [ORNL; Dilts, Gary A [ORNL; Mihaila, Bogdan [ORNL; Yesilyurt, Gokhan [ORNL; Lee, Jung Ho [Argonne National Laboratory (ANL); Banfield, James E [ORNL; Berrill, Mark A [ORNL

2012-01-01T23:59:59.000Z

296

Physics Model of a Gas-Cooled Fast Reactor - Review and Assessment (A27223)  

E-Print Network (OSTI)

Presented At The American Nuclear Society Advances In Reactor Physics (PHYSOR 2012), Knoxville, Tennessee (2012)American Nuclear Society Advances in Reactor Physics(2012) Knoxville Tennessee, US, 2012999619043

Choi, H.

2012-02-29T23:59:59.000Z

297

Advances in Modeling for Reactor Conditions  

Science Conference Proceedings (OSTI)

Feb 16, 2010 ... The development of fusion as a viable energy source depends on ensuring structural materials integrity.Structural materials in fusion reactors ...

298

Accelerator Laboratory AGN-201M Nuclear Reactor Laboratory  

E-Print Network (OSTI)

Laboratory Nuclear Power Institute (NPI) Nuclear Science Center (1MW Triga Reactor) (NSC) Nuclear SecurityAccelerator Laboratory AGN-201M Nuclear Reactor Laboratory Center for Large-scale Scientific Simulations (CLASS) Fuel Cycle and Materials Laboratory (FCML) Institute for National Security, Education

299

First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Step to Spur U.S. Manufacturing of Small Modular Nuclear First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors First Step to Spur U.S. Manufacturing of Small Modular Nuclear Reactors January 25, 2012 - 5:06pm Addthis Brenda DeGraffenreid The Energy Department recently announced the first step toward manufacturing small modular nuclear reactors (SMRs) in the United States, demonstrating the Administration's commitment to advancing U.S. manufacturing leadership in low-carbon, next generation energy technologies and restarting the nation's nuclear industry. The release of a draft Funding Opportunity Announcement (FOA) last week presents supply-chain procurement opportunities for our nation's small businesses down the line, as industry provides input in advance of a full FOA on engineering, design certification, and licensing through a

300

Summary of space nuclear reactor power systems, 1983--1992  

DOE Green Energy (OSTI)

This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

Buden, D.

1993-08-11T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Global Nuclear Energy Partnership | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Global Nuclear Energy Partnership (GNEP) GNEP Element:Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors...

302

Multiple microprocessor based nuclear reactor power monitor  

SciTech Connect

The reactor power monitor is a portable multiple-microprocessor controlled data acquisition device being built for the International Atomic Energy Association. Its function is to measure and record the hourly integrated operating thermal power level of a nuclear reactor for the purpose of detecting unannounced plutonium production. The monitor consists of a /sup 3/He proportional neutron detector, a write-only cassette tape drive and control electronics based on two INTEL 8748 microprocessors. The reactor power monitor operates from house power supplied by the plant operator, but has eight hours of battery backup to cover power interruptions. Both the hourly power levels and any line power interruptions are recorded on tape and in memory. Intermediate dumps from the memory to a data terminal or strip chart recorder can be performed without interrupting data collection.

Lewis, P.S.; Ethridge, C.D.

1979-01-01T23:59:59.000Z

303

DOE fundamentals handbook: Nuclear physics and reactor theory. Volume 1  

Science Conference Proceedings (OSTI)

The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

304

DOE fundamentals handbook: Nuclear physics and reactor theory  

SciTech Connect

The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

305

DOE fundamentals handbook: Nuclear physics and reactor theory. Volume 2  

SciTech Connect

The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

306

FUEL ELEMENT FOR A NUCLEAR REACTOR  

DOE Patents (OSTI)

A fuel element structure particularly useful in high temperature nuclear reactors is presented. Basically, the structure comprises two coaxial graphite sleeves integrally joined together by radial fins. Due to the high structural strength of graphite at high temperatures and the rigidity of this structure, nuclear fuel encased within the inner sleeve in contiguous relation therewith is supported and prevented from expanding radially at high temperatures. Thus, the necessity of relying on the usual cladding materials with relatively low temperature limitations for structural strength is removed. (AEC)

Davidson, J.K.

1963-11-19T23:59:59.000Z

307

NUCLEAR REACTOR AND THERMIONIC FUEL ELEMENT THEREFOR  

DOE Patents (OSTI)

The patent relates to the direct conversion of fission heat to electricity by use of thermionic plasma diodes having fissionable material cathodes, said diodes arranged to form a critical mass in a nuclear reactor. The patent describes a fuel element comprising a plurality of diodes each having a fissionable material cathode, an anode around said cathode, and an ionizable gas therebetween. Provision is made for flowing the gas and current serially through the diodes. (AEC)

Rasor, N.S.; Hirsch, R.L.

1963-12-01T23:59:59.000Z

308

MODELING ASSUMPTIONS FOR THE ADVANCED TEST REACTOR FRESH FUEL SHIPPING CONTAINER  

SciTech Connect

The Advanced Test Reactor Fresh Fuel Shipping Container (ATR FFSC) is currently licensed per 10 CFR 71 to transport a fresh fuel element for either the Advanced Test Reactor, the University of Missouri Research Reactor (MURR), or the Massachusetts Institute of Technology Research Reactor (MITR-II). During the licensing process, the Nuclear Regulatory Commission (NRC) raised a number of issues relating to the criticality analysis, namely (1) lack of a tolerance study on the fuel and packaging, (2) moderation conditions during normal conditions of transport (NCT), (3) treatment of minor hydrogenous packaging materials, and (4) treatment of potential fuel damage under hypothetical accident conditions (HAC). These concerns were adequately addressed by modifying the criticality analysis. A tolerance study was added for both the packaging and fuel elements, full-moderation was included in the NCT models, minor hydrogenous packaging materials were included, and fuel element damage was considered for the MURR and MITR-II fuel types.

Rick J. Migliore

2009-09-01T23:59:59.000Z

309

10 CFR 830 Major Modification Determination for Advanced Test Reactor LEU Fuel Conversion  

SciTech Connect

The Advanced Test Reactor (ATR), located in the ATR Complex of the Idaho National Laboratory (INL), was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. The ATR is fueled with high-enriched uranium (HEU) matrix (UAlx) in an aluminum sandwich plate cladding. The National Nuclear Security Administration Global Threat Reduction Initiative (GTRI) strategic mission includes efforts to reduce and protect vulnerable nuclear and radiological material at civilian sites around the world. Converting research reactors from using HEU to low-enriched uranium (LEU) was originally started in 1978 as the Reduced Enrichment for Research and Test Reactors (RERTR) Program under the U.S. Department of Energy (DOE) Office of Science. Within this strategic mission, GTRI has three goals that provide a comprehensive approach to achieving this mission: The first goal, the driver for the modification that is the subject of this determination, is to convert research reactors from using HEU to LEU. Thus the mission of the ATR LEU Fuel Conversion Project is to convert the ATR and Advanced Test Reactor Critical facility (ATRC) (two of the six U.S. High-Performance Research Reactors [HPRR]) to LEU fuel by 2017. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification.

Boyd D. Christensen; Michael A. Lehto; Noel R. Duckwitz

2012-05-01T23:59:59.000Z

310

Fundamental Thermal Fluid Physics of High Temperature Flows in Advanced Reactor Systems - Nuclear Energy Research Initiative Program Interoffice Work Order (IWO) MSF99-0254 Final Report for Period 1 August 1999 to 31 December 2002  

DOE Green Energy (OSTI)

The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of advanced reactors for higher efficiency and enhanced safety and for deployable reactors for electrical power generation, process heat utilization and hydrogen generation. While key applications would be advanced gas-cooled reactors (AGCRs) using the closed Brayton cycle (CBC) for higher efficiency (such as the proposed Gas Turbine - Modular Helium Reactor (GT-MHR) of General Atomics [Neylan and Simon, 1996]), results of the proposed research should also be valuable in reactor systems with supercritical flow or superheated vapors, e.g., steam. Higher efficiency leads to lower cost/kwh and reduces life-cycle impacts of radioactive waste (by reducing waters/kwh). The outcome will also be useful for some space power and propulsion concepts and for some fusion reactor concepts as side benefits, but they are not the thrusts of the investigation. The objective of the project is to provide fundamental thermal fluid physics knowledge and measurements necessary for the development of the improved methods for the applications.

McEligot, D.M.; Condie, K.G.; Foust, T.D.; McCreery, G.E.; Pink, R.J.; Stacey, D.E. (INEEL); Shenoy, A.; Baccaglini, G. (General Atomics); Pletcher, R.H. (Iowa State U.); Wallace, J.M.; Vukoslavcevic, P. (U. Maryland); Jackson, J.D. (U. Manchester, UK); Kunugi, T. (Kyoto U., Japan); Satake, S.-i. (Tokyo U. Science, Japan)

2002-12-31T23:59:59.000Z

311

Sensitivity Studies of Advanced Reactors Coupled to High Temperature Electrolysis (HTE) Hydrogen Production Processes  

DOE Green Energy (OSTI)

High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the steam or air sweep loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycle producing the highest efficiencies varied depending on the temperature range considered.

Edwin A. Harvego; Michael G. McKellar; James E. O'Brien; J. Stephen Herring

2007-04-01T23:59:59.000Z

312

Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)  

SciTech Connect

The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

Jon Carmack (062056); Kemal O. Pasamehmetoglu (103171); David Alberstein

2008-02-01T23:59:59.000Z

313

CRC handbook of nuclear reactors calculations. Vol. III  

Science Conference Proceedings (OSTI)

This handbook breaks down the complex field of nuclear reactor calculations into major steps. Each step presents a detailed analysis of the problems to be solved, the parameters involved, and the elaborate computer programs developed to perform the calculations. This book bridges the gap between nuclear reactor theory and the implementation of that theory, including the problems to be encountered and the level of confidence that should be given to the methods described. Volume III: Control Rods and Burnable Absorber Calculations. Perturbation Theory for Nuclear Reactor Analysis. Thermal Reactors Calculations. Fast Reactor Calculations. Seed-Blanket Reactors. Index.

Ronen, Y.

1986-01-01T23:59:59.000Z

314

Advanced Reactor Licensing: Experience with Digital I&C Technology in Evolutionary Plants  

Science Conference Proceedings (OSTI)

This report presents the findings from a study of experience with digital instrumentation and controls (I&C) technology in evolutionary nuclear power plants. In particular, this study evaluated regulatory approaches employed by the international nuclear power community for licensing advanced l&C systems and identified lessons learned. The report (1) gives an overview of the modern l&C technologies employed at numerous evolutionary nuclear power plants, (2) identifies performance experience derived from those applications, (3) discusses regulatory processes employed and issues that have arisen, (4) captures lessons learned from performance and regulatory experience, (5) suggests anticipated issues that may arise from international near-term deployment of reactor concepts, and (6) offers conclusions and recommendations for potential activities to support advanced reactor licensing in the United States.

Wood, RT

2004-09-27T23:59:59.000Z

315

Advanced Test Reactor National Scientific User Facility Progress  

SciTech Connect

The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world’s premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5” to 5.0” in diameter and are all 48” in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives cannot be met using the INL facilities. The ATR NSUF program includes a robust education program enabling students to participate in their research at INL and the partner facilities, attend the ATR NSUF annual User Week, and compete for prizes at sponsored conferences. Development of additional research capabilities is also a key component of the ATR NSUF Program; researchers are encouraged to propose research projects leading to these enhanced capabilities. Some ATR irradiation experiment projects irradiate more specimens than are tested, resulting in irradiated materials available for post irradiation examination by other researchers. These “extra” specimens comprise the ATR NSUF Sample Library. This presentation will highlight the ATR NSUF Sample Library and the process open to researchers who want to access these materials and how to propose research projects using them. This presentation will provide the current status of all the ATR NSUF Program elements. Many of these were not envisioned in 2007, when DOE established the ATR NSUF.

Frances M. Marshall; Todd R. Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen

2012-10-01T23:59:59.000Z

316

Security of Nuclear Reactors and Special Nuclear Materials This revisiono  

E-Print Network (OSTI)

Provides requirements for the recovery of lost, seized, or stolen special nuclear material (para 2-1b). o Prescribes that unclassified information pertaining to plans, procedures, and equipment for the physical protection of nuclear reactors and special nuclear material will be safeguarded as DoD Unclassified Controlled Nuclear Information (para 2-1f). o Requires the conduct of a vulnerability assessment at each facility where special nuclear material is used or stored (para 2-2a). o Provides that Headquarters, U. S. Army Materiel Command will develop the postulated threat as the basis for the vulnerability assessment (para 2-2b), as well as the standardized format for documenting the results of the assessment and for the after action reports (para 2-2h). o Designates special nuclear material as inherently dangerous to others for use of force purposes (para 2-4a). o Prescribes minimum storage standards for special nuclear material (para 3-1). o Provides for the protection of vital equipment (para 3-3). o Explains the concept of the required security system for nuclear reactors and special nuclear material (para 4-2). o Establishes specific physical security standards for the protection of nuclear reactors and special nuclear material (para 4-4), to include required access controls (para 4-5). o Prohibits the locksmith from being designated as the key control officer or lock custodian (para 4-5g(25)). o Provides guidance on meeting requirement to continuously man two alarm monitoring facilities (para 4-6b). o Allows continued use of monitoring console systems installed prior to publication of this regulation that do not meet the map or video display requirement (para 4-6g(1)). o Provides guidance for testing the perimeter intrusion detection system (para 4-6n(2)). o Requires appropriate security personnel be trained to manually start the standby generator if the automatic starter fails to function properly (para 4-9b(4)). o Provides that the size, composition, and response time of the response force will be set by the major subordinate commander and approved by the Commanding

unknown authors

1993-01-01T23:59:59.000Z

317

Safety Culture in the US Nuclear Regulatory Commission's Reactor Oversight  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Culture in the US Nuclear Regulatory Commission's Reactor Safety Culture in the US Nuclear Regulatory Commission's Reactor Oversight Process Safety Culture in the US Nuclear Regulatory Commission's Reactor Oversight Process September 19, 2012 Presenter: Undine Shoop, Chief, Health Physics and Human Performance Branch, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission Topics covered: Purpose of the Reactor Oversight Process (ROP) ROP Framework Safety Culture within the ROP Safety Culture Assessments Safety Culture in the US Nuclear Regulatory Commission's Reactor Oversight Process More Documents & Publications A Commissioner's Perspective on USNRC Actions in Response to the Fukushima Nuclear Accident Comparison of Integrated Safety Analysis (ISA) and Probabilistic Risk Assessment (PRA) for Fuel Cycle Facilities, 2/17/11

318

Uncertainties in the Anti-neutrino Production at Nuclear Reactors  

E-Print Network (OSTI)

Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in electron anti-neutrino detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties and their relevance to reactor anti-neutrino experiments.

Z. Djurcic; J. A. Detwiler; A. Piepke; V. R. Foster Jr.; L. Miller; G. Gratta

2008-08-06T23:59:59.000Z

319

Uncertainties in the Anti-neutrino Production at Nuclear Reactors  

E-Print Network (OSTI)

Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in electron anti-neutrino detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties and their relevance to reactor anti-neutrino experiments.

Djurcic, Z; Piepke, A; Foster, V R; Miller, L; Gratta, G

2008-01-01T23:59:59.000Z

320

Nuclear reactor pressure vessel support system  

DOE Patents (OSTI)

A support system for nuclear reactor pressure vessels which can withstand all possible combinations of stresses caused by a postulated core disrupting accident during reactor operation. The nuclear reactor pressure vessel is provided with a flange around the upper periphery thereof, and the flange includes an annular vertical extension formed integral therewith. A support ring is positioned atop of the support ledge and the flange vertical extension, and is bolted to both members. The plug riser is secured to the flange vertical extension and to the top of a radially outwardly extension of the rotatable plug. This system eliminates one joint through which fluids contained in the vessel could escape by making the fluid flow path through the joint between the flange and the support ring follow the same path through which fluid could escape through the plug risers. In this manner, the sealing means to prohibit the escape of contained fluids through the plug risers can also prohibit the escape of contained fluid through the securing joint.

Sepelak, George R. (McMurray, PA)

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Development of a Fissile Materials Irradiation Capability for Advanced Fuel Testing at the MIT Research Reactor  

SciTech Connect

A fissile materials irradiation capability has been developed at the Massachusetts Institute of Technology (MIT) Research Reactor (MITR) to support nuclear engineering studies in the area of advanced fuels. The focus of the expected research is to investigate the basic properties of advanced nuclear fuels using small aggregates of fissile material. As such, this program is intended to complement the ongoing fuel evaluation programs at test reactors. Candidates for study at the MITR include vibration-packed annular fuel for light water reactors and microparticle fuels for high-temperature gas reactors. Technical considerations that pertain to the design of the MITR facility are enumerated including those specified by 10 CFR 50 concerning the definition of a research reactor and those contained in a separate license amendment that was issued by the U.S. Nuclear Regulatory Commission to MIT for these types of experiments. The former includes limits on the cross-sectional area of the experiment, the physical form of the irradiated material, and the removal of heat. The latter addresses experiment reactivity worth, thermal-hydraulic considerations, avoidance of fission product release, and experiment specific temperature scrams.

Hu Linwen; Bernard, John A.; Hejzlar, Pavel; Kohse, Gordon [Massachusetts Institute of Technology (United States)

2005-05-15T23:59:59.000Z

322

Spatial multi-taper spectrum estimation for nuclear reactor modelling  

Science Conference Proceedings (OSTI)

Multi-taper univariate and cross-spectral analysis is used to investigate the structure of spatial variation in the temperatures measured across the surface of a nuclear reactor. The construction of the spatial tapers over the approximate circular reactor ...

C. J. Scarrott; G. Tunnicliffe Wilson

2009-10-01T23:59:59.000Z

323

CONSTRUCTION OF WEB-ACCESSIBLE MATERIALS HANDBOOK FORGENERATION IV NUCLEAR REACTORS  

Science Conference Proceedings (OSTI)

The development of a web-accessible materials handbook in support of the materials selection and structural design for the Generation IV nuclear reactors is being planned. Background of the reactor program is briefly introduced. Evolution of materials handbooks for nuclear reactors over years is reviewed in light of the trends brought forth by the rapid advancement in information technologies. The framework, major features, contents, and construction considerations of the web-accessible Gen IV Materials Handbook are discussed. Potential further developments and applications of the handbook are also elucidated.

Ren, Weiju [ORNL

2005-01-01T23:59:59.000Z

324

Fuel handling system for a nuclear reactor  

DOE Patents (OSTI)

A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

Saiveau, James G. (Hickory Hills, IL); Kann, William J. (Park Ridge, IL); Burelbach, James P. (Glen Ellyn, IL)

1986-01-01T23:59:59.000Z

325

Closure head for a nuclear reactor  

DOE Patents (OSTI)

A closure head for a nuclear reactor includes a stationary outer ring integral with the reactor vessel with a first rotatable plug disposed within the stationary outer ring and supported from the stationary outer ring by a bearing assembly. A sealing system is associated with the bearing assembly to seal the annulus defined between the first rotatable plug and the stationary outer ring. The sealing system comprises tubular seal elements disposed in the annulus with load springs contacting the tubular seal elements so as to force the tubular seal elements against the annulus in a manner to seal the annulus. The sealing system also comprises a sealing fluid which is pumped through the annulus and over the tubular seal elements causing the load springs to compress thereby reducing the friction between the tubular seal elements and the rotatable components while maintaining a gas-tight seal therebetween.

Wade, Elman E. (South Huntingdon, PA)

1980-01-01T23:59:59.000Z

326

Nuclear reactor insulation and preheat system  

DOE Patents (OSTI)

An insulation and preheat system for preselected components of a fluid cooled nuclear reactor. A gas tight barrier or compartment of thermal insulation surrounds the selected components and includes devices to heat the internal atmosphere of the compartment. An external surface of the compartment or enclosure is cooled, such as by a circulating fluid. The heating devices provide for preheating of the components, as well as maintenance of a temperature sufficient to ensure that the reactor coolant fluid will not solidify during shutdown. The external cooling limits the heat transferred to other plant structures, such as supporting concrete and steel. The barrier is spaced far enough from the surrounded components so as to allow access for remote or manual inspection, maintenance, and repair.

Wampole, Nevin C. (Latrobe, PA)

1978-01-01T23:59:59.000Z

327

Nuclear reactor flow control method and apparatus  

DOE Patents (OSTI)

Method and apparatus for improving coolant flow in a nuclear reactor during accident as well as nominal conditions. The reactor has a plurality of fuel elements in sleeves and a plenum above the fuel and through which the sleeves penetrate. Holes are provided in the sleeve so that coolant from the plenum can enter the sleeve and cool the fuel. The number and size of the holes are varied from sleeve to sleeve with the number and size of holes being greater for sleeves toward the center of the core and less for sleeves toward the periphery of the core. Preferably the holes are all the same diameter and arranged in rows and columns, the rows starting from the bottom of every sleeve and fewer rows in peripheral sleeves and more rows in the central sleeves.

Church, J.P.

1993-03-30T23:59:59.000Z

328

Nuclear reactor flow control method and apparatus  

DOE Patents (OSTI)

This document describes method and apparatus for improving coolant flow in a nuclear reactor during accident as well as nominal conditions. The reactor has a plurality of fuel elements in sleeves and a plenum above the fuel and through which the sleeves penetrate. Holes are provided in the sleeve so that coolant from the plenum can enter the sleeve and cool the fuel. The number and size of the holes are varied from sleeve to sleeve with the number and size of holes being greater for sleeves toward the center of the core and less for sleeves toward the periphery of the core. Preferably the holes are all the same diameter and arranged in rows and columns, the rows starting from the bottom of every sleeve and fewer rows in peripheral sleeves and more rows in the central sleeves.

Church, J.P.

1991-04-23T23:59:59.000Z

329

Neutrino Oscillation Experiments at Nuclear Reactors  

E-Print Network (OSTI)

In this paper I give an overview of the status of neutrino oscillation experiments performed using nuclear reactors as sources of neutrinos. I review the present generation of experiments (Chooz and Palo Verde) with baselines of about 1 km as well as the next generation that will search for oscillations with a baseline of about 100 km. While the present detectors provide essential input towards the understanding of the atmospheric neutrino anomaly, in the future, the KamLAND reactor experiment represents our best opportunity to study very small mass neutrino mixing in laboratory conditions. In addition KamLAND with its very large fiducial mass and low energy threshold, will also be sensitive to a broad range of different physics.

Giorgio Gratta

1999-05-06T23:59:59.000Z

330

Nuclear Materials  

Science Conference Proceedings (OSTI)

Materials and Fuels for the Current and Advanced Nuclear Reactors III ... response of oxide ceramics for nuclear applications through experiment, theory, and ...

331

Advanced research workshop: nuclear materials safety  

SciTech Connect

The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of nuclear experience on a common objectiveÑthe safe and secure storage and disposition of excess fissile nuclear materials.

Jardine, L J; Moshkov, M M

1999-01-28T23:59:59.000Z

332

Nuclear Thermal Rockets: The Physics of the Fission Reactor  

E-Print Network (OSTI)

Nuclear Thermal Rockets: The Physics of the Fission Reactor Shane D. Ross Control and Dynamical combustion are those powered by nuclear fission. Comparison of Chemical and Nuclear Rockets. Most existent.g., hydrogen and oxygen). In a nuclear rocket, or more precisely, a nuclear thermal rocket, the propellant

Ross, Shane

333

Ground test facility for nuclear testing of space reactor subsystems  

SciTech Connect

Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs.

Quapp, W.J.; Watts, K.D.

1985-01-01T23:59:59.000Z

334

Liquid metal pump for nuclear reactors  

DOE Patents (OSTI)

A pump for use in pumping high temperature liquids at high pressures, particularly liquid metals used to cool nuclear reactors is described. It is of the type in which the rotor is submerged in a sump but is fed by an inlet duct which bypasses the sump. A chamber, kept full of fluid, surrounds the pump casing into which fluid is bled from the pump discharge and from which fluid is fed to the rotor bearings and hence to the sump. This equalizes pressure inside and outside the pump casing and reduces or eliminates the thermal shock to the bearings and sump tank.

Allen, H.G.; Maloney, J.R.

1975-10-01T23:59:59.000Z

335

Measuring Neutrino Oscillations with Nuclear Reactors  

SciTech Connect

Since the first direct observations of antineutrino events by Reines and Cowan in the 1950's, nuclear reactors have been an important tool in the study of neutrino properties. More recently, the study of neutrino oscillations has been a very active area of research. The pioneering observation of oscillations by the KamLAND experiment has provided crucial information on the neutrino mixing matrix. New experiments to study the remaining unknown mixing angle are currently under development. These recent studies and potential future developments will be discussed.

McKeown, R. D. [W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States)

2007-10-26T23:59:59.000Z

336

Nuclear reactor containment spray testing system. [PWR  

SciTech Connect

Disclosed is a method for periodic testing of a spray system in a nuclear reactor containment. The method includes injecting a gas into the spray system such that a temperature differential exists between the gas and the containment atmosphere. Scanning the gas jet discharged from the spray nozzles with infrared apparatus then provides a real-time thermal image on a monitor, such as a cathode ray tube, and detects any partially or completely blocked nozzles in the spray system. The scanning may be performed from the containment operating deck. 1 claim, 4 figures.

Rubin, K.

1978-01-10T23:59:59.000Z

337

More About NNSA's Naval Reactors Office | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

to skip to the main content Facebook Flickr RSS Twitter YouTube More About NNSA's Naval Reactors Office | National Nuclear Security Administration Our Mission Managing the...

338

TABLE 1. Nuclear Reactor, State, Type, Net Capacity ...  

U.S. Energy Information Administration (EIA)

Nuclear Reactor, State, Type, Net Capacity, ... Quad Cities Generating Station River Bend San Onofre Seabrook Sequoyah South Texas Project St Lucie ...

339

Characterization of Nuclear Reactor Materials and Components with ...  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Characterization of Nuclear Reactor Materials and Components with ... Results are discussed in terms of existing theoretical models for hydride ...

340

Light Water Reactor Materials for Commercial Nuclear Power ...  

Science Conference Proceedings (OSTI)

Presentation Title, Light Water Reactor Materials for Commercial Nuclear ... First- Principles Theory of Magnetism, Crystal Field and Phonon Spectrum of UO2.

Note: This page contains sample records for the topic "advanced nuclear reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Nuclear Reactor Materials at the Atomic Scale - Programmaster.org  

Science Conference Proceedings (OSTI)

Presentation Title, Nuclear Reactor Materials at the Atomic Scale ... Study of the Interaction of Solutes with Interfaces in Iron Using Density-Functional Theory.

342

PHYSICS OF NUCLEAR REACTORS Nuclear reactions and cross sections 1-10  

E-Print Network (OSTI)

PHYSICS OF NUCLEAR REACTORS Nuclear reactions and cross sections 1-10 10 11 12 13 14 15 16 17 18 19 neutron wavelength, D is given by: cE mM Mm 2 + = h D , (1.22) 1 Bell and Glasstone, Nuclear Reactor Theory, p. 392, 1970. #12;PHYSICS OF NUCLEAR REACTORS Nuclear reactions and cross sections 1-11 Where m

Danon, Yaron

343

Fluid sampling system for a nuclear reactor  

DOE Patents (OSTI)

A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

Lau, L.K.; Alper, N.I.

1994-11-22T23:59:59.000Z

344

Fuel performance comparison between Savannah River reactors and the US commercial nuclear reactors  

SciTech Connect

This document provides a review of fuel/target performance of the Savannah River Reactors which was made to compare their in-core performance with that of the commercial nuclear reactors in the US.

Paik, I.K.; Ellison, P.G.

1989-01-01T23:59:59.000Z

345

ORNL R and D on advanced small and medium power reactors: Selected topics  

SciTech Connect

From 1984-1985, ORNL studied several innovative small and medium power nuclear concepts with respect to viability. Criteria for assessment of market attractiveness were developed and are described here. Using these criteria and descriptions of selected advanced reactor concepts, and assessment of their projected market viability in the time period 2000-2010 was made. All of these selected concepts could be considered as having the potential for meeting the criteria but, in most cases, considerable RandD would be required to reduce uncertainties. This work and later studies of safety and licensing of advanced, passively safe reactor concepts by ORNL are described. The results of these studies are taken into account in most of the current (FY 1989) work at ORNL on advanced reactors. A brief outline of this current work is given. One of the current RandD efforts at ORNL which addresses the operability and safety of advanced reactors is the Advanced Controls Program. Selected topics from this Program are described. 13 refs., 1 fig.

White, J.D.; Trauger, D.B.

1988-01-01T23:59:59.000Z

346

Advanced Nuclear Fuel | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-based Technologies Advanced Nuclear Fuel Advanced Nuclear Fuel Y-12 developers co-roll zirconium clad LEU-Mo. The Y-12 National Security Complex has over 60 years of...

347

Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL  

SciTech Connect

The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.

D. Kokkinos

2005-04-28T23:59:59.000Z

348

Advanced Nuclear Fuel Development for the Future in the United ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2010. Symposium, Materials Solutions for the Nuclear Renaissance. Presentation Title, Advanced ...

349

Minimizing or eliminating refueling of nuclear reactor  

DOE Patents (OSTI)

Demand for refueling of a liquid metal fast nuclear reactor having a life of 30 years is eliminated or reduced to intervals of at least 10 years by operating the reactor at a low linear-power density, typically 2.5 kw/ft of fuel rod, rather than 7.5 or 15 kw/ft, which is the prior art practice. So that power of the same magnitude as for prior art reactors is produced, the volume of the core is increased. In addition, the height of the core and it diameter are dimensioned so that the ratio of the height to the diameter approximates 1 to the extent practicable considering the requirement of control and that the pressure drop in the coolant shall not be excessive. The surface area of a cylinder of given volume is a minimum if the ratio of the height to the diameter is 1. By minimizing the surface area, the leakage of neutrons is reduced. By reducing the linear-power density, increasing core volume, reducing fissile enrichment and optimizing core geometry, internal-core breeding of fissionable fuel is substantially enhanced. As a result, core operational life, limited by control worth requirements and fuel burnup capability, is extended up to 30 years of continuous power operation.

Doncals, Richard A. (Washington, PA); Paik, Nam-Chin (Pittsburgh, PA); Andre, Sandra V. (Hempfield Township, Westmoreland County, PA); Porter, Charles A. (Rostraver Township, Westmoreland County, PA); Rathbun, Roy W. (Greensburg, PA); Schwallie, Ambrose L. (Greensburg, PA); Petras, Diane S. (Penn Township, Westmoreland County, PA)

1989-01-01T23:59:59.000Z

350

Neutron transport analysis for nuclear reactor design  

DOE Patents (OSTI)

Replacing regular mesh-dependent ray tracing modules in a collision/transfer probability (CTP) code with a ray tracing module based upon combinatorial geometry of a modified geometrical module (GMC) provides a general geometry transfer theory code in two dimensions (2D) for analyzing nuclear reactor design and control. The primary modification of the GMC module involves generation of a fixed inner frame and a rotating outer frame, where the inner frame contains all reactor regions of interest, e.g., part of a reactor assembly, an assembly, or several assemblies, and the outer frame, with a set of parallel equidistant rays (lines) attached to it, rotates around the inner frame. The modified GMC module allows for determining for each parallel ray (line), the intersections with zone boundaries, the path length between the intersections, the total number of zones on a track, the zone and medium numbers, and the intersections with the outer surface, which parameters may be used in the CTP code to calculate collision/transfer probability and cross-section values. 28 figures.

Vujic, J.L.

1993-11-30T23:59:59.000Z

351

Electrochemistry of Water-Cooled Nuclear Reactors  

DOE Green Energy (OSTI)

This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or "radiation fields" around the primary loop and the vessel, as a function of the operating parameters and the water chemistry.

Dgiby Macdonald; Mirna Urquidi-Macdonald; John Mahaffy, Amit Jain, Han Sang Kim, Vishisht Gupta; Jonathan Pitt

2006-08-08T23:59:59.000Z

352

Neutron transport analysis for nuclear reactor design  

DOE Patents (OSTI)

Replacing regular mesh-dependent ray tracing modules in a collision/transfer probability (CTP) code with a ray tracing module based upon combinatorial geometry of a modified geometrical module (GMC) provides a general geometry transfer theory code in two dimensions (2D) for analyzing nuclear reactor design and control. The primary modification of the GMC module involves generation of a fixed inner frame and a rotating outer frame, where the inner frame contains all reactor regions of interest, e.g., part of a reactor assembly, an assembly, or several assemblies, and the outer frame, with a set of parallel equidistant rays (lines) attached to it, rotates around the inner frame. The modified GMC module allows for determining for each parallel ray (line), the intersections with zone boundaries, the path length between the intersections, the total number of zones on a track, the zone and medium numbers, and the intersections with the outer surface, which parameters may be used in the CTP code to calculate collision/transfer probability and cross-section values.

Vujic, Jasmina L. (Lisle, IL)

1993-01-01T23:59:59.000Z

353

Directions for advanced use of nuclear power in century XXI  

SciTech Connect

Nuclear power can provide a significant contribution to electricity generation and meet other needs of the world and the US during the next century provided that certain directions are taken to achieve its public acceptance. These directions include formulation of projections of population, energy consumption, and energy resources over a responsible period of time. These projections will allow assessment of cumulative effects on the environment and on fixed resources. Use of fossil energy resources in a century of growing demand for energy must be considered in the context of long-term environmental damage and resource depletion. Although some question the validity of these consequences, they can be mitigated by use of advanced fast reactor technology. It must be demonstrated that nuclear power technology is safe, resistant to material diversion for weapon use, and economical. An unbiased examination of all the issues related to energy use, especially of electricity, is an essential direction to take.

Walter, C E

1999-05-01T23:59:59.000Z

354

Nuclear Archeology for CANDU Power Reactors  

SciTech Connect

The goal of this work is the development of so-called 'nuclear archeology' techniques to predict the irradiation history of both fuel-related and non-fuel-related materials irradiated in the CANDU (CANada Deuterium Uranium) family of nuclear reactors. In this application to CANDU-type reactors, two different scenarios for the collection of the appropriate data for use in these procedures will be assumed: the first scenario is the removal of the pressure tubes, calandria tubes, or fuel cladding and destructive analysis of the activation products contained in these structural materials; the second scenario is the nondestructive analysis (NDA) of the same hardware items via high-resolution gamma ray scans. There are obvious advantages and disadvantages for each approach; however, the NDA approach is the central focus of this work because of its simplicity and lack of invasiveness. The use of these techniques along with a previously developed inverse capability is expected to allow for the prediction of average flux levels and irradiation time, and the total fluence for samples where the values of selected isotopes can be measured.

Broadhead, Bryan L [ORNL

2011-01-01T23:59:59.000Z

355

Program on Technology Innovation: Cooling Water Review of the Advanced Light Water Reactor Utility Requirements Document  

Science Conference Proceedings (OSTI)

The EPRI Utility Requirements Document (URD) was developed and last revised in 1999 to provide a list of requirements for the design and construction of new nuclear power plants. The objective of this project was to review URD Vol. III. This volume covers passive advanced light water reactors (ALWRs) for plant design requirements with respect to operations and maintenance (O&M) practices of the plant's cooling water systems (not including the circulating water system used for condenser cooling). The revi...

2007-07-26T23:59:59.000Z

356

Nuclear reactor core and fuel element therefor  

SciTech Connect

This patent describes a nuclear reactor core. This core consists of vertical columns of disengageable fuel elements stacked one atop another. These columns are arranged in side-by-side relationship to form a substantially continuous horizontal array. Each of the fuel elements include a block of refractory material having relatively good thermal conductivity and neutron moderating characteristics. The block has a pair of parallel flat top and bottom end faces and sides which are substantially prependicular to the end faces. The sides of each block is aligned vertically within a vertical column, with the sides of vertically adjacent blocks. Each of the blocks contains fuel chambers, including outer rows containing only fuel chambers along the sides of the block have nuclear fuel material disposed in them. The blocks also contain vertical coolant holes which are located inside the fuel chambers in the outer rows and the fuel chambers which are not located in the outer rows with the fuel chambers and which extend axially completely through from end face to end face and form continuous vertical intracolumn coolant passageways in the reactor core. The blocks have vertical grooves extending along the sides of the blocks form interblock channels which align in groups to form continuous vertical intercolumn coolant passsageways in the reactor core. The blocks are in the form of a regular hexagonal prism with each side of the block having vertical gooves defining one half of one of the coolant interblock channels, six corner edges on the blocks have vertical groves defining one-third of an interblock channel, the vertical sides of the blocks defining planar vertical surfaces.

Fortescue, P.

1986-02-11T23:59:59.000Z

357

Discussions@TMS - Materials Issues for Advanced Nuclear Systems ...  

Science Conference Proceedings (OSTI)

Feb 27, 2007... for applications in high temperature nuclear reactor core materials, ... Theory of RIS was introduced and how over-size solute additions can ...

358

Advanced Computation & Visualization - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

359

Determination of parameters of a nuclear reactor through noise measurements  

DOE Patents (OSTI)

A method of measuring parameters of a nuclear reactor by noise measurements is described. Noise signals are developed by the detectors placed in the reactor core. The polarity coincidence between the noise signals is used to develop quantities from which various parameters of the reactor can be calculated. (auth)

Cohn, C.E.

1975-07-15T23:59:59.000Z

360

ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS  

SciTech Connect

Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) for construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management, and proliferation), the worldwide community is working to develop and deploy new nuclear energy systems and advanced fuel cycles. These new nuclear systems address the key challenges and include: (1) extracting the full energy value of the nuclear fuel; (2) creating waste solutions with improved long term safety; (3) minimizing the potential for the misuse of the technology and materials for weapons; (4) continually improving the safety of nuclear energy systems; and (5) keeping the cost of energy affordable.

Marra, J.

2010-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

University Research Reactor Task Force to the Nuclear Energy Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University Research Reactor Task Force to the Nuclear Energy University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee In mid-February, 2001 The University Research Reactor (URR) Task Force (TF), a sub-group of the Department of Energy (DOE) Nuclear Energy Research Advisory Committee (NERAC), was asked to: * Analyze information collected by DOE, the NERAC "Blue Ribbon Panel," universities, and other sources pertaining to university reactors including their research and training capabilities, costs to operate, and operating data, and * Provide DOE with clear, near-term recommendations as to actions that should be taken by the Federal Government and a long-term strategy to assure the continued operation of vital university reactor facilities in

362

Advanced Fuel/Cladding Testing Capabilities in the ORNL High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

The ability to test advanced fuels and cladding materials under reactor operating conditions in the United States is limited. The Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and the newly expanded post-irradiation examination (PIE) capability at the ORNL Irradiated Fuels Examination Laboratory provide unique support for this type of advanced fuel/cladding development effort. The wide breadth of ORNL's fuels and materials research divisions provides all the necessary fuel development capabilities in one location. At ORNL, facilities are available from test fuel fabrication, to irradiation in HFIR under either thermal or fast reactor conditions, to a complete suite of PIEs, and to final product disposal. There are very few locations in the world where this full range of capabilities exists. New testing capabilities at HFIR have been developed that allow testing of advanced nuclear fuels and cladding materials under prototypic operating conditions (i.e., for both fast-spectrum conditions and light-water-reactor conditions). This paper will describe the HFIR testing capabilities, the new advanced fuel/cladding testing facilities, and the initial cooperative irradiation experiment that begins this year.

Ott, Larry J [ORNL; Ellis, Ronald James [ORNL; McDuffee, Joel Lee [ORNL; Spellman, Donald J [ORNL; Bevard, Bruce Balkcom [ORNL

2009-01-01T23:59:59.000Z

363

Plutonium Recycling in Light Water Reactors at Framatome ANP: Status and Trends  

Science Conference Proceedings (OSTI)

Technical Paper / Advances in Nuclear Fuel Management - Use of Alternate Fuels in Light Water Reactors

Dieter Porsch; Walter Stach; Pascal Charmensat; Michel Pasquet

364

Spent nuclear fuel discharges from U.S. reactors 1994  

Science Conference Proceedings (OSTI)

Spent Nuclear Fuel Discharges from US Reactors 1994 provides current statistical data on fuel assemblies irradiated at commercial nuclear reactors operating in the US. This year`s report provides data on the current inventories and storage capacities at these reactors. Detailed statistics on the data are presented in four chapters that highlight 1994 spent fuel discharges, storage capacities and inventories, canister and nonfuel component data, and assembly characteristics. Five appendices, a glossary, and bibliography are also included. 10 figs., 34 tabs.

NONE

1996-02-01T23:59:59.000Z

365

Statement on Defense Nuclear Nonproliferation and Naval Reactors Activities  

National Nuclear Security Administration (NNSA)

Defense Nuclear Nonproliferation and Naval Reactors Activities Defense Nuclear Nonproliferation and Naval Reactors Activities before the House Committee on Appropriations Subcommittee on Energy & Water Development | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Congressional Testimony > Statement on Defense Nuclear

366

Statement on Defense Nuclear Nonproliferation and Naval Reactors Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Defense Nuclear Nonproliferation and Naval Reactors Activities Defense Nuclear Nonproliferation and Naval Reactors Activities before the House Committee on Appropriations Subcommittee on Energy & Water Development | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Congressional Testimony > Statement on Defense Nuclear

367

Advanced nuclear reactor safety analysis: the simulation of a small break loss of coolant accident in the simplified boiling water reactor using RELAP5/MOD3.1.1  

E-Print Network (OSTI)

The thermal hydraulic simulation code RELAP5/MOD3.1.1 was utilized to model General Electric's Simplified Boiling Water Reactor plant. The model of the plant was subjected to a small break loss of coolant accident occurring from a guillotine shear of the vessel's 2 inch bottom drain line while operating at full power. The accident was compounded by disabling the plant's isolation condenser system and as an initial condition, the loss of site power. The ability of the plant's passive safety systems to respond to this type of accident, and the code's ability to accurately predict the accidents phenomena was investigated. The overall conclusion was that the modeled plant maintained all relevant safety parameters within specifications supplied by General Electric (GE) in their Standard Safety Analysis Report (SAR) for the term of investigation (I 5,500 real time seconds). While no safety related parameters were exceeded, certain trends appearing near the end of the calculation suggest the need for further investigation. Both containment temperature and pressure were increasing when the transient was terminated. The RELAP5 code was able to simulate a representative model of the plant. Calculated steady state parameters for power, flow rates, recirculation ratio, and mass balance were within I% of those specified in the SAR. However the ability of the code to accurately model low flow, condensation heat transfer, in the presence of noncondensable gases should be verified. It is concluded that the simulation's results seem to pass an intuitive engineering inspection. That is to say, flow and heat transfer data calculated by the RELAP5 code reflect expected values and relational interactions are maintained, but that no quantitative significance could be justified. The uniqueness of the plant's design and the interactive nature of the transient, suggest Additional experimental data from test facilities is needed to validate the calculations.

Faust, Christophor Randall

1995-01-01T23:59:59.000Z

368

U.S. Department of Energy Instrumentation and Controls Technology Research for Advanced Small Modular Reactors  

Science Conference Proceedings (OSTI)

Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, key DOE programs have substantial ICHMI RD&D elements to their respective research portfolio. This article describes current ICHMI research to support the development of advanced small modular reactors.

Wood, Richard Thomas [ORNL

2012-01-01T23:59:59.000Z

369

Nuclear reactors built, being built, or planned 1992  

Science Conference Proceedings (OSTI)

Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1992. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. Information is presented on five parts: Civilian, Production, Military, Export and Critical Assembly.

Not Available

1993-07-01T23:59:59.000Z

370

Control rod for a nuclear reactor  

DOE Patents (OSTI)

A control rod assembly for a nuclear reactor is disclosed having a remotely disengageable coupling between the control rod and the control rod drive shaft. The coupling is actuated by first lowering then raising the drive shaft. The described motion causes axial repositioning of a pin in a grooved rotatable cylinder, each being attached to different parts of the drive shaft which are axially movable relative to each other. In one embodiment, the relative axial motion of the parts of the drive shaft is used either to couple or to uncouple the connection by forcing resilient members attached to the drive shaft into or out of shouldered engagement, respectively, with an indentation formed in the control rod.

Roman, Walter G. (Pittsburgh, PA); Sutton, Jr., Harry G. (Pittsburgh, PA)

1979-01-01T23:59:59.000Z

371

FUEL ELEMENT FOR A NUCLEAR REACTOR  

DOE Patents (OSTI)

A lattice type fissionable fuel structure for a nuclear reactor is described. The fissionable material is formed into a plurality of rod-llke bodies with each encased in a fluid-tight jacket. A plurality of spaced longitudinal fins are mounted on the exterior and extend radially from each jacket, with a portion of the fins extending radially beyond the remainder of the fins. A collar of short length for each body is mounted on the extended fins for spacing the bodies, and adjacent bodies abut each other through these collars. Should distortion of the bodies take place, coilapse of the outer fins is limited by the shorter flns, thereby insuring some coolant flow at all times. (AEC)

Duffy, J.G. Jr.

1961-05-30T23:59:59.000Z

372

FUEL ELEMENT FOR A NUCLEAR REACTOR  

DOE Patents (OSTI)

A lattice-type fissionable fuel structure for a nuclear reactor is offered. The fissionable material is formed into a plurality of rod-like bodies each encased in a fluid-tight jacket. A plurality of spaced longitudinal fins are mounted on the exterior of and extend radially from each jacket, and a portion of the fins extends radially beyond the remainder of the fins. A collar of short lengih for each body is mounted on the extended fins for spacing the bodies, and adjacent bodies abut each other through these collars. Should distortion of the bodies take place, collapse of the outer fins is limited by the shorter fins thereby insuring some coolant flow therethrough at all times.

Duffy, J.G. Jr.

1961-05-30T23:59:59.000Z

373

Nuclear reactor fuel rod attachment system  

DOE Patents (OSTI)

A reusable system for removably attaching a nuclear reactor fuel rod (12) to a support member (14). A locking cap (22) is secured to the fuel rod (12) and a locking strip (24) is fastened to the support member (14). The locking cap (22) has two opposing fingers (24a and 24b) shaped to form a socket having a body portion (26). The locking strip has an extension (36) shaped to rigidly attach to the socket's body portion (26). The locking cap's fingers are resiliently deflectable. For attachment, the locking cap (22) is longitudinally pushed onto the locking strip (24) causing the extension (36) to temporarily deflect open the fingers (24a and 24b) to engage the socket's body portion (26). For removal, the process is reversed.

Christiansen, David W. (Kennewick, WA)

1982-01-01T23:59:59.000Z

374

Nuclear reactor cooling system decontamination reagent regeneration  

DOE Patents (OSTI)

An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

Anstine, Larry D. (San Jose, CA); James, Dean B. (Saratoga, CA); Melaika, Edward A. (Berkeley, CA); Peterson, Jr., John P. (Livermore, CA)

1985-01-01T23:59:59.000Z

375

Uncertainties in the Anti-neutrino Production at Nuclear Reactors  

Science Conference Proceedings (OSTI)

Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in {bar {nu}}{sub e} detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties, and their relevance to reactor {bar {nu}}{sub e} experiments.

Djurcic, Zelimir; Detwiler, Jason A.; Piepke, Andreas; Foster Jr., Vince R.; Miller, Lester; Gratta, Giorgio

2008-08-06T23:59:59.000Z

376

SPRING DRIVEN ACTUATING MECHANISM FOR NUCLEAR REACTOR CONTROL  

DOE Patents (OSTI)

l962. rod in a nuclear reactor to shut it down. The control rod or an extension thereof is wound on a drum as it is withdrawn from the reactor. When an emergency occurs requiring the reactor to be shut down, the drum is released so as to be free to rotate, and the tendency of the control rod or its extension coiled on the drum to straighten itself is used for quickly returning the control rod to the reactor. (AEC)

Bevilacqua, F.; Uecker, D.F.; Groh, E.F.

1962-01-23T23:59:59.000Z

377

Advanced High Temperature Reactor Neutronic Core Design  

Science Conference Proceedings (OSTI)

The AHTR is a 3400 MW(t) FHR class reactor design concept intended to serve as a central generating station type power plant. While significant technology development and demonstration remains, the basic design concept appears sound and tolerant of much of the remaining performance uncertainty. No fundamental impediments have been identified that would prevent widespread deployment of the concept. This paper focuses on the preliminary neutronic design studies performed at ORNL during the fiscal year 2011. After a brief presentation of the AHTR design concept, the paper summarizes several neutronic studies performed at ORNL during 2011. An optimization study for the AHTR core is first presented. The temperature and void coefficients of reactivity are then analyzed for a few configurations of interest. A discussion of the limiting factors due to the fast neutron fluence follows. The neutronic studies conclude with a discussion of the control and shutdown options. The studies presented confirm that sound neutronic alternatives exist for the design of the AHTR to maintain full passive safety features and reasonable operation conditions.

Ilas, Dan [ORNL; Holcomb, David Eugene [ORNL; Varma, Venugopal Koikal [ORNL

2012-01-01T23:59:59.000Z

378

Advanced reactor design study. Assessing nonbackfittable concepts for improving uranium utilization in light water reactors  

Science Conference Proceedings (OSTI)

The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are too costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized.

Fleischman, R.M.; Goldsmith, S.; Newman, D.F.; Trapp, T.J.; Spinrad, B.I.

1981-09-01T23:59:59.000Z

379

Weld monitor and failure detector for nuclear reactor system  

DOE Patents (OSTI)

Critical but inaccessible welds in a nuclear reactor system are monitored throughout the life of the reactor by providing small aperture means projecting completely through the reactor vessel wall and also through the weld or welds to be monitored. The aperture means is normally sealed from the atmosphere within the reactor. Any incipient failure or cracking of the weld will cause the environment contained within the reactor to pass into the aperture means and thence to the outer surface of the reactor vessel where its presence is readily detected.

Sutton, Jr., Harry G. (Mt. Lebanon, PA)

1987-01-01T23:59:59.000Z

380

Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary to Visit Georgia Nuclear Reactor Site and Secretary to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy February 13, 2012 - 6:16pm Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Secretary Steven Chu will visit the Vogtle nuclear power plant in Waynesboro, Georgia, and Oak Ridge National Laboratory on Wednesday, February 15 to highlight steps the Obama Administration is taking to restart America's nuclear energy industry. In Waynesboro, Secretary Chu will join Southern Company CEO Thomas A. Fanning, Georgia Power CEO W. Paul Bowers, and local leaders for a tour of Vogtle units 3 and 4 -- the site of the first two new nuclear power units

Note: This page contains sample records for the topic "advanced nuclear reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The role of actinide burning and the Integral Fast Reactor in the future of nuclear power  

Science Conference Proceedings (OSTI)

A preliminary assessment is made of the potential role of actinide burning and the Integral Fast Reactor (IFR) in the future of nuclear power. The development of a usable actinide burning strategy could be an important factor in the acceptance and implementation of a next generation of nuclear power. First, the need for nuclear generating capacity is established through the analysis of energy and electricity demand forecasting models which cover the spectrum of bias from anti-nuclear to pro-nuclear. The analyses take into account the issues of global warming and the potential for technological advances in energy efficiency. We conclude, as do many others, that there will almost certainly be a need for substantial nuclear power capacity in the 2000--2030 time frame. We point out also that any reprocessing scheme will open up proliferation-related questions which can only be assessed in very specific contexts. The focus of this report is on the fuel cycle impacts of actinide burning. Scenarios are developed for the deployment of future nuclear generating capacity which exploit the advantages of actinide partitioning and actinide burning. Three alternative reactor designs are utilized in these future scenarios: The Light Water Reactor (LWR); the Modular Gas-Cooled Reactor (MGR); and the Integral Fast Reactor (FR). Each of these alternative reactor designs is described in some detail, with specific emphasis on their spent fuel streams and the back-end of the nuclear fuel cycle. Four separation and partitioning processes are utilized in building the future nuclear power scenarios: Thermal reactor spent fuel preprocessing to reduce the ceramic oxide spent fuel to metallic form, the conventional PUREX process, the TRUEX process, and pyrometallurgical reprocessing.

Hollaway, W.R.; Lidsky, L.M.; Miller, M.M.

1990-12-01T23:59:59.000Z

382

NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEAMS: The Nuclear Energy Advanced NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program The Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program is developing a simulation tool kit using leading-edge computational methods that will accelerate the development and deployment of nuclear power technologies that employ enhanced safety and security features, produce power more cost-effectively, and utilize natural resources more efficiently. The NEAMS ToolKit

383

The impact of passive safety systems on desirability of advanced light water reactors  

E-Print Network (OSTI)

This work investigates whether the advanced light water reactor designs with passive safety systems are more desirable than advanced reactor designs with active safety systems from the point of view of uncertainty in the ...

Eul, Ryan C

2006-01-01T23:59:59.000Z

384

FUNDAMENTALS IN THE OPERATION OF NUCLEAR TEST REACTORS. VOLUME 1. REACTOR SCIENCE AND TECHNOLOGY  

SciTech Connect

A resume of nuclear physics basic to reactor operation precedes discussion of aspects of reactor physics, engineering, chemistry, metallurgy, instrumentation, control, kinetics, and safety. The object is to provide an approach to and understanding of problems in irradiation test programs in the Materials Testing and Engineering Test Reactors. (D.C.W.)

1963-06-01T23:59:59.000Z

385

Providing the Basis for Innovative Improvements in Advanced LWR Reactor Passive Safety Systems Design: An Educational R&D Project  

SciTech Connect

This project characterizes typical two-phase stratified flow conditions in advanced water reactor horizontal pipe sections, following activation of passive cooling systems. It provides (1) a means to educate nuclear engineering students regarding the importance of two-phase stratified flow in passive cooling systems to the safety of advanced reactor systems and (2) describes the experimental apparatus and process to measure key parameters essential to consider when designing passive emergency core cooling flow paths that may encounter this flow regime. Based on data collected, the state of analysis capabilities can be determined regarding stratified flow in advanced reactor systems and the best paths forward can be identified to ensure that the nuclear industry can properly characterize two-phase stratified flow in passive emergency core cooling systems.

Brian G. Williams; Jim C. P. Liou; Hiral Kadakia; Bill Phoenix; Richard R. Schultz

2007-02-27T23:59:59.000Z

386

The Advanced High-Temperature Reactor (AHTR) for Producing Hydrogen to Manufacture Liquid Fuels  

DOE Green Energy (OSTI)

Conventional world oil production is expected to peak within a decade. Shortfalls in production of liquid fuels (gasoline, diesel, and jet fuel) from conventional oil sources are expected to be offset by increased production of fuels from heavy oils and tar sands that are primarily located in the Western Hemisphere (Canada, Venezuela, the United States, and Mexico). Simultaneously, there is a renewed interest in liquid fuels from biomass, such as alcohol; but, biomass production requires fertilizer. Massive quantities of hydrogen (H2) are required (1) to convert heavy oils and tar sands to liquid fuels and (2) to produce fertilizer for production of biomass that can be converted to liquid fuels. If these liquid fuels are to be used while simultaneously minimizing greenhouse emissions, nonfossil methods for the production of H2 are required. Nuclear energy can be used to produce H2. The most efficient methods to produce H2 from nuclear energy involve thermochemical cycles in which high-temperature heat (700 to 850 C) and water are converted to H2 and oxygen. The peak nuclear reactor fuel and coolant temperatures must be significantly higher than the chemical process temperatures to transport heat from the reactor core to an intermediate heat transfer loop and from the intermediate heat transfer loop to the chemical plant. The reactor temperatures required for H2 production are at the limits of practical engineering materials. A new high-temperature reactor concept is being developed for H2 and electricity production: the Advanced High-Temperature Reactor (AHTR). The fuel is a graphite-matrix, coated-particle fuel, the same type that is used in modular high-temperature gas-cooled reactors (MHTGRs). The coolant is a clean molten fluoride salt with a boiling point near 1400 C. The use of a liquid coolant, rather than helium, reduces peak reactor fuel and coolant temperatures 100 to 200 C relative to those of a MHTGR. Liquids are better heat transfer fluids than gases and thus reduce three temperature losses in the system associated with (1) heat transfer from the fuel to the reactor coolant, (2) temperature rise across the reactor core, and (3) heat transfer across the heat exchangers between the reactor and H2 production plant. Lowering the peak reactor temperatures and thus reducing the high-temperature materials requirements may make the AHTR the enabling technology for low-cost nuclear hydrogen production.

Forsberg, C.W.; Peterson, P.F.; Ott, L.

2004-10-06T23:59:59.000Z

387

Maria Research Reactor loaded with LEU - Otwock, Poland | National Nuclear  

National Nuclear Security Administration (NNSA)

Maria Research Reactor loaded with LEU - Otwock, Poland | National Nuclear Maria Research Reactor loaded with LEU - Otwock, Poland | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Video Gallery > Maria Research Reactor loaded with LEU - ... Maria Research Reactor loaded with LEU - Otwock, Poland Maria Research Reactor loaded with LEU - Otwock, Poland

388

Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview  

SciTech Connect

Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

2010-01-01T23:59:59.000Z

389

Nuclear reactors built, being built, or planned, 1991  

Science Conference Proceedings (OSTI)

This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1991. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is an American company -- working either independently or in cooperation with a foreign company (Part 4, in each section). Critical assembly refers to an assembly of fuel and assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

Simpson, B.

1992-07-01T23:59:59.000Z

390

January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The ANTT Subcommittee met in Washington on Dec 4-5, 2002 to review progress in the transmutation program, and to learn about major organizational changes that affect the management of the program. The NE's new Advanced Nuclear Research Office (NE-20) now oversees both the transmutation program (ANTT) and the Generation-IV program (GEN-IV). antt14Jan_03.pdf More Documents & Publications October 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

391

A safety and dynamics analysis of the subcritical advanced burner reactor: SABR.  

E-Print Network (OSTI)

??As the United States expands its quantity of nuclear reactors in the near future, the amount of spent nuclear fuel (SNF) will also increase. Closing… (more)

Sumner, Tyler Scott

2008-01-01T23:59:59.000Z

392

The ORNL High Flux Isotope Reactor and New Advanced Fuel Testing Capabilities  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy s High Flux Isotope Reactor (HFIR), located at the Oak Ridge National Laboratory (ORNL), was originally designed (in the 1960s) primarily as a part of the overall program to produce transuranic isotopes for use in the heavy-element research program of the United States. Today, the reactor is a highly versatile machine, producing medical and transuranic isotopes and performing materials test experimental irradiations and neutron-scattering experiments. The ability to test advanced fuels and cladding materials in a thermal neutron spectrum in the United States is limited, and a fast-spectrum irradiation facility does not currently exist in this country. The HFIR has a distinct advantage for consideration as a fuel/cladding irradiation facility because of the extremely high neutron fluxes that this reactor provides over the full thermal- to fast-neutron energy range. New test capabilities have been developed that will allow testing of advanced nuclear fuels and cladding materials in the HFIR under prototypic light-water reactor (LWR) and fast-reactor (FR) operating conditions.

Ott, Larry J [ORNL; McDuffee, Joel Lee [ORNL

2011-01-01T23:59:59.000Z

393

Advanced Light Water Reactor utility requirements document. Part 1, Executive summary  

SciTech Connect

The ALWR Requirements Document is a primary work product of the EPRI Program. This document is an extensive compilation of the utility requirements for design, construction and performance of advanced light water reactor power plants for the 1990s and beyond. The Requirements Document`s primary emphasis is on resolution of significant problems experienced at existing nuclear power plants. It is intended to be used with companion documents, such as utility procurement specifications, which would cover the remaining detailed technical requirements applicable to new plant projects. The ALWR Requirements Document consists of several major parts. This volume is Part I, The Executive Summary. It is intended to serve as a concise, management level synopsis of advanced light water reactors including design objectives and philosophy, overall configuration and features and the steps necessary to proceed from the conceptual design stage to a completed, functioning power plant.

1986-06-01T23:59:59.000Z

394

How Brazil spun the atom [nuclear power reactors  

Science Conference Proceedings (OSTI)

This paper describes the Resende nuclear complex in Brazil which will house hundreds of uranium centrifuges to produce enriched uranium that will fuel its nuclear power reactors. By consistently fulfilling its obligations as a party to the Nuclear Non-Proliferation ...

E. Guizzo

2006-03-01T23:59:59.000Z

395

Plutonium Discharge Rates and Spent Nuclear Fuel Inventory Estimates for Nuclear Reactors Worldwide  

Science Conference Proceedings (OSTI)

This report presents a preliminary survey and analysis of the five primary types of commercial nuclear power reactors currently in use around the world. Plutonium mass discharge rates from the reactors’ spent fuel at reload are estimated based on a simple methodology that is able to use limited reactor burnup and operational characteristics collected from a variety of public domain sources. Selected commercial reactor operating and nuclear core characteristics are also given for each reactor type. In addition to the worldwide commercial reactors survey, a materials test reactor survey was conducted to identify reactors of this type with a significant core power rating. Over 100 material or research reactors with a core power rating >1 MW fall into this category. Fuel characteristics and spent fuel inventories for these material test reactors are also provided herein.

Brian K. Castle; Shauna A. Hoiland; Richard A. Rankin; James W. Sterbentz

2012-09-01T23:59:59.000Z

396

Korean Development of Advanced Thermal-Hydraulic Codes for Water Reactors and HTGRs: Space and Gamma  

Science Conference Proceedings (OSTI)

Technical Paper / Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Thermal Hydraulics

Hee Cheon No; Sang Jun Ha; Kyung Doo Kim; Hong Sik Lim; Eo Hwak Lee; Hyung Gon Jin

397

Economics and utilization of thorium in nuclear reactors. Technical annexes 1 and 2  

SciTech Connect

An assessment of the impact of utilizing the /sup 233/U/thorium fuel cycle in the U.S. nuclear economy is strongly dependent upon several decisions involving nuclear energy policy. These decisions include: (1) to recycle or not recycle fissile material; (2) if fissile material is recycled, to recycle plutonium, /sup 233/U, or both; and (3) to deploy or not to deploy advanced reactor designs such as Fast Breeder Reactors (FBR's), High Temperature Gas Reactors (HTGR's), and Canadian Deuterium Uranium Reactors (CANDU's). This report examines the role of thorium in the context of the above policy decisions while focusing special attention on economics and resource utilization.

1978-05-01T23:59:59.000Z

398

Advances in process intensification through multifunctional reactor engineering  

SciTech Connect

This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes critical to process intensification and implementation in commercial applications. Physics of the heat and mass transfer and chemical kinetics and how these processes are ultimately scaled were investigated. Specifically, we progressed the knowledge and tools required to scale a multifunctional reactor for acid-catalyzed C4 paraffin/olefin alkylation to industrial dimensions. Understanding such process intensification strategies is crucial to improving the energy efficiency and profitability of multifunctional reactors, resulting in a projected energy savings of 100 trillion BTU/yr by 2020 and a substantial reduction in the accompanying emissions.

O'Hern, T. J.

2012-03-01T23:59:59.000Z

399

Research Reactor Conversion | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

400

Advanced nuclear plant control room complex  

DOE Patents (OSTI)

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nuclear safety as applied to space power reactor systems  

SciTech Connect

Current space nuclear power reactor safety issues are discussed with respect to the unique characteristics of these reactors. An approach to achieving adequate safety and a perception of safety is outlined. This approach calls for a carefully conceived safety program which makes uses of lessons learned from previous terrestrial power reactor development programs. This approach includes use of risk analyses, passive safety design features, and analyses/experiments to understand and control off-design conditions. The point is made that some recent accidents concerning terrestrial power reactors do not imply that space power reactors cannot be operated safety.

Cummings, G.E.

1987-01-01T23:59:59.000Z

402

Passive cooling safety system for liquid metal cooled nuclear reactors  

DOE Patents (OSTI)

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA); Hui, Marvin M. (Sunnyvale, CA); Berglund, Robert C. (Saratoga, CA)

1991-01-01T23:59:59.000Z

403

Indirect passive cooling system for liquid metal cooled nuclear reactors  

DOE Patents (OSTI)

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1990-01-01T23:59:59.000Z

404

THE ADVANCED TEST REACTOR-ATR FINAL CONCEPTUAL DESIGN  

SciTech Connect

The results of a study are presented which provided additional experimental-loop irradiation space for the AECDRD testing program. It was a premise that the experiments allocated to this reactor were those which could not be accommodated in the MTR, ETR, or in existing commercial test reactors. To accomplish the design objectives called for a reactor producing perturbed neutron fluxes exceeding 1O/sup 15/ thermal n/cm/sup 2/-sec and 1.5 x 1O/sup 15/ epithermal n/cm/sup 2/-sec. To accommodate the experimental samples, the reactor fuel core is four feet long in the direction of experimental loops. This is twice the length of the MTR core and a third longer than the ETR core. The vertical arrangement of reactor and experiments permits the use of loops penetrating the top cap of the reactor vessel running straight and vertically through the reactor core. The design offers a high degree of accessibility of the exterior portions of the experiments and offers very convenient handling and discharge of experiments. Since the loops are to be integrated into the reactor design and the in-pile portions installed before reactor start-up, it is felt that many of the problems encountered in MTR and ETR experience will cease to exist. Installation of the loops prior to startup will have an added advantage in that the flux variations experienced in experiments in ETR every time a new loop is installed will be absent. The Advanced Test Reactor has a core configuration that provides essentially nine flux-trap regions in a geometry that is almost optimum for cylindrical experiments. The geometry is similar to that of a fourleaf clover with one flux trap in each leaf, one at the intersection of the leaves, and one between each pair of leaves. The nominal power level is 250 Mw. The study was carried out in enough detail to permit the establishment of the design parameters and to develop the power requirement which, conservatively rated, will definitely reach the flux specifications. A critical mockup of an arrangement similar to ATR was loaded into the Engineering Test Reactor Critical Facility. (auth)

deBoisblanc, D.R. et al

1960-11-01T23:59:59.000Z

405

A Blueprint for GNEP Advanced Burner Reactor Startup Fuel Fabrication Facility  

SciTech Connect

The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the startup fuel for 10-15 years and would take 3 to 5 years to construct.

S. Khericha

2010-12-01T23:59:59.000Z

406

Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Obtains Patent for Nuclear Reactor Sodium Cleanup Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment March 28, 2013 - 12:00pm Addthis CWI engineers Jeff Jones, David Tolman, right, and Kirk Dooley (seated) developed a treatment to safely dissolve a bicarbonate crust and treat and remove the sodium in the Experimental Breeder Reactor-II at the Idaho site. CWI engineers Jeff Jones, David Tolman, right, and Kirk Dooley (seated) developed a treatment to safely dissolve a bicarbonate crust and treat and remove the sodium in the Experimental Breeder Reactor-II at the Idaho site. Piping in the east boiler basement of the sodium processing building was color coded for easy identification. Orange indicates sodium and green identifies cooling water.

407

Nuclear reactors built, being built, or planned 1996  

Science Conference Proceedings (OSTI)

This publication contains unclassified information about facilities, built, being built, or planned in the United States for domestic use or export as of December 31, 1996. The Office of Scientific and Technical Information, U.S. Department of Energy, gathers this information annually from Washington headquarters, and field offices of DOE; from the U.S. Nuclear Regulatory Commission (NRC); from the U. S. reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from U.S. and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled.

NONE

1997-08-01T23:59:59.000Z

408

Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment March 28, 2013 - 12:00pm Addthis CWI engineers Jeff Jones, David Tolman, right, and Kirk Dooley (seated) developed a treatment to safely dissolve a bicarbonate crust and treat and remove the sodium in the Experimental Breeder Reactor-II at the Idaho site. CWI engineers Jeff Jones, David Tolman, right, and Kirk Dooley (seated) developed a treatment to safely dissolve a bicarbonate crust and treat and remove the sodium in the Experimental Breeder Reactor-II at the Idaho site. Piping in the east boiler basement of the sodium processing building was color coded for easy identification. Orange indicates sodium and green identifies cooling water.

409

R. Shane Johnson, Associate Director Office of Advanced Nuclear Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Nuclear Research Advanced Nuclear Research September 30, 2002 Generation IV International Forum Generation IV International Forum Presentation to the Nuclear Energy Research Advisory Committee Office of Nuclear Energy, Science and Technology Generation IV International Forum Generation IV International Forum 6 Government-sanctioned organization working together to plan the future of nuclear energy * Chartered in July 2002 * Conduct joint R&D on next-generation nuclear energy systems * Voluntary member participation in specific projects 6 Observer Organizations * OECD-NEA * IAEA * Euratom South Korea U.S.A. Argentina Brazil Canada France Japan South Africa United Kingdom Switzerland Office of Nuclear Energy, Science and Technology

410

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and...

411

Development of Ceramic Waste Forms for an Advanced Nuclear ...  

Science Conference Proceedings (OSTI)

Presentation Title, Development of Ceramic Waste Forms for an Advanced Nuclear Fuel Cycle. Author(s), James C. Marra, Amanda Billings, Kyle Brinkman,  ...

412

Basic Research Needs for Advanced Nuclear Energy Systems - TMS  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems. Summarizes current status ...

413

University Program in Advanced Technology | National Nuclear Security  

National Nuclear Security Administration (NNSA)

University Program in Advanced Technology | National Nuclear Security University Program in Advanced Technology | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog University Program in Advanced Technology Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

414

Nano-particles for Spent Nuclear Fuel Separation  

Science Conference Proceedings (OSTI)

Symposium, Materials and Fuels for the Current and Advanced Nuclear Reactors III ... Development and Testing Advanced Ferritic Steels for Fast Reactor ...

415

Proceedings of the 2006 international congress on advances in nuclear power plants - ICAPP'06  

SciTech Connect

Following the highly successful ICAPP'05 meeting held in Seoul Korea, the 2006 International Congress on Advances in Nuclear Power Plants brought together international experts of the nuclear industry involved in the operation, development, building, regulation and research related to Nuclear Power Plants. The program covers the full spectrum of Nuclear Power Plant issues from design, deployment and construction of plants to research and development of future designs and advanced systems. The program covers lessons learned from power, research and demonstration reactors from over 50 years of experience with operation and maintenance, structures, materials, technical specifications, human factors, system design and reliability. The program by technical track deals with: - 1. Water-Cooled Reactor Programs and Issues Evolutionary designs, innovative, passive, light and heavy water cooled reactors; issues related to meeting medium term utility needs; design and regulatory issues; business, political and economic challenges; infrastructure limitations and improved construction techniques including modularization. - 2. High Temperature Gas Cooled Reactors Design and development issues, components and materials, safety, reliability, economics, demonstration plants and environmental issues, fuel design and reliability, power conversion technology, hydrogen production and other industrial uses; advanced thermal and fast reactors. - 3. Long Term Reactor Programs and Strategies Reactor technology with enhanced fuel cycle features for improved resource utilization, waste characteristics, and power conversion capabilities. Potential reactor designs with longer development times such as, super critical water reactors, liquid metal reactors, gaseous and liquid fuel reactors, Gen IV, INPRO, EUR and other programs. - 4. Operation, Performance and Reliability Management Training, O and M costs, life cycle management, risk based maintenance, operational experiences, performance and reliability improvements, outage optimization, human factors, plant staffing, outage reduction features, major component reliability, repair and replacement, in-service inspection, and codes and standards. - 5. Plant Safety Assessment and Regulatory Issues Transient and accident performance including LOCA and non-LOCA, severe accident analysis, impact of risk informed changes, accident management, assessment and management of aging, degradation and damage, life extension lessons from plant operations, probabilistic safety assessment, plant safety analysis, reliability engineering, operating and future plants. - 6. Thermal Hydraulic Analysis and Testing Phenomena identification and ranking, computer code scaling applicability and uncertainty, containment thermal hydraulics, component and integral system tests, improved code development and qualification, single and two phase flow; advanced computational thermal hydraulic methods. - 7. Core and Fuel Cycle Concepts and Experiments Core physics, advances in computational reactor analysis, in-core fuel management, mixed-oxide fuel, thorium fuel cycle, low moderation cores, high conversion reactor designs, particle and pebble bed fuel design, testing and reliability; fuel cycle waste minimization, recycle, storage and disposal. - 8. Materials and Structural Issues Fuel, core, RPV and internals structures, advanced materials issues and fracture mechanics, concrete and steel containments, space structures, analysis, design and monitoring for seismic, dynamic and extreme accidents; irradiation issues and materials for new plants. - 9. Nuclear Energy and Sustainability including Hydrogen, Desalination and Other Applications Environmental impact of nuclear and alternative systems, spent fuel dispositions and transmutation systems, fully integrated fuel cycle and symbiotic nuclear power systems, application of advanced designs to non-power applications such as the production of hydrogen, sea water desalination, heating and other co-generation applications. - 10. Near Term Issues (New) Applies to plants that have a significa

NONE

2006-07-01T23:59:59.000Z

416

Fuel assembly transfer basket for pool type nuclear reactor vessels  

DOE Patents (OSTI)

A fuel assembly transfer basket for a pool type, liquid metal cooled nuclear reactor having a side access loading and unloading port for receiving and relinquishing fuel assemblies during transfer.

Fanning, Alan W. (San Jose, CA); Ramsour, Nicholas L. (San Jose, CA)

1991-01-01T23:59:59.000Z

417

Solid0Core Heat-Pipe Nuclear Batterly Type Reactor  

DOE Green Energy (OSTI)

This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

Ehud Greenspan

2008-09-30T23:59:59.000Z

418

Observer-based fault detection for nuclear reactors  

E-Print Network (OSTI)

This is a study of fault detection for nuclear reactor systems. Basic concepts are derived from fundamental theories on system observers. Different types of fault- actuator fault, sensor fault, and system dynamics fault ...

Li, Qing, 1972-

2001-01-01T23:59:59.000Z

419

A Three Dimensional Heterogeneous Coarse Mesh Transport Method for Reactor Calculations.  

E-Print Network (OSTI)

??Current advancements in nuclear reactor core design are pushing reactor cores towards greater heterogeneity in an attempt to make nuclear power more sustainable in terms… (more)

Forget, Benoit

2006-01-01T23:59:59.000Z

420

Study of Pu consumption in Advanced Light Water Reactors. Evaluation of GE Advanced Boiling Water Reactor plants  

SciTech Connect

Timely disposal of the weapons plutonium is of paramount importance to permanently safeguarding this material. GE`s 1300 MWe Advanced Boiling Water Reactor (ABWR) has been designed to utilize fill] core loading of mixed uranium-plutonium oxide fuel. Because of its large core size, a single ABWR reactor is capable of disposing 100 metric tons of plutonium within 15 years of project inception in the spiking mode. The same amount of material could be disposed of in 25 years after the start of the project as spent fuel, again using a single reactor, while operating at 75 percent capacity factor. In either case, the design permits reuse of the stored spent fuel assemblies for electrical energy generation for the remaining life of the plant for another 40 years. Up to 40 percent of the initial plutonium can also be completely destroyed using ABWRS, without reprocessing, either by utilizing six ABWRs over 25 years or by expanding the disposition time to 60 years, the design life of the plants and using two ABWRS. More complete destruction would require the development and testing of a plutonium-base fuel with a non-fertile matrix for an ABWR or use of an Advanced Liquid Metal Reactor (ALMR). The ABWR, in addition, is fully capable of meeting the tritium target production goals with already developed target technology.

Not Available

1993-05-13T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Development of Mechanistic Modeling Capabilities for Local Neutronically-Coupled Flow-Induced Instabilities in Advanced Water-Cooled Reactors  

SciTech Connect

The major research objectives of this project included the formulation of flow and heat transfer modeling framework for the analysis of flow-induced instabilities in advanced light water nuclear reactors such as boiling water reactors. General multifield model of two-phase flow, including the necessary closure laws. Development of neurton kinetics models compatible with the proposed models of heated channel dynamics. Formulation and encoding of complete coupled neutronics/thermal-hydraulics models for the analysis of spatially-dependent local core instabilities. Computer simulations aimed at testing and validating the new models of reactor dynamics.

Michael Podowski

2009-11-30T23:59:59.000Z

422

Liquid metal cooled nuclear reactors with passive cooling system  

SciTech Connect

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

Hunsbedt, Anstein (Los Gatos, CA); Fanning, Alan W. (San Jose, CA)

1991-01-01T23:59:59.000Z

423

Nuclear reactors built, being built, or planned: 1995  

Science Conference Proceedings (OSTI)

This report contains unclassified information about facilities built, being built, or planned in the US for domestic use or export as of December 31, 1995. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company--working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

NONE

1996-08-01T23:59:59.000Z

424

Nuclear reactors built, being built, or planned, 1994  

Science Conference Proceedings (OSTI)

This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1994. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; tables of data for reactors operating, being built, or planned; and tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company -- working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

NONE

1995-07-01T23:59:59.000Z

425

CRC handbook of nuclear reactors calculations. Vol. I  

Science Conference Proceedings (OSTI)

This handbook breaks down the complex field of nuclear reactor calculations into major steps. Each step presents a detailed analysis of the problems to be solved, the parameters involved, and the elaborate computer programs developed to perform the calculations. This book bridges the gap between nuclear reactor theory and the implementation of that theory, including the problems to be encountered and the level of confidence that should be given to the methods described.

Ronen, Y.

1986-01-01T23:59:59.000Z

426

Radionuclides in United States commercial nuclear power reactors  

SciTech Connect

In the next ten to twenty years, many of the commercial nuclear power reactors in the United States will be reaching their projected lifetime of forty years. As these power plants are decommissioned, it seems prudent to consider the recycling of structural materials such as stainless steel. Some of these materials and components have become radioactive through either nuclear activation of the elements within the components or surface contamination with radioactivity form the operational activities. In order to understand the problems associated with recycling stainless steel from decommissioned nuclear power reactors, it is necessary to have information on the radionuclides expected on or in the contaminated materials. A study has been conducted of radionuclide contamination information that is available for commercial nuclear power reactors in the United States. There are two types of nuclear power reactors in commercial use in the United States, pressurized water reactors (PWRs) and boiling water reactors (BWRs). Before presenting radionuclide activities information, a brief discussion is given on the major components and operational differences for the PWRs and BWRs. Radionuclide contamination information is presented from 11 PWRs and over 8 BWRs. These data include both the radionuclides within the circulating reactor coolant water as well as radionuclide contamination on and within component parts.

Bechtold, T.E. [ed.] [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Dyer, N.C. [Oregon Graduate Inst. of Science and Technology, Beaverton, OR (United States)

1994-01-01T23:59:59.000Z

427

Composite Materials under Extreme Radiation and Temperature Environments of the Next Generation Nuclear Reactors  

Science Conference Proceedings (OSTI)

In the nuclear energy renaissance, driven by fission reactor concepts utilizing very high temperatures and fast neutron spectra, materials with enhanced performance that exceeds are expected to play a central role. With the operating temperatures of the Generation III reactors bringing the classical reactor materials close to their performance limits there is an urgent need to develop and qualify new alloys and composites. Efforts have been focused on the intricate relations and the high demands placed on materials at the anticipated extreme states within the next generation fusion and fission reactors which combine high radiation fluxes, elevated temperatures and aggressive environments. While nuclear reactors have been in operation for several decades, the structural materials associated with the next generation options need to endure much higher temperatures (1200 C), higher neutron doses (tens of displacements per atom, dpa), and extremely corrosive environments, which are beyond the experience on materials accumulated to-date. The most important consideration is the performance and reliability of structural materials for both in-core and out-of-core functions. While there exists a great body of nuclear materials research and operating experience/performance from fission reactors where epithermal and thermal neutrons interact with materials and alter their physio-mechanical properties, a process that is well understood by now, there are no operating or even experimental facilities that will facilitate the extreme conditions of flux and temperature anticipated and thus provide insights into the behaviour of these well understood materials. Materials, however, still need to be developed and their interaction and damage potential or lifetime to be quantified for the next generation nuclear energy. Based on material development advances, composites, and in particular ceramic composites, seem to inherently possess properties suitable for key functions within the operating envelope of both fission and fusion reactors. In advanced fission reactors composite materials are being designed in an effort to extend the life and improve the reliability of fuel rod cladding as well as structural materials. Composites are being considered for use as core internals in the next generation of gas-cooled reactors. Further, next-generation plasma-fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER) will rely on the capabilities of advanced composites to safely withstand extremely high neutron fluxes while providing superior thermal shock resistance.

Simos, N.

2011-05-01T23:59:59.000Z

428

October 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, Report of the ADVANCED NUCLEAR TRANSFORMATION 3, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE October 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The committee met in Washington in Sept 16-17 to review progress in the program with respect to a changed set of mission priorities. Our last meeting took place in Dec 2002 after the reorganization that had place the Advanced Fuel Cycle Initiative (AFCI) and GEN IV program together in the Advanced Nuclear Reserach Office (AN-20). Since mission priorities have been evolving, the committee felt that it should wait unti they have settled down before we met again. We have kept in touch during the process,

429

Advanced Instrumentation and Control Methods for Small and Medium Reactors with IRIS Demonstration  

SciTech Connect

Development and deployment of small-scale nuclear power reactors and their maintenance, monitoring, and control are part of the mission under the Small Modular Reactor (SMR) program. The objectives of this NERI-consortium research project are to investigate, develop, and validate advanced methods for sensing, controlling, monitoring, diagnosis, and prognosis of these reactors, and to demonstrate the methods with application to one of the proposed integral pressurized water reactors (IPWR). For this project, the IPWR design by Westinghouse, the International Reactor Secure and Innovative (IRIS), has been used to demonstrate the techniques developed under this project. The research focuses on three topical areas with the following objectives. Objective 1 - Develop and apply simulation capabilities and sensitivity/uncertainty analysis methods to address sensor deployment analysis and small grid stability issues. Objective 2 - Develop and test an autonomous and fault-tolerant control architecture and apply to the IRIS system and an experimental flow control loop, with extensions to multiple reactor modules, nuclear desalination, and optimal sensor placement strategy. Objective 3 - Develop and test an integrated monitoring, diagnosis, and prognosis system for SMRs using the IRIS as a test platform, and integrate process and equipment monitoring (PEM) and process and equipment prognostics (PEP) toolboxes. The research tasks are focused on meeting the unique needs of reactors that may be deployed to remote locations or to developing countries with limited support infrastructure. These applications will require smaller, robust reactor designs with advanced technologies for sensors, instrumentation, and control. An excellent overview of SMRs is described in an article by Ingersoll (2009). The article refers to these as deliberately small reactors. Most of these have modular characteristics, with multiple units deployed at the same plant site. Additionally, the topics focus on meeting two of the eight needs outlined in the recently published 'Technology Roadmap on Instrumentation, Control, and Human-Machine Interface (ICHMI) to Support DOE Advanced Nuclear Energy Programs' which was created 'to provide a systematic path forward for the integration of new ICHMI technologies in both near-term and future nuclear power plants and the reinvigoration of the U.S. nuclear ICHMI community and capabilities.' The research consortium is led by The University of Tennessee (UT) and is focused on three interrelated topics: Topic 1 (simulator development and measurement sensitivity analysis) is led by Dr. Mike Doster with Dr. Paul Turinsky of North Carolina State University (NCSU). Topic 2 (multivariate autonomous control of modular reactors) is led by Dr. Belle Upadhyaya of the University of Tennessee (UT) and Dr. Robert Edwards of Penn State University (PSU). Topic 3 (monitoring, diagnostics, and prognostics system development) is led by Dr. Wes Hines of UT. Additionally, South Carolina State University (SCSU, Dr. Ken Lewis) participated in this research through summer interns, visiting faculty, and on-campus research projects identified throughout the grant period. Lastly, Westinghouse Science and Technology Center (Dr. Mario Carelli) was a no-cost collaborator and provided design information related to the IRIS demonstration platform and defining needs that may be common to other SMR designs. The results of this research are reported in a six-volume Final Report (including the Executive Summary, Volume 1). Volumes 2 through 6 of the report describe in detail the research and development under the topical areas. This volume serves to introduce the overall NERI-C project and to summarize the key results. Section 2 provides a summary of the significant contributions of this project. A list of all the publications under this project is also given in Section 2. Section 3 provides a brief summary of each of the five volumes (2-6) of the report. The contributions of SCSU are described in Section 4, including a summary of undergraduate research exper

J. Wesley Hines; Belle R. Upadhyaya; J. Michael Doster; Robert M. Edwards; Kenneth D. Lewis; Paul Turinsky; Jamie Coble

2011-05-31T23:59:59.000Z

430

The Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

In 2007, the Advanced Test Reactor (ATR), located at Idaho National Laboratory (INL), was designated by the Department of Energy (DOE) as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by approved researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide those researchers with the best ideas access to the most advanced test capability, regardless of the proposer’s physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, obtained access to additional PIE equipment, taken steps to enable the most advanced post-irradiation analysis possible, and initiated an educational program and digital learning library to help potential users better understand the critical issues in reactor technology and how a test reactor facility could be used to address this critical research. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program invited universities to nominate their capability to become part of a broader user facility. Any university is eligible to self-nominate. Any nomination is then peer reviewed to ensure that the addition of the university facilities adds useful capability to the NSUF. Once added to the NSUF team, the university capability is then integral to the NSUF operations and is available to all users via the proposal process. So far, six universities have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these university capabilities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user’s technical needs. The current NSUF partners are shown in Figure 1. This article describes the ATR as well as the expanded capabilities, partnerships, and services that allow researchers to take full advantage of this national resource.

Todd R. Allen; Collin J. Knight; Jeff B. Benson; Frances M. Marshall; Mitchell K. Meyer; Mary Catherine Thelen

2011-08-01T23:59:59.000Z

431

Table 3. Nuclear Reactor Characteristics and Operational ...  

U.S. Energy Information Administration (EIA)

Point Beach Nuclear Plant Quad Cities Generating Station R.E. Ginna Nuclear Power Plant PSEG Salem Generating Station Harris South Texas Project PPL ...

432

Enhanced In-Pile Instrumentation at the Advanced Test Reactor  

SciTech Connect

Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper provides an update on this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

Joy Rempe; Darrell Knudson; Joshua Daw; Troy Unruh; Benjamin Chase; Kurt Davis; Robert Schley; Steven Taylor

2012-08-01T23:59:59.000Z

433

Enhanced In-Pile Instrumentation at the Advanced Test Reactor  

Science Conference Proceedings (OSTI)

Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility (NSUF) in 2007 to support the development and deployment of enhanced in-pile sensors. This paper reports results from this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

J. Rempe; D. Knudson; J. Daw; T. Unruh; B. Chase; K. Condie

2011-06-01T23:59:59.000Z

434

Advances in Process Intensification through Multifunctional Reactor Engineering  

SciTech Connect

This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in other technologies.

Timothy O’Hern, Lindsey Evans, Jim Miller, Marcia Cooper, John Torczynski, Donovan Pena, and Walt Gill, SNL, Will Groten, Arvids Judzis, Richard Foley, Larry Smith, and Will Cross, CR& L / CDTECH; T. Vogt, Lummus Technology / CDTECH.

2011-06-27T23:59:59.000Z

435

Advances in Process Intensification through Multifunctional Reactor Engineering  

SciTech Connect

This project was designed to advance the art of process intensifica