Powered by Deep Web Technologies
Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy Department Announces New Investments in Advanced Nuclear Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investments in Advanced Nuclear Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear Power Reactors June 27, 2013 - 2:20pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to accelerate clean energy leadership and to enable a low-carbon economy, the Energy Department today announced $3.5 million for four advanced nuclear reactor projects that go beyond traditional light water designs. These projects -- led by General Atomics, GE Hitachi, Gen4 Energy and Westinghouse -- will address key technical challenges to designing, building and operating the next generation of nuclear reactors. These steps support the President's plan to cut carbon pollution and spark innovation

2

Energy Department Announces New Investments in Advanced Nuclear Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces New Investments in Advanced Nuclear Energy Department Announces New Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear Power Reactors June 27, 2013 - 2:20pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to accelerate clean energy leadership and to enable a low-carbon economy, the Energy Department today announced $3.5 million for four advanced nuclear reactor projects that go beyond traditional light water designs. These projects -- led by General Atomics, GE Hitachi, Gen4 Energy and Westinghouse -- will address key technical challenges to designing, building and operating the next generation of nuclear reactors. These steps support the President's plan to cut carbon pollution and spark innovation

3

Cost estimate guidelines for advanced nuclear power technologies  

SciTech Connect

To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

Delene, J.G.; Hudson, C.R. II.

1990-03-01T23:59:59.000Z

4

Advanced Cooling Options for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Alternative power plant cooling systems exist that offer significant opportunity for reducing the amount of water used in power plant cooling. These systems include direct dry cooling using air-cooled condensers, indirect dry cooling using air-cooled heat exchangers paired with water-cooled surface condensers, and a variety of hybrid systems incorporating both dry and wet cooling elements. The water savings afforded by the use of these systems, however, comes at a price in the form of more expensive ...

2013-11-27T23:59:59.000Z

5

Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants  

SciTech Connect

OAK-B135 Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants

O' Connell, J. Michael

2002-01-01T23:59:59.000Z

6

Directions for advanced use of nuclear power in century XXI  

SciTech Connect

Nuclear power can provide a significant contribution to electricity generation and meet other needs of the world and the US during the next century provided that certain directions are taken to achieve its public acceptance. These directions include formulation of projections of population, energy consumption, and energy resources over a responsible period of time. These projections will allow assessment of cumulative effects on the environment and on fixed resources. Use of fossil energy resources in a century of growing demand for energy must be considered in the context of long-term environmental damage and resource depletion. Although some question the validity of these consequences, they can be mitigated by use of advanced fast reactor technology. It must be demonstrated that nuclear power technology is safe, resistant to material diversion for weapon use, and economical. An unbiased examination of all the issues related to energy use, especially of electricity, is an essential direction to take.

Walter, C E

1999-05-01T23:59:59.000Z

7

AN ADVANCED SODIUM-GRAPHITE REACTOR NUCLEAR POWER PLANT  

SciTech Connect

An advanced sodium-cooled, graphite-moderated nuclear power plant is described which utilizes high-pressure, high-temperature steam to generate electricity at a high thermal efficiency. Steam is generated at 2400 psig, superheated to 1050 deg F and, after partial expansion in the turbine, reheated to 1000 deg F. Net thermal efficiency of the plant is 42.3%. In a plant sized to produce a net electrical output of 256 Mw, the estimated cost is 8232/kw. Estimated cost of power generation is 6.7 mills/kwh. In a similar plant with a net electrical output of 530 Mw, the estimated power generating cost is 5.4 mills/ kwh. Most of the components of the plant are within the capability of current technology. The major exception is the fuel material, uranium carbide. Preliminary results of the development work now in progress indicate that uranium carbide would be an excellent fuel for high-temperature reactors, but temperature and burnup limitation have yet to be firmly established. Additional development work is also required on the steam generators. These are the single-barrier type similar to those which will be used in the Enrico Fernri Fast Breeder Reactor plant but produce steam at higher pressure and temperature. Questions also remain regarding the use of nitrogen as a cover gas over sodium at 1200 deg F and compatibility of the materials used in the primary neutron shield. All of these questions are currently under investigation. (auth)

Churchill, J.R.; Renard, J.

1960-03-15T23:59:59.000Z

8

Advanced Sensor Diagnostics in Nuclear Power Plant Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensor Diagnostics in Nuclear Power Plant Applications Sensor Diagnostics in Nuclear Power Plant Applications R.B. Vilim Argonne National Laboratory Sensor degradation occurs routinely during nuclear power plant operation and can contribute to reduced power production and less efficient plant operation. Mechanisms include drift of sensor electronics and mechanical components, fouling and erosion of flow meter orifice plates, and general degradation of thermocouples. One solution to this problem is the use of higher quality instrumentation and of physical redundancy. This, however, increases plant cost and does not address the degradation problem in a fundamental way. An alternative approach is to use signal processing algorithms to detect a degraded sensor and to construct a replacement value using an

9

Thermal-Fluid Characterizations of ZnO and SiC Nanofluids for Advanced Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Technical Paper / Special Issue on the 2008 International Congress on Advances in Nuclear Power Plants / Thermal Hydraulics

In Cheol Bang; Ji Hyun Kim

10

Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion  

DOE Green Energy (OSTI)

This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

Per F. Peterson

2010-03-01T23:59:59.000Z

11

Technical Guidance for Achieving Higher Levels of Electromagnetic Compatibility for Advanced Nuclear Power Plants  

Science Conference Proceedings (OSTI)

This report presents guidance for enhancing electromagnetic compatibility (EMC) for advanced nuclear power plants (NPPs). Included is a summary of EMC challenges facing these plants and the threats that utilities, equipment designers, and plant designers must be aware of. The following requested areas are covered: 1) programmatically addressing EMC through the development of an EMC protection system, 2) minimizing the use of exclusion zones through the demonstration of electromagnetic energy (EM) calcula...

2010-12-22T23:59:59.000Z

12

Proceedings of the 2006 international congress on advances in nuclear power plants - ICAPP'06  

SciTech Connect

Following the highly successful ICAPP'05 meeting held in Seoul Korea, the 2006 International Congress on Advances in Nuclear Power Plants brought together international experts of the nuclear industry involved in the operation, development, building, regulation and research related to Nuclear Power Plants. The program covers the full spectrum of Nuclear Power Plant issues from design, deployment and construction of plants to research and development of future designs and advanced systems. The program covers lessons learned from power, research and demonstration reactors from over 50 years of experience with operation and maintenance, structures, materials, technical specifications, human factors, system design and reliability. The program by technical track deals with: - 1. Water-Cooled Reactor Programs and Issues Evolutionary designs, innovative, passive, light and heavy water cooled reactors; issues related to meeting medium term utility needs; design and regulatory issues; business, political and economic challenges; infrastructure limitations and improved construction techniques including modularization. - 2. High Temperature Gas Cooled Reactors Design and development issues, components and materials, safety, reliability, economics, demonstration plants and environmental issues, fuel design and reliability, power conversion technology, hydrogen production and other industrial uses; advanced thermal and fast reactors. - 3. Long Term Reactor Programs and Strategies Reactor technology with enhanced fuel cycle features for improved resource utilization, waste characteristics, and power conversion capabilities. Potential reactor designs with longer development times such as, super critical water reactors, liquid metal reactors, gaseous and liquid fuel reactors, Gen IV, INPRO, EUR and other programs. - 4. Operation, Performance and Reliability Management Training, O and M costs, life cycle management, risk based maintenance, operational experiences, performance and reliability improvements, outage optimization, human factors, plant staffing, outage reduction features, major component reliability, repair and replacement, in-service inspection, and codes and standards. - 5. Plant Safety Assessment and Regulatory Issues Transient and accident performance including LOCA and non-LOCA, severe accident analysis, impact of risk informed changes, accident management, assessment and management of aging, degradation and damage, life extension lessons from plant operations, probabilistic safety assessment, plant safety analysis, reliability engineering, operating and future plants. - 6. Thermal Hydraulic Analysis and Testing Phenomena identification and ranking, computer code scaling applicability and uncertainty, containment thermal hydraulics, component and integral system tests, improved code development and qualification, single and two phase flow; advanced computational thermal hydraulic methods. - 7. Core and Fuel Cycle Concepts and Experiments Core physics, advances in computational reactor analysis, in-core fuel management, mixed-oxide fuel, thorium fuel cycle, low moderation cores, high conversion reactor designs, particle and pebble bed fuel design, testing and reliability; fuel cycle waste minimization, recycle, storage and disposal. - 8. Materials and Structural Issues Fuel, core, RPV and internals structures, advanced materials issues and fracture mechanics, concrete and steel containments, space structures, analysis, design and monitoring for seismic, dynamic and extreme accidents; irradiation issues and materials for new plants. - 9. Nuclear Energy and Sustainability including Hydrogen, Desalination and Other Applications Environmental impact of nuclear and alternative systems, spent fuel dispositions and transmutation systems, fully integrated fuel cycle and symbiotic nuclear power systems, application of advanced designs to non-power applications such as the production of hydrogen, sea water desalination, heating and other co-generation applications. - 10. Near Term Issues (New) Applies to plants that have a significa

NONE

2006-07-01T23:59:59.000Z

13

Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants  

SciTech Connect

This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant.

1992-06-01T23:59:59.000Z

14

Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who  

SciTech Connect

The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.

Forsberg, C.W.; Reich, W.J.

1991-09-01T23:59:59.000Z

15

Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who  

SciTech Connect

The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.

Forsberg, C.W.; Reich, W.J.

1991-09-01T23:59:59.000Z

16

Assessment of modular construction for safety-related structures at advanced nuclear power plants  

SciTech Connect

Modular construction techniques have been successfully used in a number of industries, both domestically and internationally. Recently, the use of structural modules has been proposed for advanced nuclear power plants. The objective in utilizing modular construction is to reduce the construction schedule, reduce construction costs, and improve the quality of construction. This report documents the results of a program which evaluated the proposed use of modular construction for safety-related structures in advanced nuclear power plant designs. The program included review of current modular construction technology, development of licensing review criteria for modular construction, and initial validation of currently available analytical techniques applied to concrete-filled steel structural modules. The program was conducted in three phases. The objective of the first phase was to identify the technical issues and the need for further study in order to support NRC licensing review activities. The two key findings were the need for supplementary review criteria to augment the Standard Review Plan and the need for verified design/analysis methodology for unique types of modules, such as the concrete-filled steel module. In the second phase of this program, Modular Construction Review Criteria were developed to provide guidance for licensing reviews. In the third phase, an analysis effort was conducted to determine if currently available finite element analysis techniques can be used to predict the response of concrete-filled steel modules.

Braverman, J.; Morante, R.; Hofmayer, C.

1997-03-01T23:59:59.000Z

17

University Program in Advanced Technology | National Nuclear...  

National Nuclear Security Administration (NNSA)

University Program in Advanced Technology | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

18

Programme A. Nuclear Power Subprogramme A.4 Technology Development for Advanced Reactor Lines  

E-Print Network (OSTI)

and the economic merits of centralized versus distributed production units. #12;Page 2 Programme B. Nuclear Fuel natural polymers. New marketable advanced materials (using, for example, the concept of nanomaterials

De Cindio, Fiorella

19

Nuclear fusion advances  

Science Conference Proceedings (OSTI)

The last decade has seen advances in the shaping and confinement of plasmas, and in approaches to noninductive current drive. Here, the author presents an overview of nuclear fusion advances between 1983-93 examining: fusion milestones; plasma shaping; ...

W. Sweet

1994-02-01T23:59:59.000Z

20

Energy Department Announces New Investments in Advanced Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Energy Department Announces New Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear...

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nuclear Power  

E-Print Network (OSTI)

The world of the twenty first century is an energy consuming society. Due to increasing population and living standards, each year the world requires more energy and new efficient systems for delivering it. Furthermore, the new systems must be inherently safe and environmentally benign. These realities of today's world are among the reasons that lead to serious interest in deploying nuclear power as a sustainable energy source. Today's nuclear reactors are safe and highly efficient energy systems that offer electricity and a multitude of co-generation energy products ranging from potable water to heat for industrial applications. The goal of the book is to show the current state-of-the-art in the covered technical areas as well as to demonstrate how general engineering principles and methods can be applied to nuclear power systems.

Tsvetkov, Pavel

2010-08-01T23:59:59.000Z

22

Advanced Technologies for Groundwater Monitoring and Remediation at Nuclear Power Plants  

Science Conference Proceedings (OSTI)

As part of the industry Groundwater Protection Initiative, EPRI has been investigating groundwater monitoring and remediation technologies that have potential for implementation at nuclear power plant sites. This report explores groundwater monitoring and remediation technologies under development or implemented at other industrial and U.S. Department of Energy sites, for both radionuclide and non-radionuclide contaminants. The report documents the potential for development of these technologies for impl...

2008-12-03T23:59:59.000Z

23

Nuclear power high technology colloquium: proceedings  

Science Conference Proceedings (OSTI)

Reports presenting information on technology advancements in the nuclear industry and nuclear power plant functions have been abstracted and are available on the energy data base.

Not Available

1984-12-10T23:59:59.000Z

24

Nuclear power and nuclear weapons  

SciTech Connect

The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described.

Vaughen, V.C.A.

1983-01-01T23:59:59.000Z

25

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

May 7, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear Power ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science, Nuclear ... This 'thermodynamic database for advanced nuclear fuels' was ...

26

Advanced Nuclear Reactors | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Nuclear Advanced Nuclear Reactors Advanced Nuclear Reactors Turbulent Flow of Coolant in an Advanced Nuclear Reactor Visualizing Coolant Flow in Sodium Reactor Subassemblies Sodium-cooled Fast Reactor (SFR) Coolant Flow At the heart of a nuclear power plant is the reactor. The fuel assembly is placed inside a reactor vessel where all the nuclear reactions occur to produce the heat and steam used for power generation. Nonetheless, an entire power plant consists of many other support components and key structures like coolant pipes; pumps and tanks including their surrounding steel framing; and concrete containment and support structures. The Reactors Product Line within NEAMS is concerned with modeling the reactor vessel as well as those components of a complete power plant that

27

ADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING  

E-Print Network (OSTI)

The components of a modern Advanced Boiling Water Reactor (ABWR) nuclear power plant are modeled in this thesis) is a single-cycle, forced circulation, light-water nuclear reactor designed by the General Electric Company better control of the nuclear reaction in the fuel core. 2.1 Modifications to the BWR [1] · The reactor

Mitchell, John E.

28

Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants  

SciTech Connect

OAK-B135 This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

Camillo A. DiNunzio Framatome ANP DE& S; Dr. Abhinav Gupta Assistant Professor NCSU; Dr. Michael Golay Professor MIT Dr. Vincent Luk Sandia National Laboratories; Rich Turk Westinghouse Electric Company Nuclear Systems; Charles Morrow, Sandia National Laboratories; Geum-Taek Jin, Korea Power Engineering Company Inc.

2002-11-30T23:59:59.000Z

29

Nuclear Fusion Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Nuclear fusion reactors, if they can be made to work, promise virtually unlimited power for the indefinite future. This is because the fuel, isotopes of hydrogen, are...

30

Nuclear Power and the Environment  

Reports and Publications (EIA)

This Nuclear Issue Paper discusses Nuclear Plant Wastes, Interactions of Fossil Fuel and Nuclear Power Waste Decisions, and the Environmental Position of Nuclear Power.

2013-05-30T23:59:59.000Z

31

NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEAMS: The Nuclear Energy Advanced NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program The Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program is developing a simulation tool kit using leading-edge computational methods that will accelerate the development and deployment of nuclear power technologies that employ enhanced safety and security features, produce power more cost-effectively, and utilize natural resources more efficiently. The NEAMS ToolKit

32

Materials for Nuclear Power: Digital Resource Center ...  

Science Conference Proceedings (OSTI)

Select, Sandbox, Open Discussion Regarding Materials for Nuclear Power ... Nuclear Power Background, Trends in Nuclear Power, The Nuclear Fuel Cycle ...

33

Advanced nuclear plant control complex  

DOE Patents (OSTI)

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

34

Advanced Reactor Development and Technology - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Nuclear Data Program Advanced Reactor Development Overview Advanced Fast Reactor...

35

Advancements in nuclear waste assay.  

E-Print Network (OSTI)

??The research described in this thesis is directed at advancing the state of the practice of the non-destructive gamma-ray assay of nuclear waste containers. A… (more)

Curtis, Deborah Claire

2008-01-01T23:59:59.000Z

36

NREL: Advanced Power Electronics - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Your name: Your email address: Your message: Send Message Printable Version Advanced Power Electronics Home About the Project Technology Basics Research & Development...

37

Advanced Nuclear Fuels  

Science Conference Proceedings (OSTI)

Oct 19, 2010 ... The United States Department of Energy has defined an approach to energy security that includes sustainable nuclear energy. To achieve ...

38

Evaluation of the applicability of existing nuclear power plant regulatory requirements in the U.S. to advanced small modular reactors.  

SciTech Connect

The current wave of small modular reactor (SMR) designs all have the goal of reducing the cost of management and operations. By optimizing the system, the goal is to make these power plants safer, cheaper to operate and maintain, and more secure. In particular, the reduction in plant staffing can result in significant cost savings. The introduction of advanced reactor designs and increased use of advanced automation technologies in existing nuclear power plants will likely change the roles, responsibilities, composition, and size of the crews required to control plant operations. Similarly, certain security staffing requirements for traditional operational nuclear power plants may not be appropriate or necessary for SMRs due to the simpler, safer and more automated design characteristics of SMRs. As a first step in a process to identify where regulatory requirements may be met with reduced staffing and therefore lower cost, this report identifies the regulatory requirements and associated guidance utilized in the licensing of existing reactors. The potential applicability of these regulations to advanced SMR designs is identified taking into account the unique features of these types of reactors.

LaChance, Jeffrey L.; Wheeler, Timothy A.; Farnum, Cathy Ottinger; Middleton, Bobby D.; Jordan, Sabina Erteza; Duran, Felicia Angelica; Baum, Gregory A.

2013-05-01T23:59:59.000Z

39

Climate Change, Nuclear Power and Nuclear  

E-Print Network (OSTI)

Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters Rob Goldston MIT IAP biomass wind hydro coal CCS coal nat gas CCS nat gas nuclear Gen IV nuclear Gen III nuclear Gen II 5-1 Electricity Generation: CCS and Nuclear Power Technology Options Available Global Electricity Generation WRE

40

COSTS OF NUCLEAR POWER  

SciTech Connect

The discussion on the costs of nuclear power from stationary plants, designed primarily for the generation of electricity. deals with those plants in operation, being built, or being designed for construction at an early date. An attempt is made to consider the power costs on the basis of consistent definitions and assumptions for the various nuclear plants and for comparable fossil-fuel plants. Information on several new power reactor projects is included. (auth)

1961-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Powering the Nuclear Navy | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

The National Nuclear Security Administration Powering the Nuclear Navy Home > Our Mission > Powering the Nuclear Navy Powering the Nuclear Navy The Naval Nuclear Propulsion Program...

42

Components for Advanced Power Conditioning Techniques  

Science Conference Proceedings (OSTI)

Symposium, Advanced Materials for Power Electronics, Power Conditioning, and Power Conversion ... Potential Ceramic Dielectrics for Air Force Applications.

43

Commercial nuclear power 1990  

Science Conference Proceedings (OSTI)

This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

Not Available

1990-09-28T23:59:59.000Z

44

ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report of Report of ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE 24 October 2003 BURTON RICHTER, CHAIR DARLEANE C. HOFFMAN SEKAZI K. MTINGWA RONALD P. OMBERG SILVIE PILLON JOY L. REMPE I. INTRODUCTION AND SUMMARY The committee met in Washington on September 16 and 17 to review progress in the program with respect to a changed set of mission priorities. Our last meeting took place in December 2002 after the reorganization that had placed the Advanced Fuel Cycle Initiative (AFCI) and the GEN IV program together in the Advanced Nuclear Research Office (AN-20). Since mission priorities have been evolving, the committee felt that it should wait until they have settled down before we met again. We have kept in touch

45

Solar and wind power advancing  

U.S. Energy Information Administration (EIA) Indexed Site

Solar and wind power advancing U.S. electricity generation from wind and solar energy show no signs of slowing down. In its new monthly forecast, the U.S. Energy Information...

46

NUCLEAR POWER PLANT  

DOE Patents (OSTI)

A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

1963-05-14T23:59:59.000Z

47

University Program in Advanced Technology | National Nuclear Security  

National Nuclear Security Administration (NNSA)

University Program in Advanced Technology | National Nuclear Security University Program in Advanced Technology | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog University Program in Advanced Technology Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

48

Advanced Solar Power ASP | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Advanced Solar Power ASP Jump to: navigation, search Name Advanced Solar Power (ASP) Place Israel...

49

Advanced Pipe Replacement Procedure for a Defective CRDM Housing Nozzle Enables Continued Normal Operation of a Nuclear Power Plant  

SciTech Connect

During the 2003 outage at the Ringhals Nuclear Plant in Sweden, a leak was found in the vicinity of a Control Rod Drive Mechanism (CRDM) housing nozzle at Unit 1. Based on the ALARA principle for radioactive contamination, a unique repair process was developed. The repair system includes utilization of custom, remotely controlled GTAW-robots, a CNC cutting and finishing machine, snake-arm robots and NDE equipment. The success of the repair solution was based on performing the machining and welding operations from the inside of the SCRAM pipe through the CRDM housing since accessibility from the outside was extremely limited. Before the actual pipe replacement procedure was performed, comprehensive training programs were conducted. Training was followed by certification of equipment, staff and procedures during qualification tests in a full scale mock-up of the housing nozzle. Due to the ingenuity of the overall repair solution and training programs, the actual pipe replacement procedure was completed in less than half the anticipated time. As a result of the successful pipe replacement, the nuclear power plant was returned to normal operation. (authors)

Gilmore, Geoff; Becker, Andrew [Climax Portable Machine Tools, Inc., 2712 East Second Street, Newberg, OR 97132 (United States)

2006-07-01T23:59:59.000Z

50

March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The Global Nuclear Energy Partnership (GNEP) marks a major change in the direction of the DOE's nuclear energy R&D program. It is a coherent plan to test technologies that promise to markedly reduce the problem of nuclear waste treatment and to reduce the proliferation risk in a world with a greatly expanded nuclear power program. It brings the U.S. program into much closer alignment with that of the other major nuclear energy states. GNEP proposes to take spent fuel from existing light water reactors (LWRs),

51

Nuclear Power - Deployment, Operation and Sustainability  

E-Print Network (OSTI)

We are fortunate to live in incredibly exciting and incredibly challenging time. Energy demands due to economic growth and increasing population must be satisfied in a sustainable manner assuring inherent safety, efficiency and no or minimized environmental impact. These considerations are among the reasons that lead to serious interest in deploying nuclear power as a sustainable energy source. At the same time, catastrophic earthquake and tsunami events in Japan resulted in the nuclear accident that forced us to rethink our approach to nuclear safety, design requirements and facilitated growing interests in advanced nuclear energy systems. This book is one in a series of books on nuclear power published by InTech. It consists of six major sections housing twenty chapters on topics from the key subject areas pertinent to successful development, deployment and operation of nuclear power systems worldwide. The book targets everyone as its potential readership groups - students, researchers and practitioners - who are interested to learn about nuclear power.

Tsvetkov, Pavel

2011-09-01T23:59:59.000Z

52

The future of nuclear power  

SciTech Connect

Present conditions and future prospects for the nuclear power industry in the United States are discussed. The presentation includes a review of trends in electrical production, the safety of coal as compared to nuclear generating plants, the dangers of radiation, the economics of nuclear power, the high cost of nuclear power in the United States, and the public fear of nuclear power. 20 refs. (DWL)

Zeile, H.J.

1987-01-01T23:59:59.000Z

53

Georgia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

54

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

55

Iowa Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

56

Ohio Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

57

Vermont Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

58

Florida Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

59

Virginia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

60

Missouri Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Nebraska Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

62

Tennessee Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

63

Minnesota Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

64

Arizona Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

65

Massachusetts Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

66

Kansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

67

Alabama Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

68

Wisconsin Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

69

Texas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

70

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

71

Fuel availability in nuclear power.  

E-Print Network (OSTI)

?? Nuclear power is in focus of attention due to several factors these days and the expression “nuclear renaissance” is getting well known. However, concerned… (more)

Söderlund, Karl

2009-01-01T23:59:59.000Z

72

NETL: Turbine Projects - Advanced Coal Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Coal Power Systems Turbine Projects Advanced Coal Power Systems SOFC Hybrid System for Distributed Power Generation DataFact Sheets SOFC Hybrid System PDF In-House FCT...

73

Advanced nuclear reactor public opinion project  

SciTech Connect

This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

Benson, B.

1991-07-25T23:59:59.000Z

74

Research of IPE Solution Applied to EPR Nuclear Power Project  

Science Conference Proceedings (OSTI)

A nuclear power company is currently in the process of constructing the advanced 3rd generation of EPR Nuclear Power Plant, and its corresponding information system is an overall integrated information management system based on the new concept design. ... Keywords: digital nuclear power plant, IPE solutions, comprehensive application

Daqiao Wang; Fangneng Hu; Yi Luo; Yi Ma

2012-07-01T23:59:59.000Z

75

Nuclear power and nuclear-weapons proliferation  

SciTech Connect

The danger that fissile isotopes may be diverted from nuclear power production to the construction of nuclear weapons would be aggravated by a switch to the plutonium breeder: but future uranium supplies are uncertain.

Moniz, E.J.; Neff, T.L.

1978-04-01T23:59:59.000Z

76

Maryland Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant Unit 1, Unit 2","1,705","13,994",100.0,"Calvert Cliffs Nuclear PP Inc" "1 Plant 2...

77

Nuclear Power Advisory Meeting  

Science Conference Proceedings (OSTI)

This document combines the material previously included in the Instrumentation and Control (I&C) Briefing Book for the Nuclear Power Advisory Meeting (Electric Power Research Institute report 1023444) with the annual I&C Research Plan, replacing the latter document. This document contains key information on the I&C program and its projects, including: 1. A program executive summarya high-level document on the key activities of the I&C base program as well as its three supplemental groups 2. A consolidate...

2012-01-19T23:59:59.000Z

78

NUCLEAR BATTERY POWERED TIMERS  

SciTech Connect

During the period from May 1957 to July 1958, four nuclear batiery powered timers were fabricated and tested from two basic designs in the time ranges of onesecond, three-second, annd half-hour intervals. The timers were temperature-tested over a range of -65 to +165 F with accuracics over this temperature range from plus or minus 10 perceat to plus or minus 15 percent. Each unit has a volume of 10 cubic inches, and the timer can be initiated either by an explosive squib or a pull-out wire. At the end of the timing interval, the timer has ann output of 30,000 ergs. The cost of the program was ,000. From the results of this development program, it appears quite feasible to build operable nuclear battery powered timers on a production basis. (auth)

DesJardin, R.L.

1958-09-19T23:59:59.000Z

79

Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station  

U.S. Energy Information Administration (EIA) Indexed Site

Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License...

80

Resergence of U.S. Nuclear Power  

SciTech Connect

Over the past quarter century, things have not gone well for the nuclear industry. First came the Three Mile Island accident in America in 1979, then the disaster at the Chernobyl plant in Ukraine in 1986. In Japan, Tokyo Electric Power, the world's largest private electricity company, shut its 17 nuclear reactors after it was caught falsifying safety records to hide cracks at some of its plants in 2002. In addition, the attacks on September 11, 2001 were a sharp reminder that the risks of nuclear power generation were not only those inherent in the technology. But lately, prospects have brightened for the nuclear industry. Nuclear power is an important source of electricity in many countries. In 2003, 19 countries depended on nuclear power for at least 20 percent of their electricity generation. As of March 2005, there were 441 nuclear power reactors in operation around the world, and another 25 were under construction. Five new nuclear power plants began operation in 2004 - one each in China, Japan, and Russia and two in Ukraine. In addition, Canada?s Bruce 3 reactor was reconnected to the grid. Five nuclear power plants were permanently shut down in 2004 - one in Lithuania and four in the United Kingdom. Nuclear power is expected to see a revival in the next decade given the availability of uranium and the prospect of emission-free power generation, Also, with conventional energy sources such as oil and gas likely to see severe depletion over the next 30 years, the price of conventional power generation is set to rise significantly, which would put nuclear power generation in focus again. The report provides an overview of the opportunities for nuclear power in the U.S. electric industry and gives a concise look at the challenges faced by nuclear power, the ability of advanced nuclear reactors to address these challenges, and the current state of nuclear power generation. Topics covered in the report include: an overview of U.S. Nuclear Power including its history, the current market environment, and the future of nuclear power in the U.S.; an analysis of the key business factors that are driving renewed interest in nuclear power; an analysis of the barriers that are hindering the implementation of new nuclear power plants; a description of nuclear power technology including existing reactors, as well as 3rd and 4th generation reactor designs; a review of the economics of new nuclear power projects and comparison to other generation alternatives; a discussion of the key government initiatives supporting nuclear power development; profiles of the key reactor manufacturers participating in the U.S. nuclear power market; and, profiles of the leading U.S. utilities participating in the U.S. nuclear power market.

none

2006-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Illinois Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois nuclear power plants, summer capacity and net generation, 2010" Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Braidwood Generation Station Unit 1, Unit 2","2,330","19,200",20.0,"Exelon Nuclear" "Byron Generating Station Unit 1, Unit 2","2,300","19,856",20.6,"Exelon Nuclear" "Clinton Power Station Unit 1","1,065","8,612",9.0,"Exelon Nuclear" "Dresden Generating Station Unit 2, Unit 3","1,734","14,593",15.2,"Exelon Nuclear" "LaSalle Generating Station

82

Structural Materials in Advanced Nuclear Energy Systems  

Science Conference Proceedings (OSTI)

Apr 28, 2008 ... Structural Materials in Advanced Nuclear Energy Systems: The Need for ... of functionalized interfaces for optimization of materials properties.

83

HOMOGENEOUS NUCLEAR POWER REACTOR  

DOE Patents (OSTI)

A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

King, L.D.P.

1959-09-01T23:59:59.000Z

84

Louisiana Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

85

Nuclear power systems for Lunar and Mars exploration  

SciTech Connect

Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems - whether solar, chemical or nuclear - to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems were identified as critical needs for these missions. This paper discusses these mission scenarios, the concomitant power system requirements; the power system options considered and identifies the significant potential benefits of nuclear power for meeting the power needs of the above applications.

Sovie, R.J.; Bozek, J.M.

1994-09-01T23:59:59.000Z

86

Nuclear Power - Operation, Safety and Environment  

E-Print Network (OSTI)

Today's nuclear reactors are safe and highly efficient energy systems that offer electricity and a multitude of co-generation energy products ranging from potable water to heat for industrial applications. At the same time, catastrophic earthquake and tsunami events in Japan resulted in the nuclear accident that forced us to rethink our approach to nuclear safety, design requirements and facilitated growing interests in advanced nuclear energy systems, next generation nuclear reactors, which are inherently capable to withstand natural disasters and avoid catastrophic consequences without any environmental impact. This book is one in a series of books on nuclear power published by InTech. Under the single-volume cover, we put together such topics as operation, safety, environment and radiation effects. The book is not offering a comprehensive coverage of the material in each area. Instead, selected themes are highlighted by authors of individual chapters representing contemporary interests worldwide. With all diversity of topics in 16 chapters, the integrated system analysis approach of nuclear power operation, safety and environment is the common thread. The goal of the book is to bring nuclear power to our readers as one of the promising energy sources that has a unique potential to meet energy demands with minimized environmental impact, near-zero carbon footprint, and competitive economics via robust potential applications. The book targets everyone as its potential readership groups - students, researchers and practitioners - who are interested to learn about nuclear power.

Tsvetkov, Pavel

2011-09-01T23:59:59.000Z

87

Washington Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

88

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

89

California Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

90

Mississippi Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

91

Program on Technology Innovation: Nuclear Power Generation Technologies  

Science Conference Proceedings (OSTI)

The United States and other countries are currently planning to expand their nuclear power electrical generation base in order to provide energy security and price stability while reducing greenhouse gas emissions. Since the existing fleet of nuclear plants was built during or before the 1970s, new plants will incorporate more advanced designs. This report documents the current status and potential for advanced nuclear power technology development and/or commercialization over the next 5 to 15 years.

2007-06-20T23:59:59.000Z

92

Advanced Nuclear Medicine Initiative Owen Lowe  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Isotopes for Life Isotopes for Life Isotopes for Life Advanced Nuclear Medicine Initiative Owen Lowe Office of Isotopes for Medicine and Science Office of Nuclear Energy, Science and Technology October 1, 2002 Isotopes for Life Isotopes for Life Isotopes for Life Office of Nuclear Energy, Science and Technology Lowe/Oct01_02 ANMI to NERAC.ppt (2) Advanced Nuclear Medicine Initiative Advanced Nuclear Medicine Initiative 6 Sponsor nuclear medical science research using a peer-review selection process * 9 three-year research grants awarded 6 Sponsor the training of individuals in nuclear medical science * 5 three-year education grants awarded 6 Continue research and education programs to completion; however, no additional funds for new grants is in the FY 2003 budget Isotopes for Life Isotopes for Life

93

The Decline and Death of Nuclear Power  

E-Print Network (OSTI)

measures founder and a nuclear reactor does fail, theafter that, the first nuclear reactor, Chicago Pile-1, wentword “nuclear” can be. Nuclear reactors in power plants are

Melville, Jonathan

2013-01-01T23:59:59.000Z

94

Presented by Collaboration for Advanced Nuclear  

E-Print Network (OSTI)

Presented by Collaboration for Advanced Nuclear Simulation: Predictive Reactor Simulation for GNEP Kevin Clarno Reactor Analysis, NST Nuclear Science and Technology Division #12;2 Clarno_GNEP_SC07 Many operating nuclear reactors worldwide 2 Clarno_GNEP_SC07 Immediate response to global warming Designs static

95

Advances in metallic nuclear fuel  

Science Conference Proceedings (OSTI)

Metallic nuclear fuels have generated renewed interest for advanced liquid metal reactors (LMRs) due to their physical properties, ease of fabrication, irradiation behavior, and simple reprocessing. Irradiation performance for both steady-state and transient operations is excellent. Ongoing irradiation tests in Argonne-West's Idaho-based Experimental Breeder Reactor II (EBR-II) have surpassed 100,000 MWd/T burnup and are on their way to a lifetime burnup of 150,000 MWd/T or greater. Metallic fuel also has a unique neutronic characteristic that enables benign reactor responses to loss-of-flow without scram and loss-of-heat-sink without scram accident conditions. This inherent safety potential of metallic fuel was demonstrated in EBR-II just one year ago. Safety tests performed in the reactor have also demonstrated that there is ample margin to fuel element cladding failure under transient overpower conditions. These metallic fuel attributes are key ingredients of the integral fast reactor (IFR) concept being developed at Argonne National Laboratory.

Seidel, B.R.; Walters, L.C.; Chang, Y.I.

1987-04-01T23:59:59.000Z

96

Workshop on nuclear power growth and nonproliferation  

Science Conference Proceedings (OSTI)

It is widely viewed that an expansion of nuclear power would have positive energy, economic and environmental benefits for the world. However, there are concerns about the economic competitiveness, safety and proliferation and terrorism risks of nuclear power. The prospects for a dramatic growth in nuclear power will depend on the ability of governments and industry to address these concerns, including the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen nonproliferation, nuclear materials accountability and nuclear security. In his Prague speech, President Obama stated: 'we should build a new framework for civil nuclear cooperation, including an international fuel bank, so that countries can access peaceful power without increasing the risks of proliferation. That must be the right of every nation that renounces nuclear weapons, especially developing countries embarking on peaceful programs. And no approach will succeed if it's based on the denial of rights to nations that play by the rules. We must harness the power of nuclear energy on behalf of our efforts to combat climate change, and to advance peace opportunity for all people.' How can the President's vision, which will rekindle a vigorous public debate over the future of nuclear power and its relation to proliferation, be realized? What critical issues will frame the reemerging debate? What policies must be put into place to address these issues? Will US policy be marked more by continuity or change? To address these and other questions, the Los Alamos National Laboratory in cooperation with the Woodrow Wilson International Center for Scholars will host a workshop on the future of nuclear power and nonproliferation.

Pilat, Joseph F [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

97

NREL: Advanced Power Electronics - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications The National Renewable Energy Laboratory and its partners have produced many papers and presentations related to the Advanced Power Electronics project. For more information about the following documents, contact Sreekant Narumanchi. Software Spray System Evaluation (Software 1.1 MB) Papers 2013 Steady and Unsteady Air Impingement Heat Transfer for Electronics Cooling Applications Paper Source: Arik, M.; Sharma, R.; Lustbader, J.; He, X. (2013). Article No. 111009. Journal of Heat Transfer. Vol. 135(11), November 2013; 8 pp.; NREL Report No. JA-5400-56618. http://dx.doi.org/10.1115/1.4024614 Pool Boiling Heat Transfer Characteristics of HFO-1234yf on Plain and Microporous-Enhanced Surfaces Paper Source: Moreno, G.; Narumanchi, S.; King, C. (2013). Article No. 111014.

98

Competitive economics of nuclear power  

Science Conference Proceedings (OSTI)

Some 12 components of a valid study of the competitive economics of a newly ordered nuclear power plant are identified and explicated. These are then used to adjust the original cost projections of four authoritative studies of nuclear and coal power economics.

Hellman, R.

1981-03-02T23:59:59.000Z

99

Nuclear power plant design analysis  

SciTech Connect

Information concerning the engineering aspects of the design of commercial nuclear power plants is presented. Topics discussed include: electric utility economics; nuclear plant cconomics; thermal-transport systems and core design; nuclear analysis methods; safcty requirements; fuel-system analysis; dcsign considerations; and optimization approaches. (DCC)

Sesonske, A.

1973-01-01T23:59:59.000Z

100

Advanced nuclear plant control room complex  

DOE Patents (OSTI)

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NREL: Advanced Power Electronics - Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Development Research and Development The Advanced Power Electronics activity focuses on the electric drive system for hybrid electric and fuel cell vehicles. At NREL, we research and develop electronic components and systems that will overcome major technical barriers to commercialization of hybrid, advanced internal combustion, and fuel cell vehicle technologies. Researchers focus on developing advanced power electronics and electric machinery technologies that improve reliability, efficiency, and ruggedness, and dramatically decrease systems costs for advanced vehicles. To accomplish this, the power electronics team investigates cooling and heating of advanced vehicles by looking at the thermal management of motor controllers, inverters, and traction motors with one- and two-phase cooling

102

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop...

103

Advanced nonlinear control of complex power systems.  

E-Print Network (OSTI)

??Nowadays, advanced controller design is called upon to guarantee the secure and reliable operation of power systems. To meet this requirement, this work proposed three… (more)

Li, Hong Yin.

2008-01-01T23:59:59.000Z

104

Nuclear Power - System Simulations and Operation  

E-Print Network (OSTI)

At the onset of the 21st century, we are searching for reliable and sustainable energy sources that have a potential to support growing economies developing at accelerated growth rates, technology advances improving quality of life and becoming available to larger and larger populations. The quest for robust sustainable energy supplies meeting the above constraints leads us to the nuclear power technology. Today's nuclear reactors are safe and highly efficient energy systems that offer electricity and a multitude of co-generation energy products ranging from potable water to heat for industrial applications. Catastrophic earthquake and tsunami events in Japan resulted in the nuclear accident that forced us to rethink our approach to nuclear safety, requirements and facilitated growing interests in designs, which can withstand natural disasters and avoid catastrophic consequences. This book is one in a series of books on nuclear power published by InTech. It consists of ten chapters on system simulations and operational aspects. Our book does not aim at a complete coverage or a broad range. Instead, the included chapters shine light at existing challenges, solutions and approaches. Authors hope to share ideas and findings so that new ideas and directions can potentially be developed focusing on operational characteristics of nuclear power plants. The consistent thread throughout all chapters is the system-thinking approach synthesizing provided information and ideas. The book targets everyone with interests in system simulations and nuclear power operational aspects as its potential readership groups - students, researchers and practitioners.

Tsvetkov, Pavel

2011-09-01T23:59:59.000Z

105

Advanced Nuclear Technology: Embedded Sensors in Concrete  

Science Conference Proceedings (OSTI)

One of the greatest hindrances to concrete inspection in nuclear power plants is the lack of accessibility to many concrete structures. This report aims to address the use of embedded sensors in future power plants to allow for inspection of inaccessible structures and to facilitate continuous monitoring of the critical concrete structures of the power plants. Monitoring these structures using embedded sensors is especially important because many large concrete structures in nuclear power plants are not ...

2011-11-30T23:59:59.000Z

106

Advanced Accessory Power Supply Topologies  

SciTech Connect

This Cooperative Research and Development Agreement (CRADA) began December 8, 2000 and ended September 30, 2009. The total funding provided by the Participant (General Motors Advanced Technology Vehicles [GM]) during the course of the CRADA totaled $1.2M enabling the Contractor (UT-Battelle, LLC [Oak Ridge National Laboratory, a.k.a. ORNL]) to contribute significantly to the joint project. The initial task was to work with GM on the feasibility of developing their conceptual approach of modifying major components of the existing traction inverter/drive to develop low cost, robust, accessory power. Two alternate methods for implementation were suggested by ORNL and both were proven successful through simulations and then extensive testing of prototypes designed and fabricated during the project. This validated the GM overall concept. Moreover, three joint U.S. patents were issued and subsequently licensed by GM. After successfully fulfilling the initial objective, the direction and duration of the CRADA was modified and GM provided funding for two additional tasks. The first new task was to provide the basic development for implementing a cascaded inverter technology into hybrid vehicles (including plug-in hybrid, fuel cell, and electric). The second new task was to continue the basic development for implementing inverter and converter topologies and new technology assessments for hybrid vehicle applications. Additionally, this task was to address the use of high temperature components in drive systems. Under this CRADA, ORNL conducted further research based on GM’s idea of using the motor magnetic core and windings to produce bidirectional accessory power supply that is nongalvanically coupled to the terminals of the high voltage dc-link battery of hybrid vehicles. In order not to interfere with the motor’s torque, ORNL suggested to use the zero-sequence, highfrequency harmonics carried by the main fundamental motor current for producing the accessory power. Two studies were conducted at ORNL. One was to put an additional winding in the motor slots to magnetically link with the high frequency of the controllable zero-sequence stator currents that do not produce any zero-sequence harmonic torques. The second approach was to utilize the corners of the square stator punching for the high-frequency transformers of the dc/dc inverter. Both approaches were successful. This CRADA validated the feasibility of GM’s desire to use the motor’s magnetic core and windings to produce bidirectional accessory power supply. Three joint U.S. patents with GM were issued to ORNL and GM by the U.S. Patent Office for the research results produced by this CRADA.

Marlino, L.D.

2010-06-15T23:59:59.000Z

107

Nuclear Power - Control, Reliability and Human Factors  

E-Print Network (OSTI)

Advances in reactor designs, materials and human-machine interfaces guarantee safety and reliability of emerging reactor technologies, eliminating possibilities for high-consequence human errors as those which have occurred in the past. New instrumentation and control technologies based in digital systems, novel sensors and measurement approaches facilitate safety, reliability and economic competitiveness of nuclear power options. Autonomous operation scenarios are becoming increasingly popular to consider for small modular systems. This book belongs to a series of books on nuclear power published by InTech. It consists of four major sections and contains twenty-one chapters on topics from key subject areas pertinent to instrumentation and control, operation reliability, system aging and human-machine interfaces. The book targets a broad potential readership group - students, researchers and specialists in the field - who are interested in learning about nuclear power.

Tsvetkov, Pavel

2011-09-01T23:59:59.000Z

108

Pennsylvania Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania nuclear power plants, summer capacity and net generation, 2010" Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Beaver Valley Unit 1, Unit 2","1,777","14,994",19.3,"FirstEnergy Nuclear Operating Company" "Limerick Unit 1, Unit 2","2,264","18,926",24.3,"Exelon Nuclear" "PPL Susquehanna Unit 1, Unit 2","2,450","18,516",23.8,"PPL Susquehanna LLC" "Peach Bottom Unit 2, Unit 3","2,244","18,759",24.1,"Exelon Nuclear" "Three Mile Island Unit 1",805,"6,634",8.5,"Exelon Nuclear"

109

The Decline and Death of Nuclear Power  

E-Print Network (OSTI)

since the Cold War, nuclear power plants are being plannedthe fuel used in nuclear power plants is almost completelya mere 43% believe that more nuclear power plants should be

Melville, Jonathan

2013-01-01T23:59:59.000Z

110

Nuclear power. Volume 2: nuclear power project management  

Science Conference Proceedings (OSTI)

The following topics are discussed: review of nuclear power plants; licensing procedures; safety analysis; project professional services; quality assurance and project organization; construction, scheduling and operation; construction, scheduling and operation; nuclear fuel handling and fuel management; and plant cost management. 116 references, 115 figures, 33 tables.

Not Available

1980-01-01T23:59:59.000Z

111

Mapping complexity sources in nuclear power plant domains  

E-Print Network (OSTI)

Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their effects on human reliability is critical for ensuring safe performance of both operators and the entire system. New ...

Sasangohar, Farzan

112

The Decline and Death of Nuclear Power  

E-Print Network (OSTI)

world-nuclear.org/info/Nuclear-Fuel-Cycle/Nuclear- Wastes/fuel sources; the fuel used in nuclear power plants isphase out both nuclear energy and fossil fuels at the same

Melville, Jonathan

2013-01-01T23:59:59.000Z

113

The Decline and Death of Nuclear Power  

E-Print Network (OSTI)

Y. , & Kitazawa, K. (2012). Fukushima in review: A complexin new nuclear power stations after Fukushima. The Guardian.nuclear-power- stations-fukushima Hvistendahl, M. (2007,

Melville, Jonathan

2013-01-01T23:59:59.000Z

114

Energy Department Nuclear Systems Are Powering Mars Rover | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Nuclear Systems Are Powering Mars Rover Energy Department Nuclear Systems Are Powering Mars Rover Energy Department Nuclear Systems Are Powering Mars Rover November 28, 2011 - 2:00pm Addthis The Mars Science Laboratory rover, which launched from Cape Canaveral this weekend, is powered by nuclear systems developed by the U.S. Department of Energy (DOE), marking the 28th space mission supported by nuclear energy. This year also marks the 50th anniversary of nuclear-powered space exploration. To commemorate the launch, DOE released a new video highlighting this legacy and the Department's work designing these advanced systems. "For the last 50 years, this technology has supported the peaceful use of nuclear power for space exploration, helping to shape the world's understanding of our solar system," said U.S. Energy Secretary Steven

115

Energy Department Nuclear Systems Are Powering Mars Rover | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department Nuclear Systems Are Powering Mars Rover Department Nuclear Systems Are Powering Mars Rover Energy Department Nuclear Systems Are Powering Mars Rover November 28, 2011 - 12:14pm Addthis Washington, D.C. - The Mars Science Laboratory rover, which launched from Cape Canaveral this weekend, is powered by nuclear systems developed by the U.S. Department of Energy (DOE), marking the 28th space mission supported by nuclear energy. This year also marks the 50th anniversary of nuclear-powered space exploration. To commemorate the launch, DOE released a new video highlighting this legacy and the Department's work designing these advanced systems. "For the last 50 years, this technology has supported the peaceful use of nuclear power for space exploration, helping to shape the world's understanding of our solar system," said U.S. Energy Secretary Steven

116

Owners of nuclear power plants  

Science Conference Proceedings (OSTI)

Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

Hudson, C.R.; White, V.S.

1996-11-01T23:59:59.000Z

117

DOE Issues Landmark Rule for Risk Insurance for Advanced Nuclear Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landmark Rule for Risk Insurance for Advanced Nuclear Landmark Rule for Risk Insurance for Advanced Nuclear Facilities DOE Issues Landmark Rule for Risk Insurance for Advanced Nuclear Facilities May 8, 2006 - 10:36am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) issued on Saturday, the interim final rule required by the Energy Policy Act of 2005 (EPACT) for risk insurance to facilitate construction of new advanced nuclear power facilities. The rule establishes the requirements for risk insurance to cover costs associated with certain regulatory or litigation-related delays in the start-up of new nuclear power plants. The resurgence of nuclear power is a key component of President Bush's Advanced Energy Initiative. The Standby Support provisions of EPACT (section 638), also referred to as federal risk insurance, authorize the Secretary of Energy to enter into

118

Applicability of trends in nuclear safety analysis to space nuclear power systems  

SciTech Connect

A survey is presented of some current trends in nuclear safety analysis that may be relevant to space nuclear power systems. This includes: lessons learned from operating power reactor safety and licensing; approaches to the safety design of advanced and novel reactors and facilities; the roles of risk assessment, extremely unlikely accidents, safety goals/targets; and risk-benefit analysis and communication.

Bari, R.A.

1992-10-01T23:59:59.000Z

119

Advanced Nuclear Reactors | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

in Sodium Reactor Subassemblies Sodium-cooled Fast Reactor (SFR) Coolant Flow At the heart of a nuclear power plant is the reactor. The fuel assembly is placed inside a reactor...

120

Decommissioning in the mature nuclear power industry  

SciTech Connect

Procedures for decommissioning a nuclear power plant or a spent fuel reprocessing plant are described. (DCC)

Anderson, F.H.; Slansky, C.M.

1975-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The Decline and Death of Nuclear Power  

E-Print Network (OSTI)

9. The Economist (2012). Nuclear power: The 30-year itch.Germany and France, the anti-nuclear movement has taken suchtime since the Cold War, nuclear power plants are being

Melville, Jonathan

2013-01-01T23:59:59.000Z

122

Nuclear power to the Pacific  

SciTech Connect

The nuclear power industry is increasingly being pressured to export reactors to the Third World. The experiences of the five ASEAN (Association of Southeast Asian Nations) are recounted. To date, only the Philippine Republic has formally committed itself to a nuclear generator. The Republic lacks oil and has only limited hydroelectric potential. Its geothermal energy program is being accelerated. It appears Indonesia will be the next ASEAN country ''to go nuclear'', hoping to have a nuclear plant on-line in 1985. The island of Singapore has been voicing a desire for a nuclear power plant, but the country does not have space for a plant. The possibility of a floating station has been mentioned, but the World Bank does not finance unproved projects. Singapore could obtain an island from Indonesia or share a plant with Malaysia if a plant were built on the mainland of the Malay peninsula. The Thai Energy Generating Authority (EGAT) is preparing ''to go nuclear'' with the emergence of a stable coalition rule in Bangkok; the financial restrictions are discussed. Thailand is diligently searching for its own oil and gas. The article closes by projecting the problem that could arise with IAEA having only 40 inspectors who are charged with monitoring nuclear power plants all over the world. The authors point out that the industrial countries themselves have proved wholly incapable of monitoring their own systems. (MCW)

Wasserman, H.; Wainer, A.

1976-11-01T23:59:59.000Z

123

Nuclear Power Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Onofre Nuclear Generating Station Onofre Nuclear Generating Station San Onofre Nuclear Generating Station Bob Ashe-Everest Southern California Edison 10 Incoming New Fuel Inspecting New Fuel SONGS Unit 1 Fuel Storage SONGS Unit 1 Fuel Storage History History u Shipped 270 Fuel Assemblies (F/A) from Unit 1 to Morris, Illinois. u Transshipped 70 U1 F/As to U2 spent fuel pool (SFP). u Transshipped 118 U1 F/As to U3 SFP. SONGS ISFSI Loading SONGS ISFSI Loading u Moved 5 dry shielded canisters (DSC) from U3 SFP to the Independent Spent Fuel Storage Installation (ISFSI). Each DSC contains up to 24 F/As. u Moved 9 DSCs from U1 SFP to the ISFSI. u At total of 325 U1 F/As have been moved into dry storage to date. u Scheduled to move 3 DSCs from U2 SFP to the ISFSI May 2005. Canister into Cask FA being loaded into canister

124

Conference on Advances in Materials Science | National Nuclear...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

125

Advanced research workshop: nuclear materials safety  

SciTech Connect

The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of nuclear experience on a common objectiveÑthe safe and secure storage and disposition of excess fissile nuclear materials.

Jardine, L J; Moshkov, M M

1999-01-28T23:59:59.000Z

126

Advance Power Co | Open Energy Information  

Open Energy Info (EERE)

Advance Power Co Advance Power Co Jump to: navigation, search Name Advance Power Co Place Calpella, California Zip 95418 Sector Hydro, Solar, Wind energy Product Distributor of stand alone and backup power systems based on solar, hydro, wind and fuel cell energy. Coordinates 39.23423°, -123.205162° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.23423,"lon":-123.205162,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Siemens Nuclear Power GmbH AREVA Nuclear Power | Open Energy...  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Siemens Nuclear Power GmbH AREVA Nuclear Power Jump to: navigation, search Name Siemens Nuclear Power...

128

THE ECONOMICS OF NUCLEAR POWER  

SciTech Connect

Economic aspects of nuclear power development in the U. S. are tabulated and graphed. Included are figures on presently operating reactors as well as those contemplated or scheduled. Also a brief description of the objectives of short- and long-range programs is given as well as tables listing some of the characteristics of each reactor. (J.R.D.)

Lane, J.A.

1959-04-27T23:59:59.000Z

129

Shielding considerations for advanced space nuclear reactor systems  

SciTech Connect

To meet the anticipated future space power needs, the Los Alamos National Laboratory is developing components for a compact, 100 kW/sub e/-class heat pipe nuclear reactor. The reactor uses uranium dioxide (UO/sub 2/) as its fuel, and is designed to operate around 1500 k. Heat pipes are used to remove thermal energy from the core without the use of pumps or compressors. The reactor heat pipes transfer mal energy to thermoelectric conversion elements that are advanced versions of the converters used on the enormously successful Voyager missions to the outer planets. Advanced versions of this heat pipe reactor could also be used to provide megawatt-level power plants. The paper reviews the status of this advanced heat pipe reactor and explores the radiation environments and shielding requirements for representative manned and unmanned applications.

Angelo, J.P. Jr.; Buden, D.

1982-01-01T23:59:59.000Z

130

North Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

131

New Hampshire Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net...

132

New Jersey Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

133

Materials for Nuclear Power: Digital Resource Center ...  

Science Conference Proceedings (OSTI)

Agency regulating commercial nuclear power plants and other uses of nuclear materials, 0, 720, Lynne Robinson, 6/25/2007 9:29 AM by Lynne Robinson.

134

ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS  

SciTech Connect

Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) for construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management, and proliferation), the worldwide community is working to develop and deploy new nuclear energy systems and advanced fuel cycles. These new nuclear systems address the key challenges and include: (1) extracting the full energy value of the nuclear fuel; (2) creating waste solutions with improved long term safety; (3) minimizing the potential for the misuse of the technology and materials for weapons; (4) continually improving the safety of nuclear energy systems; and (5) keeping the cost of energy affordable.

Marra, J.

2010-09-29T23:59:59.000Z

135

Advanced Nuclear Fuel | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-based Technologies Advanced Nuclear Fuel Advanced Nuclear Fuel Y-12 developers co-roll zirconium clad LEU-Mo. The Y-12 National Security Complex has over 60 years of...

136

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Develop Advanced Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop and demonstrate Advanced Burner Reactors (ABRs) that consume transuranic elements (plutonium and other long-lived radioactive material) while extracting their energy. The development of ABRs will allow us to build an improved nuclear fuel cycle that recycles used fuel. Accordingly, the U.S. will work with participating international partners on the design, development, and demonstration of ABRs as part of the GNEP. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors More Documents & Publications GNEP Element:Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste

137

Advanced Nuclear Fuel Development for the Future in the United ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2010. Symposium, Materials Solutions for the Nuclear Renaissance. Presentation Title, Advanced ...

138

Nuclear Power and the World's Energy Requirements  

E-Print Network (OSTI)

The global requirements for energy are increasing rapidly as the global population increases and the under-developed nations become more advanced. The traditional fuels used in their traditional ways will become increasingly unable to meet the demand. The need for a review of the energy sources available is paramount, although the subsequent need to develop a realistic strategy to deal with all local and global energy requirements is almost as important. Here attention will be restricted to examining some of the claims and problems of using nuclear power to attempt to solve this major question.

V. Castellano; R. F. Evans; J. Dunning-Davies

2004-06-10T23:59:59.000Z

139

Materials for Nuclear Power: Digital Resource Center -- The Nuclear ...  

Science Conference Proceedings (OSTI)

REPORT: Technology and Applied R&D Needs for Advanced Nuclear Energy Systems A resource document for the Workshop on Basic Research Needs for ...

140

Nuclear power has a significant role in the European power ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. ... Because nuclear power does not emit greenhouse gases, ...

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Program on Technology Innovation: Advanced Nuclear Technology--Component Margins and Monitoring Database  

Science Conference Proceedings (OSTI)

The Advanced Nuclear Technology Margins and Monitoring Database, available to EPRI members, documents a consensus of experts on issues relating to equipment design margins and monitoring recommendations for large capital, balance-of-plant (BOP) components important to power production.

2008-04-21T23:59:59.000Z

142

Saving Energy Through Advanced Power Strips (Poster)  

SciTech Connect

Advanced Power Strips (APS) look just like ordinary power strips, except that they have built-in features that are designed to reduce the amount of energy used by many consumer electronics. There are several different types of APSs on the market, but they all operate on the same basic principle of shutting off the supply power to devices that are not in use. By replacing your standard power strip with an APS, you can signifcantly cut the amount of electricity used by your home office and entertainment center devices, and save money on your electric bill. This illustration summarizes the different options.

Christensen, D.

2013-10-01T23:59:59.000Z

143

Electric Power Produced from Nuclear Reactor | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Power Produced from Nuclear Reactor | National Nuclear Security Electric Power Produced from Nuclear Reactor | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Electric Power Produced from Nuclear Reactor Electric Power Produced from Nuclear Reactor December 20, 1951 Arco, ID Electric Power Produced from Nuclear Reactor

144

Steam Reheat in Nuclear Power Plants.  

E-Print Network (OSTI)

??In this work, reheating steam from a commercial nuclear power plant is explored in order to increase efficiency and power output. A thermal source in… (more)

Marotta, Paul John

2012-01-01T23:59:59.000Z

145

Materials for Nuclear Power: Digital Resource Center ...  

Science Conference Proceedings (OSTI)

May 25, 2007 ... The United States Nuclear Power Industry is “reawakening”. ... for a New Generation of Power Plants", Materials Technology@TMS, May 2007.

146

Organizational learning at nuclear power plants  

E-Print Network (OSTI)

The Nuclear Power Plant Advisory Panel on Organizational Learning provides channels of communications between the management and organization research projects of the MIT International Program for Enhanced Nuclear Power ...

Carroll, John S.

1991-01-01T23:59:59.000Z

147

Environmental Degradation Nuclear IX-Advance Mailer  

Science Conference Proceedings (OSTI)

Aug 5, 1999 ... dation of Materials in Nuclear Power Systems - Water Reac- tors will be held August ..... SIMS Examination of Steam Generator Tubing for Evidence of. Internal Oxidation: ..... Neutron Irradiation-Induced Changes in Percent IGSCC of Ther- .... Recent Data on Void Formation in US & Russian Stainless Steels.

148

Electromagnetic Compatibility in Nuclear Power Plants  

SciTech Connect

Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I&C) systems used by the U.S. military. The potential for disruption of safety-related I&C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I&C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper.

Ewing, P.D.; Kercel, S.W.; Korsah, K.; Wood, R.T.

1999-08-29T23:59:59.000Z

149

Materials for Nuclear Power: Digital Resource Center ...  

Science Conference Proceedings (OSTI)

PRESENTATONS: Reawakening of United States Nuclear Energy: Materials Challenges for a New Generation of Power Plants Presentations by Harold ...

150

Advanced Computation & Visualization - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

151

Sabotage at Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

Purvis, James W.

1999-07-21T23:59:59.000Z

152

Advanced Thermal Interface Materials for Power Electronics (Presentation)  

DOE Green Energy (OSTI)

Advancing thermal interface materials for power electronics is a critical factor in power electronics equipment. NREL aims to improve thermal interface materials for power electronics technologies.

Narumanchi, S.

2007-11-08T23:59:59.000Z

153

Groundwater Protection Guidelines for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

The nuclear power industry has entered into a voluntary initiative to implement groundwater monitoring programs at all nuclear power plant sites. This EPRI guideline provides essential technical guidance to nuclear power utilities on the necessary elements of a sound groundwater protection program.

2008-01-10T23:59:59.000Z

154

Nuclear Power PROS -`No' greenhouse gas emissions  

E-Print Network (OSTI)

Nuclear Power PROS -`No' greenhouse gas emissions -Fuel is cheep -High energy density (1 ton U = 16 abundant elements found in natural crustal rocks) Nuclear Power CONS -High capital cost due to meeting if there is a movement towards electric cars? -What if the high capital costs of a nuclear power plant were invested

Toohey, Darin W.

155

Role of nuclear power in the Philippine power development program  

SciTech Connect

The reintroduction of nuclear power in the Philippines is favored by several factors such as: the inclusion of nuclear energy in the energy sector of the science and technology agenda for national development (STAND); the Large gap between electricity demand and available local supply for the medium-term power development plan; the relatively lower health risks in nuclear power fuel cycle systems compared to the already acceptable power systems; the lower environmental impacts of nuclear power systems compared to fossil fuelled systems and the availability of a regulatory framework and trained personnel who could form a core for implementing a nuclear power program. The electricity supply gap of 9600 MW for the period 1993-2005 could be partly supplied by nuclear power. The findings of a recent study are described, as well as the issues that have to be addressed in the reintroduction of nuclear power.

Aleta, C.R. [Philippine Nuclear Research Institite, Quezon City (Philippines)

1994-12-31T23:59:59.000Z

156

Center for Advanced Power Systems CAPS | Open Energy Information  

Open Energy Info (EERE)

on advanced power system technologies with emphasis on the needs of the future naval ship power systems and electricity supply grid of the US. References Center for Advanced Power...

157

Working Group Report on - Space Nuclear Power Systems and Nuclear Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Working Group Report on - Space Nuclear Power Systems and Nuclear Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D "Even though one cannot anticipate the answers in basic research, the return on the public's investment can be maximized through long-range planning of the most promising avenues to explore and the resources needed to explore them." (p. v) "Pursuit of this goal entails developing new technologies and advanced facilities, educating young scientists, training a technical workforce, and contributing to the broader science and technology enterprise?." (p. vi) Ref:: "Nuclear Science: A Long Range Plan", DOE/NSF, Feb. 1996. The purpose of this effort is to develop the first iteration of a

158

Working Group Report on - Space Nuclear Power Systems and Nuclear Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Working Group Report on - Space Nuclear Power Systems and Nuclear Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D "Even though one cannot anticipate the answers in basic research, the return on the public's investment can be maximized through long-range planning of the most promising avenues to explore and the resources needed to explore them." (p. v) "Pursuit of this goal entails developing new technologies and advanced facilities, educating young scientists, training a technical workforce, and contributing to the broader science and technology enterprise?." (p. vi) Ref:: "Nuclear Science: A Long Range Plan", DOE/NSF, Feb. 1996. The purpose of this effort is to develop the first iteration of a

159

Advanced nuclear reactor public opinion project. Interim report  

SciTech Connect

This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

Benson, B.

1991-07-25T23:59:59.000Z

160

Powering the Nuclear Navy | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Powering the Nuclear Navy Powering the Nuclear Navy Home > About Us > Our Programs > Powering the Nuclear Navy Powering the Nuclear Navy The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission requires the combination of fully trained U.S. Navy men and women with ships that excel in endurance, stealth, speed, and independence from supply chains. NNSA's Navy Reactors Program provides the design, development and operational support required to provide militarily effective nuclear propulsion plants and ensure their safe, reliable and long-lived operation. This budget requests more than $1 billion to power a modern nuclear Navy: Continuation of design and development work for the OHIO-class

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Program on Technology Innovation: Nuclear Power Emergency Power Alternative Technology Investigations  

Science Conference Proceedings (OSTI)

Strategies for the use of advanced electrical energy storage and generation technologies for providing direct current (dc) and alternating current (ac) emergency power for nuclear power plants were investigated and a screening evaluation of these technologies for use in these strategies was conducted. Potential near-term and longer term possibilities were considered in the screening of the technologies that ...

2013-11-13T23:59:59.000Z

162

Advanced Power Plant Development and Analyses Methodologies  

DOE Green Energy (OSTI)

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

G.S. Samuelsen; A.D. Rao

2006-02-06T23:59:59.000Z

163

Advanced Power Plant Development and Analysis Methodologies  

DOE Green Energy (OSTI)

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

2006-06-30T23:59:59.000Z

164

Georgia Power - Small and Medium Scale Advanced Solar Initiative...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small and Medium Scale Advanced Solar Initiative (GPASI) (Georgia) Georgia Power - Small and Medium Scale Advanced Solar Initiative (GPASI) (Georgia) Eligibility Agricultural...

165

Advanced Power Sources Ltd APS | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name Advanced Power Sources Ltd (APS) Place United Kingdom Product UK R&D company based at Loughborough University focusing on fuel cells. References Advanced...

166

ALARA at nuclear power plants  

SciTech Connect

Implementation of the As Low As Reasonably Achievable (ALARA) principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed though a variety of dose reduction techniques. It is planned that this report will include material on historical aspects, management, valuation of dose reduction, quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report. 30 refs., 1 fig., 6 tabs.

Baum, J.W.

1990-01-01T23:59:59.000Z

167

Power conversion system design for supercritical carbon dioxide cooled indirect cycle nuclear reactors  

E-Print Network (OSTI)

The supercritical carbon dioxide (S-CO?) cycle is a promising advanced power conversion cycle which couples nicely to many Generation IV nuclear reactors. This work investigates the power conversion system design and ...

Gibbs, Jonathan Paul

2008-01-01T23:59:59.000Z

168

Materials for Nuclear Power: Digital Resource Center Text Topic - TMS  

Science Conference Proceedings (OSTI)

Feb 16, 2007 ... Office of Nuclear Energy and Office of Advanced Scientific Computing Research. Simulation and Modeling for Advanced Nuclear Energy ...

169

Materials for Nuclear Power: Digital Resource Center - PDF ...  

Science Conference Proceedings (OSTI)

Feb 16, 2007 ... Office of Nuclear Energy and Office of Advanced Scientific Computing Research. Simulation and Modeling for Advanced Nuclear Energy ...

170

United States and Italy Sign Agreements to Advance Developments in Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Italy Sign Agreements to Advance Developments in Italy Sign Agreements to Advance Developments in Nuclear Energy United States and Italy Sign Agreements to Advance Developments in Nuclear Energy September 30, 2009 - 12:00am Addthis Washington, D.C. - U.S. Secretary of Energy Steven Chu and Italian Minister for Economic Development Claudio Scajola today signed two important nuclear energy agreements that may lead to construction of new nuclear power plants and improved cooperation on advanced nuclear energy systems and fuel cycle technologies in both countries. The U.S.-Italy Joint Declaration Concerning Industrial and Commercial Cooperation in the Nuclear Energy Sector, which was signed on behalf of the United States by Secretary Chu and Deputy Secretary of Commerce Dennis F. Hightower, affirms the strong interest of the United States and Italy to

171

January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The ANTT Subcommittee met in Washington on Dec 4-5, 2002 to review progress in the transmutation program, and to learn about major organizational changes that affect the management of the program. The NE's new Advanced Nuclear Research Office (NE-20) now oversees both the transmutation program (ANTT) and the Generation-IV program (GEN-IV). antt14Jan_03.pdf More Documents & Publications October 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

172

International Energy Outlook 1999 - Nuclear Power  

Gasoline and Diesel Fuel Update (EIA)

nuclear.jpg (5137 bytes) nuclear.jpg (5137 bytes) Nuclear electricity generation remains flat in the IEO99 reference case, representing a declining share of the worldÂ’s total electricity consumption. Net reductions in nuclear capacity are projected for most industrialized nations. In 1997, a total of 2,276 billion kilowatthours of electricity was generated from nuclear power worldwide, providing 17 percent of the worldÂ’s electricity generation. Among the countries with operating nuclear power plants, national dependence on nuclear power for electricity varies greatly (Figure 53). Ten countries met at least 40 percent of their total electricity demand with generation from nuclear reactors. The prospects for nuclear power to maintain a significant share of worldwide electricity generation are uncertain, despite projected growth of

173

PROPOSED AMENDMENT TO THE NUCLEAR POWER PLANT  

E-Print Network (OSTI)

NOTE TO EDITORS: The Nuclear Regulatory Commission has received two reports from its independent Advisory Committee on Reactor Safeguards. The attached reports, in the form of letters, comment on a proposed amendment to the NRC's rule on license renewal for nuclear power plants and a proposed revision to the decommissioning rule for nuclear power reactors. Attachments:

T. S. Kress

1995-01-01T23:59:59.000Z

174

Engineered Sequestration and Advanced Power Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia University. Predictions of innovative energy technologies for the next century usually include everything from fusion to photovoltaics with the one notable exception of fossil fuels. Because of fears of diminishing supplies, pollution and climate change, the public is reluctant to consider these hydrocarbon fuels for the energy needs of the twenty- first century. An energy strategy for the new century, however, cannot ignore fossil fuels. Contrary to popular belief, they are plentiful and inexpensive. While it is true that fossil fuels are limited by their environmental impact, new technologies to eliminate environmental concerns are currently being developed. Managing the emission of

175

NREL: Advanced Power Electronics - About the Project  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Project About the Project The Vehicle Technologies Program supports the development of technologies that will achieve transportation energy security through a U.S. highway vehicle fleet that consists of affordable, full-function cars and trucks that are free from petroleum dependence and harmful emissions, without sacrificing mobility, safety, and vehicle choice. The electric drive system is the technology foundation for hybrid electric and fuel cell vehicles. NREL focuses on developing advanced power electronics and electric machinery technologies that improve and dramatically decrease vehicle systems costs, under DOE's Power Electronics and Electric Machines (PEEM) subactivity. NREL supports the PEEM project goals to ensure high reliability, efficiency, and ruggedness; and

176

Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors  

SciTech Connect

The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

Radulescu, Laura ['Horia Hulubei' National Institute of Nuclear Physics and Engineering, PO BOX MG-6, Bucharest 077125 (Romania); Pavelescu, Margarit [Academy of Romanian Scientists, Bucharest (Romania)

2010-01-21T23:59:59.000Z

177

The Fourth Generation of Nuclear Power  

SciTech Connect

The outlook for nuclear power in the U.S. is currently very bright. The economics, operations and safety performance of U.S. nuclear power plants is excellent. In addition, both the safety and economic regulation of nuclear power are being changed to produce better economic parameters for future nuclear plant operations and the licenses for plant operations are being extended to 60 years. There is further a growing awareness of the value of clean, emissions-free nuclear power. These parameters combine to form a firm foundation for continued successful U.S. nuclear plant operations, and even the potential In order to realize a bright future for nuclear power, we must respond successfully to five challenges: • Nuclear power must remain economically competitive, • The public must remain confident in the safety of the plants and the fuel cycle. • Nuclear wastes and spent fuel must be managed and the ultimate disposition pathways for nuclear wastes must be politically settled. • The proliferation potential of the commercial nuclear fuel cycle must continue to be minimized, and • We must assure a sustained manpower supply for the future and preserve the critical nuclear technology infrastructure. The Generation IV program is conceived to focus the efforts of the international nuclear community on responding to these challenges.

Lake, James Alan

2000-11-01T23:59:59.000Z

178

Net energy from nuclear power  

SciTech Connect

An analysis of net energy from nuclear power plants is dependent on a large number of variables and assumptions. The energy requirements as they relate to reactor type, concentration of uranium in the ore, enrichment tails assays, and possible recycle of uranium and plutonium were examined. Specifically, four reactor types were considered: pressurized water reactor, boiling water reactor, high temperature gas-cooled reactor, and heavy water reactor (CANDU). The energy requirements of systems employing both conventional (current) ores with uranium concentration of 0.176 percent and Chattanooga Shales with uranium concentration of 0.006 percent were determined. Data were given for no recycle, uranium recycle only, and uranium plus plutonium recycle. Starting with the energy requirements in the mining process and continuing through fuel reprocessing and waste storage, an evaluation of both electrical energy requirements and thermal energy requirements of each process was made. All of the energy, direct and indirect, required by the processing of uranium in order to produce electrical power was obtained by adding the quantities for the individual processes. The energy inputs required for the operation of a nuclear power system for an assumed life of approximately 30 years are tabulated for nine example cases. The input requirements were based on the production of 197,100,000 MWH(e), i.e., the operation of a 1000 MW(e) plant for 30 years with an average plant factor of 0.75. Both electrical requirements and thermal energy requirements are tabulated, and it should be emphasized that both quantities are needed. It was found that the electricity generated far exceeded the energy input requirements for all the cases considered. (auth)

Rotty, R.M.; Perry, A.M.; Reister, D.B.

1975-11-01T23:59:59.000Z

179

Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

180

New York Nuclear Profile - R E Ginna Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License...

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nuclear power plants: structure and function  

SciTech Connect

Topics discussed include: steam electric plants; BWR type reactors; PWR type reactors; thermal efficiency of light water reactors; other types of nuclear power plants; the fission process and nuclear fuel; fission products and reactor afterheat; and reactor safety.

Hendrie, J.M.

1983-01-01T23:59:59.000Z

182

New York Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Indian Point Unit 2, Unit 3","2,063","16,321",39.0,"Entergy Nuclear Indian Point" "James A Fitzpatrick Unit 1",855,"6,361",15.2,"Entergy Nuc Fitzpatrick LLC" "Nine Mile Point Nuclear Station Unit 1, Unit 2","1,773","14,239",34.0,"Nine Mile Point Nuclear Sta LLC" "R E Ginna Nuclear Power Plant Unit 1",581,"4,948",11.8,"R.E. Ginna Nuclear Power Plant, LLC" "4 Plants

183

SunShot Initiative: Advanced Nitrate Salt Central Receiver Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Nitrate Salt Central Receiver Power Plant to someone by E-mail Share SunShot Initiative: Advanced Nitrate Salt Central Receiver Power Plant on Facebook Tweet about SunShot...

184

R. Shane Johnson, Associate Director Office of Advanced Nuclear Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Nuclear Research Advanced Nuclear Research September 30, 2002 Generation IV International Forum Generation IV International Forum Presentation to the Nuclear Energy Research Advisory Committee Office of Nuclear Energy, Science and Technology Generation IV International Forum Generation IV International Forum 6 Government-sanctioned organization working together to plan the future of nuclear energy * Chartered in July 2002 * Conduct joint R&D on next-generation nuclear energy systems * Voluntary member participation in specific projects 6 Observer Organizations * OECD-NEA * IAEA * Euratom South Korea U.S.A. Argentina Brazil Canada France Japan South Africa United Kingdom Switzerland Office of Nuclear Energy, Science and Technology

185

Nuclear power plant construction activity, 1988  

SciTech Connect

Nuclear Power Plant Construction Activity 1988 presents cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1988. This report, which is updated annually, was prepared to provide an overview of the nuclear power plant construction industry. The report contains information on the status of nuclear generating units, average construction costs and lead-times, and construction milestones for individual reactors.

1989-06-14T23:59:59.000Z

186

NETL: News Release - Advanced Coal Dryer Boosts Power Plant Performanc...  

NLE Websites -- All DOE Office Websites (Extended Search)

Release Date: May 24, 2006 Advanced Coal Dryer Boosts Power Plant Performance Latest Project in President's Clean Coal Power Initiative Begins Operations in North Dakota...

187

Materials for Nuclear Power: Digital Resource Center - REPORT ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007... Nuclear Power Background, Trends in Nuclear Power, The Nuclear ... Science: Application to Fusion and Generation IV Fission Reactors

188

Advanced Plasma Power APP | Open Energy Information  

Open Energy Info (EERE)

Power APP Power APP Jump to: navigation, search Name Advanced Plasma Power (APP) Place London, Greater London, United Kingdom Zip EC2A 1BR Product London-based geoplasma process technology developer for waste-to-energy systems. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

189

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and...

190

Advanced Nuclear Fuel Concepts for Minor Actinide Burning  

Science Conference Proceedings (OSTI)

Abstract Scope, New fuel cycle strategies entail advanced nuclear fuel concepts. This especially applies for the burning of minor actinides in a fast reactor cycle ...

191

Basic Research Needs for Advanced Nuclear Energy Systems - TMS  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems. Summarizes current status ...

192

Development of Ceramic Waste Forms for an Advanced Nuclear ...  

Science Conference Proceedings (OSTI)

Presentation Title, Development of Ceramic Waste Forms for an Advanced Nuclear Fuel Cycle. Author(s), James C. Marra, Amanda Billings, Kyle Brinkman,  ...

193

Lab Tests Demonstrate Effectiveness of Advanced Power Strips (Fact Sheet)  

SciTech Connect

NREL engineers evaluate the functionalities of advanced power strips and help consumers choose the right one for their plug loads.

Not Available

2013-09-01T23:59:59.000Z

194

Advanced Materials for High Power, High Temperature, and High ...  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Advanced magnetic materials are required for enhanced performance of electrical and thermal power generation, distribution, and conversion ...

195

Materials in Nuclear Power Plant Construction - TMS  

Science Conference Proceedings (OSTI)

139th Annual Meeting & Exhibition. February 14 - 18, 2010, Washington State Convention Center, Seattle, Washington USA. Materials in Nuclear Power. Plant  ...

196

Laser Welding for Nuclear Power Systems  

Science Conference Proceedings (OSTI)

Enhancement of Intergranular Corrosion Resistance of TIG Welded and Laser- surface Melted SUS 304 for Nuclear Power Plants · Evaluation of Nanofeature ...

197

Materials for Nuclear Power: Digital Resource Center ...  

Science Conference Proceedings (OSTI)

Mar 5, 2008 ... An overview presentation covering drivers for the Nuclear Renaissance and the path forward for nucleaer power in the United States.

198

Nickel Alloys Used in Nuclear Power Systems  

Science Conference Proceedings (OSTI)

Abstract Scope, Nickel based alloys are used extensively in nuclear power ... of Zircaloy Liquidus and Solidus with an Instrumented Transvarestraint Test.

199

Materials for Nuclear Power – A Brief Introduction  

Science Conference Proceedings (OSTI)

Feb 10, 2007 ... A brief introduction to the effects of irradiation on materials for the nuclear power industry. PDF article includes figures and useful links.

200

Materials for Nuclear Power: Digital Resource Center - WEBCAST ...  

Science Conference Proceedings (OSTI)

May 25, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science ...

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science ...

202

Materials for Nuclear Power: Digital Resource Center - JOM Article ...  

Science Conference Proceedings (OSTI)

Mar 15, 2009 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science ...

203

Materials for Nuclear Power: Digital Resource Center - BOOK ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science ...

204

Materials for Nuclear Power: Digital Resource Center - What long ...  

Science Conference Proceedings (OSTI)

Jan 4, 2008 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science ...

205

October 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, Report of the ADVANCED NUCLEAR TRANSFORMATION 3, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE October 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The committee met in Washington in Sept 16-17 to review progress in the program with respect to a changed set of mission priorities. Our last meeting took place in Dec 2002 after the reorganization that had place the Advanced Fuel Cycle Initiative (AFCI) and GEN IV program together in the Advanced Nuclear Reserach Office (AN-20). Since mission priorities have been evolving, the committee felt that it should wait unti they have settled down before we met again. We have kept in touch during the process,

206

Nuclear power and nuclear-weapons proliferation  

SciTech Connect

Concern over the risk of nuclear proliferation has led to extensive reexamination of the technical, economic, and political assumptions underlying both national and international nuclear policies. An attempt is made in the present article to clarify the basic technical and political issues. The connections between various fuel cycles and their possible proliferation risks are discussed. As the resolution of the existing differing views on proliferation risks will be largely a political process, solutions to the problem are not proposed. (JSR)

Moniz, E.J.; Neff, T.L.

1978-04-01T23:59:59.000Z

207

ADVANCED POWER SYSTEMS ASH BEHAVIOR IN POWER SYSTEMS  

SciTech Connect

The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: ? Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. ? Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. ? Identify the relationship between the temperature of critical viscosity (Tcv ) as measured in a viscometer and the crystallization occurring in the melt. ? Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. ? Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. ? Evaluate corrosion for alloys being used in supercritical combustion systems.

CHRISTOPHER J. ZYGARLICKE; DONALD P. MCCOLLOR; JOHN P. KAY; MICHAEL L. SWANSON

1998-09-01T23:59:59.000Z

208

ADVANCED POWER SYSTEMS ASH BEHAVIOR IN POWER SYSTEMS  

Science Conference Proceedings (OSTI)

The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: ? Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. ? Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. ? Identify the relationship between the temperature of critical viscosity (Tcv ) as measured in a viscometer and the crystallization occurring in the melt. ? Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. ? Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. ? Evaluate corrosion for alloys being used in supercritical combustion systems.

CHRISTOPHER J. ZYGARLICKE; DONALD P. MCCOLLOR; JOHN P. KAY; MICHAEL L. SWANSON

1998-09-01T23:59:59.000Z

209

POWER SUPPLY EXPANSION AND THE NUCLEAR OPTION  

E-Print Network (OSTI)

the fact that eventually thermal plant is duplicated by CO -2 free nuclear power. Similarly), Autoproducing Power Plants in Poland: Technological Data, Warsaw 1993b. ______, Public Thermal Power Plants% of all generating capacity, 5.6 GW, is combined heat and power (CHP), or cogeneration, plant, which also

210

Nuclear Systems Powering a Mission to Mars | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Powering a Mission to Mars Systems Powering a Mission to Mars Nuclear Systems Powering a Mission to Mars November 28, 2011 - 11:23am Addthis Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space exploration. Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy Curiosity Mission: investigate whether the Gale Crater on Mars has ever offered environmental conditions that support the development of microbial life. This past weekend, the Mars Science Laboratory rover Curiosity launched from Cape Canaveral with the most advanced payload of scientific gear ever used on the red planet. Its mission: to investigate whether the Gale Crater on Mars has ever

211

ADVANCED CO2 CYCLE POWER GENERATION  

SciTech Connect

Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2004-01-01T23:59:59.000Z

212

ADVANCED CO2 CYCLE POWER GENERATION  

SciTech Connect

Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2003-10-01T23:59:59.000Z

213

Advanced Power Plant Modeling with Applications to an Advanced Boiling Water  

E-Print Network (OSTI)

wave fronts. However, in most power plant transient performance models, there are few heat exchangersAdvanced Power Plant Modeling with Applications to an Advanced Boiling Water Reactor and a Heat Introduction This paper presents two advanced modeling methods, and two applications, for power plant

Mitchell, John E.

214

Update on the Cost of Nuclear Power  

E-Print Network (OSTI)

We update the cost of nuclear power as calculated in the MIT (2003) Future of Nuclear Power study. Our main focus is on the changing cost of construction of new plants. The MIT (2003) study provided useful data on the cost ...

Parsons, John E.

2009-01-01T23:59:59.000Z

215

Advances in Tandem Mirror fusion power reactors  

DOE Green Energy (OSTI)

The Tandem Mirror exhibits several distinctive features which make the reactor embodiment of the principle very attractive: Simple low-technology linear central cell; steady-state operation; high-..beta.. operation; no driven current or disruptions; divertorless operation; direction conversion of end-loss power; low-surface heat loads; and advanced fusion fuel capability. In this paper, we examine these features in connection with two tandem mirror reactor designs, MARS and MINIMARS, and several advanced reactor concepts including the wall-stabilized reactor and the field-reversed mirror. With a novel compact end plug scheme employing octopole stabilization, MINIMARS is expressly designed for short construction times, factory-built modules, and a small (600 MWe) but economic reactor size. We have also configured the design for low radioactive afterheat and inherent/passive safety under LOCA/LOFA conditions, thereby obviating the need for expensive engineered safety systems. In contrast to the complex and expensive double-quadrupole end-cell of the MARS reactor, the compact octopole end-cell of MINIMARS enables ignition to be achieved with much shorter central cell lengths and considerably improves the economy of scale for small (approx.250 to 600 MWe) tandem mirror reactors. Finally, we examine the prospects for realizing the ultimate potential of the tandem mirror with regard to both innovative configurations and novel neutron energy conversion schemes, and stress that advanced fuel applications could exploit its unique reactor features.

Perkins, L.J.; Logan, B.G.

1986-05-20T23:59:59.000Z

216

Nuclear Power Plant Concrete Structures  

Science Conference Proceedings (OSTI)

A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

Basu, Prabir [International Atomic Energy Agency (IAEA)] [International Atomic Energy Agency (IAEA); Labbe, Pierre [Electricity of France (EDF)] [Electricity of France (EDF); Naus, Dan [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

2013-01-01T23:59:59.000Z

217

Materials for Nuclear Power: Digital Resource Center -- Articles and ...  

Science Conference Proceedings (OSTI)

... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science, Nuclear Engineering ... BOOK: Safety Related Issues of Spent Nuclear Fuel Storage ... A compilation of reports prepared by the Center for Nuclear Waste Regulatory ...

218

University Program in Advanced Technology | National Nuclear...  

National Nuclear Security Administration (NNSA)

& Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > Institutional Research & Development > University Program in Advanced...

219

October 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, Report of the ADVANCED NUCLEAR TRANSFORMATION 6, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE October 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The Global Nuclear Energy Partnership (GNEP) program is still evolving. Since our report of March 22, 2006 the DOE has sought to gauge industry interest in participation in the program from its very beginning. At the time the ANTT committee met, August 30- 31, 2006, responses had not yet been received from industry to the DOE's request for Expressions of Interest. This report is based on the assumption that the program outlined recently, which does not include an Advanced Burner Test Reactor, is what

220

International Energy Outlook 2000 - Nuclear Power  

Gasoline and Diesel Fuel Update (EIA)

In the IEO2000 reference case, nuclear power represents a declining share of the worldÂ’s total electricity consumption from 1997 through 2020. Plant retirements are expected to produce net reductions in nuclear capacity in most of the industrialized nations. In the IEO2000 reference case, nuclear power represents a declining share of the worldÂ’s total electricity consumption from 1997 through 2020. Plant retirements are expected to produce net reductions in nuclear capacity in most of the industrialized nations. In 1998, a total of 2,291 billion kilowatthours of electricity was generated by nuclear power worldwide, providing 16 percent of the worldÂ’s total generation[1]. Among the countries with operating nuclear power plants, national dependence on nuclear energy for electricity varies greatly. Nine countries met at least 40 percent of total electricity demand with generation from nuclear reactors. Figure 68. Nuclear Shares of National Electricity Generation, 1998 [Sources] The prospects for nuclear power to maintain a significant share of

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Decision Framework for Evaluating Advanced Nuclear Fuel Cycle Options  

Science Conference Proceedings (OSTI)

EPRI is working to develop tools to support long-term strategic planning for research, development, and demonstration (RD&D) of advanced nuclear fuel cycle technologies for electricity generation. The development of a decision framework to help guide the eventual deployment of advanced nuclear technologies represents a key component of this effort. This interim report describes the structure of a prototypical EPRI decision framework and illustrates how that framework can be applied to assess nuclear fuel...

2011-12-13T23:59:59.000Z

222

Korea Hydro & Nuclear Power Co., Ltd. Nuclear Power Plants: Construction and Technology Experience  

Science Conference Proceedings (OSTI)

The Korean nuclear power industry has grown rapidly since Kori Unit 1, the first Korean nuclear power plant (NPP), which began operation in April 1978. Following the technology developments of the nuclear power industry in 1980s, the first standard Korean nuclear plants (Ulchin Units 3 and 4) were constructed in the 1990s. At present, 20 NPP units operate in Korea16 pressurized water reactor (PWR) plants and four pressurized heavy water reactor (PHWR) plants; eight PWR units are under construction. This ...

2011-09-21T23:59:59.000Z

223

Public opinion factors regarding nuclear power  

Science Conference Proceedings (OSTI)

This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry`s practices are aligned with public opinion, a more favorable regulatory climate is possible.

Benson, B.

1991-12-31T23:59:59.000Z

224

Public opinion factors regarding nuclear power  

SciTech Connect

This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry's practices are aligned with public opinion, a more favorable regulatory climate is possible.

Benson, B.

1991-01-01T23:59:59.000Z

225

Advanced Power Projects | Open Energy Information  

Open Energy Info (EERE)

Projects Projects Jump to: navigation, search Name Advanced Power Projects Place Fremont, California Zip 94539 Sector Efficiency Product Gas turbine efficiency company, developing a simplified combined cycle system to lower system fuel consumption and lower emissions. Coordinates 44.2605°, -88.880509° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2605,"lon":-88.880509,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Space nuclear power: a strategy for tomorrow  

SciTech Connect

Energy: reliable, portable, abundant and low cost will be a most critical factor, perhaps the sine qua non, for the unfolding of man's permanent presence in space. Space-based nuclear power, in turn, is a key technology for developing such space platforms and the transportation systems necessary to service them. A strategy for meeting space power requirements is the development of a 100-kW(e) nuclear reactor system for high earth orbit missions, transportation from Shuttle orbits to geosynchronous orbit, and for outer planet exploration. The component technology for this nuclear power plant is now underway at the Los Alamos National Laboratory. As permanent settlements are established on the Moon and in space, multimegawatt power plants will be needed. This would involve different technology similar to terrestrial nuclear power plants.

Buden, D.; Angelo, J. Jr.

1981-01-01T23:59:59.000Z

227

New York Nuclear Profile - R E Ginna Nuclear Power Plant  

U.S. Energy Information Administration (EIA)

snpt3ny6122 581 4,948 97.2 PWR R E Ginna Nuclear Power Plant Unit Summer Capacity (MW) Net Generation (Thousand MWh) Summer Capacity Factor (Percent) Type

228

How much electricity does a typical nuclear power plant generate ...  

U.S. Energy Information Administration (EIA)

Nuclear Reactor Operational Status Tables (Information and data on nuclear power reactors Generation: by State and Reactor. Annual Energy Review, ...

229

Projects To Develop Novel Monitoring Networks for Advanced Power Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

To Develop Novel Monitoring Networks for Advanced Power To Develop Novel Monitoring Networks for Advanced Power Systems Selected Projects To Develop Novel Monitoring Networks for Advanced Power Systems Selected September 1, 2010 - 1:00pm Addthis Washington, DC - Five projects that will develop technologically sophisticated monitoring networks for advanced fossil energy power systems have been selected for continued research by the U.S. Department of Energy (DOE). The projects will support efforts by the Office of Fossil Energy's (FE) Advanced Research--Coal Utilization Science (CUS) Program to study novel approaches in model development and validation; monitoring refractory health; and wireless, self-powered sensors for advanced, next-generation power systems. They will monitor the status of equipment, materials

230

Indicator system for advanced nuclear plant control complex  

DOE Patents (OSTI)

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

231

COMMERCIAL UTILITY PERSPECTIVES ON NUCLEAR POWER PLANT CONTROL ROOM MODERNIZATION  

SciTech Connect

Commercial nuclear power plants (NPPs) in the United States need to modernize their main control rooms (MCR). Many NPPs have done partial upgrades with some success and with some challenges. The Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Program, and in particular the Advanced Instrumentation and Controls (I&C) and Information Systems Technologies Research and Development (R&D) Pathway within LWRS, is designed to assist commercial nuclear power industry with their MCR modernization efforts. As part of this framework, a survey was issued to utility representatives of the LWRS Program Advanced Instrumentation, Information, and Control Systems/Technologies (II&C) Utility Working Group to obtain their views on a range of issues related to MCR modernization, including: drivers, barriers, and technology options, and the effects these aspects will have on concepts of operations, modernization strategies, and staffing. This paper summarizes the key survey results and discusses their implications.

Jeffrey C. Joe; Ronald L. Boring; Julius J. Persensky

2012-07-01T23:59:59.000Z

232

Advanced Power Electronics for LED Drivers: Advanced Technologies for integrated Power Electronics  

SciTech Connect

ADEPT Project: MIT is teaming with Georgia Institute of Technology, Dartmouth College, and the University of Pennsylvania (UPenn) to create more efficient power circuits for energy-efficient light-emitting diodes (LEDs) through advances in 3 related areas. First, the team is using semiconductors made of high-performing gallium nitride grown on a low-cost silicon base (GaN-on-Si). These GaN-on-Si semiconductors conduct electricity more efficiently than traditional silicon semiconductors. Second, the team is developing new magnetic materials and structures to reduce the size and increase the efficiency of an important LED power component, the inductor. This advancement is important because magnetics are the largest and most expensive part of a circuit. Finally, the team is creating an entirely new circuit design to optimize the performance of the new semiconductors and magnetic devices it is using.

2010-09-01T23:59:59.000Z

233

Materials for Nuclear Power: Digital Resource Center ... - TMS  

Science Conference Proceedings (OSTI)

Materials for Nuclear Power, 0, 2175, Maureen Byko, 3/15/2009 8:21 PM ... A comprehensive introductory educational site about all forms of nuclear power, 0 ...

234

DOE Announces Loan Guarantee Applications for Nuclear Power Plant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis...

235

Guidance for Deployment of Mobile Technologies for Nuclear Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This...

236

Bettis and Knolls Atomic Power Laboratories | National Nuclear...  

National Nuclear Security Administration (NNSA)

Bettis and Knolls Atomic Power Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

237

Materials for Nuclear Power: Digital Resource Center ... - TMS  

Science Conference Proceedings (OSTI)

Materials for Nuclear Power, 0, 2161, Maureen Byko, 3/15/2009 8:21 PM ... A comprehensive introductory educational site about all forms of nuclear power, 0 ...

238

DOE - Office of Legacy Management -- Hallam Nuclear Power Facility...  

Office of Legacy Management (LM)

Hallam Nuclear Power Facility - NE 01 FUSRAP Considered Sites Site: Hallam Nuclear Power Facility (NE.01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site...

239

DOE - Office of Legacy Management -- Piqua Nuclear Power Facility...  

Office of Legacy Management (LM)

Piqua Nuclear Power Facility - OH 08 FUSRAP Considered Sites Site: Piqua Nuclear Power Facility (OH.08 ) Designated Name: Alternate Name: Location: Evaluation Year: Site...

240

Renewing America's Nuclear Power Partnership for Energy Security...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8,...

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

REQUEST BY ABB POWER GENERATION, INC., FOR AN ADVANCE WAIVER...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement of Considerations REQUEST BY ABB POWER GENERATION, INC., FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER...

242

Vehicle Technologies Office: FY 2006 Advanced Power Electronics...  

NLE Websites -- All DOE Office Websites (Extended Search)

to overcome the challenges that remain to delivering advanced power electronics and electric machines for vehicle applications. These technologies contribute to the development...

243

Durable Advanced Optical Materials for Concentrating Solar Power  

Science Conference Proceedings (OSTI)

... without subsidies; thus being competitive with base load power markets (i.e., coal). ... Advanced Conductive Coating Performance under Long-term SOFC ...

244

Optical Gas Sensors for Advanced Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

Presentation Title, Optical Gas Sensors for Advanced Coal-Fired Power Plants. Author(s), Paul Ohodnicki, Congjun Wang, Douglas Kauffman, Kristi Kauffman, ...

245

Materials for Nuclear Power: Digital Resource Center - WEB ... - TMS  

Science Conference Proceedings (OSTI)

Jun 25, 2007 ... The NRC regulates commercial nuclear power plants and other uses of nuclear materials, such as in nuclear medicine, through licensing, ...

246

Materials for Nuclear Power: Digital Resource Center - WEB ... - TMS  

Science Conference Proceedings (OSTI)

Feb 16, 2007 ... Topic Title: WEB RESOURCE: Virtual Nuclear Tourist! Nuclear Plants Around the ... Nuclear Power Plants Around the World.22 January 2006.

247

BOOK: Environmental Degradation of Materials in Nuclear Power  

Science Conference Proceedings (OSTI)

Mar 28, 2007... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science ... associated with spent fuel storage and radioactive waste disposal.

248

Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems: Preprint  

DOE Green Energy (OSTI)

The research will characterize and evaluate advanced S-CO2 Brayton cycle power generation with a modular power tower CSP system.

Ma, Z.; Turchi, C. S.

2011-03-01T23:59:59.000Z

249

Japanese nuclear power and the Kyoto agreement  

E-Print Network (OSTI)

We find that, on an economic basis, nuclear power could make a substantial contribution for meeting the emissions target Japan agreed to in the Kyoto Protocol. It is unlikely however that the contribution would be as large ...

Babiker, Mustafa H.M.; Reilly, John M.; Ellerman, A. Denny.

250

Predictive Maintenance Self-Assessment Guidelines for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

There is a need at nuclear power plants for optimization and continuous improvement in the predictive maintenance (PdM) process. This need is based upon increased reliance on PdM to contribute to low unplanned capability loss factors, prevent significant equipment failures, reduce resources for maintenance, manage assets in support of license renewal and aging control, incorporate new technologies and advanced information management, and manage the risk associated with maintenance activities. This docume...

2000-11-28T23:59:59.000Z

251

Materials for Nuclear Power: Digital Resource Center - REPORT ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... A resource document for the Workshop on Basic Research Needs for Advanced Nuclear Energy Systems. Includes an overview of nuclear ...

252

Regulatory Process for Decommissioning Nuclear Power Reactors  

Science Conference Proceedings (OSTI)

The NRC revised decommissioning rule 10 CFR 50.82 in 1996 to make significant changes in the regulatory process for nuclear power plant licensees. This report provides a summary of ongoing federal agency and industry activities. It also describes the regulatory requirements applicable, or no longer applicable, to nuclear power plants at the time of permanent shutdown through the early decommissioning stage. The report describes the major components of a typical decommissioning plan, and provides industry...

1998-03-26T23:59:59.000Z

253

Nuclear power plant construction activity, 1986  

SciTech Connect

Cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1986, are presented. This report, which is updated annually, was prepared to provide an overview of the nuclear power plant construction industry. The report contains information on the status of nuclear generating units, average construction costs and lead-times, and construction milestones for individual reactors.

1987-07-24T23:59:59.000Z

254

Groundwater Protection Guidelines for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

The nuclear power industry has undertaken a Groundwater Protection Initiative at the Direction of the NEI Nuclear Strategic Issues Advisory Committee (NSIAC). This EPRI guideline provides essential technical guidance to utilities on the necessary elements of a sound groundwater protection program.

2007-11-27T23:59:59.000Z

255

Corrosion in the Nuclear Power Industry  

Science Conference Proceedings (OSTI)

...The U.S. nuclear industry generates approximately 20% of the electricity needs primarily from reactors designed and built over 30 years ago. Safety concerns continue to plague the industry. Severe cracks found at one nuclear power reactor (ca 2001) and the boric acid...

256

Advanced safeguards for the nuclear renaissance  

SciTech Connect

The global expansion of nuclear energy provides not only the benefit of carbon-neutral electricity, but also the potential for proliferation concern as well. Nuclear safeguards implemented at the state level (domestic) and at the international level by the International Atomic Energy Agency (IAEA) are essential for ensuring that nuclear materials are not misused and are thereby a critical component of the increased usage of nuclear energy. In the same way that the 1950's Atoms for Peace initiative provided the foundation for a robust research and development program in nuclear safeguards, the expansion of nuclear energy that is underway today provides the impetus to enter a new era of technical development in the safeguards community. In this paper, we will review the history of nuclear safeguards research and development as well future directions.

Miller, Michael C [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

257

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2ct Millstone Unit 2, Unit 3 2,103 16,750 100.0 Dominion Nuclear Conn Inc 1 Plant 2 Reactors Owner Note: Totals may not equal sum of components due to independent ...

258

Trends in Nuclear Power - TMS  

Science Conference Proceedings (OSTI)

An overview of FY 2007 programs for the Nuclear Energy Research Initiative, U. S. Department of Energy, 0, 805, Todd Osman, 6/13/2007 2:08 PM by Todd ...

259

Nuclear Power Plant Design Project  

E-Print Network (OSTI)

................................................. 22 5.1.16 Decommissioning: AP600, HTGR, ALWR ............................................................................................................... 35 7.3.4 Decommissioning Cost #12;9 decommissioning. The long delayed nuclear waste disposal facility at Yucca Mountain is becoming

260

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2ar Arkansas Nuclear One Unit 1, Unit 2 1,835 15,023 100.0 Entergy Arkansas Inc 1 Plant 2 Reactors Owner Note: Totals may not equal sum of ...

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview  

SciTech Connect

Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

2010-01-01T23:59:59.000Z

262

Studies of Fourteen Nuclear-Powered Airplanes  

SciTech Connect

A representative series of aircraft which could be powered by a relatively low-temperature liquid-coolant-cycle nuclear power plant are described. Present aircraft such as the B-36, B-52, and B-47 bombers as well as new designs were investigated. Design and performance characteristics of all the aircraft are presented.

Hutton, J. N.; McCulloch, J. C.; Schmill, W. C.; Ward, W. H.

1952-09-01T23:59:59.000Z

263

Materials for Nuclear Power: Digital Resource Center - BOOK ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... It has been written primarily for advanced undergraduate and beginning graduate students in Nuclear Engineering, Radiation Physics, ...

264

Nuclear power in the Soviet Bloc  

SciTech Connect

The growth of Soviet Bloc nuclear power generation to the end of the century is evaluated on the basis of policy statements of objectives, past and current nuclear power plant construction, and trends in the potential for future construction. Central to this study is a detailed examination of individual reactor construction and site development that provides specific performance data not given elsewhere. A major commitment to nuclear power is abundantly clear and an expansion of ten times in nuclear electric generation is estimated between 1980 and 2000. This rate of growth is likely to have significant impact upon the total energy economy of the Soviet Bloc including lessening demands for use of coal, oil, and gas for electricity generation.

Davey, W.G.

1982-03-01T23:59:59.000Z

265

System and method for advanced power management  

DOE Patents (OSTI)

A power management system is provided that includes a power supply means comprising a plurality of power supply strings, a testing means operably connected to said plurality of power supply strings for evaluating performance characteristics of said plurality of power supply strings, and a control means for monitoring power requirements and comprising a switching means for controlling switching of said plurality of power supply strings to said testing means.

Atcitty, Stanley (Albuquerque, NM); Symons, Philip C. (Surprise, AZ); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM)

2009-07-28T23:59:59.000Z

266

NREL: Vehicles and Fuels Research - Advanced Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map The electric drive system is the technology foundation for hybrid electric and fuel cell vehicles. That's why NREL's Advanced Power Electronics project supports and promotes the design, development, and demonstration of power electronic components and systems that will overcome major technical barriers to the commercialization of hybrid, advanced internal combustion, and fuel cell vehicle technologies. In support of DOE's Vehicle Technologies Office, our researchers focus on developing advanced power electronics and electric machinery technologies that improve reliability, efficiency, and ruggedness, and dramatically decrease systems costs for advanced vehicles. Key components for these vehicles include the motor controller, DC to DC converters, and inverters

267

Texas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2tx Comanche Peak Unit 1, Unit 2 2,406 20,208 48.9 Luminant Generation Company LLC South Texas Project Unit 1, Unit 2 2,560 21,127 51.1 STP Nuclear Operating Co

268

DECOMMISSIONING OF NUCLEAR POWER REACTORS  

E-Print Network (OSTI)

Decommissioning means permanently removing a nuclear facility from service and reducing radioactive material on the licensed site to levels that would permit termination of the NRC license. On June 27, 1988, the NRC issued general requirements on decommissioning that contained technical and financial criteria and dealt with planning needs, timing, funding mechanisms, and environmental review

unknown authors

2000-01-01T23:59:59.000Z

269

Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters  

Science Conference Proceedings (OSTI)

Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ~30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64oC long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

Robert J. Goldston

2010-03-03T23:59:59.000Z

270

Fusion Nuclear Science Facility - Advanced Tokamak Option  

Science Conference Proceedings (OSTI)

Power Plant, Demo, and FNSF / Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2)

C. P. C. Wong; V. S. Chan; A. M. Garofalo; J. A. Leuer; M. E. Sawan; J. P. Smith; R. D. Stambaugh

271

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Modeling and Simulation (NEAMS) Software Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements The purpose of the NEAMS Software V&V Plan is to define what the NEAMS program expects in terms of V&V for the computational models that are developed under NEAMS. NEAMS Software Verification and Validation Plan Requirements Version 0.pdf More Documents & Publications NEAMS Quarterly Report for January-March 2013 Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program Plan CRAD, Assessment Criteria and Guidelines for Determining the Adequacy of Software Used in the Safety Analysis and Design of Defense Nuclear Facilities

272

NREL: Advanced Power Electronics - Laboratory Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Capabilities Key to making hybrid electric and fuel cell vehicles practical is the development of low-cost, high-power integrated power electronics devices. The research...

273

The Fukushima Nuclear Event and its Implications for Nuclear Power  

SciTech Connect

The combined strong earthquake and super tsunami of 12 March 2011 at the Fukushima nuclear power plant imposed the most severe challenges ever experienced at such a facility. Information regarding the plant response and status remains uncertain, but it is clear that severe damage has been sustained, that the plant staff have responded creatively and that the offsite implications are unlikely to be seriously threatening to the health, if not the prosperity, of the surrounding population. Re-examination of the regulatory constraints of nuclear power will occur worldwide, and some changes are likely, particularly concerning reliance upon active systems for achieving critical safety functions and concerning treatments of used reactor fuel. Whether worldwide expansion of the nuclear power economy will be slowed in the long run is perhaps unlikely and worth discussion.

Golay, Michael (MIT)

2011-07-06T23:59:59.000Z

274

The future of nuclear energy: A perspective on nuclear power development  

Science Conference Proceedings (OSTI)

The author begins by discussing the history of nuclear power development in the US. He discusses the challenges for nuclear power such as the proliferation of weapons material, waste management, economics, and safety. He then discusses the future for nuclear power, specifically advanced reactor development. People can all be thankful for nuclear power, for it may well be essential to the long term survival of civilization. Within the seeds of its potential for great good, are also the seeds for great harm. People must ensure that it is applied for great good. What is not in question is whether people can live without it, they cannot. United States leadership is crucial in determining how this technology is developed and applied. The size and capability of the United States technical community is decreasing, a trend that cannot be allowed to continue. It is the author's belief that in the future, the need, the vision and the confidence in nuclear power will be restored, but only if the US addresses the immediate challenges. It is a national challenge worthy of the best people this nation has to offer.

Sackett, J. I.

2000-04-03T23:59:59.000Z

275

Review: Nuclear Power Is Not the Answer by Helen Caldicott  

E-Print Network (OSTI)

Sciences, Pakistan. Helen Caldicott. Nuclear Power Is NotNuclear Information and Resource Service (http://www.nirs.org) Umar Karim Mirza , PakistanNuclear Power Is Not the Answer By Helen Caldicott Reviewed by Umar Karim Mirza Pakistan

Mirza, Umar Karim

2007-01-01T23:59:59.000Z

276

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2mi Donald C Cook Unit 1, Unit 2 2,069 15,646 52.8 Indiana Michigan Power Co Fermi Unit 2 1,085 7,738 26.1 Detroit Edison Co Palisades Unit 1 793 ...

277

Innovation Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems  

DOE Green Energy (OSTI)

The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

Hill, T.; Noble, C.; Martinell, J. (INEEL); Borowski, S. (NASA Glenn Research Center)

2000-07-14T23:59:59.000Z

278

Advanced Fusion Reactors for Space Propulsion and Power Systems  

SciTech Connect

In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

Chapman, John J.

2011-06-15T23:59:59.000Z

279

Advanced LWR Nuclear Fuel Cladding System Development Trade-Off Study  

SciTech Connect

The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system that would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.

Kristine Barrett; Shannon Bragg-Sitton

2012-09-01T23:59:59.000Z

280

Seismic Isolation of Nuclear Power Plants  

Science Conference Proceedings (OSTI)

With increasing public concern for seismic safety in general and research findings that indicate that seismic hazards may be larger than expected in many parts of the world, it would be prudent for the nuclear industry to consider more fully the potential benefits, costs, and impediments associated with applying seismic isolation more widely and to identify actions needed to develop practical and cost-effective guidelines for the application of seismic isolation to nuclear power plants (NPPs) and ...

2013-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Multiple microprocessor based nuclear reactor power monitor  

SciTech Connect

The reactor power monitor is a portable multiple-microprocessor controlled data acquisition device being built for the International Atomic Energy Association. Its function is to measure and record the hourly integrated operating thermal power level of a nuclear reactor for the purpose of detecting unannounced plutonium production. The monitor consists of a /sup 3/He proportional neutron detector, a write-only cassette tape drive and control electronics based on two INTEL 8748 microprocessors. The reactor power monitor operates from house power supplied by the plant operator, but has eight hours of battery backup to cover power interruptions. Both the hourly power levels and any line power interruptions are recorded on tape and in memory. Intermediate dumps from the memory to a data terminal or strip chart recorder can be performed without interrupting data collection.

Lewis, P.S.; Ethridge, C.D.

1979-01-01T23:59:59.000Z

282

Virtual environments for nuclear power plant design  

SciTech Connect

In the design and operation of nuclear power plants, the visualization process inherent in virtual environments (VE) allows for abstract design concepts to be made concrete and simulated without using a physical mock-up. This helps reduce the time and effort required to design and understand the system, thus providing the design team with a less complicated arrangement. Also, the outcome of human interactions with the components and system can be minimized through various testing of scenarios in real-time without the threat of injury to the user or damage to the equipment. If implemented, this will lead to a minimal total design and construction effort for nuclear power plants (NPP).

Brown-VanHoozer, S.A.; Singleterry, R.C. Jr.; King, R.W. [and others

1996-03-01T23:59:59.000Z

283

Nuclear power plant construction activity 1987  

SciTech Connect

This annual report published by the Energy Information Administration (EIA) presents data on nuclear power plant construction activity. The previous report, Nuclear Power Plant Construction Activity 1986, included data for units that, as of December 31, 1986, were (1) in the construction pipeline, (2) canceled, or (3) commercial operation as of December 31, 1986. The data in this report, which were collected on Form EIA-254, ''Semiannual Report on Status of Reactor Construction,'' update the data in the previous report to be current as of December 31, 1987. Three types of information are included: plant characteristics and ownership; construction costs; and construction schedules and milestone dates.

1988-06-09T23:59:59.000Z

284

Yankee nuclear power station license renewal assessment  

Science Conference Proceedings (OSTI)

Nuclear power plants are initially licensed to operate for 40 years. Recent changes to US Nuclear Regulatory Commission regulations allow licenses to be renewed for up to 20 additional years. The new regulations require a comprehensive plant assessment to ensure continued effective aging management of equipment important to license renewal (ILR). Under the industry's lead plant program, Yankee Atomic Electric Company (YAEC) has assisted with development and demonstration of a generic license renewal assessment process. The generic assessment process developed under the lead plant program is the Nuclear Management and Resources Council methodology.

Hinkle, W.D. (Yankee Atomic Electric Co., Bolten, MA (United States))

1992-01-01T23:59:59.000Z

285

$60 Million to Fund Projects Advancing Concentrating Solar Power |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$60 Million to Fund Projects Advancing Concentrating Solar Power $60 Million to Fund Projects Advancing Concentrating Solar Power $60 Million to Fund Projects Advancing Concentrating Solar Power November 8, 2011 - 10:34am Addthis A 101 video on concentrating solar panel systems. | Courtesy of the Energy Department Jesse Gary Solar Energy Technologies Program On Tuesday, October 25, the Energy Department's SunShot initiative announced a $60 million funding opportunity (FOA) to advance concentrating solar power in the United States. The SunShot program seeks to support research into technologies with potential to dramatically increase efficiency, lower costs, and deliver more reliable performance than existing commercial and near-commercial concentrating solar power (CSP) systems. The Department expects to fund 20 to 22 projects, and we encourage

286

$60 Million to Fund Projects Advancing Concentrating Solar Power |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$60 Million to Fund Projects Advancing Concentrating Solar Power $60 Million to Fund Projects Advancing Concentrating Solar Power $60 Million to Fund Projects Advancing Concentrating Solar Power November 8, 2011 - 10:34am Addthis A 101 video on concentrating solar panel systems. | Courtesy of the Energy Department Jesse Gary Solar Energy Technologies Program On Tuesday, October 25, the Energy Department's SunShot initiative announced a $60 million funding opportunity (FOA) to advance concentrating solar power in the United States. The SunShot program seeks to support research into technologies with potential to dramatically increase efficiency, lower costs, and deliver more reliable performance than existing commercial and near-commercial concentrating solar power (CSP) systems. The Department expects to fund 20 to 22 projects, and we encourage

287

Advanced Power Electronics Controllers for Substations  

Science Conference Proceedings (OSTI)

Substations located at various points in the power delivery system serve several purposes. In a broad sense, power substations are installations capable of interrupting or establishing electric circuits and changing the voltage level, frequency, or other characteristic of the electric energy flow. Solid-state power electronic switching devices are continuing to evolve and multi-megawatt solid-state power control systems are becoming increasingly applied in industrial electrical installations. Both have a...

2008-12-17T23:59:59.000Z

288

Interagency Advanced Power Group meeting minutes  

DOE Green Energy (OSTI)

This document contains the minutes and viewgraphs from a meeting of military personnel on the subject of power generation and distribution systems for military applications. Topics include heating and cooling systems for standard shelters, SDIO power programs, solar dynamic space power systems, hybrid solar dynamic/ photovoltaic systems, pulsed power technology, high-{Tc} superconductors, and actuators and other electronic equipment for aerospace vehicles. Attendees represented the US Air Force, Army, Navy, and NASA. (GHH)

Not Available

1991-12-31T23:59:59.000Z

289

Interagency Advanced Power Group meeting minutes  

DOE Green Energy (OSTI)

This document contains the minutes and viewgraphs from a meeting of military personnel on the subject of power generation and distribution systems for military applications. Topics include heating and cooling systems for standard shelters, SDIO power programs, solar dynamic space power systems, hybrid solar dynamic/ photovoltaic systems, pulsed power technology, high-{Tc} superconductors, and actuators and other electronic equipment for aerospace vehicles. Attendees represented the US Air Force, Army, Navy, and NASA. (GHH)

Not Available

1991-01-01T23:59:59.000Z

290

Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant  

U.S. Energy Information Administration (EIA)

snpt3md6011 855 6,755 90.2 PWR 850 7,239 97.2 1,705 13,994 93.7 Calvert Cliffs Nuclear Power Plant Unit Type Data for 2010 PWR = Pressurized Light Water Reactor.

291

FY 2009 Annual Progress Report for Advanced Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

PROGRESS REPORT PROGRESS REPORT FOR ADVANCED POWER ELECTRONICS annual progress report 2009 2009 2009 2009 2009 2009 2009 2009 2009 U.S. Department of Energy FreedomCAR and Vehicle Technologies, EE-2G 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2009 Annual Progress Report for Advanced Power Electronics Prepared by: Susan A. Rogers, Technology Development Manager Submitted to: Energy Efficiency and Renewable Energy Vehicle Technologies Program January 2010 Advanced Power Electronics FY 2009 Progress Report Contents Page Acronyms and Abbreviations ..............................................................................................................v

292

NREL: Advanced Power Electronics - Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Basics Technology Basics Graphic of a small hydrogen-fueled fuel cell vehicle. Check out the interactive graphic of the power electronic components of a hydrogen-fueled fuel cell vehicle. If you drive a car, use a computer, cook with a microwave oven, talk on any type of telephone, listen to a stereo, or use a cordless drill, you use power electronics. Thanks to power electronics, the electricity that runs the things we use every day is processed, filtered, and delivered with maximum efficiency and minimum size and weight. Inside a vehicle's electronic power steering system, power electronics control motors and help move the steering rack. This translates into improved steering response and lower energy consumption. In broad terms, power electronics control the flow of electric power via

293

New Research Center to Increase Safety and Power Output of U.S. Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Research Center to Increase Safety and Power Output of U.S. New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors May 3, 2011 - 3:41pm Addthis Oak Ridge, Tenn. - Today the Department of Energy dedicated the Consortium for Advanced Simulation of Light Water Reactors (CASL), an advanced research facility that will accelerate the advancement of nuclear reactor technology. CASL researchers are using supercomputers to study the performance of light water reactors and to develop highly sophisticated modeling that will help accelerate upgrades at existing U.S. nuclear plants. These upgrades could improve the energy output of our existing reactor fleet by as much as seven reactors' worth at a fraction of the cost of building new reactors, while providing continued improvements in

294

Projects Selected to Advance Innovative Materials for Fossil Energy Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Selected to Advance Innovative Materials for Fossil Energy Selected to Advance Innovative Materials for Fossil Energy Power Systems Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems September 14, 2010 - 1:00pm Addthis Washington, DC - Four projects that will develop capabilities for designing sophisticated materials that can withstand the harsh environments of advanced fossil energy power systems have been selected by the U.S. Department of Energy. The projects will develop computational capabilities for designing materials with unique thermal, chemical and mechanical properties necessary for withstanding the high temperatures and extreme environments of advanced energy systems. These innovative systems are both fuel efficient and produce lower amounts of emissions, including carbon dioxide for permanent

295

Projects Selected to Advance Innovative Materials for Fossil Energy Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Selected to Advance Innovative Materials for Fossil Energy Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems September 14, 2010 - 1:00pm Addthis Washington, DC - Four projects that will develop capabilities for designing sophisticated materials that can withstand the harsh environments of advanced fossil energy power systems have been selected by the U.S. Department of Energy. The projects will develop computational capabilities for designing materials with unique thermal, chemical and mechanical properties necessary for withstanding the high temperatures and extreme environments of advanced energy systems. These innovative systems are both fuel efficient and produce lower amounts of emissions, including carbon dioxide for permanent

296

Current Comparison of Advanced Nuclear Fuel Cycles  

SciTech Connect

This paper compares potential nuclear fuel cycle strategies – once-through, recycling in thermal reactors, sustained recycle with a mix of thermal and fast reactors, and sustained recycle with fast reactors. Initiation of recycle starts the draw-down of weapons-usable material and starts accruing improvements for geologic repositories and energy sustainability. It reduces the motivation to search for potential second geologic repository sites. Recycle in thermal-spectru

Steven Piet; Trond Bjornard; Brent Dixon; Robert Hill; Gretchen Matthern; David Shropshire

2007-04-01T23:59:59.000Z

297

Advanced Nuclear Technology: Potential Modification to Source Term Requirements  

Science Conference Proceedings (OSTI)

The U.S. Nuclear Regulatory Commission’s Regulatory Guide 1.183 (RG 1.183), “Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors” describes a method that the staff of the Nuclear Regulatory Commission considers acceptable in complying with alternative source term regulations for design basis accident dose consequence analysis. RG 1.183 establishes the alternative source term based onNUREG-1465, “Accident ...

2013-03-27T23:59:59.000Z

298

Advanced Electrostatic Precipitator (ESP) Power Supplies Update  

Science Conference Proceedings (OSTI)

Manufacturers of new, high-frequency power supplies for electrostatic precipitators (ESPs) have continued to push the development of this technology steadily forward since the last EPRI report on the subject was published. The capacity of these new power supplies continues to grow and the reliability issues identified in the early applications are being steadily resolved. This report contains a description of the technology behind the new power supplies and an update on recent applications and future pla...

2006-03-27T23:59:59.000Z

299

MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR  

DOE Patents (OSTI)

This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

Balent, R.

1963-03-12T23:59:59.000Z

300

Updated Costs for Decommissioning Nuclear Power Facilities  

Science Conference Proceedings (OSTI)

This update of 1978 NRC cost estimates--in 1984 dollars--also estimates the costs of several special manpower and licensing options for decommissioning nuclear power facilities. The fully developed methodology offers utilities a sound basis on which to estimate the costs of decommissioning specific plants.

1985-05-13T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Groundwater Monitoring Guidance for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Recent experience has shown that the initial design of nuclear power plant groundwater characterization programs can have a significant impact upon the resources needed to demonstrate regulatory compliance. This document provides technical experience and lessons learned in designing an optimized groundwater investigation program.

2005-09-06T23:59:59.000Z

302

Nuclear Power Technology for the Future  

DOE Green Energy (OSTI)

Ensuring sufficient energy for electricity, fresh water and transportation represents a major challenge for this century. Energy demand will increase dramatically as developing countries improve their standards of living. Nuclear power will become an increasingly important source of energy for production of electricity, fresh water and hydrogen as transportation fuel. Hydrocarbon sources of energy are not acceptable in the long term because of global warming and uneven supply. To ensure that nuclear power can meet this challenge, improved technologies are required to address the problems of nuclear waste, management of nuclear materials and safety as many more nuclear plants are built. These technologies are being developed at Argonne National Laboratory as part of the DOE international program of Generation IV reactors. Essential to meeting these challenges is the development of fast-spectrum nuclear reactors for which fuel and fission products are recycled to the reactor to be 'burned'. I will discuss work on fast-spectrum reactor and fuel-cycle design. The technologies discussed will be 'passively safe' reactor design and 'pyroprocessing' for fuel reprocessing.

Sackett, John I. (ANL)

2003-07-23T23:59:59.000Z

303

South Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina nuclear power plants, summer capacity and net generation, 2010" South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Catawba Unit 1, Unit 2","2,258","18,964",36.5,"Duke Energy Carolinas, LLC" "H B Robinson Unit 2",724,"3,594",6.9,"Progress Energy Carolinas Inc" "Oconee Unit 1, Unit 2, Unit 3","2,538","20,943",40.3,"Duke Energy Carolinas, LLC" "V C Summer Unit 1",966,"8,487",16.3,"South Carolina Electric&Gas Co" "4 Plants 7 Reactors","6,486","51,988",100.0

304

Results of Laboratory Testing of Advanced Power Strips: Preprint  

Science Conference Proceedings (OSTI)

This paper describes the results of a laboratory investigation to evaluate the technical performance of advanced power strip (APS) devices when subjected to a range of home entertainment center and home office usage scenarios.

Earle, L.; Sparn, B.

2012-08-01T23:59:59.000Z

305

Human factors aspects of advanced instrumentation in the nuclear industry  

SciTech Connect

An important consideration in regards to the use of advanced instrumentation in the nuclear industry is the interface between the instrumentation system and the human. A survey, oriented towards identifying the human factors aspects of digital instrumentation, was conducted at a number of United States (US) and Canadian nuclear vendors and utilities. Human factors issues, subsumed under the categories of computer-generated displays, controls, organizational support, training, and related topics were identified. 20 refs., 2 tabs.

Carter, R.J.

1989-01-01T23:59:59.000Z

306

NREL: Advanced Power Electronics - Working with Us  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with Us Working with Us Interaction with industrial, university, and government partners is key to moving advanced vehicle and fuels technologies into the marketplace and the U.S. economy. There are a variety of ways to get involved with NREL's advanced vehicle and fuels research activities: Work collaboratively with NREL through a variety of Technology Partnership Agreements. We can assist you in selecting which agreement is most appropriate for your research project. Gain access to the Center for Transportation Technologies and Systems expertise and specialized research facilities through an Analytical Services Agreement (ASA). In addition, NREL's patented transportation technologies are available for commercialization and NREL's vehicles and fuels research facilities are

307

Global nuclear power supply chains and the rise of China's nuclear industry  

E-Print Network (OSTI)

China has embarked on a massive expansion of nuclear power that may fundamentally change the global nuclear industry, for better or for worse. Some industry observers argue that the incumbent nuclear power companies are ...

Metzler, Florian

2012-01-01T23:59:59.000Z

308

Audit of Funding for Advanced Radioisotope Power Systems, IG-0413  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 17, 1997 October 17, 1997 MEMORANDUM FOR THE SECRETARY FROM: John C. Layton Inspector General SUBJECT: INFORMATION: "Audit of Funding for Advanced Radioisotope Power Systems" BACKGROUND: The Department of Energy's (Department) Advanced Radioisotope Power Systems Program maintains the sole national capability and facilities to produce radioisotope power systems for the National Aeronautics and Space Administration (NASA), the Department of Defense, and other Federal agencies. For the past seven years the program emphasis has been on providing power systems for NASA's Cassini mission to Saturn, which was launched earlier this month. We initiated this audit to determine whether the

309

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

Feb 16, 2007 ... Topic Title: WEB RESOURCE: Nuclear Energy Institute Topic Summary: Timely coverage of developments in the the nuclear power industry

310

Overview of Trends in Nuclear Power Plant Sensors and Instrumentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in Nuclear Power Plant Sensors and Instrumentation SASAN BAKTIARI Nuclear Engineering Division Argonne National Laboratory Ph: (630) 252-8982 bakhtiati@anl.gov Abstract -...

311

Deputy Secretary Poneman Delivers Remarks on Nuclear Power at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ranging from preventing the proliferation of nuclear weapons and confronting North Korea, to power generation and operational safety at civil nuclear plants, to deep...

312

How much electricity does a typical nuclear power plant generate ...  

U.S. Energy Information Administration (EIA)

... (kWh). There were 65 nuclear power plants with 104 operating nuclear reactors that generated a total of 790 billion kilowatt-hours (kWh), ...

313

Advanced Power Systems and Controls Laboratory  

E-Print Network (OSTI)

. Conclusions As utility scale PV and rooftop solar PV become commonplace on our electric grid, battery energy Solar Power Generation Introduction The rapid growth of wind and solar power is a key driver of the development of grid-scale Battery Energy Storage Systems (BESS). A well implemented BESS co-located with solar

314

Nuclear Power Engineering Education Program, University of Illinois  

SciTech Connect

The DOE/CECo Nuclear Power Engineering Education Program at the University of Illinois in its first year has significantly impacted the quality of the power education which our students receive. It has contributed to: the recently completed upgrade of the console of our Advanced TRIGA reactor which increases the reactor's utility for training, the procurement of new equipment to upgrade and refurbish several of the undergraduate laboratory set-ups, and the procurement of computational workstations in support of the instructional computing laboratory. In addition, smaller amounts of funds were used for the recruitment and retention of top quality graduate students, the support of faculty to visit other institutions to attract top students into the discipline, and to provide funds for faculty to participate in short courses to improve their skills and background in the power area. These items and activities have helped elevate in the student's perspective the role of nuclear power in the discipline. We feel this is having a favorable impact on student career selection and on ensuring the continued supply of well educated nuclear engineering graduates.

Jones, B.G.

1993-01-01T23:59:59.000Z

315

Evidence from U.S. Nuclear Power  

E-Print Network (OSTI)

For the first four decades of its existence the U.S. nuclear power industry was run by regulated utilities, with most companies owning only one or two reactors. Beginning in the late 1990s electricity markets in many states were deregulated and almost half of the nation’s 103 reactors were sold to independent power producers selling power in competitive wholesale markets. Deregulation has been accompanied by substantial market consolidation and today the three largest companies control more than one?third of all U.S. nuclear capacity. We find that deregulation and consolidation are associated with a 10 percent increase in operating efficiency, achieved primarily by reducing the frequency and duration of reactor outages. At average wholesale prices the value of this increased efficiency is approximately $2.5 billion annually and implies an annual decrease of almost 40 million metric tons of

Lucas W. Davis; Catherine Wolfram; Lucas W. Davis; Catherine Wolfram

2011-01-01T23:59:59.000Z

316

Space Nuclear Power: Opening the Final Frontier  

E-Print Network (OSTI)

Nuclear power sources have enabled or enhanced some of the most challenging and exciting space missions yet conducted, including missions such as the Pioneer flights to Jupiter, Saturn, and beyond; the Voyager flights to Jupiter, Saturn, Uranus, Neptune, and beyond; the Apollo lunar surface experiments; the Viking Lander studies of Mars; the Ulysses mission to study the polar regions of the Sun; the Galileo mission that orbited Jupiter; the Cassini mission orbiting Saturn and the recently launched New Horizons mission to Pluto. In addition, radioisotope heater units have enhanced or enabled the Mars exploration rover missions (Sojourner, Spirit and Opportunity). Since 1961, the United States has successfully flown 41 radioisotope thermoelectric generators (RTGs) and one reactor to provide power for 24 space systems. The former Soviet Union has reportedly flown at least 35 nuclear reactors and at least two RTGs to power 37 space systems. 1.

Gary L. Bennett

2006-01-01T23:59:59.000Z

317

Nuclear Power - Contributing to U.S. Energy Needs in the 21st Century?  

NLE Websites -- All DOE Office Websites (Extended Search)

Power - Contributing to U.S. Energy Power - Contributing to U.S. Energy Needs in the 21st Century? - Waste Management Challenges, and Advanced Nuclear Fuel Cycle R&D University of Wisconsin, Women in Nuclear seminar W. Mark Nutt Nuclear Engineering Division Argonne National Laboratory November 19, 2010 Outline  The "Problem"  Electricity Sources: Distributed and Concentrated  Current U.S. and World-Wide Reactors  Performance of the Current Fleet  Relicensing and Continued Sustainability  New Builds and Issues (the "Renaissance")  Use Fuel Management and Disposition  Advanced Fuel Cycles R&D 2 November 19, 2010 University of Wisconsin, Women in Nuclear Seminar Nuclear power is part of a complex technical,

318

Transactions of the fourth symposium on space nuclear power systems  

DOE Green Energy (OSTI)

This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

El-Genk, M.S.; Hoover, M.D. (eds.)

1987-01-01T23:59:59.000Z

319

Transactions of the fifth symposium on space nuclear power systems  

Science Conference Proceedings (OSTI)

This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

El-Genk, M.S.; Hoover, M.D. (eds.)

1988-01-01T23:59:59.000Z

320

MIT - Center for Advanced Nuclear Energy Systems | Open Energy Information  

Open Energy Info (EERE)

MIT - Center for Advanced Nuclear Energy Systems MIT - Center for Advanced Nuclear Energy Systems Jump to: navigation, search Logo: MIT - Center for Advanced Nuclear Energy Systems Name MIT - Center for Advanced Nuclear Energy Systems Address 77 Massachusetts Avenue, 24-215 Place Cambridge, Massachusetts Zip 02139-4307 Phone number (617) 452-2660 Coordinates 42.3613041°, -71.0967653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3613041,"lon":-71.0967653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced Nuclear Fuel Cycles -- Main Challenges and Strategic Choices  

Science Conference Proceedings (OSTI)

This report presents the results of a critical review of the technological challenges to the growth of nuclear energy, emerging advanced technologies that would have to be deployed, and fuel cycle strategies that could conceivably involve interim storage, plutonium recycling in thermal and fast reactors, reprocessed uranium recycling, and transmutation of minor actinide elements and fission products before eventual disposal of residual wastes.

2010-09-02T23:59:59.000Z

322

Management of National Nuclear Power Programs for assured safety  

SciTech Connect

Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

Connolly, T.J. (ed.)

1985-01-01T23:59:59.000Z

323

Coal and nuclear power: Illinois' energy future  

SciTech Connect

This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

Not Available

1982-01-01T23:59:59.000Z

324

Summary of space nuclear reactor power systems, 1983--1992  

DOE Green Energy (OSTI)

This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

Buden, D.

1993-08-11T23:59:59.000Z

325

Advanced Nuclear Technology Advanced Light Water Reactor Utility Requirements Document, Revision 12  

Science Conference Proceedings (OSTI)

The utility requirement document (URD) is an industry-developed technical foundation for the design of advanced light water reactors (ALWRs). It was created with the objective of providing a comprehensive set of plant functional requirements that are considered important to utilities considering the construction of a nuclear plant and in ensuring successful deployment and operation of the plant. The scope of the URD is broad, addressing the entire plant (including the nuclear steam supply system, ...

2013-12-16T23:59:59.000Z

326

Advanced Power Supplies: Scoping Study and Technology Assessment  

Science Conference Proceedings (OSTI)

This report provides a scoping study and a technology assessment for advanced power supplies in three target markets: residential, commercial, and industrial. The study focuses on two general categories of applications that create additional value for utility end users: applications where electrotechnologies create opportunity for increased use of electricity, or where new processes based on power electronics and electricity can replace traditional methods.

1998-04-27T23:59:59.000Z

327

Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters  

Science Conference Proceedings (OSTI)

Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ~12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ~30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

Robert J. Goldston

2011-04-28T23:59:59.000Z

328

Japan depends significantly on nuclear power to meet its ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, ... the contribution of nuclear power to electricity production is more stable at 19% to 20%.

329

Recent Progress in U.S. Nuclear Power Plant Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Recent Progress in U.S. Nuclear Power Plant Safety Speaker(s): Robert Budnitz Date: April 15, 2010 - 12:00pm Location: 90-3122 The U.S. commercial nuclear-power industry consists...

330

SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS  

E-Print Network (OSTI)

SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS Piero Baraldi between those used to monitor the reactor coolant pump of a Pressurized Water Reactor (PWR) is considered Monitoring, Empirical Modeling, Power Plants, Safety Critical Nuclear Instrumentation, Autoassociative models

331

"Ensuring Nuclear Power is Both Peaceful and Plentiful" | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

"Ensuring Nuclear Power is Both Peaceful and Plentiful" "Ensuring Nuclear Power is Both Peaceful and Plentiful" September 21, 2010 - 6:33pm Addthis Secretary Chu speaks at the...

332

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... The "Inside a Nuclear Power Plant" section of this web page gives a brief and very basic introduction to the major systems in a nuclear power ...

333

Nuclear power and prima facie duties towards future people  

Science Conference Proceedings (OSTI)

Before assessing the desirability of nuclear power we first need to narrow down the focus on its potential and its impediments. Within the technological possibilities of nuclear power production, I shall formulate two prima facie duties for safeguarding ...

Behnam Taebi

2009-05-01T23:59:59.000Z

334

Advanced LWR Nuclear Fuel Cladding System Development Trade-off Study |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LWR Nuclear Fuel Cladding System Development Trade-off LWR Nuclear Fuel Cladding System Development Trade-off Study Advanced LWR Nuclear Fuel Cladding System Development Trade-off Study The LWR Sustainability (LWRS) Program activities must support the timeline dictated by utility life extension decisions to demonstrate a lead test rod in a commercial reactor within 10 years. In order to maintain the demanding development schedule that must accompany this aggressive timeline, the LWRS Program focuses on advanced fuel cladding systems that retain standard UO2 fuel pellets for deployment in currently operating LWR power plants. The LWRS work scope focuses on fuel system components outside of the fuel pellet, allowing for alteration of the existing zirconium-based clad system through coatings, addition of ceramic sleeves, or complete replacement

335

MARKET-BASED ADVANCED COAL POWER SYSTEMS FINAL REPORT  

NLE Websites -- All DOE Office Websites (Extended Search)

MARKET-BASED ADVANCED MARKET-BASED ADVANCED COAL POWER SYSTEMS FINAL REPORT MAY 1999 DOE/FE-0400 U.S. Department of Energy Office of Fossil Energy Washington, DC 20585 Market-Based Advanced Coal Power Systems 1-1 December 1998 1. INTRODUCTION As deregulation unfolds and privatization of the utility market takes shape, priorities for power plant economics have shifted toward those of a "bottom-line" business and away from a regulated industry. Competition in utility generation and the exposure risks of large capital investments have led to a preference to minimize capital costs and fixed and variable operation and maintenance costs. With global competition from independent power producers (IPPs), non- utility generators, and utilities, the present trend of investments is with conventional pulverized

336

Calling All Coders: Help Advance America's Ocean Power Industry |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calling All Coders: Help Advance America's Ocean Power Industry Calling All Coders: Help Advance America's Ocean Power Industry Calling All Coders: Help Advance America's Ocean Power Industry December 10, 2013 - 3:57pm Addthis The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. | Graphic courtesy of TopCoder The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. | Graphic courtesy of TopCoder Alison LaBonte Marine and Hydrokinetic Technology Manager Brooke White Oceanographer, Water Power Program

337

Materials for Nuclear Power: Digital Resource Center Text Topic  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... CITATION: Technology and Applied R&D Needs for Advanced Nuclear Energy Systems, Office of Science, U. S. Department of Energy, June ...

338

Materials for Nuclear Power: Digital Resource Center - ARTICLES ...  

Science Conference Proceedings (OSTI)

Sep 12, 2007 ... Use the link provided below to access the following articles featured in the April 2007 issue of JOM: "Materials for Advanced Nuclear Systems," ...

339

The Management of Aging in Nuclear Power Plant Concrete Structures  

Science Conference Proceedings (OSTI)

An example of application of structural reliability theory to investigate the impact of ... Cladding and Duct Materials for Advanced Nuclear Recycle Reactors

340

Advanced Graphics for Power System Operation  

Science Conference Proceedings (OSTI)

The secure operation of an electric utility system with its many interconnections presents a complex problem, with large quantities of data to be processed at the system control center. EPRI investigators have developed a new graphical user interface that will enable power system operators to perform tasks more accurately and quickly.

1994-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Radiological characterization of Yankee Nuclear Power Station  

SciTech Connect

The Yankee nuclear power station located in Rowe, Massachusetts, permanently ceased power operations on February 26, 1992, after 31 yr of operation. Yankee has since initiated decommissioning planning activities. A significant component of these activities is the determination of the extent of radiological contamination of the Yankee site. This paper describes the site radiological characterization program that has been implemented for decommissioning the Yankee plant. Radiological scoping surveys were completed to support submittal of a decommissioning plan to the U.S. Nuclear Regulatory Commission (NRC) by October 1, 1993. These surveys were designed to provide sufficient detail to estimate the extent of contamination, volume of radiological waste, activity of radiological waste, and personnel dose estimates for removal activities. Surveys were conducted both inside and on the grounds outside of the Yankee plant buildings. Survey results were combined with analytical evaluations to characterize the Yankee site.

Bellini, F.X.; Cumming, E.R.; Hollenbeck, P. (Yankee Atomic Electric Co., Bolton, MA (United States))

1993-01-01T23:59:59.000Z

342

nuclear energy legislation on track  

Science Conference Proceedings (OSTI)

07/8 - NUCLEAR ENERGY LEGISLATION ON TRACK ... the safety and economic viability of nuclear power, the management of nuclear waste, the advancement ...

343

Nuclear Power Plant NDE Challenges — Past, Present, and Future  

Science Conference Proceedings (OSTI)

The operating fleet of U.S. nuclear power plants was built to fossil plant standards (of workmanship

S. R. Doctor

2007-01-01T23:59:59.000Z

344

Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant  

Energy.gov (U.S. Department of Energy (DOE))

NNSA presentation on Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant from May 13, 2011

345

Environmental Degradation of Materials in Nuclear Power Systems ...  

Science Conference Proceedings (OSTI)

Recapping the Environmental Degradation of Materials in Nuclear Power ... The conference hosted utility engineers, reactor vendor engineers, plant architect ...

346

NIST Processes to Help Build Next-Generation Nuclear Power ...  

Science Conference Proceedings (OSTI)

NIST Processes to Help Build Next-Generation Nuclear Power Plants. From NIST Tech Beat: June 2, 2009. ...

2011-04-04T23:59:59.000Z

347

Engineering Fundamentals - Nuclear Power Plant Materials, Version 2.0  

Science Conference Proceedings (OSTI)

The Engineering Fundamentals - Nuclear Power Plant Materials (EF-Materials) Version 2.0 computer-based training module provides new-hire engineering personnel with an overview of the basic concepts of nuclear power plant materials. Graphics and interactive features are used to enhance learning.EF-Materials covers the basic terms and concepts related to nuclear power plant materials and provides information about the significance of material degradation issues in nuclear power plants. ...

2012-11-30T23:59:59.000Z

348

Environmental Degradation of Materials in Nuclear Power Systems ...  

Science Conference Proceedings (OSTI)

Environmental Degradation of Materials in Nuclear Power Systems—Water ... problems associated with spent fuel storage and radioactive waste disposal.

349

Materials for Nuclear Power: Digital Resource Center - 15th Int'l ...  

Science Conference Proceedings (OSTI)

Apr 14, 2011... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science ... 15th Int'l Conference on Environmental Degradation in Nuclear Power ...

350

Program on Technology Innovation: Comparative Radiological Risk Assessment of Advanced Nuclear Fuel Cycles  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is working to develop tools to support long-term strategic planning for research, development, and demonstration (RDD) of advanced nuclear fuel cycle technologies for electricity generation. The research described in this EPRI progress report supports the larger decision framework endeavor and intends to provide a standalone usable tool. Two strategic issues are addressed: radioactive and chemical waste management and safety (both radiological and chemical). U...

2012-05-21T23:59:59.000Z

351

A knowledge representation model for the nuclear power generation domain  

Science Conference Proceedings (OSTI)

A knowledge representation model for the nuclear power field is proposed. The model is a generalized production rule function inspired by a neural network approach that enables the representation of physical systems of nuclear power plants. The article ... Keywords: Knowledge representation, Nuclear power plant, Physical systems, Production rules

Thiago Tinoco Pires

2007-11-01T23:59:59.000Z

352

Recent advances in RF power generation  

SciTech Connect

This paper is a review of the progress and methods used in RF generation for particle accelerators. The frequencies of interest are from a few megahertz to 100 GHz, and the powers are for super linear collider applications, but in this case the pulses are short, generally below 1 {mu}s. The very high-power, short-pulse generators are only lightly reviewed here, and for more details the reader should follow the specialized references. Different RF generators excel over various parts of the frequency spectrum. Below 100 MHz solid-state devices and gridded tubes prevail, while the region between 400 MHz and 3 GHz, the cyclotron-resonant devices predominate, and above 250 GHz, Free-Electron Lasers and ubitrons are the most powerful generators. The emphasis for this review is on microwave generation at frequencies below 20 GHz, so the cyclotron-resonant devices are only partially reviewed, while the progress on free-electron laser and ubitrons is not reviewed in this paper. 39 refs., 4 figs.

Tallerico, P.J.

1990-01-01T23:59:59.000Z

353

Nuclear power generation and fuel cycle report 1997  

SciTech Connect

Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

1997-09-01T23:59:59.000Z

354

Executive Summary: Research in Nuclear Power—Workshop on the Needs of the Next Generation of Nuclear Power Technology  

Science Conference Proceedings (OSTI)

Technical Paper / NSF Workshop on the Research Needs of the Next Generation Nuclear Power Technology / Fission Reactor

A. David Rossin; Kunmo Chung; K. L. Peddicord

355

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

DOE Green Energy (OSTI)

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

356

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

SciTech Connect

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

357

Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006  

Science Conference Proceedings (OSTI)

The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.

Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

2006-10-01T23:59:59.000Z

358

CoalFleet Guideline for Advanced Pulverized Coal Power Plants  

Science Conference Proceedings (OSTI)

The CoalFleet Guideline for Advanced Pulverized Coal Power Plants provides an overview of state-of-the art and emerging technologies for pulverized coal-fired generating units along with lessons learned for current plants worldwide. The Guideline aims to facilitate the timely deployment of reliable, next-generation generating units that incorporate: Higher steam conditions for higher efficiency and reduced generation of pollutants Advanced environmental controls for reduced emissions and environmental im...

2007-03-30T23:59:59.000Z

359

Software Framework for Advanced Power Plant Simulations  

SciTech Connect

This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. These include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.

John Widmann; Sorin Munteanu; Aseem Jain; Pankaj Gupta; Mark Moales; Erik Ferguson; Lewis Collins; David Sloan; Woodrow Fiveland; Yi-dong Lang; Larry Biegler; Michael Locke; Simon Lingard; Jay Yun

2010-08-01T23:59:59.000Z

360

Development of a propulsion system and component test facility for advanced radioisotope powered Mars Hopper platforms  

DOE Green Energy (OSTI)

Verification and validation of design and modeling activities for radioisotope powered Mars Hopper platforms undertaken at the Center for Space Nuclear Research is essential for proof of concept. Previous research at the center has driven the selection of advanced material combinations; some of which require specialized handling capabilities. The development of a closed and contained test facility to forward this research is discussed within this paper.

Robert C. O'Brien; Nathan D. Jerred; Steven D. Howe

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Georgia Power - Small and Medium Scale Advanced Solar Initiative (GPASI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Power - Small and Medium Scale Advanced Solar Initiative Georgia Power - Small and Medium Scale Advanced Solar Initiative (GPASI) (Georgia) Georgia Power - Small and Medium Scale Advanced Solar Initiative (GPASI) (Georgia) < Back Eligibility Agricultural Commercial General Public/Consumer Installer/Contractor Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info Start Date 03/01/2013 State Georgia Program Type Other Incentive Provider GPASI Project Manager '''''Note: The application process for the small and medium scale solar programs began on March 1, 2013 and will continue through March 11, 2013. If completed applications exceed program capacity limit of 45 megawatts (MW), a lottery will be conducted, with Georgia Public Service Commission

362

Nuclear Power Generating Facilities (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Radiation Control Program The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in Maine. The Legislature

363

Fuel cell and advanced turbine power cycle  

SciTech Connect

Solar has a vested interest in integration of gas turbines and high temperature fuels (particularly solid oxide fuel cells[SOFC]); this would be a backup for achieving efficiencies on the order of 60% with low exhaust emissions. Preferred cycle is with the fuel cell as a topping system to the gas turbine; bottoming arrangements (fuel cells using the gas turbine exhaust as air supply) would likely be both larger and less efficient unless complex steam bottoming systems are added. The combined SOFC and gas turbine will have an advantage because it will have lower NOx emissions than any heat engine system. Market niche for initial product entry will be the dispersed or distributed power market in nonattainment areas. First entry will be of 1-2 MW units between the years 2000 and 2004. Development requirements are outlined for both the fuel cell and the gas turbine.

White, D.J.

1996-12-31T23:59:59.000Z

364

Report on audit of funding for advanced radioisotope power systems  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy`s (Department) Advanced Radioisotope Power Systems Program maintains the sole national capability and facilities to produce radioisotope power systems for the National Aeronautics and Space Administration (NASA), the Department of Defense, and other Federal agencies. Projects are conducted with these agencies in accordance with written agreements and are dependent on cost sharing by the user agencies. For the past seven years the program emphasis has been on providing power systems for NASA`s Cassini mission to Saturn, which was launched earlier this month. We initiated this audit to determine whether the Department received proper reimbursement from NASA for the radioisotope power systems produced.

NONE

1997-10-17T23:59:59.000Z

365

Secretary Chu Visits Vogtle Nuclear Power Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vogtle Nuclear Power Plant Vogtle Nuclear Power Plant Secretary Chu Visits Vogtle Nuclear Power Plant February 15, 2012 - 3:54pm Addthis Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in the United States in three decades. | Image credit: Southern Company. Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in the United States in three decades. | Image credit: Southern Company. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Just over 60 years ago, scientists in Arco, Idaho, successfully used nuclear energy to power four light bulbs, laying the foundation for U.S.

366

Reducing Office Plug Loads through Simple and Inexpensive Advanced Power Strips: Preprint  

SciTech Connect

This paper documents the process (and results) of applying Advanced Power Strips with various control approaches.

Metzger, I.; Sheppy, M.; Cutler, D.

2013-07-01T23:59:59.000Z

367

Groundwater Protection Guidelines for Nuclear Power Plants: Revision 1  

Science Conference Proceedings (OSTI)

The United States nuclear power industry has undertaken a Groundwater Protection Initiative [NEI 07-07] at the direction of the Nuclear Energy Institute (NEI) Nuclear Strategic Issues Advisory Committee (NSIAC). International nuclear power plants implement groundwater protection programs to ensure appropriate management of on-site groundwater and protection of the public and environment. This Electric Power Research Institute (EPRI) guideline provides essential technical guidance to utilities on the ...

2013-10-29T23:59:59.000Z

368

Foundational development of an advanced nuclear reactor integrated safety code.  

SciTech Connect

This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

2010-02-01T23:59:59.000Z

369

Nuclear power generation and fuel cycle report 1996  

SciTech Connect

This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

NONE

1996-10-01T23:59:59.000Z

370

Human Factors Considerations in New Nuclear Power Plants: Detailed Analysis.  

Science Conference Proceedings (OSTI)

This Nuclear Regulatory Commission (NRC) sponsored study has identified human-performance issues in new and advanced nuclear power plants. To identify the issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were organized into seven high-level HFE topic areas: Role of Personnel and Automation, Staffing and Training, Normal Operations Management, Disturbance and Emergency Management, Maintenance and Change Management, Plant Design and Construction, and HFE Methods and Tools. The issues where then prioritized into four categories using a 'Phenomena Identification and Ranking Table' methodology based on evaluations provided by 14 independent subject matter experts. The subject matter experts were knowledgeable in a variety of disciplines. Vendors, utilities, research organizations and regulators all participated. Twenty issues were categorized into the top priority category. This Brookhaven National Laboratory (BNL) technical report provides the detailed methodology, issue analysis, and results. A summary of the results of this study can be found in NUREG/CR-6947. The research performed for this project has identified a large number of human-performance issues for new control stations and new nuclear power plant designs. The information gathered in this project can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas through regulatory research. Addressing human-performance issues will provide the technical basis from which regulatory review guidance can be developed to meet these challenges. The availability of this review guidance will help set clear expectations for how the NRC staff will evaluate new designs, reduce regulatory uncertainty, and provide a well-defined path to new nuclear power plant licensing.

OHara,J.; Higgins, J.; Brown, W.; Fink, R.

2008-02-14T23:59:59.000Z

371

The AMP (Advanced MultiPhysics) Nuclear Fuel Performance Code  

Science Conference Proceedings (OSTI)

The AMP (Advanced MultiPhysics) Nuclear Fuel Performance code is a new, three-dimensional, multi-physics tool that uses state-of-the-art solution methods and validated nuclear fuel models to simulate the nominal operation and anticipated operational transients of nuclear fuel. The AMP Nuclear Fuel Performance code leverages existing validated material models from traditional fuel performance codes and the Scale/ORIGEN-S spent-fuel characterization code to provide an initial capability that is shown to be sufficiently accurate for a single benchmark problem and anticipated to be accurate for a broad range of problems. The thermomechanics-chemical foundation can be solved in a time-dependent or quasi-static approach with any variation of operator-split or fully-coupled solutions at each time step. The AMP Nuclear Fuel Performance code provides interoperable interfaces to leading computational mathematics tools, which will simplify the integration of the code into existing parallel code suites for reactor simulation or lower-length-scale coupling. A baseline validation of the AMP Nuclear Fuel Performance code has been performed through the modeling of an experiment in the Halden Reactor Project (IFA-432), which is the first validation problem incorporated in the FRAPCON Integral Assessment report.

Clarno, Kevin T [ORNL; Philip, Bobby [ORNL; Cochran, Bill [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Barai, Pallab [ORNL; Simunovic, Srdjan [ORNL; Ott, Larry J [ORNL; Pannala, Sreekanth [ORNL; Dilts, Gary A [ORNL; Mihaila, Bogdan [ORNL; Yesilyurt, Gokhan [ORNL; Lee, Jung Ho [Argonne National Laboratory (ANL); Banfield, James E [ORNL; Berrill, Mark A [ORNL

2012-01-01T23:59:59.000Z

372

Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.  

SciTech Connect

This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

2006-12-11T23:59:59.000Z

373

BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS  

DOE Green Energy (OSTI)

A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated system that exceeds the U.S. Department of Energy (DOE) goal of 40% (HHV) efficiency at emission levels well below the DOE suggested limits; and (5) An advanced biofueled power system whose levelized cost of electricity can be competitive with other new power system alternatives.

David Liscinsky

2002-10-20T23:59:59.000Z

374

Power generation from nuclear reactors in aerospace applications  

SciTech Connect

Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

English, R.E.

1982-01-01T23:59:59.000Z

375

Power generation from nuclear reactors in aerospace applications  

SciTech Connect

Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

English, R.E.

1982-01-01T23:59:59.000Z

376

Determining Yankee Nuclear Power Station neutron activation  

Science Conference Proceedings (OSTI)

The Yankee nuclear power station located in Rowe, Massachusetts, permanently ceased power operations on February 26, 1992, after 31 yr of operation. Yankee has since initiated decommissioning planning activities. A significant component of these activities is a determination of the extent of radiological contamination of the Yankee site. Included in this effort was determination of the extent of neutron activation of plant components. This paper describes the determination of the neutron activation of the Yankee reactor vessel, associated internals, and surrounding structures. The Yankee reactor vessel is a 600-MW(thermal) stainless steel-lined, carbon steel vessel with stainless steel internal components designed by Westinghouse. The reactor vessel is surrounded and supported by a carbon steel neutron shield tank that was filled with chromated water during plant operation. A 5-ft-thick concrete biological shield wall surrounds the neutron shield tank. A project is under way to remove the reactor vessel internals from the reactor vessel.

Heider, K.J.; Morrissey, K.J. (Yankee Atomic Electric Co., Bolton, MA (United States))

1993-01-01T23:59:59.000Z

377

Prospects for U.S. Nuclear Power After Fukushima  

E-Print Network (OSTI)

The prospects for a revival of U.S. nuclear power were dim even before the tragic events at the Fukushima nuclear plant. Nuclear power has long been controversial because of concerns about nuclear accidents, proliferation risk, and the storage of spent fuel. These concerns are real and important. In the end, however, the key challenge for U.S. nuclear power is the high cost of construction for nuclear reactors. This article reviews the historical record of reactor orders and construction costs in the United States, highlighting some of the insights from the cancellations and cost overruns that have characterized the industry.

Lucas W. Davis; Lucas W. Davis

2011-01-01T23:59:59.000Z

378

Interagency Advanced Power Group -- Steering group meeting minutes  

DOE Green Energy (OSTI)

This document contains the draft meeting minutes of the Steering Group of the Interagency Advanced Power Group. Included are the discussions resulting from the presentation of working group reports and the results of a discussion of IAPG policies and procedures. In the appendix are the reports of the following working groups: Electrical, Mechanical, Solar, and Systems.

Not Available

1993-11-18T23:59:59.000Z

379

BORON NITRIDE CAPACITORS FOR ADVANCED POWER ELECTRONIC DEVICES  

DOE Green Energy (OSTI)

This project fabricates long-life boron nitride/boron oxynitride thin film -based capacitors for advanced SiC power electronics with a broad operating temperature range using a physical vapor deposition (PVD) technique. The use of vapor deposition provides for precise control and quality material formation.

N. Badi; D. Starikov; C. Boney; A. Bensaoula; D. Johnstone

2010-11-01T23:59:59.000Z

380

Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) < Back Eligibility Commercial Construction Industrial Utility Program Info State Louisiana Program Type Fees Generating Facility Rate-Making Provider Louisiana Public Service Commission The Incentive Cost Recovery Rule for Nuclear Power Generation establishes guidelines for any utility seeking to develop a nuclear power plant in Louisiana. The rule clarifies, as well as supplements the Louisiana Public Service Commission's 1983 General Order for the acquisition of nuclear generation resources. The goal of the rule is to provide a transparent process that identifies the responsibilities parties in the regulatory

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NETL: News Release - Tax Credit Program Promotes Advanced Coal Power  

NLE Websites -- All DOE Office Websites (Extended Search)

December 5, 2007 December 5, 2007 Tax Credit Program Promotes Advanced Coal Power Generation and Gasification Technologies DOE Will Assist Internal Revenue Service in Project Selection WASHINGTON, DC - The U.S. Department of Energy (DOE) is partnering with the Internal Revenue Service (IRS) to evaluate five projects that have recently applied for tax credits under the Energy Policy Act of 2005 (EPAct 2005). Accepted projects will help bring about rapid deployment of advanced coal-based power generation and gasification technologies and enable the clean and efficient use of coal, America's most abundant energy resource. In June 2007, the Treasury Department and DOE released revised guidance on the procedures for awarding the tax credits authorized under EPAct 2005 for qualifying advanced coal projects and qualifying gasification projects. Under the revised guidance, applications for DOE certification received before October 31, 2007, will be acted on in 2008.

382

QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JANUARY 2014  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Updates available at: www.energy.gov/ne NEXT UPDATE - April 2014 Page 1 News Updates ï‚« Luminant has requested a suspension of the NRC's review of its Comanche Peak Combined Construction and Operating License (COL) application. The company cited impacts to the review schedule of the Mitsubishi Heavy Industries US Advanced Pressurized Water Reactor (US- APWR) due to the vendor's desire to refocus its resources to reactor restarts in Japan as well as low electricity prices driven by low natural gas prices as reasons for the suspension. ï‚« Unistar Nuclear Operating Co. has formally withdrawn its COL application from the NRC to build and operate Areva's U.S. EPR at its Nine Mile

383

Comparison of the High-Temperature Steam Oxidation Kinetics of Advanced Cladding Materials  

Science Conference Proceedings (OSTI)

Technical Paper / Special Issue on the 2008 International Congress on Advances in Nuclear Power Plants / Materials for Nuclear Systems

M. Grosse

384

Financial and ratepayer impacts of nuclear power plant regulatory reform  

SciTech Connect

Three reports - ''The Future Market for Electric Generating Capacity,'' ''Quantitative Analysis of Nuclear Power Plant Licensing Reform,'' and ''Nuclear Rate Increase Study'' are recent studies performed by the Los Alamos National Laboratory that deal with nuclear power. This presents a short summary of these three studies. More detail is given in the reports.

Turpin, A.G.

1985-01-01T23:59:59.000Z

385

Nuclear reactor power for an electrically powered orbital transfer vehicle  

DOE Green Energy (OSTI)

To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low Earth orbit (LEO) and geosynchronous Earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to Earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

1987-01-01T23:59:59.000Z

386

Microsoft PowerPoint - Why Nuclear Energy New Template  

NLE Websites -- All DOE Office Websites (Extended Search)

Why Nuclear Energy? Why Nuclear Energy? Why Nuclear Energy? Nuclear energy already meets a significant share of the world's energy needs * There are 441 nuclear reactors in operation in 31 countries * These plants generate electricity for nearly a billion people, and account for 17% of the world's electricity production * The U.S. has 103 operating reactors producing 20% of the nation's electricity * Illinois leads all states with the highest share of nuclear (51%) * Technology significantly developed at Argonne forms the basis of all nuclear energy systems used worldwide Nuclear power is reliable and economical * In 2001, U.S. nuclear plants produced electricity for 1.68 cents per kilowatt-hour on average, second only to hydroelectric power among baseload generation options * U.S. nuclear power plant performance has steadily

387

Analysis of nuclear power plant construction costs  

SciTech Connect

The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs.

1986-01-01T23:59:59.000Z

388

VERMONT YANKEE NUCLEAR POWER STATION- NRC LICENSE  

E-Print Network (OSTI)

your application for a renewed license of your Vermont Yankee Nuclear Power Station. The enclosed report documents the result of the inspection which was discussed with members of your staff on May 24, 2007, at a publicly observed exit meeting conducted at the Latchis Theater in Brattleboro, VY. The purpose of this inspection was to examine the plant activities and documents that supported the application for a renewed license of the Vermont Yankee Nuclear Power Station. The inspection reviewed the screening and scoping of non-safety related systems, structures, and components, as required in 10 CFR 54.4(a)(2), and determined whether the proposed aging management programs are capable of reasonably managing the effects of aging. These NRC inspection activities constitute one of several inputs into the NRC review process for license renewal applications. The inspection team concluded screening and scoping of nonsafety-related systems, structures, and components, were implemented as required in 10 CFR 54.4(a)(2), and the aging management portions of the license renewal activities were conducted as described in the License Renewal Application. The inspection results supported a conclusion that the

Mr. Theodore; A. Sullivan

2007-01-01T23:59:59.000Z

389

Nuclear power and the public: an update of collected survey research on nuclear power  

SciTech Connect

The purpose of this research was to collect, analyze, and summarize all of the nuclear power-related surveys conducted in the United States through June 1981, that we could obtain. The surveys collected were national, statewide, and areawide in scope. Slightly over 100 surveys were collected for an earlier, similar effort carried out in 1977. About 130 new surveys were added to the earlier survey data. Thus, about 230 surveys were screened for inclusion in this report. Because of space limitations, national surveys were used most frequently in this report, followed distantly by state surveys. In drawing our conclusions about public beliefs and attitudes toward nuclear power, we placed most of our confidence in survey questions that were used by national polling firms at several points in time. A summary of the research findings is presented, beginning with general attitudes toward nuclear power, followed by a summary of beliefs and attitudes about nuclear power issues, and ended by a summary of beliefs and attitudes regarding more general energy issues.

Rankin, W.L.; Melber, B.D.; Overcast, T.D.; Nealey, S.M.

1981-12-01T23:59:59.000Z

390

Gasification CFD Modeling for Advanced Power Plant Simulations  

Science Conference Proceedings (OSTI)

In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

Zitney, S.E.; Guenther, C.P.

2005-09-01T23:59:59.000Z

391

Interagency Advanced Power Group Steering Group meeting minutes  

DOE Green Energy (OSTI)

This document contains presentation overviews and viewgraphs from a meeting military personnel on the subject of power generation and distribution systems for military applications. Mission analysis and directional plans were given for each working group (chemical, mechanical, electrical, nuclear, solar and systems). Attendees represented the US Air Force, Army, Navy, and NASA.

Not Available

1992-11-18T23:59:59.000Z

392

New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy dedicated the Consortium for Advanced Simulation of Light Water Reactors (CASL), an advanced research facility that will accelerate the advancement of nuclear reactor technology.

393

GE power generation technology challenges for advanced gas turbines  

SciTech Connect

The GE Utility ATS is a large gas turbine, derived from proven GEPG designs and integrated GEAE technology, that utilizes a new turbine cooling system and incorporates advanced materials. This system has the potential to achieve ATS objectives for a utility sized machine. Combined with use of advanced Thermal Barrier Coatings (TBC`s), the new cooling system will allow higher firing temperatures and improved cycle efficiency that represents a significant improvement over currently available machines. Developing advances in gas turbine efficiency and emissions is an ongoing process at GEPG. The third generation, ``F`` class, of utility gas turbines offers net combined cycle efficiencies in the 55% range, with NO{sub x} programs in place to reduce emissions to less than 10 ppM. The gas turbines have firing temperatures of 2350{degree}F, and pressure ratios of 15 to 1. The turbine components are cooled by air extracted from the cycle at various stages of the compressor. The heat recovery cycle is a three pressure steam system, with reheat. Throttle conditions are nominally 1400 psi and 1000{degree}F reheat. As part of GEPG`s ongoing advanced power generation system development program, it is expected that a gas fired advanced turbine system providing 300 MW power output greater than 58% net efficiency and < 10 ppM NO{sub x} will be defined. The new turbine cooling system developed with technology support from the ATS program will achieve system net efficiency levels in excess of 60%.

Cook, C.S.; Nourse, J.G.

1993-11-01T23:59:59.000Z

394

International Working Group Meeting Focuses on Nuclear Power Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Working Group Meeting Focuses on Nuclear Power International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Financing of New Nuclear Projects International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Financing of New Nuclear Projects December 15, 2009 - 1:09pm Addthis VIENNA, AUSTRIA - The multi-nation Infrastructure Development Working Group (IDWG) held its fifth meeting and also a workshop on the financing of international nuclear power projects in Vienna, Austria, on December 9-10, 2009. An official from the U.S. Department of Energy (DOE) led the working group meeting. "As a key component of the international Global Nuclear Energy Partnership (GNEP) program, the Infrastructure Development Working Group supports the safe, secure and responsible use of nuclear energy," said

395

Nuclear Power: a Hedge against Uncertain Gas and Carbon Prices?  

E-Print Network (OSTI)

High fossil fuel prices have rekindled interest in nuclear power. This paper identifies specific nuclear characteristics making it unattractive to merchant generators in liberalised electricity markets, and argues that non-fossil fuel technologies...

Roques, Fabien A; Nuttall, William J; Newbery, David; de Neufville, Richard

2006-03-14T23:59:59.000Z

396

President Obama Announces Loan Guarantees to Construct New Nuclear Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Guarantees to Construct New Nuclear Loan Guarantees to Construct New Nuclear Power Reactors in Georgia President Obama Announces Loan Guarantees to Construct New Nuclear Power Reactors in Georgia February 16, 2010 - 12:00am Addthis Washington D.C. --- Underscoring his Administration's commitment to jumpstarting the nation's nuclear power industry, President Obama today announced that the Department of Energy has offered conditional commitments for a total of $8.33 billion in loan guarantees for the construction and operation of two new nuclear reactors at a plant in Burke, Georgia. The project is scheduled to be the first U.S. nuclear power plant to break ground in nearly three decades. "To meet our growing energy needs and prevent the worst consequences of climate change, we need to increase our supply of nuclear power and today's

397

Expanding Options for Nuclear Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expanding Options for Nuclear Power Expanding Options for Nuclear Power Expanding Options for Nuclear Power April 15, 2013 - 10:12am Addthis The development of clean, affordable nuclear power options is a key element of the Energy Department's Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. | Photo by the Energy Department. The development of clean, affordable nuclear power options is a key element of the Energy Department's Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to

398

Novel Nuclear Powered Photocatalytic Energy Conversion  

DOE Green Energy (OSTI)

The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and fabrication of a range of new cell materials and geometries at Konarka's manufacturing facilities, and the irradiation testing and evaluation of these new cell designs within the UML Radiation Laboratory. The primary focus of all this work was to establish the proof of concept of the basic gammavoltaic principle using a new class of dye-sensitized photon converter (DSPC) materials based on KTI's original DSSC design. In achieving this goal, this report clearly establishes the viability of the basic gammavoltaic energy conversion concept, yet it also identifies a set of challenges that must be met for practical implementation of this new technology.

White,John R.; Kinsmen,Douglas; Regan,Thomas M.; Bobek,Leo M.

2005-08-29T23:59:59.000Z

399

Repowering flexibility of coal-based advanced power systems  

Science Conference Proceedings (OSTI)

The Department of Energy`s (DOE`s) Morgantown Energy Technology Center (METC) helps enhance the economic competitiveness, environmental quality, and national well-being of the U.S. by developing advanced power-generation systems. The potential market for advanced power-generation systems is large. In the U.S., electric demand is estimated to grow at about 1 percent per year through the year 2010. The total power generation market also includes new-capacity as well as replacement of existing power plants as they age. Thus, the market for power systems over the next 15 years is estimated to be about 279,000 megawatts (MW), but could range from as much as 484,000 MW to as little as 153,000 MW. These predictions are summarized. Over the next 15 years, the replacement market is potentially much larger than the expansion market because of the large base of aging power plants in the U.S.

Bajura, R.A.; Bechtel, T.F.; Schmidt, D.K.; Wimer, J.G.

1995-03-01T23:59:59.000Z

400

Hydrogen: Adding Value and Flexibility to the Nuclear Power Industry  

DOE Green Energy (OSTI)

The objective of this study was to assess potential synergies between the hydrogen economy and nuclear energy options. Specifically: to provide a market analysis of advanced nuclear energy options for hydrogen production in growing hydrogen demand; to conduct an impact evaluation of nuclear-based hydrogen production on the economics of the energy system, environmental emissions, and energy supply security; and to identify competing technologies & challenges to nuclear options.

Lee, J.; Bhatt, V.; Friley, P.; Horak, W.; Reisman, A.

2004-10-04T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Advanced, High Power, Next Scale, Wave Energy Conversion Device  

SciTech Connect

The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Dufera, Hiz [Project Manager] [Project Manager; Montagna, Deb [Business Point of Contact] [Business Point of Contact

2012-10-29T23:59:59.000Z

402

Some aspects of the decommissioning of nuclear power plants  

SciTech Connect

The major factors influencing the choice of a national concept for the decommissioning of nuclear power plants are examined. The operating lifetimes of power generating units with nuclear reactors of various types (VVER-1000, VVER-440, RBMK-1000, EGP-6, and BN-600) are analyzed. The basic approaches to decommissioning Russian nuclear power plants and the treatment of radioactive waste and spent nuclear fuel are discussed. Major aspects of the ecological and radiation safety of personnel, surrounding populations, and the environment during decommissioning of nuclear installations are identified.

Khvostova, M. S., E-mail: marinakhvostova@list.ru [St. Petersburg State Maritime Technical University (Sevmashvtuz), Severodvinsk Branch (Russian Federation)

2012-03-15T23:59:59.000Z

403

Materials for Nuclear Power: Digital Resource Center -- Nuclear ...  

Science Conference Proceedings (OSTI)

WEB RESOURCE: Thermodynamics of Nuclear Fuels ... A brief introduction to nuclear physics, 0, 851, Lynne Robinson, 2/19/2007 9:38 AM by Lynne Robinson

404

Prognostics and Life Beyond 60 for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Safe, secure, reliable and sustainable energy supply is vital for advanced and industrialized life styles. To meet growing energy demand there is interest in longer term operation (LTO) for the existing nuclear power plant fleet and enhancing capabilities in new build. There is increasing use of condition based maintenance (CBM) for active components and periodic in service inspection (ISI) for passive systems: there is growing interest in deploying on-line monitoring. Opportunities exist to move beyond monitoring and diagnosis based on pattern recognition and anomaly detection to and prognostics with the ability to provide an estimate of remaining useful life (RUL). The adoption of digital I&C systems provides a framework within which added functionality including on-line monitoring can be deployed, and used to maintain and even potentially enhance safety, while at the same time improving planning and reducing both operations and maintenance costs.

Leonard J. Bond; Pradeep Ramuhalli; Magdy S. Tawfik; Nancy J. Lybeck

2011-06-01T23:59:59.000Z

405

Energy Department Nuclear Systems Are Powering Mars Rover  

NLE Websites -- All DOE Office Websites (Extended Search)

Affairs Media Contact: 202-586-4940 For Immediate Release: Monday, November 28, 2011 Energy Department Nuclear Systems Are Powering Mars Rover 2011 Marks 50th Anniversary of...

406

Balance of Plant Corrosion Issues in Aging Nuclear Power Plants  

Science Conference Proceedings (OSTI)

... number of times, can be used to forecast the most probable number of leaks. ... Conditions for Long Term Operation of Nuclear Power Plants in Sweden.

407

How much electricity does a typical nuclear power plant generate ...  

U.S. Energy Information Administration (EIA)

How much electricity does a typical nuclear power plant generate? ... tariff, and demand charge data? How is electricity used in U.S. homes?

408

Materials for Nuclear Power: Digital Resource Center - ARTICLE ...  

Science Conference Proceedings (OSTI)

Feb 19, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear Power ... This article reviews how Albert Einstein revolutionized physics by ...

409

Materials for Nuclear Power: Digital Resource Center - BOOK ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear Power ... NATO Science Series II:Mathematics, Physics and Chemistry, Vol.

410

Design Concept and Application of Small Nuclear Power Reactor  

Science Conference Proceedings (OSTI)

The outline of the recent design concepts and those features of the small nuclear power rector are described, including specifications, present design status, application and so on.

Minato, Akio [CRIEPI, Central Research Institute of Electric Power Industry, Tokyo (Japan); Sekimoto, Hiroshi [Center for Research into Innovative Nuclear Energy Systems (CRINES) Tokyo Institute of Technology 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550 (Japan)

2009-03-31T23:59:59.000Z

411

Materials for Nuclear Power: Digital Resource Center Text Topic - TMS  

Science Conference Proceedings (OSTI)

Mar 28, 2007 ... Scientists and engineers concerned with the environmental ... of Materials in Nuclear Power Systems—Water Reactors (Warrendale, PA: TMS, ...

412

Moratorium on Construction of Nuclear Power Facilities (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

No construction shall commence on a fifth nuclear power facility until the Commissioner of Environmental Protection finds that the United States Government, through its authorized agency, has...

413

Sensitivity analysis for the outages of nuclear power plants  

E-Print Network (OSTI)

Feb 17, 2012 ... Abstract: Nuclear power plants must be regularly shut down in order to perform refueling and maintenance operations. The scheduling of the ...

414

Nuclear energy is an important source of power, supplying 20  

NLE Websites -- All DOE Office Websites (Extended Search)

countries around the world are implementing nuclear power as a carbon-free alternative to fossil fuels. We can maximize the climate and energy security benefits provided by...

415

Materials for Nuclear Power: Digital Resource Center - WEB ... - TMS  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... PDFs of lecture notes and readings for this undergraduate course covering materials issues in nuclear power systems. Topics include: ...

416

Materials for Nuclear Power: Digital Resource Center - TMS  

Science Conference Proceedings (OSTI)

Spacer 62115 users are registered to the Materials for Nuclear Power: Digital Resource Center forum. Spacer There are currently 0 users logged in. Spacer ...

417

Guideline for Online Monitoring of Nuclear Power Plants: Volume 2  

Science Conference Proceedings (OSTI)

This report continues a series of guidelines that assist member utilities in developing an online monitoring (OLM) program for equipment condition assessment at nuclear power plants.

2011-12-16T23:59:59.000Z

418

Need for process/radiochemists at nuclear power plants  

SciTech Connect

Viewgraphs are presented concerning the operating requirements for chemists at nuclear power plants. The number of positions available, job duties, and training requirements are reviewed.

Wymer, R.G.; Skrable, K.W.; Alexander, E.L.

1984-01-01T23:59:59.000Z

419

Materials for Nuclear Power: Digital Resource Center - SELECTED ...  

Science Conference Proceedings (OSTI)

Jul 6, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear Power ... Instructions for Accessing Reports: Because of security features in ...

420

MANAGING MODERNIZATION OF NUCLEAR POWER PLANT INSTRUMENTATION AND CONTROL SYSTEMS  

E-Print Network (OSTI)

Managing modernization of nuclear power plant instrumentation and control systems February 2004The originating Section of this publication in the IAEA was:

unknown authors

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Materials for Nuclear Power: Digital Resource Center -- Sandbox  

Science Conference Proceedings (OSTI)

New Messages, Rating, 15th Int'l Conference on Environmental Degradation in Nuclear Power Systems Program Preview, 0, 1413, Patti Dobranski, 4/14/2011 ...

422

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

Dec 6, 2007 ... Nuclear power's prominence as a major energy source will continue over the next several decades, according to projections made by the ...

423

Materials for Nuclear Power: A Brief Introduction - TMS  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... CITATION: Osman, T. M., "Materials for Nuclear Power: A Brief Introduction", Materials Technology@TMS, February 2007. Last Updated: ...

424

Advanced reactors, passive safety, and acceptance of nuclear energy  

SciTech Connect

If nuclear power is to make a serious impact on CO{sub 2} emission, the industry will have to be very large. A 1000-MWe coal-fired power plant releases about 1.4 {times} 10{sup {minus}3} gigatons of carbon per year in the form of CO{sub 2}. The total of 6 GTC/yr of carbon released by human use of 300 quads/yr of energy worldwide then corresponds to the equivalent of about 4000 one-gigawatt power plants. By the middle of the next century, the world's energy demand might grow to about 500 quads/yr. One might halve the implied 10 GTC/yr by deploying 3500 1000-megawatt large reactors. Now the median core melt probability of today's fleet of reactors is according to Rasmussen 5 {times} 10{sup {minus}5} per reactor year which corresponds to a core melt frequency in such a large nuclear system of 0.18/yr - one accident equivalent to that at Three Mile Island Unit 2 every six years. This is almost surely unacceptable. Thus one concludes that a necessary condition for deployment of nuclear reactors on a scale sufficient to contribute significantly to mitigation of the greenhouse effect is reduction of the core melt probability considerably below Rasmussen's fiducial figure. In this paper, the authors summarize developments, both institutional and technical, since 1985 in the development of safer, if not inherently safe, reactors.

Forsberg, C.W. (Chemical Technology Div., Oak Ridge National Lab., Oak Ridge, TN (US)); Weinberg, A.M. (Oak Ridge Associated Univ., Oak Ridge, TN (US))

1990-01-01T23:59:59.000Z

425

High Level Requirements for the Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)  

Science Conference Proceedings (OSTI)

The US Department of Energy, Office of Nuclear Energy (DOE-NE), has been tasked with the important mission of ensuring that nuclear energy remains a compelling and viable energy source in the U.S. The motivations behind this mission include cost-effectively meeting the expected increases in the power needs of the country, reducing carbon emissions and reducing dependence on foreign energy sources. In the near term, to ensure that nuclear power remains a key element of U.S. energy strategy and portfolio, the DOE-NE will be working with the nuclear industry to support safe and efficient operations of existing nuclear power plants. In the long term, to meet the increasing energy needs of the U.S., the DOE-NE will be investing in research and development (R&D) and working in concert with the nuclear industry to build and deploy new, safer and more efficient nuclear power plants. The safe and efficient operations of existing nuclear power plants and designing, licensing and deploying new reactor designs, however, will require focused R&D programs as well as the extensive use and leveraging of advanced modeling and simulation (M&S). M&S will play a key role in ensuring safe and efficient operations of existing and new nuclear reactors. The DOE-NE has been actively developing and promoting the use of advanced M&S in reactor design and analysis through its R&D programs, e.g., the Nuclear Energy Advanced Modeling and Simulation (NEAMS) and Consortium for Advanced Simulation of Light Water Reactors (CASL) programs. Also, nuclear reactor vendors are already using CFD and CSM, for design, analysis, and licensing. However, these M&S tools cannot be used with confidence for nuclear reactor applications unless accompanied and supported by verification and validation (V&V) and uncertainty quantification (UQ) processes and procedures which provide quantitative measures of uncertainty for specific applications. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Utah State University and others with the objective of establishing a comprehensive and web-accessible knowledge base that will provide technical services and resources for V&V and UQ of M&S in nuclear energy sciences and engineering. The knowledge base will serve as an important resource for technical exchange and collaboration that will enable credible and reliable computational models and simulations for application to nuclear reactor design, analysis and licensing. NE-KAMS will serve as a valuable resource for the nuclear industry, academia, the national laboratories, the U.S. Nuclear Regulatory Commission (NRC) and the public and will help ensure the safe, economical and reliable operation of existing and future nuclear reactors. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the CASL, NEAMS, Light Water Reactor Sustainability (LWRS), Small Modular Reactors (SMR), and Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve M&S of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs.

Rich Johnson; Hyung Lee; Kimberlyn C. Mousseau

2011-09-01T23:59:59.000Z

426

Losses of Offsite Power at U.S. Nuclear Power Plants - 2011  

Science Conference Proceedings (OSTI)

This report describes the loss of offsite power experience at U.S. nuclear power plants during the year 2011 and provides insights into the causes of offsite power losses during the period 2002–2011.

2012-06-11T23:59:59.000Z

427

DC power transmission from the Leningradskaya Nuclear Power Plant to Vyborg  

SciTech Connect

DC power transmission from the Leningradskaya Nuclear Power Plant (LAES) to city of Vyborg is proposed. This will provide a comprehensive solution to several important problems in the development and control of the unified power system (EES) of Russia.

Koshcheev, L. A. [JSC 'NIIPT' (Russian Federation); Shul'ginov, N. G. [JSC 'SO EES' (Russian Federation)

2011-05-15T23:59:59.000Z

428

Axeon Power Limited formerly Advanced Batteries Ltd ABL | Open Energy  

Open Energy Info (EERE)

formerly Advanced Batteries Ltd ABL formerly Advanced Batteries Ltd ABL Jump to: navigation, search Name Axeon Power Limited (formerly Advanced Batteries Ltd (ABL)) Place Dundee, United Kingdom Zip DD2 4UH Product Lithium ion battery pack developer. Coordinates 45.27939°, -123.009669° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.27939,"lon":-123.009669,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

429

THE PLUTONIUM FEEDBACK APPROACH TO NUCLEAR POWER  

SciTech Connect

Nuclear parameter variations are presented for sodium graphite reactors using Pu-spiked natural U as fuel. The fuel feed is assumed to be natural U, and the important variables are the initial amount of excess reactivity, lattice spacing, and alpha , the ratio of Pu/sup 239/ to U/sup 235/ in the feed material. The system is called "steady state" in that the ratios, N/sub 40/N/sub 49/ = sigma /sub c(49)// sigma /sub a(40)/ and N/sub 41//N/sub 4 9/ = sigma /sub c(49)/ / sigma /sub a(41)/, obtained from setting the build-up equations to zero are assumed for the feed concentrations, and the feed material to the reactor is always the same. During irradiation, the U/sup 235/ and U/sup 238/ concentrations steadily decline while the Pu isotope concentrations initially increase, then decline. To ensure sufficient plutonium for feed material, it is necessary to remove the fuel from the reactor before the Pu content drops below its initial value. Although the reactivity variations presented were calculated specifically for sodium graphite reactors, they may be applied to any thermal reactor using Pu-spiked natural U as fuel. The reactivity changes are determined primarily by the fuel characteristics and are only slightly dependent on the other material in the reactor core. An analysis which estimates the effect of Pu feedback opcration fuel costs is given. (auth) in terms of nuclear power cost reduction are discussed (auth)

Roderick, C.

1955-04-15T23:59:59.000Z

430

NUCLEAR ENERGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

could improve the economic and safety performance of these advanced reactors. Nuclear power can reduce GHG emissions from electricity production and possibly in co-generation...

431

New DOE program to advance fuel cell central power stations  

SciTech Connect

Recent advances in technology have precipitated movement of fuel cells into the central power area in support of FutureGen (coal-based power plants with near-zero emissions). The idea is being implemented under the Fuel Cell Coal-Based Systems (FCCBS) programs. The Solid State Energy Conversion Alliance (SECA) programme has identified solid oxide fuel cell designs with the most promise for scale-up to central power applications. These could be aggregated into modules, and serve as building blocks for greater than 100 MW FutureGen-type plants. The FCCBS objective is to have a SECA SOFC-based power island that costs $400 kW and can enable 50% efficiency and 90% CO{sub 2} capture in a FutureGen plant by 2015. The project teams have been selected and the three phases of the FCCBS project identified. 3 figs.

NONE

2005-09-30T23:59:59.000Z

432

Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Feasibility Study of Hydrogen Production at Existing Nuclear Power Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants A funding opportunity announcement of the cost shared feasibility studies of nuclear energy based production of hydrogen using available technology. The objective of this activity is to select and conduct project(s) that will utilize hydrogen production equipment and nuclear energy as necessary to produce data and analysis on the economics of hydrogen production with nuclear energy. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants More Documents & Publications https://e-center.doe.gov/iips/faopor.nsf/UNID/E67E46185A67EBE68 Microsoft Word - FOA cover sheet.doc Microsoft Word - hDE-FOA-0000092.rtf

433

Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants  

E-Print Network (OSTI)

Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants ANL-AFCI-168 of Nuclear Reactor and Chemical Separation Plants ANL-AFCI-168 by G. Palmiotti, J. Cahalan, P. Pfeiffer, T;2 ANL-AFCI-168 Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants G

Anitescu, Mihai

434

Advanced Coal Power Plant Model (ACCPM) Version 1.1  

Science Conference Proceedings (OSTI)

With the purchase of a license for the appropriate SimTech IPSEpro modules and library, users can quickly generate performance and capital cost estimates of new, advanced coal power plants. The application allows users to screen integrated gasification combined cycle (IGCC) technologies prior to engaging in more extensive studies of their preferred choice. Such screening activities generally require sophisticated software and qualified staff to run the models, which takes time and significant investment....

2011-03-08T23:59:59.000Z

435

The Potential for a Nuclear Renaissance: The Development of Nuclear Power Under Climate Change Mitigation Policies  

E-Print Network (OSTI)

, construction, commissioning, operation, modifications, and eventually decommissioning of a nuclear power plantA Comparison of International Regulatory Organizations and Licensing Procedures for New Nuclear the safety regulation and the licensing of new nuclear power plants. The paper considers both design safety

436

Incorporation of a risk analysis approach for the nuclear fuel cycle advanced transparency framework.  

SciTech Connect

Proliferation resistance features that reduce the likelihood of diversion of nuclear materials from the civilian nuclear power fuel cycle are critical for a global nuclear future. A framework that monitors process information continuously can demonstrate the ability to resist proliferation by measuring and reducing diversion risk, thus ensuring the legitimate use of the nuclear fuel cycle. The automation of new nuclear facilities requiring minimal manual operation makes this possible by generating instantaneous system state data that can be used to track and measure the status of the process and material at any given time. Sandia National Laboratories (SNL) and the Japan Atomic Energy Agency (JAEA) are working in cooperation to develop an advanced transparency framework capable of assessing diversion risk in support of overall plant transparency. The ''diversion risk'' quantifies the probability and consequence of a host nation diverting nuclear materials from a civilian fuel cycle facility. This document introduces the details of the diversion risk quantification approach to be demonstrated in the fuel handling training model of the MONJU Fast Reactor.

Mendez, Carmen Margarita (Sociotecnia Solutions, LLC); York, David L.; Inoue, Naoko (Japan Atomic Energy Agency); Kitabata, Takuya (Japan Atomic Energy Agency); Vugrin, Eric D.; Vugrin, Kay White; Rochau, Gary Eugene; Cleary, Virginia D.

2007-05-01T23:59:59.000Z

437

Guidance for Deployment of Mobile Technologies for Nuclear Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidance for Deployment of Mobile Technologies for Nuclear Power Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making,

438

China's Nuclear Power Program: Options for the US  

Science Conference Proceedings (OSTI)

The issue of American nuclear cooperation with the People's Republic of China is examined with regards to political relations, commercial benefits to the United States, and nonproliferation. China's interest in nuclear power is examined, and its nuclear program is briefly reviewed from the 1950's to present. China's international nuclear relations with other countries are discussed, and implications for the United States examined, particularly with regards to China's intentions toward nuclear proliferation, danger of diversion of material for nuclear weapons, use of pressurized water reactor technology for Chinese naval reactors, and the terms of the nuclear cooperation agreement. (LEW)

Suttmeier, R.P.

1985-01-01T23:59:59.000Z

439

Advanced Nuclear Technology: EPRI Materials Management Matrix Project—Toshiba Advanced Boiling Water Reactor Materials Managem ent Table Report, Revision 0  

Science Conference Proceedings (OSTI)

Experience gained through years of operating nuclear plants has shown that materials performance issues can be a significant concern related to economic and safe long-term plant operations. Although concerns remain, industry efforts to address materials performance issues at operating plants have led to several important advances in both the underlying scientific understanding of materials degradation and the implementation of practical mitigation and management technologies. The Electric Power Research...

2010-02-09T23:59:59.000Z

440

Nuclear Power in France Beyond the Myth  

E-Print Network (OSTI)

.8 Decommissioning E.2 Unsealed Nuclear Substances E.2.1 Nuclear Substance Lab Facilities E.3 Precautions Safety Officer C.4 Director of EH&S C.5 Project Directors C.6 Nuclear Substance Users D Radiation Safety Policies 13 D.1 ALARA Statement D.2 Policies ALARA Policy Laboratory Status Transfer/Shipment of Nuclear

Laughlin, Robert B.

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Optimization of Auxiliaries Consumption in Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Operators of nuclear power plants face significant challenges to produce power more cost-effectively. One approach to producing power more cost-effectively is to reduce power consumption by auxiliary systems in the plant, leading to more power available for the grid. This report provides guidance for assessing auxiliary system performance and recommends approaches to reduce their power consumption. The report also presents results from questionnaires on auxiliary system consumption and, in some cases, ac...

2005-02-08T23:59:59.000Z

442

Summary of advanced LMR (Liquid Metal Reactor) evaluations: PRISM (Power Reactor Inherently Safe Module) and SAFR (Sodium Advanced Fast Reactor)  

Science Conference Proceedings (OSTI)

In support of the US Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) has performed independent analyses of two advanced Liquid Metal Reactor (LMR) concepts. The designs, sponsored by the US Department of Energy (DOE), the Power Reactor Inherently Safe Module (PRISM) (Berglund, 1987) and the Sodium Advanced Fast Reactor (SAFR) (Baumeister, 1987), were developed primarily by General Electric (GE) and Rockwell International (RI), respectively. Technical support was provided to DOE, RI, and GE, by the Argonne National Laboratory (ANL), particularly with respect to the characteristics of the metal fuels. There are several examples in both PRISM and SAFR where inherent or passive systems provide for a safe response to off-normal conditions. This is in contrast to the engineered safety systems utilized on current US Light Water Reactor (LWR) designs. One important design inherency in the LMRs is the inherent shutdown'', which refers to the tendency of the reactor to transition to a much lower power level whenever temperatures rise significantly. This type of behavior was demonstrated in a series of unscrammed tests at EBR-II (NED, 1986). The second key design feature is the passive air cooling of the vessel to remove decay heat. These systems, designated RVACS in PRISM and RACS in SAFR, always operate and are believed to be able to prevent core damage in the event that no other means of heat removal is available. 27 refs., 78 figs., 3 tabs.

Van Tuyle, G.J.; Slovik, G.C.; Chan, B.C.; Kennett, R.J.; Cheng, H.S.; Kroeger, P.G. (Brookhaven National Lab., Upton, NY (USA))

1989-10-01T23:59:59.000Z

443

Nuclear Technology & Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction  

E-Print Network (OSTI)

the feasibility of integrating a nuclear power plant with Steam- Assisted Gravity Drainage (SAGD), an oil region enhance the feasibility of using nuclear power plants to meet the energy needs [5]. Both mining Electricity A second production scenario is the cogeneration of thermal power and electricity to meet the #12

444

Present status and future development of Qinshan Nuclear Power Project  

Science Conference Proceedings (OSTI)

Qinshan 300 MWe Nuclear Power Project is the first domestically designed and constructed nuclear power plant in China. Given is a brief description of its progress in design work, equipment manufacture and site construction since the first structural concrete in March 1985. In Qinshan area four units of 600 MWe each are planned to be built with collaboration of proper foreign partners.

Yu, O.

1988-01-01T23:59:59.000Z

445

Nuclear Power Plant Fire-Modeling Applications Guide  

Science Conference Proceedings (OSTI)

This report replaces EPRI 1002981, Fire Modeling Guide for Nuclear Power Plant Applications, August 2002, as guidance for fire-modeling practitioners in nuclear power plants (NPPs). The report has benefited from insights gained since 2002 on the predictive capability of selected fire models to improve confidence in the use of fire modeling in NPP decision-making.

2009-12-22T23:59:59.000Z

446

Uranium Stocks in Slovenia for Nuclear Power Author: Matic Suhodolcan  

E-Print Network (OSTI)

Seminar Uranium Stocks in Slovenia for Nuclear Power Plant NEK Author: Matic Suhodolcan Supervisor and that reopening would make sense. We try to calculate the years of operating NEK only with uranium ore for reprocessing fuel. #12;Uranium Stocks in Slovenia for Slovenian Nuclear Power Plant NEK Matic Suhodolcan FMF 2

Prosen, TomaÂ?

447

Groundwater Sampling and Analysis Sourcebook for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

This sourcebook provides technical guidance and best practices for groundwater sampling and analysis at nuclear power plants. Robust sampling and analysis protocols are required to ensure accurate characterization of radionuclides in groundwater.BackgroundNuclear power plants implement groundwater protection programs to minimize contamination of on-site soil and groundwater, and to prevent the off-site migration of licensed material through groundwater ...

2012-09-25T23:59:59.000Z

448

LIMITED POWER BURSTS IN DISTRIBUTED MODELS OF NUCLEAR REACTORS  

E-Print Network (OSTI)

of a nuclear reactor with feedback," in: Applied Problems in the Theory of Oscillations [in RussianLIMITED POWER BURSTS IN DISTRIBUTED MODELS OF NUCLEAR REACTORS M. V. Bazhenov and E. F. Sabaev UDC of Nuclear Reactors [in Russian], l~nergoatomizdat, Moscow (1990). F. R. Gantmakher and V. A. Yakubovich

Bazhenov, Maxim

449

How Brazil spun the atom [nuclear power reactors  

Science Conference Proceedings (OSTI)

This paper describes the Resende nuclear complex in Brazil which will house hundreds of uranium centrifuges to produce enriched uranium that will fuel its nuclear power reactors. By consistently fulfilling its obligations as a party to the Nuclear Non-Proliferation ...

E. Guizzo

2006-03-01T23:59:59.000Z

450

KRS Chapter 278: Nuclear Power Facilities (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KRS Chapter 278: Nuclear Power Facilities (Kentucky) KRS Chapter 278: Nuclear Power Facilities (Kentucky) KRS Chapter 278: Nuclear Power Facilities (Kentucky) < Back Eligibility Commercial Construction Developer Investor-Owned Utility Municipal/Public Utility Utility Program Info State Kentucky Program Type Environmental Regulations Safety and Operational Guidelines Provider Kentucky Public Service Commission No construction shall commence on a nuclear power facility in the Commonwealth until the Public Service Commission finds that the United States government, through its authorized agency, has identified and approved a demonstrable technology or means for the disposal of high-level nuclear waste. The provisions of this section shall not be construed as applying to or precluding the following nuclear-based technologies,

451

Nuclear Power 2010 Program: Combined Construction and Operating License &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Power 2010 Program: Combined Construction and Operating Nuclear Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report Nuclear Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report The Nuclear Power 2010 (NP 2010) Construction and Operating License/Design Certification (COL/DC) Demonstration program together with the financial incentives provided by the Energy Policy Act of 2005 are the two primary reasons why a number of license applications for new nuclear construction are before the NRC today, and why the first new nuclear plants in over 30 years are under construction in the United States. As with all significant endeavors, there are lessons to be learned from the

452

Inspection of Nuclear Power Plant Containment Structures  

SciTech Connect

Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

Graves, H.L.; Naus, D.J.; Norris, W.E.

1998-12-01T23:59:59.000Z

453

Sustainable Forward Operating Base Nuclear Power Evaluation (Relationship Mapping System) Users’ Manual  

SciTech Connect

The Sustainable Forward Operating Base (FOB) Nuclear Power Evaluation was developed by the Idaho National Laboratory Systems Engineering Department to support the Defense Advanced Research Projects Agency (DARPA) in assessing and demonstrating the viability of deploying small-scale reactors in support of military operations in theatre. This document provides a brief explanation of how to access and use the Sustainable FOB Nuclear Power Evaluation utility to view assessment results as input into developing and integrating the program elements needed to create a successful demonstration.

Not Listed

2012-01-01T23:59:59.000Z

454

Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Risk Insurance for Nuclear Power Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy August 4, 2006 - 8:42am Addthis ATLANTA, GA - After touring Georgia Power and speaking to its employees, U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced completion of the final rule that establishes the process for utility companies building the next six new nuclear power plants in the United States to qualify for a portion of $2 billion in federal risk insurance. The rule will be available on DOE's web site soon. "Providing federal risk insurance is an important step in speeding the nuclear renaissance in this country," Secretary Bodman said. "Companies

455

DOE Announces Loan Guarantee Applications for Nuclear Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces Loan Guarantee Applications for Nuclear Power Plant DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has received 19 Part I applications from 17 electric power companies for federal loan guarantees to support the construction of 14 nuclear power plants in response to its June 30, 2008 solicitation. The applications reflect the intentions of those companies to build 21 new reactors, with some applications covering two reactors at the same site. All five reactor designs that have been certified, or are currently under review for possible certification, by the Nuclear Regulatory Commission (NRC) are

456

DOE Announces Loan Guarantee Applications for Nuclear Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Guarantee Applications for Nuclear Power Plant Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has received 19 Part I applications from 17 electric power companies for federal loan guarantees to support the construction of 14 nuclear power plants in response to its June 30, 2008 solicitation. The applications reflect the intentions of those companies to build 21 new reactors, with some applications covering two reactors at the same site. All five reactor designs that have been certified, or are currently under review for possible certification, by the Nuclear Regulatory Commission (NRC) are represented in the Part I applications. DOE also has received Part I

457

Assessment of Electromagnetic Interference Events in Nuclear Power Plants  

Science Conference Proceedings (OSTI)

This report presents a study and analysis of reported electromagnetic interference (EMI-) related incidents in nuclear power plants. These incidents were gathered primarily from the total body of incidents reported to the Institute of Nuclear Power Operations (INPO) database, with a few incidents coming from U.S. Nuclear Regulatory Commission (NRC) reports. This report analyzes trends and common factors in these events. The analysis is intended to inform the estimation of risk from EMI and offer suggesti...

2011-12-23T23:59:59.000Z

458

International Working Group Meeting Focuses on Nuclear Power Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Financing of New Nuclear Projects Financing of New Nuclear Projects International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Financing of New Nuclear Projects December 15, 2009 - 1:09pm Addthis VIENNA, AUSTRIA - The multi-nation Infrastructure Development Working Group (IDWG) held its fifth meeting and also a workshop on the financing of international nuclear power projects in Vienna, Austria, on December 9-10, 2009. An official from the U.S. Department of Energy (DOE) led the working group meeting. "As a key component of the international Global Nuclear Energy Partnership (GNEP) program, the Infrastructure Development Working Group supports the safe, secure and responsible use of nuclear energy," said Assistant Secretary for Nuclear Energy Warren F. Miller, Jr. "The group

459

NUCLEAR DATA RESOURCES FOR ADVANCED ANALYSIS AND SIMULATION.  

SciTech Connect

The mission of the National Nuclear Data Center (NNDC) includes collection, evaluation, and dissemination of nuclear physics data for basic nuclear research and applied nuclear technologies. In 2004, to answer the needs of nuclear data users, NNDC completed a project to modernize storage and management of its databases and began offering new nuclear data Web services. Examples of nuclear reaction, nuclear structure and decay database applications along with a number of nuclear science codes are also presented.

PRITYCHENKO, B.

2006-06-05T23:59:59.000Z

460

Working Group Report on - Space Nuclear Power Systems and Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

explore and the resources needed to explore them." (p. v) "Pursuit of this goal entails developing new technologies and advanced facilities, educating young scientists, training...

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Advanced Lithium Power Inc ALP | Open Energy Information  

Open Energy Info (EERE)

ALP ALP Jump to: navigation, search Name Advanced Lithium Power Inc (ALP) Place Vancouver, British Columbia, Canada Product They develop lithium ion and advanced battery control systems and their primary asset is intellectual property. Coordinates 49.26044°, -123.114034° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.26044,"lon":-123.114034,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

462

New Jersey Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2nj Oyster Creek Unit 1 615 4,601 14.0 Exelon Nuclear PSEG Hope Creek Generating Station Unit 1 1,161 9,439 28.8 PSEG Nuclear LLC PSEG Salem Generating Station

463

Advanced binary geothermal power plants: Limits of performance  

SciTech Connect

The Heat Cycle Research Program is currently investigating the potential improvements to power cycles utilizing moderate temperature geothermal resources to produce electrical power. Investigations have specifically examined Rankine cycle binary power systems. Binary Rankine cycles are more efficient than the flash steam cycles at moderate resource temperatures, achieving a higher net brine effectiveness. At resource conditions similar to those at the Heber binary plant, it has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating with a supercritical Rankine cycle gave improved performance over Rankine cycles with the pure working fluids executing single boiling cycles. Recently, in addition to the supercritical Rankine Cycle, other types of cycles have been proposed for binary geothermal service. This paper explores the limits on efficiency of a feasibility plant and discusses the methods used in these advanced concept plants to achieve the maximum possible efficiency. The advanced plants considered appear to be approaching the feasible limit of performance so that the designer must weigh all considerations to find the best plant for a given service. 16 refs., 12 figs.

Bliem, C.J.; Mines, G.L.

1990-01-01T23:59:59.000Z

464

India's nuclear power program : a study of India's unique approach to nuclear energy.  

E-Print Network (OSTI)

??India is in the middle of the biggest expansion of nuclear power in its history, adding 20 GWe in the next 14 years in the… (more)

Murray, Caitlin Lenore

2006-01-01T23:59:59.000Z

465

Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants  

SciTech Connect

The objective of this siting study work is to support DOE in evaluating integrated advanced nuclear plant and ISFSI deployment options in the future. This study looks at several nuclear power plant growth scenarios that consider the locations of existing and planned commercial nuclear power plants integrated with the establishment of consolidated interim spent fuel storage installations (ISFSIs). This research project is aimed at providing methodologies, information, and insights that inform the process for determining and optimizing candidate areas for new advanced nuclear power generation plants and consolidated ISFSIs to meet projected US electric power demands for the future.

Mays, Gary T [ORNL; Belles, Randy [ORNL; Cetiner, Mustafa Sacit [ORNL; Howard, Rob L [ORNL; Liu, Cheng [ORNL; Mueller, Don [ORNL; Omitaomu, Olufemi A [ORNL; Peterson, Steven K [ORNL; Scaglione, John M [ORNL

2012-06-01T23:59:59.000Z

466

AdvAnced  

NLE Websites -- All DOE Office Websites (Extended Search)

AdvAnced test reActor At the InL advanced Unlike large, commercial power reactors, ATR is a low- temperature, low-pressure reactor. A nuclear reactor is basically an elaborate tool...

467

Advanced binary geothermal power plants: Limits of performance  

SciTech Connect

The Heat Cycle Research Program is investigating potential improvements to power cycles utilizing moderate temperature geothermal resources to produce electrical power. Investigations have specifically examined Rankine cycle binary power systems. Binary Rankine cycles are more efficient than the flash steam cycles at moderate resource temperature, achieving a higher net brine effectiveness. At resource conditions similar to those at the Heber binary plant, it has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating in a supercritical Rankine cycle gave improved performance over Rankine cycles with the pure working fluids executing single or dual boiling cycles or supercritical cycles. Recently, other types of cycles have been proposed for binary geothermal service. This report explores the feasible limits on efficiency of a plant given practical limits on equipment performance and discusses the methods used in these advanced concept plants to achieve the maximum possible efficiency. (Here feasible is intended to mean reasonably achievable and not cost-effective.) No direct economic analysis has been made because of the sensitivity of economic results to site specific input. The limit of performance of three advanced plants were considered in this report. The performance predictions were taken from the developers of each concept. The advanced plants considered appear to be approaching the feasible limit of performance. Ultimately, the plant designer must weigh the advantages and disadvantages of the the different cycles to find the best plant for a given service. In addition, this report presents a standard of comparison of the work which has been done in the Heat Cycle Research Program and in the industrial sector by Exergy, Inc. and Polythermal Technologies. 18 refs., 16 figs., 1 tab.

Bliem, C.J.; Mines, G.L.

1991-01-01T23:59:59.000Z

468

ORNL R and D on advanced small and medium power reactors: Selected topics  

SciTech Connect

From 1984-1985, ORNL studied several innovative small and medium power nuclear concepts with respect to viability. Criteria for assessment of market attractiveness were developed and are described here. Using these criteria and descriptions of selected advanced reactor concepts, and assessment of their projected market viability in the time period 2000-2010 was made. All of these selected concepts could be considered as having the potential for meeting the criteria but, in most cases, considerable RandD would be required to reduce uncertainties. This work and later studies of safety and licensing of advanced, passively safe reactor concepts by ORNL are described. The results of these studies are taken into account in most of the current (FY 1989) work at ORNL on advanced reactors. A brief outline of this current work is given. One of the current RandD efforts at ORNL which addresses the operability and safety of advanced reactors is the Advanced Controls Program. Selected topics from this Program are described. 13 refs., 1 fig.

White, J.D.; Trauger, D.B.

1988-01-01T23:59:59.000Z

469

Materials for Nuclear Power: Digital Resource Center -- Nuclear ...  

Science Conference Proceedings (OSTI)

WEB RESOURCE: Nuclear Science and Technology Lecture notes and presentations, 0, 779, Lynne Robinson, 2/19/2007 8:55 AM by Lynne Robinson.

470

Nuclear energy is an important source of power, supplying 20  

NLE Websites -- All DOE Office Websites (Extended Search)

energy is an important source of power, supplying 20 energy is an important source of power, supplying 20 percent of the nation's electricity. More than 100 nuclear power plants are operating in the U.S., and countries around the world are implementing nuclear power as a carbon-free alternative to fossil fuels. We can maximize the climate and energy security benefits provided by responsible global nuclear energy expansion by developing options to increase the energy extracted from nuclear fuel, improve waste management, and strengthen nuclear nonproliferation controls. To develop viable technical solutions, these interdependent challenges must be addressed through tightly integrated multidisciplinary research and development efforts. Los Alamos National Laboratory is playing a key role in

471

Lesson 7 - Waste from Nuclear Power Plants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 - Waste from Nuclear Power Plants 7 - Waste from Nuclear Power Plants Lesson 7 - Waste from Nuclear Power Plants This lesson takes a look at the waste from electricity production at nuclear power plants. It considers the different types of waste generated, as well as how we deal with each type of waste. Specific topics covered include: Nuclear Waste Some radioactive Types of radioactive waste Low-level waste High-level waste Disposal and storage Low-level waste disposal Spent fuel storage Waste isolation Reprocessing Decommissioning Lesson 7 - Waste.pptx More Documents & Publications National Report Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Third National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

472

Advanced Heat Transfer Fluids for Concentrated Solar Power (CSP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Science Computing, Environment & Life Sciences Energy Engineering & Systems Analysis Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Science Highlights Postdoctoral Researchers Advanced Heat Transfer Fluids for Concentrated Solar Power (CSP) Applications November 1, 2011 Tweet EmailPrint The current levelized cost of energy (LCOE) from concentrated solar power (CSP) is ~ $0.11/kWh. The U.S. Department of Energy has set goals to reduce this cost to ~$0.07/kWh with 6 hours of storage by 2015 and to ~$0.05/kWh with 16 hours of storage by 2020. To help meet these goals, scientists at Argonne National Laboratory are working to improve the overall CSP plant efficiency by enhancing the thermophysical properties of heat transfer

473

Advanced Materials and Concepts for Portable Power Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 1 DOE Kick-off Meeting, Washington, DC September 28, 2010 Fuel Cell Projects Kick-off Meeting Washington, DC - September 28, 2010 Advanced Materials and Concepts for Portable Power Fuel Cells for Portable Power Fuel Cells Piotr Zelenay Los Alamos National Laboratory Los Alamos National Laboratory Los Alamos, New Mexico 87545 This presentation does not contain any proprietary, confidential, or otherwise restricted information - t t Overview Timeline * Start date: September 2010 * End date: Four-year duration Budget Budget * Total funding estimate: - DOE share: $3,825K Contractor share: $342K $342K - Contractor share: * FY10 funding received: $250K * FY11 funding estimate: $1,000K Barriers * A. Durability (catalyst; electrode) (catalyst; electrode)

474

ADVANCED CO{sub 2} CYCLE POWER GENERATION  

SciTech Connect

Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2003-07-01T23:59:59.000Z

475

Advanced Power Batteries for Renewable Energy Applications 3.09  

SciTech Connect

This report describes the research that was completed under project title â?? Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

Rodney Shane

2011-09-30T23:59:59.000Z

476

Anhui Wuhu Nuclear Power Co | Open Energy Information  

Open Energy Info (EERE)

Wuhu Nuclear Power Co Wuhu Nuclear Power Co Jump to: navigation, search Name Anhui Wuhu Nuclear Power Co. Place Shenzhen, Guangdong Province, China Zip 518031 Product JV between Guangdong Nuclear Power Group (CGNPG) 51%, Anhui Province Energy Group (15%), Shenergy Co (20%) and Shanghai Electric Power Co (14%). Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

477

Novel power system demonstrated for space travel | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel power system demonstrated for space travel | National Nuclear Novel power system demonstrated for space travel | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Novel power system demonstrated for space travel Novel power system demonstrated for space travel Posted By Office of Public Affairs John Bounds, Los Alamos National Laboratory

478

Novel power system demonstrated for space travel | National Nuclear  

National Nuclear Security Administration (NNSA)

Novel power system demonstrated for space travel | National Nuclear Novel power system demonstrated for space travel | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Novel power system demonstrated for space travel Novel power system demonstrated for space travel Posted By Office of Public Affairs John Bounds, Los Alamos National Laboratory

479

Nuclear Power Generation and Fuel Cycle Report  

Reports and Publications (EIA)

Final issue. This report provides information and forecasts important to the domestic and world nuclear and uranium industries. 1997 represents the most recent publication year.

Dr. Zdenek D.

1997-09-01T23:59:59.000Z

480

Open Discussion Regarding Materials for Nuclear Power  

Science Conference Proceedings (OSTI)

Jan 4, 2008 ... What long-term nuclear waste storage solution do you believe to be most promising? A JOM Readers Survey Question, 0, 920, Todd Osman ...

Note: This page contains sample records for the topic "advanced nuclear power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The Decline and Death of Nuclear Power  

E-Print Network (OSTI)

Regulatory Commission (2012). NRC: Nuclear Security andRegulatory Commission (2013). NRC: New Reactors. nrc.gov.Regulatory Commission [US NRC], 2012). The NRC mandates

Melville, Jonathan

2013-01-01T23:59:59.000Z

482

Remote power systems with advanced storage technologies for Alaskan villages  

DOE Green Energy (OSTI)

Remote Alaskan communities pay economic and environmental penalties for electricity, because they must import diesel as their primary fuel for electric power production, paying heavy transportation costs and potentially causing environmental damage with empty drums, leakage, and spills. For these reasons, remote villages offer a viable niche market where sustainable energy systems based on renewable resources and advanced energy storage technologies can compete favorably on purely economic grounds, while providing environmental benefits. These villages can also serve as a robust proving ground for systematic analysis, study, improvement, and optimization of sustainable energy systems with advanced technologies. This paper presents an analytical optimization of a remote power system for a hypothetical Alaskan village. The analysis considers the potential of generating renewable energy (e.g., wind and solar), along with the possibility of using energy storage to take full advantage of the intermittent renewable sources available to these villages. Storage in the form of either compressed hydrogen or zinc pellets can then provide electricity from hydrogen or zinc-air fuel cells when renewable sources are unavailable.The analytical results show a great potential to reduce fossil fuel consumption and costs basing renewable energy combined with advanced energy storage devices. The best solution for our hypothetical village appears to be a hybrid energy system, which can reduce consumption of diesel fuel by over 50% with annualized cost savings by over 30% by adding wind turbines to the existing diesel generators. When energy storage devices are added, diesel fuel consumption and costs can be reduced substantially more. With optimized energy storage, use of the diesel generatorss can be reduced to almost zero, with the existing equipment only maintained for added reliability. However about one quarter of the original diesel consumption is still used for heating purposes. (We use the term diesel to encompass the fuel, often called heating or fuel oil, of similar or identical properties.)

Isherwood, W.; Smith, R.; Aceves, S.; Berry, G.; Clark, W.; Johnson, R.; Das, D.; Goering, D.; Seifert, R.

1997-12-01T23:59:59.000Z

483

Executive Director for Operations RENEWAL OF FULL-POWER OPERATING LICENSE FOR PILGRIM NUCLEAR POWER STATION  

E-Print Network (OSTI)

This paper (1) requests that the Commission authorize the Director of the Office of Nuclear Reactor Regulation (NRR) to renew the operating license for Pilgrim Nuclear Power Station (PNPS) for an additional 20 years, and (2) informs the Commission of the results of the U.S. Nuclear Regulatory Commission (NRC) staff’s review of the PNPS license renewal application (LRA) (Ref. 1) submitted by Entergy Nuclear Generation Company (Entergy Nuclear) and Entergy Nuclear Operations, Inc. (ENO) (owner and operator, respectively, of PNPS). In the Staff Requirements Memorandum for SECY-02-0088, “Turkey Point Nuclear Plant, Units 3 and

R. W. Borchardt

2012-01-01T23:59:59.000Z

484

Nuclear Power Plant Emergency Diesel Generator Tanks 1  

E-Print Network (OSTI)

Nuclear power provides about 20 % of the total electricity generated in the United States. In 2005, this was about 782 Billion kWh of the total electricity generation (EIA 2006). 2 As with fossil-fueled electricity generating plants, electricity in a nuclear power plant is produced by heated steam that drives a turbine generator. In a nuclear power plant, however, nuclear fission reactions in the core produce heat that is absorbed by a liquid that flows through the system and is converted to steam. Nuclear power plants are highly efficient and have become more so over the last 25 years. Operational efficiency (also referred to as plant performance or electricity production) can be measured by the capacity factor. The capacity factor is the ratio of the actual amount of electricity generated to the maximum possible amount that could be generated in a given period of time – usually a year. Today, nuclear power plants operate at an average 90 % capacity factor (compared to 56 % in 1980) (EIA 2006a). Thus, although nuclear generating capacity has remained roughly constant since 1990, at about 99 gigawatts (or about 10 % of the total U.S. electric generating capacity), the amount of electricity produced has increased 33 % since that time because of increased capacity utilization. Nuclear plants have the highest capacity factors of

unknown authors

2006-01-01T23:59:59.000Z

485