Powered by Deep Web Technologies
Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Advanced Nuclear Energy Projects Solicitation | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Nuclear Energy Projects Solicitation Advanced Nuclear Energy Projects Solicitation INFORMATIONAL MATERIALS ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION Solicitation...

2

Draft Advanced Nuclear Energy Projects Solicitation | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Advanced Nuclear Energy Projects Solicitation Draft Advanced Nuclear Energy Projects Solicitation INFORMATIONAL MATERIALS DRAFT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION...

3

Draft Advanced Nuclear Energy Projects Solicitation | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Solicitation Draft Advanced Nuclear Energy Projects Solicitation Federal loan guarantee solicitation announcement -- Advanced Nuclear Energy Projects. Draft Advanced...

4

Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation...  

Office of Environmental Management (EM)

Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Solicitation...

5

Draft Advanced Nuclear Energy Solicitation Fact Sheet | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet Draft Advanced Nuclear Energy Solicitation Fact Sheet Draft Advanced Nuclear Energy Projects Solicitation Fact Sheet (September 2014) More Documents & Publications Draft...

6

Energy Department Invests $67 Million to Advanced Nuclear Technology...  

Office of Environmental Management (EM)

Energy Department Invests 67 Million to Advanced Nuclear Technology Energy Department Invests 67 Million to Advanced Nuclear Technology August 20, 2014 - 12:00pm Addthis News...

7

Energy Department Announces New Investments in Advanced Nuclear...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Announces New Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear Power Reactors October 31, 2014 - 12:20pm Addthis NEWS...

8

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop and demonstrate Advanced Burner Reactors (ABRs) that...

9

Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Develop Advanced Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop and demonstrate Advanced Burner Reactors (ABRs) that consume transuranic elements (plutonium and other long-lived radioactive material) while extracting their energy. The development of ABRs will allow us to build an improved nuclear fuel cycle that recycles used fuel. Accordingly, the U.S. will work with participating international partners on the design, development, and demonstration of ABRs as part of the GNEP. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors More Documents & Publications GNEP Element:Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste

10

NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEAMS: The Nuclear Energy Advanced NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program The Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program is developing a simulation tool kit using leading-edge computational methods that will accelerate the development and deployment of nuclear power technologies that employ enhanced safety and security features, produce power more cost-effectively, and utilize natural resources more efficiently. The NEAMS ToolKit

11

Advancing Global Nuclear Security | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OF THE NUCLEAR ENERGY AND NUCLEAR SECURITY WORKING GROUP OF THE BILATERAL U.S. - RUSSIA PRESIDENTIAL COMMISSION Secretary Moniz's Remarks at the 2014 IAEA General Conference...

12

Advanced Nuclear Reactors | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Nuclear Advanced Nuclear Reactors Advanced Nuclear Reactors Turbulent Flow of Coolant in an Advanced Nuclear Reactor Visualizing Coolant Flow in Sodium Reactor Subassemblies Sodium-cooled Fast Reactor (SFR) Coolant Flow At the heart of a nuclear power plant is the reactor. The fuel assembly is placed inside a reactor vessel where all the nuclear reactions occur to produce the heat and steam used for power generation. Nonetheless, an entire power plant consists of many other support components and key structures like coolant pipes; pumps and tanks including their surrounding steel framing; and concrete containment and support structures. The Reactors Product Line within NEAMS is concerned with modeling the reactor vessel as well as those components of a complete power plant that

13

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements...

14

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Plan Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program Plan The NEAMS program plan includes information on the program vision, objective, scope, schedule and...

15

MIT - Center for Advanced Nuclear Energy Systems | Open Energy Information  

Open Energy Info (EERE)

MIT - Center for Advanced Nuclear Energy Systems MIT - Center for Advanced Nuclear Energy Systems Jump to: navigation, search Logo: MIT - Center for Advanced Nuclear Energy Systems Name MIT - Center for Advanced Nuclear Energy Systems Address 77 Massachusetts Avenue, 24-215 Place Cambridge, Massachusetts Zip 02139-4307 Phone number (617) 452-2660 Coordinates 42.3613041°, -71.0967653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3613041,"lon":-71.0967653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

16

Department of Energy Issues Final $12.5 Billion Advanced Nuclear...  

Energy Savers (EERE)

Final 12.5 Billion Advanced Nuclear Energy Loan Guarantee Solicitation Department of Energy Issues Final 12.5 Billion Advanced Nuclear Energy Loan Guarantee Solicitation December...

17

Energy Department Announces New Investments in Advanced Nuclear Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces New Investments in Advanced Nuclear Energy Department Announces New Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear Power Reactors June 27, 2013 - 2:20pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to accelerate clean energy leadership and to enable a low-carbon economy, the Energy Department today announced $3.5 million for four advanced nuclear reactor projects that go beyond traditional light water designs. These projects -- led by General Atomics, GE Hitachi, Gen4 Energy and Westinghouse -- will address key technical challenges to designing, building and operating the next generation of nuclear reactors. These steps support the President's plan to cut carbon pollution and spark innovation

18

Energy Department Announces New Investments in Advanced Nuclear Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investments in Advanced Nuclear Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear Power Reactors June 27, 2013 - 2:20pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to accelerate clean energy leadership and to enable a low-carbon economy, the Energy Department today announced $3.5 million for four advanced nuclear reactor projects that go beyond traditional light water designs. These projects -- led by General Atomics, GE Hitachi, Gen4 Energy and Westinghouse -- will address key technical challenges to designing, building and operating the next generation of nuclear reactors. These steps support the President's plan to cut carbon pollution and spark innovation

19

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Modeling and Simulation (NEAMS) Software Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements The purpose of the NEAMS Software V&V Plan is to define what the NEAMS program expects in terms of V&V for the computational models that are developed under NEAMS. NEAMS Software Verification and Validation Plan Requirements Version 0.pdf More Documents & Publications NEAMS Quarterly Report for January-March 2013 Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program Plan CRAD, Assessment Criteria and Guidelines for Determining the Adequacy of Software Used in the Safety Analysis and Design of Defense Nuclear Facilities

20

Graduate School of Advanced Science and Engineering Cooperative Major in Nuclear Energy  

E-Print Network (OSTI)

Graduate School of Advanced Science and Engineering Cooperative Major in Nuclear Energy Master in Nuclear Energy Summary of Research Instruction Research Instruction Application Code Name Major in Nuclear Energy Master's Program Doctoral Program Summary of Research Instruction

Kaji, Hajime

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Education in nuclear science at IPEN - CNEN, So Paulo, Brazil: Advanced School of Nuclear EnergyEAEN  

Science Journals Connector (OSTI)

EAEN (Advanced School of Nuclear Energy, 2010) is an annual school that ... a week of activities in the area of Nuclear Physics, Radiochemistry and uses of Nuclear Energy for a public made of high school students...

R. Semmler; M. G. M. Catharino

2012-01-01T23:59:59.000Z

22

Department of Energy Issues Final $12.5 Billion Advanced Nuclear Energy Loan Guarantee Solicitation  

Energy.gov (U.S. Department of Energy (DOE))

WASHINGTON D.C. Today, the Department of Energy issued the Advanced Nuclear Energy Projects loan guarantee solicitation, which provides as much as $12.5 billion to support innovative nuclear energy projects as a part of the Administrations all-of-the-above energy strategy.

23

Department of Energy Issues Draft Loan Guarantee Solicitation for Advanced Nuclear Energy Projects  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy has issued a draft solicitation that would provide up to $12.6 billion in loan guarantees for Advanced Nuclear Energy Projects, supporting the Administrations all-of-the-above energy strategy and bringing the nation closer to its low-carbon future.

24

Energy Department Announces New Investments in Advanced Nuclear Power Reactors  

Energy.gov (U.S. Department of Energy (DOE))

WASHINGTON Today, as part of the Presidents all-of-the-above energy approach and Climate Action Plan, the Energy Department announced awards for five companies to lead key nuclear energy...

25

Nuclear Energy  

Science Journals Connector (OSTI)

Nuclear Energy ... A brief summary of the history and key concepts of nuclear energy. ... Nuclear / Radiochemistry ...

Charles D. Mickey

1980-01-01T23:59:59.000Z

26

Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons  

Energy.gov (U.S. Department of Energy (DOE))

Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons - December Commission meeting

27

Office of Advanced Nuclear Research Office of Nuclear Energy, Science and Technology  

E-Print Network (OSTI)

Integrate applicable work conducted in programs in the Offices of Nuclear Energy (Gen IV, NERI, I · FY 2010: Complete the design of a commercial-scale nuclear hydrogen production system · FY 2015 to budget uncertainties (risk/benefit) · Guide the development of technology to support decisions Develop

28

Nuclear Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Role of Synchrotron Radiation in Solving Scientific Challenges in Advanced Nuclear Energy Systems 27 to 28 January 2010 at Argonne's Advanced Photon Source Scope Third-generation...

29

Nuclear Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Programs >> Nuclear Energy Error Error Nuclear Energy Home - RCC cannot be displayed due to a timeout error. We recommend: * Refresh Nuclear Energy Home - RCC * Increasing...

30

The Path to Sustainable Nuclear Energy. Basic and Applied Research Opportunities for Advanced Fuel Cycles  

SciTech Connect

The objective of this report is to identify new basic science that will be the foundation for advances in nuclear fuel-cycle technology in the near term, and for changing the nature of fuel cycles and of the nuclear energy industry in the long term. The goals are to enhance the development of nuclear energy, to maximize energy production in nuclear reactor parks, and to minimize radioactive wastes, other environmental impacts, and proliferation risks. The limitations of the once-through fuel cycle can be overcome by adopting a closed fuel cycle, in which the irradiated fuel is reprocessed and its components are separated into streams that are recycled into a reactor or disposed of in appropriate waste forms. The recycled fuel is irradiated in a reactor, where certain constituents are partially transmuted into heavier isotopes via neutron capture or into lighter isotopes via fission. Fast reactors are required to complete the transmutation of long-lived isotopes. Closed fuel cycles are encompassed by the Department of Energy?s Advanced Fuel Cycle Initiative (AFCI), to which basic scientific research can contribute. Two nuclear reactor system architectures can meet the AFCI objectives: a ?single-tier? system or a ?dual-tier? system. Both begin with light water reactors and incorporate fast reactors. The ?dual-tier? systems transmute some plutonium and neptunium in light water reactors and all remaining transuranic elements (TRUs) in a closed-cycle fast reactor. Basic science initiatives are needed in two broad areas: ? Near-term impacts that can enhance the development of either ?single-tier? or ?dual-tier? AFCI systems, primarily within the next 20 years, through basic research. Examples: Dissolution of spent fuel, separations of elements for TRU recycling and transmutation Design, synthesis, and testing of inert matrix nuclear fuels and non-oxide fuels Invention and development of accurate on-line monitoring systems for chemical and nuclear species in the nuclear fuel cycle Development of advanced tools for designing reactors with reduced margins and lower costs ? Long-term nuclear reactor development requires basic science breakthroughs: Understanding of materials behavior under extreme environmental conditions Creation of new, efficient, environmentally benign chemical separations methods Modeling and simulation to improve nuclear reaction cross-section data, design new materials and separation system, and propagate uncertainties within the fuel cycle Improvement of proliferation resistance by strengthening safeguards technologies and decreasing the attractiveness of nuclear materials A series of translational tools is proposed to advance the AFCI objectives and to bring the basic science concepts and processes promptly into the technological sphere. These tools have the potential to revolutionize the approach to nuclear engineering R&D by replacing lengthy experimental campaigns with a rigorous approach based on modeling, key fundamental experiments, and advanced simulations.

Finck, P.; Edelstein, N.; Allen, T.; Burns, C.; Chadwick, M.; Corradini, M.; Dixon, D.; Goff, M.; Laidler, J.; McCarthy, K.; Moyer, B.; Nash, K.; Navrotsky, A.; Oblozinsky, P.; Pasamehmetoglu, K.; Peterson, P.; Sackett, J.; Sickafus, K. E.; Tulenko, J.; Weber, W.; Morss, L.; Henry, G.

2005-09-01T23:59:59.000Z

31

Nuclear Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Energy Idaho National Laboratory is the Department of Energy's lead nuclear energy research and development facility. Building upon its legacy responsibilities,...

32

ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report of Report of ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE 24 October 2003 BURTON RICHTER, CHAIR DARLEANE C. HOFFMAN SEKAZI K. MTINGWA RONALD P. OMBERG SILVIE PILLON JOY L. REMPE I. INTRODUCTION AND SUMMARY The committee met in Washington on September 16 and 17 to review progress in the program with respect to a changed set of mission priorities. Our last meeting took place in December 2002 after the reorganization that had placed the Advanced Fuel Cycle Initiative (AFCI) and the GEN IV program together in the Advanced Nuclear Research Office (AN-20). Since mission priorities have been evolving, the committee felt that it should wait until they have settled down before we met again. We have kept in touch

33

Advanced Reactor Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Reactor Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research, development and deployment (RD&D) activities through its Next Generation Nuclear Plant (NGNP), Advanced Reactor Concepts (ARC), and Advanced Small Modular Reactor (aSMR) programs to promote safety, technical, economical, and environmental advancements of innovative Generation IV nuclear energy technologies. The Office of Nuclear Energy (NE) will pursue these advancements through RD&D activities at the Department of Energy (DOE) national laboratories and U.S. universities, as well as through collaboration with industry and international partners. These activities will focus on advancing scientific

34

Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation  

E-Print Network (OSTI)

Henry S. Rowen, "Nuclear Energy and Nuclear Proliferation -Northeast Asian nuclear energy cooperation advanced byAsia). 2 Cooperation on nuclear energy would have a direct

Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

1998-01-01T23:59:59.000Z

35

Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).  

SciTech Connect

The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

Schultz, Peter Andrew

2011-12-01T23:59:59.000Z

36

E-Print Network 3.0 - advanced nuclear energy Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

is far less than any of the alternative energy technologies now... contemplated, such as solar, biomass and wind. Nuclear power must be part of any future solution to the...

37

E-Print Network 3.0 - advance nuclear energy Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

is far less than any of the alternative energy technologies now... contemplated, such as solar, biomass and wind. Nuclear power must be part of any future solution to the...

38

Nuclear | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space exploration. Nuclear power is the use of sustained nuclear fission to generate heat and electricity. Nuclear power plants provide about 6 percent of the world's energy and 13-14 percent of the world's electricity. Featured Five Years of Building the Next Generation of Reactors Simulated three-dimensional fission power distribution of a single 17x17 rod PWR fuel assembly. | Photo courtesy of the Consortium for Advanced Simulation of Light Water Reactors (CASL). A two-year update on the Consortium for Advanced Simulation of Light Water Reactors and the progress being made in overcoming barriers to national

39

Advanced Nuclear Medicine Initiative Owen Lowe  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Isotopes for Life Isotopes for Life Isotopes for Life Advanced Nuclear Medicine Initiative Owen Lowe Office of Isotopes for Medicine and Science Office of Nuclear Energy, Science and Technology October 1, 2002 Isotopes for Life Isotopes for Life Isotopes for Life Office of Nuclear Energy, Science and Technology Lowe/Oct01_02 ANMI to NERAC.ppt (2) Advanced Nuclear Medicine Initiative Advanced Nuclear Medicine Initiative 6 Sponsor nuclear medical science research using a peer-review selection process * 9 three-year research grants awarded 6 Sponsor the training of individuals in nuclear medical science * 5 three-year education grants awarded 6 Continue research and education programs to completion; however, no additional funds for new grants is in the FY 2003 budget Isotopes for Life Isotopes for Life

40

A Career in Nuclear Energy  

ScienceCinema (OSTI)

Nuclear chemist Dr. Marsha Lambregts talks about the Center for Advanced Energy Studies and the benefits of a nuclear energy career. For more information about careers at INL, visit http://www.facebook.com/idahonationallaboratory.

Lambregts, Marsha

2013-05-28T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nuclear Energy!  

NLE Websites -- All DOE Office Websites (Extended Search)

driver, see the Nuclear Clean Air Energy race car and receive a special clean energy patch on October 21 from 6:30 - 7:30 p.m. Space is limited RSVP by October 4 Hands-on...

42

Nuclear Energy Enabling Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enabling Technologies Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Energy Enabling Technologies The Nuclear Energy Enabling Technologies (NEET) Program will develop crosscutting technologies that directly support and complement the Department of Energy, Office of Nuclear Energy's (DOE-NE) advanced reactor and fuel cycle concepts, focusing on innovative research that offers the promise of dramatically improved performance. NEET will coordinate research efforts on common issues and challenges that confront the DOE-NE R&D programs (Light Water Reactor Sustainability [LWRS], Next Generation Nuclear Plant [NGNP], Advanced Reactor Technologies [ART], and Small Modular Reactors [SMR]) to advance technology development and deployment. The activities undertaken in the NEET program will

43

Office of Nuclear Energy | Department of Energy  

Office of Environmental Management (EM)

Office of Nuclear Energy Small Modular Reactors Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation...

44

Nuclear Energy  

SciTech Connect

Andrew Godfrey describes CASL -- the Consortium for Advanced Simulation of Light Water Reactors--a multi-institutional effort led by the Department of Energy that's using high-performance

Godfrey, Anderw

2014-04-10T23:59:59.000Z

45

Nuclear Energy & Energy Security  

Science Journals Connector (OSTI)

Safety issues related to use of nuclear energy and secure operation of nuclear installations are mail stones of great importance. Although none of technologies producing energy are absolutely safe it is obvious t...

Jumber Mamasakhlisi

2010-01-01T23:59:59.000Z

46

Advanced nuclear fuel  

SciTech Connect

Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

Terrani, Kurt

2014-07-14T23:59:59.000Z

47

Advanced nuclear fuel  

ScienceCinema (OSTI)

Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

Terrani, Kurt

2014-07-15T23:59:59.000Z

48

E-Print Network 3.0 - advanced nuclear materials Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: advanced nuclear materials Page: << < 1 2 3 4 5 > >> 1 Enabling a Sustainable Nuclear Energy Future...

49

R. Shane Johnson, Associate Director Office of Advanced Nuclear Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Nuclear Research Advanced Nuclear Research September 30, 2002 Generation IV International Forum Generation IV International Forum Presentation to the Nuclear Energy Research Advisory Committee Office of Nuclear Energy, Science and Technology Generation IV International Forum Generation IV International Forum 6 Government-sanctioned organization working together to plan the future of nuclear energy * Chartered in July 2002 * Conduct joint R&D on next-generation nuclear energy systems * Voluntary member participation in specific projects 6 Observer Organizations * OECD-NEA * IAEA * Euratom South Korea U.S.A. Argentina Brazil Canada France Japan South Africa United Kingdom Switzerland Office of Nuclear Energy, Science and Technology

50

Advances in Metallic Nuclear Fuel  

Science Journals Connector (OSTI)

Metallic nuclear fuels have generated renewed interest for advanced ... operations is excellent. Ongoing irradiation tests in Argonne-Wests Idaho-based Experimental Breeder Reactor ... fast reactor (IFR) concept...

B. R. Seidel; L. C. Walters; Y. I. Chang

1987-04-01T23:59:59.000Z

51

Nuclear Energy Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 9, 2010 L'Enfant Plaza Hotel Washington, D.C. Committee Members Participating John Ahearne Raymond Juzaitis Ashok Bhatnagar William Martin, Chair Dana Christensen Carl Paperiello Thomas Cochran Burton Richter Michael Corradini John Sackett Marvin Fertel Allen Sessoms Donald Hintz Neil Todreas Committee Members Absent Brew Barron Susan Ion Other Participants: Richard Black, Director, Office of Advanced Reactor Concepts, Office of Nuclear Energy, USDOE Nancy Carder, Medical University of South Carolina, NEAC Support Staff David Hill, Director, Institute for Nuclear Energy Science and Technology, Idaho National Laboratory Shane Johnson, Chief Operating Officer, Office of Nuclear Energy, USDOE

52

Advanced Nuclear Reactor Systems An Indian Perspective  

Science Journals Connector (OSTI)

The Indian nuclear power programme envisages use of closed nuclear fuel cycle and thorium utilisation as its mainstay for its sustainable growth. The current levels of deployment of nuclear energy in India need to be multiplied nearly hundred fold to reach levels of electricity generation that would facilitate the country to achieve energy independence as well as a developed status. The Indian thorium based nuclear energy systems are being developed to achieve sustainability in respect of fuel resource along with enhanced safety and reduced waste generation. Advanced Heavy Water Reactor and its variants have been designed to meet these objectives. The Indian High Temperature Reactor programme also envisages use of thorium-based fuel with advanced levels of passive safety features.

Ratan Kumar Sinha

2011-01-01T23:59:59.000Z

53

March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The Global Nuclear Energy Partnership (GNEP) marks a major change in the direction of the DOE's nuclear energy R&D program. It is a coherent plan to test technologies that promise to markedly reduce the problem of nuclear waste treatment and to reduce the proliferation risk in a world with a greatly expanded nuclear power program. It brings the U.S. program into much closer alignment with that of the other major nuclear energy states. GNEP proposes to take spent fuel from existing light water reactors (LWRs),

54

Office of Nuclear Energy | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Nuclear Energy Office of Nuclear Energy Office of Nuclear Energy Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation technology in the United States. Read more Middle School STEM Curriculum The Harnessed Atom curriculum offers essential principles and fundamental concepts on energy and nuclear science. Read more Educating Future Nuclear Engineers The Nuclear Energy University Program offers fellowships and scholarships for graduate and undergraduate students. Read more Managing Used Fuel and Waste REPORT: Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Read more Consortium for Advanced Simulations of LWRs The Consortium for Advanced Simulation of Light Water Reactors (CASL) is

55

January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The ANTT Subcommittee met in Washington on Dec 4-5, 2002 to review progress in the transmutation program, and to learn about major organizational changes that affect the management of the program. The NE's new Advanced Nuclear Research Office (NE-20) now oversees both the transmutation program (ANTT) and the Generation-IV program (GEN-IV). antt14Jan_03.pdf More Documents & Publications October 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

56

Nuclear Energy Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 30, 2002 September 30, 2002 NERAC Fall 2002 Meeting Office of Nuclear Energy, Science and Technology Major Program Developments Major Program Developments 6 June 2002: Department selects three U.S. electric utilities (Dominion Energy, Entergy, and Exelon) to participate in joint government/ industry projects to demonstrate NRC's Early Site Permit (ESP) process and seek NRC approval by mid-decade 6 July 2002: Secretary Abraham announces transition of management of the Idaho National Engineering and Environmental Laboratory to Nuclear Energy and revitalization of its nuclear R&D mission 6 September 2002: Generation IV International Forum reaches agreement on six advanced reactor and fuel cycle technologies for joint development Office of Nuclear Energy, Science and Technology

57

Advances in Nuclear Engineering  

Science Journals Connector (OSTI)

... door, closed for fifteen years, to scientific and technical information about fission and nuclear reactors. In spite of the 1,000 papers published then, there was an enormous amount ... Engineering and Science Conference held in Philadelphia, March 1957, and comprise 130 papers on reactors, fuel and a few other matters, almost all the papers being of American origin ...

T. E. ALLIBONE

1958-07-26T23:59:59.000Z

58

Advanced Hydraulic Wind Energy  

Science Journals Connector (OSTI)

The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems ... Keywords: wind, tide, energy, power, hydraulic

Jack A. Jones; Allan Bruce; Adrienne S. Lam

2013-04-01T23:59:59.000Z

59

Office of Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Energy Office of Nuclear Energy Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation technology in the United States. Read more Middle School STEM Curriculum The Harnessed Atom curriculum offers essential principles and fundamental concepts on energy and nuclear science. Read more Educating Future Nuclear Engineers The Nuclear Energy University Program offers fellowships and scholarships for graduate and undergraduate students. Read more Managing Used Fuel and Waste REPORT: Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Read more Consortium for Advanced Simulations of LWRs The Consortium for Advanced Simulation of Light Water Reactors (CASL) is the first DOE Hub for the modeling and simulation (M&S) of commercial

60

Global Nuclear Energy Partnership Fact Sheet - Expand Domestic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expand Domestic Use of Nuclear Power Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of Nuclear Power GNEP will build on the recent advances made by the...

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Advanced nuclear precleaner  

SciTech Connect

This Phase II Small Business Innovation Research (SBIR) program`s goal is to develop a dynamic, self-cleaning air precleaner for high-efficiency particulate air (HEPA) filtration systems that would extend significantly the life of HEPA filter banks by reducing the particulate matter that causes filter fouling and increased pack pressure. HEPA filters are widely used in DOE, Department of Defense, and a variety of commercial facilities. InnovaTech, Inc. (Formerly Micro Composite materials Corporation) has developed a proprietary dynamic separation device using a concept called Boundary Layer Momentum Transfer (BLMT) to extract particulate matter from fluid process streams. When used as a prefilter in the HVAC systems or downstream of waste vitrifiers in nuclear power plants, fuel processing facilities, and weapons decommissioning factories, the BLMT filter will dramatically extend the service life and increase the operation efficiency of existing HEPA filtration systems. The BLMT filter is self cleaning, so there will be no degraded flow or increased pressure drop. Because the BLMT filtration process is independent of temperature, it can be designed to work in ambient, medium, or high-temperature applications. During Phase II, the authors are continuing development of the computerized flow simulation model to include turbulence and incorporate expansion into a three-dimensional model that includes airflow behavior inside the filter housing before entering the active BLMT device. A full-scale (1000 ACFM) prototype filter is being designed to meet existing HEPA filter standards and will be fabricated for subsequent testing. Extensive in-house testing will be performed to determine a full range of performance characteristics. Final testing and evaluation of the prototype filter will be conducted at a DOE Quality Assurance Filter Test Station.

Wright, S.R. [InnovaTech, Inc., Durham, NC (United States)

1997-10-01T23:59:59.000Z

62

Advanced Energy Guides  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Guides Energy Guides Shanti Pless National Renewable Energy Laboratory shanti.pless@nrel.gov 303-384-6365 April 4 2013 2 | Building Technologies Office eere.energy.gov Advanced Energy Design Guides Provide prescriptive energy savings guidance and recommendations by building type and geographic location: * Design packages and strategies to help owners and designers achieve 50% site energy savings over Standard 90.1 * Two series: - 30% savings over 90.1-1999

63

Advanced Energy Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Guides Energy Guides Shanti Pless National Renewable Energy Laboratory shanti.pless@nrel.gov 303-384-6365 April 4 2013 2 | Building Technologies Office eere.energy.gov Advanced Energy Design Guides Provide prescriptive energy savings guidance and recommendations by building type and geographic location: * Design packages and strategies to help owners and designers achieve 50% site energy savings over Standard 90.1 * Two series: - 30% savings over 90.1-1999

64

October 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, Report of the ADVANCED NUCLEAR TRANSFORMATION 3, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE October 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The committee met in Washington in Sept 16-17 to review progress in the program with respect to a changed set of mission priorities. Our last meeting took place in Dec 2002 after the reorganization that had place the Advanced Fuel Cycle Initiative (AFCI) and GEN IV program together in the Advanced Nuclear Reserach Office (AN-20). Since mission priorities have been evolving, the committee felt that it should wait unti they have settled down before we met again. We have kept in touch during the process,

65

Nuclear Energy | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Energy Nuclear Energy Argonne has contributed to the development of civilian nuclear power for over 50 years. Our scientists and engineers conduct research in advanced nuclear energy systems, nonproliferation and national security, and environmental management. Nuclear energy is the largest generator of carbon-free electricity in use today, and it will play an increasing role in worldwide power generation as advanced reactor designs and improved fuel-cycle technologies are brought into commercial application. Nearly every commercial reactor in operation today was developed from Argonne research. Building on this heritage, we are supporting the reliable, safe and secure use of nuclear power worldwide - and fostering its increased use in the future by incorporating science and engineering

66

October 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, Report of the ADVANCED NUCLEAR TRANSFORMATION 6, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE October 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE The Global Nuclear Energy Partnership (GNEP) program is still evolving. Since our report of March 22, 2006 the DOE has sought to gauge industry interest in participation in the program from its very beginning. At the time the ANTT committee met, August 30- 31, 2006, responses had not yet been received from industry to the DOE's request for Expressions of Interest. This report is based on the assumption that the program outlined recently, which does not include an Advanced Burner Test Reactor, is what

67

Office of Nuclear Energy Launches New Website | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Energy Launches New Website Office of Nuclear Energy Launches New Website Office of Nuclear Energy Launches New Website February 11, 2013 - 4:01pm Addthis The Office of Nuclear Energy's mission is to advance nuclear power as a resource that can meet the United State's energy, environmental and national security needs. The Office of Nuclear Energy's mission is to advance nuclear power as a resource that can meet the United State's energy, environmental and national security needs. Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy What does this mean for me? Visit the new Office of Nuclear Energy website at energy.gov/ne. The Office of Nuclear Energy (NE) is pleased to introduce our new, updated public website: energy.gov/ne. The new site was designed to help facilitate users' access to NE

68

Advanced Energy Company | Open Energy Information  

Open Energy Info (EERE)

Energy Company Jump to: navigation, search Name: Advanced Energy Company Place: Japan Product: Established March 19, 2010, Advanced Energy Company (AEC) aims to install EV...

69

High Energy Nuclear Events  

Science Journals Connector (OSTI)

......research-article Articles High Energy Nuclear Events Enrico Fermi Institute...Distribution of Pions produced in High Energy Nuclear Collisions Yoshihiro Yamamoto...Possible Interpretation of High Energy Nuclear Events Nobuo Yajima, Shuji Takagi......

Enrico Fermi

1950-07-01T23:59:59.000Z

70

Advanced Modeling & Simulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation ADVANCING THE STATE OF THE ART Innovation advances science. Historically, innovation resulted almost exclusively from fundamental theories combined with observation and experimentation over time. With advancements in engineering, computing power and visualization tools, scientists from all disciplines are gaining insights into physical systems in ways not possible with traditional approaches alone. Modeling and simulation has a long history with researchers and scientists exploring nuclear energy technologies. In fact, the existing fleet of currently operating reactors was licensed with computational tools that were produced or initiated in the 1970s. Researchers and scientists in

71

Nuclear Energy Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE))

The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), was established on October 1, 1998, to provide independent advice to the Office of...

72

Challenge problem and milestones for : Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC).  

SciTech Connect

This report describes the specification of a challenge problem and associated challenge milestones for the Waste Integrated Performance and Safety Codes (IPSC) supporting the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The NEAMS challenge problems are designed to demonstrate proof of concept and progress towards IPSC goals. The goal of the Waste IPSC is to develop an integrated suite of modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. To demonstrate proof of concept and progress towards these goals and requirements, a Waste IPSC challenge problem is specified that includes coupled thermal-hydrologic-chemical-mechanical (THCM) processes that describe (1) the degradation of a borosilicate glass waste form and the corresponding mobilization of radionuclides (i.e., the processes that produce the radionuclide source term), (2) the associated near-field physical and chemical environment for waste emplacement within a salt formation, and (3) radionuclide transport in the near field (i.e., through the engineered components - waste form, waste package, and backfill - and the immediately adjacent salt). The initial details of a set of challenge milestones that collectively comprise the full challenge problem are also specified.

Freeze, Geoffrey A.; Wang, Yifeng; Howard, Robert; McNeish, Jerry A.; Schultz, Peter Andrew; Arguello, Jose Guadalupe, Jr.

2010-09-01T23:59:59.000Z

73

Nuclear Energy University Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy University Program Energy University Program Nuclear Energy University Program NEUP Award Recipients FY2009 to FY2013 Click on the icons to find out the values of the awards given to each school. The darker the icon, the more recent the award. Drag and zoom map to see more recipients. Investing in the next generation of nuclear energy leaders and advancing university-led nuclear innovation is vital to fulfilling the Office of Nuclear Energy's (NE) mission. This is accomplished primarily through NE's Nuclear Energy University Programs (NEUP), which was created in 2009 to consolidate university support under one initiative and better integrate university research within NE' technical programs. NEUP engages U.S. colleges and universities to conduct research and development (R&D), enhance infrastructure and support student education

74

Advanced nuclear plant control complex  

DOE Patents (OSTI)

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

75

Revolutionizing Clean Energy Technology with Advanced Composites...  

NLE Websites -- All DOE Office Websites (Extended Search)

Revolutionizing Clean Energy Technology with Advanced Composites Revolutionizing Clean Energy Technology with Advanced Composites Addthis...

76

NUCLEAR ENERGY  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Research Institute FE DOE-Office of Fossil Energy GDP Gross domestic product GHG Greenhouse gas GWe Gigawatt (electric) GWe-yr Gigawatt-year (electric) HTGR...

77

On Nuclear Energy Levels  

Science Journals Connector (OSTI)

...research-article On Nuclear Energy Levels K. M. Guggenheimer The formula for the energy levels of the rigid rotator...nuclei. Two kinds of nuclear rotation are discussed...an A relation for the energy levels of different nuclei...

1942-01-01T23:59:59.000Z

78

Nuclear energy | Open Energy Information  

Open Energy Info (EERE)

This article is a stub. You can help OpenEI by expanding it. Nuclear energy is energy in the nucleus of an atom.1 References "EIA: Uranium (nuclear) Basics" External links...

79

UNEDF: Advanced Scienti?c Computing Collaboration Transforms the Low-Energy Nuclear Many-Body Problem  

SciTech Connect

With diverse scienti?c backgrounds, the UNEDF SciDAC collaboration of nuclear theorists, applied mathematicians, and computer scientists is developing a comprehensive description of nuclei and their reactions that delivers maximum predictive power with quanti?ed uncertainties. This paper describes the UNEDF collaboration and identi?es attributes that classify UNEDF as a successful computational collaboration. We illustrate signi?cant milestones accomplished by UNEDF through integrative solutions using the most reliable theoretical approaches, the most advanced algorithms, and leadership class computational resources.

Nam, Hai A.; Stoitsov, M.; Nazarewicz, Witold; Bulgac, Aurel; Hagen, Gaute; Kortelainene, Markus; Maris, P.; Pei, Junchen; Roche, Kenneth J.; Schunck, Nicolas; Thompson, Ian; Vary, James; Wild, Stefan

2012-11-03T23:59:59.000Z

80

Fossil Energy Advanced Technologies (2008 - 2009) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Advanced Technologies (2008 - 2009) Fossil Energy Advanced Technologies (2008 - 2009) Fossil Energy Advanced Technologies (2008 - 2009) Amendment: Energy and...

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Advanced Critical Advanced Energy Retrofit Education and Training...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Critical Advanced Energy Retrofit Education and Training and Credentialing - 2014 BTO Peer Review Advanced Critical Advanced Energy Retrofit Education and Training and...

82

Is Nuclear Energy the Solution?  

E-Print Network (OSTI)

009-0270-y Is Nuclear Energy the Solution? Milton H. Saier &in the last 50 years, nuclear energy subsidies have totaledadministration, the Global Nuclear Energy Partnership (GNEP)

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

83

Advanced Energy | Open Energy Information  

Open Energy Info (EERE)

Name Advanced Energy Name Advanced Energy Address 1625 Sharp Point Drive Place Fort Collins, Colorado Zip 80525 Sector Solar Product Solar cell, passive-solar architectural glass, solar grid-tie inverter, semiconductor, flat panel display, data storage Year founded 1981 Number of employees 1001-5000 Website http://www.advanced-energy.com Coordinates 40.565708°, -105.030749° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.565708,"lon":-105.030749,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

84

Nuclear Energy Institutes  

Science Journals Connector (OSTI)

Nuclear Energy Institutes ... The Atomic Energy Commission and the American Society for Engineering Education offer their nuclear energy courses for engineering and science teachers again in the summer of 1960. ... At least 160 college and university teachers will study nuclear science in the seven institutes scheduled. ...

1960-01-11T23:59:59.000Z

85

Advanced Sensors and Instrumentation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sensors and Instrumentation Sensors and Instrumentation Advanced Sensors and Instrumentation The ASI subprogram plans to develop the scientific basis for sensors and supporting infrastructure technology that will address crosscutting technology gaps relating to measurements at existing and advanced nuclear power plants as well as within their fuel cycles. The focus of the program is on the following technical challenges and objectives: Identify needed physical measurement accuracy of nuclear system process parameters and minimize uncertainty. Identify and conduct research into monitoring and control technologies, including human factors, to achieve control of new nuclear energy processes, and new methodologies for monitoring to achieve high reliability and availability. Integrate control of multiple processes, potential reductions in

86

Advanced Research Projects Agency - Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Research Projects Agency - Energy Advanced Research Projects Agency - Energy recovery act Advanced Research Projects Agency - Energy More Documents & Publications Advanced...

87

Nuclear rearrangement energy  

Science Journals Connector (OSTI)

The concept of rearrangement energy in nuclear particle removal is carefully defined by specifying several energies associated with the process and its analysis. Connection is made between the present definition and closely related concepts apt to be confused with "rearrangement energy" so defined. Remarks are made concerning the implications of rearrangement to analysis and interpretation of experimental data.NUCLEAR STRUCTURE Nuclear rearrangement energy theoretically defined and differentiated from related energies. Reaction theories examined regarding rearrangement.

William A. Friedman

1975-07-01T23:59:59.000Z

88

Global Nuclear Energy Partnership Strategic Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Strategic Plan Global Nuclear Energy Partnership Strategic Plan Global Nuclear Energy Partnership Strategic Plan A report describing the United States Global Nuclear Energy Partnership which: "will build the Global Nuclear Energy Partnership to work with other nations to develop and deploy advanced nuclear recycling and reactor technologies. This initiative will help provide reliable, emission-free energy with less of the waste burden of older technologies and without making available separated plutonium that could be used by rogue states or terrorists for nuclear weapons. These new technologies will make possible a dramatic expansion of safe,clean nuclear energy to help meet the growing global energy demand." Global Nuclear Energy Partnership Strategic Plan

89

Energy Department Announces New Nuclear Energy Innovation Investments |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Innovation Nuclear Energy Innovation Investments Energy Department Announces New Nuclear Energy Innovation Investments July 17, 2012 - 12:29pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Underscoring the Obama Administration's commitments to restarting the nation's nuclear industry and promoting education in science, technology, engineering and math, the Energy Department announced today nearly $13 million in new nuclear energy innovation investments. "Today's awards will help train and educate our future nuclear energy scientists and engineers, while advancing the technological innovations we need to make sure America's nuclear industry stays competitive in the 21st century," said Energy Secretary Steven Chu. "These investments in U.S. universities, national labs and industry advance the Obama

90

Advanced Energy Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Energy Fund Advanced Energy Fund Advanced Energy Fund < Back Eligibility Commercial Industrial Institutional Residential Utility Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Wind Solar Heating & Cooling Heating Water Heating Program Info State Ohio Program Type Public Benefits Fund Provider Ohio Development Services Agency Ohio's Advanced Energy Fund was originally authorized by the state's 1999 electric restructuring legislation. The Fund supports the Advanced Energy Program, which at different times has provided grants for renewable energy and energy efficiency projects to different economic sectors. Grant and loan funds are awarded through periodic Notices of Funding Availability

91

ADVANCED RESEARCH PROJECTS AGENCY - ENERGY ...  

Office of Environmental Management (EM)

WA (DOEEIS-0467) FOSSIL ENERGY 13. Hydrogen Energy California's Integrated Gasification Combined Cycle Project, CA (DOEEIS-0431) NATIONAL NUCLEAR SECURITY ADMINISTRATION 14....

92

Nuclear Energy University Programs (NEUP)  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-NE Fosters Novel International Investments in U.S. Nuclear Energy Research October 14, 2014 Nuclear energy is an international industry, but nuclear research and development...

93

Nuclear Energy University Program Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy University Program » Nuclear Energy Nuclear Energy University Program » Nuclear Energy University Program Documents Nuclear Energy University Program Documents Documents Available for Download October 31, 2013 FY 2014 Consolidated Innovative Nuclear Research FOA This Funding Opportunity Announcement (FOA) addresses the competitive portion of NE's R&D portfolio as executed through the Nuclear Energy University Programs (NEUP) and Nuclear Energy Enabling Technologies Crosscutting Technology Development (NEET CTD). NEUP utilizes up to 20 percent of funds appropriated to NE's R&D program for university-based infrastructure support and R&D in key NE program-related areas: Fuel Cycle Research and Development (FCR&D), Reactor Concepts Research, Development and Demonstration (RCRD&D), and Nuclear Energy Advanced Modeling and

94

Ohio Advanced Energy | Open Energy Information  

Open Energy Info (EERE)

Energy Jump to: navigation, search Name: Ohio Advanced Energy Address: 100 S. Third Street Place: Columbus, Ohio Zip: 43201 Website: http:www.ohioadvancedenergy. References: Ohio...

95

Nuclear energy density optimization  

Science Journals Connector (OSTI)

We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov theory. The particle-hole and particle-particle channels are optimized simultaneously, and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free optimization algorithm used in this work has been found to be significantly better than standard optimization methods in terms of reliability, speed, accuracy, and precision. The resulting parameter set unedf0 results in good agreement with experimental masses, radii, and deformations and seems to be free of finite-size instabilities. An estimate of the reliability of the obtained parameterization is given, based on standard statistical methods. We discuss new physics insights offered by the advanced covariance analysis.

M. Kortelainen; T. Lesinski; J. Mor; W. Nazarewicz; J. Sarich; N. Schunck; M. V. Stoitsov; S. Wild

2010-08-13T23:59:59.000Z

96

Generation IV Nuclear Energy Systems ...  

E-Print Network (OSTI)

Generation IV Nuclear Energy Systems ... The U.S. Department of Energy's Office of Nuclear Energy enhance safety and security, and develop nuclear power as an energy source for industrial applications Information ... U.S. Department of Energy www.energy.gov DOE Office of Nuclear Energy www.nuclear

Kemner, Ken

97

Nuclear Energy Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 15, 2002 April 15, 2002 NERAC Spring 2002 Meeting Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (2) 2002 Will Be A Transition Year 2002 Will Be A Transition Year 6 Nuclear Power 2010 6 Major Program Developments 6 FY 2003 Budget Request Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (3) Nuclear Power 2010 Nuclear Power 2010 Nuclear Power 2010 is a new R&D initiative announced by Secretary Abraham on February 14, 2002. This initiative is designed to clear the way for the construction of new nuclear power plants by 2010. Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (4) Can We Build New U.S. Reactors By 2010? Yes! Can We Build New U.S. Reactors By 2010? Yes! Can Be Deployed by 2010

98

Energy Department Updates Home Energy Scoring Tool for Advancing...  

Energy Savers (EERE)

Energy Department Updates Home Energy Scoring Tool for Advancing Residential Energy Performance Energy Department Updates Home Energy Scoring Tool for Advancing Residential Energy...

99

Advanced Modeling and Simulation Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Modeling & Simulation » Advanced Modeling Advanced Modeling & Simulation » Advanced Modeling and Simulation Documents Advanced Modeling and Simulation Documents October 30, 2013 NEAMS Quarterly Report April-June 2013 The Nuclear Energy Advanced Modeling and Simulation (NEAMS) quarterly report includes highlights, fuel and reactor product line accomplishments, recent and upcoming milestones, news on BISON fuel benchmarks, the latest MeshKit release features, and information on numerical simulations of pebble-bed reactor cores performed by the thermal hydraulics team. September 9, 2013 Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements The purpose of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan is to define what the NEAMS

100

Advanced Telemetry | Open Energy Information  

Open Energy Info (EERE)

Telemetry Jump to: navigation, search Name: Advanced Telemetry Place: San Diego, California Zip: 92131-2435 Sector: Buildings Product: San Diego-based provider of energy management...

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

E-Print Network 3.0 - advanced nuclear analytical Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: advanced nuclear analytical Page: << < 1 2 3 4 5 > >> 1 managed for the U.S. Department of Energy by...

102

Nuclear energy in Argentina  

Science Journals Connector (OSTI)

After early interest in the possible uses of uranium in 1937, Argentina's scientists and politicians showed an inclination to support nuclear development that has kept quite steady compared with other areas. The Argentinean government prohibited the export of uranium in 1945, because of the emerging possibility of producing nuclear energy. The creation of the Atomic Energy Commission soon followed, and the first experimental reactor was set critical in 1958. Since then, nuclear development has allowed the successful operation of two nuclear power reactors, a quite integrated nuclear fuel cycle, and sustained activity in the development, production and use of radioisotopes. Nowadays an Argentinean company competes with success in the experimental nuclear reactor market. After a period in which the nuclear sector has been largely ignored in the official interest, Argentina's authorities have launched a comprehensive plan intended to rehabilitate all aspects of nuclear activity.

Gabriel N. Barcelo

2007-01-01T23:59:59.000Z

103

Advancing Energy Systems through Integration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Energy Systems Advancing Energy Systems through Integration Presented in partnership with the United States Department of Energy November 20, 2012 Webinar Community Renewable Energy Success Stories: District Heating with Renewable Energy Saint Paul's Community Energy System * Underground network of pipes aggregate heating and cooling needs * Aggregated thermal loads allows application of technologies and fuels not feasible for individual buildings * Increases fuel flexibility, rate stability, and reliability Community Scale Heating and Cooling 4 ever-greenenergy.com Ever-Green Energy Integrated Energy System flexible & renewable fuel sources reliable and effective production & storage hot & chilled water loops maximize energy conservation & reliability

104

Department of Energy and Nuclear Regulatory Commission Increase Cooperation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Regulatory Commission Increase Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership Department of Energy and Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership July 17, 2007 - 2:55pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) expanded cooperation for President Bush's Global Nuclear Energy Partnership (GNEP) through a Memorandum of Understanding (MOU) that was signed on Friday by DOE's GNEP Deputy Program Manager Paul Lisowski and NRC Executive Director for Operations Luis Reyes. The MOU establishes the foundation for increased cooperation between DOE and NRC on technological research and engineering studies and marks another important milestone

105

Energy from nuclear power  

SciTech Connect

Nuclear power should play a pivotal and expanded role in supplying world energy, the authors says. Risks must be minimized by designing a new generation of safe reactors. Atomic energy's vast potential can be harnessed only if issues of safety, waste and nuclear-weapon proliferation are addressed by a globally administered institution. The current situation in nuclear power is described before addressing its future.

Haefele, W.

1990-09-01T23:59:59.000Z

106

NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398  

E-Print Network (OSTI)

annafs of NUCLEAR ENERGY PERGAMON Annals of Nuclear Energy 27 (2000) 138551398 www-4549(00)00033-5 #12;1386 I. Phi!, V. Arzhanov. /Annals qf Nuclear Energy 27 (2000) 1385-1398 subcritical systems (ADS

Pázsit, Imre

107

Building Technologies Office: Advanced Energy Retrofit Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Retrofit Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Retrofit Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Retrofit Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Google Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Delicious Rank Building Technologies Office: Advanced Energy Retrofit Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Retrofit Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

108

United States and Italy Sign Agreements to Advance Developments in Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Italy Sign Agreements to Advance Developments in Italy Sign Agreements to Advance Developments in Nuclear Energy United States and Italy Sign Agreements to Advance Developments in Nuclear Energy September 30, 2009 - 12:00am Addthis Washington, D.C. - U.S. Secretary of Energy Steven Chu and Italian Minister for Economic Development Claudio Scajola today signed two important nuclear energy agreements that may lead to construction of new nuclear power plants and improved cooperation on advanced nuclear energy systems and fuel cycle technologies in both countries. The U.S.-Italy Joint Declaration Concerning Industrial and Commercial Cooperation in the Nuclear Energy Sector, which was signed on behalf of the United States by Secretary Chu and Deputy Secretary of Commerce Dennis F. Hightower, affirms the strong interest of the United States and Italy to

109

DOE Issues Landmark Rule for Risk Insurance for Advanced Nuclear Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landmark Rule for Risk Insurance for Advanced Nuclear Landmark Rule for Risk Insurance for Advanced Nuclear Facilities DOE Issues Landmark Rule for Risk Insurance for Advanced Nuclear Facilities May 8, 2006 - 10:36am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) issued on Saturday, the interim final rule required by the Energy Policy Act of 2005 (EPACT) for risk insurance to facilitate construction of new advanced nuclear power facilities. The rule establishes the requirements for risk insurance to cover costs associated with certain regulatory or litigation-related delays in the start-up of new nuclear power plants. The resurgence of nuclear power is a key component of President Bush's Advanced Energy Initiative. The Standby Support provisions of EPACT (section 638), also referred to as federal risk insurance, authorize the Secretary of Energy to enter into

110

Advanced Energy Design Guides | Department of Energy  

Energy Savers (EERE)

& Publications Advanced Energy Guides State and Local Code Implementation: Southwest Region - 2014 BTO Peer Review Multi-Year Program Plan, Building Regulatory Programs: 2010-2015...

111

Advancing Energy Systems through Integration | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advancing Energy Systems through Integration Advancing Energy Systems through Integration This presentation was given by Ever-Green Energy's Ken Smith as part of the November 20,...

112

Advances in Energy Systems Engineering  

Science Journals Connector (OSTI)

Controlled nuclear fusion, cellulosic biofuels, and natural gas hydrate belong to this category. ... Polygeneration energy systems are multi-input and multioutput energy systems that coproduce electricity and synthetic liquid fuels. ...

Pei Liu; Michael C. Georgiadis; Efstratios N. Pistikopoulos

2010-09-17T23:59:59.000Z

113

Secretary Bodman Travels to Russia to Advance Energy Security | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Russia to Advance Energy Security Russia to Advance Energy Security Secretary Bodman Travels to Russia to Advance Energy Security March 15, 2006 - 12:20pm Addthis Promotes Transparent Markets and Clean Energy Technologies; Participates in G8 Energy Ministerial and Delivers Remarks on the Global Nuclear Energy Partnership MOSCOW, RUSSIA-U.S. Secretary of Energy Samuel W. Bodman today began a two-day visit to Russia where he will lead the U.S. delegation to the G8 Energy Ministerial. During his visit the Secretary will promote greater energy security through the use of advanced energy technologies, the promotion of stable and transparent investment climates, and increased conservation and energy efficiency. Secretary Bodman will also deliver remarks to the Carnegie Center on the Global Nuclear Energy Partnership

114

Relativistic Nuclear Energy Density Functionals  

Science Journals Connector (OSTI)

......research-article Articles Relativistic Nuclear Energy Density Functionals Dario Vretenar...196, 2012 137 Relativistic Nuclear Energy Density Functionals Dario Vretenar...and P. Ring 2. Relativistic nuclear energy density functionals Even though......

Dario Vretenar; Tamara Niksic; Peter Ring

2012-10-01T23:59:59.000Z

115

Nuclear energy and India  

Science Journals Connector (OSTI)

The Indian nuclear energy programme, based on a closed fuel cycle, comprises three main stages: pressurised heavy water reactors in the first stage, fast breeder reactors in the second stage and thorium-based reactors in the third stage. The economic growth and the concomitant growth in energy requirement in the country have led to various studies mandating a larger role for nuclear energy in the overall energy mix. The nuclear renaissance in the world, driven by the need for sustainable growth, is subjecting available uranium resources to stress and India would need to factor this in when deciding its strategy for growth in nuclear energy. This would influence the choice of the type of reactor and fuel cycle to be followed.

R.B. Grover; B. Purniah; S. Chandra

2008-01-01T23:59:59.000Z

116

Advancing Women in Clean Energy  

Energy.gov (U.S. Department of Energy (DOE))

As part of the Clean Energy Ministerial, C3E and its ambassadors have made it their mission to advance the leadership of women in clean energy around the world. In this series, we will leverage the experience and wisdom of some of the amazing C3E ambassadors who will share advice or suggestions that may be helpful for women seeking to advance their careers in clean energy.

117

GE Hitachi Nuclear Energy | Open Energy Information  

Open Energy Info (EERE)

GE Hitachi Nuclear Energy GE Hitachi Nuclear Energy Jump to: navigation, search Name GE Hitachi Nuclear Energy Place Wilmington, North Carolina Zip 28402 Sector Efficiency, Services Product GE Hitachi Nuclear Energy develops advanced light water reactors and offers products and services used by operators of boiling water reactor (BWR) nuclear power plants to improve efficiency and boost output. Coordinates 42.866922°, -72.868494° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.866922,"lon":-72.868494,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

Nuclear Symmetry Energy  

Science Journals Connector (OSTI)

The energy of nuclear matter is determined for ?=(N-Z)(N+Z) in the range of 0 to 0.60. The results are applicable to superheavy nuclei and to problems of astrophysical interest.

Keith A. Brueckner; Sidney A. Coon; Janusz Dabrowski

1968-04-20T23:59:59.000Z

119

Energy requirements for nuclear transformations  

Science Journals Connector (OSTI)

Energy requirements for nuclear transformations ... There are several conservation requirements that must be met in nuclear reactions, including the conservation of energy (E = mc2), charge, angular and linear momentum. ... Nuclear / Radiochemistry ...

Benjamin Carrol; Peter F. E. Marapodi

1951-01-01T23:59:59.000Z

120

Chapter 7 - Nuclear Energy  

Science Journals Connector (OSTI)

Abstract Nuclear energy grew rapidly during the 19601975 period in countries such as France, the United States, and Norway. But nuclear energy ran into problems in the 1970s because of public concern over the radioactive waste it generates, and this concern suppressed the further expansion of nuclear power. The public perception had begun to change in recent years, as concern about atmospheric carbon dioxide levels led to a renewed interest in energy sources not reliant on hydrocarbons. But, in 2010, a tsunami in Japan led to an accident at the Fukushima nuclear power plant, and the ensuing release of radioactive materials once again raised concerns about safety. At the same time, limited supplies of uranium have caused the price of that fuel material to go up. The solution to the shortage and resulting price increase is fast breeder reactors that use both uranium and thorium fuels. Unfortunately, this technology has not yet been perfected and commercialized.

Brian F. Towler

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Small Modular Reactors: How We're Supporting Next-Gen Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology December 12, 2013 - 4:00pm Addthis The basics of small modular reactor technology explained. | Infographic by Sarah Gerrity, Energy Department. The basics of small modular reactor technology explained. | Infographic by Sarah Gerrity, Energy Department. Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy Nuclear energy continues to be an important part of America's diverse energy portfolio, and the Energy Department is committed to supporting a domestic nuclear industry.

122

Tribal Renewable Energy Advanced Course: Project Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development and Financing Essentials Tribal Renewable Energy Advanced Course: Project Development and Financing Essentials Watch the DOE Office of Indian Energy advanced course...

123

Advances in understanding solar energy collection materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding solar energy collection materials Advances in understanding solar energy collection materials A LANL team and collaborators have made advances in the understanding of...

124

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

125

Energy Department Invests $60 Million to Train Next Generation Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Invests $60 Million to Train Next Generation Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology September 20, 2013 - 1:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan to continue America's leadership in clean energy innovation, the Energy Department announced today more than $60 million in nuclear energy research awards and improvements to university research reactors and infrastructure. The 91 awards announced today will help train and educate the next generation of leaders in America's nuclear industry as well as support new and advanced nuclear technologies from reactor materials to innovative

126

Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads  

SciTech Connect

The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.

NONE

2013-07-01T23:59:59.000Z

127

Computational Design of Advanced Nuclear Fuels  

SciTech Connect

The objective of the project was to develop a method for theoretical understanding of nuclear fuel materials whose physical and thermophysical properties can be predicted from first principles using a novel dynamical mean field method for electronic structure calculations. We concentrated our study on uranium, plutonium, their oxides, nitrides, carbides, as well as some rare earth materials whose 4f eletrons provide a simplified framework for understanding complex behavior of the f electrons. We addressed the issues connected to the electronic structure, lattice instabilities, phonon and magnon dynamics as well as thermal conductivity. This allowed us to evaluate characteristics of advanced nuclear fuel systems using computer based simulations and avoid costly experiments.

Savrasov, Sergey; Kotliar, Gabriel; Haule, Kristjan

2014-06-03T23:59:59.000Z

128

Advancing Building Energy Codes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Advancing Building Energy Codes Advancing Building Energy Codes 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. Energy Codes Ensure Efficiency in Buildings

129

E-Print Network 3.0 - advanced hybrid nuclear Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced hybrid nuclear Page: << < 1 2 3 4 5 > >> 1 Nuclear Chemical EngineeringNuclear...

130

Office of Nuclear Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NE Human Capital Plan Revised August 2006 U. S. Department of Energy NE Human Capital Plan i August 2006 Office of Nuclear Energy Table of Contents Executive Summary...................................................................................................................................1 Background .................................................................................................................................................2 NE Human Capital Strategy.....................................................................................................................2 NE Human Capital Plan: At-A-Glance ..................................................................................................3

131

Energy Programs | Advanced Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Storage Systems Advanced Storage Systems Tapping Into Fuel Cells and Batteries Page 1 of 2 Imagine being able to drive a forty-mile round-trip commute every day without ever going near a gas pump. As the United States moves towards an energy economy with reduced dependence on foreign oil and fewer carbon emissions, development of alternative fuel sources and transmission of the energy they provide is only part of the equation. An increase in energy generated from intermittent renewable sources and the growing need for mobile energy will require new, efficient means of storing it, and technological advancements will be necessary to support the nation's future energy storage needs. A change toward alternative transportation - hydrogen fuel-cell vehicles, hybrid electric vehicles, plug-in hybrid-electric vehicles and electric

132

Master's programme in Nuclear Energy Engineering Programme outline  

E-Print Network (OSTI)

Master's programme in Nuclear Energy Engineering Programme outline The two-year Master's programme to work abroad. career ProsPects Nuclear power is a significant part of the current energy balance.With advances in science and technology, nuclear energy is increasingly re- garded as an eminent part

Haviland, David

133

Getting to Know Nuclear Energy: The Past, Present & Future  

E-Print Network (OSTI)

Getting to Know Nuclear Energy: The Past, Present & Future Argonne National Laboratory was founded on the peaceful uses of nuclear energy and has pioneered many of the technologies in use today. Argonne's Roger Blomquist will discuss the history of nuclear energy, advanced reactor designs and future technologies, all

Kemner, Ken

134

NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812842  

E-Print Network (OSTI)

annals of NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812­842 www of Nuclear Energy 32 (2005) 812­842 background noise is present, this technique is useful to indicate.elsevier.com/locate/anucene Identification and localization of absorbers of variable strength in nuclear reactors C. Demazie`re a,*, G

Demazière, Christophe

135

Directions for advanced use of nuclear power in century XXI  

SciTech Connect

Nuclear power can provide a significant contribution to electricity generation and meet other needs of the world and the US during the next century provided that certain directions are taken to achieve its public acceptance. These directions include formulation of projections of population, energy consumption, and energy resources over a responsible period of time. These projections will allow assessment of cumulative effects on the environment and on fixed resources. Use of fossil energy resources in a century of growing demand for energy must be considered in the context of long-term environmental damage and resource depletion. Although some question the validity of these consequences, they can be mitigated by use of advanced fast reactor technology. It must be demonstrated that nuclear power technology is safe, resistant to material diversion for weapon use, and economical. An unbiased examination of all the issues related to energy use, especially of electricity, is an essential direction to take.

Walter, C E

1999-05-01T23:59:59.000Z

136

Advancing Energy Codes  

E-Print Network (OSTI)

Environmental Defense Funds Investor Confidence Project Delivering Investment Quality Energy Efficiency to Market ESL-KT-13-12-28 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Investor Confidence Project... Our Mission is to enable a market for investment in quality energy efficiency projects by reducing transaction costs and engineering overhead, while increasing the reliability and consistency of savings. History EDF focus on barriers to capital...

Zerrener, K. R.

2013-01-01T23:59:59.000Z

137

Advances in instrumentation for nuclear astrophysics  

SciTech Connect

The study of the nuclear physics properties which govern energy generation and nucleosynthesis in the astrophysical phenomena we observe in the universe is crucial to understanding how these objects behave and how the chemical history of the universe evolved to its present state. The low cross sections and short nuclear lifetimes involved in many of these reactions make their experimental determination challenging, requiring developments in beams and instrumentation. A selection of developments in nuclear astrophysics instrumentation is discussed, using as examples projects involving the nuclear astrophysics group at Oak Ridge National Laboratory. These developments will be key to the instrumentation necessary to fully exploit nuclear astrophysics opportunities at the Facility for Rare Isotope Beams which is currently under construction.

Pain, S. D. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)] [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

2014-04-15T23:59:59.000Z

138

Advanced Energy Retrofit Guides | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofit Guides Retrofit Guides Advanced Energy Retrofit Guides Photo of the cover of the Advanced Energy Retrofit Guide for Healthcare Facilities. The Advanced Energy Retrofit Guides (AERGs) were created to help decision makers plan, design, and implement energy improvement projects in their facilities. With energy managers in mind, they present practical guidance for kick-starting the process and maintaining momentum throughout the project life cycle. These guides are primarily reference documents, allowing energy managers to consult the particular sections that address the most pertinent topics.. Useful resources are also cited throughout the guides for further information. Each AERG is tailored specifically to the needs of a specific building type, with an emphasis on the most effective

139

Nuclear symmetry energy  

Science Journals Connector (OSTI)

To study the nuclear symmetry energy, we extend the Dirac-Brueckner approach with a Bonn one-boson-exchange nucleon-nucleon interaction to the general case of asymmetric nuclear matter. We extract the symmetry energy coefficient at the saturation to be about 31 MeV, which is in good agreement with the empirical value of 304 MeV. The symmetry energy is found to increase almost linearly with the density, which differs considerably from the results of nonrelativistic approaches. This finding also supports the linear parametrization of Prakash, Ainsworth, and Lattimer. We find, furthermore, that the higher-order dependence of the nuclear equation of state on the asymmetry parameter is unimportant.

C.-H. Lee; T. T. S. Kuo; G. Q. Li; G. E. Brown

1998-06-01T23:59:59.000Z

140

Nuclear energy | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear energy Nuclear energy Subscribe to RSS - Nuclear energy Energy that originates from the splitting of uranium atoms in a process called fission. This is distinct from a process called fusion where energy is released when atomic nuclei combine or fuse. Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas Researchers led by scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have won highly competitive allocations of time on two of the world's fastest supercomputers. The increased awards are designed to advance the development of nuclear fusion as a clean and abundant source of energy for generating electricity. Read more about Two PPPL-led teams win increased supercomputing time

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Nuclear Energy Research Brookhaven National  

E-Print Network (OSTI)

Nuclear Energy Research Brookhaven National Laboratory William C. Horak, Chair Nuclear Science and Technology Department #12;BNL Nuclear Energy Research Brookhaven Graphite Research Reactor - 1948 National&T Department #12;Nuclear Energy Today 435 Operable Power Reactors, 12% electrical generation (100 in US, 19

Ohta, Shigemi

142

Tribal Renewable Energy Advanced Course: Project Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concepts Tribal Renewable Energy Advanced Course: Project Development Concepts Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable Energy...

143

Sandia National Laboratories: Nuclear Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia-UC Davis Collaboration Funded by DOE Office of Fusion Energy On March 4, 2014, in Energy, News, News & Events, Nuclear Energy, Partnership, Research & Capabilities, Systems...

144

DOE Office of Nuclear Energy | Department of Energy  

Office of Environmental Management (EM)

Office of Nuclear Energy DOE Office of Nuclear Energy DOE Office of Nuclear Energy More Documents & Publications Section 180(c) Ad Hoc Working Group Nuclear Fuel Storage and...

145

Advanced Energy Design Guides  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One way to influence above-code One way to influence above-code exemplary energy performance in commercial buildings is to provide architects, engineers, and other design practitioners prescriptive guidance that indicates, measure by measure, how to do it. To this end, the U.S. Department of Energy (DOE) actively supports development of a series of AEDGs- publications designed to provide recommendations for achieving 30 to 50

146

Energy Department Invests $60 Million to Train Next Generation Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60 Million to Train Next Generation 60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology September 20, 2013 - 1:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan to continue America's leadership in clean energy innovation, the Energy Department announced today more than $60 million in nuclear energy research awards and improvements to university research reactors and infrastructure. The 91 awards announced today will help train and educate the next generation of leaders in America's nuclear industry as well as support new and advanced nuclear technologies from reactor materials to innovative

147

2009 Annual Reports Issued for Nuclear Energy Research Initiative and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2009 Annual Reports Issued for Nuclear Energy Research Initiative 2009 Annual Reports Issued for Nuclear Energy Research Initiative and International Nuclear Energy Research Initiative 2009 Annual Reports Issued for Nuclear Energy Research Initiative and International Nuclear Energy Research Initiative July 2, 2010 - 11:49am Addthis On July 2, 2010, the Department of Energy's (DOE) Office of Nuclear Energy (NE) issued annual reports for its Nuclear Energy Research Initiative (NERI) andInternational Nuclear Energy Research Initiative (I-NERI), describing accomplishments achieved in 2009. The NERI and I-NERI programs have furthered DOE goals for the past decade, conducting research into many of the key technical issues that impact the expanded use of advanced nuclear energy systems. Researchers have fostered innovative ideas

148

2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS 6 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS Lead Organization Project Title Collaborators Advanced Fuel Cycle Initiative Massachusetts Institute of Technology The Development and Production of Functionally Graded Composite for Pb-Bi Service Los Alamos National Laboratory Massachusetts Institute of Technology Flexible Conversion Ratio Fast Reactor Systems Evaluation None North Carolina State University Development and Utilization of Mathematical Optimization in Advanced Fuel Cycle Systems Analysis Argonne National Laboratory Purdue University Engineered Materials for Cesium and Strontium Storage None University of California- Berkeley Feasibility of Recycling Plutonium and Minor Actinides in Light Water Reactors Using Hydride Fuel Massachusetts Institute of

149

Building Technologies Office: Advanced Energy Design Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Design Energy Design Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Design Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Design Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Design Guides on Google Bookmark Building Technologies Office: Advanced Energy Design Guides on Delicious Rank Building Technologies Office: Advanced Energy Design Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Design Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software

150

Gills Onions Advanced Energy  

E-Print Network (OSTI)

Biogas from UASB Remove Sulfur and Moisture for Cattle Feed 3 Convert Methane to Power Fuel Cells 4 of biogas per cell 15 psi 15 psi Requires highly purified water (RO) #12;Energy NG RO W tRO Water miiniimum 75% bi75% biogas on annuall basis #12;Industry Recognition - Grand Conceptor Award The highest

151

Nuclear Symmetry Energy  

Science Journals Connector (OSTI)

On the basis of a phenomenological theory proposed in an earlier paper the nuclear symmetry energy is recalculated. The value obtained is smaller than the one given before, which was incorrect. A relativistic calculation of the energy with the radius parameter r0=1.0710-13 cm of the electron scattering experiments yields about the correct symmetry energy. Compensating uncertainties due to inaccuracy in r0, corrections due to the exclusion principle, and a possible difference in the radius of proton and neutron distributions make an accurate comparison with the empirical symmetry energy meaningless.

Hans-Peter Duerr

1958-01-01T23:59:59.000Z

152

Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) verification and validation plan. version 1.  

SciTech Connect

The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. To meet this objective, NEAMS Waste IPSC M&S capabilities will be applied to challenging spatial domains, temporal domains, multiphysics couplings, and multiscale couplings. A strategic verification and validation (V&V) goal is to establish evidence-based metrics for the level of confidence in M&S codes and capabilities. Because it is economically impractical to apply the maximum V&V rigor to each and every M&S capability, M&S capabilities will be ranked for their impact on the performance assessments of various components of the repository systems. Those M&S capabilities with greater impact will require a greater level of confidence and a correspondingly greater investment in V&V. This report includes five major components: (1) a background summary of the NEAMS Waste IPSC to emphasize M&S challenges; (2) the conceptual foundation for verification, validation, and confidence assessment of NEAMS Waste IPSC M&S capabilities; (3) specifications for the planned verification, validation, and confidence-assessment practices; (4) specifications for the planned evidence information management system; and (5) a path forward for the incremental implementation of this V&V plan.

Bartlett, Roscoe Ainsworth; Arguello, Jose Guadalupe, Jr.; Urbina, Angel; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Knupp, Patrick Michael; Wang, Yifeng; Schultz, Peter Andrew; Howard, Robert (Oak Ridge National Laboratory, Oak Ridge, TN); McCornack, Marjorie Turner

2011-01-01T23:59:59.000Z

153

Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minimize Nuclear Waste Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste GNEP will increase the efficiency in the management of used nuclear fuel, also known as...

154

Federal Energy Management Program: Advanced Technology Planning for Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Advanced Technology Planning for Energy Savings Performance Contracts to someone by E-mail Share Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Facebook Tweet about Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Twitter Bookmark Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Google Bookmark Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Delicious Rank Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Digg Find More places to share Federal Energy Management Program:

155

Is Nuclear Energy the Solution?  

E-Print Network (OSTI)

10.1007/s11270-009-0270-y Is Nuclear Energy the Solution?MHS) attended a lecture on Nuclear Responsibility on theof the Alliance for Nuclear Responsibility. The information

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

156

Nuclear Energy Research Advisory Committee Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10/03/02 10/03/02 Appendix A to the Minutes for the Nuclear Energy Research Advisory Committee Meeting September 30 to October 1, 2002 Observations on A Technology Roadmap for Generation IV Nuclear Energy Systems: Technical Roadmap Report October 3, 2002 The Roadmap Context The development of advanced nuclear energy systems in the U.S. will depend greatly on the continued success of currently operating light water nuclear power plants and the ordering of new installations in the short term. DOE needs to give those immediate objectives the highest priority and any additional support they require to assure their success. DOE is pursuing two initiatives to encourage a greater use of nuclear energy systems. The initiatives have been reviewed by NERAC Subcommittee on Generation IV

157

Universal Nuclear Energy Density Functional  

SciTech Connect

An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out.

Carlson, Joseph; Furnstahl, Richard; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witold; Ng, Esmond; Thompson, Ian; Vary, James

2012-12-01T23:59:59.000Z

158

Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP will help prevent misuse of civilian nuclear facilities for nonpeaceful purposes by developing enhanced safeguards programs and technologies. International nuclear safeguards are integral to implementing the GNEP vision of a peaceful expansion of nuclear energy and demonstration of more proliferation-resistant fuel cycle technologies. Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards More Documents & Publications GNEP Element:Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small-Scale

159

Advanced Energy Design Guides | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Guides Design Guides Advanced Energy Design Guides The 50% AEDGs provide practical approaches to achieve 50% energy savings compared to base code requirements. Download them free from ASHRAE: Small and Medium Office Buildings K-12 School Buildings Medium to Big Box Retail Buildings Large Hospitals The Advanced Energy Design Guides (AEDGs) accelerate the construction of energy efficient buildings by providing prescriptive solutions to achieve significant energy savings over minimum building energy codes. The AEDG project represents a partnership between the U.S. Department of Energy (DOE), ASHRAE, American Institute of Architects, U.S. Green Building Council, and the Illuminating Engineering Society of North America (IES). The AEDG series provides design guidance for buildings that use 50% less

160

Department of Energy Announces New Nuclear Initiative | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Energy Announces New Nuclear Initiative of Energy Announces New Nuclear Initiative Department of Energy Announces New Nuclear Initiative February 6, 2006 - 10:56am Addthis Global Nuclear Energy Partnership to expand safe, clean, reliable, affordable nuclear energy worldwide WASHINGTON, DC - As part of President Bush's Advanced Energy Initiative, Secretary of Energy Samuel W. Bodman announced today a $250 million Fiscal Year (FY) 2007 request to launch the Global Nuclear Energy Partnership (GNEP). This new initiative is a comprehensive strategy to enable the expansion of emissions-free nuclear energy worldwide by demonstrating and deploying new technologies to recycle nuclear fuel, minimize waste, and improve our ability to keep nuclear technologies and materials out of the hands of terrorists.

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Advanced ceramic materials for next-generation nuclear applications  

Science Journals Connector (OSTI)

The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high-temperature plasma systems. Fusion reactors will likely depend on lithium-based ceramics to produce tritium that fuels the fusion plasma, while high-temperature alloys or ceramics will contain and control the hot plasma. All the while, alloys, ceramics, and ceramic-related processes continue to find applications in the management of wastes and byproducts produced by these processes.

John Marra

2011-01-01T23:59:59.000Z

162

Anco Advance | Open Energy Information  

Open Energy Info (EERE)

Anco Advance Anco Advance Jump to: navigation, search Name Anco Advance Place Longmont, Colorado Zip 80503 Sector Renewable Energy Product Focused on the delivery and operation of profitable renewable waste to energy plants. Coordinates 40.16394°, -105.100504° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.16394,"lon":-105.100504,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

Advanced Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Manufacturing Advanced Manufacturing Advanced Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency - promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which

164

Advanced Electric Drive Vehicles | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. tiarravt039schwendeman2010o.pdf More Documents & Publications Advanced Electric Drive Vehicles Advanced Electric Drive Vehicles Energy & Manufacturing Workforce...

165

International Nuclear Energy Policy and Cooperation | Department...  

Office of Environmental Management (EM)

International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation Recent Events 6th US-India Civil Nuclear Energy Working Group Meeting 6th...

166

2012 Nuclear Energy Enabling Technology Factsheet | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Enabling Technology Factsheet 2012 Nuclear Energy Enabling Technology Factsheet Learn more about the Nuclear Energy Enabling Technologies (NEET) program, which will...

167

Building an All-of-the-Above Portfolio with Loan Guarantees for Advanced Nuclear Projects  

Energy.gov (U.S. Department of Energy (DOE))

This morning, the Department announced that it is making $12.5 billion in loan guarantees available for Advanced Nuclear Energy Projects. My colleagues in the Loan Programs Office (LPO) and I are...

168

Nuclear Energy (WFP) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy (WFP) Nuclear Energy (WFP) The purpose of the workforce Plan is to provide focus and direction to Human Resources (HR) strategy. This will enable the agency to have...

169

Advanced Energy Solutions | Open Energy Information  

Open Energy Info (EERE)

Advanced Energy Solutions Advanced Energy Solutions Name Advanced Energy Solutions Address 192 Gates Road Place Pomona, Illinois Zip 62975 Sector Solar Year founded 1999 Company Type For Profit Phone number 618-893-1717 Website http://www.aessolar.com/ Coordinates 37.6281057°, -89.3367556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6281057,"lon":-89.3367556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

170

Department of Energy Announces New Nuclear Initiative | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Nuclear Initiative New Nuclear Initiative Department of Energy Announces New Nuclear Initiative February 6, 2006 - 10:56am Addthis Global Nuclear Energy Partnership to expand safe, clean, reliable, affordable nuclear energy worldwide WASHINGTON, DC - As part of President Bush's Advanced Energy Initiative, Secretary of Energy Samuel W. Bodman announced today a $250 million Fiscal Year (FY) 2007 request to launch the Global Nuclear Energy Partnership (GNEP). This new initiative is a comprehensive strategy to enable the expansion of emissions-free nuclear energy worldwide by demonstrating and deploying new technologies to recycle nuclear fuel, minimize waste, and improve our ability to keep nuclear technologies and materials out of the hands of terrorists. "GNEP brings the promise of virtually limitless energy to emerging

171

Nuclear | Open Energy Information  

Open Energy Info (EERE)

Nuclear Nuclear Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report Full figure data for Figure 82. Reference Case Tables Table 1. Total Energy Supply, Disposition, and Price Summary Table 9. Electricy Generating Capacity Table 96. Electricity Generation by Electricity Market Module Region and Source Table 97. Electricity Generation Capacity by Electricity Market Module Region and Source Market Trends In the AEO2011 Reference case, nuclear power capacity increases from 101.0 gigawatts in 2009 to 110.5 gigawatts in 2035 (Figure 82), including 3.8 gigawatts of expansion at existing plants and 6.3 gigawatts of new capacity. The new capacity includes completion of a second unit at the Watts Bar site, where construction on a partially completed plant has

172

Nuclear Facility Operations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Operations Facility Operations Nuclear Facility Operations INL is a science-based, applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and national security needs. INL is a science-based, applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and national security needs. The Idaho Operations Office oversees these contract activities in accordance with DOE directives. INL is a multi-program laboratory In addition to enabling the Office of Nuclear Energy to develop space power systems and advanced fuel cycle and reactor technologies, INL facilities are used by the National Nuclear Security Administration and other DOE offices, together with other Federal agencies such as the Department of

173

Energy Gap in Nuclear Matter  

Science Journals Connector (OSTI)

......research-article Articles Energy Gap in Nuclear Matter Takeshi Ishihara a...Research, Kokubunji, Tokyo An energy gap in nuclear matter is studied. The nucleon-nucleon...1966) pp. 1026-1042 Nuclear Force and Energy Gap in Finite Nuclei Hiroharu......

Takeshi Ishihara; Ryozo Tamagaki; Hajime Tanaka; Masaru Yasuno

1963-11-01T23:59:59.000Z

174

Nuclear Energy Papers and Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

PapersPresentations View Nuclear Energy papers & presentations. Skip Navigation Links Home Newsroom About INL Careers Research Programs Energy and Environment National and...

175

Advanced nuclear plant control room complex  

DOE Patents (OSTI)

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

176

KRNFYSIK, FRDJUPNINGSKURS FKF 021 Nuclear Physics, Advanced Course I  

E-Print Network (OSTI)

K?RNFYSIK, F?RDJUPNINGSKURS FKF 021 Nuclear Physics, Advanced Course I Antal poäng: 5.0. Valfri för. Partikelfysik. Laborationerna är obligatoriska. Litteratur Krane, K.S.: Introductory Nuclear Physics

177

KRNFYSIK, FRDJUPNINGSKURS FKF021 Nuclear Physics, Advanced Course I  

E-Print Network (OSTI)

K?RNFYSIK, F?RDJUPNINGSKURS FKF021 Nuclear Physics, Advanced Course I Poäng: 5.0 Betygskala: TH. Partikelfysik. Laborationerna är obligatoriska. Litteratur: Krane, K.S.: Introductory Nuclear Physics

178

University Program in Advanced Technology | National Nuclear Security  

National Nuclear Security Administration (NNSA)

University Program in Advanced Technology | National Nuclear Security University Program in Advanced Technology | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog University Program in Advanced Technology Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

179

Foiling the Flu Bug Global Partnerships for Nuclear Energy  

E-Print Network (OSTI)

1 1663 Foiling the Flu Bug Global Partnerships for Nuclear Energy Dark Universe Mysteries WILL NOT NEED TESTING Expanding Nuclear Energy the Right Way GLOBAL PARTNERSHIPS AND AN ADVANCED FUEL CYCLE sense.The Laboratory is operated by Los Alamos National Security, LLC, for the Department of Energy

180

Department of Energy Announces 24 Nuclear Energy Research Awards to U.S.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Nuclear Energy Research Awards to 4 Nuclear Energy Research Awards to U.S. Universities Department of Energy Announces 24 Nuclear Energy Research Awards to U.S. Universities December 15, 2005 - 4:46pm Addthis $12 Million in Support to Be Provided for Innovative R&D Projects WASHINGTON, D.C. - The U.S. Department of Energy (DOE) today announced 24 research awards totaling $12 million over three years to U.S. universities to engage students and professors in DOE's advanced nuclear energy research and development programs, including the Advanced Fuel Cycle Initiative, Generation IV Nuclear Energy Systems Initiative and Nuclear Hydrogen Initiative. "These awards support the department's advanced nuclear technology development efforts and foster the education and training of the next generation of scientists and engineers needed to move this vital industry

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nuclear desalination in the Arab world ?? Part II: advanced inherent and passive safe nuclear reactors  

Science Journals Connector (OSTI)

Rapid increases in population levels have led to greater demands for fresh water and electricity in the Arab World. Different types of energies are needed to contribute to bridging the gap between increased demand and production. Increased levels of safeguards in nuclear power plants have became reliable due to their large operational experience, which now exceeds 11,000 years of operation. Thus, the nuclear power industry should be attracting greater attention. World electricity production from nuclear power has risen from 1.7% in 1970 to 17%-20% today. This ratio had increased in June 2002 to reach more than 30%, 33% and 42% in Europe, Japan, and South Korea respectively. In the Arab World, both the public acceptance and economic viability of nuclear power as a major source of energy are greatly dependent on the achievement of a high level of safety and environmental protection. An assessment of the recent generation of advanced reactor safety criteria requirements has been carried out. The promising reactor designs adapted for the Arab world and other similar developing countries are those that profit from the enhanced and passive safety features of the new generation of reactors, with a stronger focus on the effective use of intrinsic characteristics, simplified plant design, and easy construction, operation and maintenance. In addition, selected advanced reactors with a full spectrum from small to large capacities, and from evolutionary to radical types, which have inherent and passive safety features, are discussed. The relevant economic assessment of these reactors adapted for water/electricity cogeneration have been carried out and compared with non-nuclear desalination methods. This assessment indicates that, water/electricity cogeneration by the nuclear method with advanced inherent and passive safe nuclear power plants, is viable and competitive.

Aly Karameldin; Samer S. Mekhemar

2004-01-01T23:59:59.000Z

182

Nuclear Energy Advisory Committee | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee Nuclear Energy Advisory Committee The Nuclear Energy Advisory Committee (NEAC), formerly the Nuclear Energy Research Advisory Committee (NERAC), was established on October 1, 1998, to provide independent advice to the Office of Nuclear Energy (NE) on complex science and technical issues that arise in the planning, managing, and implementation of DOE's nuclear energy program. NEAC periodically reviews the elements of the NE program and based on these reviews provides advice and recommendations on the program's long-range plans, priorities, and strategies to effectively address the scientific and engineering aspects of the research and development efforts. In addition, the committee provides advice on national policy and scientific aspects of

183

A survey of Existing V&V, UQ and M&S Data and Knowledge Bases in Support of the Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS)  

SciTech Connect

The Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Oak Ridge National Laboratory, Utah State University and others. The objective of this consortium is to establish a comprehensive knowledge base to provide Verification and Validation (V&V) and Uncertainty Quantification (UQ) and other resources for advanced modeling and simulation (M&S) in nuclear reactor design and analysis. NE-KAMS will become a valuable resource for the nuclear industry, the national laboratories, the U.S. NRC and the public to help ensure the safe operation of existing and future nuclear reactors. A survey and evaluation of the state-of-the-art of existing V&V and M&S databases, including the Department of Energy and commercial databases, has been performed to ensure that the NE-KAMS effort will not be duplicating existing resources and capabilities and to assess the scope of the effort required to develop and implement NE-KAMS. The survey and evaluation have indeed highlighted the unique set of value-added functionality and services that NE-KAMS will provide to its users. Additionally, the survey has helped develop a better understanding of the architecture and functionality of these data and knowledge bases that can be used to leverage the development of NE-KAMS.

Hyung Lee; Rich Johnson, Ph.D.; Kimberlyn C. Moussesau

2011-12-01T23:59:59.000Z

184

The Global Nuclear Energy Partnership | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Global Nuclear Energy Partnership The Global Nuclear Energy Partnership An article describing the small scale reactors in the GNEP. The Global Nuclear Energy Partnership More...

185

Paving the path for next-generation nuclear energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paving the path for next-generation nuclear energy Paving the path for next-generation nuclear energy Paving the path for next-generation nuclear energy May 6, 2013 - 2:26pm Addthis Renewed energy and enhanced coordination are on the horizon for an international collaborative that is advancing new, safer nuclear energy systems. Renewed energy and enhanced coordination are on the horizon for an international collaborative that is advancing new, safer nuclear energy systems. Deputy Assistant Secretary Kelly Deputy Assistant Secretary Kelly Deputy Assistant Secretary for Nuclear Reactor Technologies Nuclear power reactors currently under construction worldwide boast modern safety and operational enhancements that were designed by the global nuclear energy industry and enhanced through research and development (R&D)

186

Symmetry Energy in Nuclear Surface  

E-Print Network (OSTI)

Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. The interplay leads to a dependence of the symmetry coefficient, in energy formula, on nuclear mass. Charge symmetry of nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of neutron-proton asymmetry.

Danielewicz, Pawel

2008-01-01T23:59:59.000Z

187

Nuclear Energy: Promise or Peril?  

Science Journals Connector (OSTI)

This book represents the outcome of a Peer Review Workshop of the Pugwash Conferences on Science and World Affairs on `The Prospects of Nuclear Energy' held in Paris in December 1998. It is intended to address, in a manner accessible to the non-expert, the contribution that electricity production from nuclear power might make to resolving the dilemma in which an increasing demand for energy to fuel global economic development confronts an energy production policy that has not, as yet, fully taken into account the impacts on the environment and the depletion of the reserves of non-renewable (both fossil and nuclear) fuels. It is accepted that nuclear energy has both negative (e.g. the production of long-lived radioactive wastes and a potential for weapons proliferation) and positive (e.g. a relatively minor contribution to the problem of global warming) aspects. The influences of these factors on the potential of nuclear energy to continue to contribute to the global energy production mix are explored in detail. During the two days of the conference, each of the chapters was exposed to critical discussion by all of the authors contributing to the book, as well as a smaller independent group of scientists and others from a range of relevant disciplines. It is in this sense that the material presented is said to be `peer reviewed', a process that is probably at least as valid as that for a journal article. The text comprises an introductory preface, 18 substantive chapters, a brief summary by the editors, a short, but useful, appendix of technical notes and units, an (obligatory) summary of abbreviations and acronyms, a listing of the affiliations of the conference participants and a comprehensive index. The first chapter provides a simple introduction to the basics of nuclear energy, reactor systems and their radionuclide inventories, the health hazards of radiation and a brief indication of possible future developments (expanded by others in later chapters). It also summarises the current status of the global nuclear programme for electricity production in the context of the costs of the present and future uranium supply requirements, and the economic considerations that will influence the acceptability of this power source. The next two chapters discuss, respectively, the role of nuclear energy in preventing climate change, and the inter-relationship between global energy use and climate change in this century. The conclusion is that the predicted increase in world energy demand (a six-fold rise, fuelled by population growth and the fulfilment of development objectives) cannot be met by carbon-free sources, and that these - including the nuclear option - require substantial investment in R and D to yield their full potential in an environmentally and socially acceptable way. It is noted that the developed world will probably be able to increase gross national product with little, if any, increase in energy consumption through improvements in energy efficiency - the subject of the next chapter. This is, however, concerned with more than just improving the output per unit energy input. It is firmly concluded that the risks inherent in applying the successful, but energy-rich, approach of the present developed nations to the remainder of the developing world are unacceptable. The author, therefore, envisages a decoupling of economic growth from energy consumption, and a parallel application of intelligence and effort towards achieving desired development goals within a scenario of decreasing energy utilisation, i.e. the engineering of substantial policy and cultural change. Chapters 5 and 6 examine the possible role of nuclear power in the economic advancement of the developing countries; both authors are in agreement that this energy source will be required to supply a proportion of the variable electricity demand that will differ between countries. The following, very short chapter of just 4 pages makes some observations on the safety of nuclear power. In the context of the objectives of this book, a more substantial offe

D S Woodhead

2000-01-01T23:59:59.000Z

188

Nuclear Safety News | Department of Energy  

Office of Environmental Management (EM)

Nuclear Safety News Nuclear Safety News October 4, 2012 Department of Energy Cites Battelle Energy Alliance, LLC for Nuclear Safety and Radiation Protection Violations The U.S....

189

Nuclear Safety Information | Department of Energy  

Office of Environmental Management (EM)

Safety Information Nuclear Safety Information Idaho National Laboratory's Advanced Test Reactor (ATR) | April 8, 2009 Idaho National Laboratory's Advanced Test Reactor (ATR) |...

190

United States and Italy Sign Nuclear Energy Agreements | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States and Italy Sign Nuclear Energy Agreements United States and Italy Sign Nuclear Energy Agreements United States and Italy Sign Nuclear Energy Agreements September 30, 2009 - 1:23pm Addthis U.S. Secretary of Energy Steven Chu and Italian Minister for Economic Development Claudio Scajola today signed two important nuclear energy agreements that may lead to construction of new nuclear power plants and improved cooperation on advanced nuclear energy systems and fuel cycle technologies in both countries. The U.S.-Italy Joint Declaration Concerning Industrial and Commercial Cooperation in the Nuclear Energy Sector, which was signed on behalf of the United States by Secretary Chu and Deputy Secretary of Commerce Dennis F. Hightower, affirms the strong interest of the United States and Italy to encourage their respective nuclear industries to seek opportunities for the

191

United States and Italy Sign Nuclear Energy Agreements | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States and Italy Sign Nuclear Energy Agreements United States and Italy Sign Nuclear Energy Agreements United States and Italy Sign Nuclear Energy Agreements September 30, 2009 - 1:23pm Addthis U.S. Secretary of Energy Steven Chu and Italian Minister for Economic Development Claudio Scajola today signed two important nuclear energy agreements that may lead to construction of new nuclear power plants and improved cooperation on advanced nuclear energy systems and fuel cycle technologies in both countries. The U.S.-Italy Joint Declaration Concerning Industrial and Commercial Cooperation in the Nuclear Energy Sector, which was signed on behalf of the United States by Secretary Chu and Deputy Secretary of Commerce Dennis F. Hightower, affirms the strong interest of the United States and Italy to encourage their respective nuclear industries to seek opportunities for the

192

THE GLOBAL NUCLEAR ENERGY PARTNERSHIP:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GLOBAL NUCLEAR ENERGY PARTNERSHIP: GLOBAL NUCLEAR ENERGY PARTNERSHIP: Greater Energy Security in a Cleaner, Safer World The Global Nuclear Energy Partnership (GNEP) is a comprehensive strategy to increase U.S. and global energy security, encourage clean development around the world, reduce the risk of nuclear proliferation, and improve the environment. A plentiful, reliable supply of energy is the cornerstone of sustained economic growth and prosperity. Nuclear power is the only proven technology that can provide abundant supplies of base load electricity reliably and without air pollution or emissions of greenhouse gasses. In order to help meet growing demand for energy at home and encourage the growth of prosperity around the globe, GNEP provides for the safe, extensive expansion of clean nuclear power.

193

Advanced, High Power, Next Scale, Wave Energy Conversion Device...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy...

194

Thomas Miller Office of Nuclear Energy, Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Miller Miller Office of Nuclear Energy, Science and Technology U.S. Department of Energy September 30, 2002 Presentation at the Nuclear Energy Research Advisory Committee Nuclear Power 2010 Program Strategy to Deploy New Nuclear Power Plants Nuclear Power 2010 Program Strategy to Deploy New Nuclear Power Plants Office of Nuclear Energy, Science and Technology TMiller/Sept11_02 ESE Project.ppt ( 2) Nuclear Power 2010: Overview Nuclear Power 2010: Overview Goal 6 Achieve industry decision by 2005 to deploy at least one new advanced nuclear power plant by 2010 Cooperative Activities 6 Regulatory Demonstration Projects * Early Site Permit (ESP) * Combined Construction and Operating License (COL) 6 Reactor Technology Development Projects * NRC Design Certification (DC) * First-of-a-kind engineering for a standardized plant

195

E-Print Network 3.0 - alternative nuclear energy Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: alternative nuclear energy Page: << < 1 2 3 4 5 > >> 1 Preparing Non-nuclear Engineers for the Nuclear...

196

Energy Department Trains Veterans in Advanced Manufacturing  

Office of Energy Efficiency and Renewable Energy (EERE)

Today, the first 24 participants marked the successful completion of the Advanced Manufacturing Internship program, a pilot effort sponsored by the U.S. Department of Energys (DOE) Office of Energy Efficiency and Renewable Energy (EERE).

197

Density content of nuclear symmetry energy from nuclear observables  

Science Journals Connector (OSTI)

The nuclear symmetry energy at a given density measures the energy transferred in converting symmetric nuclear matter into the pure neutron matter. The density content of nuclear symmetry energy remains poorly co...

B K AGRAWAL

2014-11-01T23:59:59.000Z

198

Overview of nuclear energy: Present and projected use  

SciTech Connect

Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

Stanculescu, Alexander [Idaho National Laboratory 2525 North Fremont Avenue, Idaho Falls, Idaho 83415 (United States)

2012-06-19T23:59:59.000Z

199

Overview of Nuclear Energy: Present and Projected Use  

SciTech Connect

Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

Alexander Stanculescu

2011-09-01T23:59:59.000Z

200

Advanced Patent Waivers | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Advanced Patent Waivers Advanced Patent Waivers June 12, 2013 Advance Patent Waiver W(A)2012-028 This is a request by SIEMENS ENERGY, INC. for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-FE0005666. May 7, 2013 Advance Patent Waiver W(A)2012-033 This is a request by GE-GLOBAL RESEARCH for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-OE000593. April 26, 2013 Advance Patent Waiver W(A)2012-031 This is a request by SRI INTERNATIONAL for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-NT0005578. April 3, 2013 Advance Patent Waiver W(A)2012-024 This is a request by SIEMENS ENERGY, INC. for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-EE0005493.

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

International Nuclear Energy Research Initiative: 2010 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Annual 10 Annual Report International Nuclear Energy Research Initiative: 2010 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is a research-oriented collaborative program that supports the advancement of nuclear science and technology in the United States and the world. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment. The 2010 Nuclear Energy Research and Development Roadmap issued by the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE), identifies these issues as high capital costs, safety, high-level nuclear waste management, and non-proliferation. Projects under the I-NERI program investigate ways to address these challenges and support future nuclear

202

Energy Department Requests Proposals for Advanced Scientific Computing  

Office of Science (SC) Website

Energy Energy Department Requests Proposals for Advanced Scientific Computing Research News Featured Articles Science Headlines 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Presentations & Testimony News Archives Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 12.27.05 Energy Department Requests Proposals for Advanced Scientific Computing Research Print Text Size: A A A Subscribe FeedbackShare Page WASHINGTON, DC - The Department of Energy's Office of Science and the National Nuclear Security Administration (NNSA) have issued a joint Request for Proposals for advanced scientific computing research. DOE expects to fund $67 million annually for three years to five years under its Scientific Discovery through Advanced Computing (SciDAC) research program.'

203

Energy Functional for Nuclear Masses.  

E-Print Network (OSTI)

??An energy functional is formulated for mass calculations of nuclei across the nuclear chart with major-shell occupations as the relevant degrees of freedom. The functional (more)

Bertolli, Michael Giovanni

2011-01-01T23:59:59.000Z

204

Advanced Reactor Technology Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Reactor Technologies » Advanced Reactor Nuclear Reactor Technologies » Advanced Reactor Technologies » Advanced Reactor Technology Documents Advanced Reactor Technology Documents January 30, 2013 Advanced Reactor Concepts Technical Review Panel Report This report documents the establishment of a technical review process and the findings of the Advanced Reactor Concepts (ARC) Technical Review Panel (TRP).1 The intent of the process is to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D investment decisions. A goal of the process is to facilitate greater engagement between DOE and industry. The process involved establishing evaluation criteria, conducting a pilot review, soliciting concept inputs from industry entities, reviewing the concepts by TRP members and compiling the

205

Bush Administration Moves Forward to Develop Next Generation Nuclear Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moves Forward to Develop Next Generation Moves Forward to Develop Next Generation Nuclear Energy Systems Bush Administration Moves Forward to Develop Next Generation Nuclear Energy Systems February 28, 2005 - 10:33am Addthis WASHINGTON, DC-The Bush Administration today took a major step in advancing international efforts to develop the next generation of clean, safe nuclear energy systems. Secretary of Energy Samuel W. Bodman joined representatives from Canada, France, Japan, and the United Kingdom to sign the first multilateral agreement in history aimed at the development of next generation nuclear energy systems. The work of the Generation IV International Forum (GIF) is essential to advancing an important component of the Bush Administration's comprehensive energy strategy in the development of next generation nuclear energy technologies.

206

International Nuclear Energy Research Initiative: 2007 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Nuclear Energy Research Initiative: 2007 Annual International Nuclear Energy Research Initiative: 2007 Annual Report International Nuclear Energy Research Initiative: 2007 Annual Report The International Nuclear Energy Research Initiative (I-NERI) supports the National Energy Policy by pursuing international collaborations to conduct research that will advance the state of nuclear science and technology in the United States. I-NERI promotes bilateral and multilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future of nuclear energy and its global deployment by improving cost performance, enhancing safety, and increasing proliferation resistance of future nuclear energy systems. Information on the program

207

Meeting Between the Department of Energy and the Nuclear Energy...  

Energy Savers (EERE)

Between the Department of Energy and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting Between the Department of Energy and the Nuclear Energy...

208

Nuclear Energy Research and Development Roadmap | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Research and Development Roadmap Nuclear Energy Research and Development Roadmap NuclearEnergyRoadmapFinal.pdf More Documents & Publications Before the House Science and...

209

Categorical Exclusion Determinations: Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 6, 2010 May 6, 2010 CX-002327: Categorical Exclusion Determination Central Facility Area and Advanced Test Reactor-Complex Analytical and Research and Development Laboratory Operation (Overarching) CX(s) Applied: B3.6 Date: 05/06/2010 Location(s): Idaho Office(s): Idaho Operations Office, Nuclear Energy April 16, 2010 CX-002192: Categorical Exclusion Determination Site Wide Well Abandonment Activities CX(s) Applied: B2.5, B3.1 Date: 04/16/2010 Location(s): Idaho Office(s): Idaho Operations Office, Nuclear Energy April 16, 2010 CX-002584: Categorical Exclusion Determination Nuclear Fabrication Consortium CX(s) Applied: B3.6, A9, A11 Date: 04/16/2010 Location(s): Idaho Office(s): Idaho Operations Office, Nuclear Energy April 12, 2010 CX-001627: Categorical Exclusion Determination

210

Nuclear Energy University Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Status 1 Status Presentation to Nuclear Energy Advisory Committee (NEAC) June 15, 2011 Michael Worley, NEUP Program Manager NEUP Funding is Program Driven Program Directed Funding Program Supported Funding Mission Supported Funding Natl. Labs Universities DOE-NE HQ Peer Review DOE NE Program Drivers 2 3 Summary of Improvements and New Programs for FY 2011 * Expand "Blue Sky" Research and Development (R&D) * Initiate Integrated Research Projects (IRP) * Expand and improve peer review data base * Evaluate adoption of NRC and NNSA Metrics as appropriate to NEUP * Conduct peer review at pre-application stage for R&D 2011 Proposed NEUP Budget - $61.8M * Program Directed Integrated Research Projects (IRP) - $12.0M (NEW)

211

Nuclear Fuel Cycle | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cycle Fuel Cycle Nuclear Fuel Cycle GC-52 provides legal advice to DOE regarding research and development of nuclear fuel and waste management technologies that meet the nation's energy supply, environmental, and energy security needs. GC-52 also advises DOE on issues involving support for international fuel cycle initiatives aimed at advancing a common vision of the necessity of the expansion of nuclear energy for peaceful purposes worldwide in a safe and secure manner. In addition, GC-52 provides legal advice to DOE regarding the management and disposition of excess uranium in DOE's uranium stockpile. GC-52 attorneys participate in meetings of DOE's Uranium Inventory Management Coordinating Committee and provide advice on compliance with statutory requirements for the sale or transfer of uranium.

212

FY 2014 Consolidated Innovative Nuclear Research FOA | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2014 Consolidated Innovative Nuclear Research FOA FY 2014 Consolidated Innovative Nuclear Research FOA FY 2014 Consolidated Innovative Nuclear Research FOA The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. NE strives to promote integrated and collaborative research conducted by national laboratory, university, industry, and international partners under the direction of NE's programs. NE funds research activities through both competitive and direct mechanisms, as required to best meet the needs of

213

FY 2014 Consolidated Innovative Nuclear Research FOA | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consolidated Innovative Nuclear Research FOA Consolidated Innovative Nuclear Research FOA FY 2014 Consolidated Innovative Nuclear Research FOA The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. NE strives to promote integrated and collaborative research conducted by national laboratory, university, industry, and international partners under the direction of NE's programs. NE funds research activities through both competitive and direct mechanisms, as required to best meet the needs of

214

E-Print Network 3.0 - advanced nuclear power Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: advanced nuclear power Page: << < 1 2 3 4 5 > >> 1 Nuclear Engineering Graduate Program Summary: Power...

215

E-Print Network 3.0 - advanced nuclear engineering Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: advanced nuclear engineering Page: << < 1 2 3 4 5 > >> 1 Nuclear Engineering Graduate Program Summary:...

216

Notes On Nuclear Energy Regulation  

Science Journals Connector (OSTI)

Notes On Nuclear Energy Regulation ... Geology matters is a key lesson from the 2011 earthquake and tsunami that hit the coast of Japan, resulting in the meltdown of three nuclear reactors at the Fukushima Daiichi power plant complex, said Allison M. Macfarlane, new head of the U.S. Nuclear Regulatory Commission, at her first press briefing last week. ... In her address to energy reporters, she focused on her top priorities for the commission. ...

JEFF JOHNSON

2012-08-20T23:59:59.000Z

217

Symmetry Energy in Nuclear Surface  

E-Print Network (OSTI)

Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry.

Pawel Danielewicz; Jenny Lee

2008-12-25T23:59:59.000Z

218

Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Cooperation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Cooperation Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Cooperation March 22, 2006 - 12:10pm Addthis MUMBAI, INDIA - U.S. Secretary of Energy Samuel W. Bodman today met with Dr. Anil Kakodkar, Secretary of the Department of Atomic Energy, in Mumbai to address the United States and India's nuclear cooperation and highlight the countries' ongoing partnership to advance global energy security. Earlier today, Secretary Bodman met with U.S. and Indian venture capitalists to discuss opportunities for investment in clean energy technologies. Secretary Bodman also participated in a roundtable discussion with nuclear industry leaders on the private sector's role in expanding access to clean, safe, and reliable nuclear energy across the

219

Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Cooperation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in Mumbai to Highlight Civil Nuclear Energy in Mumbai to Highlight Civil Nuclear Energy Cooperation Secretary Bodman in Mumbai to Highlight Civil Nuclear Energy Cooperation March 22, 2006 - 12:10pm Addthis MUMBAI, INDIA - U.S. Secretary of Energy Samuel W. Bodman today met with Dr. Anil Kakodkar, Secretary of the Department of Atomic Energy, in Mumbai to address the United States and India's nuclear cooperation and highlight the countries' ongoing partnership to advance global energy security. Earlier today, Secretary Bodman met with U.S. and Indian venture capitalists to discuss opportunities for investment in clean energy technologies. Secretary Bodman also participated in a roundtable discussion with nuclear industry leaders on the private sector's role in expanding access to clean, safe, and reliable nuclear energy across the

220

Nuclear Energy Page 570Page 570  

E-Print Network (OSTI)

Nuclear Energy Page 570Page 570 #12;Energy Supply and Conservation/ Nuclear Energy FY 2007;Energy Supply and Conservation/Nuclear Energy/ Overview FY 2007 Congressional Budget Energy Supply and Conservation Office of Nuclear Energy, Science and Technology Overview Appropriation Summary by Program

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy Department Nuclear Systems Are Powering Mars Rover | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Nuclear Systems Are Powering Mars Rover Energy Department Nuclear Systems Are Powering Mars Rover Energy Department Nuclear Systems Are Powering Mars Rover November 28, 2011 - 2:00pm Addthis The Mars Science Laboratory rover, which launched from Cape Canaveral this weekend, is powered by nuclear systems developed by the U.S. Department of Energy (DOE), marking the 28th space mission supported by nuclear energy. This year also marks the 50th anniversary of nuclear-powered space exploration. To commemorate the launch, DOE released a new video highlighting this legacy and the Department's work designing these advanced systems. "For the last 50 years, this technology has supported the peaceful use of nuclear power for space exploration, helping to shape the world's understanding of our solar system," said U.S. Energy Secretary Steven

222

Nuclear Energy Production  

Science Journals Connector (OSTI)

We shall limit ourselves here to a very rough summary of the most important features of nuclear reactions in stars. This will suffice completely ... , while the study of particular aspects of nuclear astrophysics...

Professor Dr. Rudolf Kippenhahn

1990-01-01T23:59:59.000Z

223

Presentation: DOE Nuclear Nonproliferation | Department of Energy  

Office of Environmental Management (EM)

Presentation: DOE Nuclear Nonproliferation Presentation: DOE Nuclear Nonproliferation A briefing to the Secretary's Energy Advisory Board on DOE nuclear nonproliferation activities...

224

Energy Department Requests Proposals for Advanced Scientific Computing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requests Proposals for Advanced Scientific Requests Proposals for Advanced Scientific Computing Research Energy Department Requests Proposals for Advanced Scientific Computing Research December 27, 2005 - 4:55pm Addthis WASHINGTON, DC - The Department of Energy's Office of Science and the National Nuclear Security Administration (NNSA) have issued a joint Request for Proposals for advanced scientific computing research. DOE expects to fund $67 million annually for three years to five years under its Scientific Discovery through Advanced Computing (SciDAC) research program. Scientific computing, including modeling and simulation, has become crucial for research problems that are insoluble by traditional theoretical and experimental approaches, hazardous to study in the laboratory, or time-consuming or expensive to solve by traditional means.

225

Advanced RenewableEnergy Company ARC Energy | Open Energy Information  

Open Energy Info (EERE)

Advanced RenewableEnergy Company ARC Energy Advanced RenewableEnergy Company ARC Energy Jump to: navigation, search Name Advanced RenewableEnergy Company (ARC Energy) Place Nashua, New Hampshire Product New Hampshire-based stealth mode LED substrate manufacture equipment provider which aims to lower the cost of LEDs. Coordinates 42.758365°, -71.464209° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.758365,"lon":-71.464209,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Advanced Energy Systems Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Ltd Jump to: navigation, search Name Advanced Energy Systems Ltd Place Welshpool, Western Australia, Australia Zip 6016 Sector Solar, Wind energy Product Manufacturer and distributor of micro wind turbines, solar systems, gas generators and balance of plant. Currently undergoing restructuring. Coordinates 38.211449°, -85.574524° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.211449,"lon":-85.574524,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

Advanced Solar Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Advanced Solar Technologies Inc Place: San Diego, California Sector: Solar Product: California-based domestic and commercial designer and installer of solar energy equipment....

228

Advanced Fossil Energy Projects Solicitation | Department of...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Advanced Fossil Energy Projects December 12, 2013 - Attachment C - Summary GHG Emissions Data FINAL July 9, 2014 - Supplement to Loan Guarantee Announcement November...

229

Advanced Fossil Energy Projects Solicitation | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Advanced Fossil Energy Projects December 12, 2013 - Attachment C - Summary GHG Emissions Data FINAL July 9, 2014 - Supplement to Loan Guarantee Announcement Press...

230

Advanced Solar Power ASP | Open Energy Information  

Open Energy Info (EERE)

ASP Jump to: navigation, search Name: Advanced Solar Power (ASP) Place: Israel Sector: Solar Product: Involved in the development and manufacturing of innovative solar energy...

231

Advanced Electrolyte Model - Energy Innovation Portal  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Energy Storage Find More Like This Return to Search Advanced Electrolyte Model Idaho National Laboratory Contact INL About This Technology Publications: PDF Document...

232

Nuclear Power and the World's Energy Requirements  

E-Print Network (OSTI)

The global requirements for energy are increasing rapidly as the global population increases and the under-developed nations become more advanced. The traditional fuels used in their traditional ways will become increasingly unable to meet the demand. The need for a review of the energy sources available is paramount, although the subsequent need to develop a realistic strategy to deal with all local and global energy requirements is almost as important. Here attention will be restricted to examining some of the claims and problems of using nuclear power to attempt to solve this major question.

V. Castellano; R. F. Evans; J. Dunning-Davies

2004-06-10T23:59:59.000Z

233

Under Secretary of Energy Highlights Advanced Energy Technologies to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Highlights Advanced Energy Technologies Highlights Advanced Energy Technologies to Sustain America's Economic Growth Under Secretary of Energy Highlights Advanced Energy Technologies to Sustain America's Economic Growth June 2, 2006 - 2:12pm Addthis HONEOYE FALLS, NY - U.S. Under Secretary of Energy David Garman today visited the General Motors (GM) Advanced Technologies Facility in Honeoye Falls, New York, with Rep. Randy Kuhl (NY-29th), to tour the facility and view new advanced energy technologies such as hydrogen fuel cells. Under Secretary Garman discussed the importance of the development of hydrogen and other renewable energy sources as a key to diversifying our nation's energy mix. The advancement of hydrogen is a key element of President Bush's Advanced Energy Initiative (AEI), which seeks to invest in the

234

United States and Japan Sign Joint Nuclear Energy Action Plan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy Cooperation United States and Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy...

235

Training the Next Generation of Nuclear Energy Leaders | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Training the Next Generation of Nuclear Energy Leaders Training the Next Generation of Nuclear Energy Leaders Training the Next Generation of Nuclear Energy Leaders May 8, 2012 - 3:06pm Addthis University of Idaho professor Supathorn Phongikaroon works with a graduate student in the radiochemistry lab at the Center for Advanced Energy Studies in Idaho Falls, Idaho. Phongikaroon has received $820,000 from DOE to study an applied technology to remotely analyze spent nuclear fuel. | Photo courtesy of the University of Idaho. University of Idaho professor Supathorn Phongikaroon works with a graduate student in the radiochemistry lab at the Center for Advanced Energy Studies in Idaho Falls, Idaho. Phongikaroon has received $820,000 from DOE to study an applied technology to remotely analyze spent nuclear fuel. | Photo

236

Training the Next Generation of Nuclear Energy Leaders | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Next Generation of Nuclear Energy Leaders the Next Generation of Nuclear Energy Leaders Training the Next Generation of Nuclear Energy Leaders May 8, 2012 - 3:06pm Addthis University of Idaho professor Supathorn Phongikaroon works with a graduate student in the radiochemistry lab at the Center for Advanced Energy Studies in Idaho Falls, Idaho. Phongikaroon has received $820,000 from DOE to study an applied technology to remotely analyze spent nuclear fuel. | Photo courtesy of the University of Idaho. University of Idaho professor Supathorn Phongikaroon works with a graduate student in the radiochemistry lab at the Center for Advanced Energy Studies in Idaho Falls, Idaho. Phongikaroon has received $820,000 from DOE to study an applied technology to remotely analyze spent nuclear fuel. | Photo

237

Department of Energy Conference Emphasizes Universities' Role in Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conference Emphasizes Universities' Role in Conference Emphasizes Universities' Role in Nuclear Energy Research Department of Energy Conference Emphasizes Universities' Role in Nuclear Energy Research August 14, 2009 - 1:35pm Addthis This Thursday and Friday, the U.S. Department of Energy hosted a workshop with professors from more than 40 U.S. universities to highlight the role universities can play in advancing the nation's nuclear energy research. U.S. Senator Bob Bennett, R-Utah, delivered closing remarks to the conference, emphasizing the importance of nuclear energy as a clean, carbon-free source of electricity. "The path to a clean energy future is through a balanced energy approach that includes nuclear energy, which provides electricity to one in five homes and businesses," said Bennett, ranking Republican on the Senate

238

Proposal for a High Energy Nuclear Database  

E-Print Network (OSTI)

Proposal for a High Energy Nuclear Database David A. Brown 1it requires the high-energy nuclear physics com- munitys ?compilations of high-energy nuclear data for applications

Brown, David A.; Vogt, Ramona

2005-01-01T23:59:59.000Z

239

Energy Department Releases Draft Advanced Fossil Energy Solicitation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

fossil energy projects and facilities that substantially reduce greenhouse gas and other air pollution. The Advanced Fossil Energy Projects solicitation, authorized by Title XVII...

240

Functional Materials for Energy | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at Interfaces Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Functional Materials for Energy SHARE Functional Materials for Energy The concept of functional materials for energy occupies a very prominent position in ORNL's research and more broadly the scientific research sponsored by DOE's Basic Energy Sciences. These materials facilitate the capture and transformation of energy, the storage of energy or the efficient release and utilization of stored energy. A different kind of

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Nuclear Power Trends Energy Economics and Sustainability  

E-Print Network (OSTI)

Nuclear Power Trends Energy Economics and Sustainability L. H. Tsoukalas Purdue University Nuclear;National Research Council of Greece, May 8, 2008 Outline · The Problem · Nuclear Energy Trends · Energy Economics · Life Cycle Analysis · Nuclear Sustainability · Nuclear Energy in Greece? #12;National Research

242

Department of Energy Releases Global Nuclear Energy Partnership...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Global Nuclear Energy Partnership Strategic Plan Department of Energy Releases Global Nuclear Energy Partnership Strategic Plan January 10, 2007 - 9:59am Addthis WASHINGTON, DC -...

243

The Office of Nuclear Energy Announces Central Europe Nuclear Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Office of Nuclear Energy Announces Central Europe Nuclear The Office of Nuclear Energy Announces Central Europe Nuclear Safety Workshop in Prague The Office of Nuclear Energy Announces Central Europe Nuclear Safety Workshop in Prague October 3, 2011 - 2:04pm Addthis The Office of Nuclear Energy, in partnership with Czech Republic Ministry of Industry and Trade, Ministry of Foreign Affairs, the State Agency for Nuclear Safety of the Czech Republic, and Argonne National Laboratory, is conducting a regional Nuclear Safety Workshop on Trends in Nuclear Power Plant Safety for Robust Civil Nuclear Programs on Oct. 10-13, 2011 in Prague. U.S. Ambassador Norman Eisen and Department of Energy Assistant Secretary for Nuclear Energy Dr. Pete Lyons will deliver speeches welcoming participants. Representatives from the Czech Republic, Bulgaria, Lithuania,

244

Department of Energy Designates the Idaho National Laboratory Advanced Test  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Designates the Idaho National Laboratory Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility Department of Energy Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility April 23, 2007 - 12:36pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today designated the Idaho National Laboratory's (INL) Advanced Test Reactor (ATR) as a National Scientific User Facility. Establishing the ATR as a National Scientific User Facility will help assert U.S. leadership in nuclear science and technology, and will attract new users - universities, laboratories and industry - to conduct research at the ATR. This facility will support basic and applied nuclear research and development (R&D), furthering

245

Energy Department Requests Proposals for Advanced Scientific...  

Energy Savers (EERE)

27, 2005 - 4:55pm Addthis WASHINGTON, DC - The Department of Energy's Office of Science and the National Nuclear Security Administration (NNSA) have issued a joint Request...

246

THE NUCLEAR ENERGY REVOLUTION1966  

Science Journals Connector (OSTI)

...power. The estimated water cost at the plant site...assessed against municipal water projects. A more recent...using an organic- cooled heavy-water reactor as the energy source and a slightly more advanced evaporator with a performance...

Alvin M. Weinberg; Gale Young

1967-01-01T23:59:59.000Z

247

International Nuclear Energy Policy and Cooperation  

Energy.gov (U.S. Department of Energy (DOE))

The Office of International Nuclear Energy Policy and Cooperation (INEPC) collaborates with international partners to support the safe, secure, and peaceful use of nuclear energy. It works both...

248

Nuclear Energy Advisory Committee, Facility Subcommittee visit...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Committee, Facility Subcommittee visit to Idaho National Laboratory Nuclear Energy Advisory Committee, Facility Subcommittee visit to Idaho National Laboratory The Nuclear Energy...

249

International Nuclear Energy Research Initiative: 2009 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 Annual 9 Annual Report International Nuclear Energy Research Initiative: 2009 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is an international, research-oriented collaboration that supports advancement of nuclear science and technology in the United States and the world. I-NERI promotes bilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment by improving cost performance, enhancing safety, and increasing proliferation resistance of future nuclear energy systems. A link to the program can be found at the U.S. Department of Energy Office of Nuclear Energy website.

250

International Nuclear Energy Research Initiative: 2008 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Annual 8 Annual Report International Nuclear Energy Research Initiative: 2008 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is an international, research-oriented initiative that supports the advancement of nuclear science and technology in the United States and the world. I-NERI promotes bilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment by improving cost performance, enhancing safety, and increasing proliferation resistance of future nuclear energy systems. A link to the program can be found at the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE) website:

251

Energy Praises the Nuclear Regulatory Commission Approval of the First  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Praises the Nuclear Regulatory Commission Approval of the Praises the Nuclear Regulatory Commission Approval of the First United States Nuclear Plant Site in Over 30 Years Energy Praises the Nuclear Regulatory Commission Approval of the First United States Nuclear Plant Site in Over 30 Years March 8, 2007 - 10:28am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today commended the Nuclear Regulatory Commission's decision to approve the first-ever Early Site Permit (ESP) for the Exelon Generation Company's Clinton site, in central Illinois. This decision marks a major milestone in the President's plan to expand the use of safe and clean nuclear power. As part of President Bush's Advanced Energy Initiative - which seeks to change the way we power this nation - nuclear power will play an increasingly

252

Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of Nuclear Power Global Nuclear Energy Partnership Fact Sheet - Expand Domestic Use of Nuclear Power GNEP will build on the recent advances made by the President and Congress to stimulate new nuclear plant construction in the U.S. This will be accomplished by demonstrating the success of the streamlined regulations for siting, constructing and operating new nuclear plants through the Nuclear Power 2010 program, and by implementing incentives enacted through the Energy Policy Act of 2005 (EPACT 2005). At 20 percent of the total electricity supply in the nation, nuclear power is the second largest source of domestic electricity, while seventy percent comes from fossil burning fuels (coal, natural gas, and oil). Increasing the amount of

253

Advanced Energy Products | Open Energy Information  

Open Energy Info (EERE)

Products Products Jump to: navigation, search Name Advanced Energy Products Address 123 C Street Place Davis, CA Zip 95616 Website http://www.advancedenergyprodu Coordinates 38.542214°, -121.743393° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.542214,"lon":-121.743393,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

254

Energy Department Nuclear Systems Are Powering Mars Rover | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department Nuclear Systems Are Powering Mars Rover Department Nuclear Systems Are Powering Mars Rover Energy Department Nuclear Systems Are Powering Mars Rover November 28, 2011 - 12:14pm Addthis Washington, D.C. - The Mars Science Laboratory rover, which launched from Cape Canaveral this weekend, is powered by nuclear systems developed by the U.S. Department of Energy (DOE), marking the 28th space mission supported by nuclear energy. This year also marks the 50th anniversary of nuclear-powered space exploration. To commemorate the launch, DOE released a new video highlighting this legacy and the Department's work designing these advanced systems. "For the last 50 years, this technology has supported the peaceful use of nuclear power for space exploration, helping to shape the world's understanding of our solar system," said U.S. Energy Secretary Steven

255

Department of Energy, Duke Energy and EPRI Partner to Test Advanced...  

Office of Environmental Management (EM)

Energy, Duke Energy and EPRI Partner to Test Advanced Energy Technologies for Utilities Department of Energy, Duke Energy and EPRI Partner to Test Advanced Energy Technologies for...

256

THE NUCLEAR ENERGY REVOLUTION1966  

Science Journals Connector (OSTI)

...nuclear energy revolution-1966. | Oak Ridge National Laboratory. | Journal...ALVIN MI. WEINBERG AND GALE YOUNG OAK RIDGE NATIONAL LABORATORYt Delivered before...have passed since Fermi and his co-workers at Chicago achieved the first...

Alvin M. Weinberg; Gale Young

1967-01-01T23:59:59.000Z

257

Tribal Renewable Energy Advanced Course: Project Financing Concepts  

Energy.gov (U.S. Department of Energy (DOE))

Watch the DOE Office of Indian Energy's advanced renewable energy course entitled "Tribal Renewable Energy Project Development: Advanced Financing Concepts" by clicking on the .swf link below. You...

258

Energy Department Opens National Competition to Advance Awareness...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Opens National Competition to Advance Awareness on Geothermal Energy Energy Department Opens National Competition to Advance Awareness on Geothermal Energy February 28, 2014 -...

259

Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development  

SciTech Connect

The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

Jon Carmack

2014-01-01T23:59:59.000Z

260

Advance Electronics | Open Energy Information  

Open Energy Info (EERE)

suppressors, automatic voltage stablisers, voltmeters oscilloscopes, and signal generators. References: Advance Electronics1 This article is a stub. You can help OpenEI by...

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Project Sponsors: California Energy Commission Advanced Power and Energy Program  

E-Print Network (OSTI)

Project Sponsors: California Energy Commission Advanced Power and Energy Program ADVANCED POWER by the California Energy Commission (CEC) in its 2012 solicitation After the intersections were scored, Voronoi & ENERGY PROGRAM www.apep.uci.edu RESULTS For each of the specified 68 station locations, nearby major

Mease, Kenneth D.

262

Argonne Historical News Releases about Nuclear Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Releases Releases About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

263

Advanced Wind Energy Systems AWES | Open Energy Information  

Open Energy Info (EERE)

AWES AWES Jump to: navigation, search Name Advanced Wind Energy Systems (AWES) Place Toms River, New Jersey Sector Wind energy Product Advanced Wind Energy Systems (AWES) was formed in 2006 to commercialize the novel wind turbine energy capture technologies invented by Frank McClintic, AWES founder and Chief Designer. References Advanced Wind Energy Systems (AWES)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Advanced Wind Energy Systems (AWES) is a company located in Toms River, New Jersey . References ↑ "Advanced Wind Energy Systems (AWES)" Retrieved from "http://en.openei.org/w/index.php?title=Advanced_Wind_Energy_Systems_AWES&oldid=341809

264

International Framework for Nuclear Energy Cooperation to Hold  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Framework for Nuclear Energy Cooperation to Hold International Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland September 6, 2011 - 3:23pm Addthis Washington, D.C. - The U.S. Department of Energy today announced that Deputy Secretary of Energy Daniel Poneman will lead the U.S. delegation to the International Framework for Nuclear Energy Cooperation (IFNEC) Executive Committee Meeting on Sept. 29 in Warsaw, Poland. The ministerial-level conference aims to advance cooperation among participating states to support the peaceful use of nuclear energy in a manner that meets high standards of safety, security and nonproliferation. The meeting will also feature video remarks by Microsoft founder Bill

265

International Framework for Nuclear Energy Cooperation to Hold  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Framework for Nuclear Energy Cooperation to Hold Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland September 6, 2011 - 3:10pm Addthis Washington, D.C. - The U.S. Department of Energy today announced that Deputy Secretary of Energy Daniel Poneman will lead the U.S. delegation to the International Framework for Nuclear Energy Cooperation (IFNEC) Executive Committee Meeting on Sept. 29 in Warsaw, Poland. The ministerial-level conference aims to advance cooperation among participating states to support the peaceful use of nuclear energy in a manner that meets high standards of safety, security and nonproliferation. The meeting will also feature video remarks by Microsoft founder Bill

266

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancing Building Energy Codes Advancing Building Energy Codes The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. 75% of U.S. Buildings will be New or Renovated by 2035, Building Codes will Ensure They Use Energy Wisely. Learn More 75% of U.S. Buildings will be New or Renovated by 2035; Building Codes will Ensure They Use Energy Wisely Learn More Energy Codes Ensure Efficiency in Buildings We offer guidance and technical resources to policy makers, compliance verification professionals, architects, engineers, contractors, and other stakeholders who depend on building energy codes.

267

Advancing our Nuclear Collaboration with the Czech Republic ...  

Energy Savers (EERE)

Obama addresses a crowd in Hradcany Square on April 5, 2009, touching on issues from green energy to nuclear treaties. Daniel B. Poneman Daniel B. Poneman Former Deputy...

268

Nuclear Fuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Fuels Nuclear Fuels Nuclear Fuels A reactor's ability to produce power efficiently is significantly affected by the composition and configuration of its fuel system. A nuclear fuel assembly consists of hundreds of thousands of uranium pellets, stacked and encapsulated within tubes called fuel rods or fuel pins which are then bundled together in various geometric arrangements. There are many design considerations for the material composition and geometric configuration of the various components comprising a nuclear fuel system. Future designs for the fuel and the assembly or packaging of fuel will contribute to cleaner, cheaper and safer nuclear energy. Today's process for developing and testing new fuel systems is resource and time intensive. The process to manufacture the fuel, build an assembly,

269

Chapter 24 - Nuclear energy future  

Science Journals Connector (OSTI)

Abstract This chapter attempts to concisely describe the role that nuclear power may take in the meeting the worlds future energy needs. Historically, economic considerations have triumphed all other considerations when selecting an energy source. Nuclear power growth stagnated in the late twentieth century for a variety of reasons. A revival in nuclear reactor construction is beginning in the United States and elsewhere at the start of the twenty-first century. World energyand especially electricityuse is increasing and sustainable approaches to meeting this need are sought. With rising concern about climate change, nuclear power is found to be the lowest contributor to carbon dioxide emissions, even compared to solar and wind power. Besides electricity generation, power reactors can be utilized for large-scale desalination and hydrogen generation.

Raymond L. Murray; Keith E. Holbert

2015-01-01T23:59:59.000Z

270

Nanoscale Advances in Catalysis and Energy Applications  

SciTech Connect

In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

Li, Yimin; Somorjai, Gabor A.

2010-05-12T23:59:59.000Z

271

Advanced Energy Retrofit Guide Retail Buildings  

SciTech Connect

The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energys Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

2011-09-19T23:59:59.000Z

272

Global Nuclear Energy Partnership Programmatic Environmental Impact Statement  

SciTech Connect

Abstract: The proposed Global Nuclear Energy Partnership (GNEP) Program, which is part of the Presidents Advanced Energy Initiative, is intended to support a safe, secure, and sustainable expansion of nuclear energy, both domestically and internationally. Domestically, the GNEP Program would promote technologies that support economic, sustained production of nuclear-generated electricity, while reducing the impacts associated with spent nuclear fuel disposal and reducing proliferation risks. The Department of Energy (DOE) proposed action envisions changing the United States nuclear energy fuel cycle from an open (or once-through) fuel cyclein which nuclear fuel is used in a power plant one time and the resulting spent nuclear fuel is stored for eventual disposal in a geologic repositoryto a closed fuel cycle in which spent nuclear fuel would be recycled to recover energy-bearing components for use in new nuclear fuel. At this time, DOE has no specific proposed actions for the international component of the GNEP Program. Rather, the United States, through the GNEP Program, is considering various initiatives to work cooperatively with other nations. Such initiatives include the development of grid-appropriate reactors and the development of reliable fuel services (to provide an assured supply of fresh nuclear fuel and assist with the management of the used fuel) for nations who agree to employ nuclear energy only for peaceful purposes, such as electricity generation.

R.A. Wigeland

2008-10-01T23:59:59.000Z

273

Energy Department Announces New Investment in Nuclear Fuel Storage Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investment in Nuclear Fuel Storage Investment in Nuclear Fuel Storage Research Energy Department Announces New Investment in Nuclear Fuel Storage Research April 16, 2013 - 12:19pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of its commitment to developing an effective strategy for the safe and secure storage and management of used nuclear fuel, the Energy Department today announced a new dry storage research and development project led by the Electric Power Research Institute (EPRI). The project will design and demonstrate dry storage cask technology for high burn-up spent nuclear fuels that have been removed from commercial nuclear power plants. "The Energy Department is committed to advancing clean, reliable and safe nuclear power - which provides the largest source of low-carbon

274

Energy Department Announces New Investment in Nuclear Fuel Storage Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces New Investment in Nuclear Fuel Storage Announces New Investment in Nuclear Fuel Storage Research Energy Department Announces New Investment in Nuclear Fuel Storage Research April 16, 2013 - 12:19pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of its commitment to developing an effective strategy for the safe and secure storage and management of used nuclear fuel, the Energy Department today announced a new dry storage research and development project led by the Electric Power Research Institute (EPRI). The project will design and demonstrate dry storage cask technology for high burn-up spent nuclear fuels that have been removed from commercial nuclear power plants. "The Energy Department is committed to advancing clean, reliable and safe nuclear power - which provides the largest source of low-carbon

275

Advanced House Framing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced House Framing Advanced House Framing Advanced House Framing April 13, 2012 - 7:57pm Addthis Two-story home using advanced framing techniques. Two-story home using advanced framing techniques. Advanced house framing means materials, labor, and heating and cooling cost savings because the approach: Uses less lumber and generates less waste than typical framing methods. Increases energy efficiency by replacing lumber with insulation material, resulting in a higher whole-wall R-value through reduced thermal bridging and increased insulation. How does it work? Advanced framing works structurally by aligning framing members directly over each other to transfer the load from roof trusses or rafters to second floor wall studs, to floor joists, to first floor studs to the foundation,

276

Advancing Clean Energy in Indian Country | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Clean Energy in Indian Country Advancing Clean Energy in Indian Country Advancing Clean Energy in Indian Country November 7, 2011 - 3:16pm Addthis Office of Indian Energy Policy and Programs Director Tracey LeBeau meets with tribal leaders from across the United States in Portland, Oregon to discuss how to advance clean energy deployment in Indian Country. | The National Conference of State Legislatures Office of Indian Energy Policy and Programs Director Tracey LeBeau meets with tribal leaders from across the United States in Portland, Oregon to discuss how to advance clean energy deployment in Indian Country. | The National Conference of State Legislatures Tracey A. LeBeau Director, Office of Indian Energy Policy & Programs Last week, I attended the National Congress for American Indians (NCAI)

277

Energy Department Releases Draft Advanced Fossil Energy Solicitation to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Draft Advanced Fossil Energy Releases Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas Pollution Energy Department Releases Draft Advanced Fossil Energy Solicitation to Support Reductions in Greenhouse Gas Pollution July 2, 2013 - 12:42pm Addthis NEWS MEDIA CONTACT (202) 586-4940 Washington, D.C. - As part of President Obama's Climate Action Plan, the U.S. Department of Energy announced today a draft loan guarantee solicitation for innovative and advanced fossil energy projects and facilities that substantially reduce greenhouse gas and other air pollution. The Advanced Fossil Energy Projects solicitation, authorized by Title XVII of the Energy Policy Act of 2005 through Section 1703 of the Loan Guarantee Program, does just that. The draft solicitation will be open

278

Advanced Energy Systems Inc AESI also Advanced Energy Inc | Open Energy  

Open Energy Info (EERE)

AESI also Advanced Energy Inc AESI also Advanced Energy Inc Jump to: navigation, search Name Advanced Energy Systems Inc (AESI) (also Advanced Energy Inc) Place Tempe, Arizona Zip 85283-4315 Sector Renewable Energy Product Advanced Energy Systems specialises in the engineering design and development of power conditioning and control electronics for renewable energy generation. Coordinates 33.42551°, -111.937419° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.42551,"lon":-111.937419,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

279

INEEL/EXT-04-02506 2 Decision-Makers' Forum on a Unified Strategy for Nuclear Energy  

E-Print Network (OSTI)

INEEL/EXT-04-02506 #12;2 Decision-Makers' Forum on a Unified Strategy for Nuclear Energy The Need deliver new nuclear energy systems and reestablish U.S. leadership in nuclear energy development, or imperatives. Each imperative contributes to answer the following question: To advance nuclear energy

280

Observations on A Technology Roadmap for Generation IV Nuclear Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Observations on A Technology Roadmap for Generation IV Nuclear Observations on A Technology Roadmap for Generation IV Nuclear Energy Systems: Technical Roadmap Report Observations on A Technology Roadmap for Generation IV Nuclear Energy Systems: Technical Roadmap Report The development of advanced nuclear energy systems in the U.S. will depend greatly on the continued success of currently operating light water nuclear power plants and the ordering of new installations in the short term. DOE needs to give those immediate objectives the highest priority and any additional support they require to assure their success. DOE is pursuing two initiatives to encourage a greater use of nuclear energy systems. The initiatives have been reviewed by NERAC Subcommittee on Generation IV Technology Planning (GRNS) and they are: * A Near Term Development (NTD) Roadmap which is in the process of being

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DOE Initiates Environmental Impact Statement for Global Nuclear Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiates Environmental Impact Statement for Global Nuclear Initiates Environmental Impact Statement for Global Nuclear Energy Partnership Technology Demonstrations DOE Initiates Environmental Impact Statement for Global Nuclear Energy Partnership Technology Demonstrations March 22, 2006 - 9:39am Addthis WASHINGTON , DC - The U.S. Department of Energy (DOE) today announced plans to prepare an environmental impact statement (EIS) for the technology demonstration program of the Global Nuclear Energy Partnership (GNEP) initiative. DOE issued in the Federal Register today an Advance Notice of Intent to prepare an EIS for the GNEP technology demonstration program and plans to issue the final Notice of Intent in summer 2006. The advance notice requests comments from the public and private sectors on the scope of the EIS, reasonable alternatives, and other relevant information.

282

High Energy Density Laboratory Plasmas Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Program | National Nuclear Security Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog High Energy Density Laboratory Plasmas Program Home > High Energy Density Laboratory Plasmas Program High Energy Density Laboratory Plasmas Program Steady advances in increasing the energy, power, and brightness of lasers and particle beams and advances in pulsed power systems have made possible

283

DOE Initiates Environmental Impact Statement for Global Nuclear Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Impact Statement for Global Nuclear Environmental Impact Statement for Global Nuclear Energy Partnership Technology Demonstrations DOE Initiates Environmental Impact Statement for Global Nuclear Energy Partnership Technology Demonstrations March 22, 2006 - 9:39am Addthis WASHINGTON , DC - The U.S. Department of Energy (DOE) today announced plans to prepare an environmental impact statement (EIS) for the technology demonstration program of the Global Nuclear Energy Partnership (GNEP) initiative. DOE issued in the Federal Register today an Advance Notice of Intent to prepare an EIS for the GNEP technology demonstration program and plans to issue the final Notice of Intent in summer 2006. The advance notice requests comments from the public and private sectors on the scope of the EIS, reasonable alternatives, and other relevant information.

284

International Nuclear Energy Research Initiative 2010 Annual Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2010 I-NERI Annual Report 2010 I-NERI Annual Report  | i Foreword The U.S. Department of Energy, Office of Nuclear Energy (DOE-NE), established the International Nuclear Energy Research Initiative (I-NERI) in fiscal year (FY) 2001 to conduct advanced nuclear energy systems research in collaboration with international partners. This annual report provides an update on research and development (R&D) accomplishments which the I-NERI program achieved during FY 2010. I-NERI supports bilateral scientific and engineering collaboration in advanced reactor systems and the nuclear fuel cycle and is linked to two of DOE-NE's primary research programs: Reactor Concepts Research, Development and Demonstration and the Fuel Cycle Research and Development program. I-NERI is designed to foster international partnerships to address key issues

285

Nuclear Liability | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Liability Liability Nuclear Liability 1. Price-Anderson Act (PAA) GC-52 provides legal advice to DOE regarding issues arising under the PAA, which governs nuclear liability in the United States and establishes a system of financial protection for persons who may be liable for and persons who may be injured by a nuclear incident. GC-52 is also responsible for developing regulations implementing any amendments to the PAA. As necessary, GC-52 attorneys coordinate with other US and international agencies. Applicable Laws Atomic Energy Act of 1954, Section 170 Report to Congress on the Price-Anderson Act 2. Extraordinary Contractual Relief for Nuclear Risks GC-52 advises DOE on providing indemnification under Public Law 85-804 for DOE and National Nuclear Security Administration (NNSA) contractors for

286

Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing Energy Revolving Loan Fund - Clean Energy Advanced Manufacturing < Back Eligibility Commercial Industrial Savings Category Bioenergy Buying & Making Electricity Solar Wind Maximum Rebate $2,000,000 Program Info Funding Source American Recovery and Reinvestment Act of 2009 (ARRA) State Michigan Program Type Industry Recruitment/Support Provider Department of Energy, Labor and Economic Growth '''''Note: This program is not currently accepting applications. Check the program web site for information regarding future solicitations.''''' In January 2010, Michigan enacted the Public Act 242 of 2009, which established the Energy Efficiency and Renewable Energy Revolving Loan Fund Program. The Clean Energy Advanced Manufacturing portion of this program is

287

Advanced Reactors Thermal Energy Transport for Process Industries  

SciTech Connect

The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

2014-07-01T23:59:59.000Z

288

Nuclear Potential and Symmetry Energy  

Science Journals Connector (OSTI)

A quadratic dependence on momentum is assumed for the two-nucleon interaction energy in the independent-particle model, and is used in a study of the nuclear binding energy and symmetry energy. The corresponding optical potentials for elastic nucleon scattering are discussed. The semiempirical interaction used is compared with the two-body potentials commonly used in shell-model calculations. These are found to be inadequate.

G. R. Satchler

1958-01-15T23:59:59.000Z

289

Advances in understanding solar energy collection materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding solar energy collection materials Understanding solar energy collection materials Advances in understanding solar energy collection materials A LANL team and collaborators have made advances in the understanding of how carbon nanotubes move charges created by light. November 9, 2012 Efficient energy transport in photovoltaic carbon nanomaterials Efficient energy transport in photovoltaic carbon nanomaterials. A LANL team and collaborators have made advances in the understanding of how carbon nanotubes move charges created by light. The research has applications for cheap, all-carbon-based photovoltaics and light detection elements. Their work measures exciton transport (excitons are small packets of energy made up of positive and negative charges) in carbon nanotubes at room temperature in a colloidal environment. A colloid is a substance that

290

Nuclear theory for high-energy nuclear reactions of biomedical relevance  

Science Journals Connector (OSTI)

......Presentations Nuclear theory for high-energy nuclear reactions of biomedical relevance...Nuclear Data Needs for Generation IV Nuclear Energy Systems, April 5-7, 2005...2005. Nuclear theory for high-energy nuclear reactions of biomedical relevance......

A. J. Koning; M. C. Duijvestijn

2007-08-01T23:59:59.000Z

291

DOE Continues Path Forward on Global Nuclear Energy Partnership |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Continues Path Forward on Global Nuclear Energy Partnership Continues Path Forward on Global Nuclear Energy Partnership DOE Continues Path Forward on Global Nuclear Energy Partnership August 3, 2006 - 8:39am Addthis Department Announces $20 Million for GNEP Siting Studies and Seeks Further Coordination with Industry WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced $20 million to conduct detailed siting studies for public or commercial entities interested in hosting DOE's Global Nuclear Energy Partnership (GNEP) facilities. Entities could qualify to receive up to $5 million per site. DOE also announced that it is seeking expressions of interest to obtain input from U.S. and international nuclear industry on the feasibility of accelerating development and deployment of advanced recycling technologies by proceeding with commercial scale demonstration

292

International Nuclear Energy Research Initiative: Annual Report 2005 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 International Nuclear Energy Research Initiative: Annual Report 2005 The International Nuclear Energy Research Initiative (I-NERI) supports the National Energy Policy by conducting research to advance the state of nuclear science and technology in the United States. I-NERI sponsors innovative scientific and engineering research and development (R&D) in cooperation with participating countries. The research performed under the I-NERI umbrella addresses the key issues affecting the future of nuclear energy and its global deployment. I-NERI research is directed towards improving cost performance, increasing proliferation resistance, enhancing safety, and improving the waste management of future nuclear energy systems. This I-NERI 2005 Annual Report serves to inform interested parties about

293

Energy Gap in Nuclear Matter  

Science Journals Connector (OSTI)

The magnitude of the energy gap in nuclear matter associated with a highly correlated ground state of of the type believed to be important in the theory of superconductivity has been evaluated theoretically. The integral equation of Cooper, Mills, and Sessler is linearized and transformed into a form suitable for numerical solution. The energy gap, calculated by using an appropriate single-particle potential and the Gammel-Thaler two-body potential, is found to be a very strong function of the density of nuclear matter, and of the effective mass at the Fermi surface. It is concluded that the magnitude of the energy gap for nuclear matter should not be compared directly with experimental values for finite nuclei, although the results suggest that if the theory is extended to apply to finite nuclei it probably would be in agreement with experiment.

V. J. Emery and A. M. Sessler

1960-07-01T23:59:59.000Z

294

Advanced Research Projects Agency - Energy Program Specific Recovery...  

Office of Environmental Management (EM)

Advanced Research Projects Agency - Energy Program Specific Recovery Plan Advanced Research Projects Agency - Energy Program Specific Recovery Plan Microsoft Word - 44F1801D.doc...

295

Advanced, Energy-Efficient Hybrid Membrane System for Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse hybridmembranesystemsfa...

296

Progress Report: Advancing Solar Energy Across America | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Progress Report: Advancing Solar Energy Across America Progress Report: Advancing Solar Energy Across America February 12, 2014 - 11:00am Addthis Data courtesy of National...

297

Solar Energy Grid Integration Systems-Advanced Concepts | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Integration Solar Energy Grid Integration Systems-Advanced Concepts Solar Energy Grid Integration Systems-Advanced Concepts On September 1, 2011, DOE announced 25.9...

298

Advancing Technology Readiness: Wave Energy Testing and Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advancing Technology Readiness: Wave Energy Testing and Demonstration Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm Addthis Northwest...

299

Tribal Renewable Energy Advanced Course: Commercial Scale Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Scale Project Development Tribal Renewable Energy Advanced Course: Commercial Scale Project Development Watch the DOE Office of Indian Energy advanced course...

300

ITP Metal Casting: Advanced Melting Technologies: Energy Saving...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and...

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Oregon: Advancing Technology Readiness: Wave Energy Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm...

302

United States and Italy Sign Agreements to Advance Developments...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Italy Sign Agreements to Advance Developments in Nuclear Energy United States and Italy Sign Agreements to Advance Developments in Nuclear Energy September 30, 2009 - 12:00am...

303

Nuclear Facilities | Department of Energy  

Energy Savers (EERE)

Nuclear Facilities Nuclear Facilities Nuclear Facilities Locator Map Numerical map data points indicate two or more nuclear facilities in the same geographic location. Nuclear...

304

Nuclear energy density optimization: Shell structure  

Science Journals Connector (OSTI)

Background: Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional.

M. Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P.-G. Reinhard; J. Sarich; N. Schunck; S. M. Wild; D. Davesne; J. Erler; A. Pastore

2014-05-15T23:59:59.000Z

305

Nuclear Safety Regulatory Framework | Department of Energy  

Energy Savers (EERE)

Presentation that outlines the rules, policies and orders that comprise the Department of Energy Nuclear Safety Regulatory Framework. Nuclear Safety Regulatory Framework More...

306

wind energy | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

wind energy | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

307

Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research  

SciTech Connect

The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue Universitys Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called Users Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. Users week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

John Jackson; Todd Allen; Frances Marshall; Jim Cole

2013-03-01T23:59:59.000Z

308

Department of Energy Commends the Nuclear Regulatory Commission's Approval  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commends the Nuclear Regulatory Commission's Commends the Nuclear Regulatory Commission's Approval of a Second Early Site Permit in Just One Month Department of Energy Commends the Nuclear Regulatory Commission's Approval of a Second Early Site Permit in Just One Month March 27, 2007 - 12:10pm Addthis The Entergy Corporation's Grand Gulf Site in Mississippi Receives NRC Approval for an ESP WASHINGTON, DC - The U.S. Department of Energy (DOE) today applauded the Nuclear Regulatory Commission's (NRC) decision to approve an Early Site Permit (ESP) for the Entergy Corporation's Grand Gulf Nuclear Station in Mississippi. This approval, the second ESP this month, demonstrates another major milestone in President Bush's Advanced Energy Initiative, which plans to expand the use of safe and clean nuclear power. Earlier this

309

Materials for Advanced Energy Technologies  

Science Journals Connector (OSTI)

...made to the national energy balance. At a later...reactors may be added as converters of uranium, and...any of the solar energy methods-photovoltaic, wind, ocean thermal gradi-ent, space...way to convert the energy in coal to electricity...

Richard S. Claassen

1976-02-20T23:59:59.000Z

310

NETL: Advanced Research - Computation Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Energy Sciences > APECS Computational Energy Sciences > APECS Advanced Research Computational Energy Sciences APECS APECS Virtual Plant APECS (Advanced Process Engineering Co-Simulator) is the first simulation software to combine the disciplines of process simulation and computational fluid dynamics (CFD). This unique combination makes it possible for engineers to create "virtual plants" and to follow complex thermal and fluid flow phenomena from unit to unit across the plant. Advanced visualization software tools aid in analysis and optimization of the entire plant's performance. This tool can significantly reduce the cost of power plant design and optimization with an emphasis on multiphase flows critical to advanced power cycles. A government-industry-university collaboration (including DOE, NETL, Ansys/

311

A Comparative Study of Social Movements for a Post-nuclear Energy Era in Japan and the USA  

Science Journals Connector (OSTI)

In contrast with skepticism about nuclear energy in the USA and most advanced ... Korea, and China have shared a pro-nuclear energy policy during these years. These differences partly reflected ... influence, and...

Koichi Hasegawa

2011-01-01T23:59:59.000Z

312

Department of Energy Announces Fellows Program for Advance Research Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fellows Program for Advance Research Fellows Program for Advance Research Energy Projects Department of Energy Announces Fellows Program for Advance Research Energy Projects December 8, 2009 - 12:00am Addthis Cambridge, MA - The Department of Energy's Advanced Research Projects Agency - Energy (ARPA-E) announced today the creation of the ARPA-E Fellows Program at an event with Massachusetts Institute of Technology's students. ARPA-E Director, Dr. Arun Majumdar, made the announcement during a presentation to the MIT Energy Club and called on the next generation of energy leaders to join ARPA-E. Today's announcement follows US Energy Secretary Steven Chu's announcement that the Department is making $100 million in Recovery Act funding available to accelerate innovation in green technology, increase America's competitiveness and create jobs.

313

Energy Department Updates Home Energy Scoring Tool for Advancing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Updates Home Energy Scoring Tool for Advancing Updates Home Energy Scoring Tool for Advancing Residential Energy Performance Energy Department Updates Home Energy Scoring Tool for Advancing Residential Energy Performance January 9, 2014 - 3:19pm Addthis As part of the Energy Department's commitment to helping families across the United States save money by saving energy, the Department announced today its first major software update to the Home Energy Scoring Tool, developed by the Department's Building Technologies Office and Lawrence Berkeley National Laboratory (LBNL). The Home Energy Score allows homebuyers to compare homes on an "apples to apples" basis and provides recommendations for energy efficiency improvements. In addition, homeowners and homebuyers receive a cost-saving estimate of how these improvements could reduce utility bills and improve a

314

Advanced Leds | Open Energy Information  

Open Energy Info (EERE)

Leds Leds Jump to: navigation, search Name Advanced Leds Place Coventry, England, United Kingdom Zip CV5 6SP Product Advanced Leds develops LED technology for outdoor lighting, including street lighting applications. Coordinates 44.866737°, -72.263927° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.866737,"lon":-72.263927,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

Nuclear Compressibility and Symmetry Energy  

Science Journals Connector (OSTI)

A modification and generalization of the Puff-Martin model for many-fermion systems is employed to calculate nuclear compressibility and symmetry energy in order to provide a practical test of the model and at the same time obtain useful information about these interesting quantities. An alternative, heuristic, derivation of the Puff-Martin equations is presented in order to exhibit the role of the exclusion principle. The condition stated for normal nuclear matter is that the mean binding energy be minimal (with respect to variation of the Fermi momentum) rather than the Puff-Martin condition that the mean binding energy equal the "single particle" energy at the Fermi surface. These two quantities differ from each other by the rearrangement energy, which is found to be 10 Mev. Employing Puff's potential (hard-shell potential plus a separable Yamaguchi potential, acting only in relative S states), satisfactory agreement is obtained with observed binding energy and density. The value of nuclear compressibility, 214 Mev, falls within the wide range of semiempirical values. The symmetry energy coefficient, 43 Mev, is larger, by 40-80%, than those usually quoted in semiempirical mass formulas. However, our value of the symmetry coefficient is the same as that calculated by Brueckner and Gammel in the absence of odd-state forces; they found the coefficient to be reduced to 26 Mev when a more realistic potential, including odd-state contributions, is employed.

David S. Falk and Lawrence Wilets

1961-12-15T23:59:59.000Z

316

Nuclear Energy University Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEUP FY2011 Process Presentation to NEAC December 9, 2010 Marsha Lambregts, NEUP-IO Manager FUNDED R&D PROPOSALS BY STATE 2010 * Awards/Full Submissions - 42/128 * Awards to PIs for first time - 29 * Awards to junior faculty - 20 * Awards that are experimental - 30 * Awards in materials and waste - 30 * Awards to Nuclear Engineering Faculty - 18 * Number of universities receiving awards - 26 * Number of awards with lab partners - 20 * Number of universities receiving awards for first time - 8 2 2010 INFRASTRUCTURE * Major Reactor: 4 awards for a total of $3.75 M * Minor Reactor: 12 awards for $1.95 M * General Scientific Infrastructure: 33 award for $7.47 M * Since 2009, $ 19.438 M has been awarded in General Scientific Infrastructure (did not issue Major or Minor Reactor calls in 2009).

317

E-Print Network 3.0 - advanced nuclear research Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: advanced nuclear research Page: << < 1 2 3 4 5 > >> 1 Los Alamos National Laboratory DOE NNSA...

318

E-Print Network 3.0 - advancing nuclear security Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: advancing nuclear security Page: << < 1 2 3 4 5 > >> 1 Los Alamos National Laboratory DOE NNSA...

319

Producing hydrogen using nuclear energy  

Science Journals Connector (OSTI)

The earliest means of separating hydrogen from water was by electrolysis using electrical energy that usually had been produced by low-efficiency thermodynamic processes. Substitution of thermal energy for electrical energy in high-temperature electrolysis gives a somewhat higher overall efficiency, but significantly complicates the process. Today, the vast majority of hydrogen is produced by steam methane reforming (SMR) followed by a water-shift reaction. A well-designed SMR plant will yield hydrogen having 75??80% of the energy of the methane used. Recent work in Japan has demonstrated the feasibility of substituting high-temperature heat from a gas-cooled nuclear reactor to replace the heat supplied in SMR by the combustion of methane. Using high-temperature heat from nuclear plants to drive thermochemical processes for producing hydrogen has been studied extensively. Bench-scale tests have been carried out in Japan demonstrating the sulphur-iodine (SI) process to produce hydrogen.

Robert E. Uhrig

2008-01-01T23:59:59.000Z

320

Programme A. Nuclear Power Subprogramme A.4 Technology Development for Advanced Reactor Lines  

E-Print Network (OSTI)

Programme A. Nuclear Power Subprogramme A.4 Technology Development for Advanced Reactor Lines the databases that will be produced in the course of the CRP and make them accessible through the IAEA's nuclear-Electrical Applications of Nuclear Power Project A.5.02: Nuclear hydrogen production CRP Title: Advances in nuclear power

De Cindio, Fiorella

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NE - Nuclear Energy - Energy Conservation Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NUCLEAR ENERGY (NE) NUCLEAR ENERGY (NE) ENERGY CONSERVATION PLAN NE has heavily emphasized the use of flexiplace, both regular and situational. Since approximately 56 percent of NE staff use flexiplace, our plan is based on the Forrestal/Germantown (FORS/GTN) office spaces, and flexiplace office space. There are other common sense actions and policies that will be used to improve energy efficiency in the offices at both FORS and GTN. In the FORS/GTN office space: 1. Use flexiplace to the maximum extent possible. Saving an average of 1.5 gallons of gasoline per day per person (e.g., 13 miles per work x 2 = 26 miles, an average of 17 mpg), on a normal workday, NE employees save (56 percent of 145 = 71 times 1.2 days per pay period = 85.2 workdays x 1.5 gals = 127.8 gallons/pay

322

Modeling and Simulation for Nuclear Reactors Hub | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modeling and Simulation for Nuclear Reactors Hub Modeling and Simulation for Nuclear Reactors Hub Modeling and Simulation for Nuclear Reactors Hub August 1, 2010 - 4:20pm Addthis Scientists and engineers are working to help the nuclear industry make reactors more efficient through computer modeling and simulation. Scientists and engineers are working to help the nuclear industry make reactors more efficient through computer modeling and simulation. The Department's Energy Innovation Hubs are helping to advance promising areas of energy science and engineering from the earliest stages of research to the point of commercialization where technologies can move to the private sector by bringing together leadings scientists to collaborate on critical energy challenges. The Energy Innovation Hubs aim to develop innovation through a unique

323

NUCLEAR ENERGY SYSTEM COST MODELING  

SciTech Connect

The U.S. Department of Energys Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative Island approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this islands used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an islands cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

Francesco Ganda; Brent Dixon

2012-09-01T23:59:59.000Z

324

Alternative Fuels Data Center: Advanced Energy Research Project Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Energy Advanced Energy Research Project Grants to someone by E-mail Share Alternative Fuels Data Center: Advanced Energy Research Project Grants on Facebook Tweet about Alternative Fuels Data Center: Advanced Energy Research Project Grants on Twitter Bookmark Alternative Fuels Data Center: Advanced Energy Research Project Grants on Google Bookmark Alternative Fuels Data Center: Advanced Energy Research Project Grants on Delicious Rank Alternative Fuels Data Center: Advanced Energy Research Project Grants on Digg Find More places to share Alternative Fuels Data Center: Advanced Energy Research Project Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Energy Research Project Grants The Advanced Research Projects Agency - Energy (ARPA-E) was established

325

Nuclear symmetry energy at subnormal densities from measured nuclear masses  

Science Journals Connector (OSTI)

The symmetry energy coefficients for nuclei with mass number A=20250 are extracted from more than 2000 measured nuclear masses. With the semiempirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of the symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

Min Liu; Ning Wang; Zhu-Xia Li; Feng-Shou Zhang

2010-12-13T23:59:59.000Z

326

Nuclear symmetry energy at subnormal densities from measured nuclear masses  

E-Print Network (OSTI)

The symmetry energy coefficients for nuclei with mass number A=20~250 are extracted from more than 2000 measured nuclear masses. With the semi-empirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

Min Liu; Ning Wang; Zhuxia Li; Fengshou Zhang

2010-11-17T23:59:59.000Z

327

Advanced Grid Integration (AGI) | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Grid Integration (AGI) Advanced Grid Integration (AGI) Advanced Grid Integration (AGI) The Advanced Grid Integration (AGI) Division leads the federal government's efforts to accelerate modernization of the U.S. electric power grid. By enabling the two-way flow of electricity and information, a Smart Grid will increase the reliability, efficiency, and security of electric transmission, distribution, and use. A modern grid provides the foundation for a strong economy by enabling the integration of clean, renewable energy sources like wind and solar power and supporting the needs of an increasingly digital economy. AGI leverages energy industry cost-share and collaboration to foster the deployment of smart grid technologies and systems and reduce barriers to investment. To accomplish this, the Program is pursuing five core

328

Advanced Combustion Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Clean Coal » Advanced Combustion Science & Innovation » Clean Coal » Advanced Combustion Technologies Advanced Combustion Technologies Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses laser-based Rayleigh light scattering to measure flame density and speed over a flat flame burner. Oxyfuel combustion, using oxygen in place of air with diluents such as steam or carbon dioxide, can reduce pollutant emissions in advanced power cycles using gas turbines. Photo courtesy of NETL Multimedia. Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses laser-based Rayleigh light scattering to measure flame density and speed over a flat flame burner. Oxyfuel combustion, using oxygen in place of air with diluents such as steam or carbon dioxide, can reduce pollutant

329

Champions of Change: Veterans Advancing Clean Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Champions of Change: Veterans Advancing Clean Energy Champions of Change: Veterans Advancing Clean Energy Champions of Change: Veterans Advancing Clean Energy November 6, 2013 - 11:00am Addthis Robin Eckstein, one of Champions honored at the White House Champions of Change event, speaks about her experience driving trucks while serving in Iraq, and how this has influenced her work in advocating for comprehensive clean energy reform. Robin Eckstein, one of Champions honored at the White House Champions of Change event, speaks about her experience driving trucks while serving in Iraq, and how this has influenced her work in advocating for comprehensive clean energy reform. Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs View a slideshow of images from the event. Yesterday, Secretary Moniz honored veterans advancing clean energy and

330

Champions of Change: Veterans Advancing Clean Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Champions of Change: Veterans Advancing Clean Energy Champions of Change: Veterans Advancing Clean Energy Champions of Change: Veterans Advancing Clean Energy November 6, 2013 - 11:00am Addthis Robin Eckstein, one of Champions honored at the White House Champions of Change event, speaks about her experience driving trucks while serving in Iraq, and how this has influenced her work in advocating for comprehensive clean energy reform. Robin Eckstein, one of Champions honored at the White House Champions of Change event, speaks about her experience driving trucks while serving in Iraq, and how this has influenced her work in advocating for comprehensive clean energy reform. Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs View a slideshow of images from the event. Yesterday, Secretary Moniz honored veterans advancing clean energy and

331

Draft Advanced Fossil Energy Projects Solicitation Public Comments  

Energy.gov (U.S. Department of Energy (DOE))

U.S. Department of Energy Loan Programs Office: Draft Advanced Fossil Energy Projects Solicitation Public Comments

332

Energy Efficiency, Renewables, Advanced Transmission and Distribution Technologies (2008)  

Energy.gov (U.S. Department of Energy (DOE))

Federal Loan Guarantees For Projects That Employ Innovative Energy Efficiency, Renewable Energy, And Advanced Transmission And Distribution Technologies

333

E-Print Network 3.0 - advanced light-water nuclear Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced light-water nuclear Page: << < 1 2 3 4 5 > >> 1 1 Managed by UT-Battelle for the...

334

2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS 2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS A chart listing the recipients of the 2006 Nuclear Energy Research Initiative Awards. 2006...

335

Office of Nuclear Energy Fiscal Year 2014 Budget Request | Department...  

Office of Environmental Management (EM)

Office of Nuclear Energy Fiscal Year 2014 Budget Request Office of Nuclear Energy Fiscal Year 2014 Budget Request The Office of Nuclear Energy (NE) supports the diverse civilian...

336

Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee...  

Energy Savers (EERE)

Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy Energy Secretary to Visit Georgia Nuclear...

337

2006 Nuclear Energy Research Initiative Awards | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Research Initiative Awards 2006 Nuclear Energy Research Initiative Awards This is the list of winners from the 2006 Nuclear Energy Research Initiative Awards. 2006...

338

Department of Energy Announces 24 Nuclear Energy Research Awards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4 Nuclear Energy Research Awards to U.S. Universities Department of Energy Announces 24 Nuclear Energy Research Awards to U.S. Universities December 15, 2005 - 4:46pm Addthis 12...

339

Civilian Nuclear Programs, SPO-CNP: LANL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Office of Science Civilian Nuclear Programs Home Advanced Nuclear Energy Programs Yucca Mountain and Nevada Test Site Programs WIPP and Actinide Science Programs Nuclear...

340

Building Technologies Office: Advanced Energy Retrofit Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrofit Guides Retrofit Guides Photo of the cover of the Advanced Energy Retrofit Guide for Healthcare Facilities. The Advanced Energy Retrofit Guides (AERGs) help building owners and managers as well as design and construction professionals plan, design, and implement energy efficiency upgrades in commercial buildings. The Advanced Energy Retrofit Guides (AERGs) were created to help decision makers plan, design, and implement energy improvement projects in their facilities. With energy managers in mind, they present practical guidance for kick-starting the process and maintaining momentum throughout the project life cycle. These guides are primarily reference documents, allowing energy managers to consult the particular sections that address the most pertinent topics.. Useful resources are also cited throughout the guides for further information. Each AERG is tailored specifically to the needs of a specific building type, with an emphasis on the most effective retro-commissioning and retrofit measures identified by experts familiar with those unique opportunities and challenges. The guides present a broad range of proven practices that can help energy managers take specific actions at any stage of the retrofit process, resulting in energy savings for many years to come.

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Advanced Methods for Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methods for Manufacturing Methods for Manufacturing Advanced Methods for Manufacturing The overall purpose of the AMM subprogram is to accelerate innovations that reduce the cost and schedule of constructing new nuclear plants and make fabrication of nuclear power plant components faster, cheaper, and more reliable. Based on past industry work and new stakeholder input, this effort will focus on opportunities that provide simplified, standardized, and labor-saving outcomes for manufacturing, fabrication, assembly, and construction processes (both technologies and methods) and show the most promise in shortening timelines and lowering overall deployment costs. The innovations selected for further development under the AMM program will collectively provide a major means of moving the U.S. nuclear industry from

342

Department of Energy Established | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Department of Energy Established | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

343

Building a Universal Nuclear Energy Density Functional  

SciTech Connect

During the period of Dec. 1 2006 Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: ? First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; ? Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; ? Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

Carlson, Joe A. [Michigan State University; Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James

2012-12-30T23:59:59.000Z

344

Materials for Advanced Energy Technologies  

Science Journals Connector (OSTI)

...turbines. The effi-ciency of a gas turbine in converting the energy content of the gas to mechanical motion is limited...con-tribute to the development of turbines of higher efficiency. One...lies in dem-onstrating long life of ceramic turbine blades...

Richard S. Claassen

1976-02-20T23:59:59.000Z

345

Advanced Energy Efficient Roof System  

SciTech Connect

Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The options considered to date are not ideal. One approach is to insulate between the trusses at the roof plane. The construction process is time consuming and costs more than conventional attic construction. Moreover, the problems of air infiltration and thermal bridges across the insulation remain. Another approach is to use structurally insulated panels (SIPs), but conventional SIPs are unlikely to be the ultimate solution because an additional underlying support structure is required except for short spans. In addition, wood spline and metal locking joints can result in thermal bridges and gaps in the foam. This study undertook a more innovative approach to roof construction. The goal was to design and evaluate a modular energy efficient panelized roof system with the following attributes: (1) a conditioned and clear attic space for HVAC equipment and additional finished area in the attic; (2) manufactured panels that provide structure, insulation, and accommodate a variety of roofing materials; (3) panels that require support only at the ends; (4) optimal energy performance by minimizing thermal bridging and air infiltration; (5) minimal risk of moisture problems; (6) minimum 50-year life; (7) applicable to a range of house styles, climates and conditions; (8) easy erection in the field; (9) the option to incorporate factory-installed solar systems into the panel; and (10) lowest possible cost. A nationwide market study shows there is a defined market opportunity for such a panelized roof system with production and semi-custom builders in the United States. Senior personnel at top builders expressed interest in the performance attributes and indicate long-term opportunity exists if the system can deliver a clear value proposition. Specifically, builders are interested in (1) reducing construction cycle time (cost) and (2) offering increased energy efficiency to the homebuyer. Additional living space under the roof panels is another low-cost asset identified as part of the study. The market potential is enhanced through construction activity levels in target marke

Jane Davidson

2008-09-30T23:59:59.000Z

346

The Politically Correct Nuclear Energy Plant  

E-Print Network (OSTI)

The Politically Correct Nuclear Energy Plant Andrew C. Kadak Massachusetts Institute of Technology - Small is Beautiful · Nuclear Energy - But Getting Better #12;Politically Correct ! · Natural Safety is a bad idea. · There is no new nuclear energy plant that is competitive at this time. · De-regulation did

347

Reshaping Chinas Nuclear Energy Policy  

Science Journals Connector (OSTI)

Reshaping Chinas Nuclear Energy Policy ... (2) This nationwide salt crisis sent a signal that the public has withdrawn its support for nuclear energy. ... It remains an open question if online activism will make a difference in future Chinese nuclear energy decision making. ...

Qiang Wang; Xi Chen; Degang Yang; Changjian Wang; Fuqiang Xia; Xinlin Zhang

2011-08-29T23:59:59.000Z

348

NETL: Advanced Research - Computation Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Energy Sciences Computational Energy Sciences Advanced Research Computational Energy Sciences Virtual Plant Simulating the complex processes occurring inside a coal gasifier, or across an entire chemical or power plant, is an incredible tool made possible by today's supercomputers and advanced simulation software. The Computational Energy Sciences (CES) Focus Area provides such tools to the Fossil Energy program at NETL. The goal is to help scientists and engineers to better understand the fundamental steps in a complex process so they can optimize the design of the equipment needed to run it. Not only is this less costly than performing a long series of experiments under varying conditions to try to isolate important variables, but it also provides more information than such experiments can provide. Of course, the data is

349

Nuclear Energy Institute (NEI) Attachment, Integrated Safety...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Institute (NEI) Attachment, Integrated Safety Analysis Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis This paper addresses why the use of an...

350

Department of Energy Awards $15 Million for Nuclear Fuel Cycle Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 Million for Nuclear Fuel Cycle 15 Million for Nuclear Fuel Cycle Technology Research and Development Department of Energy Awards $15 Million for Nuclear Fuel Cycle Technology Research and Development August 1, 2008 - 2:40pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it will award up to $15 million to 34 research organizations as part of the Department's Advanced Fuel Cycle Initiative (AFCI). AFCI is the Department's nuclear energy research and development program supporting the long-term goals and objectives of the United States' nuclear energy policy. These projects will provide necessary data and analyses to further U.S. nuclear fuel cycle technology development, meet the need for advanced nuclear energy production and help to close the nuclear fuel cycle

351

Northwest Energy Innovations (TRL 5 6 System)- WETNZ MtiMode Wave Energy Converter Advancement Project  

Energy.gov (U.S. Department of Energy (DOE))

Northwest Energy Innovations (TRL 5 6 System) - WETNZ MtiMode Wave Energy Converter Advancement Project

352

International Nuclear Energy Research Initiative: Annual Report 2006 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 International Nuclear Energy Research Initiative: Annual Report 2006 The International Nuclear Energy Research Initiative (I-NERI) supports the National Energy Policy by conducting research to advance the state of nuclear science and technology in the United States. I-NERI sponsors innovative scientific and engineering research and development (R&D) in cooperation with participating countries. The research performed under the I-NERI umbrella addresses key issues affecting the future of nuclear energy and its global deployment. A link to the program can be found at the NE website. This I-NERI 2006 Annual Report serves to inform interested parties about the program's organization, progress of collaborative research projects undertaken since FY 2003, and future plans for the program. Following is an

353

Nuclear energy for water security  

Science Journals Connector (OSTI)

For peace, and the welfare and well-being of humans, fresh water is essential. Atoms are a source of abundant energy that do not have any greenhouse effect and can be used for different peaceful applications, such as power generation, the diagnosis and treatment of diseases in the field of medicine, to improve the productivity of food crops and soil fertility in agriculture and for food preservation. To find and assess the water resources on the earth, nuclear power serves as the source of energy for fresh water production.

P.K. Tewari

2006-01-01T23:59:59.000Z

354

Advance Power Co | Open Energy Information  

Open Energy Info (EERE)

Advance Power Co Advance Power Co Jump to: navigation, search Name Advance Power Co Place Calpella, California Zip 95418 Sector Hydro, Solar, Wind energy Product Distributor of stand alone and backup power systems based on solar, hydro, wind and fuel cell energy. Coordinates 39.23423°, -123.205162° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.23423,"lon":-123.205162,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

355

Department of Energy Releases $8 Billion Solicitation for Advanced...  

Office of Environmental Management (EM)

improved advanced fossil energy projects - such as advanced resource development, carbon capture, low-carbon power systems, and efficiency improvements - that reduce...

356

Energy Department Announces $11 Million to Advance Renewable...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 Million to Advance Renewable Carbon Fiber Production from Biomass Energy Department Announces 11 Million to Advance Renewable Carbon Fiber Production from Biomass July 30, 2014...

357

Department of Energy Awards Nearly $7 Million to Advance Fuel...  

Energy Savers (EERE)

Million to Advance Fuel Cell and Hydrogen Storage Systems Research Department of Energy Awards Nearly 7 Million to Advance Fuel Cell and Hydrogen Storage Systems Research August...

358

Advanced Energy Job Stimulus Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Energy Job Stimulus Program Advanced Energy Job Stimulus Program Advanced Energy Job Stimulus Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit State Government Tribal Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Heating & Cooling Heating Water Heating Wind Program Info Start Date 06/12/2008 State Ohio Program Type Industry Recruitment/Support Rebate Amount $50,000 to $2 million Provider Ohio Air Quality Development Authority This bond-funded program creates an Advanced Energy Job Stimulus Fund that is administered through a public process previously managed by the Ohio Air Quality Development Authority (OAQDA). Beginning in 2012, the program is

359

Advanced Energy Conversion LLC AEC | Open Energy Information  

Open Energy Info (EERE)

LLC AEC Jump to: navigation, search Name: Advanced Energy Conversion LLC (AEC) Place: New York Zip: 12020 Product: R&D company focused on power electronics, motion control systems...

360

Energy Department Helps Advance Island Clean Energy Goals (Fact...  

Office of Environmental Management (EM)

Department Helps Advance Island Clean Energy Goals U.S. Virgin Islands Signs Solar Deal Worth 65 Million Like many islands around the world, the U.S. Virgin Islands (USVI) is...

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

advanced energy storage | OpenEI  

Open Energy Info (EERE)

35 35 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142280435 Varnish cache server advanced energy storage Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. Source NREL Date Released March 01st, 2006 (8 years ago) Date Updated Unknown Keywords advanced energy storage batteries biomass csp fuel cells geothermal

362

Nuclear Reactions at High Energy  

Science Journals Connector (OSTI)

In the quark model, nuclei (B?2) have exotic quantum numbers. Given a nuclear reaction in which certain quantum numbers are exchanged, what is the scattering amplitude at high energies, in the GeV region? Does it have Regge behavior? Is it dual? Are there multibaryon resonances? In this context we present a general survey of all high-energy nuclear reactions - mainly those involving light nuclei. For B=0 exchange reactions, like ?d??d and ?-h??0t (h?He3,t=H3), there is the impulse and rescattering (Glauber) model. For B=1 exchange we discuss the one-pion-exchange (OPE) model for pp?d?+, pd?dp, and ?d?pn, and the "knock-on" model for pd??+t, dd?tp, dh?hd, ?h?pd, and ???pt. In the case of B=2 exchange we examine the impulse and rescattering diagrams for ?d?d?, ?d?d?0, and ?d?d?, and use the OPE model to calculate cross sections for pd?t?, pt?tp, and ph?hp. Briefly considered are: (1) backward elastic scattering from heavy nuclei (pA?Ap) and (2) inclusive nuclear reactions such as N14+A?Li6+anything and pA?d+anything. We postulate that in general nuclear reactions have Regge behavior, but are not dual, because so far there are no exotic multibaryon resonances. Nuclear reactions appear to be completely dominated by anomalous singularities, whereas ordinary nonexotic hadron reactions appear to be dominated by normal singularities and poles.

George W. Barry

1973-03-01T23:59:59.000Z

363

Nuclear Materials Disposition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Materials Disposition Nuclear Materials Disposition Nuclear Materials Disposition Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Spent Nuclear Fuel Spent nuclear fuel (SNF) is fuel that has been withdrawn from a nuclear reactor following irradiation, the constituent elements of which have not been separated by reprocessing. SNF may include: (1) intact, non-defective fuel assemblies or fuel rods; (2) failed fuel assemblies or fuel rods; (3) segments of fuel rods or pieces of fuel derived from spent fuel rods; and

364

Veterans Advancing Clean Energy and Climate  

ScienceCinema (OSTI)

The Champions of Change series highlights ordinary Americans who are doing extraordinary things in their communities to out-innovate, out-educate and out-build the rest of the world. On November 5, 2013, the White House honored 12 veterans and leaders who are using the skills they learned in the armed services to advance the clean energy economy.

Kopser, Joseph; Marr, Andrea; Perez-Halperin, Elizabeth; Eckstein, Robin; Moniz, Ernest

2014-01-07T23:59:59.000Z

365

Advanced Manufacturing: Using Composites for Clean Energy  

Energy.gov (U.S. Department of Energy (DOE))

Advanced fiber-reinforced polymer composites, which combine strong fibers with tough plastics, are lighter and stronger than steel. These materials could lower overall production costs in U.S. manufacturing and ultimately drive the adoption of a new clean energy way of life.

366

Advances in Transportation Technologies | Department of Energy  

Office of Environmental Management (EM)

Advances in Transportation Technologies Advances in Transportation Technologies Advances in Transportation Technologies More Documents & Publications TEC Working Group Topic Groups...

367

Nuclear Energy RenaissanceNuclear Energy Renaissance National Research Council andNational Research Council and  

E-Print Network (OSTI)

Nuclear Energy RenaissanceNuclear Energy Renaissance National Research Council andNational Research ·· Objectives of Nuclear Power RegulationObjectives of Nuclear Power Regulation ·· Major Functions, ANDREGULATIONS, REQUIREMENTS, AND ACCEPTANCE CRITERIAACCEPTANCE CRITERIA ·· LICENSING OF NUCLEAR FACILITIES

368

Materials Challenges in Nuclear Energy  

SciTech Connect

Nuclear power currently provides about 13% of the worldwide electrical power, and has emerged as a reliable baseload source of electricity. A number of materials challenges must be successfully resolved for nuclear energy to continue to make further improvements in reliability, safety and economics. The operating environment for materials in current and proposed future nuclear energy systems is summarized, along with a description of materials used for the main operating components. Materials challenges associated with power uprates and extensions of the operating lifetimes of reactors are described. The three major materials challenges for the current and next generation of water-cooled fission reactors are centered on two structural materials aging degradation issues (corrosion and stress corrosion cracking of structural materials and neutron-induced embrittlement of reactor pressure vessels), along with improved fuel system reliability and accident tolerance issues. The major corrosion and stress corrosion cracking degradation mechanisms for light water reactors are reviewed. The materials degradation issues for the Zr alloy clad UO2 fuel system currently utilized in the majority of commercial nuclear power plants is discussed for normal and off-normal operating conditions. Looking to proposed future (Generation IV) fission and fusion energy systems, there are 5 key bulk radiation degradation effects (low temperature radiation hardening and embrittlement, radiation-induced and modified solute segregation and phase stability, irradiation creep, void swelling, and high temperature helium embrittlement) and a multitude of corrosion and stress corrosion cracking effects (including irradiation-assisted phenomena) that can have a major impact on the performance of structural materials.

Zinkle, Steven J [ORNL] [ORNL; Was, Gary [University of Michigan] [University of Michigan

2013-01-01T23:59:59.000Z

369

Dealing With the Issues of Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dealing With the Issues of Nuclear Energy Dealing With the Issues of Nuclear Energy Dealing With the Issues of Nuclear Energy September 17, 2010 - 12:39pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy What does this mean for me? The U.S. is working to reduce our own reliance on nuclear weapons and to lock down dangerous nuclear material so terrorists can't use it. Editorial Note: This has been cross-posted from Huffington Post. Next week I have the honor of leading the U.S. delegation to an annual conference that is critical to our national and energy security. Every year, the International Atomic Energy Agency (IAEA), the nuclear watchdog arm of the UN, gathers ministers from around the world to discuss ways to promote nuclear energy, strengthen efforts to keep other countries from illegally acquiring nuclear weapons, reduce stockpiles of nuclear

370

Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP will help prevent misuse of civilian nuclear facilities for...

371

Joint Statement on the Global Nuclear Energy Partnership and Nuclear Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement on the Global Nuclear Energy Partnership and Statement on the Global Nuclear Energy Partnership and Nuclear Energy Cooperation Joint Statement on the Global Nuclear Energy Partnership and Nuclear Energy Cooperation Ministers and other senior officials representing the respective governmental agencies of China, France, Japan, Russia, and the United States met in Washington, D.C., on May 21, 2007 to address the prospects for international cooperation in peaceful uses of nuclear energy, including technical aspects, especially in the framework of the Global Nuclear Energy Partnership (GNEP). The International Atomic Energy Agency (IAEA) also attended as an observer. Joint Statement on the Global Nuclear Energy Partnership and Nuclear Energy Cooperation More Documents & Publications Ministerial Conference

372

China Guangdong Nuclear Solar Energy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Guangdong Nuclear Solar Energy Co Ltd Guangdong Nuclear Solar Energy Co Ltd Jump to: navigation, search Name China Guangdong Nuclear Solar Energy Co Ltd Place China Sector Solar Product China Guangdong Nuclear's division on solar project development. References China Guangdong Nuclear Solar Energy Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. China Guangdong Nuclear Solar Energy Co Ltd is a company located in China . References ↑ "China Guangdong Nuclear Solar Energy Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=China_Guangdong_Nuclear_Solar_Energy_Co_Ltd&oldid=343500" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

373

Meeting between Department of Energy Contractor and the Nuclear Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

between Department of Energy Contractor and the Nuclear between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Pursuant to DOE's Guidance on Ex Parte Communications (74 Fed. Reg. 52,795; Oct. 14, 2009), this memorandum is to memorialize the meeting between a Department of Energy contractor (contractor) and the Nuclear Energy Institute (NEI), held on May 17, 2012. NEI_Ltr_6_11_2012.pdf More Documents & Publications Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Ex Parte Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act

374

Meeting between Department of Energy Contractor and the Nuclear Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting between Department of Energy Contractor and the Nuclear Meeting between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Pursuant to DOE's Guidance on Ex Parte Communications (74 Fed. Reg. 52,795; Oct. 14, 2009), this memorandum is to memorialize the meeting between a Department of Energy contractor (contractor) and the Nuclear Energy Institute (NEI), held on May 17, 2012. NEI_Ltr_6_11_2012.pdf More Documents & Publications Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Ex Parte Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act

375

Chapter 8 - The history of nuclear energy  

Science Journals Connector (OSTI)

Abstract This chapter reviews the history related to nuclear energy beginning with scientific investigations in the late 1800s that led to the discovery of subatomic particles and both atomic and nuclear structure. Those research efforts spawned the discovery of fission. The Manhattan Project to develop an atomic bomb then accelerated the knowledge base of nuclear phenomena. After World War II, the Atomic Energy Commission was established and later the International Atomic Energy Agency. Research and development efforts led to the deployment of the first nuclear power plants. This chapter ends by addressing the controversies surrounding nuclear energy in the late twentieth century.

Raymond L. Murray; Keith E. Holbert

2015-01-01T23:59:59.000Z

376

Global Nuclear Energy Partnership Fact Sheet - Demonstrate More  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet - Demonstrate More Global Nuclear Energy Partnership Fact Sheet - Demonstrate More Proliferation-Resistant Recycling Global Nuclear Energy Partnership Fact Sheet - Demonstrate More Proliferation-Resistant Recycling Under GNEP, the U.S. will work with GNEP partners to demonstrate the capability to safely recycle used nuclear fuel using more proliferation resistant separation processes. In support of this effort, the U.S and its international partners would conduct an Engineering-Scale Demonstration (ESD) of a process that would separate the usable components in used commercial fuel from its waste components, without separating pure plutonium. An Advanced Fuel Cycle Facility (AFCF) would be a multi-purpose research and development laboratory that can serve fuel cycle testing needs

377

Nuclear Security Conference 2010 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Security Conference 2010 Nuclear Security Conference 2010 Nuclear Security Conference 2010 April 14, 2010 - 12:00am Addthis The Role of the Private Sector in Securing Nuclear Materials U.S. Secretary of Energy Steven Chu Wednesday, April 14, 2010 Secretary Steven Chu spoke this morning at the Nuclear Security Conference 2010: the Role of the Private Sector in Securing Nuclear Materials. Below are his remarks as prepared for delivery: I would like to thank the Nuclear Energy Institute for hosting this important conference on the role of the private sector in securing nuclear materials. I would also like to thank all of you for your participation today. Your industry lies at the intersection of two of the most pressing issues of our time: the energy challenge and the threat of nuclear proliferation.

378

Nuclear Security Conference 2010 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Security Conference 2010 Nuclear Security Conference 2010 Nuclear Security Conference 2010 April 14, 2010 - 12:00am Addthis The Role of the Private Sector in Securing Nuclear Materials U.S. Secretary of Energy Steven Chu Wednesday, April 14, 2010 Secretary Steven Chu spoke this morning at the Nuclear Security Conference 2010: the Role of the Private Sector in Securing Nuclear Materials. Below are his remarks as prepared for delivery: I would like to thank the Nuclear Energy Institute for hosting this important conference on the role of the private sector in securing nuclear materials. I would also like to thank all of you for your participation today. Your industry lies at the intersection of two of the most pressing issues of our time: the energy challenge and the threat of nuclear proliferation.

379

Advanced AMR Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Advanced AMR Technologies Inc Advanced AMR Technologies Inc Jump to: navigation, search Name Advanced AMR Technologies Inc Address 285 Newbury Street Place Peabody, Massachusetts Zip 01960 Sector Efficiency Product Energy management solutions Website http://www.advancedamr.com/ Coordinates 42.5547616°, -70.9800841° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5547616,"lon":-70.9800841,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Advance Waivers - 2000 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 Advance Waivers - 2000 The following Advance Waivers are available: WA 00 001 PRAXAIR INC Waiver of Domestic and Foreign Inventi.pdf WA 00 002 SIEMENS WESTINGHOUSE Waiver of Domestic and Forei.pdf WA 00 003 DUKE SOLAR ENERGY Waiver of Domestic and Foreign P.pdf WA 00 005 GENERAL ELECTRIC Waiver of Government US and Forei.pdf WA 00 006 NORTHERN INDIANA PUBLIC SERVICE Advance Waiver Req.pdf WA 00 007 COMBUSTION ENGINEERING INC Waiver of Domestic and .pdf WA 00 008 PLUG POWER Waiver of Patent Rights in Performance .pdf WA 00 009 ARTHUR D LITTLE Waiver of Patent Rights in Perform.pdf WA 00 010 ROCKWELL SCIENCE CENTER A Subcontractor of SILICON.pdf WA 00 011 HONEYWELL INTERNATIONAL Waiver of Domestic and For.pdf WA 00 012 3M COMPANY Waiver of Domestic and Foreign Rights u.pdf

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Categorical Exclusion Determinations: Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Nuclear Energy Categorical Exclusion Determinations: Nuclear Energy Categorical Exclusion Determinations issued by Nuclear Energy. DOCUMENTS AVAILABLE FOR DOWNLOAD August 16, 2013 CX-010766: Categorical Exclusion Determination Interim Storage Area for Interim Storage Containers (ISCs) at the Radioactive Scrap and Waste Facility (RSWF) CX(s) Applied: B6.6 Date: 08/16/2013 Location(s): Idaho Offices(s): Nuclear Energy August 14, 2013 CX-010767: Categorical Exclusion Determination University Boulevard Water Meter Installation CX(s) Applied: B2.2 Date: 08/14/2013 Location(s): Idaho Offices(s): Nuclear Energy August 12, 2013 CX-010768: Categorical Exclusion Determination ZIRCEX Nuclear Fuel Dissolution Testing CX(s) Applied: B3.6 Date: 08/12/2013 Location(s): Idaho Offices(s): Nuclear Energy

382

DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY  

E-Print Network (OSTI)

361 DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION Federal Funds General and special in the National Nuclear Security Administration, including official reception and representation expenses (not reflect the Administration's 2003 policy proposals. Program and Financing (in millions of dollars

383

Atom-split it for nuclear energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Atom-split it for nuclear energy Fermi-leader of the team that produced the first self-sustaining controlled nuclear chain reaction; contributed to ending WWII Calutron-invented by...

384

Fact Sheet: United States-Japan Joint Nuclear Energy Action Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States-Japan Joint Nuclear Energy Action Plan United States-Japan Joint Nuclear Energy Action Plan The United States-Japan Joint Nuclear Energy Action Plan is intended to provide a framework for bilateral collaboration in nuclear energy. This Action Plan builds upon our significant, longstanding civilian nuclear cooperation, and will contribute to increasing energy security and managing nuclear waste, addressing nuclear nonproliferation and climate change, advancing goals put forth in President Bush's Global Nuclear Energy Partnership (GNEP) initiative. The Action Plan was signed by representatives of both nations in April 2007. The Action Plan will be implemented by Steering Committee Co-Chairs. Assistant Secretary of Energy Dennis Spurgeon, or his designee, will serve as the U.S. Co-Chair. Japanese Co-Chairs will be selected

385

Nuclear Interactions in Super High Energy Region  

Science Journals Connector (OSTI)

......research-article Articles Nuclear Interactions in Super High Energy Region Jose F. Bellandi a...Tokyo 188 We formulate the energy spectrum of produced particles...Atmospheric diffusion of high energy cosmic rays is calculated analytically......

Jose F. Bellandi; Sergio Q. Brunetto; Jose A. Chinellato; Carola Dobrigkeit; Akinori Ohsawa; Kotaro Sawayanagi; Edison H. Shibuya

1990-01-01T23:59:59.000Z

386

Nuclear Energy Research Advisory Committee Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30-May 1, 2001, Crystal City Marriott, Arlington, Virginia 30-May 1, 2001, Crystal City Marriott, Arlington, Virginia NERAC members present: John Ahearne Benjamin F. Montoya Joseph Comfort Sekazi Mtingwa Michael L. Corradini Lura Powell Jose Luis Cortez Richard Reba Maureen S. Crandall Joy Rempe James Duderstadt (Chair) Allen Sessoms (Monday only) Marvin Fertel Daniel C. Sullivan (Monday only) Steve Fetter John Taylor Beverly Hartline Ashok Thadani (ad hoc) Leslie Hartz Charles E. Till Andrew Klein Neil Todreas Dale Klein Joan Woodard Robert Long NERAC members absent: Thomas Cochran Linda C. Knight Allen Croff Warren F. Miller, Jr. J. Bennett Johnston C. Bruce Tarter Also present: Ralph Bennet, Director, Advanced Nuclear Energy, Idaho National Engineering and Environmental Laboratory Nancy Carder, NERAC Staff Yoon I. Chang, Associate Laboratory Director, Argonne National Laboratory

387

Advanced Patent Waivers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 14, 2010 May 14, 2010 Advance Patent Waiver W(A)2009-062 This is a request by MICRON TECHNOLOGY INC. for a DOE waiver of domestic and foreign patent rights under agreement DE-EE0000141 May 14, 2010 Advance Patent Waiver W(A)2009-029 This is a request by GENERAL MOTORS for a DOE waiver of domestic and foreign patent rights under agreement DE-FC36-09GO19003 May 13, 2010 Advance Patent Waiver W(A)2010-006 This is a request by HYDROGEN ENERGY OF CALIFORNIA for a DOE waiver of domestic and foreign patent rights under agreement DE-FE0000663 May 10, 2010 Advance Patent Waiver W(A)2009-047 This is a request by US SOLAR HOLDINGS LLP for a DOE waiver of domestic and foreign patent rights under agreement DE-FG36-08GO18155 May 6, 2010 Advance Patent Waiver W(A)2010-019 This is a request by PRAXAIR, INC. for a DOE waiver of domestic and foreign

388

Game-Changing Advancements in Solar Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Game-Changing Advancements in Solar Energy Game-Changing Advancements in Solar Energy Game-Changing Advancements in Solar Energy Addthis Record-Breaking Solar 1 of 5 Record-Breaking Solar This concentrating photovoltaic (CPV) cell -- which uses a focused lens to magnify light to 418 times the intensity of the sun -- earned an R&D100 Award and set a new world record of 43.5 percent for solar cell conversion efficiency. The technology is based on high-efficiency multijunction research pioneered by the National Renewable Energy Laboratory (NREL). | Photo by Daniel Derkacs/Solar Junction. Date taken: 2012-11-29 09:21 Solar Innovation 2 of 5 Solar Innovation Solar Junction's record-breaking SJ3 solar cell is based on EERE-supported multijunction research. | Photo by Daniel Derkacs/Solar Junction Date taken: 2012-11-29 09:21

389

Program Overview Shane Johnson Office of Nuclear Energy, Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Overview Program Overview Shane Johnson Office of Nuclear Energy, Science and Technology April 15, 2002 Presentation to the Nuclear Energy Research Advisory Committee Office of Nuclear Energy, Science and Technology Johnson/April15_02 NP 2010 to NERAC.ppt 2 Nuclear Power 2010 Overview Nuclear Power 2010 Overview Goals 6 Orders for one or more new nuclear plants by 2005 6 Operation of new nuclear power plants by 2010 6 New program initiative unveiled February 2002 6 Based on Near-Term Deployment Roadmap 6 Public/private partnership to: ! Develop advanced reactor technologies ! Explore sites that could host new nuclear power plants ! Demonstrate new Nuclear Regulatory Commission (NRC) regulatory processes Office of Nuclear Energy, Science and Technology Johnson/April15_02 NP 2010 to NERAC.ppt 3

390

Nuclear Energy-Depend On It Helping  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-Depend On It Helping to Power America for More Than Five Decades Past, Present, and Future ... The United States introduced nuclear energy into our domestic electricity production in 1957 and now produces approximately 20 percent of our total electricity and 70 percent of our low-carbon electricity from nuclear energy, according to the Energy Information Administration. More than 100 U.S. commercial nuclear power reactors provide reliable, affordable electricity in 31 states. Nuclear energy can help meet our Nation's need for dependable electricity into the future. The use of nuclear power is increasing around the world: z 29 countries worldwide operate a total of 437 nuclear reactors for electricity generation, with 55 new nuclear reactors under construction in 14 countries.

391

NEAC Recommended Goals for Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEAC Recommended Goals for Nuclear Energy NEAC Recommended Goals for Nuclear Energy NEAC Recommended Goals for Nuclear Energy Nuclear energy currently provides approxi- mately 20 percent of the electricity for the U.S. The primary alternative for power generation is fossil fuels. Though still controversial, evidence continues to mount about the negative health and environmental effects of carbon emissions. Nuclear power is the most significant technology available for meeting anticipated energy needs while reducing emissions to the environment. Nuclear energy is an essential component to a secure and prosperous future for the U.S. and the world. The reliance on fossil fuels for the growing energy usage of an expanding world population will bring about enormous global environmental problems. Nuclear energy is the single largest tool

392

Department of Energy Releases Global Nuclear Energy Partnership Strategic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Global Nuclear Energy Partnership Strategic Plan Department of Energy Releases Global Nuclear Energy Partnership Strategic Plan January 10, 2007 - 9:59am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) Assistant Secretary for Nuclear Energy Dennis Spurgeon today released the Global Nuclear Energy Partnership (GNEP) Strategic Plan, which details the Initiative's purpose, principles and implementation strategy. The Plan outlines a path forward to enable worldwide increase in the use of safe, emissions-free nuclear energy without contributing to the spread of nuclear weapons capabilities in a manner that responsibly addresses the waste produced. "For the United States, GNEP is good policy; for industry, it could be very good business," Assistant Secretary Spurgeon said. "Releasing GNEP's

393

International Nuclear Energy Policy and Cooperation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation The Office of International Nuclear Energy Policy and Cooperation (INEPC) collaborates with international partners to support the safe, secure, and peaceful use of nuclear energy. It works both bilaterally and multilaterally to accomplish this work. Today, nuclear energy represents the single largest source of, carbon-free baseload energy, accounting for nearly 20% of the electricity generated in the United States and 70% of our low-carbon production, avoiding over 600 million metric tons of carbon emissions. With approximately 440 commercial reactors operating in 30 countries-and 300 more valued at $1.6 trillion

394

Nuclear incompressibility determined by nuclear mass and monopole resonance energy  

Science Journals Connector (OSTI)

The standard nuclear matter incompressibility K0 is determined by a data fit based on a model of nuclear energy functional and the scaling assumption of the nuclear breathing mode. The selected nuclear data used in this fit are taken from a limited set of nuclei which have both the measured mass M and the isoscalar giant monopole resonance energy EM. The obtained value of K0, based on 26 experimental points corresponding to 18 spherical nuclei with 89<~A<~209, is 22020 MeV.

K. C. Chung; C. S. Wang; A. J. Santiago

1999-02-01T23:59:59.000Z

395

Low-Energy Nuclear Reactions in Metals  

Science Journals Connector (OSTI)

......research-article Articles Low-Energy Nuclear Reactions in Metals Jirohta Kasagi...reactions in Pd and Au for bombarding energies between 30 and 75 keV. These...measurements clearly showed that the low energy nuclear reactions are strongly affected......

Jirohta Kasagi

2004-02-01T23:59:59.000Z

396

Global Nuclear Energy Partnership Members Convene in Jordan For Second  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Members Convene in Jordan For Members Convene in Jordan For Second Steering Group Meeting Global Nuclear Energy Partnership Members Convene in Jordan For Second Steering Group Meeting May 15, 2008 - 12:00pm Addthis WASHINGTON, DC - The U.S. Department of Energy today announced continued progress at the conclusion of the Global Nuclear Energy Partnership's (GNEP's) second Steering Group meeting. Representatives from twenty-eight countries and three intergovernmental organizations attended the two-day meeting in the Kingdom of Jordan hosted by the Jordanian Atomic Energy Commission. The Steering Group discussed the formation of a third Working Group on the development of grid-appropriate reactors in order to promote the development of advanced, more proliferation-resistant nuclear power

397

Nuclear Systems Powering a Mission to Mars | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Powering a Mission to Mars Systems Powering a Mission to Mars Nuclear Systems Powering a Mission to Mars November 28, 2011 - 11:23am Addthis Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space exploration. Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy Curiosity Mission: investigate whether the Gale Crater on Mars has ever offered environmental conditions that support the development of microbial life. This past weekend, the Mars Science Laboratory rover Curiosity launched from Cape Canaveral with the most advanced payload of scientific gear ever used on the red planet. Its mission: to investigate whether the Gale Crater on Mars has ever

398

Nuclear Security & Nonproliferation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety » Nuclear Security & Safety » Nuclear Security & Nonproliferation Nuclear Security & Nonproliferation Highly trained nuclear emergency response personnel and more than 17,000 pounds of equipment were sent to Japan as part of the Department of Energy and National Nuclear Security Administration’s effort to assist Japanese personnel with nuclear issues related to the Fukushima nuclear power plant. Above, scientists, technicians and engineers from the National Nuclear Security Administration’s Nevada Site Office board an Air Force C-17. | Photo courtesy of NNSA. Highly trained nuclear emergency response personnel and more than 17,000 pounds of equipment were sent to Japan as part of the Department of Energy

399

Is Nuclear Energy the Solution?  

Science Journals Connector (OSTI)

In the event of a major radioactive release from a nuclear power plant, public opinion would likely react strongly against nuclear power...

Milton H. Saier; Jack T. Trevors

2010-05-01T23:59:59.000Z

400

FY 2012 Budget Request Advanced Research Projects Agency - Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Energy FY 2014 Budget Request April 10, 2013 Peter Lyons Assistant Secretary for Nuclear Energy U.S. Department of Energy Nuclear Energy President Obama's Commitment to Clean Energy 2 "With rising oil prices and a warming climate, nuclear energy will only become more important. That's why, in the United States, we've restarted our nuclear industry as part of a comprehensive strategy to develop every energy source." President Barack Obama Seoul, Republic of Korea March 2012 Nuclear Energy Department of Energy Mission and Goals DOE Mission The mission of the Department of Energy is to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nuclear Fission: For Safe, Globally Sustainable, Proliferation-Resistant, and Cost-Effective Energy  

Science Journals Connector (OSTI)

To varying degrees, under varying priorities, and depending strongly on country/region, the advancement of nuclear energy must deal with four cardinal issues: waste, proliferation, cost, and safety. While solutio...

R. A. Krakowski; L. Bennett; E. Bertel

1999-01-01T23:59:59.000Z

402

Making glue in high energy nuclear collisions  

E-Print Network (OSTI)

We discuss a real time, non-perturbative computation of the transverse dynamics of gluon fields at central rapidities in very high energy nuclear collisions.

Alex Krasnitz; Raju Venugopalan

1999-05-12T23:59:59.000Z

403

Office of Nuclear Safety | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Security Officer regarding concurrence in the final decision to startup or restart a nuclear facility. Serves as the Standards Executive for the Department of Energy and...

404

Nuclear Facility Operations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and national security needs. INL is a science-based, applied...

405

Nuclear Energy Technical Assistance | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gas emitting electricity. In addition, nuclear power plants do not release air pollutants, providing an important option for improving air quality. Globally, nuclear...

406

Advanced Materials and Devices for Stationary Electrical Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials and Devices for Stationary Electrical Energy Storage Applications Advanced Materials and Devices for Stationary Electrical Energy Storage Applications Reliable access to...

407

Advanced HEV/PHEV Concepts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Office Merit Review 2014: In-Vehicle Evaluation of Lower-Energy Energy Storage System (LEESS) Devices Overview and Progress of United States Advanced Battery...

408

U.S. Advanced Manufacturing and Clean Energy Technology Challenges  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing and Clean Energy Technology Challenges May 6, 2014 AMO Peer Review Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov This presentation...

409

Advanced Systems of Efficient Use of Electrical Energy SURE ...  

Open Energy Info (EERE)

of Efficient Use of Electrical Energy SURE (Smart Grid Project) Jump to: navigation, search Project Name Advanced Systems of Efficient Use of Electrical Energy SURE Country...

410

Department of Energy Issues Draft Loan Guarantee Solicitation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Draft Loan Guarantee Solicitation for Advanced Nuclear Energy Projects Department of Energy Issues Draft Loan Guarantee Solicitation for Advanced Nuclear Energy Projects...

411

Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation  

SciTech Connect

The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.

Niels Gronbech Jensen; Mark Asta; Nigel Browning'Vidvuds Ozolins; Axel van de Walle; Christopher Wolverton

2011-12-29T23:59:59.000Z

412

Theories of Low Energy Nuclear Transmutations  

E-Print Network (OSTI)

Employing concrete examples from nuclear physics it is shown that low energy nuclear reactions can and have been induced by all of the four fundamental interactions (i) (stellar) gravitational, (ii) strong, (iii) electromagnetic and (iv) weak. Differences are highlighted through the great diversity in the rates and similarity through the nature of the nuclear reactions initiated by each.

Y. N. Srivastava; A. Widom; J. Swain

2012-10-27T23:59:59.000Z

413

DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY  

E-Print Network (OSTI)

planning and oversight for programs funded by the Weapons Activities, Defense Nuclear Non- proliferation, for Weapons Ac- tivities and Defense Nuclear Nonproliferation, and Federal employees at the NNSA service379 DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION Federal Funds General and special

414

Department of Energy Awards $5.7 Million to U.S. Universities for Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Million to U.S. Universities for 7 Million to U.S. Universities for Nuclear Energy Research Department of Energy Awards $5.7 Million to U.S. Universities for Nuclear Energy Research February 2, 2007 - 10:15am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it will award $5.7 million to nine universities for research grants under the Nuclear Energy Research Initiative (NERI). These grants are designed to engage U.S. university professors and students in advanced nuclear energy research and development (R&D), in an effort to strengthen and focus DOE's research for the Generation IV Nuclear Energy Systems Initiative and the Nuclear Hydrogen Initiative. "These awards demonstrate our commitment to pursuing nuclear research, and we are eager for our next generation of scientists and engineers to

415

High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basic Energy Science Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Advanced Scientific Computing Research Pioneering...

416

Meeting between Department of Energy Contractor and the Nuclear...  

Energy Savers (EERE)

between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting between Department of Energy Contractor and the Nuclear...

417

Nuclear energy: current situation and prospects to 2020  

Science Journals Connector (OSTI)

...Blundell and Fraser Armstrong Nuclear energy: current situation and prospects...stand to improve the economics of nuclear energy still further. Waste volumes...UK's long-term energy needs. nuclear energy|fission|reactor systems...

2007-01-01T23:59:59.000Z

418

Advance Waivers - 2002 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Advance Waivers - 2002 The following Advance Waivers are available: WA 02 002 GE CORPORATE RESEARCH AND DEVELOPMENT Waiver of Do.pdf WA 02 003 DEGUSSA CORP Waiver of Domestic and Foreign Invent.pdf WA 02 005 LUMILEDS LIGHTING Waiver of Domestic and Foreign I.pdf WA 02 006 UNITED TECHNOLOGIES Waiver of Domestic and Foreign.pdf WA 02 010 GENERAL ELECTRIC Waiver of Domestic and Foreign Ri.pdf WA 02 011 BP AMOCO CHEMICAL CO Waiver of Domestic and Foreig.pdf WA 02 012 CATERPILLAR INC Waiver of Domestic and Foreign Pat.pdf WA 02 013 UNITED TECHNOLOGIES Waiver of Domestic and Foreign.pdf WA 02 014 CONSOL ENERGY Waiver of Domestic and Foregin Inven.pdf WA 02 015 AIR PRODUCTS AND CHEMICALS INC Waiver of Patent Ri.pdf WA 02 016 GENERAL ELECTRIC GLOBAL RESEARCH Waiver of Domesti.pdf

419

Nuclear Processes at Solar Energy  

E-Print Network (OSTI)

LUNA, Laboratory for Underground Nuclear Astrophysics at Gran Sasso, is measuring fusion cross sections down to the energy of the nucleosynthesis inside stars. Outstanding results obtained up to now are the cross-section measurements within the Gamow peak of the Sun of $^{3}He(^{3}He,2p)^{4}He$ and the $D(p,\\gamma)^{3}He$. The former plays a big role in the proton-proton chain, largely affecting the calculated solar neutrino luminosity, whereas the latter is the reaction that rules the proto-star life during the pre-main sequence phase. The implications of such measurements will be discussed. Preliminary results obtained last year on the study of $^{14}N(p,\\gamma)^{15}O$, the slowest reaction of the CNO cycle, will also be shown.

Carlo Broggini

2003-08-29T23:59:59.000Z

420

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network (OSTI)

A Brief History of Nuclear Energy . . . . . . . . NuclearBrief History of Nuclear Energy The history of nuclear powerRisk The history of nuclear energy to date reflects

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nuclear Energy Research Advisory Subcommittee Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to the Minutes for the to the Minutes for the Nuclear Energy Research Advisory Subcommittee Meeting September 30 to October 1, 2002 MEMORANDUM To: Chairman, Nuclear Energy Research Advisory Committee (NERAC) From: Thomas B. Cochran, Member of NERAC Date: October 16, 2002 Subject: "A Technology Roadmap on Generation IV Nuclear Energy Systems," a report of the NERAC Subcommittee on Generation IV Technology Planning Please include these additional remarks in your transmittal of the subject report to DOE's Office of Nuclear Energy, Science and Technology. Perhaps the greatest security threat to the United States today, and of paramount concern to American citizens since September 11, 2001, is that nuclear weapon- usable materials will be stolen, seized, or secretly diverted from nuclear facilities and then used by

422

Indicator system for advanced nuclear plant control complex  

DOE Patents (OSTI)

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

423

U.S. Department of Energy Accident Resistant SiC Clad Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Accident Resistant SiC Clad Nuclear Fuel U.S. Department of Energy Accident Resistant SiC Clad Nuclear Fuel Development U.S. Department of Energy Accident Resistant SiC Clad Nuclear Fuel Development A significant effort is being placed on silicon carbide ceramic matrix composite (SiC CMC) nuclear fuel cladding by Light Water Reactor Sustainability (LWRS) Advanced Light Water Reactor Nuclear Fuels Pathway. The intent of this work is to invest in a high-risk, high-reward technology that can be introduced in a relatively short time. The LWRS goal is to demonstrate successful advanced fuels technology that suitable for commercial development to support nuclear relicensing. Ceramic matrix composites are an established non-nuclear technology that utilizes ceramic fibers embedded in a ceramic matrix. A thin interfacial layer between the

424

Spacings of Nuclear Energy Levels  

Science Journals Connector (OSTI)

The distribution of spacings of nuclear energy levels in many heavy nuclei at an excitation energy of 5 to 9 Mev is obtained by careful correction of the observed distributions for the effect of failure to observe all levels. Results of transmission measurements on U234 and U236, as measured with the Brookhaven fast chopper, are presented. The experimental spacings of the zero-spin nuclides are considered first since all the levels from slow neutron capture have the same spin. The results show a deficiency of small spacings relative to the exponential distribution, which corresponds to a random occurrence of levels. In the analysis it is shown that there is no local correlation of neutron widths and level spacings. The "level repulsion" effect is also found for the nuclides of nonzero spin, for which the data are more abundant but the analysis is complicated by the presence of two spin systems. The distribution obtained is in agreement with one suggested by Wigner based on a probability of level occurrence proportional to the spacing S. The corrections here developed are also applied to the reduced neutron width distribution and this corrected distribution is in good agreement with the Porter-Thomas distribution.

John A. Harvey and D. J. Hughes

1958-01-15T23:59:59.000Z

425

Incorporation of a risk analysis approach for the nuclear fuel cycle advanced transparency framework.  

SciTech Connect

Proliferation resistance features that reduce the likelihood of diversion of nuclear materials from the civilian nuclear power fuel cycle are critical for a global nuclear future. A framework that monitors process information continuously can demonstrate the ability to resist proliferation by measuring and reducing diversion risk, thus ensuring the legitimate use of the nuclear fuel cycle. The automation of new nuclear facilities requiring minimal manual operation makes this possible by generating instantaneous system state data that can be used to track and measure the status of the process and material at any given time. Sandia National Laboratories (SNL) and the Japan Atomic Energy Agency (JAEA) are working in cooperation to develop an advanced transparency framework capable of assessing diversion risk in support of overall plant transparency. The ''diversion risk'' quantifies the probability and consequence of a host nation diverting nuclear materials from a civilian fuel cycle facility. This document introduces the details of the diversion risk quantification approach to be demonstrated in the fuel handling training model of the MONJU Fast Reactor.

Mendez, Carmen Margarita (Sociotecnia Solutions, LLC); York, David L.; Inoue, Naoko (Japan Atomic Energy Agency); Kitabata, Takuya (Japan Atomic Energy Agency); Vugrin, Eric D.; Vugrin, Kay White; Rochau, Gary Eugene; Cleary, Virginia D.

2007-05-01T23:59:59.000Z

426

International Energy Outlook 2001 - Nuclear  

Gasoline and Diesel Fuel Update (EIA)

Nuclear Power Nuclear Power picture of a printer Printer Friendly Version (PDF) Nuclear power is projected to represent a growing share of the developing world’s electricity consumption from 1999 through 2020. New plant construction and license extensions for existing plants are expected to produce a net increase in world nuclear capacity. Nuclear power plants generated electricity in 29 countries in 1999. A total of 433 nuclear power reactors were in operation (Figure 61), including 104 in the United States, 59 in France, and 53 in Japan. The largest national share of electricity from nuclear power was in France, at 75 percent (Figure 62). Belgium, Bulgaria, France, Lithuania, Slovenia, Slovakia, Sweden, Ukraine, and South Korea depended on nuclear power for at least 40

427

Advanced Dark Energy Physics Telescope (ADEPT)  

SciTech Connect

In 2006, we proposed to NASA a detailed concept study of ADEPT (the Advanced Dark Energy Physics Telescope), a potential space mission to reliably measure the time-evolution of dark energy by conducting the largest effective volume survey of the universe ever done. A peer-review panel of scientific, management, and technical experts reported back the highest possible 'excellent' rating for ADEPT. We have since made substantial advances in the scientific and technical maturity of the mission design. With this Department of Energy (DOE) award we were granted supplemental funding to support specific extended research items that were not included in the NASA proposal, many of which were intended to broadly advance future dark energy research, as laid out by the Dark Energy Task Force (DETF). The proposed work had three targets: (1) the adaptation of large-format infrared arrays to a 2 micron cut-off; (2) analytical research to improve the understanding of the dark energy figure-of- merit; and (3) extended studies of baryon acoustic oscillation systematic uncertainties. Since the actual award was only for {approx}10% of the proposed amount item (1) was dropped and item (2) work was severely restricted, consistent with the referee reviews of the proposal, although there was considerable contradictions between reviewer comments and several comments that displayed a lack of familiarity with the research. None the less, item (3) was the focus of the work. To characterize the nature of the dark energy, ADEPT is designed to observe baryon acoustic oscillations (BAO) in a large galaxy redshift survey and to obtain substantial numbers of high-redshift Type Ia supernovae (SNe Ia). The 2003 Wilkinson Microwave Anisotropy Probe (WMAP) made a precise determination of the BAO 'standard ruler' scale, as it was imprinted on the cosmic microwave background (CMB) at z {approx} 1090. The standard ruler was also imprinted on the pattern of galaxies, and was first detected in 2005 in Sloan Digital Sky Survey (SDSS) data. A measurement of the BAO standard ruler as a function of time (or redshift) would provide powerful and reliable observational data to shed light on dark energy. In particular, the BAO data provide the angular diameter distance to each redshift, and directly give the expansion rate, H(z), at each redshift. The SNe measurements provide luminosity distances. A space mission is required to obtain the three-dimensional position of enormous numbers of galaxies at high redshift. As recognized by the Dark Energy Task Force, BAO systematic errors are naturally low. The following are the key findings: (1) The BAO method is robust. (2) Separation of the spectral and imaging detection focal planes vastly improves spectral identifications. (3) Prisms instead of grisms provide higher throughput and cleaner spectra. Prisms are clearly superior. (4) Lower prism dispersions improve signal-to-noise but high prism dispersions improve systematic. To ensure that the experiment is not systematic limited, a high dispersion should be used. (5) Counter-dispersion of the spectra reduces systematic errors on the redshift determination and assists in the reduction of confusion. (6) Small rolls are very effective for the reduction of confusion. (7) Interlopers can be recognized by a variety of methods, which combine to produce a sufficiently 'clean' survey data set so as not to limit the dark energy results. (8) A space mission can measure the BAO signature to the cosmic variance limit, limited only by statistics and not by systematic. (9) Density field reconstruction allows for significant BAO accuracy improvements, well beyond that assumed by the Dark Energy Task Force. (10) The BAO method is statistically powerful. It is more powerful than previously estimated, and far more powerful than high redshift Type 1a supernovae, for which the ultimate distance accuracy is limited by flux calibration accuracy. (11) The BAO technique is far simpler than the weak lensing technique and likely to produce more robust dark energy solutions.

Charles L. Bennett

2009-03-26T23:59:59.000Z

428

Energy Praises the Nuclear Regulatory Commission Approval of...  

Office of Environmental Management (EM)

Praises the Nuclear Regulatory Commission Approval of the First United States Nuclear Plant Site in Over 30 Years Energy Praises the Nuclear Regulatory Commission Approval of the...

429

The role of chemistry in the utilization of nuclear energy  

Science Journals Connector (OSTI)

The role of chemistry in the utilization of nuclear energy ... Considers the topics of tracer chemistry, nuclear chemistry, radiation chemistry, and the development of nuclear power. ...

Herbert M. Clark

1958-01-01T23:59:59.000Z

430

Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation  

E-Print Network (OSTI)

The bilateral nuclear and security agreement between theThe bilateral nuclear and security agreement between thein East Asia's security, nuclear energy, and environment. It

Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

1998-01-01T23:59:59.000Z

431

Gills Onions Advanced Energy Recovery System  

NLE Websites -- All DOE Office Websites (Extended Search)

Gills Onions Gills Onions Advanced Energy Recovery System Turning a Waste Liability into a Renewable Resource Waste to Energy Using Fuel Cells Workshop Washington, DC J 13 2011 January 13, 2011 Dave Reardon, , PE National Director - Water Sustainability HDR Engineering, Inc., Folsom, CA t Gills Onions Backg ground ● 3 rd largest onion p producer in the nation ● 100,000 square-foot processing facility in Oxnard, CA ● 800,000 lbs of onions processed every day ● Prepackaged diced, sliced, whole, pureed, and ring product line P i l 6 ● Process is operati ional 6 days a week - - The Problem... ● 250,000 lbs/day waste onion hauled off site - H l Hauled b d by t tract tor and d wagon t to l local fi l field ld s t to incorporate into soil - Disrupted traffic

432

NETL: Advanced Research - Computation Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

MFIX MFIX Advanced Research Computational Energy Sciences MFIX MFIX (Multiphase Flow with Interphase eXchanges) is a general-purpose computer code developed at the National Energy Technology Laboratory (NETL) for describing the hydrodynamics, heat transfer and chemical reactions in fluid-solids systems. It has been used for describing bubbling and circulating fluidized beds and spouted beds. MFIX calculations give transient data on the three-dimensional distribution of pressure, velocity, temperature, and species mass fractions. MFIX code is based on a generally accepted set of multiphase flow equations. The code is used as a "test-stand" for testing and developing multiphase flow constitutive equations. MFIX Virtual Plant Consider a fluidized bed coal gasification reactor, in which pulverized

433

Department of Energy, Duke Energy and EPRI Partner to Test Advanced Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy, Duke Energy and EPRI Partner to Test Advanced Energy, Duke Energy and EPRI Partner to Test Advanced Energy Technologies for Utilities Department of Energy, Duke Energy and EPRI Partner to Test Advanced Energy Technologies for Utilities April 14, 2011 - 12:00am Addthis Washington, DC - The Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) has signed a partnership deal with Duke Energy, one of the largest electric power companies in the United States, and with the Electric Power Research Institute (EPRI), a non-profit research organization that focuses on the electric power utility industry in the U.S. and abroad, to identify opportunities for testing and deploying ARPA-E funded projects that will bolster the electric grid. Through the Memorandum of Understanding (MOU), ARPA-E, Duke Energy, and

434

Surface Symmetry Energy of Nuclear Energy Density Functionals.  

E-Print Network (OSTI)

??The thesis studies the bulk deformation properties of the Skyrme nuclear energy densityfunctionals. Following simple arguments based on the leptodermous expansion andliquid drop model, the (more)

Nikolov, Nikola Iliev

2011-01-01T23:59:59.000Z

435

A future for nuclear energy: pebble bed reactors  

Science Journals Connector (OSTI)

Pebble Bed Reactors could allow nuclear plants to support the goal of reducing global climate change in an energy hungry world. They are small, modular, inherently safe, use a demonstrated nuclear technology and can be competitive with fossil fuels. Pebble bed reactors are helium cooled reactors that use small tennis ball size fuel balls consisting of only 9 grams of uranium per pebble to provide a low power density reactor. The low power density and large graphite core provide inherent safety features such that the peak temperature reached even under the complete loss of coolant accident without any active emergency core cooling system is significantly below the temperature that the fuel melts. This feature should enhance public confidence in this nuclear technology. With advanced modularity principles, it is expected that this type of design and assembly could lower the cost of new nuclear plants removing a major impediment to deployment.

Andrew C. Kadak

2005-01-01T23:59:59.000Z

436

Advanced Plant Pharmaceuticals Inc | Open Energy Information  

Open Energy Info (EERE)

Pharmaceuticals Inc Jump to: navigation, search Name: Advanced Plant Pharmaceuticals, Inc. Place: New York, New York Product: String representation "Advanced Plant ... f its...

437

Advanced Conversion Roadmap Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Conversion Roadmap Workshop DOE introduction slides to the Advanced Conversion Roadmap Workshop webinar. ctabwebinardoe.pdf More Documents & Publications Conversion...

438

Advanced Green Technologies | Open Energy Information  

Open Energy Info (EERE)

Green Technologies Place: Fort Lauderdale, Florida Zip: 33311 Product: Advanced Green Technologies is a US-based distributor of PV systems. It is owned by Advanced Roofing Inc....

439

Energy Department Announces up to $4 Million for Advanced Hydrogen...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Advanced Hydrogen Storage Energy Department Announces up to 4 Million for Advanced Hydrogen Storage October 29, 2013 - 12:00am Addthis In support of the Obama Administration's...

440

United States-Japan Joint Nuclear Energy Action Plan | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States-Japan Joint Nuclear Energy Action Plan United States-Japan Joint Nuclear Energy Action Plan An outline on the United States and Japan's joint nuclear energy action...

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Department of Energy Releases $8 Billion Solicitation for Advanced Fossil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$8 Billion Solicitation for Advanced $8 Billion Solicitation for Advanced Fossil Energy Projects Department of Energy Releases $8 Billion Solicitation for Advanced Fossil Energy Projects December 12, 2013 - 1:40pm Addthis NEWS MEDIA CONTACT (202) 586-4940 Washington, D.C. - As part of President Obama's Climate Action Plan, the Energy Department published a solicitation today, making up to $8 billion in loan guarantee authority available to support innovative advanced fossil energy projects that avoid, reduce, or sequester greenhouse gases. Authorized by Title XVII of the Energy Policy Act of 2005, loan guarantees under this new solicitation will help provide critical financing to support new or significantly improved advanced fossil energy projects - such as advanced resource development, carbon capture, low-carbon power

442

NETL: News Release -Treasury, Energy Departments Release New Advanced Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2007 7, 2007 Treasury, Energy Departments Release New Advanced Coal Project Tax Credit Applications for 2007-2008 WASHINGTON, DC - The Treasury Department and the Department of Energy (DOE) released today new instructions for applying for the tax credits for advanced coal projects and gasification projects. The new instructions provide additional time to submit applications for the credits. For the 2007-2008 allocation round, applications for DOE certification are not due to the Energy Department until October 31, 2007. "To further advance our nation's energy security, this Administration had made sustained investments in research, development, and wider use of advanced coal technologies a priority," Deputy Secretary of Energy Clay Sell said. "Through new and innovative programs such as the Clean Coal Power Initiative and FutureGen demonstration, private sector partnerships, and use of tax credits and loan guarantees, the Department of Energy is advancing research to further develop and deploy advanced coal technologies to meet growing energy demand."

443

System modeling for the advanced thermionic initiative single cell thermionic space nuclear reactor  

SciTech Connect

Incore thermionic space reactor design concepts which operate in a nominal power output range of 20 to 40 kWe are described. Details of the neutronics, thermionic, shielding, and heat rejection performance are presented. Two different designs, ATI-Driven and ATI-Driverless, are considered. Comparison of the core overall performance of these two configurations are described. The comparison of these two cores includes the overall conversion efficiency, reactor mass, shield mass, and heat rejection mass. An overall system design has been developed to model the advanced incore thermionic energy conversion based nuclear reactor systems for space applications in this power range.

Lee, H.H.; Lewis, B.R.; Klein, A.C. (Department of Nuclear Engineering, Oregon State University, Radiation Center, C116, Corvallis, Oregon 97331-5902 (United States)); Pawlowski, R.A. (Battelle Pacific Northwest Laboratories, Richland, Washington 99352 (United States))

1993-01-15T23:59:59.000Z

444

Secretary Bodman Highlights Advanced Energy Initiative in Peoria, IL |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bodman Highlights Advanced Energy Initiative in Peoria, Bodman Highlights Advanced Energy Initiative in Peoria, IL Secretary Bodman Highlights Advanced Energy Initiative in Peoria, IL April 6, 2006 - 10:15am Addthis PEORIA, IL - Secretary of Energy Samuel W. Bodman today highlighted the goals of President Bush's Advanced Energy Initiative after consulting on an energy savings assessment at Caterpillar Inc.'s manufacturing facility in Peoria, Illinois. To answer President Bush's call for Americans to be more energy efficient, the Department of Energy (DOE) is conducting no-cost energy assessments at 200 of the nation's most energy-intensive manufacturing facilities to identify energy- and money-saving opportunities. "President Bush has called on all Americans to be more energy efficient. Private industry is joining the federal government in taking a leading role

445

Energy Department Announces New Investments to Train Next Generation...  

Office of Environmental Management (EM)

to Train Next Generation of Nuclear Energy Leaders, Advance University-Led Nuclear Innovation Energy Department Announces New Investments to Train Next Generation of Nuclear Energy...

446

Energy Department Invests $60 Million to Train Next Generation...  

Office of Environmental Management (EM)

60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology Energy Department Invests 60 Million to Train Next Generation Nuclear Energy...

447

Nuclear Hydrogen Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Nuclear Research Advanced Nuclear Research Office of Nuclear Energy, Science and Technology FY 2003 Programmatic Overview Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Office of Nuclear Energy, Science and Technology Henderson/2003 Hydrogen Initiative.ppt 2 Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Program Goal * Demonstrate the economic commercial-scale production of hydrogen using nuclear energy by 2015 Need for Nuclear Hydrogen * Hydrogen offers significant promise for reduced environmental impact of energy use, specifically in the transportation sector * The use of domestic energy sources to produce hydrogen reduces U.S. dependence on foreign oil and enhances national security * Existing hydrogen production methods are either inefficient or produce

448

Summary Pamphlet, Nuclear Safety at the Department of Energy...  

Office of Environmental Management (EM)

Summary Pamphlet, Nuclear Safety at the Department of Energy Summary Pamphlet, Nuclear Safety at the Department of Energy September 2010 This pamphlet is developed as part of the...

449

Energy/National Nuclear Security Administration (NNSA) Career...  

Energy Savers (EERE)

Graduates EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program Intern...

450

Fostering the Next Generation of Nuclear Energy Technology |...  

Office of Environmental Management (EM)

Fostering the Next Generation of Nuclear Energy Technology Fostering the Next Generation of Nuclear Energy Technology September 29, 2014 - 11:06am Addthis Fostering the Next...

451

DOE Office of Nuclear Energy Transportation Planning, Route Selection...  

Office of Environmental Management (EM)

DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues...

452

International Framework for Nuclear Energy Cooperation to Hold...  

Energy Savers (EERE)

Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold...

453

Nuclear Energy Research Advisory Committee (NERAC) agenda 11...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

agenda 11303 Nuclear Energy Research Advisory Committee (NERAC) agenda 11303 This is an agenda of the 110303 and 110403 Nuclear Energy Research Advisory Committee (NERAC)...

454

United States -Japan Joint Nuclear Energy Action Plan | Department...  

Energy Savers (EERE)

United States -Japan Joint Nuclear Energy Action Plan United States -Japan Joint Nuclear Energy Action Plan President Bush of the United States and Prime Minister Koizumi of Japan...

455

Role of inorganic chemistry on nuclear energy examined  

NLE Websites -- All DOE Office Websites (Extended Search)

July Role of inorganic chemistry on nuclear energy examined Role of inorganic chemistry on nuclear energy examined Inorganic chemistry can provide insight and improve technical...

456

Nuclear energy field fascinates David Parkinson, chemical engineer  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear energy field fascinates David Parkinson, chemical engineer Nuclear energy field fascinates David Parkinson, chemical engineer Chemical engineer undergraduate designs and...

457

NETL: Gasification Systems - Advanced Virtual Energy Simulation Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Virtual Energy Simulation Training And Research (AVESTAR(tm)) Facility Advanced Virtual Energy Simulation Training And Research (AVESTAR(tm)) Facility Project No: Adv Gas-FY131415 Task 6 Developed as a part of NETL's initiative to advance new clean coal technology, the Advanced Virtual Energy Simulation Training And Research (AVESTARTM) Center is focused on training engineers and energy plant operators in the efficient, productive, and safe operation of highly efficient power generation systems that also protect the environment. Comprehensive dynamic simulator-based instruction better prepares operators and engineers to manage advanced energy plants according to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. Advanced Virtual Energy Simulation Training and Research Center - AVESTAR

458

Viscosity of High Energy Nuclear Fluids  

E-Print Network (OSTI)

Relativistic high energy heavy ion collision cross sections have been interpreted in terms of almost ideal liquid droplets of nuclear matter. The experimental low viscosity of these nuclear fluids have been of considerable recent quantum chromodynamic interest. The viscosity is here discussed in terms of the string fragmentation models wherein the temperature dependence of the nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.

V. Parihar; A. Widom; D. Drosdoff; Y. N. Srivastava

2007-03-15T23:59:59.000Z

459

Small Modular Nuclear Reactors | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Technologies » Small Modular Reactor Technologies » Small Modular Nuclear Reactors Small Modular Nuclear Reactors Cutaway of 2-Unit Generation mPower SMR Installation. | © 2012 Generation mPower LLC. All Rights Reserved. Reprinted with permission. Cutaway of 2-Unit Generation mPower SMR Installation. | © 2012 Generation mPower LLC. All Rights Reserved. Reprinted with permission. The development of clean, affordable nuclear power options is a key element of the Department of Energy's Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. Begun

460

Advanced Plasma Power APP | Open Energy Information  

Open Energy Info (EERE)

Power APP Power APP Jump to: navigation, search Name Advanced Plasma Power (APP) Place London, Greater London, United Kingdom Zip EC2A 1BR Product London-based geoplasma process technology developer for waste-to-energy systems. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

THE NUCLEAR ENERGY REVOLUTION1966  

Science Journals Connector (OSTI)

...of the coming generation. It is this...cheap nuclear power, about which...water nuclear power plant. At its...for a coal-fired power plant of the...Utilities Rochester Gas & Electric Consolidated...available for generation 76 per cent of...

Alvin M. Weinberg; Gale Young

1967-01-01T23:59:59.000Z

462

The Future of Energy from Nuclear Fission  

SciTech Connect

Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the worlds electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of these five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel cycles. In March of 2011, an unprecedented earthquake of 9 magnitude and ensuing tsunami off the east coast of Japan caused a severe nuclear accident in Fukushima, Japan (Prime Minister of Japan and His Cabinet, 2011). The severity of the nuclear accident in Japan has brought about a reinvestigation of nuclear energy policy and deployment activities for many nations around the world, most notably in Japan and Germany (BBC, 2011; Reuter, 2011). The response to the accident has been mixed and its full impact may not be realized for many years to come. The nuclear accident in Fukushima, Japan has not directly affected the significant on-going nuclear deployment activities in many countries. China, Russia, India, and South Korea, as well as others, are continuing with their deployment plans. As of October 2011, China had the most reactors under construction at 27, while Russia, India, and South Korea had 11, 6, and 5 reactors under construction, respectively (IAEA PRIS, 2011). Ten other nations have one or two reactors currently under construction. Many more reactors are planned for future deployment in China, Russia, and India, as well as in the US. Based on the World Nuclear Associations data, the realization of Chinas deployment plan implies that China will surpass the US in total nuclear capacity some time in the future.

Kim, Son H.; Taiwo, Temitope

2013-04-13T23:59:59.000Z

463

Advanced Energy Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corporate) Corporate) Advanced Energy Tax Credit (Corporate) < Back Eligibility Commercial Savings Category Buying & Making Electricity Solar Maximum Rebate 60 million Program Info Start Date 7/1/2009 State New Mexico Program Type Corporate Tax Credit Rebate Amount 6% credit against personal, corporate, gross receipts, compensating, or withholding taxes Provider New Mexico Taxation and Revenue Department As of July 2007, the development and construction costs of solar thermal electric plants and associated energy storage devices are eligible for a 6% tax credit against gross receipts, compensating, or withholding taxes. Photovoltaics and geothermal electric generating facilities installed after July 1, 2009 with a nameplate capacity of at least 1 megawatt were added as

464

Advanced Energy Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Personal) Personal) Advanced Energy Tax Credit (Personal) < Back Eligibility Commercial Savings Category Buying & Making Electricity Solar Maximum Rebate 60 million Program Info State New Mexico Program Type Personal Tax Credit Rebate Amount 6% Provider New Mexico Taxation and Revenue Department As of July 2007, the development and construction costs of solar thermal electric plants and associated energy storage devices are eligible for a 6% tax credit against gross receipts, compensating, or withholding taxes. Photovoltaics and geothermal electric generating facilities installed after July 1, 2009 with a nameplate capacity of at least 1 megawatt were added as eligible technologies by [http://www.nmlegis.gov/lcs/_session.aspx?chamber=S&legtype=B&legno=%2023...

465

A presentation by the Advanced Research Projects Agency - Energy...  

Energy Savers (EERE)

A presentation by the Advanced Research Projects Agency - Energy (ARPA-E) on Research Opportunities with the DOE for Historically Black Colleges and Universities A presentation by...

466

Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012)  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Storage Technology Advancement Partnership (ESTAP) is acooperative funding and information-sharing partnership between DOE and interested states that aims to accelerate the...

467

Advanced, Energy-Efficient Hybrid Membrane System for Industrial...  

Energy Savers (EERE)

MANUFACTURING OFFICE Advanced, Energy- Efficient Hybrid Membrane System for Industrial Water Reuse New Hybrid Membrane System Utilizes Industrial Waste Heat to Power Water...

468

Energy Secretary Moniz Unveils More Than $55 Million to Advance...  

NLE Websites -- All DOE Office Websites (Extended Search)

to make plug-in electric vehicles as affordable to own and operate as today's gasoline-powered vehicles by 2022. "Energy Department investments in advanced vehicle technologies...

469

Department of Energy Announces Fellows Program for Advance Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and entrepreneurs as we continue to look for creative and inventive approaches to transform the global energy landscape while advancing America's technology leadership." The...

470

48C Qualifying Advanced Energy Project Credit Questions | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Credit Questions More Documents & Publications 48C Qualifying Advanced Energy Project Credit Questions FACT SHEET: 48C MANUFACTURING TAX CREDITS Microsoft Word -...

471

News Letter Institute of Advanced Energy, Kyoto University  

E-Print Network (OSTI)

;"Energy Research Issue" The IAE has many groups researching various fields of energy related issues. Abstract definition of energy consists of two parts: Energy = Exergy +Anergy Exergy is a part of energyNews Letter Institute of Advanced Energy, Kyoto University ISSN 1342-3193 IAE-NL-2014 No.54 http

Takada, Shoji

472

NUCLEAR FLUID DYNAMICS VERSUS INTRANUCLEAR CASCADE--POSSIBLE EVIDENCE FOR COLLECTIVE FLOW IN CENTRAL HIGH ENERGY NUCLEAR COLLISIONS  

E-Print Network (OSTI)

Flow in Central High Energy Nuclear Collisions H. Stockera,theoretical models of high energy nuclear collisions andunder Contract High energy nuclear collisions offer a unique

Stocker, H.

2012-01-01T23:59:59.000Z

473

Harry Potter, Oxford and Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Harry Potter, Oxford and Nuclear Energy Harry Potter, Oxford and Nuclear Energy Harry Potter, Oxford and Nuclear Energy July 16, 2012 - 1:30pm Addthis Assistant Secretary Dr. Peter Lyons meets with students on the Oxford University Campus in the same room where scenes from the Harry Potter films were filmed. Assistant Secretary Dr. Peter Lyons meets with students on the Oxford University Campus in the same room where scenes from the Harry Potter films were filmed. Karissa Marcum Public Affairs Specialist, Office of Public Affairs Dr. Peter Lyons, the Assistant Secretary for Nuclear Energy at the Energy Department and the U.S. government's foremost expert on nuclear, met with about a dozen American fellows - in the same room where scenes from the Harry Potter films were filmed - to talk about the low-carbon power

474

Harry Potter, Oxford and Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Harry Potter, Oxford and Nuclear Energy Harry Potter, Oxford and Nuclear Energy Harry Potter, Oxford and Nuclear Energy July 16, 2012 - 1:30pm Addthis Assistant Secretary Dr. Peter Lyons meets with students on the Oxford University Campus in the same room where scenes from the Harry Potter films were filmed. Assistant Secretary Dr. Peter Lyons meets with students on the Oxford University Campus in the same room where scenes from the Harry Potter films were filmed. Karissa Marcum Public Affairs Specialist, Office of Public Affairs Dr. Peter Lyons, the Assistant Secretary for Nuclear Energy at the Energy Department and the U.S. government's foremost expert on nuclear, met with about a dozen American fellows - in the same room where scenes from the Harry Potter films were filmed - to talk about the low-carbon power

475

Investing in Clean, Safe Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investing in Clean, Safe Nuclear Energy Investing in Clean, Safe Nuclear Energy Investing in Clean, Safe Nuclear Energy Addthis Description President Obama announces more than $8 billion in loan guarantees for two new nuclear reactors as part of the Administration's commitment to providing clean energy and creating new jobs. Speakers President Obama, Steven Chu Duration 10:42 Topic Energy Economy Loans Energy Policy Credit Video courtesy of WhiteHouse.gov PRESIDENT BARACK OBAMA: Good morning, everybody. AUDIENCE MEMBERS: Good morning. PRESIDENT OBAMA: Before I begin, let me just acknowledge some of the people who are standing behind me here. First of all, two people who've been working really hard to make this day happen, Secretary Steven Chu, my energy secretary - Steven Chu - (applause) - and my White House

476

Investing in Clean, Safe Nuclear Energy  

SciTech Connect

President Obama announces more than $8 billion in loan guarantees for two new nuclear reactors as part of the Administration's commitment to providing clean energy and creating new jobs.

President Obama

2010-02-16T23:59:59.000Z

477

Manpower development for new nuclear energy programs  

E-Print Network (OSTI)

In the spring of 2012, nine countries were seriously considering embarking on nuclear energy programs, either having signed contracts with reactor vendors or having made investments for the development of infrastructure ...

Verma, Aditi

2012-01-01T23:59:59.000Z

478

Department of Energy Nuclear Safety Policy  

Directives, Delegations, and Requirements

It is the policy of the Department of Energy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. Cancels SEN-35-91.

2011-02-08T23:59:59.000Z

479

Advanced nuclear reactors and tritium impacts. Modeling the aquatic pathway  

Science Journals Connector (OSTI)

The effective contribution of nuclear energy will depend on various factors related to economics, safety, public acceptance and sustainability. To assure, however, the nuclear energy development, reactor accident impacts, as Fukushima, must be evaluated in a predictive way. Environmental assessment models are used for evaluating the radiological impact of potential releases of radionuclides from nuclear reactors to the environment. It is important to evaluate, to the extent possible, the reliability of the predictions of such models, by comparing with measured values in the environment or by comparing with the predictions of other models. Tritium has a complex environmental behavior once released into the environment. It is essential to establish reference scenarios to allow the simulation of tritium aquatic pathway subsequent to accidental releases. For this purpose, two scenarios for seawater circulation were analyzed by hydrodynamic modeling. An inverse modeling procedure was successfully applied to estimate tide elevations on the borders, which are based on applying the harmonic constants and using the same overestimation percentage produced by model results to correct the border values. Simulations of validated model for postulated accidental releases of tritium inventory from heavy water reactors, whose doses could be relevant, were presented here. It was observed differences between the two scenarios for the transport modeling that were caused by the removal of large volume of polluted waters from the accident site and its dilution in the discharge area, which has minor tritium concentrations. Moreover, the processes involved in the dynamic transfer of tritium in the environment were analyzed in dependence on the environmental conditions of tropical coastal ecosystem.

Francisco Fernando Lamego Simes Filho; Abner Duarte Soares; Andr da Silva Aguiar; Celso Marcelo Franklin Lapa; Antonio Carlos Ferreira Guimares

2013-01-01T23:59:59.000Z

480

Nuclear diffractive structure functions at high energies  

E-Print Network (OSTI)

A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F_{2,A}^D is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

C. Marquet; H. Kowalski; T. Lappi; R. Venugopalan

2008-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "advanced nuclear energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Cabell on Nuclear Energy Power Plants  

Science Journals Connector (OSTI)

Cabell on Nuclear Energy Power Plants ... IN EXPLAINING the function of his research group t o the new works superintendent of a nuclear power plant at a mining and reduction installation in the Alaskan mountains, Dr. Blank, of the United Nations Inspection and Research Laboratories, said, "We can't inspect what we don't know. ... In order to know what you're doing, we have to know more about atomic energy than you domore than anybody does. ...

1947-02-17T23:59:59.000Z

482

ORISE: Coordinating Scientific Peer Reviews to Advance Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Energy Efficiency ORISE Reviews and Evaluates Technologies that Advance Energy Efficiency ORISE Reviews and Evaluates Technologies that Advance Energy Efficiency In addition to renewable energy and changes in individual behavior, energy efficiency is generally achieved through the development of more efficient technologies. Buildings are being constructed with more energy efficient systems, fluorescent light bulbs are replacing incandescent lights, and new vehicle technologies are enabling America to use less petroleum. The Oak Ridge Institute for Science Education (ORISE) realizes that energy efficiency encompasses a wide spectrum of industries and supports the U.S. Department of Energy (DOE) in its mission to reduce America's dependence on foreign oil.

483

Report of the Nuclear Energy Research Advisory Committee, Subcommittee on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Research Advisory Committee, Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements Report of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements As an element of its plans to return the U.S. Department of Energy (DOE) site in eastern Idaho to its historic mission of nuclear technology development, the DOE asked its Nuclear Energy Research Advisory Committee (NERAC) to establish a Subcommittee on Nuclear Laboratory Requirements. The Subcommittee was charged with identifying the "characteristics, capabilities, and attributes a world-class nuclear laboratory would possess". It was also asked "to become familiar with the practices, culture, and facilities of other world-class laboratories - not

484

US Advanced Battery Consortium USABC | Open Energy Information  

Open Energy Info (EERE)

US Advanced Battery Consortium USABC US Advanced Battery Consortium USABC Jump to: navigation, search Name US Advanced Battery Consortium (USABC) Place Southfield, Michigan Zip 48075 Sector Vehicles Product Michigan-based, research consortium focused on R&D of advanced energy systems for electric vehicles. References US Advanced Battery Consortium (USABC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. US Advanced Battery Consortium (USABC) is a company located in Southfield, Michigan . References ↑ "US Advanced Battery Consortium (USABC)" Retrieved from "http://en.openei.org/w/index.php?title=US_Advanced_Battery_Consortium_USABC&oldid=352587" Categories: Clean Energy Organizations

485

Nuclear Energy Density Optimization: UNEDF2  

E-Print Network (OSTI)

The parameters of the UNEDF2 nuclear energy density functional (EDF) model were obtained in an optimization to experimental data consisting of nuclear binding energies, proton radii, odd-even mass staggering data, fission-isomer excitation energies, and single particle energies. In addition to parameter optimization, sensitivity analysis was done to obtain parameter uncertainties and correlations. The resulting UNEDF2 is an all-around EDF. However, the sensitivity analysis also demonstrated that the limits of current Skyrme-like EDFs have been reached and that novel approaches are called for.

Kortelainen, M; Nazarewicz, W; Olsen, E; Reinhard, P -G; Sarich, J; Schunck, N; Wild, S M; Davesne, D; Erler, J; Pastore, A

2014-01-01T23:59:59.000Z

486

Nuclear Energy Density Optimization: UNEDF2  

E-Print Network (OSTI)

The parameters of the UNEDF2 nuclear energy density functional (EDF) model were obtained in an optimization to experimental data consisting of nuclear binding energies, proton radii, odd-even mass staggering data, fission-isomer excitation energies, and single particle energies. In addition to parameter optimization, sensitivity analysis was done to obtain parameter uncertainties and correlations. The resulting UNEDF2 is an all-around EDF. However, the sensitivity analysis also demonstrated that the limits of current Skyrme-like EDFs have been reached and that novel approaches are called for.

M. Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P. -G. Reinhard; J. Sarich; N. Schunck; S. M. Wild; D. Davesne; J. Erler; A. Pastore

2014-10-30T23:59:59.000Z

487

Symmetry energy in nuclear density functional theory  

E-Print Network (OSTI)

The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side-by-side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry-energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts.

W. Nazarewicz; P. -G. Reinhard; W. Satula; D. Vretenar

2013-07-22T23:59:59.000Z

488

Why Nuclear Energy? - Reactors designed/built by Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Energy: Nuclear Energy: Why Nuclear Energy? About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

489

Nuclear and gravitational energies in stars  

E-Print Network (OSTI)

The force that governs the evolution of stars is gravity. Indeed this force drives star formation, imposes thermal and density gradients into stars at hydrostatic equilibrium and finally plays the key role in the last phases of their evolution. Nuclear power in stars governs their lifetimes and of course the stellar nucleosynthesis. The nuclear reactions are at the heart of the changes of composition of the baryonic matter in the Universe. This change of composition, in its turn, has profound consequences on the evolution of stars and galaxies. The energy extracted from the gravitational, respectively nuclear reservoirs during the lifetimes of stars of different masses are estimated. It is shown that low and intermediate mass stars (M 8 Msol), which explode in a supernova explosion, extract more than 5 times more energy from the gravitational reservoir than from the nuclear one. We conclude by discussing a few important nuclear reactions and their link to topical astrophysical questions.

Meynet, Georges; Ekstrm, Sylvia

2013-01-01T23:59:59.000Z

490

Intermediate-energy nuclear chemistry workshop  

SciTech Connect

This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

1981-05-01T23:59:59.000Z

491

Advanced Nuclear Final Solicitation Fact Sheet_Dec-2014  

Office of Environmental Management (EM)

tails to a higher isotopic content of U235 including by (1) gas centrifuge or (2) laser isotope separation and; c) Nuclear Fuel Fabrication Projects that fabricate nuclear...

492

Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation  

SciTech Connect

The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

Liby, Alan L [ORNL; Rogers, Hiram [ORNL