Sample records for advanced nuclear power

  1. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect (OSTI)

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01T23:59:59.000Z

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

  2. advanced nuclear power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  3. Economic Benefits of Advanced Materials in Nuclear Power Systems

    SciTech Connect (OSTI)

    Busby, Jeremy T [ORNL

    2009-01-01T23:59:59.000Z

    One of the key obstacles for the commercial deployment of advanced fast reactors (for either transuranic element burning or power generation) is the capital cost. There is a perception of higher capital cost for fast reactor systems than advanced light water reactors (ALWR). However, the cost estimates for a fast reactor come with a large uncertainty due to the fact that far fewer fast reactors have been built than LWR facilities. Furthermore, the large variability of industrial cost estimates complicates accurate comparisons. For example, under the Gen IV program, the Japanese Sodium Fast Reactor (JSFR) has a capital cost estimate that is lower than current LWR s, and considerably lower than that for the PRISM design (which is arguably among the most mature of today s fast reactor designs). Further reductions in capital cost must be made in US fast reactor systems to be considered economically viable. Three key approaches for cost reduction can be pursued. These include design simplifications, new technologies that allow reduced capital costs, and simulation techniques that help optimize system design. While it is plausible that improved materials will provide opportunities for both simplified design and reduced capital cost, the economic benefit of advanced materials has not been quantitatively analyzed. The objective of this work is to examine the potential impact of advanced materials on the capital investment costs of fast nuclear reactors.

  4. Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their

    E-Print Network [OSTI]

    Cummings, Mary "Missy"

    Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their effects on human reliability is critical of complexity leveraging network theory. INTRODUCTION The nuclear power industry in United States has declined

  5. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect (OSTI)

    Per F. Peterson

    2010-03-01T23:59:59.000Z

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  6. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume VIII. Advanced concepts

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The goal of the Nonproliferation Alternative Systems Assessment Program has been to provide recommendations for the development and deployment of more proliferation-resistant civilian nuclear-power systems without jeopardizing the development of nuclear energy. In principle, new concepts for nuclear-power systems could be designed so that materials and facilities would be inherently more proliferation-resistant. Such advanced, i.e., less-developed systems, are the subject of this volume. Accordingly, from a number of advanced concepts that were proposed for evaluation, six representative concepts were selected: the fast mixed-spectrum reactor; the denatured molten-salt reactor; the mixed-flow gaseous-core reactor; the linear-accelerator fuel-regenerator reactor; the ternary metal-fueled electronuclear fuel-producer reactor; and the tokamak fusion-fission hybrid reactor.

  7. Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who

    SciTech Connect (OSTI)

    Forsberg, C.W.; Reich, W.J.

    1991-09-01T23:59:59.000Z

    The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.

  8. Nuclear Power

    E-Print Network [OSTI]

    Vilhena and Bardo E.J. Bodmann Carbon-#1;? in Terrestrial and Aquatic Environment of Ignalina Nuclear Power Plant: Sources of Production, Releases and Dose Estimates #3;?? Jonas Mazeika Impact of radionuclide discharges from Temel?n Nuclear Power... (chapter 5), ? Instrumentation and control (chapter 6), ? Diagnostics (chapter 7), ? Safety evaluation methods (chapters 6, 8, 9 and 10), ? Environment and nuclear power plants (chapters 11 - 15), ? Human factors (chapter 16), ? Software development...

  9. Advanced nuclear fuel

    SciTech Connect (OSTI)

    Terrani, Kurt

    2014-07-14T23:59:59.000Z

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  10. Advanced nuclear fuel

    ScienceCinema (OSTI)

    Terrani, Kurt

    2014-07-15T23:59:59.000Z

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  11. Advanced Nuclear Fuel Cycle Options

    SciTech Connect (OSTI)

    Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

    2010-06-01T23:59:59.000Z

    A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

  12. Nuclear power high technology colloquium: proceedings

    SciTech Connect (OSTI)

    Not Available

    1984-12-10T23:59:59.000Z

    Reports presenting information on technology advancements in the nuclear industry and nuclear power plant functions have been abstracted and are available on the energy data base.

  13. Work Domain Analysis and Operational Concepts for Advanced Nuclear Power Plants

    SciTech Connect (OSTI)

    Jacques Hugo

    2001-02-01T23:59:59.000Z

    The nuclear industry is currently designing and building a new generation of reactors that will differ in important respects from the older generation. Differences in new plants will include different structural, functional, and environmental aspects, all of which are likely to have a significant impact on the way these plants are operated. In order to meet economic and safety objectives, these new reactors will all use advanced technologies to some extent, including new materials and advanced digital instrumentation and control systems. Examples of these advances include distribution of load-following demand among multiple units, different product streams (steam, process heat, or electricity), increased use of passive safety systems, high levels of automation with humans in supervisory roles, integration of computerized procedures for control room and field work, and remote surveillance and on-line monitoring. New technologies will affect not only operational strategies, but will also require a new approach to how functions are allocated to humans or machines to ensure optimal performance. There is still much uncertainty about the effect of large scale changes in plant design on operations and human tasks, such as workload, situation awareness, human reliability, staffing levels, and the appropriate allocation of functions between the crew and various automated plant systems. This uncertainty will remain until sound technical bases are developed for new operational concepts and strategies. Existing human factors and systems engineering design standards and methodologies are not current in terms of human interaction requirements for dynamic automated systems and are no longer suitable for the analysis of evolving operational concepts. Up-to-date models and guidance are required for the development of operational concepts for complex socio-technical systems. Designers need to be able to identify and evaluate specific human factors challenges related to non-traditional concepts of operations, and the associated changes in the allocation of functions to human and system agents. This paper describes how the classical Work Domain Analysis method was adapted to develop operational concept frameworks for new plants. This adaptation of the method is better able to deal with the uncertainty and incomplete information typical of first-of-a-kind designs. Practical examples are provided of the systematic application of the method in the operational analysis of sodium-cooled reactors. Insights from this application and its utility are reviewed and arguments for the formal adoption of Work Domain Analysis as a value-added part of the Systems Engineering process are presented.

  14. Interagency Advanced Power Group, Joint Electrical and Nuclear Working Group, meeting minutes, November 16--17, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    Reports on soldier power R&D review, N-MCT power electronic building blocks, silicon carbide power semiconductor work, and ground based radar were made to the Power Conditioning Panel. An introduction to high temperature electronics needs, research and development was made to the High Temperature Electronics Subcommittee. The Pulse Power Panel received reports on the navy ETC gun, and army pulse power. The Superconductivity Panel received reports on high-tc superconducting wires, superconducting magnetic energy storage, and superconducting applications. The Nuclear Working Group received presentations on the Topaz nuclear power program, and space nuclear work in the Department of Energy.

  15. Draft Advanced Nuclear Energy Projects Solicitation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Federal loan guarantee solicitation announcement -- Advanced Nuclear Energy Projects. Draft Advanced Nuclear Energy Projects Solicitation More Documents & Publications Draft...

  16. Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants

    SciTech Connect (OSTI)

    Camillo A. DiNunzio Framatome ANP DE& S; Dr. Abhinav Gupta Assistant Professor NCSU; Dr. Michael Golay Professor MIT Dr. Vincent Luk Sandia National Laboratories; Rich Turk Westinghouse Electric Company Nuclear Systems; Charles Morrow, Sandia National Laboratories; Geum-Taek Jin, Korea Power Engineering Company Inc.

    2002-11-30T23:59:59.000Z

    OAK-B135 This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

  17. NUCLEAR POWER in CALIFORNIA

    E-Print Network [OSTI]

    NUCLEAR POWER in CALIFORNIA: 2007 STATUS REPORT CALIFORNIA ENERGY COMMISSION October 2007 CEC-100, California Contract No. 700-05-002 Prepared For: California Energy Commission Barbara Byron, Senior Nuclear public workshops on nuclear power. The Integrated Energy Policy Report Committee, led by Commissioners

  18. Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation...

    Office of Environmental Management (EM)

    Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Solicitation...

  19. Advancing Global Nuclear Security

    Broader source: Energy.gov [DOE]

    Today world leaders gathered at The Hague for the Nuclear Security Summit, a meeting to measure progress and take action to secure sensitive nuclear materials.

  20. Advanced nuclear plant control complex

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1993-01-01T23:59:59.000Z

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  1. Nuclear power attitude trends

    SciTech Connect (OSTI)

    Nealey, S.M.

    1981-11-01T23:59:59.000Z

    The increasing vulnerability of nuclear power to political pressures fueled by public concerns, particularly about nuclear plant safety and radioactive waste disposal, has become obvious. Since Eisenhower's Atoms-for-Peace program, utility and government plans have centered on expansion of nuclear power generating capability. While supporters have outnumbered opponents of nuclear power expansion for many years, in the wake of the Three Mile Island (TMI) accident the margin of support has narrowed. The purpose of this paper is to report and put in perspective these long-term attitude trends.

  2. Evaluation of the applicability of existing nuclear power plant regulatory requirements in the U.S. to advanced small modular reactors.

    SciTech Connect (OSTI)

    LaChance, Jeffrey L.; Wheeler, Timothy A.; Farnum, Cathy Ottinger; Middleton, Bobby D.; Jordan, Sabina Erteza; Duran, Felicia Angelica; Baum, Gregory A.

    2013-05-01T23:59:59.000Z

    The current wave of small modular reactor (SMR) designs all have the goal of reducing the cost of management and operations. By optimizing the system, the goal is to make these power plants safer, cheaper to operate and maintain, and more secure. In particular, the reduction in plant staffing can result in significant cost savings. The introduction of advanced reactor designs and increased use of advanced automation technologies in existing nuclear power plants will likely change the roles, responsibilities, composition, and size of the crews required to control plant operations. Similarly, certain security staffing requirements for traditional operational nuclear power plants may not be appropriate or necessary for SMRs due to the simpler, safer and more automated design characteristics of SMRs. As a first step in a process to identify where regulatory requirements may be met with reduced staffing and therefore lower cost, this report identifies the regulatory requirements and associated guidance utilized in the licensing of existing reactors. The potential applicability of these regulations to advanced SMR designs is identified taking into account the unique features of these types of reactors.

  3. Commercial nuclear power 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28T23:59:59.000Z

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  4. Nuclear Power Generating Facilities (Maine)

    Broader source: Energy.gov [DOE]

    The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in...

  5. Georgia Power- Advanced Solar Initiative

    Broader source: Energy.gov [DOE]

    Note: According to Georgia Power's website, the Advanced Solar Initiative's final program guidelines are due to be published on June 25th and the bidding period for is expected to open on July 10,...

  6. Advanced Nuclear Reactors | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 PowerAdvanced Modeling &Advanced Nuclear

  7. Advanced Pipe Replacement Procedure for a Defective CRDM Housing Nozzle Enables Continued Normal Operation of a Nuclear Power Plant

    SciTech Connect (OSTI)

    Gilmore, Geoff; Becker, Andrew [Climax Portable Machine Tools, Inc., 2712 East Second Street, Newberg, OR 97132 (United States)

    2006-07-01T23:59:59.000Z

    During the 2003 outage at the Ringhals Nuclear Plant in Sweden, a leak was found in the vicinity of a Control Rod Drive Mechanism (CRDM) housing nozzle at Unit 1. Based on the ALARA principle for radioactive contamination, a unique repair process was developed. The repair system includes utilization of custom, remotely controlled GTAW-robots, a CNC cutting and finishing machine, snake-arm robots and NDE equipment. The success of the repair solution was based on performing the machining and welding operations from the inside of the SCRAM pipe through the CRDM housing since accessibility from the outside was extremely limited. Before the actual pipe replacement procedure was performed, comprehensive training programs were conducted. Training was followed by certification of equipment, staff and procedures during qualification tests in a full scale mock-up of the housing nozzle. Due to the ingenuity of the overall repair solution and training programs, the actual pipe replacement procedure was completed in less than half the anticipated time. As a result of the successful pipe replacement, the nuclear power plant was returned to normal operation. (authors)

  8. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  9. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  10. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  11. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  12. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  13. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  14. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  15. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  16. Nebraska Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  17. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  18. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  19. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  20. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  1. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  2. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  3. CONSTRUCTION OF NUCLEAR POWER PLANTS

    E-Print Network [OSTI]

    CONSTRUCTION OF NUCLEAR POWER PLANTS A Workshop on "NUCLEAR ENERGY RENAISSANCE" Addressing WAS DEEPLY INVOLVED IN ALMOST EVERY ASPECT OF BUILDING THE PLANTS THROUGH · Quality Assurance · Nuclear IN CONSTRUCTION OF ST. LUCIE-2 #12;LESSONS LEARNED FROM St. Lucie-2 NUCLEAR POWER PLANTS CAN BE BUILT

  4. Overview paper on nuclear power

    SciTech Connect (OSTI)

    Spiewak, I.; Cope, D.F.

    1980-09-01T23:59:59.000Z

    This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power.

  5. Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License...

  6. Resergence of U.S. Nuclear Power

    SciTech Connect (OSTI)

    none

    2006-02-15T23:59:59.000Z

    Over the past quarter century, things have not gone well for the nuclear industry. First came the Three Mile Island accident in America in 1979, then the disaster at the Chernobyl plant in Ukraine in 1986. In Japan, Tokyo Electric Power, the world's largest private electricity company, shut its 17 nuclear reactors after it was caught falsifying safety records to hide cracks at some of its plants in 2002. In addition, the attacks on September 11, 2001 were a sharp reminder that the risks of nuclear power generation were not only those inherent in the technology. But lately, prospects have brightened for the nuclear industry. Nuclear power is an important source of electricity in many countries. In 2003, 19 countries depended on nuclear power for at least 20 percent of their electricity generation. As of March 2005, there were 441 nuclear power reactors in operation around the world, and another 25 were under construction. Five new nuclear power plants began operation in 2004 - one each in China, Japan, and Russia and two in Ukraine. In addition, Canada?s Bruce 3 reactor was reconnected to the grid. Five nuclear power plants were permanently shut down in 2004 - one in Lithuania and four in the United Kingdom. Nuclear power is expected to see a revival in the next decade given the availability of uranium and the prospect of emission-free power generation, Also, with conventional energy sources such as oil and gas likely to see severe depletion over the next 30 years, the price of conventional power generation is set to rise significantly, which would put nuclear power generation in focus again. The report provides an overview of the opportunities for nuclear power in the U.S. electric industry and gives a concise look at the challenges faced by nuclear power, the ability of advanced nuclear reactors to address these challenges, and the current state of nuclear power generation. Topics covered in the report include: an overview of U.S. Nuclear Power including its history, the current market environment, and the future of nuclear power in the U.S.; an analysis of the key business factors that are driving renewed interest in nuclear power; an analysis of the barriers that are hindering the implementation of new nuclear power plants; a description of nuclear power technology including existing reactors, as well as 3rd and 4th generation reactor designs; a review of the economics of new nuclear power projects and comparison to other generation alternatives; a discussion of the key government initiatives supporting nuclear power development; profiles of the key reactor manufacturers participating in the U.S. nuclear power market; and, profiles of the leading U.S. utilities participating in the U.S. nuclear power market.

  7. Development of advanced direct perception displays for nuclear power plants to enhance monitoring, control and fault management

    SciTech Connect (OSTI)

    Jones, B.G.; Shaheen, S.; Moray, N. [and others

    1997-08-01T23:59:59.000Z

    Traditional Single-Sensor-Single Indicator (SSSI) displays are poorly matched to the cognitive abilities of operators, especially for large and complex systems. It is difficult for operators to monitor very large arrays of displays and controls, and to integrate the information displayed therein. In addition, standard operating procedures (SOPs) are bulky (running to many hundreds of pages) and difficult to use, and operators may become lost. For these reasons, and also because it is becoming increasingly difficult to find replacements for aging hardware components, there is a trend towards computerized graphical interfaces for nuclear power plants (NPPs). There is, however, little rational theory for display design in this domain. This report describes some recent theoretical developments and shows how to develop displays which will greatly reduce the cognitive load on the operator and allow the use of perceptual rather than cognitive mechanisms while using SON and to support state diagnosis and fault management. The report outlines the conceptual framework within which such a new approach could be developed, and provides an example of how the operating procedures for the start-up sequence of a NPP could be realized. A detailed description of a set of displays for a graphical interface for the SON of the feedwater system is provided as an example of how the proposed approach could be realized, and a general account of how it would fit into the overall start-up sequence is given. Examples of {open_quotes}direct perception{close_quotes} or {open_quotes}ecological{close_quotes} configural state space displays to support the use of the proposed direct manipulation SOP interface are provided, and also a critical discussion which identifies some difficulties which may be anticipated should the general approach herein advocated be adopted.

  8. The elements of nuclear power

    SciTech Connect (OSTI)

    Bennet, D.J.; Thomson, J.R.

    1989-01-01T23:59:59.000Z

    An introduction to the principles of nuclear fission power generation. Describes the physical processes which occur in a nuclear reactor and discusses the theory behind the calculations. Also covers heat transfer in reactors, thermodynamic power cycles, reactor operators, and radiation shielding. Material covered includes topics on the effects of nuclear radiation on humans, the safety of nuclear reactors and of those parts of the nuclear fuel cycle which deal with fuel element manufacture and the reprocessing of irradiated fuel.

  9. The Decline and Death of Nuclear Power

    E-Print Network [OSTI]

    Melville, Jonathan

    2013-01-01T23:59:59.000Z

    funding, causing nuclear power to simply fall off the energyor “ambivalent” about nuclear power to firmly against it.

  10. Sandia Energy - Advanced Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRSSafetyAdvanced

  11. advancing nuclear technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advancing nuclear technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Programme A. Nuclear Power...

  12. Nuclear power systems for Lunar and Mars exploration

    SciTech Connect (OSTI)

    Sovie, R.J.; Bozek, J.M.

    1994-09-01T23:59:59.000Z

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems - whether solar, chemical or nuclear - to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems were identified as critical needs for these missions. This paper discusses these mission scenarios, the concomitant power system requirements; the power system options considered and identifies the significant potential benefits of nuclear power for meeting the power needs of the above applications.

  13. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  14. Massachusetts Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    (percent)","Owner" "Pilgrim Nuclear Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal...

  15. Nuclear Power Plant Design Project

    E-Print Network [OSTI]

    Nuclear Power Plant Design Project A Response to the Environmental and Economic Challenge Of Global.............................................................................................................. 4 3. Assessment of the Issues and Needs for a New Plant

  16. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  17. Pennsylvania Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  18. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  19. Workshop on nuclear power growth and nonproliferation

    SciTech Connect (OSTI)

    Pilat, Joseph F [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    It is widely viewed that an expansion of nuclear power would have positive energy, economic and environmental benefits for the world. However, there are concerns about the economic competitiveness, safety and proliferation and terrorism risks of nuclear power. The prospects for a dramatic growth in nuclear power will depend on the ability of governments and industry to address these concerns, including the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen nonproliferation, nuclear materials accountability and nuclear security. In his Prague speech, President Obama stated: 'we should build a new framework for civil nuclear cooperation, including an international fuel bank, so that countries can access peaceful power without increasing the risks of proliferation. That must be the right of every nation that renounces nuclear weapons, especially developing countries embarking on peaceful programs. And no approach will succeed if it's based on the denial of rights to nations that play by the rules. We must harness the power of nuclear energy on behalf of our efforts to combat climate change, and to advance peace opportunity for all people.' How can the President's vision, which will rekindle a vigorous public debate over the future of nuclear power and its relation to proliferation, be realized? What critical issues will frame the reemerging debate? What policies must be put into place to address these issues? Will US policy be marked more by continuity or change? To address these and other questions, the Los Alamos National Laboratory in cooperation with the Woodrow Wilson International Center for Scholars will host a workshop on the future of nuclear power and nonproliferation.

  20. Nuclear Power Overview

    Broader source: Energy.gov (indexed) [DOE]

    San Onofre Nuclear Generating Station San Onofre Nuclear Generating Station Bob Ashe-Everest Southern California Edison 10 Incoming New Fuel Inspecting New Fuel SONGS Unit 1 Fuel...

  1. The Resurgence of U.S. Nuclear Power, 2. edition

    SciTech Connect (OSTI)

    NONE

    2007-11-15T23:59:59.000Z

    The updated report provides an overview of the opportunities for nuclear power in the U.S. electric industry, including a concise look at the challenges faced by nuclear power, the ability of advanced nuclear reactors to address these challenges, and the current state of nuclear power generation. Topics covered in the report include: an overview of U.S. Nuclear Power including its history, the current market environment, and the future of nuclear power in the U.S.; an analysis of the key business factors that are driving renewed interest in nuclear power; an analysis of the barriers that are hindering the implementation of new nuclear power plants; a description of nuclear power technology including existing reactors, as well as 3rd and 4th generation reactor designs; a review of the economics of new nuclear power projects and comparison to other generation alternatives; a discussion of the key government initiatives supporting nuclear power development; profiles of the key reactor manufacturers participating in the U.S. nuclear power market; and, profiles of the leading U.S. utilities participating in the U.S. nuclear power market.

  2. Competitive economics of nuclear power

    SciTech Connect (OSTI)

    Hellman, R.

    1981-03-02T23:59:59.000Z

    Some 12 components of a valid study of the competitive economics of a newly ordered nuclear power plant are identified and explicated. These are then used to adjust the original cost projections of four authoritative studies of nuclear and coal power economics.

  3. Working Group Report on - Space Nuclear Power Systems and Nuclear...

    Energy Savers [EERE]

    Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D "Even...

  4. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced...

    Office of Environmental Management (EM)

    Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop...

  5. Mapping complexity sources in nuclear power plant domains

    E-Print Network [OSTI]

    Sasangohar, Farzan

    Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their effects on human reliability is critical for ensuring safe performance of both operators and the entire system. New ...

  6. The Decline and Death of Nuclear Power

    E-Print Network [OSTI]

    Melville, Jonathan

    2013-01-01T23:59:59.000Z

    The Economist (2012). Nuclear power: The 30-year itch. Thesince the Cold War, nuclear power plants are being plannedDramatic fall in new nuclear power stations after Fukushima.

  7. Advanced nuclear plant control room complex

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1993-01-01T23:59:59.000Z

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  8. Advanced Power Electronic Interfaces for Distributed

    E-Print Network [OSTI]

    Advanced Power Electronic Interfaces for Distributed Energy Systems Part 2: Modeling, Development Electronic Interfaces for Distributed Energy Systems Part 2: Modeling, Development, and Experimental, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter S

  9. Advancing Concentrating Solar Power Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  10. The Decline and Death of Nuclear Power

    E-Print Network [OSTI]

    Melville, Jonathan

    2013-01-01T23:59:59.000Z

    Y. , & Kitazawa, K. (2012). Fukushima in review: A complexin new nuclear power stations after Fukushima. The Guardian.nuclear-power- stations-fukushima Hvistendahl, M. (2007,

  11. Vehicle Technologies Office: 2011 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    Motors R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Electro-thermal-mechanical...

  12. ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE

    Broader source: Energy.gov (indexed) [DOE]

    AND ENGINEERING Under the Advanced Fuels Cycle Initiative, Transmutation Science and Engineering is divided into four subprograms: Physics, Structural Materials, Materials...

  13. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Hudson, C.R.; White, V.S.

    1996-11-01T23:59:59.000Z

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  14. Future Prospects for Nuclear Power after Fukushima

    E-Print Network [OSTI]

    Goldberg, Bennett

    at the FukushimaDaiichi nuclear power plant in Japan has changed the perception of nuclear as a safe energy sourceFuture Prospects for Nuclear Power after Fukushima Nuclear is a highintensity energy source as the next generation of Light Water Reactors. We will also discuss the future prospects of nuclear power

  15. Advanced Accessory Power Supply Topologies

    SciTech Connect (OSTI)

    Marlino, L.D.

    2010-06-15T23:59:59.000Z

    This Cooperative Research and Development Agreement (CRADA) began December 8, 2000 and ended September 30, 2009. The total funding provided by the Participant (General Motors Advanced Technology Vehicles [GM]) during the course of the CRADA totaled $1.2M enabling the Contractor (UT-Battelle, LLC [Oak Ridge National Laboratory, a.k.a. ORNL]) to contribute significantly to the joint project. The initial task was to work with GM on the feasibility of developing their conceptual approach of modifying major components of the existing traction inverter/drive to develop low cost, robust, accessory power. Two alternate methods for implementation were suggested by ORNL and both were proven successful through simulations and then extensive testing of prototypes designed and fabricated during the project. This validated the GM overall concept. Moreover, three joint U.S. patents were issued and subsequently licensed by GM. After successfully fulfilling the initial objective, the direction and duration of the CRADA was modified and GM provided funding for two additional tasks. The first new task was to provide the basic development for implementing a cascaded inverter technology into hybrid vehicles (including plug-in hybrid, fuel cell, and electric). The second new task was to continue the basic development for implementing inverter and converter topologies and new technology assessments for hybrid vehicle applications. Additionally, this task was to address the use of high temperature components in drive systems. Under this CRADA, ORNL conducted further research based on GM’s idea of using the motor magnetic core and windings to produce bidirectional accessory power supply that is nongalvanically coupled to the terminals of the high voltage dc-link battery of hybrid vehicles. In order not to interfere with the motor’s torque, ORNL suggested to use the zero-sequence, highfrequency harmonics carried by the main fundamental motor current for producing the accessory power. Two studies were conducted at ORNL. One was to put an additional winding in the motor slots to magnetically link with the high frequency of the controllable zero-sequence stator currents that do not produce any zero-sequence harmonic torques. The second approach was to utilize the corners of the square stator punching for the high-frequency transformers of the dc/dc inverter. Both approaches were successful. This CRADA validated the feasibility of GM’s desire to use the motor’s magnetic core and windings to produce bidirectional accessory power supply. Three joint U.S. patents with GM were issued to ORNL and GM by the U.S. Patent Office for the research results produced by this CRADA.

  16. Nuclear Power - Deployment, Operation and Sustainability

    E-Print Network [OSTI]

    . Tsvetkov p. cm. ISBN 978-953-307-474-0 free online editions of InTech Books and Journals can be found at www.intechopen.com Contents Preface IX Part 1 Nuclear Power Deployment 1 Chapter 1 Nuclear Naval Propulsion 3 Magdi... to successful development, deployment and operation of nuclear power systems worldwide: Nuclear Power Deployment 1. Nuclear Naval Propulsion 2. Deployment Scenarios for New Technologies 3. The Investment Evaluation of Third-Generation Nuclear Power - from...

  17. Autonomous Control of Nuclear Power Plants

    SciTech Connect (OSTI)

    Basher, H.

    2003-10-20T23:59:59.000Z

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.

  18. ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE

    Broader source: Energy.gov (indexed) [DOE]

    data for higher priority isotopes and fuel mixes in the thermal, epithermal and fast-neutron ANTT Report 14 January 2003 8 spectra using heated samples in low-power critical...

  19. North Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  20. New Jersey Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  1. New York Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  2. ADVANCED POWER SYSTEMS ANALYSIS TOOLS

    SciTech Connect (OSTI)

    Robert R. Jensen; Steven A. Benson; Jason D. Laumb

    2001-08-31T23:59:59.000Z

    The use of Energy and Environmental Research Center (EERC) modeling tools and improved analytical methods has provided key information in optimizing advanced power system design and operating conditions for efficiency, producing minimal air pollutant emissions and utilizing a wide range of fossil fuel properties. This project was divided into four tasks: the demonstration of the ash transformation model, upgrading spreadsheet tools, enhancements to analytical capabilities using the scanning electron microscopy (SEM), and improvements to the slag viscosity model. The ash transformation model, Atran, was used to predict the size and composition of ash particles, which has a major impact on the fate of the combustion system. To optimize Atran key factors such as mineral fragmentation and coalescence, the heterogeneous and homogeneous interaction of the organically associated elements must be considered as they are applied to the operating conditions. The resulting model's ash composition compares favorably to measured results. Enhancements to existing EERC spreadsheet application included upgrading interactive spreadsheets to calculate the thermodynamic properties for fuels, reactants, products, and steam with Newton Raphson algorithms to perform calculations on mass, energy, and elemental balances, isentropic expansion of steam, and gasifier equilibrium conditions. Derivative calculations can be performed to estimate fuel heating values, adiabatic flame temperatures, emission factors, comparative fuel costs, and per-unit carbon taxes from fuel analyses. Using state-of-the-art computer-controlled scanning electron microscopes and associated microanalysis systems, a method to determine viscosity using the incorporation of grey-scale binning acquired by the SEM image was developed. The image analysis capabilities of a backscattered electron image can be subdivided into various grey-scale ranges that can be analyzed separately. Since the grey scale's intensity is dependent on the chemistry of the particle, it is possible to map chemically similar areas which can also be related to the viscosity of that compound at temperature. A second method was also developed to determine the elements associated with the organic matrix of the coals, which is currently determined by chemical fractionation. Mineral compositions and mineral densities can be determined for both included and excluded minerals, as well as the fraction of the ash that will be represented by that mineral on a frame-by-frame basis. The slag viscosity model was improved to provide improved predictions of slag viscosity and temperature of critical viscosity for representative Powder River Basin subbituminous and lignite coals.

  3. Advancing our Nuclear Collaboration with the Czech Republic ...

    Broader source: Energy.gov (indexed) [DOE]

    our Nuclear Collaboration with the Czech Republic Advancing our Nuclear Collaboration with the Czech Republic September 28, 2011 - 5:36pm Addthis President Obama addresses a crowd...

  4. Nuclear Power and the World's Energy Requirements

    E-Print Network [OSTI]

    V. Castellano; R. F. Evans; J. Dunning-Davies

    2004-06-10T23:59:59.000Z

    The global requirements for energy are increasing rapidly as the global population increases and the under-developed nations become more advanced. The traditional fuels used in their traditional ways will become increasingly unable to meet the demand. The need for a review of the energy sources available is paramount, although the subsequent need to develop a realistic strategy to deal with all local and global energy requirements is almost as important. Here attention will be restricted to examining some of the claims and problems of using nuclear power to attempt to solve this major question.

  5. Air Cooling Technology for Advanced Power Electronics and Electric...

    Broader source: Energy.gov (indexed) [DOE]

    Air Cooling Technology for Advanced Power Electronics and Electric Machines Air Cooling Technology for Advanced Power Electronics and Electric Machines 2009 DOE Hydrogen Program...

  6. 2008 Annual Merit Review Results Summary - 5. Advanced Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5. Advanced Power Electronics 2008 Annual Merit Review Results Summary - 5. Advanced Power Electronics DOE Vehicle Technologies Annual Merit Review 2008meritreview5.pdf More...

  7. ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS

    SciTech Connect (OSTI)

    Marra, J.

    2010-09-29T23:59:59.000Z

    Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) for construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management, and proliferation), the worldwide community is working to develop and deploy new nuclear energy systems and advanced fuel cycles. These new nuclear systems address the key challenges and include: (1) extracting the full energy value of the nuclear fuel; (2) creating waste solutions with improved long term safety; (3) minimizing the potential for the misuse of the technology and materials for weapons; (4) continually improving the safety of nuclear energy systems; and (5) keeping the cost of energy affordable.

  8. Organizational learning at nuclear power plants

    E-Print Network [OSTI]

    Carroll, John S.

    1991-01-01T23:59:59.000Z

    The Nuclear Power Plant Advisory Panel on Organizational Learning provides channels of communications between the management and organization research projects of the MIT International Program for Enhanced Nuclear Power ...

  9. Electromagnetic Compatibility in Nuclear Power Plants

    SciTech Connect (OSTI)

    Ewing, P.D.; Kercel, S.W.; Korsah, K.; Wood, R.T.

    1999-08-29T23:59:59.000Z

    Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I&C) systems used by the U.S. military. The potential for disruption of safety-related I&C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I&C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper.

  10. U.S.Air Force Advanced Power

    E-Print Network [OSTI]

    Tractor · Robins AFB H2 Fuel Cell Forklift/Toolcat · Fisher-Tropsch Synthetic FuelTest · Robins E-85 Effort · Solar - Electric Drive U.S.Air Force Advanced PowerTechnology Office Our Customers TheWarfighter Homeland Defense RefuelerFuel Cell MB-4Fuel Cell Microgrid Hydrogen Refueling Station Renewable Wind Power Renewable Solar

  11. Sabotage at Nuclear Power Plants

    SciTech Connect (OSTI)

    Purvis, James W.

    1999-07-21T23:59:59.000Z

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  12. Nuclear Power Trends Energy Economics and Sustainability

    E-Print Network [OSTI]

    Nuclear Power Trends Energy Economics and Sustainability L. H. Tsoukalas Purdue University Nuclear;National Research Council of Greece, May 8, 2008 Outline · The Problem · Nuclear Energy Trends · Energy Economics · Life Cycle Analysis · Nuclear Sustainability · Nuclear Energy in Greece? #12;National Research

  13. Computational Design of Advanced Nuclear Fuels

    SciTech Connect (OSTI)

    Savrasov, Sergey; Kotliar, Gabriel; Haule, Kristjan

    2014-06-03T23:59:59.000Z

    The objective of the project was to develop a method for theoretical understanding of nuclear fuel materials whose physical and thermophysical properties can be predicted from first principles using a novel dynamical mean field method for electronic structure calculations. We concentrated our study on uranium, plutonium, their oxides, nitrides, carbides, as well as some rare earth materials whose 4f eletrons provide a simplified framework for understanding complex behavior of the f electrons. We addressed the issues connected to the electronic structure, lattice instabilities, phonon and magnon dynamics as well as thermal conductivity. This allowed us to evaluate characteristics of advanced nuclear fuel systems using computer based simulations and avoid costly experiments.

  14. Power conversion system design for supercritical carbon dioxide cooled indirect cycle nuclear reactors

    E-Print Network [OSTI]

    Gibbs, Jonathan Paul

    2008-01-01T23:59:59.000Z

    The supercritical carbon dioxide (S-CO?) cycle is a promising advanced power conversion cycle which couples nicely to many Generation IV nuclear reactors. This work investigates the power conversion system design and ...

  15. advanced nuclear reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  16. advanced nuclear plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  17. advanced nuclear plants: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  18. advanced nuclear reactors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  19. A Verification Framework for FBD based Software in Nuclear Power Plants Junbeom Yoo

    E-Print Network [OSTI]

    Jee, Eunkyoung

    require safety demonstration. RPS software of APR-1400 advanced nuclear power reactor, in developmentA Verification Framework for FBD based Software in Nuclear Power Plants Junbeom Yoo Div-based software in nuclear reactor protection system (RPS). FBD programs are developed manually and revised

  20. NUCLEAR POWER IN CALIFORNIA: 2007 STATUS REPORT

    E-Print Network [OSTI]

    NUCLEAR POWER IN CALIFORNIA: 2007 STATUS REPORT Prepared For: California Energy Commission Prepared No. 700-05-002 Prepared For: California Energy Commission Barbara Byron, Senior Nuclear Policy;Abstract This consultant report examines how nuclear power issues have evolved since publication

  1. nuclear power Update of the mit 2003

    E-Print Network [OSTI]

    Reuter, Martin

    #12;Future of nuclear power Update of the mit 2003 PROFESSOR JOHN M.DEUTCH Institute Professor. Update of the MIT 2003 Future of Nuclear Power Study 1 Massachusetts Institute of Technology, The Future Department of Chemistry DR.CHARLES W.FORSBERG Executive Director, MIT Nuclear Fuel Cycle Study Department

  2. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 UFeet)nuclear power plants,

  3. Advanced nuclear rocket engine mission analysis

    SciTech Connect (OSTI)

    Ramsthaler, J.; Farbman, G.; Sulmeisters, T.; Buden, D.; Harris, P.

    1987-12-01T23:59:59.000Z

    The use of a derivative of the NERVA engine developed from 1955 to 1973 was evluated for potential application to Air Force orbital transfer and maneuvering missions in the time period 1995 to 2020. The NERVA stge was found to have lower life cycle costs (LCC) than an advanced chemical stage for performing low earth orbit (LEO) to geosynchronous orbit (GEO0 missions at any level of activity greater than three missions per year. It had lower life cycle costs than a high performance nuclear electric engine at any level of LEO to GEO mission activity. An examination of all unmanned orbital transfer and maneuvering missions from the Space Transportation Architecture study (STAS 111-3) indicated a LCC advantage for the NERVA stage over the advanced chemical stage of fifteen million dollars. The cost advanced accured from both the orbital transfer and maneuvering missions. Parametric analyses showed that the specific impulse of the NERVA stage and the cost of delivering material to low earth orbit were the most significant factors in the LCC advantage over the chemical stage. Lower development costs and a higher thrust gave the NERVA engine an LCC advantage over the nuclear electric stage. An examination of technical data from the Rover/NERVA program indicated that development of the NERVA stage has a low technical risk, and the potential for high reliability and safe operation. The data indicated the NERVA engine had a great flexibility which would permit a single stage to perform all Air Force missions.

  4. The Fourth Generation of Nuclear Power

    SciTech Connect (OSTI)

    Lake, James Alan

    2000-11-01T23:59:59.000Z

    The outlook for nuclear power in the U.S. is currently very bright. The economics, operations and safety performance of U.S. nuclear power plants is excellent. In addition, both the safety and economic regulation of nuclear power are being changed to produce better economic parameters for future nuclear plant operations and the licenses for plant operations are being extended to 60 years. There is further a growing awareness of the value of clean, emissions-free nuclear power. These parameters combine to form a firm foundation for continued successful U.S. nuclear plant operations, and even the potential In order to realize a bright future for nuclear power, we must respond successfully to five challenges: • Nuclear power must remain economically competitive, • The public must remain confident in the safety of the plants and the fuel cycle. • Nuclear wastes and spent fuel must be managed and the ultimate disposition pathways for nuclear wastes must be politically settled. • The proliferation potential of the commercial nuclear fuel cycle must continue to be minimized, and • We must assure a sustained manpower supply for the future and preserve the critical nuclear technology infrastructure. The Generation IV program is conceived to focus the efforts of the international nuclear community on responding to these challenges.

  5. Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  6. New York Nuclear Profile - R E Ginna Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License...

  7. advanced 3d power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  8. advanced power plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  9. advanced power group: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  10. advanced power converters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  11. advanced power train: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  12. advanced power systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  13. advanced power sources: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  14. advanced large power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  15. advanced radioisotope power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  16. advanced power production: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  17. advanced power reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  18. advanced power plants: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  19. advanced power system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  20. aries advanced power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  1. Advanced pyrochemical technologies for minimizing nuclear waste

    SciTech Connect (OSTI)

    Bronson, M.C.; Dodson, K.E.; Riley, D.C.

    1994-06-01T23:59:59.000Z

    The Department of Energy (DOE) is seeking to reduce the size of the current nuclear weapons complex and consequently minimize operating costs. To meet this DOE objective, the national laboratories have been asked to develop advanced technologies that take uranium and plutonium, from retired weapons and prepare it for new weapons, long-term storage, and/or final disposition. Current pyrochemical processes generate residue salts and ceramic wastes that require aqueous processing to remove and recover the actinides. However, the aqueous treatment of these residues generates an estimated 100 liters of acidic transuranic (TRU) waste per kilogram of plutonium in the residue. Lawrence Livermore National Laboratory (LLNL) is developing pyrochemical techniques to eliminate, minimize, or more efficiently treat these residue streams. This paper will present technologies being developed at LLNL on advanced materials for actinide containment, reactors that minimize residues, and pyrochemical processes that remove actinides from waste salts.

  2. Space nuclear power and man's extraterrestrial civilization

    SciTech Connect (OSTI)

    Angelo, J.J.; Buden, D.

    1983-01-01T23:59:59.000Z

    This paper examines leading space nuclear power technology candidates. Particular emphasis is given the heat-pipe reactor technology currently under development at the Los Alamos National Laboratory. This program is aimed at developing a 10-100 kWe, 7-year lifetime space nuclear power plant. As the demand for space-based power reaches megawatt levels, other nuclear reactor designs including: solid core, fluidized bed, and gaseous core, are considered.

  3. Advanced Power Plant Development and Analyses Methodologies

    SciTech Connect (OSTI)

    G.S. Samuelsen; A.D. Rao

    2006-02-06T23:59:59.000Z

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  4. Advanced Power Plant Development and Analysis Methodologies

    SciTech Connect (OSTI)

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

    2006-06-30T23:59:59.000Z

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  5. South Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  6. KRS Chapter 278: Nuclear Power Facilities (Kentucky)

    Broader source: Energy.gov [DOE]

    No construction shall commence on a nuclear power facility in the Commonwealth until the Public Service Commission finds that the United States government, through its authorized agency, has...

  7. ARIES-AT: AN ADVANCED TOKAMAK, ADVANCED TECHNOLOGY FUSION POWER PLANT

    E-Print Network [OSTI]

    California at San Diego, University of

    ARIES-AT: AN ADVANCED TOKAMAK, ADVANCED TECHNOLOGY FUSION POWER PLANT F. Najmabadi, S. C. Jardin*,6 of high-performance tokamak plasmas together with advanced technology in a fusion power plant. Several and advanced technology leads to attractive fusion power plant with excellent safety and environmental

  8. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements...

  9. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    SciTech Connect (OSTI)

    Narumanchi, S.; Bennion, K.; DeVoto, D.; Moreno, G.; Rugh, J.; Waye, S.

    2015-01-01T23:59:59.000Z

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  10. Advanced Materials and Concepts for Portable Power Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    2010 Fuel Cell Projects Kick-off Meeting Washington, DC - September 28, 2010 Advanced Materials and Concepts for Portable Power Fuel Cells for Portable Power Fuel Cells Piotr...

  11. Advanced Soft Switching Inverter for Reducing Switching and Power...

    Energy Savers [EERE]

    Soft Switching Inverter for Reducing Switching and Power Losses Advanced Soft Switching Inverter for Reducing Switching and Power Losses Presentation from the U.S. DOE Office of...

  12. Overview: Advanced Power Electronics and Electric Motors (APEEM...

    Broader source: Energy.gov (indexed) [DOE]

    rogers.pdf More Documents & Publications Advanced Power Electronics and Electric Motors R&D Advnaced Power Electronics and Electric Machines (APEEM) R&D Program Overview Electric...

  13. Advanced Thermal Interface Materials (TIMs) for Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interface Materials (TIMs) for Power Electronics Advanced Thermal Interface Materials (TIMs) for Power Electronics 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

  14. Thermal Stress and Reliability for Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Power Electronic Thermal System Performance and Integration...

  15. Nuclear Power in France Beyond the Myth

    E-Print Network [OSTI]

    Laughlin, Robert B.

    .fissilematerials.org). In 2006-2007 he was part of a consultant consortium that assessed nuclear decommissioning and wasteNuclear Power in France Beyond the Myth By Mycle Schneider International Consultant on Energy and Nuclear Policy Commissioned by the Greens-EFA Group in the European Parliament V5 #12;Note: The present

  16. Lab Tests Demonstrate Effectiveness of Advanced Power Strips (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01T23:59:59.000Z

    NREL engineers evaluate the functionalities of advanced power strips and help consumers choose the right one for their plug loads.

  17. Update on the Cost of Nuclear Power

    E-Print Network [OSTI]

    Parsons, John E.

    2009-01-01T23:59:59.000Z

    We update the cost of nuclear power as calculated in the MIT (2003) Future of Nuclear Power study. Our main focus is on the changing cost of construction of new plants. The MIT (2003) study provided useful data on the cost ...

  18. Conference committees Chairman of the conference "New Nuclear Power Plants in the Netherlands", June 21-22, 2011,

    E-Print Network [OSTI]

    Conference committees Chairman of the conference "New Nuclear Power Plants in the Netherlands Nuclear Power Plants, September 15-19, 2003, Kyoto, Japan. Session chairman GENES4/ANP2003 ,,International Conference on Global Environment and Advanced Nuclear Power Plants, September 15-19, 2003, Kyoto

  19. Sandia Energy - Consortium for Advanced Simulation of Light Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consortium for Advanced Simulation of Light Water Reactors (CASL) Home Stationary Power Nuclear Fuel Cycle Advanced Nuclear Energy Consortium for Advanced Simulation of Light Water...

  20. Nuclear Power Plant Concrete Structures

    SciTech Connect (OSTI)

    Basu, Prabir [International Atomic Energy Agency (IAEA)] [International Atomic Energy Agency (IAEA); Labbe, Pierre [Electricity of France (EDF)] [Electricity of France (EDF); Naus, Dan [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

    2013-01-01T23:59:59.000Z

    A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

  1. Economics of nuclear power in Finland

    SciTech Connect (OSTI)

    Tarjanne, Risto; Luostarinen, Kari [Lappeenranta University of Technology, Department of Energy and Environmental Technology, PO Box 20, FIN-53851 Lappeenranta (Finland)

    2002-07-01T23:59:59.000Z

    The nuclear power generation fits perfectly with the long duration load profile of the Finnish power system. The good performance of the Finnish nuclear power has yielded benefits also to the consumers through its contribution to decreasing the electricity price. Furthermore, the introduction of nuclear power has resulted in a clear drop in carbon dioxide emissions from electricity generation in the shift of 1970's and 1980's. In the year 2001 the four Finnish nuclear power units at Loviisa and Olkiluoto generated 22.8 TWh electricity, equivalent to 28 per cent of the total consumption. Loviisa power station has a net output capacity of 2 x 488 MW, and Olkiluoto 2 x 840 MW. The capacity factors of the four nuclear units have been above 90 per cent, which are among the highest in the world. The energy-intensive process industries in particular have strong belief in nuclear power. In November 2000, Teollisuuden Voima company (TVO) submitted to the Finnish Government an application for decision in principle concerning the construction of a new nuclear power plant unit. The arguments were among other things to guarantee for the Finnish industry the availability of cheap electric energy and to meet the future growth of electricity consumption in Finland. The carbon-free nuclear power also represents the most efficient means to meet the Greenhouse Gas abatement quota of Finland. Simultaneously, the energy policy of the Government includes intensive R and D and investment support for the renewable energy sources and energy conservation, and the objective is also to replace coal with natural gas as much as reasonably possible. The fifth nuclear unit would be located in one of the existing Finnish nuclear sites, i.e. Olkiluoto or Loviisa. The size of the new nuclear unit would be in the range of 1000 to 1600 MW electric. The ready infrastructure of the existing site could be utilised resulting in lower investment cost for the new unit. The Finnish Government accepted the application of TVO Company on January 17, 2002, but the final word will be said by the Parliament. During the spring 2002 there will be intensive discussion on all levels, whether nuclear power is for or against 'the total benefit of the society'. The Parliament decision is expected to be made by the summer 2002. In this paper, firstly a financial comparison of the new base-load power plant alternatives is carried out in the Finnish circumstances, and secondly the actual power production costs of the existing Olkiluoto nuclear power plant based on the operating history of about 20 years will be referred. (authors)

  2. Kansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear net generation (percent)","Owner" "Wolf Creek Generating Station Unit 1","1,160","9,556",100.0,"Wolf Creek Nuclear Optg Corp" "1 Plant 1 Reactor","1,160","9,556",100.0...

  3. Vermont Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    mwh)","Share of State nuclear net generation (percent)","Owner" "Vermont Yankee Unit 1",620,"4,782",100.0,"Entergy Nuclear Vermont Yankee" "1 Plant 1 Reactor",620,"4,782",100.0...

  4. Vehicle bomb protection for nuclear power plants

    SciTech Connect (OSTI)

    James, J.W.; Veatch, J.D.; Goldman, L.; Massa, R.

    1989-01-01T23:59:59.000Z

    The six-step methodology presented in this paper can be applied to nuclear power reactors to provide protection measures and considerations against vehicle bomb threats. The methodology provides a structured framework for examining the potential vulnerability of a plant to a postulated vehicle bomb and for developing contingency planning strategies for dealing with such a possibility. The six steps are as follows: (1) identify system options available to establish and maintain a safe reactor shutdown; (2) identify buildings or other structures containing critical components and equipment associated with each system option; (3) determine survival envelopes for the system options; (4) review site features to determine vehicle access approach paths and distances as they relate to the survival envelopes; (5) identify measures to limit or thwart vehicle access, and protect and preserve preferred system options; (6) prepare contingency plans and make advance arrangements for implementation of contingency measures for a vehicle bomb attack. Portions of this methodology related to blast effects from vehicle bombs on power reactor components are implemented using BombCAD, a proprietary computer-aided design (CAD)-based blast effects analysis technique.

  5. Review: Nuclear Power Is Not the Answer by Helen Caldicott

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2007-01-01T23:59:59.000Z

    Review: Nuclear Power Is Not the Answer By Helen CaldicottPakistan. Helen Caldicott. Nuclear Power Is Not the Answer.about the true costs of nuclear power, the health effects of

  6. Electromagnetic compatibility of nuclear power plants

    SciTech Connect (OSTI)

    Cabayan, H.S.

    1983-01-01T23:59:59.000Z

    Lately, there has been a mounting concern about the electromagnetic compatibility of nuclear-power-plant systems mainly because of the effects due to the nuclear electromagnetic pulse, and also because of the introduction of more-sophisticated and, therefore, more-susceptible solid-state devices into the plants. Questions have been raised about the adequacy of solid-state-device protection against plant electromagnetic-interference sources and transients due to the nuclear electromagnetic pulse. In this paper, the author briefly reviews the environment, and the coupling, susceptibility, and vulnerability assessment issues of commercial nuclear power plants.

  7. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    SciTech Connect (OSTI)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01T23:59:59.000Z

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  8. CEC-150-2006-001-F NUCLEAR POWER

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION MARCH 2006 CEC-150-2006-001-F NUCLEAR POWER IN CALIFORNIA: STATUS REPORT Prepared for the 2005 Integrated Energy Policy Report FINAL CONSULTANT REPORT #12;NUCLEAR POWER on California's nuclear power plants and key nuclear power issues such as nuclear waste storage, disposal

  9. COMMERCIAL UTILITY PERSPECTIVES ON NUCLEAR POWER PLANT CONTROL ROOM MODERNIZATION

    SciTech Connect (OSTI)

    Jeffrey C. Joe; Ronald L. Boring; Julius J. Persensky

    2012-07-01T23:59:59.000Z

    Commercial nuclear power plants (NPPs) in the United States need to modernize their main control rooms (MCR). Many NPPs have done partial upgrades with some success and with some challenges. The Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Program, and in particular the Advanced Instrumentation and Controls (I&C) and Information Systems Technologies Research and Development (R&D) Pathway within LWRS, is designed to assist commercial nuclear power industry with their MCR modernization efforts. As part of this framework, a survey was issued to utility representatives of the LWRS Program Advanced Instrumentation, Information, and Control Systems/Technologies (II&C) Utility Working Group to obtain their views on a range of issues related to MCR modernization, including: drivers, barriers, and technology options, and the effects these aspects will have on concepts of operations, modernization strategies, and staffing. This paper summarizes the key survey results and discusses their implications.

  10. Deputy Secretary Poneman Delivers Remarks on Nuclear Power at...

    Energy Savers [EERE]

    Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo American Center in Japan Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo American Center in...

  11. Guangdong Nuclear Power and New Energy Industrial Investment...

    Open Energy Info (EERE)

    Guangdong Nuclear Power and New Energy Industrial Investment Fund Management Company Jump to: navigation, search Name: Guangdong Nuclear Power and New Energy Industrial Investment...

  12. aagesta nuclear power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Denmark December 1991 12;Abstract. A computer model of a simplified pressurized nuclear power plant a compute simulation of a simplified pressurized nuclear power plant model...

  13. Washington Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Columbia Generating Station Unit...

  14. Iowa Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Duane Arnold Energy Center Unit...

  15. Japanese nuclear power and the Kyoto agreement

    E-Print Network [OSTI]

    Babiker, Mustafa H.M.; Reilly, John M.; Ellerman, A. Denny.

    We find that, on an economic basis, nuclear power could make a substantial contribution for meeting the emissions target Japan agreed to in the Kyoto Protocol. It is unlikely however that the contribution would be as large ...

  16. Nuclear power plant construction activity, 1986

    SciTech Connect (OSTI)

    Not Available

    1987-07-24T23:59:59.000Z

    Cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1986, are presented. This report, which is updated annually, was prepared to provide an overview of the nuclear power plant construction industry. The report contains information on the status of nuclear generating units, average construction costs and lead-times, and construction milestones for individual reactors.

  17. Fresh nuclear fuel measurements at Ukrainian nuclear power plants

    SciTech Connect (OSTI)

    Kuzminski, Jozef [Los Alamos National Laboratory; Ewing, Tom [ANL; Dickman, Debbie [PNNL; Gavrilyuk, Victor [UKRAINE; Drapey, Sergey [UKRAINE; Kirischuk, Vladimir [UKRAINE; Strilchuk, Nikolay [UKRAINE

    2009-01-01T23:59:59.000Z

    In 2005, the Provisions on Nuclear Material Measurement System was enacted in Ukraine as an important regulatory driver to support international obligations in nuclear safeguards and nonproliferation. It defines key provisions and requirements for material measurement and measurement control programs to ensure the quality and reliability of measurement data within the framework of the State MC&A System. Implementing the Provisions requires establishing a number of measurement techniques for both fresh and spent nuclear fuel for various types of Ukrainian reactors. Our first efforts focused on measurements of fresh nuclear fuel from a WWR-1000 power reactor.

  18. Nuclear Power 2010 Program: Combined Construction and Operating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report Nuclear Power 2010 Program: Combined...

  19. Indicator system for advanced nuclear plant control complex

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1993-01-01T23:59:59.000Z

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  20. Advanced PID type fuzzy logic power system stabilizer

    SciTech Connect (OSTI)

    Hiyama, Takashi; Kugimiya, Masahiko; Satoh, Hironori (Kumamoto Univ. (Japan). Dept. of Electrical Engineering and Computer Science)

    1994-09-01T23:59:59.000Z

    An advanced fuzzy logic control scheme has been proposed for a micro-computer based power system stabilizer to enhance the overall stability of power systems. The proposed control scheme utilizes the PID information of the generator speed. The input signal to the stabilizer is the real power output of a study unit. Simulations show the effectiveness of the advanced fuzzy logic control scheme.

  1. The American nuclear power industry. A handbook

    SciTech Connect (OSTI)

    Pearman, W.A.; Starr, P.

    1984-01-01T23:59:59.000Z

    This book presents an overview of the history and current organization of the American nuclear power industry. Part I focuses on development of the industry, including the number, capacity, and type of plants in commercial operation as well as those under construction. Part II examines the safety, environmental, antitrust, and licensing issues involved in the use of nuclear power. Part III presents case studies of selected plants, such as Three Mile Island and Seabrook, to illustrate some of the issues discussed. The book also contains a listing of the Nuclear Regulatory Commission libraries and a subject index.

  2. Missouri Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Callaway Unit 1","1,190","8,996",100.0,"Union...

  3. Mississippi Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Grand Gulf Unit 1","1,251","9,643",100.0,"Syste...

  4. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    SciTech Connect (OSTI)

    Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

    2010-01-01T23:59:59.000Z

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  5. Second generation PFB for advanced power generation

    SciTech Connect (OSTI)

    Robertson, A.; Van Hook, J.

    1995-11-01T23:59:59.000Z

    Research is being conducted under a United States Department of Energy (USDOE) contract to develop a new type of coal-fueled plant for electric power generation. This new type of plant-called an advanced or second-generation pressurized fluidized bed combustion (APFBC) plant-offers the promise of 45-percent efficiency (HHV), with emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. This paper summarizes the pilot plant R&D work being conducted to develop this new type of plant. Although pilot plant testing is still underway, preliminary estimates indicate the commercial plant Will perform better than originally envisioned. Efficiencies greater than 46 percent are now being predicted.

  6. NUCLEAR POWER AND RESEARCH REACTORS 1939 1942 1943 1944

    E-Print Network [OSTI]

    Pennycook, Steve

    #12;#12;11 #12;2 NUCLEAR POWER AND RESEARCH REACTORS 1939 1942 1943 1944 Nuclear fission discovered Oak Ridge selected as site for World War II Manhattan Project First sustained and controlled nuclear 430 nuclear power reactors are operating in the world, and 103 nuclear power plants produce 20

  7. Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems: Preprint

    SciTech Connect (OSTI)

    Ma, Z.; Turchi, C. S.

    2011-03-01T23:59:59.000Z

    The research will characterize and evaluate advanced S-CO2 Brayton cycle power generation with a modular power tower CSP system.

  8. $60 Million to Fund Projects Advancing Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The SunShot initiative announces a $60 million funding opportunity (FOA) to advance concentrating solar power in the United States.

  9. Air Cooling Technology for Advanced Power Electronics and Electric...

    Broader source: Energy.gov (indexed) [DOE]

    Desikan Bharathan National Renewable Energy Laboratory Friday May 22, 2009 Air Cooling Technology for Advanced Power Electronics and Electric Machines ape12bharathan This...

  10. Thermal Stress and Reliability for Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance and Reliability of Bonded Interfaces Physics of Failure of Electrical Interconnects Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines...

  11. Nuclear power: key to man's extraterrestrial civilization

    SciTech Connect (OSTI)

    Angelo, J.A. Jr.; Buden, D.

    1982-01-01T23:59:59.000Z

    The start of the Third Millennium will be highlighted by the establishment of man's extraterrestrial civilization with three technical cornerstones leading to the off-planet expansion of the human resource base. These are (1) the availability of compact energy sources for power and propulsion, (2) the creation of permanent manned habitats in space, and (3) the ability to process materials anywhere in the Solar System. In the 1990s and beyond, nuclear reactors could represent the prime source of both space power and propulsion. The manned and unmanned space missions of tomorrow will demand first kilowatt and then megawatt levels of power. Various nuclear power plant technologies will be discussed, with emphasis on derivatives from the nuclear rocket technology.

  12. GNEP Element:Expand Domestic Use of Nuclear Power | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Expand Domestic Use of Nuclear Power GNEP Element:Expand Domestic Use of Nuclear Power A report discussing the intentions of the GNEP. GNEP Element:Expand Domestic Use of Nuclear...

  13. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    SciTech Connect (OSTI)

    Robert J. Goldston

    2010-03-03T23:59:59.000Z

    Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ~30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64oC long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

  14. The Fukushima Nuclear Event and its Implications for Nuclear Power

    SciTech Connect (OSTI)

    Golay, Michael (MIT) [MIT

    2011-07-06T23:59:59.000Z

    The combined strong earthquake and super tsunami of 12 March 2011 at the Fukushima nuclear power plant imposed the most severe challenges ever experienced at such a facility. Information regarding the plant response and status remains uncertain, but it is clear that severe damage has been sustained, that the plant staff have responded creatively and that the offsite implications are unlikely to be seriously threatening to the health, if not the prosperity, of the surrounding population. Re-examination of the regulatory constraints of nuclear power will occur worldwide, and some changes are likely, particularly concerning reliance upon active systems for achieving critical safety functions and concerning treatments of used reactor fuel. Whether worldwide expansion of the nuclear power economy will be slowed in the long run is perhaps unlikely and worth discussion.

  15. Optimization of advanced telecommunication algorithms from power and performance perspective 

    E-Print Network [OSTI]

    Khan, Zahid

    2011-11-22T23:59:59.000Z

    This thesis investigates optimization of advanced telecommunication algorithms from power and performance perspectives. The algorithms chosen are MIMO and LDPC. MIMO is implemented in custom ASIC for power optimization ...

  16. advanced nuclear research: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced nuclear research First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Department of Advanced Energy...

  17. Advanced safeguards for the nuclear renaissance

    SciTech Connect (OSTI)

    Miller, Michael C [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    The global expansion of nuclear energy provides not only the benefit of carbon-neutral electricity, but also the potential for proliferation concern as well. Nuclear safeguards implemented at the state level (domestic) and at the international level by the International Atomic Energy Agency (IAEA) are essential for ensuring that nuclear materials are not misused and are thereby a critical component of the increased usage of nuclear energy. In the same way that the 1950's Atoms for Peace initiative provided the foundation for a robust research and development program in nuclear safeguards, the expansion of nuclear energy that is underway today provides the impetus to enter a new era of technical development in the safeguards community. In this paper, we will review the history of nuclear safeguards research and development as well future directions.

  18. KRNFYSIK, FRDJUPNINGSKURS FKF021 Nuclear Physics, Advanced Course I

    E-Print Network [OSTI]

    K�RNFYSIK, F�RDJUPNINGSKURS FKF021 Nuclear Physics, Advanced Course I Poäng: 5.0 Betygskala: TH. Kärnmodeller. Det radioaktiva sönderfallet, alfa-, beta- och gamma-emisson. Kärnreaktioner. Fission och fusion. Partikelfysik. Laborationerna är obligatoriska. Litteratur: Krane, K.S.: Introductory Nuclear Physics

  19. KRNFYSIK, FRDJUPNINGSKURS FKF 021 Nuclear Physics, Advanced Course I

    E-Print Network [OSTI]

    K�RNFYSIK, F�RDJUPNINGSKURS FKF 021 Nuclear Physics, Advanced Course I Antal poäng: 5.0. Valfri för. Kärnmodeller. Det radioaktiva sönderfallet, alfa-, beta- och gamma-emisson. Kärnreaktioner. Fission och fusion. Partikelfysik. Laborationerna är obligatoriska. Litteratur Krane, K.S.: Introductory Nuclear Physics

  20. Department of Advanced Energy Nuclear Fusion Research Education Program

    E-Print Network [OSTI]

    Yamamoto, Hirosuke

    23 Department of Advanced Energy Nuclear Fusion Research Education Program 22 8 24) (1) (2) (3) (4) (5) (6) (7) (8) #12;- 7 - 23 Guide to Nuclear Fusion Research Education@criepi.denken.or.jp tel: 046-856-2121 12 http://www. k.u-tokyo.ac.jp/fusion-pro/ #12;- 3 - (1) TOEFL TOEIC

  1. Department of Advanced Energy Nuclear Fusion Research Education Program

    E-Print Network [OSTI]

    Yamamoto, Hirosuke

    24 Department of Advanced Energy Nuclear Fusion Research Education Program 23 8 23 to Nuclear Fusion Research Education Program 277-8561 5-1-5 1 04-7136-4092 http://www.k.u-tokyo.ac.jp/fusion: nemoto@criepi.denken.or.jp tel: 046-856-2121 12 http://www. k.u-tokyo.ac.jp/fusion-pro/ #12

  2. Department of Advanced Energy Nuclear Fusion Research Education Program

    E-Print Network [OSTI]

    Yamamoto, Hirosuke

    26 Department of Advanced Energy Nuclear Fusion Research Education Program 25 8 20) #12; 26 Guide to Nuclear Fusion Research Education Program 03-5841-6563 E-mail : ae: 050-336-27836 mail: sakai@isas.jaxa.jp tel: 050-3362-5919 , 7 12 http://www. k.u-tokyo.ac.jp/fusion

  3. Department of Advanced Energy Nuclear Fusion Research Education Program

    E-Print Network [OSTI]

    Yamamoto, Hirosuke

    25 Department of Advanced Energy Nuclear Fusion Research Education Program 24 8 21.Yasuhiro@jaxa.jp tel: 050-336-27836 mail: sakai@isas.jaxa.jp tel: 050-3362-5919 12 http://www. k.u-tokyo.ac.jp/fusion 15 (1) (2) (1) (2) (3) (4) (5) (6) (7) (8) (9) #12;- 8 - 25 Guide to Nuclear

  4. SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS Piero Baraldi Chevalier EDF R&D ­ Simulation and information Technologies for Power generation system Department 6, Quai Monitoring, Empirical Modeling, Power Plants, Safety Critical Nuclear Instrumentation, Autoassociative models

  5. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, Electric andIndustrial

  6. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, ElectricSales (Million Cubic Feet)DecadeConnecticut

  7. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Light-Duty(Million CubicIndustrialCubicDecadeEdwin Inuclear

  8. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals (MillionperYearThousandFeet)Minnesota nuclear

  9. Nuclear Power Plant Construction Activity, 1985

    SciTech Connect (OSTI)

    Not Available

    1986-08-13T23:59:59.000Z

    Nuclear Power Plant Construction Activity 1985 presents cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1985. This Report, which is updated annually, was prepared to respond to the numerous requests received by the Energy Information Administration for the data collected on Form EIA-254, ''Semiannual Report on Status of Reactor Construction.''

  10. Nuclear power and its environmental effects

    SciTech Connect (OSTI)

    Glasstone, S.; Jordan, W.H.

    1980-01-01T23:59:59.000Z

    The authors, veterans in the field of nuclear technology, attempt in this book to present the complexities of nuclear energy issues for the general public. Their coverage of the subject is very thorough, starting with the fundamentals of nuclear reactors and of electrical power generation and continuing into such environmental problem areas as the biological effects of radiation, radioactive waste management, diposal of waste heat, and transportation of nuclear materials. Generally, they reflect the optimism of the pro-nuclear establishment, to which their publisher belongs. However, their tone is calm and nonpolemical, and even antinuclear advocates should find the volume to be a handy compilation of many basic facts. Recommended for public and academic libraries.

  11. Nuclear Power - Deployment, Operation and Sustainability 

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    and Plutonium Denaturing as an Effective Method for Nuclear Fuel Proliferation Protection in Open and Closed Fuel Cycles 331 Kryuchkov E.F., Tsvetkov P.V., Shmelev A.N., Apse V.A., Kulikov G.G., Masterov S.V., Kulikov E.G. and Glebov V.B Part 5 Thorium 363... Talbot Laboratory, Urbana, Illinois USA 1. Introduction T h e largest experien c e in operatin g nuclear power plants has been in nuclear naval propulsi o n , particul a r l y aircraft carriers and subma r i n e s . This accumul a t e d exper i e n c...

  12. Sandia Energy - Nuclear Power & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratory Fellows JerryNuclear EnergyNuclear Power

  13. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect (OSTI)

    Jon Carmack

    2014-01-01T23:59:59.000Z

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  14. Virtual environments for nuclear power plant design

    SciTech Connect (OSTI)

    Brown-VanHoozer, S.A.; Singleterry, R.C. Jr.; King, R.W. [and others

    1996-03-01T23:59:59.000Z

    In the design and operation of nuclear power plants, the visualization process inherent in virtual environments (VE) allows for abstract design concepts to be made concrete and simulated without using a physical mock-up. This helps reduce the time and effort required to design and understand the system, thus providing the design team with a less complicated arrangement. Also, the outcome of human interactions with the components and system can be minimized through various testing of scenarios in real-time without the threat of injury to the user or damage to the equipment. If implemented, this will lead to a minimal total design and construction effort for nuclear power plants (NPP).

  15. Advanced LWR Nuclear Fuel Cladding System Development Trade-Off Study

    SciTech Connect (OSTI)

    Kristine Barrett; Shannon Bragg-Sitton

    2012-09-01T23:59:59.000Z

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system that would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.

  16. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Light-Duty Vehicles,Year Jan Feb MarYeartotalFlorida

  17. The Potential for a Nuclear Renaissance: The Development of Nuclear Power Under Climate Change Mitigation Policies

    E-Print Network [OSTI]

    The Potential for a Nuclear Renaissance: The Development of Nuclear Power Under Climate Change and Policy Program #12;#12;The Potential for a Nuclear Renaissance: The Development of Nuclear Power Under the Earth's climate, and will continue to change it for centuries if no action is taken. Nuclear power

  18. Nuclear Power No Solution to the Climate Crisis

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Nuclear Power No Solution to the Climate Crisis Michael Mariotte Nuclear Information and Resource-12, 2009 #12;Environmental Statement on Nuclear Power and the Climate Crisis "We do not support emissions than nuclear power." Signed by 483 US organizations, 164 int'l organizations and 10

  19. System and method for advanced power management

    DOE Patents [OSTI]

    Atcitty, Stanley (Albuquerque, NM); Symons, Philip C. (Surprise, AZ); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM)

    2009-07-28T23:59:59.000Z

    A power management system is provided that includes a power supply means comprising a plurality of power supply strings, a testing means operably connected to said plurality of power supply strings for evaluating performance characteristics of said plurality of power supply strings, and a control means for monitoring power requirements and comprising a switching means for controlling switching of said plurality of power supply strings to said testing means.

  20. Floating nuclear power plant safety assurance principles

    SciTech Connect (OSTI)

    Zvonarev, B.M.; Kuchin, N.L.; Sergeev, I.V.

    1993-12-31T23:59:59.000Z

    In the north regions of the Russian federation and low density population areas, there is a real necessity for ecological clean energy small power sources. For this purpose, floating nuclear power plants, designed on the basis of atomic ship building engineering, are being conceptualized. It is possible to use the ship building plants for the reactor purposes. Issues such as radioactive waste management are described.

  1. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals (MillionperYear Jan FebSamenuclear power plants,

  2. Global nuclear power supply chains and the rise of China's nuclear industry

    E-Print Network [OSTI]

    Metzler, Florian

    2012-01-01T23:59:59.000Z

    China has embarked on a massive expansion of nuclear power that may fundamentally change the global nuclear industry, for better or for worse. Some industry observers argue that the incumbent nuclear power companies are ...

  3. World Net Nuclear Electric Power Generation, 1980-2007 - Datasets...

    Open Energy Info (EERE)

    U.S. Energy Information ... World Net Nuclear Electric ... Dataset Activity Stream World Net Nuclear Electric Power Generation, 1980-2007 International data showing world net...

  4. Sandia Energy - Sandia Nuclear Power Safety Expert Elected to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Power Safety Expert Elected to National Academy of Engineering Home Infrastructure Security Energy Nuclear Energy Capabilities News News & Events Research & Capabilities...

  5. Nuclear Power - System Simulations and Operation 

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    A&M University United States of America 1 Simulation and Simulators for Nuclear Power Generation J a n o s Sebe s ty e n Janos y MTA KFKI Atomic Energy Research Institute Hungary 1. Introduction T h i s chapte r deals with simula... t i o n , a very po werfu l tool in designi n g , constru c t i n g and operat i n g nuclea r power genera t i n g facili ti es . There are very differ e n t types of power plants , and the exampl e s mentio n e d in this chapte r or igin a t e from...

  6. Transactions of the fourth symposium on space nuclear power systems

    SciTech Connect (OSTI)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1987-01-01T23:59:59.000Z

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  7. Transactions of the fifth symposium on space nuclear power systems

    SciTech Connect (OSTI)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1988-01-01T23:59:59.000Z

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  8. Global Nuclear Energy Partnership Fact Sheet - Expand Domestic...

    Broader source: Energy.gov (indexed) [DOE]

    Expand Domestic Use of Nuclear Power Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of Nuclear Power GNEP will build on the recent advances made by the...

  9. Management of National Nuclear Power Programs for assured safety

    SciTech Connect (OSTI)

    Connolly, T.J. (ed.)

    1985-01-01T23:59:59.000Z

    Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

  10. Advanced Power Systems and Controls Laboratory

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    Solar Power Generation Introduction The rapid growth of wind and solar power is a key driver] · 80% loss of power output in seconds · Ramp Rates >100 MW/min · Poses a threat to grid stability developed for wind and solar applications. The test platform can be run with up to four 1.5MVA power

  11. Microsoft PowerPoint - Advances_Singley

    Office of Environmental Management (EM)

    * Develop a "smart" delay package that provide location of package and detection of attack * Apply these technologies to the entire logistics chain 2 Defense Nuclear...

  12. FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced Computational Kernels OBJECTIVE The U of the power grid will also have to evolve to insure accurate and timely simulations. On the other hand, the software tools available for power grid simulation today are primarily sequential single core programs

  13. Summary of space nuclear reactor power systems, 1983--1992

    SciTech Connect (OSTI)

    Buden, D.

    1993-08-11T23:59:59.000Z

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  14. Intelligent Component Monitoring for Nuclear Power Plants

    SciTech Connect (OSTI)

    Lefteri Tsoukalas

    2010-07-30T23:59:59.000Z

    Reliability and economy are two major concerns for a nuclear power generation system. Next generation nuclear power reactors are being developed to be more reliable and economic. An effective and efficient surveillance system can generously contribute toward this goal. Recent progress in computer systems and computational tools has made it necessary and possible to upgrade current surveillance/monitoring strategy for better performance. For example, intelligent computing techniques can be applied to develop algorithm that help people better understand the information collected from sensors and thus reduce human error to a new low level. Incidents incurred from human error in nuclear industry are not rare and have been proven costly. The goal of this project is to develop and test an intelligent prognostics methodology for predicting aging effects impacting long-term performance of nuclear components and systems. The approach is particularly suitable for predicting the performance of nuclear reactor systems which have low failure probabilities (e.g., less than 10-6 year-). Such components and systems are often perceived as peripheral to the reactor and are left somewhat unattended. That is, even when inspected, if they are not perceived to be causing some immediate problem, they may not be paid due attention. Attention to such systems normally involves long term monitoring and possibly reasoning with multiple features and evidence, requirements that are not best suited for humans.

  15. advanced nuclear technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Programme A. Nuclear Power...

  16. aged nuclear power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMPONENTS Physics Websites Summary: SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS Piero Baraldi Monitoring, Empirical Modeling, Power Plants, Safety...

  17. Sensitivity analysis for the outages of nuclear power plants

    E-Print Network [OSTI]

    2012-02-17T23:59:59.000Z

    Feb 17, 2012 ... Nuclear power plants must be regularly shut down in order to perform re- ... Thermal power stations, using expensive resources such as coal.

  18. Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana)

    Broader source: Energy.gov [DOE]

    The Incentive Cost Recovery Rule for Nuclear Power Generation establishes guidelines for any utility seeking to develop a nuclear power plant in Louisiana. The rule clarifies, as well as...

  19. Coal and nuclear power: Illinois' energy future

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  20. Carbon pricing, nuclear power and electricity markets

    SciTech Connect (OSTI)

    Cameron, R.; Keppler, J. H. [OECD Nuclear Energy Agency, 12, boulevard des Iles, 92130 Issy-les-Moulineaux (France)

    2012-07-01T23:59:59.000Z

    In 2010, the NEA in conjunction with the International Energy Agency produced an analysis of the Projected Costs of Electricity for almost 200 power plants, covering nuclear, fossil fuel and renewable electricity generation. That analysis used lifetime costs to consider the merits of each technology. However, the lifetime cost analysis is less applicable in liberalised markets and does not look specifically at the viewpoint of the private investor. A follow-up NEA assessment of the competitiveness of nuclear energy against coal- and gas-fired generation under carbon pricing has considered just this question. The economic competition in electricity markets is today between nuclear energy and gas-fired power generation, with coal-fired power generation not being competitive as soon as even modest carbon pricing is introduced. Whether nuclear energy or natural gas comes out ahead in their competition depends on a number of assumptions, which, while all entirely reasonable, yield very different outcomes. The analysis in this study has been developed on the basis of daily data from European power markets over the last five-year period. Three different methodologies, a Profit Analysis looking at historic returns over the past five years, an Investment Analysis projecting the conditions of the past five years over the lifetime of plants and a Carbon Tax Analysis (differentiating the Investment Analysis for different carbon prices) look at the issue of competitiveness from different angles. They show that the competitiveness of nuclear energy depends on a number of variables which in different configurations determine whether electricity produced from nuclear power or from CCGTs generates higher profits for its investors. These are overnight costs, financing costs, gas prices, carbon prices, profit margins (or mark-ups), the amount of coal with carbon capture and electricity prices. This paper will present the outcomes of the analysis in the context of a liberalised electricity market, looking at the impact of the seven key variables and provide conclusions on the portfolio that a utility would be advised to maintain, given the need to limit risks but also to move to low carbon power generation. Such portfolio diversification would not only limit financial investor risk, but also a number of non-financial risks (climate change, security of supply, accidents). (authors)

  1. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    SciTech Connect (OSTI)

    Robert J. Goldston

    2011-04-28T23:59:59.000Z

    Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ~12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ~30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

  2. Analysis of nuclear power plant component failures

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    Items are shown that have caused 90% of the nuclear unit outages and/or deratings between 1971 and 1980 and the magnitude of the problem indicated by an estimate of power replacement cost when the units are out of service or derated. The funding EPRI has provided on these specific items for R and D and technology transfer in the past and the funding planned in the future (1982 to 1986) are shown. EPRI's R and D may help the utilities on only a small part of their nuclear unit outage problems. For example, refueling is the major cause for nuclear unit outages or deratings and the steam turbine is the second major cause for nuclear unit outages; however, these two items have been ranked fairly low on the EPRI priority list for R and D funding. Other items such as nuclear safety (NRC requirements), reactor general, reactor and safety valves and piping, and reactor fuel appear to be receiving more priority than is necessary as determined by analysis of nuclear unit outage causes.

  3. Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant

    Broader source: Energy.gov [DOE]

    NNSA presentation on Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant from May 13, 2011

  4. Results of Laboratory Testing of Advanced Power Strips: Preprint

    SciTech Connect (OSTI)

    Earle, L.; Sparn, B.

    2012-08-01T23:59:59.000Z

    This paper describes the results of a laboratory investigation to evaluate the technical performance of advanced power strip (APS) devices when subjected to a range of home entertainment center and home office usage scenarios.

  5. AIAA 94-4688 Topaz II Nuclear Powered

    E-Print Network [OSTI]

    Y Y AIAA 94-4688 Topaz II Nuclear Powered SAR Satellite M. Feuerstein and Dr. 9. Agrawal Naval Astronautics 370 L'EnfantPromenade, S.W., Washington, D.C. 20024 #12;AIAA-94-4688 TOPAZ 11NUCLEAR POWERED SAR at the Naval Postgraduate School. Thc design team integrated a Topaz I1 nuclear power system with an EOS

  6. SELFMONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION)

    E-Print Network [OSTI]

    SELF­MONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION) Aldo and identification are extremely important activities for the safety of a nuclear power plant. In particular inside huge and complex production plants. 1 INTRODUCTION Safety in nuclear power plants requires

  7. Nuclear power generation and fuel cycle report 1997

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  8. Seismic requirements for design of nuclear power plants and nuclear test facilities

    SciTech Connect (OSTI)

    Not Available

    1985-02-01T23:59:59.000Z

    This standard establishes engineering requirements for the design of nuclear power plants and nuclear test facilities to accommodate vibratory effects of earthquakes.

  9. Dose reduction at nuclear power plants

    SciTech Connect (OSTI)

    Baum, J.W.; Dionne, B.J.

    1983-01-01T23:59:59.000Z

    The collective dose equivalent at nuclear power plants increased from 1250 rem in 1969 to nearly 54,000 rem in 1980. This rise is attributable primarily to an increase in nuclear generated power from 1289 MW-y to 29,155 MW-y; and secondly, to increased average plant age. However, considerable variation in exposure occurs from plant to plant depending on plant type, refueling, maintenance, etc. In order to understand the factors influencing these differences, an investigation was initiated to study dose-reduction techniques and effectiveness of as low as reasonably achievable (ALARA) planning at light water plants. Objectives are to: identify high-dose maintenance tasks and related dose-reduction techniques; investigate utilization of high-reliability, low-maintenance equipment; recommend improved radioactive waste handling equipment and procedures; examine incentives for dose reduction; and compile an ALARA handbook.

  10. advanced nuclear analytical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear analytical First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Advances in Undergraduate Control...

  11. advanced hybrid nuclear: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hybrid nuclear First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Advanced Review proteinorganicinorganic...

  12. advanced nuclear thermal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear thermal First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 New Thermal Imaging Camera Advances UNL...

  13. advanced-gas-cooled-nuclear-reactor materials evaluation: Topics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced-gas-cooled-nuclear-reactor materials evaluation First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index...

  14. Educational/trainingEducational/training needs of Nuclear Powerneeds of Nuclear Power

    E-Print Network [OSTI]

    lesson ·· April 1979April 1979 ·· At the TMI nuclear plant,At the TMI nuclear plant, operators thatpeople running the plant that caused the accidentcaused the accident #12;The nuclear IndustryThe nuclearEducational/trainingEducational/training needs of Nuclear Powerneeds of Nuclear Power Industry [NPI

  15. Vehicle Technologies Office: 2008 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    waste heat recovery devices for vehicles Vehicle Technologies Office Merit Review 2014: Thermal Control of Power Electronics of Electric Vehicles with Small Channel Coolant Boiling...

  16. Vehicle Technologies Office: 2012 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog...

  17. Vehicle Technologies Office: 2013 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road...

  18. Sandia National Laboratories: advanced auxiliary power units...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    auxiliary power units (including biofuels) Sandia Participated in the 3rd Annual Technology Forum of the U.S.-China Clean Energy Research Center - Clean Vehicles Consortium...

  19. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01T23:59:59.000Z

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

  20. Tethered nuclear power for the Space Station

    SciTech Connect (OSTI)

    Bents, D.J.

    1985-01-01T23:59:59.000Z

    A nuclear space power system the SP-100 is being developed for future missions where large amounts of electrical power will be required. Although it is primarily intended for unmanned spacecraft, it can be adapted to a manned space platform by tethering it above the station through an electrical transmission line which isolates the reactor far away from the inhabited platform and conveys its power back to where it is needed. The transmission line, used in conjunction with an instrument rate shield, attenuates reactor radiation in the vicinity of the space station to less than one-one hundredth of the natural background which is already there. This combination of shielding and distance attenuation is less than one-tenth the mass of boom-mounted or onboard man-rated shields that are required when the reactor is mounted nearby. This paper describes how connection is made to the platform (configuration, operational requirements) and introduces a new element the coaxial transmission tube which enables efficient transmission of electrical power through long tethers in space. Design methodology for transmission tubes and tube arrays is discussed. An example conceptual design is presented that shows SP-100 at three power levels 100 kWe, 300 kWe, and 1000 kWe connected to space station via a 2 km HVDC transmission line/tether. Power system performance, mass, and radiation hazard are estimated with impacts on space station architecture and operation.

  1. Nuclear electromagnetic pulse and the electric power system

    SciTech Connect (OSTI)

    Legro, J.R.; Reed, T.J.

    1985-01-01T23:59:59.000Z

    A single, high-altitude nuclear detonation over the continental United States can expose large geographic areas to transient, electromagnetic pulse (EMP). The initial electromagnetic fields produced by this event have been defined as high-altitude electromagnetic pulse (HEMP). Later-time, low frequency fields have been defined as magnetohydrodynamic-electromagnetic pulse (MHD-EMP). Nuclear detonations at, or near the surface of the earth can also produce transient EMP. These electromagnetic phenomena have been defined as source region electromagnetic pulse (SREMP). The Division of Electric Energy Systems (EES) of the United States Department of Energy (DOE) has formulated and implemented a Program Plan to assess the possible effects of the above nuclear EMP on civilian electric power systems. This unclassified research effort is under the technical leadership of the Oak Ridge National Laboratory. This paper presents a brief perspective of EMP phenomenology and important interaction issues for power systems based on research performed by Westinghouse Advanced Systems Technology as a principal subcontractor in the research effort.

  2. Nuclear power generation and fuel cycle report 1996

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  3. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    SciTech Connect (OSTI)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01T23:59:59.000Z

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.

  4. Human Factors Considerations in New Nuclear Power Plants: Detailed Analysis.

    SciTech Connect (OSTI)

    OHara,J.; Higgins, J.; Brown, W.; Fink, R.

    2008-02-14T23:59:59.000Z

    This Nuclear Regulatory Commission (NRC) sponsored study has identified human-performance issues in new and advanced nuclear power plants. To identify the issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were organized into seven high-level HFE topic areas: Role of Personnel and Automation, Staffing and Training, Normal Operations Management, Disturbance and Emergency Management, Maintenance and Change Management, Plant Design and Construction, and HFE Methods and Tools. The issues where then prioritized into four categories using a 'Phenomena Identification and Ranking Table' methodology based on evaluations provided by 14 independent subject matter experts. The subject matter experts were knowledgeable in a variety of disciplines. Vendors, utilities, research organizations and regulators all participated. Twenty issues were categorized into the top priority category. This Brookhaven National Laboratory (BNL) technical report provides the detailed methodology, issue analysis, and results. A summary of the results of this study can be found in NUREG/CR-6947. The research performed for this project has identified a large number of human-performance issues for new control stations and new nuclear power plant designs. The information gathered in this project can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas through regulatory research. Addressing human-performance issues will provide the technical basis from which regulatory review guidance can be developed to meet these challenges. The availability of this review guidance will help set clear expectations for how the NRC staff will evaluate new designs, reduce regulatory uncertainty, and provide a well-defined path to new nuclear power plant licensing.

  5. Advanced Heat Exchanger Development for Molten Salts in Nuclear and Non Nuclear Systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sabharwall, Piyush; Clark, Denis; Sridharan, Kumar; Zheng, Guiqiu; Anderson, Mark

    2014-12-01T23:59:59.000Z

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.

  6. Comparison of evolving photovoltaic and nuclear power systems for Earth orbital applications

    SciTech Connect (OSTI)

    Rockey, D.E.; Jones, R.M.; Schulman, I.

    1983-08-01T23:59:59.000Z

    As the Space Shuttle becomes fully operational, NASA and DOD missions may require high power Earth orbital power systems. Total end-to-end comparisons are made for representative photovoltaic and nuclear systems. The photovoltaic systems examined range from flight demonstrated conventional solid substrate solar array/NiCd battery approaches to undemonstrated advanced array/energy storage systems. End-of-life power to mass performance is presented for 25 kW photovoltaic arrays at orbital altitudes ranging from low Earth orbit to geosynchronous orbit for 1, 5, and 10 year missions. The SP-100 nuclear power system is examined for three technology levels ranging from near term to advanced approaches for 25 and 100 kWe power levels. The system specific power, or ratio of load power to power system mass, for each end-to-end photovoltaic and nuclear system is presented. Detailed descriptions of various photovoltaic and nuclear power systems together with their associated electrical block diagrams are also presented.

  7. Integration of advanced nuclear materials separation processes

    SciTech Connect (OSTI)

    Jarvinen, G.D.; Worl, L.A.; Padilla, D.D.; Berg, J.M.; Neu, M.P.; Reilly, S.D.; Buelow, S.

    1998-12-31T23:59:59.000Z

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project has examined the fundamental chemistry of plutonium that affects the integration of hydrothermal technology into nuclear materials processing operations. Chemical reactions in high temperature water allow new avenues for waste treatment and radionuclide separation.Successful implementation of hydrothermal technology offers the potential to effective treat many types of radioactive waste, reduce the storage hazards and disposal costs, and minimize the generation of secondary waste streams. The focus has been on the chemistry of plutonium(VI) in solution with carbonate since these are expected to be important species in the effluent from hydrothermal oxidation of Pu-containing organic wastes. The authors investigated the structure, solubility, and stability of the key plutonium complexes. Installation and testing of flow and batch hydrothermal reactors in the Plutonium Facility was accomplished. Preliminary testing with Pu-contaminated organic solutions gave effluent solutions that readily met discard requirements. A new effort in FY 1998 will build on these promising initial results.

  8. The USSR nuclear power: Expectation of renaissance

    SciTech Connect (OSTI)

    Gagarinski, A.; Ponomarev-Stepnoi, N. (I.V. Kurchatov Institute of Atomic Energy, Kurchatov Square (Russian Federation))

    1992-01-01T23:59:59.000Z

    When the Soviet specialists presented the data on the causes and consequences of the largest world nuclear accident to the world community in 1986 and even in a year after the Chernobyl catastrophe, they kept certain optimism concerning continuous steady implementation of the nuclear power projects in this country. However five post Chernobyl years have shown that the installed capacities of the Soviet NPPs increased only by 5GW. Basing on the most optimistic current estimations it can be said that by the turn of the century the total NPP capacity will not have reached even a third of 190 GW to which the Soviet nuclear program, adopted in the beginning of the 80s, was oriented. It should be pointed out that the cause of reduction in the program was not only canceling of the orders for new NPP construction but also stopped construction works even at the final stage of NPP erection. In the whole, research works, construction and extension of NPP were interrupted on 39 sites of total capacity 109 GW. Not going into a detailed analysis of the causes of this situation, it should be pointed out that deep economical and ecological prerequisites for maintenance and further development of the nuclear component in the fuel and energy balance of this country not only did not vanish but rather are growing in time in the forecasted economic situation.

  9. Development of a propulsion system and component test facility for advanced radioisotope powered Mars Hopper platforms

    SciTech Connect (OSTI)

    Robert C. O'Brien; Nathan D. Jerred; Steven D. Howe

    2011-02-01T23:59:59.000Z

    Verification and validation of design and modeling activities for radioisotope powered Mars Hopper platforms undertaken at the Center for Space Nuclear Research is essential for proof of concept. Previous research at the center has driven the selection of advanced material combinations; some of which require specialized handling capabilities. The development of a closed and contained test facility to forward this research is discussed within this paper.

  10. Advanced RF power sources for linacs

    SciTech Connect (OSTI)

    Wilson, P.B.

    1996-10-01T23:59:59.000Z

    In order to maintain a reasonable over-all length at high center-of-mass energy, the main linac of an electron-positron linear collider must operate at a high accelerating gradient. For copper (non-superconducting) accelerator structures, this implies a high peak power per unit length and a high peak power per RF source, assuming a limited number of discrete sources are used. To provide this power, a number of devices are currently under active development or conceptual consideration: conventional klystrons with multi-cavity output structures, gyroklystrons, magnicons, sheet-beam klystrons, multiple-beam klystrons and amplifiers based on the FEL principle. To enhance the peak power produced by an rf source, the SLED rf pulse compression scheme is currently in use on existing linacs, and new compression methods that produce a flatter output pulse are being considered for future linear colliders. This paper covers the present status and future outlook for the more important rf power sources and pulse compression systems. It should be noted that high gradient electron linacs have applications in addition to high-energy linear colliders; they can, for example, serve as compact injectors for FEL`s and storage rings.

  11. U.S. Forward Operating Base Applications of Nuclear Power

    SciTech Connect (OSTI)

    Dr. George Griffith

    2015-01-01T23:59:59.000Z

    Nuclear power was demonstrated and made practical so that it could support the military mission of powering ships and submarines. The critical mission benefits of almost unlimited air and fuel-independent power on submarines helped spur development of the nuclear power technology that still forms the basis for the modern nuclear power industry.i Potential production of large amounts of power with low-fuel volume inputs attracted military interest shortly after nuclear power was proven to be viable.ii The expected benefit of nuclear power plants at a forward operating base (FOB) is a significant reduction in the operational and transportation risks and cost required to power FOBs. The reduction in fuel and water volumes that need to be transported is viewed as particularly valuable during war time, when mission capability and reducing enemy exposure is considered much more important than cost. Paper reviews current reactor experience and previous small military reactor applications.

  12. Power Quality Improvement in Microgrid Using Advanced Active Power Conditioner

    E-Print Network [OSTI]

    unknown authors

    Abstract:- Wind energy conversion systems are now occupying important space in the research of renewable energy sources with microgrid. The main challenge in wind power generation is power quality problem and their connection with the distribution network in microgrid. The main factor behind poor

  13. Microsoft PowerPoint - Advances_Singley

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovember 5-6, 2001DepartmentApproved for9/2014 1 Advances

  14. Reducing Office Plug Loads through Simple and Inexpensive Advanced Power Strips: Preprint

    SciTech Connect (OSTI)

    Metzger, I.; Sheppy, M.; Cutler, D.

    2013-07-01T23:59:59.000Z

    This paper documents the process (and results) of applying Advanced Power Strips with various control approaches.

  15. Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

    Broader source: Energy.gov [DOE]

    Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

  16. Graduate School of Advanced Science and Engineering Cooperative Major in Nuclear Energy

    E-Print Network [OSTI]

    Kaji, Hajime

    Graduate School of Advanced Science and Engineering Cooperative Major in Nuclear Energy Master in Nuclear Energy Summary of Research Instruction Research Instruction Application Code Name Major in Nuclear Energy Master's Program Doctoral Program Summary of Research Instruction

  17. Condensate polishing at Surry Nuclear Power Station

    SciTech Connect (OSTI)

    McNea, D.A.; Siegwarth, D.P.; Friedman, K.A.; Sawochka, S.G.

    1983-06-01T23:59:59.000Z

    Condensate polisher system design and operation at the Surry Nuclear Power Station of Virginia Electric and Power Company were evaluated relative to the ability of the polishers to achieve effluent water quality consistent with PWR Steam Generator Owners Group chemistry guidelines. Polishers regenerated employing a conventional process were evaluated during normal plant operation and during periods of simulated condenser inleakage. Polisher effluent quality was consistent with requirements for PWR steam generator corrosion minimization with minor exceptions, i.e., sodium and sulfate leakage immediately following initiation of most service cycles. Resin aging and incomplete separation of anion and cation resin during the regeneration process were the major reasons for non-optimum polisher performance.

  18. Nuclear reactor power for an electrically powered orbital transfer vehicle

    SciTech Connect (OSTI)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-01-01T23:59:59.000Z

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low Earth orbit (LEO) and geosynchronous Earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to Earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  19. Foundational development of an advanced nuclear reactor integrated safety code.

    SciTech Connect (OSTI)

    Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01T23:59:59.000Z

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  20. Nuclear power and the public: an update of collected survey research on nuclear power

    SciTech Connect (OSTI)

    Rankin, W.L.; Melber, B.D.; Overcast, T.D.; Nealey, S.M.

    1981-12-01T23:59:59.000Z

    The purpose of this research was to collect, analyze, and summarize all of the nuclear power-related surveys conducted in the United States through June 1981, that we could obtain. The surveys collected were national, statewide, and areawide in scope. Slightly over 100 surveys were collected for an earlier, similar effort carried out in 1977. About 130 new surveys were added to the earlier survey data. Thus, about 230 surveys were screened for inclusion in this report. Because of space limitations, national surveys were used most frequently in this report, followed distantly by state surveys. In drawing our conclusions about public beliefs and attitudes toward nuclear power, we placed most of our confidence in survey questions that were used by national polling firms at several points in time. A summary of the research findings is presented, beginning with general attitudes toward nuclear power, followed by a summary of beliefs and attitudes about nuclear power issues, and ended by a summary of beliefs and attitudes regarding more general energy issues.

  1. Can Nuclear Power Be Flexible? Laurent POURET + William J. NUTTALL

    E-Print Network [OSTI]

    Aickelin, Uwe

    . To explain why nuclear power is almost exclusively used as baseload generation, we look at power market economics. As a result, we conclude that despite some technical abilities, nuclear power plants are preferentially used for baseload generation for economic reasons and will continue to be used in this way

  2. Transient modeling of thermionic space nuclear power systems

    E-Print Network [OSTI]

    Berge, Francoise M

    1991-01-01T23:59:59.000Z

    nuclear power system is based on static power conversion, heat transfer and waste heat rejection. The core is composed of annular Fuel rings. The thermionic power converters are located circumferentially around the core alternating with the radial... reflector segments. The radiator panels are attached to the axial rows of converters consti- tuting the power converter subassembly. A space nuclear power system can be described as an assembly of functional units such as the core, the heat removal system...

  3. Analysis of nuclear power plant construction costs

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs.

  4. Utility system integration and optimization models for nuclear power management

    E-Print Network [OSTI]

    Deaton, Paul Ferris

    1973-01-01T23:59:59.000Z

    A nuclear power management model suitable for nuclear utility systems optimization has been developed for use in multi-reactor fuel management planning over periods of up to ten years. The overall utility planning model ...

  5. Microsoft PowerPoint - Advances_Taylor

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel Microsoft PowerPoint -of 16 MarNational

  6. Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.

    SciTech Connect (OSTI)

    Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

    2006-12-11T23:59:59.000Z

    This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

  7. Fusion Engineering and Design 82 (2007) 217236 Advanced power core system for the

    E-Print Network [OSTI]

    California at San Diego, University of

    2007-01-01T23:59:59.000Z

    . Keywords: Advanced tokamak; Power plant studies; Power core system; Blanket and divertor design; Power. Introduction The ARIES-AT power plant was evolved to assess and highlight the benefit of advanced technologies Engineering and Design 82 (2007) 217­236 ties on the performance of advanced tokamak power plants [1

  8. Hydrogen: Adding Value and Flexibility to the Nuclear Power Industry

    SciTech Connect (OSTI)

    Lee, J.; Bhatt, V.; Friley, P.; Horak, W.; Reisman, A.

    2004-10-04T23:59:59.000Z

    The objective of this study was to assess potential synergies between the hydrogen economy and nuclear energy options. Specifically: to provide a market analysis of advanced nuclear energy options for hydrogen production in growing hydrogen demand; to conduct an impact evaluation of nuclear-based hydrogen production on the economics of the energy system, environmental emissions, and energy supply security; and to identify competing technologies & challenges to nuclear options.

  9. Software Framework for Advanced Power Plant Simulations

    SciTech Connect (OSTI)

    John Widmann; Sorin Munteanu; Aseem Jain; Pankaj Gupta; Mark Moales; Erik Ferguson; Lewis Collins; David Sloan; Woodrow Fiveland; Yi-dong Lang; Larry Biegler; Michael Locke; Simon Lingard; Jay Yun

    2010-08-01T23:59:59.000Z

    This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. These include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.

  10. Some aspects of the decommissioning of nuclear power plants

    SciTech Connect (OSTI)

    Khvostova, M. S., E-mail: marinakhvostova@list.ru [St. Petersburg State Maritime Technical University (Sevmashvtuz), Severodvinsk Branch (Russian Federation)

    2012-03-15T23:59:59.000Z

    The major factors influencing the choice of a national concept for the decommissioning of nuclear power plants are examined. The operating lifetimes of power generating units with nuclear reactors of various types (VVER-1000, VVER-440, RBMK-1000, EGP-6, and BN-600) are analyzed. The basic approaches to decommissioning Russian nuclear power plants and the treatment of radioactive waste and spent nuclear fuel are discussed. Major aspects of the ecological and radiation safety of personnel, surrounding populations, and the environment during decommissioning of nuclear installations are identified.

  11. Dominant Nuclear Outflow Driving Mechanisms in Powerful Radio Galaxies

    E-Print Network [OSTI]

    Dan Batcheldor; Clive Tadhunter; Joanna Holt; Raffaella Morganti; Christopher P. O'Dea; David J. Axon; Anton Koekemoer

    2007-02-20T23:59:59.000Z

    In order to identify the dominant nuclear outflow mechanisms in Active Galactic Nuclei, we have undertaken deep, high resolution observations of two compact radio sources (PKS 1549-79 and PKS 1345+12) with the Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope. Not only are these targets known to have powerful emission line outflows, but they also contain all the potential drivers for the outflows: relativistic jets, quasar nuclei and starbursts. ACS allows the compact nature (nuclear position angles of both the optical emission line and radio data. There is no evidence for bi-conical emission line features on the large-scale and there is a divergance in the relative position angles of the optical and radio structure. This enables us to exclude starburst driven outflows. However, we are unable to clearly distinguish between radiative AGN wind driven outflows and outflows powered by relativistic radio jets. The small scale bi-conical features, indicative of such mechanisms could be below the resolution limit of ACS, especially if aligned close to the line of sight. In addition, there may be offsets between the radio and optical nuclei induced by heavy dust obscuration, nebular continuum or scattered light from the AGN.

  12. Novel Nuclear Powered Photocatalytic Energy Conversion

    SciTech Connect (OSTI)

    White,John R.; Kinsmen,Douglas; Regan,Thomas M.; Bobek,Leo M.

    2005-08-29T23:59:59.000Z

    The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and fabrication of a range of new cell materials and geometries at Konarka's manufacturing facilities, and the irradiation testing and evaluation of these new cell designs within the UML Radiation Laboratory. The primary focus of all this work was to establish the proof of concept of the basic gammavoltaic principle using a new class of dye-sensitized photon converter (DSPC) materials based on KTI's original DSSC design. In achieving this goal, this report clearly establishes the viability of the basic gammavoltaic energy conversion concept, yet it also identifies a set of challenges that must be met for practical implementation of this new technology.

  13. Apparatus for advancing a wellbore using high power laser energy

    DOE Patents [OSTI]

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02T23:59:59.000Z

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  14. Prognostics and Life Beyond 60 for Nuclear Power Plants

    SciTech Connect (OSTI)

    Leonard J. Bond; Pradeep Ramuhalli; Magdy S. Tawfik; Nancy J. Lybeck

    2011-06-01T23:59:59.000Z

    Safe, secure, reliable and sustainable energy supply is vital for advanced and industrialized life styles. To meet growing energy demand there is interest in longer term operation (LTO) for the existing nuclear power plant fleet and enhancing capabilities in new build. There is increasing use of condition based maintenance (CBM) for active components and periodic in service inspection (ISI) for passive systems: there is growing interest in deploying on-line monitoring. Opportunities exist to move beyond monitoring and diagnosis based on pattern recognition and anomaly detection to and prognostics with the ability to provide an estimate of remaining useful life (RUL). The adoption of digital I&C systems provides a framework within which added functionality including on-line monitoring can be deployed, and used to maintain and even potentially enhance safety, while at the same time improving planning and reducing both operations and maintenance costs.

  15. Prognostics and Life Beyond 60 Years for Nuclear Power Plants

    SciTech Connect (OSTI)

    Bond, Leonard J.; Ramuhalli, Pradeep; Tawfik, Magdy; Lybeck, Nancy

    2011-09-23T23:59:59.000Z

    Safe, secure, reliable and sustainable energy supply is vital for advanced and industrialized life styles. To meet growing energy demand there is interest in longer term operation (LTO) for the existing nuclear power plant fleet and enhancing capabilities in new build. There is increasing use of condition based maintenance (CBM) for active components and growing interest in deploying on-line monitoring instead of periodic in service inspection (ISI) for passive systems. Opportunities exist to move beyond monitoring and diagnosis based on pattern recognition and anomaly detection to prognostics with the ability to provide an estimate of remaining useful life (RUL). The adoption of digital I&C systems provides a framework within which added functionality including on-line monitoring can be deployed, and used to maintain and even potentially enhance safety, while at the same time improving planning and reducing both operations and maintenance costs.

  16. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect (OSTI)

    David Liscinsky

    2002-10-20T23:59:59.000Z

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated system that exceeds the U.S. Department of Energy (DOE) goal of 40% (HHV) efficiency at emission levels well below the DOE suggested limits; and (5) An advanced biofueled power system whose levelized cost of electricity can be competitive with other new power system alternatives.

  17. Guidance for Deployment of Mobile Technologies for Nuclear Power...

    Energy Savers [EERE]

    Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or...

  18. Submerged Medium Voltage Cable Systems at Nuclear Power Plants...

    Office of Scientific and Technical Information (OSTI)

    Submerged Medium Voltage Cable Systems at Nuclear Power Plants: A Review of Research Efforts Relevant to Aging Mechanisms and Condition Monitoring. Re-direct Destination: In a...

  19. The History of Nuclear Power in Space | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    not associate space travel with the Energy Department. But you should -- because nuclear power systems developed here have made dozens of truly amazing interplanetary research...

  20. Sensitivity analysis for the outages of nuclear power plants

    E-Print Network [OSTI]

    Kengy Barty

    2012-02-17T23:59:59.000Z

    Feb 17, 2012 ... Abstract: Nuclear power plants must be regularly shut down in order to perform refueling and maintenance operations. The scheduling of the ...

  1. TECHNICAL ADVANCE EVE (external variance estimation) increases statistical power

    E-Print Network [OSTI]

    Buehlmann, Peter

    TECHNICAL ADVANCE EVE (external variance estimation) increases statistical power for detecting Institute of Plant Sciences & Zurich­Basel Plant Science Center, ETH Zurich, CH-8092 Zurich, Switzerland, our simulation studies suggest that even limited numbers of replicates will usually result in good

  2. BORON NITRIDE CAPACITORS FOR ADVANCED POWER ELECTRONIC DEVICES

    SciTech Connect (OSTI)

    N. Badi; D. Starikov; C. Boney; A. Bensaoula; D. Johnstone

    2010-11-01T23:59:59.000Z

    This project fabricates long-life boron nitride/boron oxynitride thin film -based capacitors for advanced SiC power electronics with a broad operating temperature range using a physical vapor deposition (PVD) technique. The use of vapor deposition provides for precise control and quality material formation.

  3. Project Sponsors: California Air Resources Board ADVANCED POWER & ENERGY

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Emissions Flow chart of STREET modeling methodology Impacts of Plug-In Hybrid Vehicles and Grid GenerationProject Sponsors: California Air Resources Board Toyota ADVANCED POWER & ENERGY PROGRAM www renewable wind energy penetrations and PHEV penetrations. The outcome of each scenario consists of spatially

  4. Can New Nuclear Power Plants be Project Financed?

    E-Print Network [OSTI]

    Taylor, Simon

    This paper considers the prospects for financing a wave of new nuclear power plants (NPP) using project financing, which is used widely in large capital intensive infrastructure investments, including the power and gas sectors, but has...

  5. DOE Announces Loan Guarantee Applications for Nuclear Power Plant...

    Energy Savers [EERE]

    of Energy (DOE) today announced it has received 19 Part I applications from 17 electric power companies for federal loan guarantees to support the construction of 14 nuclear power...

  6. High Level Requirements for the Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect (OSTI)

    Rich Johnson; Hyung Lee; Kimberlyn C. Mousseau

    2011-09-01T23:59:59.000Z

    The US Department of Energy, Office of Nuclear Energy (DOE-NE), has been tasked with the important mission of ensuring that nuclear energy remains a compelling and viable energy source in the U.S. The motivations behind this mission include cost-effectively meeting the expected increases in the power needs of the country, reducing carbon emissions and reducing dependence on foreign energy sources. In the near term, to ensure that nuclear power remains a key element of U.S. energy strategy and portfolio, the DOE-NE will be working with the nuclear industry to support safe and efficient operations of existing nuclear power plants. In the long term, to meet the increasing energy needs of the U.S., the DOE-NE will be investing in research and development (R&D) and working in concert with the nuclear industry to build and deploy new, safer and more efficient nuclear power plants. The safe and efficient operations of existing nuclear power plants and designing, licensing and deploying new reactor designs, however, will require focused R&D programs as well as the extensive use and leveraging of advanced modeling and simulation (M&S). M&S will play a key role in ensuring safe and efficient operations of existing and new nuclear reactors. The DOE-NE has been actively developing and promoting the use of advanced M&S in reactor design and analysis through its R&D programs, e.g., the Nuclear Energy Advanced Modeling and Simulation (NEAMS) and Consortium for Advanced Simulation of Light Water Reactors (CASL) programs. Also, nuclear reactor vendors are already using CFD and CSM, for design, analysis, and licensing. However, these M&S tools cannot be used with confidence for nuclear reactor applications unless accompanied and supported by verification and validation (V&V) and uncertainty quantification (UQ) processes and procedures which provide quantitative measures of uncertainty for specific applications. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Utah State University and others with the objective of establishing a comprehensive and web-accessible knowledge base that will provide technical services and resources for V&V and UQ of M&S in nuclear energy sciences and engineering. The knowledge base will serve as an important resource for technical exchange and collaboration that will enable credible and reliable computational models and simulations for application to nuclear reactor design, analysis and licensing. NE-KAMS will serve as a valuable resource for the nuclear industry, academia, the national laboratories, the U.S. Nuclear Regulatory Commission (NRC) and the public and will help ensure the safe, economical and reliable operation of existing and future nuclear reactors. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the CASL, NEAMS, Light Water Reactor Sustainability (LWRS), Small Modular Reactors (SMR), and Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve M&S of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs.

  7. Nuclear Power - Control, Reliability and Human Factors 

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    Instrumentation and Control 49 H.M. Hashemian Chapter 4 Design Considerations for the Implementation of a Mobile IP Telephony System in a Nuclear Power Plant 67 J. Garc?a-Hern?ndez, J. C. Vel?zquez- Hern?ndez, C. F. Garc?a-Hern?ndez and M. A. Vallejo-Alarc?n... Reliability K s e n i i a Sapoz h n i k o v a and Roald Tayma n o v D.I.Mendeleyev Institute for Metrology, Russia 1. Introduction At present, a great number of embedded sens o r devi c es provi d e monito r i n g of operat i n g condi t io n...

  8. Sandia nuclear-power-plant siting study

    SciTech Connect (OSTI)

    Strip, D.R.; Aldrich, D.C.; Alpert, D.J.; Ostmeyer, R.M.; Sprung, J.L.

    1981-01-01T23:59:59.000Z

    NRC's Siting Analysis Branch requested Sandia National Laboratories to provide technical guidance for establishing (1) numerical criteria for population density and distribution surrounding future nuclear power plant sites and (2) standoff distances from plants for offsite hazards. The first task involved analyses in four areas, each of which could play a role in evaluating the impact of a siting policy. The four areas were risks from possible plant accidents, population distribution characteristics for existing sites, availability of sites, and socioeconomic impacts. The second task had two areas of concern: determination of which classes of offsite hazards are amenable to regulation by fixed standoff distances, and review of available models for the determination of appropriate standoff distances. Results, conclusions, and recommendations of the study are summarized.

  9. Gasification CFD Modeling for Advanced Power Plant Simulations

    SciTech Connect (OSTI)

    Zitney, S.E.; Guenther, C.P.

    2005-09-01T23:59:59.000Z

    In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

  10. advanced coal-based power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

  11. Nuclear Technology & Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction

    E-Print Network [OSTI]

    Nuclear Technology & Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction A.E. FINAN, K. MIU, A.C. KADAK Massachusetts Institute of Technology Department of Nuclear Science the technical aspects and the economics of utilizing nuclear reactors to provide the energy needed

  12. Sustainable Forward Operating Base Nuclear Power Evaluation (Relationship Mapping System) Users’ Manual

    SciTech Connect (OSTI)

    Not Listed

    2012-01-01T23:59:59.000Z

    The Sustainable Forward Operating Base (FOB) Nuclear Power Evaluation was developed by the Idaho National Laboratory Systems Engineering Department to support the Defense Advanced Research Projects Agency (DARPA) in assessing and demonstrating the viability of deploying small-scale reactors in support of military operations in theatre. This document provides a brief explanation of how to access and use the Sustainable FOB Nuclear Power Evaluation utility to view assessment results as input into developing and integrating the program elements needed to create a successful demonstration.

  13. Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants

    E-Print Network [OSTI]

    Anitescu, Mihai

    Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants ANL-AFCI-168 of Nuclear Reactor and Chemical Separation Plants ANL-AFCI-168 by G. Palmiotti, J. Cahalan, P. Pfeiffer, T;2 ANL-AFCI-168 Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants G

  14. Direct conversion nuclear reactor space power systems

    SciTech Connect (OSTI)

    Britt, E.J.; Fitzpatrick, G.O.

    1982-08-01T23:59:59.000Z

    This paper presents the results of a study of space nuclear reactor power systems using either thermoelectric or thermionic energy converters. An in-core reactor design and two heat pipe cooled out-of-core reactor designs were considered. One of the out-of-core cases utilized, long heat pipes (LHP) directly coupled to the energy converter. The second utilized a larger number of smaller heat pipes (mini-pipe) radiatively coupled to the energy converter. In all cases the entire system, including power conditioning, was constrained to be launched in a single shuttle flight. Assuming presently available performance, both the LHP thermoelectric system and minipipe thermionic system, designed to produce 100 kWe for seven years, would have a specific mass near 22kg/kWe. The specific mass of the thermionic minipipe system designed for a one year mission is 165 kg/kWe due to less fuel swelling. Shuttle imposed growth limits are near 300 kWe and 1.2 MWe for the thermoelectric and thermionic systems, respectively. Converter performance improvements could double this potential, and over 10 MWe may be possible for very short missions.

  15. C Produced by Nuclear Power Reactors Generation and Characterization of

    E-Print Network [OSTI]

    Haviland, David

    14 C Produced by Nuclear Power Reactors ­ Generation and Characterization of Gaseous, Liquid and process water from nuclear reactors ­ A method for quantitative determination of organic and inorganic and Solid Waste �sa Magnusson Division of Nuclear Physics Department of Physics 2007 Akademisk avhandling

  16. Advanced transport codes for nuclear thermal rocket analysis

    SciTech Connect (OSTI)

    Perry, R.T.; Buksa, J.J.; Houts, M.G. (Los Alamos National Lab., NM (United States))

    1992-01-01T23:59:59.000Z

    Nuclear thermal rocket (NTR) propulsion systems will enable the manned exploration of our solar system. In the context of current and future safety standards and environmental constraints, the likelihood of any large nuclear engine testing program similar in scope to the ROVER/NERVA program is remote. Consequently, extensive computational verification of the safety, reliability, and performance of the reactor and spacecraft will be required. Fortunately, the development of new codes coupled with computer hardware advances will make this feasible and cost-effective. Although coupled-phenomena and separate-effects modeling at the component and system levels will be necessary, this paper addresses only radiation transport modeling of NTR systems and reviews the status and applicability of several codes that Los Alamos National Laboratory (LANL) is using.

  17. UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS

    E-Print Network [OSTI]

    Boyer, Edmond

    1 UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS Piero Baraldi1 of prototypical behaviors. Its performance is tested with respect to an artificial case study and then applied on transients originated by different faults in the pressurizer of a nuclear power reactor. Key Words: Fault

  18. argentina nuclear power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    argentina nuclear power First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Nuclear Power Texas A&M...

  19. Nuclear space power safety and facility guidelines study

    SciTech Connect (OSTI)

    Mehlman, W.F.

    1995-09-11T23:59:59.000Z

    This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an {open_quotes}Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missions{close_quotes}. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system is planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system.

  20. Repowering flexibility of coal-based advanced power systems

    SciTech Connect (OSTI)

    Bajura, R.A.; Bechtel, T.F.; Schmidt, D.K.; Wimer, J.G.

    1995-03-01T23:59:59.000Z

    The Department of Energy`s (DOE`s) Morgantown Energy Technology Center (METC) helps enhance the economic competitiveness, environmental quality, and national well-being of the U.S. by developing advanced power-generation systems. The potential market for advanced power-generation systems is large. In the U.S., electric demand is estimated to grow at about 1 percent per year through the year 2010. The total power generation market also includes new-capacity as well as replacement of existing power plants as they age. Thus, the market for power systems over the next 15 years is estimated to be about 279,000 megawatts (MW), but could range from as much as 484,000 MW to as little as 153,000 MW. These predictions are summarized. Over the next 15 years, the replacement market is potentially much larger than the expansion market because of the large base of aging power plants in the U.S.

  1. Vital area determination techniques at nuclear power plants

    SciTech Connect (OSTI)

    Pan, P.Y.

    1987-07-01T23:59:59.000Z

    This paper describes the vital area determination programs being conducted at the Los Alamos National Laboratory to support the Nuclear Regulatory Commission (NRC) in evaluating nuclear power plant licensees' compliance with safeguards/security requirements. These projects, the Vital Area Analysis (VAA) Program and the Vital Equipment Determination Techniques Research Study (VEDTRS), are designed to identify a plant's vital areas and to develop protection strategies against adversary threats in nuclear power plants.

  2. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect (OSTI)

    Mekhiche, Mike [Principal Investigator] [Principal Investigator; Dufera, Hiz [Project Manager] [Project Manager; Montagna, Deb [Business Point of Contact] [Business Point of Contact

    2012-10-29T23:59:59.000Z

    The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  3. Inspection of Nuclear Power Plant Containment Structures

    SciTech Connect (OSTI)

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01T23:59:59.000Z

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

  4. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01T23:59:59.000Z

    EMERGENCY PLANNING FOR NUCLEAR POWER PLANTS: THE LICENSINGEmergency Planning for Nuclear Power Plants Determination ofproposed nuclear power plants . . . . . . . . . • . . . .

  5. Nuclear power plant control room operator control and monitoring tasks

    SciTech Connect (OSTI)

    Bovell, C.R.; Beck, M.G. [Concord Associates, Inc., Knoxville, TN (United States); Carter, R.J. [Oak Ridge National Labs., TN (United States)

    1998-07-01T23:59:59.000Z

    Oak Ridge National Laboratory is conducting a research project the purpose of which is to develop the technical bases for regulatory review criteria for use in evaluating the safety implications of human factors associated with the use of artificial intelligence and expert systems, and with advanced instrumentation and control (I and C) systems in nuclear power plants (NPP). This report documents the results from Task 8 of that project. The primary objectives of the task was to identify the scope and type of control and monitoring tasks now performed by control-room operators. Another purpose was to address the types of controls and safety systems needed to operate the nuclear plant. The final objective of Task 8 was to identify and categorize the type of information and displays/indicators required to monitor the performance of the control and safety systems. This report also discusses state-of-the-art controls and advanced display devices which will be available for use in control-room retrofits and in control room of future plants. The fundamental types of control and monitoring tasks currently conducted by operators can be divided into four classifications: function monitoring tasks, control manipulation tasks, fault diagnostic tasks, and administrative tasks. There are three general types of controls used in today`s NPPs, switches, pushbuttons, and analog controllers. Plant I and C systems include components to achieve a number of safety-related functions: measuring critical plant parameters, controlling critical plant parameters within safety limits, and automatically actuating protective devices if safe limits are exceeded. The types of information monitored by the control-room operators consist of the following parameters: pressure, fluid flow and level, neutron flux, temperature, component status, water chemistry, electrical, and process and area radiation. The basic types of monitoring devices common to nearly all NPP control rooms include: analog meters, graphic recorders, digital displays and counters, light indicators, visual and audio alarms, and cathode-ray tubes.

  6. Department of Mechanical and Nuclear Engineering Fall 2010 Advanced Cooled Compressor Diaphragms

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical and Nuclear Engineering Fall 2010 Advanced Cooled Compressor compressor that is cooled by circulating water through its diaphragm (isothermal compression instead of each ANSYS run included deflection and principle stresses Material for advanced compressor

  7. Nuclear space power and propulsion requirements and issues

    SciTech Connect (OSTI)

    Swerdling, M. [IR Associates, North Hills, CA (United States); Isenberg, L. [IR Associates, La Habra, CA (United States)

    1995-12-31T23:59:59.000Z

    The use of nuclear power in space is going through a low point. The kinds of missions that would use nuclear power are expensive and there are few new expensive missions. Both NASA and DoD are in a mode of cheaper, faster, better, which means using what is available as much as possible and only incorporating new technology to reduce mission cost. NASA is performing Mission to Planet Earth and detailed exploration missions of Mars. These NASA missions can be done with solar-battery power subsystems and there is no need for nuclear power. The NASA mission to Pluto does require nuclear radioisotope power. Ways to reduce the power subsystem cost and the power level are being investigated. NASA is studying ways to explore beyond Mars with solar-battery power because of the cost and uncertainty in the availability and launchability of nuclear space power systems. The DoD missions are all in earth orbit and can be done with solar-battery systems. The major DoD requirement at present is to reduce costs of all their space missions. One way to do this is to develop highly efficient upper stage boosters that can be integrated with lower cost Earth to low orbit stages and still place their payloads in to higher orbits. One attractive upper stage is a nuclear bimodal (propulsion and power) engine to accomplished lower booster cost to place space assets in GEO. However this is not being pursued because of DOE`s new policy not to fund nuclear space power research and development as well as the difficulty in obtaining launch approval for nuclear propulsion and power systems.

  8. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

    2014-06-01T23:59:59.000Z

    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  9. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01T23:59:59.000Z

    passive safety cooling systems. To develop an understandingthe passive safety cooling system and recommend an approachof Passive Safety Cooling Systems for Advanced Nuclear

  10. NRC review of Electric Power Research Institute's Advanced Light Reactor Utility Requirements Document - Program summary, Project No. 669

    SciTech Connect (OSTI)

    Not Available

    1992-08-01T23:59:59.000Z

    The staff of the US Nuclear Regulatory Commission has prepared Volume 1 of a safety evaluation report (SER), NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Program Summary,'' to document the results of its review of the Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document.'' This SER provides a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  11. LIMITED POWER BURSTS IN DISTRIBUTED MODELS OF NUCLEAR REACTORS

    E-Print Network [OSTI]

    Bazhenov, Maxim

    LIMITED POWER BURSTS IN DISTRIBUTED MODELS OF NUCLEAR REACTORS M. V. Bazhenov and E. F. Sabaev UDC employed for analyzing reactor dynamics. Equations of this type are used for analyzing the stability of the reactor power, etc. Among these problems the question of the boundedness of reactor power bursts

  12. Nuclear power plant status diagnostics using artificial neural networks

    SciTech Connect (OSTI)

    Bartlett, E.B. [Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Mechanical Engineering] [Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Mechanical Engineering; Uhrig, R.E. [Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering] [Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering

    1991-12-31T23:59:59.000Z

    In this work, the nuclear power plant operating status recognition issue is investigated using artificial neural networks (ANNs). The objective is to train an ANN to classify nuclear power plant accident conditions and to assess the potential of future work in the area of plant diagnostics with ANNS. To this end, an ANN was trained to recognize normal operating conditions as well as potentially unsafe conditions based on nuclear power plant training simulator generated accident scenarios. These scenarios include; hot and cold leg loss of coolant, control rod ejection, loss of offsite power, main steam line break, main feedwater line break and steam generator tube leak accidents. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results.

  13. Nuclear power plant status diagnostics using artificial neural networks

    SciTech Connect (OSTI)

    Bartlett, E.B. (Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Mechanical Engineering); Uhrig, R.E. (Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering)

    1991-01-01T23:59:59.000Z

    In this work, the nuclear power plant operating status recognition issue is investigated using artificial neural networks (ANNs). The objective is to train an ANN to classify nuclear power plant accident conditions and to assess the potential of future work in the area of plant diagnostics with ANNS. To this end, an ANN was trained to recognize normal operating conditions as well as potentially unsafe conditions based on nuclear power plant training simulator generated accident scenarios. These scenarios include; hot and cold leg loss of coolant, control rod ejection, loss of offsite power, main steam line break, main feedwater line break and steam generator tube leak accidents. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results.

  14. Advanced Nuclear Fuel | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 PowerAdvanced Modeling &

  15. Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report

    SciTech Connect (OSTI)

    Ritterbusch, S.E.

    2000-08-01T23:59:59.000Z

    The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

  16. Fusion Engineering and Design 80 (2006) 7998 Advanced power core system for the

    E-Print Network [OSTI]

    California at San Diego, University of

    2006-01-01T23:59:59.000Z

    operating parameters. © 2005 Elsevier B.V. All rights reserved. Keywords: Advanced tokamak; Power plant. Introduction The ARIES-AT power plant was evolved to assess and highlight the benefit of advanced technologies understanding and modeling capabili- ties on the performance of advanced tokamak power plants [1]. The design

  17. Advanced Modeling and Evaluation of the Response of Base-Isolated Nuclear Facility Structures to Vertical Earthquake Excitation

    E-Print Network [OSTI]

    Keldrauk, Eric Scott

    2012-01-01T23:59:59.000Z

    Structures . iii 3 Nuclear Power Plants 3.1 Nuclear FacilityKashiwazaki-Kariwa Nuclear Power Plant 3.3.1 2004 ChŻ uetsuno seismically-isolated nuclear plant has been constructed

  18. ME 337C Introduction to Nuclear Power Systems ABET EC2000 syllabus

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    ME 337C ­ Introduction to Nuclear Power Systems Page 1 ABET EC2000 syllabus ME 337C ­ Introduction to Nuclear Power Systems Fall 2009 Required or Elective: Elective 2008-2010 Catalog Data: Radioactivity, nuclear interactions: fission and fusion, fission reactors, nuclear power systems, nuclear power safety

  19. Inspection of Nuclear Power Plant Structures - Overview of Methods and Related Applications

    SciTech Connect (OSTI)

    Naus, Dan J [ORNL

    2009-05-01T23:59:59.000Z

    The objectives of this limited study were to provide an overview of the methods that are available for inspection of nuclear power plant reinforced concrete and metallic structures, and to provide an assessment of the status of methods that address inspection of thick, heavily-reinforced concrete and inaccessible areas of the containment metallic pressure boundary. In meeting these objectives a general description of nuclear power plant safety-related structures was provided as well as identification of potential degradation factors, testing and inspection requirements, and operating experience; methods for inspection of nuclear power plant reinforced concrete structures and containment metallic pressure boundaries were identified and described; and applications of nondestructive evaluation methods specifically related to inspection of thick-section reinforced concrete structures and inaccessible portions of containment metallic pressure boundaries were summarized. Recommendations are provided on utilization of test article(s) to further advance nondestructive evaluation methods related to thick-section, heavily-reinforced concrete and inaccessible portions of the metallic pressure boundary representative of nuclear power plant containments. Conduct of a workshop to provide an update on applications and needed developments for nondestructive evaluation of nuclear power plant structures would also be of benefit.

  20. Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants

    SciTech Connect (OSTI)

    Ramuhalli, Pradeep; Lin, Guang; Crawford, Susan L.; Konomi, Bledar A.; Coble, Jamie B.; Shumaker, Brent; Hashemian, Hash

    2014-04-30T23:59:59.000Z

    This report describes research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

  1. Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants

    SciTech Connect (OSTI)

    Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Lin, Guang [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Crawford, Susan L. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Konomi, Bledar A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Braatz, Brett G. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Coble, Jamie B. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Shumaker, Brent [Analysis and Measurement Services Corp., Knoxville, TN (United States); Hashemian, Hash [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    2013-09-01T23:59:59.000Z

    This report describes the status of ongoing research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

  2. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Brent W. Dixon; Steven J. Piet

    2004-10-01T23:59:59.000Z

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository (63,000 MTiHM commercial, 7,000 MT non-commercial). There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected. The first step in understanding the need for different spent fuel management approaches is to understand the size of potential spent fuel inventories. A full range of potential futures for domestic commercial nuclear energy is considered. These energy futures are as follows: 1. Existing License Completion - Based on existing spent fuel inventories plus extrapolation of future plant-by-plant discharges until the end of each operating license, including known license extensions. 2. Extended License Completion - Based on existing spent fuel inventories plus a plant-by-plant extrapolation of future discharges assuming on all operating plants having one 20-year extension. 3. Continuing Level Energy Generation - Based on extension of the current ~100 GWe installed commercial base and average spent fuel discharge of 2100 MT/yr through the year 2100. 4. Continuing Market Share Generation – Based on a 1.8% compounded growth of the electricity market through the year 2100, matched by growing nuclear capacity and associated spent fuel discharge. 5. Growing Market Share Generation - Extension of current nuclear capacity and associated spent fuel discharge through 2100 with 3.2% growth representing 1.5% market growth (all energy, not just electricity) and 1.7% share growth. Share growth results in tripling market share by 2100 from the current 8.4% to 25%, equivalent to continuing the average market growth of last 50 years for an additional 100 years. Five primary spent fuel management strategies are assessed against each of the energy futures to determine the number of geological repositories needed and how the first repository would be used. The geological repository site at Yucca Mountain, Nevada, has the physical potential to accommodate all the spent fuel that will be generated by the current fleet of domestic commercial nuclear reactors, even with license extensions. If new nuclear plants are built in the future as replacements or additions, the United States will need to adopt spent fuel treatment to extend the life of the repository. Should a significant number of new nuclear plants be built, advanced fuel recycling will be needed to fully manage the spent fuel within a single repository. The analysis also considers the timeframe for most efficient implementation of new spent fuel management strategies. The mix of unprocessed spent fuel and processed high level waste in Yucca Mountain varies with each future and strategy. Either recycling must start before there is too much unprocessed waste emplaced or unprocessed waste will have to be retrieved later with corresponding costs. For each case, the latest date to implement reprocessing without subsequent retrieval is determined.

  3. The U.S. Department of Energy's Office of Nuclear Energy promotes nuclear power as

    E-Print Network [OSTI]

    Kemner, Ken

    PowerAmericaforMoreThanFiveDecades Past, Present, and Future ... The United States introduced nuclear energy into our domestic electricity--DependOnIt HelpingtoPowerAmericaforMoreThanFiveDecades Past, Present, and Future ... The United States introduced.eia.doe.gov #12;Public Approval is High ... Support for nuclear energy has grown over the past 25 years, according

  4. NUCLEAR DATA RESOURCES FOR ADVANCED ANALYSIS AND SIMULATION.

    SciTech Connect (OSTI)

    PRITYCHENKO, B.

    2006-06-05T23:59:59.000Z

    The mission of the National Nuclear Data Center (NNDC) includes collection, evaluation, and dissemination of nuclear physics data for basic nuclear research and applied nuclear technologies. In 2004, to answer the needs of nuclear data users, NNDC completed a project to modernize storage and management of its databases and began offering new nuclear data Web services. Examples of nuclear reaction, nuclear structure and decay database applications along with a number of nuclear science codes are also presented.

  5. Radioisotope-based Nuclear Power Strategy for Exploration Systems Development

    SciTech Connect (OSTI)

    Schmidt, George R.; Houts, Michael G. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2006-01-20T23:59:59.000Z

    Nuclear power will play an important role in future exploration efforts. Its benefits pertain to practically all the different timeframes associated with the Exploration Vision, from robotic investigation of potential lunar landing sites to long-duration crewed missions on the lunar surface. However, the implementation of nuclear technology must follow a logical progression in capability that meets but does not overwhelm the power requirements for the missions in each exploration timeframe. It is likely that the surface power infrastructure, particularly for early missions, will be distributed in nature. Thus, nuclear sources will have to operate in concert with other types of power and energy storage systems, and must mesh well with the power architectures envisioned for each mission phase. Most importantly, they must demonstrate a clear advantage over other non-nuclear options (e.g., solar power, fuel cells) for their particular function. This paper describes a strategy that does this in the form of three sequential system developments. It begins with use of radioisotope generators currently under development, and applies the power conversion technology developed for these units to the design of a simple, robust reactor power system. The products from these development efforts would eventually serve as the foundation for application of nuclear power systems for exploration of Mars and beyond.

  6. atr-fugen nuclear power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Denmark December 1991 12;Abstract. A computer model of a simplified pressurized nuclear power plant a compute simulation of a simplified pressurized nuclear power plant model...

  7. Energy Department Announces New Awards for Advanced Nuclear Energy...

    Energy Savers [EERE]

    awarded more than 5 million to undergraduate and graduate students pursuing nuclear engineering degrees and other nuclear science and engineering programs relevant to nuclear...

  8. Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report

    SciTech Connect (OSTI)

    NONE

    2000-08-01T23:59:59.000Z

    OAK B188 Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report. The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-formed approach for the design and regulation of nuclear power plants. This approach will include the development and/or confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRS) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go further by focusing on the design of new plants.

  9. Advertise Subscribe Log in Register Advanced search

    E-Print Network [OSTI]

    Advertise Subscribe Log in Register Advanced search Home News Comment Special reports People power Europe does not need nuclear power to meet its future energy needs. Question of nuclear subsidies-reduction target would be better. Blowing away nuclear power Europe does not need nuclear power to meet its future

  10. Potassium Rankine cycle nuclear power systems for spacecraft and lunar-mass surface power

    SciTech Connect (OSTI)

    Holcomb, R.S.

    1992-07-01T23:59:59.000Z

    The potassium Rankine cycle has high potential for application to nuclear power systems for spacecraft and surface power on the moon and Mars. A substantial effort on the development of Rankine cycle space power systems was carried out in the 1960`s. That effort is summarized and the status of the technology today is presented. Space power systems coupling Rankine cycle power conversion to both the SP-100 reactor and thermionic reactors as a combined power cycle are described in the paper.

  11. Nuclear Power for Deep-Space Missions | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Power for Deep-Space Missions Mar 06 2015 12:00 PM - 01:00 PM David Dixon, The University of Tennessee, Knoxville UT Science Forum Thompson-Boling Arena Dining room C-D,...

  12. Extra-terrestrial nuclear power stations : transportation and operation

    E-Print Network [OSTI]

    Kane, Susan Christine

    2005-01-01T23:59:59.000Z

    Many challenges exist when considering nuclear power to provide electricity for bases on the Moon or Mars, including launch safety, landing safety, deployment, control, and protecting the astronauts from radiation. Examples ...

  13. Risk Framework for the Next Generation Nuclear Power Plant Construction

    E-Print Network [OSTI]

    Yeon, Jaeheum 1981-

    2012-12-11T23:59:59.000Z

    sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks...

  14. Risk-informed incident management for nuclear power plants

    E-Print Network [OSTI]

    Smith, Curtis Lee, 1966-

    2002-01-01T23:59:59.000Z

    Decision making as a part of nuclear power plant operations is a critical, but common, task. Plant management is forced to make decisions that may have safety and economic consequences. Formal decision theory offers the ...

  15. Risk Framework for the Next Generation Nuclear Power Plant Construction 

    E-Print Network [OSTI]

    Yeon, Jaeheum 1981-

    2012-12-11T23:59:59.000Z

    sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks...

  16. Novel power system demonstrated for space travel | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    demonstrated the first use of a heat pipe to cool a small nuclear reactor and power a Stirling engine at the Nevada National Security Site's Device Assembly Facility near Las...

  17. anna nuclear power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chapter 11 Effects of the Operating Nuclear Power Plant on Marine Ecology and Environment - A Case Study of Daya Bay in China 255 You-Shao Wang Chapter 12 Microbial Leaching...

  18. FRAMEWORK AND APPLICATION FOR MODELING CONTROL ROOM CREW PERFORMANCE AT NUCLEAR POWER PLANTS

    SciTech Connect (OSTI)

    Ronald L Boring; David I Gertman; Tuan Q Tran; Brian F Gore

    2008-09-01T23:59:59.000Z

    This paper summarizes an emerging project regarding the utilization of high-fidelity MIDAS simulations for visualizing and modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error associated with advanced control room equipment and configurations, (ii) the investigative determination of contributory cognitive factors for risk significant scenarios involving control room operating crews, and (iii) the certification of reduced staffing levels in advanced control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of cognition, elements of situation awareness, and risk associated with human performance in next generation control rooms.

  19. Center for Advanced Power & Environmental TechnologyCenter for Advanced Power & Environmental Technology (APET)(APET)

    E-Print Network [OSTI]

    Fujimoto, Hiroshi

    ) (HP) (PV) (FC) H H2 2 (FC) H2 University of Tokyo #12; Ubiquitous Power Grid 0.1 0.2 0.3 luctuation[Hz] 200 400 600 put[MW] with Pitch(Battery 160MW) wihtout Pitch(Battery 560MW) -0 3 -0.2 -0.1 0 temFrequencyF -400 -200 0 BatteryOutp 0 500 1000 1500 2000 2500 3000 3500 4000 -0

  20. Boron control system for a nuclear power plant

    SciTech Connect (OSTI)

    Brown, W.W.; Van der Schoot, M.R.

    1980-09-30T23:59:59.000Z

    Ion exchangers which reversibly store borate ions in a temperature dependent process are combined with evaporative boric acid recovery apparatus to provide a boron control system for controlling the reactivity of nuclear power plants. A plurality of ion exchangers are operated sequentially to provide varying amounts of boric acid to a nuclear reactor for load follow operations. Evaporative boric acid recovery apparatus is utilized for major changes in the boron concentration within the nuclear reactor.

  1. argonne advanced research reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and aerospace industry. ... enables methods, is used for in-service inspection of nuclear power plant components, such as tubing, piping the safe operationof advanced nuclear...

  2. Nuclear stopping power in warm and hot dense matter

    SciTech Connect (OSTI)

    Faussurier, Gerald; Blancard, Christophe [CEA, DAM, DIF, F-91 297 Arpajon (France); Gauthier, Maxence [CEA, DAM, DIF, F-91 297 Arpajon (France); LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Route de Saclay, 91128 Palaiseau (France)

    2013-01-15T23:59:59.000Z

    We present a method to estimate the nuclear component of the stopping power of ions propagating in dense matter. Three kinds of effective pair potentials are proposed. Results from the warm dense matter regime and the domain of high energy density physics are presented and discussed for proton and helium. The role of ionic temperature is examined. The nuclear stopping power can play a noticeable role in hot dense matter.

  3. Development of decontamination techniques for decommissioning commercial nuclear power plants

    SciTech Connect (OSTI)

    Ishikura, T.; Miwa, T.; Onozawa, T.; Ohtsuka, H. [Nuclear Power Engineering Corp., Tokyo (Japan). Plant and Components Dept.; Ishigure, K. [Univ. of Tokyo (Japan). Dept. of Quantum Engineering and System Science

    1993-12-31T23:59:59.000Z

    NUPEC has been developing various techniques to safely and efficiently decommission large commercial nuclear power plants. The development work, referred to as the verification tests, has been performed since 1982. The verification tests on decontamination techniques have focused on the reduction of both occupational radiation exposure and radioactive waste volume. Experiments on various decontamination methods have been carried out. Prospects of applying efficient decontamination techniques to commercial nuclear power plant decommissioning are bright due to the experimental results.

  4. Converting Maturing Nuclear Sites to Integrated Power Production Islands

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solbrig, Charles W.

    2011-01-01T23:59:59.000Z

    Nuclear islands, which are integrated power production sites, could effectively sequester and safeguard the US stockpile of plutonium. A nuclear island, an evolution of the integral fast reactor, utilizes all the Transuranics (Pu plus minor actinides) produced in power production, and it eliminates all spent fuel shipments to and from the site. This latter attribute requires that fuel reprocessing occur on each site and that fast reactors be built on-site to utilize the TRU. All commercial spent fuel shipments could be eliminated by converting all LWR nuclear power sites to nuclear islands. Existing LWR sites have the added advantage ofmore »already possessing a license to produce nuclear power. Each could contribute to an increase in the nuclear power production by adding one or more fast reactors. Both the TRU and the depleted uranium obtained in reprocessing would be used on-site for fast fuel manufacture. Only fission products would be shipped to a repository for storage. The nuclear island concept could be used to alleviate the strain of LWR plant sites currently approaching or exceeding their spent fuel pool storage capacity. Fast reactor breeding ratio could be designed to convert existing sites to all fast reactors, or keep the majority thermal.« less

  5. Nuclear power and climate change | The Bulletin Online http://www.thebulletin.org/roundtable/nuclear-power-climate-change/ 1 of 11 9/25/07 2:14 PM

    E-Print Network [OSTI]

    Berry, R. Stephen

    Nuclear power and climate change | The Bulletin Online http://www.thebulletin.org/roundtable/nuclear-power-climate-change/ 1 of 11 9/25/07 2:14 PM ROUNDTABLE Roundtable > Nuclear power and climate change Nuclear power, experts argue that all options should be considered--including nuclear power. But with nuclear power comes

  6. Advanced Power Electronics and Electric Machines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartment ofDepartment ofMachines Advanced Power

  7. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect (OSTI)

    Rich Johnson; Kimberlyn C. Mousseau; Hyung Lee

    2011-09-01T23:59:59.000Z

    NE-KAMS knowledge base will assist computational analysts, physics model developers, experimentalists, nuclear reactor designers, and federal regulators by: (1) Establishing accepted standards, requirements and best practices for V&V and UQ of computational models and simulations, (2) Establishing accepted standards and procedures for qualifying and classifying experimental and numerical benchmark data, (3) Providing readily accessible databases for nuclear energy related experimental and numerical benchmark data that can be used in V&V assessments and computational methods development, (4) Providing a searchable knowledge base of information, documents and data on V&V and UQ, and (5) Providing web-enabled applications, tools and utilities for V&V and UQ activities, data assessment and processing, and information and data searches. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the Consortium for Advanced Simulation of Light Water Reactors (CASL), the Nuclear Energy Advanced Modeling and Simulation (NEAMS), the Light Water Reactor Sustainability (LWRS), the Small Modular Reactors (SMR), and the Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve computational modeling and simulation (M&S) of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs. In addition, from the outset, NE-KAMS will support the use of computational M&S in the nuclear industry by developing guidelines and recommended practices aimed at quantifying the uncertainty and assessing the applicability of existing analysis models and methods. The NE-KAMS effort will initially focus on supporting the use of computational fluid dynamics (CFD) and thermal hydraulics (T/H) analysis for M&S of nuclear reactor systems, components and processes, and will later expand to include materials, fuel system performance and other areas of M&S as time and funding allow.

  8. Understanding the Challenges in the Transition from Film Radiography in the Nuclear Power Industry

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Moran, Traci L.; Nove, Carol A.; Pardini, Allan F.

    2012-09-01T23:59:59.000Z

    Nondestructive examination (NDE) applications in the nuclear power industry using film radiography are shrinking due to the advent of modern digital imaging technologies and advances in alternative inspection methods that do not present an ionizing radiation hazard. Technologies that are used routinely in the medical industry for patient diagnosis are being adapted to industrial NDE applications including the detection and characterization of defects in welds. From the user perspective, non-film inspection techniques provide several advantages over film techniques. It is anticipated that the shift away from the application of film radiography in the nuclear power industry represents an irreversible trend. The U.S. Nuclear Regulatory Commission (NRC) has noted this trend in the U.S. nuclear power industry and will be working to ensure that the effectiveness and reliability of component inspections is not compromised by this transition. Currently, specific concerns are associated with 1) obtaining a fundamental understanding of how inspection effectiveness and reliability may be impacted by this transition and 2) ensuring training standards and qualifications remain compatible with modern industrial radiographic practice. This paper discusses recent trends in industrial radiography and assesses their advantages and disadvantages from the perspective of nuclear power plant component inspections.

  9. Advanced Power Batteries for Renewable Energy Applications 3.09

    SciTech Connect (OSTI)

    Rodney Shane

    2011-09-30T23:59:59.000Z

    This report describes the research that was completed under project title â?? Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  10. Advancing Methods for Determining the Source of HEU Used in Terrorist Nuclear Weapon 

    E-Print Network [OSTI]

    LaFleur, Adrienne; Charlton, William

    2007-09-17T23:59:59.000Z

    ADVANCING METHODS FOR DETERMINING THE SOURCE OF HEU USED IN A TERRORIST NUCLEAR WEAPON Major: Nuclear Engineering April 2007 Submitted to the Office of Undergraduate Research Texas A&M University In partial fulfillment... of the requirements for the designation as UNDERGRADUATE RESEARCH SCHOLAR A Senior Scholars Thesis by ADRIENNE MARIE LAFLEUR ADVANCING METHODS FOR DETERMINING THE SOURCE OF HEU USED IN A TERRORIST NUCLEAR WEAPON Approved by: Research Advisor...

  11. Aging of concrete structures in nuclear power plants

    SciTech Connect (OSTI)

    Naus, D.J.; Pland, C.B. (Oak Ridge National Lab., TN (USA)); Arndt, E.G. (Nuclear Regulatory Commission, Washington, DC (USA))

    1991-01-01T23:59:59.000Z

    The Structural Aging (SAG) Program, sponsored by the US Nuclear Regulatory Commission (USNRC) and conducted by the Oak Ridge National Laboratory (ORNL), had the overall objective of providing the USNRC with an improved basis for evaluating nuclear power plant structures for continued service. The program consists of three technical tasks: materials property data base, structural component assessment/repair technology, and quantitative methodology for continued service determinations. Major accomplishments under the SAG Program during the first two years of its planned five-year duration have included: development of a Structural Materials Information Center and formulation of a Structural Aging Assessment Methodology for Concrete Structures in Nuclear Power Plants. 9 refs.

  12. Nuclear Power - Operation, Safety and Environment 

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    Today's nuclear reactors are safe and highly efficient energy systems that offer electricity and a multitude of co-generation energy products ranging from potable water to heat for industrial applications. At the same time, ...

  13. New Hampshire Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    total reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Seabrook Unit 1","1,247","10,910",100.0,"NextEr...

  14. The Decline and Death of Nuclear Power

    E-Print Network [OSTI]

    Melville, Jonathan

    2013-01-01T23:59:59.000Z

    out both nuclear energy and fossil fuels at the same timeis the most-used non-fossil fuel energy source in the US,sources of energy without resorting to fossil fuel sources.

  15. Infrastructure development assistance modeling for nuclear power plant

    SciTech Connect (OSTI)

    Park, J. H.; Hwang, K.; Park, K. M.; Kim, S. W.; Lee, S. M. [Korea Hydro and Nuclear Power Co., LTD, 23, 106 gil, Yeongdong-daero, Gangnam-gu, 153-791 (Korea, Republic of)

    2012-07-01T23:59:59.000Z

    The purpose of this paper is to develop a model, a general frame to be utilized in assisting newcomer countries to start a nuclear power program. A nuclear power plant project involves technical complexity and high level of investment with long duration. Considering newcomers are mostly developing countries that lack the national infrastructure, key infrastructure issues may constitute the principal constraints to the development of a nuclear power program. In this regard, it is important to provide guidance and support to set up an appropriate infrastructure when we help them with the first launch of nuclear power plant project. To date, as a sole nuclear power generation company, KHNP has been invited many times to mentor or assist newcomer countries for their successful start of a nuclear power program since Republic of Korea is an exemplary case of a developing country which began nuclear power program from scratch and became a major world nuclear energy country in a short period of time. Through hosting events organized to aid newcomer countries' initiation of nuclear power projects, difficulties have been recognized. Each event had different contents according to circumstances because they were held as an unstructured and one-off thing. By developing a general model, we can give more adequate and effective aid in an efficient way. In this paper, we created a model to identify necessary infrastructures at the right stage, which was mainly based on a case of Korea. Taking into account the assistance we received from foreign companies and our own efforts for technological self-reliance, we have developed a general time table and specified activities required to do at each stage. From a donor's perspective, we explored various ways to help nuclear infrastructure development including technical support programs, training courses, and participating in IAEA technical cooperation programs on a regular basis. If we further develop the model, the next task would be to make the model more sophisticated as a 'semi-tailored model' so that it can be applied to a certain country reflecting its unique conditions. In accordance with its degree of established infrastructure, we can adjust or modify the model. Despite lots of benefits of using this model, there remain limitations such as time and budget constraints. These problems, however, can be addressed by cooperating with international organization such as the IAEA and other companies that share the same goal of helping newcomer countries introduce nuclear power. (authors)

  16. Advanced Heat Exchanger Development for Molten Salts in Nuclear and Non Nuclear Systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sabharwall, Piyush; Clark, Denis; Sridharan, Kumar; Zheng, Guiqiu; Anderson, Mark

    2014-12-01T23:59:59.000Z

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet materialmore »in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically « less

  17. Nuclear power industry in the United States: status and projections

    SciTech Connect (OSTI)

    Connolly, T.J.

    1988-01-01T23:59:59.000Z

    One sixth of the electricity in the United States is now being generated in nuclear power plants, a remarkable achievement for a technology whose basic nuclear reaction was not even known 50 years ago. On the other hand, many of the nation's electric utilities are experiencing great difficulties completing the construction of their nuclear plants; 41 partially constructed plants have been abandoned. Those abandoned plants plus about 110 in operation and 15 still to be completed comprise the first generation of nuclear power plants in the United States. When, and even if, there will be a second generation is much in doubt. Data are presented to show that the absence of a second generation of nuclear plants will place large demands on the fossil fuels, with attendant high energy prices and high environmental costs the expected outcome. It appears that the future will bring large economic forces to start new orders for nuclear plants. On the other hand, the opposing institutional forces appear equally strong. Among the problems creating these institutional forces are the difficulty the United States is having in finding a politically acceptable approach to nuclear waste disposal and the vulnerability of power plant builders and operators to litigation and high financial risk. At present, the issue of a second generation of nuclear plants is stalemated. 17 references.

  18. Aging management of containment structures in nuclear power plants

    SciTech Connect (OSTI)

    Naus, D.J.; Oland, C.B. [Oak Ridge National Lab., TN (United States); Ellingwood, B.R. [The Johns Hopkins Univ., Baltimore, MD (United States); Graves, H.L. III; Norris, W.E. [US Nuclear Regulatory Commission, Washington, DC (United States)

    1994-12-31T23:59:59.000Z

    Research is being conducted by ORNL under US Nuclear Regulatory Commission (USNRC) sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the USNRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a Structural Materials Information Center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of nondestructive evaluation techniques. assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants.

  19. Regulatory practices in India for establishing nuclear power stations

    SciTech Connect (OSTI)

    De, A.K. [Atomic Energy Regulatory Board, Calcutta (India); Singh, S.P. [Atomic Energy Regulatory Board, Bombay (India)

    1991-07-01T23:59:59.000Z

    The Atomic Energy Regulatory Board (AERB) of India was established as an independent regulatory authority charged with regulating radiation protection and nuclear safety. This article reviews the current state of India`s nuclear power reactor program and discusses the makeup of functions of the AERB, including the preparation of issuance of safety codes, guides, and other standards, with special recent emphasis on pressurized-heavy-water reactors (PHWRs). The AERB`s relationship to nuclear plant owners is discussed, as are the inspection and control functions the AERB performs, both for the construction and operation of nuclear plants and the licensing of operating personnel. 8 refs., 2 figs.

  20. Institute of Nuclear Power Operations annual report, 1993

    SciTech Connect (OSTI)

    NONE

    1993-12-31T23:59:59.000Z

    This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen`s joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO`s 1993 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry.

  1. Illinois Nuclear Profile - Clinton Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Clinton Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  2. Standard practice for evaluation of surveillance capsules from light-water moderated nuclear power reactor vessels

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01T23:59:59.000Z

    Standard practice for evaluation of surveillance capsules from light-water moderated nuclear power reactor vessels

  3. TheHighCostofNuclearPower Why America Should Choose a Clean Energy Future

    E-Print Network [OSTI]

    Laughlin, Robert B.

    TheHighCostofNuclearPower Why America Should Choose a Clean Energy Future Over New Nuclear Reactors, Clean Energy Can Deliver More Energy than Nuclear Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 America Has Enormous Clean Energy Potential . . . . . . . . . . . . . . . . 22

  4. Preferences, Knowledge, and Citizen Probability Assessments of the Terrorism Risk of Nuclear Power

    E-Print Network [OSTI]

    Li, Quan; Fuhrmann, Matthew; Early, Bryan R.; Vedlitz, Arnold

    2010-01-01T23:59:59.000Z

    support using nuclear power to meet rising energy demands, who are generally less concerned with terrorism, or who are more knowledgeable about terrorism and nuclear security tend to provide lower assessments of the likelihood that nuclear power plants...

  5. Design of radiation resistant metallic multilayers for advanced nuclear systems

    SciTech Connect (OSTI)

    Zhernenkov, Mikhail, E-mail: zherne@bnl.gov, E-mail: gills@bnl.gov; Gill, Simerjeet, E-mail: zherne@bnl.gov, E-mail: gills@bnl.gov; Stanic, Vesna; DiMasi, Elaine; Kisslinger, Kim; Ecker, Lynne [Brookhaven National Laboratory, Upton, New York 11973 (United States); Baldwin, J. Kevin; Misra, Amit [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Demkowicz, M. J. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-06-16T23:59:59.000Z

    Helium implantation from transmutation reactions is a major cause of embrittlement and dimensional instability of structural components in nuclear energy systems. Development of novel materials with improved radiation resistance, which is of the utmost importance for progress in nuclear energy, requires guidelines to arrive at favorable parameters more efficiently. Here, we present a methodology that can be used for the design of radiation tolerant materials. We used synchrotron X-ray reflectivity to nondestructively study radiation effects at buried interfaces and measure swelling induced by He implantation in Cu/Nb multilayers. The results, supported by transmission electron microscopy, show a direct correlation between reduced swelling in nanoscale multilayers and increased interface area per unit volume, consistent with helium storage in Cu/Nb interfaces in forms that minimize dimensional changes. In addition, for Cu/Nb layers, a linear relationship is demonstrated between the measured depth-dependent swelling and implanted He density from simulations, making the reflectivity technique a powerful tool for heuristic material design.

  6. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    SciTech Connect (OSTI)

    T. R. Allen; J. B. Benson; J. A. Foster; F. M. Marshall; M. K. Meyer; M. C. Thelen

    2009-05-01T23:59:59.000Z

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team projects and faculty/staff exchanges. In June of 2008, the first week-long ATR NSUF Summer Session was attended by 68 students, university faculty and industry representatives. The Summer Session featured presentations by 19 technical experts from across the country and covered topics including irradiation damage mechanisms, degradation of reactor materials, LWR and gas reactor fuels, and non-destructive evaluation. High impact research results from leveraging the entire research infrastructure, including universities, industry, small business, and the national laboratories. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. Current partner facilities include the MIT Reactor, the University of Michigan Irradiated Materials Testing Laboratory, the University of Wisconsin Characterization Laboratory, and the University of Nevada, Las Vegas transmission Electron Microscope User Facility. Needs for irradiation of material specimens at tightly controlled temperatures are being met by dedication of a large in-pile pressurized water loop facility for use by ATR NSUF users. Several environmental mechanical testing systems are under construction to determine crack growth rates and fracture toughness on irradiated test systems.

  7. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect (OSTI)

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01T23:59:59.000Z

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User’s Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User’s week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

  8. advanced nuclear precleaner: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nuclear energy research, the element thorium (Th) has been considered the superior fuel for nuclear reactions because of its potency, safety, abundance and reduced waste. Cold...

  9. The Decommissioning of the Trino Nuclear Power Plant

    SciTech Connect (OSTI)

    Brusa, L.; DeSantis, R.; Nurden, P. L.; Walkden, P.; Watson, B.

    2002-02-27T23:59:59.000Z

    Following a referendum in Italy in 1987, the four Nuclear Power Plants (NPPs) owned and operated by the state utility ENEL were closed. After closing the NPPs, ENEL selected a ''safestore'' decommissioning strategy; anticipating a safestore period of some 40-50 years. This approach was consistent with the funds collected during plant operation, and was reinforced by the lack of both a waste repository and a set of national free release limits for contaminated materials in Italy. During 1999, twin decisions were made to privatize ENEL and to transform the nuclear division into a separate subsidiary of the ENEL group. This group was renamed Sogin and during the following year, ownership of the company was transferred to the Italian Treasury. On formation, Sogin was asked by the Italian government to review the national decommissioning strategy. The objective of the review was to move from a safestore strategy to a prompt decommissioning strategy, with the target of releasing all of the nuclear sites by 2020. It was recognized that this target was conditional upon the availability of a national LLW repository together with interim stores for both spent fuel and HLW by 2009. The government also agreed that additional costs caused by the acceleration of the decommissioning program would be considered as stranded costs. These costs will be recovered by a levy on the kWh price of electricity, a process established and controlled by the Regulator of the Italian energy sector. Building on the successful collaboration to develop a prompt decommissioning strategy for the Latina Magnox reactor (1), BNFL and Sogin agreed to collaborate on an in depth study for the prompt decommissioning of the Sogin PWR at Trino. BNFL is currently decommissioning six NPPs and is at an advanced stage of planning for two further units, having completed a full and rigorous exercise to develop Baseline Decommissioning Plans (BDP's) for these stations. The BDP exercise utilizes the full range of BNFL decommissioning experience and knowledge to develop a strategy, methodology and cost for the decommissioning of NPPs. Over the past year, a prompt decommissioning strategy for Trino has been developed. The strategy has been based on the principles of minimizing waste products that require long term storage, maximizing 'free release' materials and utilizing existing and regulatory approved technologies.

  10. Leasing of Nuclear Power Plants With Using Floating Technologies

    SciTech Connect (OSTI)

    Kuznetsov, Yu.N.; Gabaraev, B.A.; Reshetov, V.A.; Moskin, V.A. [Federal State Unitary Enterprise, N.A. Dollezhal' Scientific-Research and Design Institute of Power Engineering (Russian Federation)

    2002-07-01T23:59:59.000Z

    The proposal to organize and realize the international program on leasing of Nuclear Power Plant (NPP) reactor compartments is brought to the notice of potential partners. The proposal is oriented to the construction of new NPPs or to replacement of worked-out reactor units of the NPPs in operation on the sites situated near water area and to the use of afloat technologies for construction, mounting and transportation of reactor units as a Reactor Compartment Block Module (RCBM). According to the offered project the RCBM is fabricated in factory conditions at the largest Russian defense shipbuilding plant - State Unitary Enterprise 'Industrial Association SEVMASHPREDPRIYATIE' (SEVMASH) in the city of Severodvinsk of the Arkhangelsk region. After completion of assembling, testing and preliminary licensing the RCBM is given buoyancy by means of hermetic sealing and using pontoons and barges. The RCBM delivery to the NPP site situated near water area is performed by sea route. The RCBM is brought to the place of its installation with the use of appropriate hydraulic structures (canals, shipping locks), then is lowered on the basement constructed beforehand and incorporated into NPP scheme, of which the components are installed in advance. Floating means can be detached from the RCBM and used repeatedly for other RCBMs. Further procedure of NPP commissioning and its operation is carried out according to traditional method by power company in the framework of RCBM leasing with enlisting the services of firm-manufacturer's specialists either to provide reactor plant operation and concomitant processes or to perform author's supervision of operation. After completion of lifetime and reactor unloading the RCBM is dismantled with using the same afloat technology and taken away from NPP site to sea area entirely, together with its structures (reactor vessel, heat exchangers, pumps, pipelines and other equipment). Then RCBM is transported by shipping route to a firm-manufacturer, for subsequent reprocessing, utilization and storage. Nuclear fuel and radioactive wastes are removed from NPP site also. Use of leasing method removes legal problems connected with the transportation of radioactive materials through state borders as the RCBM remains a property of the state-producer at all stages of its life cycle. (authors)

  11. Enhancing nuclear power plant performance through the use of artifical intelligence

    SciTech Connect (OSTI)

    Johnson, M.; Maren, A.; Miller, L.; Uhrig, R.; Upadhyaya, B.

    1989-06-15T23:59:59.000Z

    In the summer of 1988, the Department of Nuclear Engineering (NE) at the University of Tennessee (UT) in Knoxville was selected to carry out a research program in Enhancing the Operation of Nuclear Power plants through the use of Artificial Intelligence, This program is sponsored by the Department of Energy's Office of Energy Research under 10CFR605 for Nuclear Engineering Research. The objective of the research is to advance the state-of-the-art of nuclear power plant control, safety, management, and instrumentation systems through the use of artificial intelligence (AI) techniques, including both expert systems and neural networks. The emphasis will be placed on methods that can be implemented on a rapid or real-time basis. A second, but equally important, objective is to build a broadly based critical mass of expertise in the artificial intelligence, field that can be brought to bear on the technology of nuclear power plants. Both of these goals are being met. This overview and the attached technical reports describe the work that is being carried out. Although in some cases, the scope of the work differs somewhat from the specific tasks described in the original proposal, all activities are clearly within the overall scope of the contract.

  12. Enhancing nuclear power plant performance through the use of artifical intelligence. First annual report

    SciTech Connect (OSTI)

    Johnson, M.; Maren, A.; Miller, L.; Uhrig, R.; Upadhyaya, B.

    1989-06-15T23:59:59.000Z

    In the summer of 1988, the Department of Nuclear Engineering (NE) at the University of Tennessee (UT) in Knoxville was selected to carry out a research program in ``Enhancing the Operation of Nuclear Power plants through the use of Artificial Intelligence, This program is sponsored by the Department of Energy`s Office of Energy Research under 10CFR605 for Nuclear Engineering Research. The objective of the research is to advance the state-of-the-art of nuclear power plant control, safety, management, and instrumentation systems through the use of artificial intelligence (AI) techniques, including both expert systems and neural networks. The emphasis will be placed on methods that can be implemented on a rapid or real-time basis. A second, but equally important, objective is to build a broadly based critical mass of expertise in the artificial intelligence, field that can be brought to bear on the technology of nuclear power plants. Both of these goals are being met. This overview and the attached technical reports describe the work that is being carried out. Although in some cases, the scope of the work differs somewhat from the specific tasks described in the original proposal, all activities are clearly within the overall scope of the contract.

  13. The potential for a nuclear renaissance : the development of nuclear power under climate change mitigation policies

    E-Print Network [OSTI]

    Osouf, Nicolas

    2007-01-01T23:59:59.000Z

    Anthropogenic emissions of greenhouse gases are very likely to have already changed the Earth's climate, and will continue to change it for centuries if no action is taken. Nuclear power, a nearly carbon-free source of ...

  14. Electric Power Produced from Nuclear Reactor | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater Use Goal 4:Administration Electric Power Produced

  15. The ARIES Advanced and Conservative Tokamak Power Plant Study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    C.E. Kessel, et. al; Humrickhous, P.

    2014-01-01T23:59:59.000Z

    Tokamak power plants are studied with advanced and conservative design philosophies to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared with older studies. The advanced configuration assumes a self-cooled lead lithium blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q95 of 4.5, a btotal N of 5.75, an H98 of 1.65,more »an n/nGr of 1.0, and a peak divertor heat flux of 13.7 MW/m2 . The conservative configuration assumes a dual-coolant lead lithium blanket concept with reducedactivation ferritic martensitic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma has a major radius of 9.75 m, a toroidal field of 8.75 T, a q95 of 8.0, a btotal N of 2.5, an H98 of 1.25, an n/nGr of 1.3, and a peak divertor heat flux of 10 MW/m2 . The divertor heat flux treatment with a narrow power scrapeoff width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range 10 to 15 MW/m2 . Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Other papers in this issue provide more detailed discussion of the work summarized here.« less

  16. The ARIES Advanced and Conservative Tokamak Power Plant Study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    C.E. Kessel, et. al; Humrickhous, P.

    2014-01-01T23:59:59.000Z

    Tokamak power plants are studied with advanced and conservative design philosophies to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared with older studies. The advanced configuration assumes a self-cooled lead lithium blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q95 of 4.5, a btotal N of 5.75, an H98 of 1.65, an n/nGr of 1.0, and a peak divertor heat flux of 13.7 MW/m2 . The conservative configuration assumes a dual-coolant lead lithium blanket concept with reducedactivation ferritic martensitic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma has a major radius of 9.75 m, a toroidal field of 8.75 T, a q95 of 8.0, a btotal N of 2.5, an H98 of 1.25, an n/nGr of 1.3, and a peak divertor heat flux of 10 MW/m2 . The divertor heat flux treatment with a narrow power scrapeoff width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range 10 to 15 MW/m2 . Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Other papers in this issue provide more detailed discussion of the work summarized here.

  17. The ARIES Advanced And Conservative Tokamak (ACT) Power Plant Study

    SciTech Connect (OSTI)

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N. [Princeton Plasma Physics Lab., Princeton, NJ (United States)] [Princeton Plasma Physics Lab., Princeton, NJ (United States); Tillack, M. S.; Najmabadi, F.; Wang, X. R.; Navaei, D.; Toudeshki, H. H. [Univ. of California, San Diego, CA (United States)] [Univ. of California, San Diego, CA (United States); Koehly, C. [Karlsruhe Inst. of Technology, Karlsruhe (Germany)] [Karlsruhe Inst. of Technology, Karlsruhe (Germany); El-Guebaly, L.; Blanchard, J. P.; Martin, C. J.; Mynsburge, L. [Univ. of Wisconsin, Madison, WI (United States)] [Univ. of Wisconsin, Madison, WI (United States); Humrickhouse, P. [Idaho National Lab., Idaho Falls, ID (United States)] [Idaho National Lab., Idaho Falls, ID (United States); Rensink, M. E.; Rognlien, T. D. [Lawrence Livermore National Lab., Livermore, CA (United States)] [Lawrence Livermore National Lab., Livermore, CA (United States); Yoda, M.; Abdel-Khalik, S. I.; Hageman, M. D.; Mills, B. H.; Radar, J. D.; Sadowski, D. L. [Georgia Inst. of Technology, Atlanta, GA (United States)] [Georgia Inst. of Technology, Atlanta, GA (United States); Snyder, P. B.; St. John, H.; Turnbull, A. D. [General Atomics, La Jolla, CA (United States)] [General Atomics, La Jolla, CA (United States); Waganer, L. M.; Malang, S.; Rowcliffe, A. F.

    2014-03-05T23:59:59.000Z

    Tokamak power plants are studied with advanced and conservative design philosophies in order to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding, and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared to older studies. The advanced configuration assumes a self-cooled lead lithium (SCLL) blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q95 of 4.5, a {beta}N{sup total} of 5.75, H{sub 98} of 1.65, n/nGr of 1.0, and peak divertor heat flux of 13.7 MW/m{sup 2}. The conservative configuration assumes a dual coolant lead lithium (DCLL) blanket concept with ferritic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma major radius is 9.75 m, a toroidal field of 8.75 T, a q95 of 8.0, a {beta}N{sup total} of 2.5, H{sub 98} of 1.25, n/n{sub Gr} of 1.3, and peak divertor heat flux of 10 MW/m{sup 2}. The divertor heat flux treatment with a narrow power scrape-off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range of 10-15 MW/m{sup 2}. Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Papers in this issue provide more detailed discussion of the work summarized here.

  18. Strategy for advancement of IRP in public power, Volume 1: IRP advancement strategy

    SciTech Connect (OSTI)

    Garrick, C.J. [Garrick & Associates, Morrison, CO (United States)

    1995-10-01T23:59:59.000Z

    The nation`s 3,000 publicly and cooperatively owned utilities have a documented need for assistance in integrated resource planning (IRP) and related strategic business planning practices. The availability of appropriate and sufficient assistance will be an important factor influencing the ability of these utilities to face the challenges and opportunities of today`s competitive electric utility environment. The U.S. Department of Energy (DOE) actively supports IRP advancement in the investor-owned utility (IOU) sector. This is accomplished through multiple vehicles, including grant funding to the state energy offices, to the National Conference of State Legislatures (NCSL), and to the National Association of Regulatory Utility Commissioners (NARUC). However, public utilities typically are not impacted by these DOE efforts. As consumer-controlled organizations, many publicly and cooperatively owned utilities are not regulated by state public utility commissions (PUCs). To advance IRP as an essential approach for publicly and cooperatively owned utility operation in a drastically changing industry, DOE must develop additional vehicles of assistance, including the federal power agencies and key industry organizations such as the American Public Power Association (APPA) and the National Rural Electric Cooperatives Association (NRECA).

  19. Use of fuel cells for improving on-site emergency power availability and reliability ad nuclear power plants

    E-Print Network [OSTI]

    Akkaynak, Derya

    2005-01-01T23:59:59.000Z

    To assure safe shutdown of a nuclear power plant, there must always be reliable means of decay heat removal provided, in last resort, by an Emergency Core Cooling System (ECCS). Currently the majority of nuclear power ...

  20. Powering the Nuclear Navy | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear AstrophysicsPayroll,Physics

  1. Office of Advanced Nuclear Research Office of Nuclear Energy, Science and Technology

    E-Print Network [OSTI]

    Leads Technical Leads - evaluation of nuclear hydrogen production methods and system/infrastructure Programmatic Overview Nuclear Hydrogen InitiativeNuclear Hydrogen Initiative #12;Office of Nuclear Energy, Science and Technology Henderson/2003 Hydrogen Initiative.ppt 2 Nuclear Hydrogen Initiative

  2. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 1, FEBRUARY 2011 277 Anomaly Detection in Nuclear Power Plants via

    E-Print Network [OSTI]

    Ray, Asok

    in Nuclear Power Plants via Symbolic Dynamic Filtering Xin Jin, Student Member, IEEE, Yin Guo, Soumik Sarkar detection algorithm for condition monitoring of nuclear power plants, where symbolic feature extraction Innova- tive & Secure (IRIS) simulator of nuclear power plants, and its per- formance is evaluated

  3. Results from an advanced power plant cooling demonstration

    SciTech Connect (OSTI)

    Bartz, J.A.; Allemann, R.T.; Laverman, R.J.; Fricke, H.D.; Van Laar, J.

    1986-04-01T23:59:59.000Z

    Results of four years of operation and testing of a 17 MW(th) advanced water-conserving cooling demonstration are presented. Component performance data on four heat exchange systems are reported. These consist of an air-cooled ammonia condenser augmented by an evaporative cooler, an air-cooled ammonia condenser augmented by water deluge, a condenser/reboiler with steam condensing and ammonia porous boiling enhancements, and a capacitive cooling system that provides supplemental cooling without evaporating water. Comparisons of component performance at bench and pilot scale are made with the field tests. A discussion of measurement techniques, systems safety, control, reliability and practicality in a power plant environment, and avoidance of two-phase flow instabilities is included.

  4. Nuclear heated and powered metal excimer laser

    SciTech Connect (OSTI)

    Womack, D.R.

    1982-02-11T23:59:59.000Z

    A laser uses heat and thermionic electrical output from a nuclear reactor in which heat generated by the reactor is utilized to vaporize metal lasants. Voltage output from a thermionic converter is used to create an electric discharge in the metal vapors. In one embodiment the laser vapors are excited by a discharge only. The second embodiment utilizes fission coatings on the inside of heat pipes, in which fission fragment excitation and ionization is employed in addition to a discharge. Both embodiments provide efficient laser systems that are capable of many years of operation without servicing. Metal excimers are the most efficient electronic transition lasers known with output in the visible wavelengths. Use of metal excimers, in addition to their efficiency and wavelengths, allows utilization of reactor waste heat which plagues many nuclear pumped laser concepts.

  5. Nuclear Power - Control, Reliability and Human Factors

    E-Print Network [OSTI]

    of Actinides: Where Do We Stand with the Accelerator Mass Spectrometry Technique? 167 Mario De Cesare Part 2 Reliability and Failure Mechanisms 187 Chapter 10 Evaluation of Dynamic J-R Curve for Leak Before Break Design of Nuclear Reactor Coolant Piping... Network 6. Autonomous Control for Space 7. Radiation-Hard and Intelligent Optical Fiber Sensors 8. Monitoring Radioactivity 9. Origin and Detection of Actinides ? Reliability and Failure Mechanisms 10. Dynamic J-R Curve for Leak Analysis 11...

  6. Application of Microprocessor-Based Equipment in Nuclear Power Plants - Technical Basis for a Qualification Methodology

    SciTech Connect (OSTI)

    Korsah, K.

    2001-08-24T23:59:59.000Z

    This document (1) summarizes the most significant findings of the ''Qualification of Advanced Instrumentation and Control (I&C) Systems'' program initiated by the Nuclear Regulatory Commission (NRC); (2) documents a comparative analysis of U.S. and European qualification standards; and (3) provides recommendations for enhancing regulatory guidance for environmental qualification of microprocessor-based safety-related systems. Safety-related I&C system upgrades of present-day nuclear power plants, as well as I&C systems of Advanced Light-Water Reactors (ALWRs), are expected to make increasing use of microprocessor-based technology. The Nuclear Regulatory Commission (NRC) recognized that the use of such technology may pose environmental qualification challenges different from current, analog-based I&C systems. Hence, it initiated the ''Qualification of Advanced Instrumentation and Control Systems'' program. The objectives of this confirmatory research project are to (1) identify any unique environmental-stress-related failure modes posed by digital technologies and their potential impact on the safety systems and (2) develop the technical basis for regulatory guidance using these findings. Previous findings from this study have been documented in several technical reports. This final report in the series documents a comparative analysis of two environmental qualification standards--Institute of Electrical and Electronics Engineers (IEEE) Std 323-1983 and International Electrotechnical Commission (IEC) 60780 (1998)--and provides recommendations for environmental qualification of microprocessor-based systems based on this analysis as well as on the findings documented in the previous reports. The two standards were chosen for this analysis because IEEE 323 is the standard used in the U.S. for the qualification of safety-related equipment in nuclear power plants, and IEC 60780 is its European counterpart. In addition, the IEC document was published in 1998, and should reflect any new qualification concerns, from the European perspective, with regard to the use of microprocessor-based safety systems in power plants.

  7. Nuclear power for energy and for scientific progress

    E-Print Network [OSTI]

    Giacomelli, G

    2012-01-01T23:59:59.000Z

    The Introduction in this paper underlines the present general situation for energy and the environment using the words of the US Secretary of Energy. A short presentation is made of some major nuclear power plants used to study one fundamental parameter for neutrino oscillations. The nuclear power status in some Far East Nations is summarized. The 4th generation of nuclear power stations, with emphasis on Fast Neutron Reactors, is recollected. The world consumptions of all forms of energies is recalled, fuel reserves are considered and the opportunities for a sustainable energy future is discussed. These considerations are applied to the italian situation, which is rather peculiar, also due to the many consequencies of the strong Nimby effects in Italy.

  8. Scoping calculations of power sources for nuclear electric propulsion

    SciTech Connect (OSTI)

    Difilippo, F.C. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)

    1994-05-01T23:59:59.000Z

    This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis.

  9. Solid state laser media driven by remote nuclear powered fluorescence

    DOE Patents [OSTI]

    Prelas, Mark A. (Columbia, MO)

    1992-01-01T23:59:59.000Z

    An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.

  10. Identifying and bounding uncertainties in nuclear reactor thermal power calculations

    SciTech Connect (OSTI)

    Phillips, J.; Hauser, E.; Estrada, H. [Cameron, 1000 McClaren Woods Drive, Coraopolis, PA 15108 (United States)

    2012-07-01T23:59:59.000Z

    Determination of the thermal power generated in the reactor core of a nuclear power plant is a critical element in the safe and economic operation of the plant. Direct measurement of the reactor core thermal power is made using neutron flux instrumentation; however, this instrumentation requires frequent calibration due to changes in the measured flux caused by fuel burn-up, flux pattern changes, and instrumentation drift. To calibrate the nuclear instruments, steam plant calorimetry, a process of performing a heat balance around the nuclear steam supply system, is used. There are four basic elements involved in the calculation of thermal power based on steam plant calorimetry: The mass flow of the feedwater from the power conversion system, the specific enthalpy of that feedwater, the specific enthalpy of the steam delivered to the power conversion system, and other cycle gains and losses. Of these elements, the accuracy of the feedwater mass flow and the feedwater enthalpy, as determined from its temperature and pressure, are typically the largest contributors to the calorimetric calculation uncertainty. Historically, plants have been required to include a margin of 2% in the calculation of the reactor thermal power for the licensed maximum plant output to account for instrumentation uncertainty. The margin is intended to ensure a cushion between operating power and the power for which safety analyses are performed. Use of approved chordal ultrasonic transit-time technology to make the feedwater flow and temperature measurements (in place of traditional differential-pressure- based instruments and resistance temperature detectors [RTDs]) allows for nuclear plant thermal power calculations accurate to 0.3%-0.4% of plant rated power. This improvement in measurement accuracy has allowed many plant operators in the U.S. and around the world to increase plant power output through Measurement Uncertainty Recapture (MUR) up-rates of up to 1.7% of rated power, while also decreasing the probability of significant over-power events. This paper will examine the basic elements involved in calculation of thermal power using ultrasonic transit-time technology and will discuss the criteria for bounding uncertainties associated with each element in order to achieve reactor thermal power calculations to within 0.3% to 0.4%. (authors)

  11. Enhancement of NRC station blackout requirements for nuclear power plants

    SciTech Connect (OSTI)

    McConnell, M. W. [United States Nuclear Regulatory Commission, Mail Stop: 012-H2, Washington, DC 20555 (United States)

    2012-07-01T23:59:59.000Z

    The U.S. Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) in response to Commission direction to conduct a systematic and methodical review of NRC processes and regulations to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission for its policy direction, in light of the accident at the Fukushima Dai-ichi Nuclear Power Plant. The NTTF's review resulted in a set of recommendations that took a balanced approach to defense-in-depth as applied to low-likelihood, high-consequence events such as prolonged station blackout (SBO) resulting from severe natural phenomena. Part 50, Section 63, of Title 10 of the Code of Federal Regulations (CFR), 'Loss of All Alternating Current Power,' currently requires that each nuclear power plant must be able to cool the reactor core and maintain containment integrity for a specified duration of an SBO. The SBO duration and mitigation strategy for each nuclear power plant is site specific and is based on the robustness of the local transmission system and the transmission system operator's capability to restore offsite power to the nuclear power plant. With regard to SBO, the NTTF recommended that the NRC strengthen SBO mitigation capability at all operating and new reactors for design-basis and beyond-design-basis external events. The NTTF also recommended strengthening emergency preparedness for prolonged SBO and multi-unit events. These recommendations, taken together, are intended to clarify and strengthen US nuclear reactor safety regarding protection against and mitigation of the consequences of natural disasters and emergency preparedness during SBO. The focus of this paper is on the existing SBO requirements and NRC initiatives to strengthen SBO capability at all operating and new reactors to address prolonged SBO stemming from design-basis and beyond-design-basis external events. The NRC initiatives are intended to enhance core and spent fuel pool cooling, reactor coolant system integrity, and containment integrity. (authors)

  12. Report on aging of nuclear power plant reinforced concrete structures

    SciTech Connect (OSTI)

    Naus, D.J.; Oland, C.B. [Oak Ridge National Lab., TN (United States); Ellingwood, B.R. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

    1996-03-01T23:59:59.000Z

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs.

  13. Fire models for assessment of nuclear power plant fires

    SciTech Connect (OSTI)

    Nicolette, V.F.; Nowlen, S.P.

    1989-01-01T23:59:59.000Z

    This paper reviews the state-of-the-art in available fire models for the assessment of nuclear power plants fires. The advantages and disadvantages of three basic types of fire models (zone, field, and control volume) and Sandia's experience with these models will be discussed. It is shown that the type of fire model selected to solve a particular problem should be based on the information that is required. Areas of concern which relate to all nuclear power plant fire models are identified. 17 refs., 6 figs.

  14. Neural networks and their application to nuclear power plant diagnosis

    SciTech Connect (OSTI)

    Reifman, J. [Argonne National Lab., IL (United States). Reactor Analysis Div.

    1997-10-01T23:59:59.000Z

    The authors present a survey of artificial neural network-based computer systems that have been proposed over the last decade for the detection and identification of component faults in thermal-hydraulic systems of nuclear power plants. The capabilities and advantages of applying neural networks as decision support systems for nuclear power plant operators and their inherent characteristics are discussed along with their limitations and drawbacks. The types of neural network structures used and their applications are described and the issues of process diagnosis and neural network-based diagnostic systems are identified. A total of thirty-four publications are reviewed.

  15. Use of expert systems in nuclear power plants

    SciTech Connect (OSTI)

    Uhrig, R.E.

    1989-01-01T23:59:59.000Z

    The application of technologies, particularly expert systems, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, there are a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) in which expert systems can increase the efficiency and effectiveness of overall plant and corporate operations. This document presents a number of potential applications of expert systems in the nuclear power field. 36 refs., 2 tabs.

  16. Nuclear power plant fire protection: philosophy and analysis. [PWR; BWR

    SciTech Connect (OSTI)

    Berry, D. L.

    1980-05-01T23:59:59.000Z

    This report combines a fire severity analysis technique with a fault tree methodology for assessing the importance to nuclear power plant safety of certain combinations of components and systems. Characteristics unique to fire, such as propagation induced by the failure of barriers, have been incorporated into the methodology. By applying the resulting fire analysis technique to actual conditions found in a representative nuclear power plant, it is found that some safety and nonsafety areas are both highly vulnerable to fire spread and impotant to overall safety, while other areas prove to be of marginal importance. Suggestions are made for further experimental and analytical work to supplement the fire analysis method.

  17. Addressing employee concerns about welding in a nuclear power plant

    SciTech Connect (OSTI)

    Danko, J.C.; Hansen, D.D.; O'Leary, P.D.

    1988-03-01T23:59:59.000Z

    A leading utility contracted with EG and G Idaho to perform a comprehensive, independent evaluation of the utility's welding program with respect to the safety-related welds made at one of its nuclear power plants. The purpose of this paper is to review a number of the employee concerns and the technical basis for the disposition of these concerns. In addition, recommendations are presented that may help to prevent the recurrence of employee concerns in future nuclear power plant construction, and thereby costly delays may be avoided and welding productivity and quality improved.

  18. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01T23:59:59.000Z

    H. G. MacPherson The molten salt adventure Nuclear Scienceand P.F. Peterson, Molten-Salt-Cooled Advanced High-Clarno Assessment of candidate molten salt coolants for the

  19. Nuclear Power PROS -`No' greenhouse gas emissions

    E-Print Network [OSTI]

    Toohey, Darin W.

    /transporting U! Coal Power PROS -Cheep -Easy to attain (Russia and US) -Infrastructure and technology well known provides a clean base load electricity that produces waste just a size of a coke can as compared to a coal,000 tons of coal to produce same amount of electricity) -Natural abundance of U (48th among the most

  20. What future for nuclear power? Workshop report

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    A Workshop on this highly controversial subject, organized by the Energy and Environment Programme of the RIIA, was held on 10th November 1997 at Green College, Oxford. The meeting was attended by some forty people from eight countries, coming from the nuclear and electricity generating industry, governments, research organizations, academic institutions, environmental pressure groups and inter-governmental organizations. In addition, subsequent to this Workshop, there have been a number of smaller, more informal discussions on various aspects of the subject. This paper summarizes the main conclusions arising from the Workshop and from these later discussions.

  1. Nuclear Power Facilities (2008) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-Based Rates from theLiability Nuclear

  2. Advanced Techniques for Power System Identification from Measured Data

    SciTech Connect (OSTI)

    Pierre, John W.; Wies, Richard; Trudnowski, Daniel

    2008-11-25T23:59:59.000Z

    Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacific Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block processing techniques. Bootstrap techniques have been developed to estimate confidence intervals for the electromechanical modes from field measured data. Results were obtained using injected signal data provided by BPA. A new probing signal was designed that puts more strength into the signal for a given maximum peak to peak swing. Further simulations were conducted on a model based on measured data and with the modifications of the 19-machine simulation model. Montana Tech researchers participated in two primary activities: (1) continued development of the 19-machine simulation test system to include a DC line; and (2) extensive simulation analysis of the various system identification algorithms and bootstrap techniques using the 19 machine model. Researchers at the University of Alaska-Fairbanks focused on the development and testing of adaptive filter algorithms for mode estimation using data generated from simulation models and on data provided in collaboration with BPA and PNNL. There efforts consist of pre-processing field data, testing and refining adaptive filter techniques (specifically the Least Mean Squares (LMS), the Adaptive Step-size LMS (ASLMS), and Error Tracking (ET) algorithms). They also improved convergence of the adaptive algorithms by using an initial estimate from block processing AR method to initialize the weight vector for LMS. Extensive testing was performed on simulated data from the 19 machine model. This project was also extensively involved in the WECC (Western Electricity Coordinating Council) system wide tests carried out in 2005 and 2006. These tests involved injecting known probing signals into the western power grid. One of the primary goals of these tests was the reliable estimation of electromechanical mode properties from measured PMU data. Applied to the system were three types of probing inputs: (1) activation of the Chief Joseph Dynamic Brake, (2) mid-level probing at the Pacific DC Intertie (PDCI), and (3) low-level probing on the PDCI. The Chief Joseph Dynamic Brake is a 1400 MW disturbance to the system and is injected for a ha

  3. Containment building : architecture between the city and advanced nuclear reactors

    E-Print Network [OSTI]

    Pauli, Lisa M

    2011-01-01T23:59:59.000Z

    Since the inception of nuclear energy research, the element thorium (Th) has been considered the superior fuel for nuclear reactions because of its potency, safety, abundance and reduced waste. Cold War agendas broke from ...

  4. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants

    SciTech Connect (OSTI)

    Stephen Schey

    2009-07-01T23:59:59.000Z

    Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 – Produce Data and Analyses Task 2 – Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 – Commercial-Scale Hydrogen Production Task 4 – Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study include a process model and a N2H2 economic assessment model (both developed by the Idaho National Laboratory). Both models are described in this report. The N2H2 model closely tracked and provided similar results as the H2A model and was instrumental in assessing the effects of plant availability on price when operated in the shoulder mode for electrical pricing. Differences between the H2A and N2H2 model are included in this report.

  5. Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies

    SciTech Connect (OSTI)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Thomas, H.

    2008-03-01T23:59:59.000Z

    This report summarizes power electronic interfaces for DE applications and the topologies needed for advanced power electronic interfaces. It focuses on photovoltaic, wind, microturbine, fuel cell, internal combustion engine, battery storage, and flywheel storage systems.

  6. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    SciTech Connect (OSTI)

    Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.; Cauchy, Charles J.

    2010-09-01T23:59:59.000Z

    The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designing a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.

  7. Underground collocation of nuclear power plant reactors and repository to facilitate the post-renaissance expansion of nuclear power

    SciTech Connect (OSTI)

    Myers, Carl W [Los Alamos National Laboratory; Elkins, Ned Z [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Underground collocation of nuclear power reactors and the nuclear waste management facilities supporting those reactors, termed an underground nuclear park (UNP), appears to have several advantages compared to the conventional approach to siting reactors and waste management facilities. These advantages include the potential to lower reactor capital and operating cost, lower nuclear waste management cost, and increase margins of physical security and safety. Envirorunental impacts related to worker health, facility accidents, waste transportation, and sabotage and terrorism appear to be lower for UNPs compared to the current approach. In-place decommissioning ofUNP reactors appears to have cost, safety, envirorunental and waste disposal advantages. The UNP approach has the potential to lead to greater public acceptance for the deployment of new power reactors. Use of the UNP during the post-nuclear renaissance time frame has the potential to enable a greater expansion of U.S. nuclear power generation than might otherwise result. Technical and economic aspects of the UNP concept need more study to determine the viability of the concept.

  8. Space nuclear power, propulsion, and related technologies.

    SciTech Connect (OSTI)

    Berman, Marshall

    1992-01-01T23:59:59.000Z

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government organizations, and has already formed several cooperative alliances and agreements. Because of the synergism of multiple governmental and industrial sponsors of many programs, Sandia is frequently able to provide complex technical solutions in a relatively short time, and often at lower cost to a particular customer. They have listed a few ongoing programs at Sandia related to space nuclear technology as examples of the possible synergisms that could result from forming teams and partnerships with related technologies and objectives.

  9. Advanced fusion MHD power conversion using the CFAR (compact fusion advanced Rankine) cycle concept

    SciTech Connect (OSTI)

    Hoffman, M.A.; Campbell, R.; Logan, B.G. (California Univ., Davis, CA (USA); Lawrence Livermore National Lab., CA (USA))

    1988-10-01T23:59:59.000Z

    The CFAR (compact fusion advanced Rankine) cycle concept for a tokamak reactor involves the use of a high-temperature Rankine cycle in combination with microwave superheaters and nonequilibrium MHD disk generators to obtain a compact, low-capital-cost power conversion system which fits almost entirely within the reactor vault. The significant savings in the balance-of-plant costs are expected to result in much lower costs of electricity than previous concepts. This paper describes the unique features of the CFAR cycle and a high- temperature blanket designed to take advantage of it as well as the predicted performance of the MHD disk generators using mercury seeded with cesium. 40 refs., 8 figs., 3 tabs.

  10. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    in U. S. Conunercial Nuclear Power Plants", Report WASH-Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"

  11. Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    When power production at The Geysers geothermal power complex began to falter, the National Renewable Energy Laboratory (NREL) stepped in, developing advanced condensing technology that dramatically boosted production efficiency - and making a major contribution to the effective use of geothermal power. NREL developed advanced direct-contact condenser (ADCC) technology to condense spent steam more effectively, improving power production efficiency in Unit 11 by 5%.

  12. US nuclear power plant operating cost and experience summaries

    SciTech Connect (OSTI)

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01T23:59:59.000Z

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  13. PNNL's Community Science & Technology Seminar Series Nuclear Power in a

    E-Print Network [OSTI]

    PNNL's Community Science & Technology Seminar Series Nuclear Power in a Post-Fukushima World Leonard J. Bond is a Laboratory Fellow at Pacific Northwest National Laboratory. He has been with PNNL information and upcoming seminars, contact PNNL at 375-6871 or visit http://regionaloutreach.pnnl

  14. Radioactive Effluents from Nuclear Power Plants Annual Report 2007

    SciTech Connect (OSTI)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10T23:59:59.000Z

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2007. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  15. Radioactive Effluents from Nuclear Power Plants Annual Report 2008

    SciTech Connect (OSTI)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10T23:59:59.000Z

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2008. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  16. Some aspects of nuclear power plant safety under war conditions

    SciTech Connect (OSTI)

    Stritar, A.; Mavko, B.; Susnik, J.; Sarler, B. (Jozef Stefan Inst., Ljubljana (Slovenia))

    1993-02-01T23:59:59.000Z

    In the summer of 1991, the Krsko nuclear power plant in Slovenia found itself in an area of military operations. This was probably the first commercial nuclear power plant to have been threatened by an attack by fighter jets. A number of never-before-asked questions had to be answered by the operating staff and supporting organizations. Some aspects of nuclear power plant safety under war conditions are described, such as the selection of the best plant operating state before the attack and the determination of plant system vulnerability and dose releases from the potentially damaged spent fuel in the spent-fuel pit. The best operating mode to which the plant should be brought before the attack is cold shutdown, and radiological consequences to the environment after the spent fuel is damaged and the water in the pit is lost are not very high. The problem of nuclear power plant safety under war conditions should be addressed in more detail in the future.

  17. Energy Department Announces New Investments in Advanced Nuclear...

    Broader source: Energy.gov (indexed) [DOE]

    said Energy Secretary Ernest Moniz. With support from the Energy Department, private industry and the Department's national laboratories have achieved significant advances that...

  18. Evaluation of Advanced Wind Power Forecasting Models Results of the Anemos Project

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Evaluation of Advanced Wind Power Forecasting Models ­ Results of the Anemos Project I. Martí1.kariniotakis@ensmp.fr Abstract An outstanding question posed today by end-users like power system operators, wind power producers or traders is what performance can be expected by state-of-the-art wind power prediction models. This paper

  19. An Approach to Autonomous Control for Space Nuclear Power Systems

    SciTech Connect (OSTI)

    Wood, Richard Thomas [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK)

    2011-01-01T23:59:59.000Z

    Under Project Prometheus, the National Aeronautics and Space Administration (NASA) investigated deep space missions that would utilize space nuclear power systems (SNPSs) to provide energy for propulsion and spacecraft power. The initial study involved the Jupiter Icy Moons Orbiter (JIMO), which was proposed to conduct in-depth studies of three Jovian moons. Current radioisotope thermoelectric generator (RTG) and solar power systems cannot meet expected mission power demands, which include propulsion, scientific instrument packages, and communications. Historically, RTGs have provided long-lived, highly reliable, low-power-level systems. Solar power systems can provide much greater levels of power, but power density levels decrease dramatically at {approx} 1.5 astronomical units (AU) and beyond. Alternatively, an SNPS can supply high-sustained power for space applications that is both reliable and mass efficient. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of an SNPS must be able to provide continuous operatio for the mission duration with limited immediate human interaction and no opportunity for hardware maintenance or sensor calibration. In effect, the SNPS control system must be able to independently operate the power plant while maintaining power production even when subject to off-normal events and component failure. This capability is critical because it will not be possible to rely upon continuous, immediate human interaction for control due to communications delays and periods of planetary occlusion. In addition, uncertainties, rare events, and component degradation combine with the aforementioned inaccessibility and unattended operation to pose unique challenges that an SNPS control system must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design.

  20. Multimegawatt space nuclear power supply, Phase 1 Final report

    SciTech Connect (OSTI)

    Not Available

    1989-02-17T23:59:59.000Z

    This Specification establishes the performance, design, development, and test requirements for the Boeing Multimegawatt Space Nuclear Power System (MSNPS). The Boeing Multimegawatt Space Power System is part of the DOE/SDIO Multimegawatt Space Nuclear Power Program. The purpose of this program is to provide a space-based nuclear power system to meet the needs of SDIO missions. The Boeing MSNPS is a category 1 concept which is capable of delivering 10's of MW(e) for 100's of seconds with effluent permitted. A design goal is for the system to have growth or downscale capability for other power system concepts. The growth objective is to meet the category 3 capability of 100's of MW(e) for 100's of seconds, also with effluent permitted. The purpose of this preliminary document is to guide the conceptual design effort throughout the Phase 1 study effort. This document will be updated through out the study. It will thus result in a record of the development of the design effort.

  1. High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August, 2000 - July 2001

    SciTech Connect (OSTI)

    Brown, L.C.

    2002-11-01T23:59:59.000Z

    OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August 2000 - July 2001. Currently no large scale, cost-effective, environmentally attractive hydrogen production process is available for commercialization nor has such a process been identified. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Carbon dioxide emissions from fossil fuel combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. The benefits of this work will include the generation of a low-polluting transportable energy feedstock in an efficient method that has little or no implication for greenhouse gas emissions from a primary energy source whose availability and sources are domestically controlled. This will help to ensure energy for a future transportation/energy infrastructure that is not influenced/controlled by foreign governments. This report describes work accomplished during the second year (Phase 2) of a three year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first year (Phase 1) was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water, in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most, three) for further detailed consideration. Phase 1 met its goals and did select one process, the sulfur-iodine process, for investigation in Phases 2 and 3. The combined goals of Phases 2 and 3 were to select the advanced nuclear reactor best suited to driving the selected thermochemical process and to define the selected reactor and process to the point that capital costs, operating costs and the resultant cost of hydrogen can be estimated. During original contract negotiation, it was necessary to reduce work scope to meet funding limits. As a result, the reactor interface and process will not be iterated to the point that only hydrogen is produced. Rather, hydrogen and electricity will be co-generated and the hydrogen cost will be stated as a function of the electricity sales price.

  2. A review of ash in conventional and advanced coal-based power systems

    SciTech Connect (OSTI)

    Holcombe, N.T.

    1995-12-31T23:59:59.000Z

    Process conditions are briefly described for conventional and advanced power systems. The advanced systems include both combustion and gasification processes. We discuss problems in coal-based power generation systems, including deposition, agglomeration and sintering of bed materials, and ash attack are discussed. We also discuss methods of mitigating ash problems and anticipated changes anticipated in ash use by converting from conventional to advanced systems.

  3. advanced nuclear engineering: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engineering leaders from industry, government de Weck, Olivier L. 8 Nuclear Science & Engineering Plasma Physics and Fusion Websites Summary: Center Massachusetts Institute of...

  4. advanced nuclear fuels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cycles University of California eScholarship Repository Summary: uranium or thorium ores and production of nuclear fuel, anynuclear fuel strontium Sievert Trivalent...

  5. advanced bwr nuclear: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    utilizing thorium together with gadolinium, erbium, or boron burnable absorber in BWR fuel assemblies for very long cycle is investigated. Nuclear characteristics such as...

  6. advanced nuclear fuel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cycles University of California eScholarship Repository Summary: uranium or thorium ores and production of nuclear fuel, anynuclear fuel strontium Sievert Trivalent...

  7. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Dixon, B.W.; Piet, S.J.

    2004-10-03T23:59:59.000Z

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected.

  8. Energy Department Announces New Investments in Advanced Nuclear...

    Broader source: Energy.gov (indexed) [DOE]

    the University of Pittsburg-- Development of thermo-acoustic sensors for Sodium-cooled Fast Reactors (SFR) Find more information at the Department of Energy's Office of Nuclear...

  9. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01T23:59:59.000Z

    DENSITIES AROUND CALIFORNIA NUCLEAR POWER PLANT. le Iil _. .AROUND CALIFORNIA NUCLEAR POWER PLANTS Miles San OnofreIN CALIFORNIA The California Nuclear Power Plant Emergency

  10. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01T23:59:59.000Z

    S. Commercial Nuclear Power Plants. WASH-1400. October 1975.Content of for Nuclear Power Plants. Regulatory Guide 1.101.PLANNING FOR NUCLEAR POWER PLANTS: THE LICENSING PROCESS

  11. Nuclear PowerNuclear PowerNuclear PowerNuclear PowerNuclear PowerNuclear PowerNuclear PowerNuclear Power''''''''s Dirty Littles Dirty Littles Dirty Littles Dirty Littles Dirty Littles Dirty Littles Dirty Littles Dirty Little Secret: Uranium MiningSecret:

    E-Print Network [OSTI]

    Sheridan, Jennifer

    ,000,000 2,500,000 3,000,000 3,500,000 4,000,000 4,500,000 1 2 3 4 5 6 7 8 9 10 11 12 Coal[1] Petroleum Liquids[2] Petroleum Coke Natural Gas Other Gases[3] Nuclear Hydroelectric Conventional Other Renewables[4 Consumption Petroleum Coal Natural Gas Non-biogenic MSW and Geothermal Energy Subtotal http

  12. Physics Design of the National High-power Advanced Torus Experiment

    SciTech Connect (OSTI)

    Menard, J E; Fu, G -Y; Gorelenkov, N; Kaye, S M; Kramer, G; Maingi, R; Neumeyer, C L; Sabbagh, S A; Soukhanovskii, V A

    2007-07-18T23:59:59.000Z

    Moving beyond ITER toward a demonstration power reactor (Demo) will require the integration of stable high fusion gain in steady-state, advanced methods for dissipating very high divertor heat-fluxes, and adherence to strict limits on in-vessel tritium retention. While ITER will clearly address the issue of high fusion gain, and new and planned long-pulse experiments (EAST, JT60-SA, KSTAR, SST-1) will collectively address stable steady-state highperformance operation, none of these devices will adequately address the integrated heat-flux, tritium retention, and plasma performance requirements needed for extrapolation to Demo. Expressing power exhaust requirements in terms of Pheat/R, future ARIES reactors are projected to operate with 60-200MW/m, a Component Test Facility (CTF) or Fusion Development Facility (FDF) for nuclear component testing (NCT) with 40-50MW/m, and ITER 20-25MW/m. However, new and planned long-pulse experiments are currently projected to operate at values of Pheat/R no more than 16MW/m. Furthermore, none of the existing or planned experiments are capable of operating with very high temperature first-wall (Twall = 600-1000C) which may be critical for understanding and ultimately minimizing tritium retention with a reactor-relevant metallic first-wall. The considerable gap between present and near-term experiments and the performance needed for NCT and Demo motivates the development of the concept for a new experiment — the National High-power advanced-Torus eXperiment (NHTX) — whose mission is to study the integration of a fusion-relevant plasma-material interface with stable steady-state high-performance plasma operation.

  13. A Roadmap to Deploy New Nuclear Power Plants in the United States...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume II, Main Report A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume...

  14. Identification of good practices in the operation of nuclear power plants

    E-Print Network [OSTI]

    Chen, Haibo, 1975-

    2005-01-01T23:59:59.000Z

    This work developed an approach to diagnose problems and identify good practices in the operation of nuclear power plants using the system dynamics technique. The research began with construction of the ORSIM (Nuclear Power ...

  15. Viability of an expanded United States nuclear power program and its effects on energy markets

    E-Print Network [OSTI]

    Khan, Tanzeer S

    2006-01-01T23:59:59.000Z

    The four biggest energy sources in the United States are coal, crude oil, natural gas, and nuclear power. While coal and nuclear power are produced domestically, more than 70% of crude oil and 20% of natural gas is imported. ...

  16. An examination of the pursuit of nuclear power plant construction projects in the United States

    E-Print Network [OSTI]

    Guyer, Brittany (Brittany Leigh)

    2011-01-01T23:59:59.000Z

    The recent serious reconsideration of nuclear power as a means for U.S. electric utilities to increase their generation capacity provokes many questions regarding the achievable success of future nuclear power plant ...

  17. Nuclear power plant performance assessment pertaining to plant aging in France and the United States

    E-Print Network [OSTI]

    Guyer, Brittany (Brittany Leigh)

    2013-01-01T23:59:59.000Z

    The effect of aging on nuclear power plant performance has come under increased scrutiny in recent years. The approaches used to make an assessment of this effect strongly influence the economics of nuclear power plant ...

  18. Nuclear power plant security systems - The need for upgrades

    SciTech Connect (OSTI)

    Murskyj, M.P.; Furlow, C.H.

    1989-01-01T23:59:59.000Z

    Most perimeter security systems for nuclear power plants were designed and installed in the late 1970s or early 1980s. This paper explores the need to regularly evaluate and possibly upgrade a security system in the area of perimeter intrusion detection and surveillance. this paper discusses US Nuclear Regulatory Commission audits and regulatory effectiveness reviews (RERs), which have raised issues regarding the performance of perimeter security systems. The audits and RERs identified various degrees of vulnerability in certain aspects of existing perimeter security systems. In addition to reviewing the regulatory concerns, this paper discusses other reasons to evaluate and/or upgrade a perimeter security system.

  19. Review of maintenance personnel practices at nuclear power plants

    SciTech Connect (OSTI)

    Chockie, A.D.; Badalamente, R.V.; Hostick, C.J.; Vickroy, S.C.; Bryant, J.L.; Imhoff, C.H.

    1984-05-01T23:59:59.000Z

    As part of the Nuclear Regulatory Commission (NRC) sponsored Maintenance Qualifications and Staffing Project, the Pacific Northwest Laboratory (PNL) has conducted a preliminary assessment of nuclear power plant (NPP) maintenance practices. As requested by the NRC, the following areas within the maintenance function were examined: personnel qualifications, maintenance training, overtime, shiftwork and staffing levels. The purpose of the assessment was to identify the primary safety-related problems that required further analysis before specific recommendations can be made on the regulations affecting NPP maintenance operations.

  20. Use of neurals networks in nuclear power plant diagnostics

    SciTech Connect (OSTI)

    Uhrig, R.E. (Tennessee Univ., Knoxville, TN (USA). Dept. of Nuclear Engineering Oak Ridge National Lab., TN (USA))

    1989-01-01T23:59:59.000Z

    A technique using neural networks as a means of diagnosing transients or abnormal conditions in nuclear power plants is investigated and found to be feasible. The technique is based on the fact that each physical state of the plant can be represented by a unique pattern of sensor outputs or instrument readings that can be related to the condition of the plant. Neural networks are used to relate this pattern to the fault, problem, or transient condition of the plant. A demonstration of the ability of this technique to identify causes of perturbations in the steam generator of a nuclear plant is presented. 3 refs., 4 figs.

  1. A Virtual Engineering Framework for Simulating Advanced Power System

    SciTech Connect (OSTI)

    Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

    2008-06-18T23:59:59.000Z

    In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering. Furthermore, with little effort the modeling capabilities described in this report can be extended to support other DOE programs, such as ultra super critical boiler development, oxy-combustion boiler development or modifications to existing plants to include CO2 capture and sequestration.

  2. Understanding the nature of nuclear power plant risk

    SciTech Connect (OSTI)

    Denning, R. S. [Ohio State Univ., 201 West 19th Avenue, Columbus, OH 43210-1142 (United States)

    2012-07-01T23:59:59.000Z

    This paper describes the evolution of understanding of severe accident consequences from the non-mechanistic assumptions of WASH-740 to WASH-1400, NUREG-1150, SOARCA and today in the interpretation of the consequences of the accident at Fukushima. As opposed to the general perception, the radiological human health consequences to members of the Japanese public from the Fukushima accident will be small despite meltdowns at three reactors and loss of containment integrity. In contrast, the radiation-related societal impacts present a substantial additional economic burden on top of the monumental task of economic recovery from the nonnuclear aspects of the earthquake and tsunami damage. The Fukushima accident provides additional evidence that we have mis-characterized the risk of nuclear power plant accidents to ourselves and to the public. The human health risks are extremely small even to people living next door to a nuclear power plant. The principal risk associated with a nuclear power plant accident involves societal impacts: relocation of people, loss of land use, loss of contaminated products, decontamination costs and the need for replacement power. Although two of the three probabilistic safety goals of the NRC address societal risk, the associated quantitative health objectives in reality only address individual human health risk. This paper describes the types of analysis that would address compliance with the societal goals. (authors)

  3. Coping with nuclear power risks: the electric utility incentives

    SciTech Connect (OSTI)

    Starr, C.; Whipple, C.

    1982-01-01T23:59:59.000Z

    The financial risks associated with nuclear power accidents are estimated by interpolating between frequency-vs.-severity data from routine outages and the frequency-vs.-severity estimates from the Nuclear Regulatory Commission's (NRC's) Reactor Safety Study (WASH-1400). This analysis indicates that the expected costs of plant damage and lost power production are large compared to the public risks estimated in WASH-1400, using values from An Approach to Quantitative Safety Goals for Nuclear Power Plants (NUREG-0739), prepared by the NRC Advisory Committee on Reactor Safeguards. Analyses of the cost-effectiveness of accident-prevention investments that include only anticipated public safety benefits will underestimate the value of such investments if reductions in power plant damage risk are not included. The analysis also suggests that utility self-interest and the public interest in safety are generally coincident. It is argued that greater use could be made of this self-interest in regulation if the relationship between the NRC and the industry were more cooperative, less adversary in nature.

  4. UNEDF: Advanced Scienti?c Computing Collaboration Transforms the Low-Energy Nuclear Many-Body Problem

    SciTech Connect (OSTI)

    Nam, Hai A.; Stoitsov, M.; Nazarewicz, Witold; Bulgac, Aurel; Hagen, Gaute; Kortelainene, Markus; Maris, P.; Pei, Junchen; Roche, Kenneth J.; Schunck, Nicolas; Thompson, Ian; Vary, James; Wild, Stefan

    2012-11-03T23:59:59.000Z

    With diverse scienti?c backgrounds, the UNEDF SciDAC collaboration of nuclear theorists, applied mathematicians, and computer scientists is developing a comprehensive description of nuclei and their reactions that delivers maximum predictive power with quanti?ed uncertainties. This paper describes the UNEDF collaboration and identi?es attributes that classify UNEDF as a successful computational collaboration. We illustrate signi?cant milestones accomplished by UNEDF through integrative solutions using the most reliable theoretical approaches, the most advanced algorithms, and leadership class computational resources.

  5. Assessment of Metal Media Filters for Advanced Coal-Based Power Generation Applications

    SciTech Connect (OSTI)

    Alvin, M.A.

    2002-09-19T23:59:59.000Z

    Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. This paper reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion conditions.

  6. advance nuclear energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management and Restoration Websites Summary: adVancing frontiers in energy and enVironMent 12;it is a transforMational tiMe in a new supplies of clean water and electricity....

  7. advanced nuclear energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management and Restoration Websites Summary: adVancing frontiers in energy and enVironMent 12;it is a transforMational tiMe in a new supplies of clean water and electricity....

  8. advanced power electronic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Electronics The Center for Pulsed Power and Power Electronics started as a Plasma research group at Texas Tech University in 1966. The initial work was concerned with har-...

  9. advanced power electronics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Electronics The Center for Pulsed Power and Power Electronics started as a Plasma research group at Texas Tech University in 1966. The initial work was concerned with har-...

  10. Technical and Political Assessment of Peaceful Nuclear Power Program Prospects in North Africa and the

    E-Print Network [OSTI]

    PNNL-16840 Technical and Political Assessment of Peaceful Nuclear Power Program Prospects in North and application of resources towards developing nuclear-generated electricity and nuclear-powered desalination nations have recently expressed interest in developing nuclear energy for peaceful purposes. Many

  11. New Technologies for Repairing Aging Cables in Nuclear Power Plants

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Fifield, Leonard S.; Westman, Matthew P.

    2013-09-11T23:59:59.000Z

    The goal of this project is to demonstrate a proof-of-concept for a technique to repair aging cables that have been subjected to degradation associated with long-term thermal and radiation exposure in nuclear power plants. The physical degradation of the aging cables manifests itself primarily as cracking and increased brittleness of the polymeric electrical insulation. Therefore, the proposed cable-repair concept comprises development of techniques to impart a softening agent within the deteriorated polymer insulation jacket so as to regain the ability of the insulation to stretch without failing and possibly to heal existing cracks in the insulation. Our approach is to use commercially available ethylene-propylene rubber (EPR) as the relevant test material, demonstrate the adsorption of chemical treatments in the EPR and quantify changes in resulting physical and mechanical properties. EPR cable samples have been thermally treated in air to produce specimens corresponding to the full range of cable age-performance points from new (>350% elongation at break) to end-of-life (<50% elongation at break). The current focus is on two chemical treatments selected as candidates for restoring age-related cable elasticity loss: a rubber plasticizer and a reactive silane molecule. EPR specimens of 200, 150, 100, and 50% elongation at break have been soaked in the candidate chemical treatments and the kinetics of chemical uptake, measured by change in mass of the samples, has been determined. Mechanical properties as a function of aging and chemical treatment have been measured including ultimate tensile strength, tensile modulus at 50% strain, elongation at break, and storage modulus. Dimensional changes with treatment and changes in glass transition temperature were also investigated. These ongoing experiments are expected to provide insight into the physical-chemical nature of the effect of thermal degradation on EPR rejuvenation limits and to advance novel methods for restoring the ability of degraded EPR to be compliant and resist fracture. The results of this research reveal that absorption of chemical treatments can lower the glass transition temperature and modulus of EPR. Chemical treatments pursued thus far have proven ineffective at restoring EPR strength and elongation at break. Future work will combine the plasticizer modalities found to successfully increase the volume of the EPR, reduce EPR glass transition temperature and reduce EPR modulus with promising chemistries that will repair the damage of the polymer, potentially using the plasticizer as a host for the new chemistry.

  12. Overview: Advanced Power Electronics and Electric Motors (APEEM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications HEV HEV Blended ICEElectric - Power requirement 55 kW - Parallel architecture - Intermittent short operation Blended ICEElectric - Power requirement 55 kW -...

  13. California: Advanced 'Drop-In' Biofuels Power the Navy's Green...

    Office of Environmental Management (EM)

    Developing Cheaper Algae Biofuels, Brings Jobs to Pennsylvania Fueling the Navy's Great Green Fleet with Advanced Biofuels Cellana, Inc.'s Kona Demonstration Facility is working...

  14. REQUEST BY SIEMENS WESTINGHOUSE POWER CORPORATION FOR AN ADVANCE...

    Broader source: Energy.gov (indexed) [DOE]

    under Public Law 96-517. The primary program goal of this work, entitled, "Advanced Turbine Airfoil Manufacturing Technology", is to demonstrate the process to fabricate...

  15. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume II. Proliferation resistance

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The purpose of this volume is limited to an assessment of the relative effects that particular choices of nuclear-power systems, for whatever reasons, may have on the possible spread of nuclear-weapons capabilities. This volume addresses the concern that non-nuclear-weapons states may be able to initiate efforts to acquire or to improve nuclear-weapons capabilities through civilian nuclear-power programs; it also addresses the concern that subnational groups may obtain and abuse the nuclear materials or facilities of such programs, whether in nuclear-weapons states (NWS's) or nonnuclear-weapons states (NNW's). Accordingly, this volume emphasizes one important factor in such decisions, the resistance of nuclear-power systems to the proliferation of nuclear-weapons capabilities.

  16. Empirical relations for nuclear stopping power F. S. Garnir-Monjoie

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    31 Empirical relations for nuclear stopping power F. S. Garnir-Monjoie Institut de Mathématiques, D, due to inelastic interaction with the target electrons, and the nuclear stopping power induced. The Lindhard, Scharff and Schiott theory (LSS theory) [1] shows that the nuclear stopping power is the same

  17. A Verification Framework for FBD based Software in Nuclear Power Plants Junbeom Yoo

    E-Print Network [OSTI]

    A Verification Framework for FBD based Software in Nuclear Power Plants Junbeom Yoo Div, conducted using a nuclear power plant shutdown system being developed in Korea, demonstrated in nuclear power plant's reactor protection systems. The software verification framework uses two different

  18. Formal Verification of Safety I&C System Designs: Two Nuclear Power Plant Related Applications

    E-Print Network [OSTI]

    Heljanko, Keijo

    C4.2 Formal Verification of Safety I&C System Designs: Two Nuclear Power Plant Related Applications and control (I&C) systems play a crucial role in the operation of nuclear power plants (NPP) and other safety is available. The use of model checking to verify two nuclear power plant related systems is described: an arc

  19. Nuclear Power Plant Components Condition Monitoring by Probabilistic Support Vector , Redouane Seraouib

    E-Print Network [OSTI]

    Boyer, Edmond

    Nuclear Power Plant Components Condition Monitoring by Probabilistic Support Vector Machine Jie.zio@ecp.fr Abstract In this paper, an approach for the prediction of the condition of Nuclear Power Plant (NPP monitoring, Nuclear power plant, Point prediction hal-00790421,version1-12Jun2013 Author manuscript

  20. Condition monitoring of motor-operated valves in nuclear power plants Pierre Granjon

    E-Print Network [OSTI]

    Boyer, Edmond

    Condition monitoring of motor-operated valves in nuclear power plants Pierre Granjon Gipsa of nuclear power plants. Unfortunately, today's policies present a major drawback. Indeed, these monitoring safety constraints: nuclear power plants. Key components of such systems are motor-operated valves (MOVs

  1. Vulnerability Analysis of a Nuclear Power Plant Considering Detonations of Explosive Devices

    E-Print Network [OSTI]

    Cizelj, Leon

    Vulnerability Analysis of a Nuclear Power Plant Considering Detonations of Explosive Devices Marko threats to a nuclear power plant in the year 1991 and after the 9/11 events in 2001. The methodology which strength and injuries of human beings with nuclear power plant models used in probabilistic safety

  2. Childhood leukaemia incidence below the age of 5 years near French nuclear power plants

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Childhood leukaemia incidence below the age of 5 years near French nuclear power plants D Laurier 1 living in the vicinity of nuclear power plants in Germany. We present herein results about the incidence of childhood leukaemia in the vicinity of nuclear power plants in France for the same age range. These results

  3. ASSESSING NUCLEAR POWER PLANT SAFETY AND RECOVERY FROM EARTHQUAKES USING A SYSTEM-OF-SYSTEMS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    by Monte Carlo simulation the probability that the nuclear power plant enters in an unsafe stateASSESSING NUCLEAR POWER PLANT SAFETY AND RECOVERY FROM EARTHQUAKES USING A SYSTEM in which the plant is embedded. As a test system, we consider the impacts produced on a nuclear power plant

  4. Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power

    E-Print Network [OSTI]

    ABSTRACT: In the aftermath of the March 2011 accident at Japan's Fukushima Daiichi nuclear power plant, the future contribution of nuclear power to the global energy supply has become somewhat uncertain. Because of the Fukushima accident, we find that nuclear power could additionally prevent an average of 420 000-7.04 million

  5. PLC-Based Safety Critical Software Development for Nuclear Power Plants

    E-Print Network [OSTI]

    PLC-Based Safety Critical Software Development for Nuclear Power Plants Junbeom Yoo1 , Sungdeok Cha development technique for nuclear power plants'I&C soft- ware controllers. To improve software safety, we in developing safety-critical control software for a Korean nuclear power plant, and experience to date has been

  6. Energy Department Announces New Investments in Advanced Nuclear Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register /of EnergyDepartmentReactor | Department

  7. Energy Department Announces New Investments in Advanced Nuclear Power

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: Final EnvironmentalCounties, Idaho ||Geothermal EnergyModular Reactors |Reactors |

  8. Energy Department Announces New Investments in Advanced Nuclear Power

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014 inJohnSystems| Department of Energy

  9. Nuclear power plant fault-diagnosis using artificial neural networks

    SciTech Connect (OSTI)

    Kim, Keehoon; Aljundi, T.L.; Bartlett, E.B.

    1992-01-01T23:59:59.000Z

    Artificial neural networks (ANNs) have been applied to various fields due to their fault and noise tolerance and generalization characteristics. As an application to nuclear engineering, we apply neural networks to the early recognition of nuclear power plant operational transients. If a transient or accident occurs, the network will advise the plant operators in a timely manner. More importantly, we investigate the ability of the network to provide a measure of the confidence level in its diagnosis. In this research an ANN is trained to diagnose the status of the San Onofre Nuclear Generation Station using data obtained from the plant's training simulator. Stacked generalization is then applied to predict the error in the ANN diagnosis. The data used consisted of 10 scenarios that include typical design basis accidents as well as less severe transients. The results show that the trained network is capable of diagnosing all 10 instabilities as well as providing a measure of the level of confidence in its diagnoses.

  10. West European nuclear power generation research and development

    SciTech Connect (OSTI)

    Turinsky, P.J.; Baron, S.; Burch, W.D.; Corradini, M.L.; Lucas, G.E.; Matthews, R.B.; Uhrig, R.E.

    1991-09-01T23:59:59.000Z

    This report assesses the status of West European research and development (R&D) in support of nuclear power generation. The focus is on light-water reactors (LWRs), as they will likely be the only concept commerically implemented within the next decade. To a laser degree, alternative concepts such as the high-temperature gas cooled reactor and the liquid-metal reactor (LMR) are also assessed. To bound the study, only the fuel cycle stages of fuel fabrication, power generation, and fuel reprocessing are considered. Under the topic of power generation, the subtopics of core reactor physics, materials, instrumentation and control systems, nuclear power safety, and power plant fabrication and construction are addressed. The front-end fuel cycle stages of mining and milling, conversion and enrichment, and the back-end fuel cycle stages of waste conditioning and disposal and not considered. Most assessments for light-water reactor R&D are completed on a country-by-country basis since there is limited cooperation among the West European countries due to the commercial relevance of R&D in this area.

  11. West European nuclear power generation research and development

    SciTech Connect (OSTI)

    Turinsky, P.J.; Baron, S.; Burch, W.D.; Corradini, M.L.; Lucas, G.E.; Matthews, R.B.; Uhrig, R.E.

    1991-09-01T23:59:59.000Z

    This report assesses the status of West European research and development (R D) in support of nuclear power generation. The focus is on light-water reactors (LWRs), as they will likely be the only concept commerically implemented within the next decade. To a laser degree, alternative concepts such as the high-temperature gas cooled reactor and the liquid-metal reactor (LMR) are also assessed. To bound the study, only the fuel cycle stages of fuel fabrication, power generation, and fuel reprocessing are considered. Under the topic of power generation, the subtopics of core reactor physics, materials, instrumentation and control systems, nuclear power safety, and power plant fabrication and construction are addressed. The front-end fuel cycle stages of mining and milling, conversion and enrichment, and the back-end fuel cycle stages of waste conditioning and disposal and not considered. Most assessments for light-water reactor R D are completed on a country-by-country basis since there is limited cooperation among the West European countries due to the commercial relevance of R D in this area.

  12. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

    SciTech Connect (OSTI)

    Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

    2006-10-01T23:59:59.000Z

    The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

  13. Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons

    Broader source: Energy.gov [DOE]

    Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons - December Commission meeting

  14. Advanced EL inspection with predictive estimation of module power loss

    E-Print Network [OSTI]

    with no relation to its significance on potential power degradation 7pi4_robotics GmbH #12;The idea: Estimate power photovoltaic modules due to micro-cracks" #12;Three step approach to estimate power loss PL1 : power loss

  15. Impact of Advanced Technologies on Fusion Power Plant Characteristics

    E-Print Network [OSTI]

    California at San Diego, University of

    Reliable Power Source: · Closed tritium fuel cycle on site; · Ability to operate at partial load conditions

  16. Decommissioning nuclear power plants - the wave of the future

    SciTech Connect (OSTI)

    Griggs, F.S. Jr. [Raytheon Engineers and Contractors, Cumberland City, TN (United States)

    1994-12-31T23:59:59.000Z

    The paper discusses the project controls developed in the decommissioning of a nuclear power plant. Considerations are given to the contaminated piping and equipment that have to be removed and the spent and used fuel that has to be disposed of. The storage issue is of primary concern here. The cost control aspects and the dynamics of decommissioning are discussed. The effects of decommissioning laws on the construction and engineering firms are mentioned. 5 refs.

  17. Conceivable new recycling of nuclear waste by nuclear power companies in their plants

    E-Print Network [OSTI]

    Ruggero Maria Santilli

    1997-04-09T23:59:59.000Z

    We outline the basic principles and the needed experiments for a conceivable new recycling of nuclear waste by the power plants themselves to avoid its transportation and storage to a (yet unknown) dumping area. Details are provided in an adjoining paper and in patents pending.

  18. India's nuclear power program : a study of India's unique approach to nuclear energy

    E-Print Network [OSTI]

    Murray, Caitlin Lenore

    2006-01-01T23:59:59.000Z

    India is in the middle of the biggest expansion of nuclear power in its history, adding 20 GWe in the next 14 years in the form of pressure water reactors and fast breeder reactors. At the same time, the United States is ...

  19. AN ADVANCED COMPUTATIONAL APPROACH TO SYSTEM MODELING OF TOKAMAK POWER PLANTS Zoran Dragojlovic1

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    AN ADVANCED COMPUTATIONAL APPROACH TO SYSTEM MODELING OF TOKAMAK POWER PLANTS Zoran Dragojlovic1 power plant system studies is being developed for the ARIES program. An operational design space has power plants. This allows examination of a multi-dimensional trade space as opposed to traditional

  20. Nuclear Power: Is It a New Clear Choice for Malaysia

    SciTech Connect (OSTI)

    Besar, Idris B. [Industrial Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia) Bangi, 43000 Kajang, Selangor (Malaysia)

    2008-05-20T23:59:59.000Z

    Energy is essential for socio-economic development. Any nation's standard of living is closely related to its access to energy. To put into perspective, the per capita electricity consumptions in developed countries of the Organisation for Economic Cooperation and Development (OECD) is currently estimated at 8600 kilowatts-hour per year as compared to the consumption rates in Malaysia and some African countries of 3300 and 50 kilowatts-hour per year, respectively. Energy is therefore an important pre-requisite for achieving the Malaysian vision of becoming a developed nation by the year 2020, in that it is needed not only for industrialization programme but also in maintaining quality of life. In Malaysia, the main concern currently is still on the supply in term of adequacy, reliability and quality; and moving slowly but steadily towards security, sustainability, environmentally friendly and contribution to climate change. With this new dimension, nuclear power emerged as a good match to a possible alternative in the comprehensive national energy policy. Many studies presented the positive aspects of nuclear power while others indicated the bad sides and potential risks. This paper will highlight some of those pros and cons as well as the potential risks beside a discussion on relevant requirements for a nuclear power programme in particular those of interest to the professionals in the physical sciences.

  1. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    SciTech Connect (OSTI)

    E. R. Johnson; R. E. Best

    2009-12-28T23:59:59.000Z

    The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the “UREX+3c fuel cycle” and the “Alternative Fuel Cycle” (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount of the resulting MOX. The study considered two sub-cases within each of the two fuel cycles in which the uranium and plutonium from the first generation of MOX spent fuel (i) would not be recycled to produce a second generation of MOX for use in LWRs or (ii) would be recycled to produce a second generation of MOX fuel for use in LWRs. The study also investigated the effects of recycling MOX spent fuel multiple times in LWRs. The study assumed that both fuel cycles would store and then reprocess spent MOX fuel that is not recycled to produce a next generation of LWR MOX fuel and would use the recovered products to produce FR fuel. The study further assumed that FRs would begin to be brought on-line in 2043, eleven years after recycle begins in LWRs, when products from 5-year cooled spent MOX fuel would be available. Fuel for the FRs would be made using the uranium, plutonium, and minor actinides recovered from MOX. For the cases where LWR fuel was assumed to be recycled one time, the 1st generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. For the cases where the LWR fuel was assumed to be recycled two times, the 2nd generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. The number of FRs in operation was assumed to increase in successive years until the rate that actinides were recovered from permanently discharged spent MOX fuel equaled the rate the actinides were consumed by the operating fleet of FRs. To compare the two fuel cycles, the study analyzed recycle of nuclear fuel in LWRs and FRs and determined the radiological characteristics of irradiated nuclear fuel, nuclear waste products, and recycle nuclear fuels. It also developed a model to simulate the flows of nuclear materials that could occur in the two advanced nuclear fuel cycles over 81 years beginning in 2020 and ending in 2100. Simulations projected the flows of uranium, plutonium, and minor actinides as these nuclear fuel materials were produced and consumed in a fleet of 100 1,000 MWe LWRs and in FRs. The model als

  2. Steam Oxidation of Fossil Power Plant Materials: Collaborative Research to Enable Advanced Steam Power Cycles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    A. T. Fry; I. G Wright; N. J Simms; B. McGhee; G. R. Holcomb

    2013-11-19T23:59:59.000Z

    Research into improved materials systems and associated manufacturing and reliability issues is a major part of initiatives to produce cleaner and cheaper energy systems in the UK and the USA. Under the auspices of a Memorandum of Understanding on Energy R&D, a work programme concerned with steam oxidation has been conducted. The focus was on the generation of definitive information regarding the oxidation behaviour in steam of current and developmental ferritic steels, austenitic steels, and nickelbased alloys required to enable advanced steam power cycles. The results were intended to provide a basis for quantifying the rate of metal loss expected under advanced steam cycle conditions, as well as understanding of the evolution of oxide scale morphologies with time and temperature to identify features that could influence scale exfoliation characteristics. This understanding and acquired data were used to develop and validate models of oxide growth and loss by exfoliation. This paper provides an overview of the activity and highlights a selection of the results coming from the programme.

  3. The scalability of OTR (out-of-core thermionic reactor) space nuclear power systems

    SciTech Connect (OSTI)

    Gallup, D.R.

    1990-03-01T23:59:59.000Z

    In this document, masses of the STAR-C power system and an optimized out-of-core thermionic reactor (OTR) power system versus power level are investigated. The impacts of key system parameters on system performance are also addressed. The STAR-C is mass competitive below about 15 kWe, but at higher power levels the scalability is relatively poor. An optimized OR is the least massive space nuclear power system below 25 kWe, and scales well to 50 kWe. The system parameters that have a significant impact on the scalability of the STAR-C are core thermal flux, thermionic converter efficiency, and core length to diameter ratio. The emissivity of the core surface is shown to be a relatively unimportant parameter. For an optimized OR power system, the most significant system parameter is the maximum allowable fuel temperature. It is also shown that if advanced radiation-hardened electronics are used in the satellite payload, a very large mass savings is realized. 10 refs., 23 figs., 7 tabs.

  4. advanced turbine power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    level. When the power consumption is low e.g. during the night 46 A Silicon-Based Micro Gas Turbine Engine for Power Generation CERN Preprints Summary: This paper reports on our...

  5. Nuclear electromagnetic pulse (EMP) and electric power systems

    SciTech Connect (OSTI)

    Barnes, P.R.; Vance, E.F.; Askins, H.W. Jr.

    1984-04-01T23:59:59.000Z

    A nuclear detonation at high altitudes produces a transient electromagnetic pulse (EMP) of high-intensity electromagnetic fields. A single high-altitude burst can subject most of the continental United States to a strong EMP. These intense fields induce voltage and current transients in electrical conductors. Surges would be induced by EMP in transmission and distribution circuits and in control and communication elements in electric power systems throughout the national grid. Such widespread disturbances could upset the stability of electrical energy systems and result in massive power failures. The extent and nature of EMP-caused damages are not well known for utility electric power systems. Failures are likely to be associated with insulation damage and failures of low-voltage and solid-state components. It is concluded from a review of past studies that EMP may pose a serious threat to the nation's electrical energy supply.

  6. REQUEST BY SIEMENS WESTINGHOUSE POWER CORPORATION FOR AN ADVANCE...

    Broader source: Energy.gov (indexed) [DOE]

    topping combustor are called the multi-annular swirl burner (MASB) and the Piloted Syngas Burner (PSB). The work is sponsored by the Office of Fossil Energy. An advance waiver...

  7. Development of an Advanced Combined Heat and Power (CHP) System...

    Broader source: Energy.gov (indexed) [DOE]

    calcination in a fluidized bed with an advanced CHP system using the off-gases and the waste heat from the calcined coke. The total amount of recycled heat from the newly...

  8. advanced nuclear system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear system First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Design of radiation resistant metallic...

  9. advanced nuclear systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear systems First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Design of radiation resistant metallic...

  10. A Nuclear Renaissance: The Role of Nuclear Power in Mitigating Climate Change

    SciTech Connect (OSTI)

    Winslow, Anne [Stanford University, Stanford, CA 94305, USA and MonAme Scientific Research Center, Ulaanbaatar (Mongolia)

    2011-06-28T23:59:59.000Z

    The U. N. Framework Convention on Climate Change calls for the stabilization of greenhouse gas (GHG) emissions at double the preindustrial atmospheric carbon dioxide concentration to avoid dangerous anthropogenic interference with the climate system. To achieve this goal, carbon emissions in 2050 must not exceed their current level, despite predictions of a dramatic increase in global electricity demand. The need to reduce GHG emissions and simultaneously provide for additional electricity demand has led to a renewed interest in the expansion of alternatives to fossil fuels--particularly renewable energy and nuclear power. As renewable energy sources are often constrained by the intermittency of natural energy forms, scale-ability concerns, cost and environmental barriers, many governments and even prominent environmentalist turn to nuclear energy as a source of clean, reliable base-load electricity. Described by some as a ''nuclear renaissance'', this trend of embracing nuclear power as a tool to mitigate climate change will dramatically influence the feasibility of emerging nuclear programs around the world.

  11. Potential application of neural networks to the operation of nuclear power plants

    SciTech Connect (OSTI)

    Uhrig, R.E. [University of Tennessee, Knoxville, TN (United States)]|[Oak Ridge National Laboratory, TN (United States)

    1991-01-01T23:59:59.000Z

    The application of neural networks, a rapidly evolving technology used extensively in defense applications, to some of the problems of operating nuclear power plants is a logical complement to the expert systems currently being introduced in some of those plants. The potential applications of neural networks include, but are not limited to: (1) Diagnosing specific abnormal conditions. (2) Identifying nonlinear dynamics and transients. (3) Detecting the change of mode of operation. (4) Controlling temperature and pressure during start-up. (5) validating signals. (6) Plant-wide monitoring using autoassociative neural networks. (7) Monitoring of check valves. (8) Modeling the plant thermodynamics to increase efficiency. (9) Emulating core reload calculations. (10) Analyzing temporal sequences in the U.S. Nuclear Regulatory Commission Licensee Event Reports. (11) Monitoring plant parameters. (12) Analyzing vibrations in plants and rotating machinery. The work on such applications indicates that neural networks alone, or in conjunction with other advanced technologies, have the potential to enhance the safety, reliability, and operability of nuclear power plants. 36 refs.

  12. Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems

    Broader source: Energy.gov [DOE]

    Four projects that will develop capabilities for designing sophisticated materials that can withstand the harsh environments of advanced fossil energy power systems have been selected by the U.S. Department of Energy.

  13. Technology survey and performance scaling for the design of high power nuclear electric power and propulsion systems

    E-Print Network [OSTI]

    White, Daniel B., Jr

    2011-01-01T23:59:59.000Z

    High power nuclear electric propulsion systems have the capability to enable many next-generation space exploration applications. To date, use of electric primary propulsion in flight systems has been limited to low-power, ...

  14. Estimation of the reliability of space nuclear power systems by probabilistic risk assessment techniques 

    E-Print Network [OSTI]

    Gutner, Sophie Isabelle

    1996-01-01T23:59:59.000Z

    A successful space mission depends on the reliable operation of the spacecraft's electrical power system. For payloads requiring high power levels, various designs of space nuclear power systems (SNPS) are available. Designers have conducted limited...

  15. Online Sensor Calibration Assessment in Nuclear Power Systems

    SciTech Connect (OSTI)

    Coble, Jamie B.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hashemian, Hash

    2013-06-01T23:59:59.000Z

    Safe, efficient, and economic operation of nuclear systems (nuclear power plants, fuel fabrication and storage, used fuel processing, etc.) relies on transmission of accurate and reliable measurements. During operation, sensors degrade due to age, environmental exposure, and maintenance interventions. Sensor degradation can affect the measured and transmitted signals, including sensor failure, signal drift, sensor response time, etc. Currently, periodic sensor recalibration is performed to avoid these problems. Sensor recalibration activities include both calibration assessment and adjustment (if necessary). In nuclear power plants, periodic recalibration of safety-related sensors is required by the plant technical specifications. Recalibration typically occurs during refueling outages (about every 18 to 24 months). Non-safety-related sensors also undergo recalibration, though not as frequently. However, this approach to maintaining sensor calibration and performance is time-consuming and expensive, leading to unnecessary maintenance, increased radiation exposure to maintenance personnel, and potential damage to sensors. Online monitoring (OLM) of sensor performance is a non-invasive approach to assess instrument calibration. OLM can mitigate many of the limitations of the current periodic recalibration practice by providing more frequent assessment of calibration and identifying those sensors that are operating outside of calibration tolerance limits without removing sensors or interrupting operation. This can support extended operating intervals for unfaulted sensors and target recalibration efforts to only degraded sensors.

  16. Microstructure and Creep Strength of Welds in Advanced Ferritic Power Plant Steels

    E-Print Network [OSTI]

    Cambridge, University of

    Microstructure and Creep Strength of Welds in Advanced Ferritic Power Plant Steels Fujio ABE) power plant at 650 o C (923 K).1 Critical issues for the development of ferritic steels for 650 o C USC joints for tungsten-strengthened advanced 9-12%Cr steels, ASME-P92 (9Cr-0.5Mo-1.8W-VNb), ASME-P122 (11Cr

  17. Method and system for advancement of a borehole using a high power laser

    DOE Patents [OSTI]

    Moxley, Joel F.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Zediker, Mark S.

    2014-09-09T23:59:59.000Z

    There is provided a system, apparatus and methods for the laser drilling of a borehole in the earth. There is further provided with in the systems a means for delivering high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates, a laser bottom hole assembly, and fluid directing techniques and assemblies for removing the displaced material from the borehole.

  18. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    Report LBL-5287. "Power Plant Reliability-Availability andConunercial Nuclear Power Plants", Report WASH-1400 (NUREG-Standards for Nuclear Power Plants," by A.V. Nero and Y.C.

  19. Nuclear power fleets and uranium resources recovered from phosphates

    SciTech Connect (OSTI)

    Gabriel, S.; Baschwitz, A.; Mathonniere, G. [CEA, DEN/DANS/I-tese, F-91191 Gif-sur-Yvette (France)

    2013-07-01T23:59:59.000Z

    Current light water reactors (LWR) burn fissile uranium, whereas some future reactors, as Sodium fast reactors (SFR) will be capable of recycling their own plutonium and already-extracted depleted uranium. This makes them a feasible solution for the sustainable development of nuclear energy. Nonetheless, a sufficient quantity of plutonium is needed to start up an SFR, with the plutonium already being produced in light water reactors. The availability of natural uranium therefore has a direct impact on the capacity of the reactors (both LWR and SFR) that we can build. It is therefore important to have an accurate estimate of the available uranium resources in order to plan for the world's future nuclear reactor fleet. This paper discusses the correspondence between the resources (uranium and plutonium) and the nuclear power demand. Sodium fast reactors will be built in line with the availability of plutonium, including fast breeders when necessary. Different assumptions on the global uranium resources are taken into consideration. The largely quoted estimate of 22 Mt of uranium recovered for phosphate rocks can be seriously downscaled. Based on our current knowledge of phosphate resources, 4 Mt of recoverable uranium already seems to be an upper bound value. The impact of the downscaled estimate on the deployment of a nuclear fleet is assessed accordingly. (authors)

  20. Advanced nuclear fuel cycles - Main challenges and strategic choices

    SciTech Connect (OSTI)

    Le Biez, V. [Corps des Mines, 35 bis rue Saint-Sabin, F-75011 Paris (France); Machiels, A.; Sowder, A. [Electric Power Research Institute, Inc. 3420, Hillview Avenue, Palo Alto, CA 94304 (United States)

    2013-07-01T23:59:59.000Z

    A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness.